/*
- * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
+ * Copyright (c) 2000-2018 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
- *
+ *
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
- *
+ *
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
- *
+ *
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
- *
+ *
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
#include <mach_kdp.h>
#include <kdp/kdp_internal.h>
#include <mach_ldebug.h>
-#include <gprof.h>
#include <mach/mach_types.h>
#include <mach/kern_return.h>
#include <kern/cpu_number.h>
#include <kern/cpu_data.h>
#include <kern/assert.h>
+#include <kern/lock_group.h>
#include <kern/machine.h>
#include <kern/pms.h>
#include <kern/misc_protos.h>
#include <vm/vm_map.h>
#include <vm/vm_kern.h>
-#include <profiling/profile-mk.h>
-
#include <i386/bit_routines.h>
#include <i386/proc_reg.h>
#include <i386/cpu_threads.h>
#include <kern/monotonic.h>
#endif /* MONOTONIC */
-#if MP_DEBUG
-#define PAUSE delay(1000000)
-#define DBG(x...) kprintf(x)
+#if MP_DEBUG
+#define PAUSE delay(1000000)
+#define DBG(x...) kprintf(x)
#else
#define DBG(x...)
#define PAUSE
-#endif /* MP_DEBUG */
+#endif /* MP_DEBUG */
/* Debugging/test trace events: */
-#define TRACE_MP_TLB_FLUSH MACHDBG_CODE(DBG_MACH_MP, 0)
-#define TRACE_MP_CPUS_CALL MACHDBG_CODE(DBG_MACH_MP, 1)
-#define TRACE_MP_CPUS_CALL_LOCAL MACHDBG_CODE(DBG_MACH_MP, 2)
-#define TRACE_MP_CPUS_CALL_ACTION MACHDBG_CODE(DBG_MACH_MP, 3)
-#define TRACE_MP_CPUS_CALL_NOBUF MACHDBG_CODE(DBG_MACH_MP, 4)
-#define TRACE_MP_CPU_FAST_START MACHDBG_CODE(DBG_MACH_MP, 5)
-#define TRACE_MP_CPU_START MACHDBG_CODE(DBG_MACH_MP, 6)
-#define TRACE_MP_CPU_DEACTIVATE MACHDBG_CODE(DBG_MACH_MP, 7)
+#define TRACE_MP_TLB_FLUSH MACHDBG_CODE(DBG_MACH_MP, 0)
+#define TRACE_MP_CPUS_CALL MACHDBG_CODE(DBG_MACH_MP, 1)
+#define TRACE_MP_CPUS_CALL_LOCAL MACHDBG_CODE(DBG_MACH_MP, 2)
+#define TRACE_MP_CPUS_CALL_ACTION MACHDBG_CODE(DBG_MACH_MP, 3)
+#define TRACE_MP_CPUS_CALL_NOBUF MACHDBG_CODE(DBG_MACH_MP, 4)
+#define TRACE_MP_CPU_FAST_START MACHDBG_CODE(DBG_MACH_MP, 5)
+#define TRACE_MP_CPU_START MACHDBG_CODE(DBG_MACH_MP, 6)
+#define TRACE_MP_CPU_DEACTIVATE MACHDBG_CODE(DBG_MACH_MP, 7)
-#define ABS(v) (((v) > 0)?(v):-(v))
+#define ABS(v) (((v) > 0)?(v):-(v))
-void slave_boot_init(void);
-void i386_cpu_IPI(int cpu);
+void slave_boot_init(void);
+void i386_cpu_IPI(int cpu);
#if MACH_KDP
-static void mp_kdp_wait(boolean_t flush, boolean_t isNMI);
+static void mp_kdp_wait(boolean_t flush, boolean_t isNMI);
#endif /* MACH_KDP */
#if MACH_KDP
-static boolean_t cpu_signal_pending(int cpu, mp_event_t event);
+static boolean_t cpu_signal_pending(int cpu, mp_event_t event);
#endif /* MACH_KDP */
-static int NMIInterruptHandler(x86_saved_state_t *regs);
+static int NMIInterruptHandler(x86_saved_state_t *regs);
-boolean_t smp_initialized = FALSE;
-uint32_t TSC_sync_margin = 0xFFF;
-volatile boolean_t force_immediate_debugger_NMI = FALSE;
-volatile boolean_t pmap_tlb_flush_timeout = FALSE;
+boolean_t smp_initialized = FALSE;
+uint32_t TSC_sync_margin = 0xFFF;
+volatile boolean_t force_immediate_debugger_NMI = FALSE;
+volatile boolean_t pmap_tlb_flush_timeout = FALSE;
#if DEBUG || DEVELOPMENT
-boolean_t mp_interrupt_watchdog_enabled = TRUE;
-uint32_t mp_interrupt_watchdog_events = 0;
+boolean_t mp_interrupt_watchdog_enabled = TRUE;
+uint32_t mp_interrupt_watchdog_events = 0;
#endif
-decl_simple_lock_data(,debugger_callback_lock);
+decl_simple_lock_data(, debugger_callback_lock);
struct debugger_callback *debugger_callback = NULL;
decl_lck_mtx_data(static, mp_cpu_boot_lock);
-lck_mtx_ext_t mp_cpu_boot_lock_ext;
+lck_mtx_ext_t mp_cpu_boot_lock_ext;
/* Variables needed for MP rendezvous. */
-decl_simple_lock_data(,mp_rv_lock);
-static void (*mp_rv_setup_func)(void *arg);
-static void (*mp_rv_action_func)(void *arg);
-static void (*mp_rv_teardown_func)(void *arg);
-static void *mp_rv_func_arg;
-static volatile int mp_rv_ncpus;
- /* Cache-aligned barriers: */
-static volatile long mp_rv_entry __attribute__((aligned(64)));
-static volatile long mp_rv_exit __attribute__((aligned(64)));
-static volatile long mp_rv_complete __attribute__((aligned(64)));
-
-volatile uint64_t debugger_entry_time;
-volatile uint64_t debugger_exit_time;
+decl_simple_lock_data(, mp_rv_lock);
+static void (*mp_rv_setup_func)(void *arg);
+static void (*mp_rv_action_func)(void *arg);
+static void (*mp_rv_teardown_func)(void *arg);
+static void *mp_rv_func_arg;
+static volatile int mp_rv_ncpus;
+/* Cache-aligned barriers: */
+static volatile long mp_rv_entry __attribute__((aligned(64)));
+static volatile long mp_rv_exit __attribute__((aligned(64)));
+static volatile long mp_rv_complete __attribute__((aligned(64)));
+
+volatile uint64_t debugger_entry_time;
+volatile uint64_t debugger_exit_time;
#if MACH_KDP
#include <kdp/kdp.h>
extern int kdp_snapshot;
/* Variables needed for MP broadcast. */
static void (*mp_bc_action_func)(void *arg);
static void *mp_bc_func_arg;
-static int mp_bc_ncpus;
+static int mp_bc_ncpus;
static volatile long mp_bc_count;
decl_lck_mtx_data(static, mp_bc_lock);
-lck_mtx_ext_t mp_bc_lock_ext;
-static volatile int debugger_cpu = -1;
-volatile long NMIPI_acks = 0;
-volatile long NMI_count = 0;
-static NMI_reason_t NMI_panic_reason = NONE;
-static int vector_timed_out;
+lck_mtx_ext_t mp_bc_lock_ext;
+static volatile int debugger_cpu = -1;
+volatile long NMIPI_acks = 0;
+volatile long NMI_count = 0;
+static NMI_reason_t NMI_panic_reason = NONE;
+static int vector_timed_out;
-extern void NMI_cpus(void);
+extern void NMI_cpus(void);
-static void mp_cpus_call_init(void);
-static void mp_cpus_call_action(void);
-static void mp_call_PM(void);
+static void mp_cpus_call_init(void);
+static void mp_cpus_call_action(void);
+static void mp_call_PM(void);
-char mp_slave_stack[PAGE_SIZE] __attribute__((aligned(PAGE_SIZE))); // Temp stack for slave init
+char mp_slave_stack[PAGE_SIZE] __attribute__((aligned(PAGE_SIZE))); // Temp stack for slave init
/* PAL-related routines */
-boolean_t i386_smp_init(int nmi_vector, i386_intr_func_t nmi_handler,
- int ipi_vector, i386_intr_func_t ipi_handler);
+boolean_t i386_smp_init(int nmi_vector, i386_intr_func_t nmi_handler,
+ int ipi_vector, i386_intr_func_t ipi_handler);
void i386_start_cpu(int lapic_id, int cpu_num);
void i386_send_NMI(int cpu);
void NMIPI_enable(boolean_t);
-#if GPROF
-/*
- * Initialize dummy structs for profiling. These aren't used but
- * allows hertz_tick() to be built with GPROF defined.
- */
-struct profile_vars _profile_vars;
-struct profile_vars *_profile_vars_cpus[MAX_CPUS] = { &_profile_vars };
-#define GPROF_INIT() \
-{ \
- int i; \
- \
- /* Hack to initialize pointers to unused profiling structs */ \
- for (i = 1; i < MAX_CPUS; i++) \
- _profile_vars_cpus[i] = &_profile_vars; \
-}
-#else
-#define GPROF_INIT()
-#endif /* GPROF */
-static lck_grp_t smp_lck_grp;
-static lck_grp_attr_t smp_lck_grp_attr;
+static lck_grp_t smp_lck_grp;
+static lck_grp_attr_t smp_lck_grp_attr;
-#define NUM_CPU_WARM_CALLS 20
-struct timer_call cpu_warm_call_arr[NUM_CPU_WARM_CALLS];
-queue_head_t cpu_warm_call_list;
+#define NUM_CPU_WARM_CALLS 20
+struct timer_call cpu_warm_call_arr[NUM_CPU_WARM_CALLS];
+queue_head_t cpu_warm_call_list;
decl_simple_lock_data(static, cpu_warm_lock);
typedef struct cpu_warm_data {
- timer_call_t cwd_call;
- uint64_t cwd_deadline;
- int cwd_result;
+ timer_call_t cwd_call;
+ uint64_t cwd_deadline;
+ int cwd_result;
} *cpu_warm_data_t;
-static void cpu_prewarm_init(void);
-static void cpu_warm_timer_call_func(call_entry_param_t p0, call_entry_param_t p1);
-static void _cpu_warm_setup(void *arg);
-static timer_call_t grab_warm_timer_call(void);
-static void free_warm_timer_call(timer_call_t call);
+static void cpu_prewarm_init(void);
+static void cpu_warm_timer_call_func(call_entry_param_t p0, call_entry_param_t p1);
+static void _cpu_warm_setup(void *arg);
+static timer_call_t grab_warm_timer_call(void);
+static void free_warm_timer_call(timer_call_t call);
void
smp_init(void)
lck_mtx_init_ext(&mp_bc_lock, &mp_bc_lock_ext, &smp_lck_grp, LCK_ATTR_NULL);
console_init();
- if(!i386_smp_init(LAPIC_NMI_INTERRUPT, NMIInterruptHandler,
- LAPIC_VECTOR(INTERPROCESSOR), cpu_signal_handler))
+ if (!i386_smp_init(LAPIC_NMI_INTERRUPT, NMIInterruptHandler,
+ LAPIC_VECTOR(INTERPROCESSOR), cpu_signal_handler)) {
return;
+ }
cpu_thread_init();
- GPROF_INIT();
DBGLOG_CPU_INIT(master_cpu);
mp_cpus_call_init();
#if DEBUG || DEVELOPMENT
if (PE_parse_boot_argn("interrupt_watchdog",
- &mp_interrupt_watchdog_enabled,
- sizeof(mp_interrupt_watchdog_enabled))) {
+ &mp_interrupt_watchdog_enabled,
+ sizeof(mp_interrupt_watchdog_enabled))) {
kprintf("Interrupt watchdog %sabled\n",
- mp_interrupt_watchdog_enabled ? "en" : "dis");
+ mp_interrupt_watchdog_enabled ? "en" : "dis");
}
#endif
if (PE_parse_boot_argn("TSC_sync_margin",
- &TSC_sync_margin, sizeof(TSC_sync_margin))) {
+ &TSC_sync_margin, sizeof(TSC_sync_margin))) {
kprintf("TSC sync Margin 0x%x\n", TSC_sync_margin);
} else if (cpuid_vmm_present()) {
kprintf("TSC sync margin disabled\n");
}
typedef struct {
- int target_cpu;
- int target_lapic;
- int starter_cpu;
+ int target_cpu;
+ int target_lapic;
+ int starter_cpu;
} processor_start_info_t;
-static processor_start_info_t start_info __attribute__((aligned(64)));
+static processor_start_info_t start_info __attribute__((aligned(64)));
-/*
+/*
* Cache-alignment is to avoid cross-cpu false-sharing interference.
*/
-static volatile long tsc_entry_barrier __attribute__((aligned(64)));
-static volatile long tsc_exit_barrier __attribute__((aligned(64)));
-static volatile uint64_t tsc_target __attribute__((aligned(64)));
+static volatile long tsc_entry_barrier __attribute__((aligned(64)));
+static volatile long tsc_exit_barrier __attribute__((aligned(64)));
+static volatile uint64_t tsc_target __attribute__((aligned(64)));
/*
* Poll a CPU to see when it has marked itself as running.
mp_wait_for_cpu_up(int slot_num, unsigned int iters, unsigned int usecdelay)
{
while (iters-- > 0) {
- if (cpu_datap(slot_num)->cpu_running)
+ if (cpu_datap(slot_num)->cpu_running) {
break;
+ }
delay(usecdelay);
}
}
kern_return_t
intel_startCPU_fast(int slot_num)
{
- kern_return_t rc;
+ kern_return_t rc;
/*
* Try to perform a fast restart
*/
rc = pmCPUExitHalt(slot_num);
- if (rc != KERN_SUCCESS)
+ if (rc != KERN_SUCCESS) {
/*
* The CPU was not eligible for a fast restart.
*/
- return(rc);
+ return rc;
+ }
KERNEL_DEBUG_CONSTANT(
TRACE_MP_CPU_FAST_START | DBG_FUNC_START,
* Wait until the CPU is back online.
*/
mp_disable_preemption();
-
+
/*
* We use short pauses (1us) for low latency. 30,000 iterations is
* longer than a full restart would require so it should be more
* Check to make sure that the CPU is really running. If not,
* go through the slow path.
*/
- if (cpu_datap(slot_num)->cpu_running)
- return(KERN_SUCCESS);
- else
- return(KERN_FAILURE);
+ if (cpu_datap(slot_num)->cpu_running) {
+ return KERN_SUCCESS;
+ } else {
+ return KERN_FAILURE;
+ }
}
static void
*/
tsc_target = 0;
atomic_decl(&tsc_entry_barrier, 1);
- while (tsc_entry_barrier != 0)
- ; /* spin for starter and target at barrier */
+ while (tsc_entry_barrier != 0) {
+ ; /* spin for starter and target at barrier */
+ }
tsc_target = rdtsc64();
atomic_decl(&tsc_exit_barrier, 1);
}
static void
start_cpu(void *arg)
{
- int i = 1000;
- processor_start_info_t *psip = (processor_start_info_t *) arg;
+ int i = 1000;
+ processor_start_info_t *psip = (processor_start_info_t *) arg;
/* Ignore this if the current processor is not the starter */
- if (cpu_number() != psip->starter_cpu)
+ if (cpu_number() != psip->starter_cpu) {
return;
+ }
DBG("start_cpu(%p) about to start cpu %d, lapic %d\n",
- arg, psip->target_cpu, psip->target_lapic);
+ arg, psip->target_cpu, psip->target_lapic);
KERNEL_DEBUG_CONSTANT(
TRACE_MP_CPU_START | DBG_FUNC_START,
i386_start_cpu(psip->target_lapic, psip->target_cpu);
-#ifdef POSTCODE_DELAY
+#ifdef POSTCODE_DELAY
/* Wait much longer if postcodes are displayed for a delay period. */
i *= 10000;
#endif
DBG("start_cpu(%p) about to wait for cpu %d\n",
- arg, psip->target_cpu);
+ arg, psip->target_cpu);
- mp_wait_for_cpu_up(psip->target_cpu, i*100, 100);
+ mp_wait_for_cpu_up(psip->target_cpu, i * 100, 100);
KERNEL_DEBUG_CONSTANT(
TRACE_MP_CPU_START | DBG_FUNC_END,
* TSC_sync_margin (TSC_SYNC_MARGIN) ticks. This margin
* can be overriden by boot-arg (with 0 meaning no checking).
*/
- uint64_t tsc_starter;
- int64_t tsc_delta;
+ uint64_t tsc_starter;
+ int64_t tsc_delta;
atomic_decl(&tsc_entry_barrier, 1);
- while (tsc_entry_barrier != 0)
- ; /* spin for both processors at barrier */
+ while (tsc_entry_barrier != 0) {
+ ; /* spin for both processors at barrier */
+ }
tsc_starter = rdtsc64();
atomic_decl(&tsc_exit_barrier, 1);
- while (tsc_exit_barrier != 0)
- ; /* spin for target to store its TSC */
+ while (tsc_exit_barrier != 0) {
+ ; /* spin for target to store its TSC */
+ }
tsc_delta = tsc_target - tsc_starter;
kprintf("TSC sync for cpu %d: 0x%016llx delta 0x%llx (%lld)\n",
- psip->target_cpu, tsc_target, tsc_delta, tsc_delta);
- if (ABS(tsc_delta) > (int64_t) TSC_sync_margin) {
+ psip->target_cpu, tsc_target, tsc_delta, tsc_delta);
+ if (ABS(tsc_delta) > (int64_t) TSC_sync_margin) {
#if DEBUG
panic(
#else
printf(
#endif
"Unsynchronized TSC for cpu %d: "
- "0x%016llx, delta 0x%llx\n",
+ "0x%016llx, delta 0x%llx\n",
psip->target_cpu, tsc_target, tsc_delta);
}
}
kern_return_t
intel_startCPU(
- int slot_num)
+ int slot_num)
{
- int lapic = cpu_to_lapic[slot_num];
- boolean_t istate;
+ int lapic = cpu_to_lapic[slot_num];
+ boolean_t istate;
assert(lapic != -1);
}
}
-#if MP_DEBUG
-cpu_signal_event_log_t *cpu_signal[MAX_CPUS];
-cpu_signal_event_log_t *cpu_handle[MAX_CPUS];
+#if MP_DEBUG
+cpu_signal_event_log_t *cpu_signal[MAX_CPUS];
+cpu_signal_event_log_t *cpu_handle[MAX_CPUS];
MP_EVENT_NAME_DECL();
-#endif /* MP_DEBUG */
+#endif /* MP_DEBUG */
/*
* Note: called with NULL state when polling for TLB flush and cross-calls.
int
cpu_signal_handler(x86_saved_state_t *regs)
{
-#if !MACH_KDP
+#if !MACH_KDP
#pragma unused (regs)
#endif /* !MACH_KDP */
- int my_cpu;
- volatile int *my_word;
+ int my_cpu;
+ volatile int *my_word;
SCHED_STATS_IPI(current_processor());
cpu_data_ptr[my_cpu]->cpu_prior_signals = *my_word;
do {
-#if MACH_KDP
+#if MACH_KDP
if (i_bit(MP_KDP, my_word)) {
- DBGLOG(cpu_handle,my_cpu,MP_KDP);
+ DBGLOG(cpu_handle, my_cpu, MP_KDP);
i_bit_clear(MP_KDP, my_word);
/* Ensure that the i386_kernel_state at the base of the
* current thread's stack (if any) is synchronized with the
* access through the debugger.
*/
sync_iss_to_iks(regs);
- if (pmsafe_debug && !kdp_snapshot)
+ if (pmsafe_debug && !kdp_snapshot) {
pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_SAFE);
+ }
mp_kdp_wait(TRUE, FALSE);
- if (pmsafe_debug && !kdp_snapshot)
+ if (pmsafe_debug && !kdp_snapshot) {
pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_NORMAL);
+ }
} else
-#endif /* MACH_KDP */
+#endif /* MACH_KDP */
if (i_bit(MP_TLB_FLUSH, my_word)) {
- DBGLOG(cpu_handle,my_cpu,MP_TLB_FLUSH);
+ DBGLOG(cpu_handle, my_cpu, MP_TLB_FLUSH);
i_bit_clear(MP_TLB_FLUSH, my_word);
pmap_update_interrupt();
} else if (i_bit(MP_CALL, my_word)) {
- DBGLOG(cpu_handle,my_cpu,MP_CALL);
+ DBGLOG(cpu_handle, my_cpu, MP_CALL);
i_bit_clear(MP_CALL, my_word);
mp_cpus_call_action();
} else if (i_bit(MP_CALL_PM, my_word)) {
- DBGLOG(cpu_handle,my_cpu,MP_CALL_PM);
+ DBGLOG(cpu_handle, my_cpu, MP_CALL_PM);
i_bit_clear(MP_CALL_PM, my_word);
mp_call_PM();
}
/* Called to poll only for cross-calls and TLB flush */
break;
} else if (i_bit(MP_AST, my_word)) {
- DBGLOG(cpu_handle,my_cpu,MP_AST);
+ DBGLOG(cpu_handle, my_cpu, MP_AST);
i_bit_clear(MP_AST, my_word);
ast_check(cpu_to_processor(my_cpu));
}
}
extern void kprintf_break_lock(void);
-static int
+int
NMIInterruptHandler(x86_saved_state_t *regs)
{
- void *stackptr;
- char pstr[192];
- uint64_t now = mach_absolute_time();
+ void *stackptr;
+ char pstr[256];
+ uint64_t now = mach_absolute_time();
if (panic_active() && !panicDebugging) {
- if (pmsafe_debug)
+ if (pmsafe_debug) {
pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_SAFE);
- for(;;)
+ }
+ for (;;) {
cpu_pause();
+ }
}
atomic_incl(&NMIPI_acks, 1);
atomic_incl(&NMI_count, 1);
sync_iss_to_iks_unconditionally(regs);
- __asm__ volatile("movq %%rbp, %0" : "=m" (stackptr));
+ __asm__ volatile ("movq %%rbp, %0" : "=m" (stackptr));
- if (cpu_number() == debugger_cpu)
+ if (cpu_number() == debugger_cpu) {
goto NMExit;
+ }
if (NMI_panic_reason == SPINLOCK_TIMEOUT) {
snprintf(&pstr[0], sizeof(pstr),
- "Panic(CPU %d, time %llu): NMIPI for spinlock acquisition timeout, spinlock: %p, spinlock owner: %p, current_thread: %p, spinlock_owner_cpu: 0x%x\n",
- cpu_number(), now, spinlock_timed_out, (void *) spinlock_timed_out->interlock.lock_data, current_thread(), spinlock_owner_cpu);
+ "Panic(CPU %d, time %llu): NMIPI for spinlock acquisition timeout, spinlock: %p, spinlock owner: %p, current_thread: %p, spinlock_owner_cpu: 0x%x\n",
+ cpu_number(), now, spinlock_timed_out, (void *) spinlock_timed_out->interlock.lock_data, current_thread(), spinlock_owner_cpu);
panic_i386_backtrace(stackptr, 64, &pstr[0], TRUE, regs);
} else if (NMI_panic_reason == TLB_FLUSH_TIMEOUT) {
snprintf(&pstr[0], sizeof(pstr),
- "Panic(CPU %d, time %llu): NMIPI for unresponsive processor: TLB flush timeout, TLB state:0x%x\n",
- cpu_number(), now, current_cpu_datap()->cpu_tlb_invalid);
+ "Panic(CPU %d, time %llu): NMIPI for unresponsive processor: TLB flush timeout, TLB state:0x%x\n",
+ cpu_number(), now, current_cpu_datap()->cpu_tlb_invalid);
panic_i386_backtrace(stackptr, 48, &pstr[0], TRUE, regs);
} else if (NMI_panic_reason == CROSSCALL_TIMEOUT) {
snprintf(&pstr[0], sizeof(pstr),
- "Panic(CPU %d, time %llu): NMIPI for unresponsive processor: cross-call timeout\n",
- cpu_number(), now);
+ "Panic(CPU %d, time %llu): NMIPI for unresponsive processor: cross-call timeout\n",
+ cpu_number(), now);
panic_i386_backtrace(stackptr, 64, &pstr[0], TRUE, regs);
} else if (NMI_panic_reason == INTERRUPT_WATCHDOG) {
snprintf(&pstr[0], sizeof(pstr),
- "Panic(CPU %d, time %llu): NMIPI for unresponsive processor: interrupt watchdog for vector 0x%x\n",
- cpu_number(), now, vector_timed_out);
+ "Panic(CPU %d, time %llu): NMIPI for unresponsive processor: interrupt watchdog for vector 0x%x\n",
+ cpu_number(), now, vector_timed_out);
panic_i386_backtrace(stackptr, 64, &pstr[0], TRUE, regs);
}
-
+
#if MACH_KDP
- if (pmsafe_debug && !kdp_snapshot)
+ if (pmsafe_debug && !kdp_snapshot) {
pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_SAFE);
+ }
current_cpu_datap()->cpu_NMI_acknowledged = TRUE;
i_bit_clear(MP_KDP, ¤t_cpu_datap()->cpu_signals);
if (panic_active() || NMI_panic_reason != NONE) {
mp_kdp_wait(FALSE, TRUE);
} else if (!mp_kdp_trap &&
- !mp_kdp_is_NMI &&
- virtualized && (debug_boot_arg & DB_NMI)) {
+ !mp_kdp_is_NMI &&
+ virtualized && (debug_boot_arg & DB_NMI)) {
/*
* Under a VMM with the debug boot-arg set, drop into kdp.
* Since an NMI is involved, there's a risk of contending with
- * a panic. And side-effects of NMIs may result in entry into,
+ * a panic. And side-effects of NMIs may result in entry into,
* and continuing from, the debugger being unreliable.
*/
if (__sync_bool_compare_and_swap(&mp_kdp_is_NMI, FALSE, TRUE)) {
} else {
mp_kdp_wait(FALSE, FALSE);
}
- if (pmsafe_debug && !kdp_snapshot)
+ if (pmsafe_debug && !kdp_snapshot) {
pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_NORMAL);
+ }
#endif
-NMExit:
+NMExit:
return 1;
}
void
NMI_cpus(void)
{
- unsigned int cpu;
- boolean_t intrs_enabled;
- uint64_t tsc_timeout;
+ unsigned int cpu;
+ boolean_t intrs_enabled;
+ uint64_t tsc_timeout;
intrs_enabled = ml_set_interrupts_enabled(FALSE);
-
+ NMIPI_enable(TRUE);
for (cpu = 0; cpu < real_ncpus; cpu++) {
- if (!cpu_is_running(cpu))
+ if (!cpu_is_running(cpu)) {
continue;
+ }
cpu_datap(cpu)->cpu_NMI_acknowledged = FALSE;
cpu_NMI_interrupt(cpu);
tsc_timeout = !machine_timeout_suspended() ?
- rdtsc64() + (1000 * 1000 * 1000 * 10ULL) :
- ~0ULL;
+ rdtsc64() + (1000 * 1000 * 1000 * 10ULL) :
+ ~0ULL;
while (!cpu_datap(cpu)->cpu_NMI_acknowledged) {
handle_pending_TLB_flushes();
cpu_pause();
- if (rdtsc64() > tsc_timeout)
+ if (rdtsc64() > tsc_timeout) {
panic("NMI_cpus() timeout cpu %d", cpu);
+ }
}
cpu_datap(cpu)->cpu_NMI_acknowledged = FALSE;
}
+ NMIPI_enable(FALSE);
ml_set_interrupts_enabled(intrs_enabled);
}
-static void (* volatile mp_PM_func)(void) = NULL;
+static void(*volatile mp_PM_func)(void) = NULL;
static void
mp_call_PM(void)
{
assert(!ml_get_interrupts_enabled());
- if (mp_PM_func != NULL)
+ if (mp_PM_func != NULL) {
mp_PM_func();
+ }
}
void
assert(!ml_get_interrupts_enabled());
if (mp_PM_func != NULL) {
- if (cpu == cpu_number())
+ if (cpu == cpu_number()) {
mp_PM_func();
- else
+ } else {
i386_signal_cpu(cpu, MP_CALL_PM, ASYNC);
+ }
}
}
void
i386_signal_cpu(int cpu, mp_event_t event, mp_sync_t mode)
{
- volatile int *signals = &cpu_datap(cpu)->cpu_signals;
- uint64_t tsc_timeout;
+ volatile int *signals = &cpu_datap(cpu)->cpu_signals;
+ uint64_t tsc_timeout;
+
-
- if (!cpu_datap(cpu)->cpu_running)
+ if (!cpu_datap(cpu)->cpu_running) {
return;
+ }
- if (event == MP_TLB_FLUSH)
- KERNEL_DEBUG(TRACE_MP_TLB_FLUSH | DBG_FUNC_START, cpu, 0, 0, 0, 0);
+ if (event == MP_TLB_FLUSH) {
+ KERNEL_DEBUG(TRACE_MP_TLB_FLUSH | DBG_FUNC_START, cpu, 0, 0, 0, 0);
+ }
DBGLOG(cpu_signal, cpu, event);
-
+
i_bit_set(event, signals);
i386_cpu_IPI(cpu);
if (mode == SYNC) {
- again:
+again:
tsc_timeout = !machine_timeout_suspended() ?
- rdtsc64() + (1000*1000*1000) :
- ~0ULL;
+ rdtsc64() + (1000 * 1000 * 1000) :
+ ~0ULL;
while (i_bit(event, signals) && rdtsc64() < tsc_timeout) {
cpu_pause();
}
if (i_bit(event, signals)) {
DBG("i386_signal_cpu(%d, 0x%x, SYNC) timed out\n",
- cpu, event);
+ cpu, event);
goto again;
}
}
- if (event == MP_TLB_FLUSH)
- KERNEL_DEBUG(TRACE_MP_TLB_FLUSH | DBG_FUNC_END, cpu, 0, 0, 0, 0);
+ if (event == MP_TLB_FLUSH) {
+ KERNEL_DEBUG(TRACE_MP_TLB_FLUSH | DBG_FUNC_END, cpu, 0, 0, 0, 0);
+ }
}
/*
static boolean_t
mp_spin_timeout(uint64_t tsc_start)
{
- uint64_t tsc_timeout;
+ uint64_t tsc_timeout;
cpu_pause();
- if (machine_timeout_suspended())
+ if (machine_timeout_suspended()) {
return FALSE;
+ }
/*
* The timeout is 4 * the spinlock timeout period
* in which case we allow an even greater margin.
*/
tsc_timeout = disable_serial_output ? LockTimeOutTSC << 2
- : LockTimeOutTSC << 4;
- return (rdtsc64() > tsc_start + tsc_timeout);
+ : LockTimeOutTSC << 4;
+ return rdtsc64() > tsc_start + tsc_timeout;
}
/*
mp_safe_spin_lock(usimple_lock_t lock)
{
if (ml_get_interrupts_enabled()) {
- simple_lock(lock);
+ simple_lock(lock, LCK_GRP_NULL);
return TRUE;
} else {
uint64_t tsc_spin_start = rdtsc64();
- while (!simple_lock_try(lock)) {
+ while (!simple_lock_try(lock, LCK_GRP_NULL)) {
cpu_signal_handler(NULL);
if (mp_spin_timeout(tsc_spin_start)) {
uint32_t lock_cpu;
uintptr_t lowner = (uintptr_t)
- lock->interlock.lock_data;
+ lock->interlock.lock_data;
spinlock_timed_out = lock;
lock_cpu = spinlock_timeout_NMI(lowner);
NMIPI_panic(cpu_to_cpumask(lock_cpu), SPINLOCK_TIMEOUT);
panic("mp_safe_spin_lock() timed out, lock: %p, owner thread: 0x%lx, current_thread: %p, owner on CPU 0x%x, time: %llu",
- lock, lowner, current_thread(), lock_cpu, mach_absolute_time());
+ lock, lowner, current_thread(), lock_cpu, mach_absolute_time());
}
}
return FALSE;
- }
+ }
}
/*
* All-CPU rendezvous:
- * - CPUs are signalled,
+ * - CPUs are signalled,
* - all execute the setup function (if specified),
* - rendezvous (i.e. all cpus reach a barrier),
* - all execute the action function (if specified),
static void
mp_rendezvous_action(__unused void *null)
{
- boolean_t intrs_enabled;
- uint64_t tsc_spin_start;
+ boolean_t intrs_enabled;
+ uint64_t tsc_spin_start;
+
+ /*
+ * Note that mp_rv_lock was acquired by the thread that initiated the
+ * rendezvous and must have been acquired before we enter
+ * mp_rendezvous_action().
+ */
+ current_cpu_datap()->cpu_rendezvous_in_progress = TRUE;
/* setup function */
- if (mp_rv_setup_func != NULL)
+ if (mp_rv_setup_func != NULL) {
mp_rv_setup_func(mp_rv_func_arg);
+ }
intrs_enabled = ml_get_interrupts_enabled();
while (mp_rv_entry < mp_rv_ncpus) {
/* poll for pesky tlb flushes if interrupts disabled */
- if (!intrs_enabled)
+ if (!intrs_enabled) {
handle_pending_TLB_flushes();
+ }
if (mp_spin_timeout(tsc_spin_start)) {
panic("mp_rv_action() entry: %ld of %d responses, start: 0x%llx, cur: 0x%llx", mp_rv_entry, mp_rv_ncpus, tsc_spin_start, rdtsc64());
}
}
/* action function */
- if (mp_rv_action_func != NULL)
+ if (mp_rv_action_func != NULL) {
mp_rv_action_func(mp_rv_func_arg);
+ }
/* spin on exit rendezvous */
atomic_incl(&mp_rv_exit, 1);
tsc_spin_start = rdtsc64();
while (mp_rv_exit < mp_rv_ncpus) {
- if (!intrs_enabled)
+ if (!intrs_enabled) {
handle_pending_TLB_flushes();
- if (mp_spin_timeout(tsc_spin_start))
+ }
+ if (mp_spin_timeout(tsc_spin_start)) {
panic("mp_rv_action() exit: %ld of %d responses, start: 0x%llx, cur: 0x%llx", mp_rv_exit, mp_rv_ncpus, tsc_spin_start, rdtsc64());
+ }
}
/* teardown function */
- if (mp_rv_teardown_func != NULL)
+ if (mp_rv_teardown_func != NULL) {
mp_rv_teardown_func(mp_rv_func_arg);
+ }
+
+ current_cpu_datap()->cpu_rendezvous_in_progress = FALSE;
/* Bump completion count */
atomic_incl(&mp_rv_complete, 1);
}
void
-mp_rendezvous(void (*setup_func)(void *),
- void (*action_func)(void *),
- void (*teardown_func)(void *),
- void *arg)
+mp_rendezvous(void (*setup_func)(void *),
+ void (*action_func)(void *),
+ void (*teardown_func)(void *),
+ void *arg)
{
- uint64_t tsc_spin_start;
+ uint64_t tsc_spin_start;
if (!smp_initialized) {
- if (setup_func != NULL)
+ if (setup_func != NULL) {
setup_func(arg);
- if (action_func != NULL)
+ }
+ if (action_func != NULL) {
action_func(arg);
- if (teardown_func != NULL)
+ }
+ if (teardown_func != NULL) {
teardown_func(arg);
+ }
return;
}
-
+
/* obtain rendezvous lock */
- (void) mp_safe_spin_lock(&mp_rv_lock);
+ mp_rendezvous_lock();
/* set static function pointers */
mp_rv_setup_func = setup_func;
*/
tsc_spin_start = rdtsc64();
while (mp_rv_complete < mp_rv_ncpus) {
- if (mp_spin_timeout(tsc_spin_start))
+ if (mp_spin_timeout(tsc_spin_start)) {
panic("mp_rendezvous() timeout: %ld of %d responses, start: 0x%llx, cur: 0x%llx", mp_rv_complete, mp_rv_ncpus, tsc_spin_start, rdtsc64());
+ }
}
-
+
/* Tidy up */
mp_rv_setup_func = NULL;
mp_rv_action_func = NULL;
mp_rv_func_arg = NULL;
/* release lock */
+ mp_rendezvous_unlock();
+}
+
+void
+mp_rendezvous_lock(void)
+{
+ (void) mp_safe_spin_lock(&mp_rv_lock);
+}
+
+void
+mp_rendezvous_unlock(void)
+{
simple_unlock(&mp_rv_lock);
}
*/
void
mp_rendezvous_no_intrs(
- void (*action_func)(void *),
- void *arg)
+ void (*action_func)(void *),
+ void *arg)
{
mp_rendezvous(setup_disable_intrs,
- action_func,
- teardown_restore_intrs,
- arg);
+ action_func,
+ teardown_restore_intrs,
+ arg);
}
typedef struct {
- queue_chain_t link; /* queue linkage */
- void (*func)(void *,void *); /* routine to call */
- void *arg0; /* routine's 1st arg */
- void *arg1; /* routine's 2nd arg */
- cpumask_t *maskp; /* completion response mask */
+ queue_chain_t link; /* queue linkage */
+ void (*func)(void *, void *); /* routine to call */
+ void *arg0; /* routine's 1st arg */
+ void *arg1; /* routine's 2nd arg */
+ cpumask_t *maskp; /* completion response mask */
} mp_call_t;
typedef struct {
- queue_head_t queue;
- decl_simple_lock_data(, lock);
+ queue_head_t queue;
+ decl_simple_lock_data(, lock);
} mp_call_queue_t;
-#define MP_CPUS_CALL_BUFS_PER_CPU MAX_CPUS
-static mp_call_queue_t mp_cpus_call_freelist;
-static mp_call_queue_t mp_cpus_call_head[MAX_CPUS];
+#define MP_CPUS_CALL_BUFS_PER_CPU MAX_CPUS
+static mp_call_queue_t mp_cpus_call_freelist;
+static mp_call_queue_t mp_cpus_call_head[MAX_CPUS];
static inline boolean_t
mp_call_head_lock(mp_call_queue_t *cqp)
{
- boolean_t intrs_enabled;
+ boolean_t intrs_enabled;
intrs_enabled = ml_set_interrupts_enabled(FALSE);
- simple_lock(&cqp->lock);
+ simple_lock(&cqp->lock, LCK_GRP_NULL);
return intrs_enabled;
}
* Deliver an NMIPI to a set of processors to cause them to panic .
*/
void
-NMIPI_panic(cpumask_t cpu_mask, NMI_reason_t why) {
- unsigned int cpu, cpu_bit;
+NMIPI_panic(cpumask_t cpu_mask, NMI_reason_t why)
+{
+ unsigned int cpu;
+ cpumask_t cpu_bit;
uint64_t deadline;
NMIPI_enable(TRUE);
NMI_panic_reason = why;
for (cpu = 0, cpu_bit = 1; cpu < real_ncpus; cpu++, cpu_bit <<= 1) {
- if ((cpu_mask & cpu_bit) == 0)
+ if ((cpu_mask & cpu_bit) == 0) {
continue;
+ }
cpu_datap(cpu)->cpu_NMI_acknowledged = FALSE;
cpu_NMI_interrupt(cpu);
}
/* Wait (only so long) for NMi'ed cpus to respond */
deadline = mach_absolute_time() + LockTimeOut;
for (cpu = 0, cpu_bit = 1; cpu < real_ncpus; cpu++, cpu_bit <<= 1) {
- if ((cpu_mask & cpu_bit) == 0)
+ if ((cpu_mask & cpu_bit) == 0) {
continue;
+ }
while (!cpu_datap(cpu)->cpu_NMI_acknowledged &&
- mach_absolute_time() < deadline) {
+ mach_absolute_time() < deadline) {
cpu_pause();
}
}
mp_call_head_is_locked(mp_call_queue_t *cqp)
{
return !ml_get_interrupts_enabled() &&
- hw_lock_held((hw_lock_t)&cqp->lock);
+ hw_lock_held((hw_lock_t)&cqp->lock);
}
#endif
static inline mp_call_t *
mp_call_alloc(void)
{
- mp_call_t *callp = NULL;
- boolean_t intrs_enabled;
- mp_call_queue_t *cqp = &mp_cpus_call_freelist;
+ mp_call_t *callp = NULL;
+ boolean_t intrs_enabled;
+ mp_call_queue_t *cqp = &mp_cpus_call_freelist;
intrs_enabled = mp_call_head_lock(cqp);
- if (!queue_empty(&cqp->queue))
+ if (!queue_empty(&cqp->queue)) {
queue_remove_first(&cqp->queue, callp, typeof(callp), link);
+ }
mp_call_head_unlock(cqp, intrs_enabled);
return callp;
static inline void
mp_call_free(mp_call_t *callp)
{
- boolean_t intrs_enabled;
- mp_call_queue_t *cqp = &mp_cpus_call_freelist;
+ boolean_t intrs_enabled;
+ mp_call_queue_t *cqp = &mp_cpus_call_freelist;
intrs_enabled = mp_call_head_lock(cqp);
queue_enter_first(&cqp->queue, callp, typeof(callp), link);
static inline mp_call_t *
mp_call_dequeue_locked(mp_call_queue_t *cqp)
{
- mp_call_t *callp = NULL;
+ mp_call_t *callp = NULL;
assert(mp_call_head_is_locked(cqp));
- if (!queue_empty(&cqp->queue))
+ if (!queue_empty(&cqp->queue)) {
queue_remove_first(&cqp->queue, callp, typeof(callp), link);
+ }
return callp;
}
static inline void
mp_call_enqueue_locked(
- mp_call_queue_t *cqp,
- mp_call_t *callp)
+ mp_call_queue_t *cqp,
+ mp_call_t *callp)
{
queue_enter(&cqp->queue, callp, typeof(callp), link);
}
static void
mp_cpus_call_init(void)
{
- mp_call_queue_t *cqp = &mp_cpus_call_freelist;
+ mp_call_queue_t *cqp = &mp_cpus_call_freelist;
DBG("mp_cpus_call_init()\n");
simple_lock_init(&cqp->lock, 0);
void
mp_cpus_call_cpu_init(int cpu)
{
- int i;
- mp_call_queue_t *cqp = &mp_cpus_call_head[cpu];
- mp_call_t *callp;
+ int i;
+ mp_call_queue_t *cqp = &mp_cpus_call_head[cpu];
+ mp_call_t *callp;
simple_lock_init(&cqp->lock, 0);
queue_init(&cqp->queue);
static void
mp_cpus_call_action(void)
{
- mp_call_queue_t *cqp;
- boolean_t intrs_enabled;
- mp_call_t *callp;
- mp_call_t call;
+ mp_call_queue_t *cqp;
+ boolean_t intrs_enabled;
+ mp_call_t *callp;
+ mp_call_t call;
assert(!ml_get_interrupts_enabled());
cqp = &mp_cpus_call_head[cpu_number()];
call.func(call.arg0, call.arg1);
(void) mp_call_head_lock(cqp);
}
- if (call.maskp != NULL)
+ if (call.maskp != NULL) {
i_bit_set(cpu_number(), call.maskp);
+ }
}
mp_call_head_unlock(cqp, intrs_enabled);
}
* ASYNC: function call is queued to the specified cpus
* waiting for all calls to complete in parallel before returning
* NOSYNC: function calls are queued
- * but we return before confirmation of calls completing.
+ * but we return before confirmation of calls completing.
* The action function may be NULL.
* The cpu mask may include the local cpu. Offline cpus are ignored.
* The return value is the number of cpus on which the call was made or queued.
*/
cpu_t
mp_cpus_call(
- cpumask_t cpus,
- mp_sync_t mode,
- void (*action_func)(void *),
- void *arg)
+ cpumask_t cpus,
+ mp_sync_t mode,
+ void (*action_func)(void *),
+ void *arg)
{
return mp_cpus_call1(
- cpus,
- mode,
- (void (*)(void *,void *))action_func,
- arg,
- NULL,
- NULL);
+ cpus,
+ mode,
+ (void (*)(void *, void *))action_func,
+ arg,
+ NULL,
+ NULL);
}
static void
-mp_cpus_call_wait(boolean_t intrs_enabled,
- cpumask_t cpus_called,
- cpumask_t *cpus_responded)
+mp_cpus_call_wait(boolean_t intrs_enabled,
+ cpumask_t cpus_called,
+ cpumask_t *cpus_responded)
{
- mp_call_queue_t *cqp;
- uint64_t tsc_spin_start;
+ mp_call_queue_t *cqp;
+ uint64_t tsc_spin_start;
assert(ml_get_interrupts_enabled() == 0 || get_preemption_level() != 0);
cqp = &mp_cpus_call_head[cpu_number()];
while (*cpus_responded != cpus_called) {
if (!intrs_enabled) {
/* Sniffing w/o locking */
- if (!queue_empty(&cqp->queue))
+ if (!queue_empty(&cqp->queue)) {
mp_cpus_call_action();
+ }
cpu_signal_handler(NULL);
}
if (mp_spin_timeout(tsc_spin_start)) {
- cpumask_t cpus_unresponsive;
+ cpumask_t cpus_unresponsive;
cpus_unresponsive = cpus_called & ~(*cpus_responded);
NMIPI_panic(cpus_unresponsive, CROSSCALL_TIMEOUT);
panic("mp_cpus_call_wait() timeout, cpus: 0x%llx",
- cpus_unresponsive);
+ cpus_unresponsive);
}
}
}
cpu_t
mp_cpus_call1(
- cpumask_t cpus,
- mp_sync_t mode,
- void (*action_func)(void *, void *),
- void *arg0,
- void *arg1,
- cpumask_t *cpus_calledp)
-{
- cpu_t cpu = 0;
- boolean_t intrs_enabled = FALSE;
- boolean_t call_self = FALSE;
- cpumask_t cpus_called = 0;
- cpumask_t cpus_responded = 0;
- long cpus_call_count = 0;
- uint64_t tsc_spin_start;
- boolean_t topo_lock;
+ cpumask_t cpus,
+ mp_sync_t mode,
+ void (*action_func)(void *, void *),
+ void *arg0,
+ void *arg1,
+ cpumask_t *cpus_calledp)
+{
+ cpu_t cpu = 0;
+ boolean_t intrs_enabled = FALSE;
+ boolean_t call_self = FALSE;
+ cpumask_t cpus_called = 0;
+ cpumask_t cpus_responded = 0;
+ long cpus_call_count = 0;
+ uint64_t tsc_spin_start;
+ boolean_t topo_lock;
KERNEL_DEBUG_CONSTANT(
TRACE_MP_CPUS_CALL | DBG_FUNC_START,
cpus, mode, VM_KERNEL_UNSLIDE(action_func), VM_KERNEL_UNSLIDE_OR_PERM(arg0), VM_KERNEL_UNSLIDE_OR_PERM(arg1));
if (!smp_initialized) {
- if ((cpus & CPUMASK_SELF) == 0)
+ if ((cpus & CPUMASK_SELF) == 0) {
goto out;
+ }
if (action_func != NULL) {
intrs_enabled = ml_set_interrupts_enabled(FALSE);
action_func(arg0, arg1);
* although an exception is made if we're calling only the master
* processor since that always remains active. Note: this exception
* is expected for longterm timer nosync cross-calls to the master cpu.
- */
+ */
mp_disable_preemption();
intrs_enabled = ml_get_interrupts_enabled();
topo_lock = (cpus != cpu_to_cpumask(master_cpu));
}
for (cpu = 0; cpu < (cpu_t) real_ncpus; cpu++) {
if (((cpu_to_cpumask(cpu) & cpus) == 0) ||
- !cpu_is_running(cpu))
+ !cpu_is_running(cpu)) {
continue;
+ }
tsc_spin_start = rdtsc64();
if (cpu == (cpu_t) cpu_number()) {
/*
/*
* Here to queue a call to cpu and IPI.
*/
- mp_call_t *callp = NULL;
- mp_call_queue_t *cqp = &mp_cpus_call_head[cpu];
- boolean_t intrs_inner;
+ mp_call_t *callp = NULL;
+ mp_call_queue_t *cqp = &mp_cpus_call_head[cpu];
+ boolean_t intrs_inner;
- queue_call:
- if (callp == NULL)
+queue_call:
+ if (callp == NULL) {
callp = mp_call_alloc();
+ }
intrs_inner = mp_call_head_lock(cqp);
if (callp == NULL) {
mp_call_head_unlock(cqp, intrs_inner);
cpu, 0, 0, 0, 0);
if (!intrs_inner) {
/* Sniffing w/o locking */
- if (!queue_empty(&cqp->queue))
+ if (!queue_empty(&cqp->queue)) {
mp_cpus_call_action();
+ }
handle_pending_TLB_flushes();
}
- if (mp_spin_timeout(tsc_spin_start))
+ if (mp_spin_timeout(tsc_spin_start)) {
panic("mp_cpus_call1() timeout start: 0x%llx, cur: 0x%llx",
- tsc_spin_start, rdtsc64());
+ tsc_spin_start, rdtsc64());
+ }
goto queue_call;
}
callp->maskp = (mode == NOSYNC) ? NULL : &cpus_responded;
}
/* Call locally if mode not SYNC */
- if (mode != SYNC && call_self ) {
+ if (mode != SYNC && call_self) {
KERNEL_DEBUG_CONSTANT(
TRACE_MP_CPUS_CALL_LOCAL,
VM_KERNEL_UNSLIDE(action_func), VM_KERNEL_UNSLIDE_OR_PERM(arg0), VM_KERNEL_UNSLIDE_OR_PERM(arg1), 0, 0);
}
/* For ASYNC, now wait for all signaled cpus to complete their calls */
- if (mode == ASYNC)
+ if (mode == ASYNC) {
mp_cpus_call_wait(intrs_enabled, cpus_called, &cpus_responded);
+ }
/* Safe to allow pre-emption now */
mp_enable_preemption();
out:
- if (call_self){
+ if (call_self) {
cpus_called |= cpu_to_cpumask(cpu);
cpus_call_count++;
}
- if (cpus_calledp)
+ if (cpus_calledp) {
*cpus_calledp = cpus_called;
+ }
KERNEL_DEBUG_CONSTANT(
TRACE_MP_CPUS_CALL | DBG_FUNC_END,
static void
mp_broadcast_action(__unused void *null)
{
- /* call action function */
- if (mp_bc_action_func != NULL)
- mp_bc_action_func(mp_bc_func_arg);
+ /* call action function */
+ if (mp_bc_action_func != NULL) {
+ mp_bc_action_func(mp_bc_func_arg);
+ }
- /* if we're the last one through, wake up the instigator */
- if (atomic_decl_and_test(&mp_bc_count, 1))
- thread_wakeup(((event_t)(uintptr_t) &mp_bc_count));
+ /* if we're the last one through, wake up the instigator */
+ if (atomic_decl_and_test(&mp_bc_count, 1)) {
+ thread_wakeup(((event_t)(uintptr_t) &mp_bc_count));
+ }
}
/*
* mp_broadcast() runs a given function on all active cpus.
* The caller blocks until the functions has run on all cpus.
- * The caller will also block if there is another pending braodcast.
+ * The caller will also block if there is another pending broadcast.
*/
void
mp_broadcast(
- void (*action_func)(void *),
- void *arg)
-{
- if (!smp_initialized) {
- if (action_func != NULL)
- action_func(arg);
- return;
- }
-
- /* obtain broadcast lock */
- lck_mtx_lock(&mp_bc_lock);
-
- /* set static function pointers */
- mp_bc_action_func = action_func;
- mp_bc_func_arg = arg;
-
- assert_wait((event_t)(uintptr_t)&mp_bc_count, THREAD_UNINT);
-
- /*
- * signal other processors, which will call mp_broadcast_action()
- */
- mp_bc_count = real_ncpus; /* assume max possible active */
- mp_bc_ncpus = mp_cpus_call(CPUMASK_OTHERS, NOSYNC, *mp_broadcast_action, NULL) + 1;
- atomic_decl(&mp_bc_count, real_ncpus - mp_bc_ncpus); /* subtract inactive */
-
- /* call executor function on this cpu */
- mp_broadcast_action(NULL);
-
- /* block for other cpus to have run action_func */
- if (mp_bc_ncpus > 1)
- thread_block(THREAD_CONTINUE_NULL);
- else
- clear_wait(current_thread(), THREAD_AWAKENED);
-
- /* release lock */
- lck_mtx_unlock(&mp_bc_lock);
+ void (*action_func)(void *),
+ void *arg)
+{
+ if (!smp_initialized) {
+ if (action_func != NULL) {
+ action_func(arg);
+ }
+ return;
+ }
+
+ /* obtain broadcast lock */
+ lck_mtx_lock(&mp_bc_lock);
+
+ /* set static function pointers */
+ mp_bc_action_func = action_func;
+ mp_bc_func_arg = arg;
+
+ assert_wait((event_t)(uintptr_t)&mp_bc_count, THREAD_UNINT);
+
+ /*
+ * signal other processors, which will call mp_broadcast_action()
+ */
+ mp_bc_count = real_ncpus; /* assume max possible active */
+ mp_bc_ncpus = mp_cpus_call(CPUMASK_ALL, NOSYNC, *mp_broadcast_action, NULL);
+ atomic_decl(&mp_bc_count, real_ncpus - mp_bc_ncpus); /* subtract inactive */
+
+ /* block for other cpus to have run action_func */
+ if (mp_bc_ncpus > 1) {
+ thread_block(THREAD_CONTINUE_NULL);
+ } else {
+ clear_wait(current_thread(), THREAD_AWAKENED);
+ }
+
+ /* release lock */
+ lck_mtx_unlock(&mp_bc_lock);
}
void
mp_cpus_kick(cpumask_t cpus)
{
- cpu_t cpu;
- boolean_t intrs_enabled = FALSE;
+ cpu_t cpu;
+ boolean_t intrs_enabled = FALSE;
intrs_enabled = ml_set_interrupts_enabled(FALSE);
mp_safe_spin_lock(&x86_topo_lock);
for (cpu = 0; cpu < (cpu_t) real_ncpus; cpu++) {
if ((cpu == (cpu_t) cpu_number())
- || ((cpu_to_cpumask(cpu) & cpus) == 0)
- || !cpu_is_running(cpu))
- {
- continue;
+ || ((cpu_to_cpumask(cpu) & cpus) == 0)
+ || !cpu_is_running(cpu)) {
+ continue;
}
lapic_send_ipi(cpu, LAPIC_VECTOR(KICK));
void
i386_activate_cpu(void)
{
- cpu_data_t *cdp = current_cpu_datap();
+ cpu_data_t *cdp = current_cpu_datap();
assert(!ml_get_interrupts_enabled());
mp_safe_spin_lock(&x86_topo_lock);
cdp->cpu_running = TRUE;
started_cpu();
+ pmap_tlbi_range(0, ~0ULL, true, 0);
simple_unlock(&x86_topo_lock);
- flush_tlb_raw();
}
void
i386_deactivate_cpu(void)
{
- cpu_data_t *cdp = current_cpu_datap();
+ cpu_data_t *cdp = current_cpu_datap();
assert(!ml_get_interrupts_enabled());
-
+
KERNEL_DEBUG_CONSTANT(
TRACE_MP_CPU_DEACTIVATE | DBG_FUNC_START,
0, 0, 0, 0, 0);
mp_disable_preemption();
ml_set_interrupts_enabled(TRUE);
- while (cdp->cpu_signals && x86_lcpu()->rtcDeadline != EndOfAllTime)
+ while (cdp->cpu_signals && x86_lcpu()->rtcDeadline != EndOfAllTime) {
cpu_pause();
+ }
/*
* Ensure there's no remaining timer deadline set
* - AICPM may have left one active.
0, 0, 0, 0, 0);
}
-int pmsafe_debug = 1;
+int pmsafe_debug = 1;
-#if MACH_KDP
-volatile boolean_t mp_kdp_trap = FALSE;
-volatile boolean_t mp_kdp_is_NMI = FALSE;
-volatile unsigned long mp_kdp_ncpus;
-boolean_t mp_kdp_state;
+#if MACH_KDP
+volatile boolean_t mp_kdp_trap = FALSE;
+volatile boolean_t mp_kdp_is_NMI = FALSE;
+volatile unsigned long mp_kdp_ncpus;
+boolean_t mp_kdp_state;
void
mp_kdp_enter(boolean_t proceed_on_failure)
{
- unsigned int cpu;
- unsigned int ncpus = 0;
- unsigned int my_cpu;
- uint64_t tsc_timeout;
+ unsigned int cpu;
+ unsigned int ncpus = 0;
+ unsigned int my_cpu;
+ uint64_t tsc_timeout;
DBG("mp_kdp_enter()\n");
}
if (proceed_on_failure) {
if (mach_absolute_time() - start_time > 500000000ll) {
- kprintf("mp_kdp_enter() can't get x86_topo_lock! Debugging anyway! #YOLO\n");
+ paniclog_append_noflush("mp_kdp_enter() can't get x86_topo_lock! Debugging anyway! #YOLO\n");
break;
}
- locked = simple_lock_try(&x86_topo_lock);
+ locked = simple_lock_try(&x86_topo_lock, LCK_GRP_NULL);
if (!locked) {
cpu_pause();
}
}
}
- if (pmsafe_debug && !kdp_snapshot)
+ if (pmsafe_debug && !kdp_snapshot) {
pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_SAFE);
+ }
debugger_cpu = my_cpu;
ncpus = 1;
DBG("mp_kdp_enter() signaling other processors\n");
if (force_immediate_debugger_NMI == FALSE) {
for (cpu = 0; cpu < real_ncpus; cpu++) {
- if (cpu == my_cpu || !cpu_is_running(cpu))
+ if (cpu == my_cpu || !cpu_is_running(cpu)) {
continue;
+ }
ncpus++;
i386_signal_cpu(cpu, MP_KDP, ASYNC);
}
NMIPI_enable(TRUE);
}
if (mp_kdp_ncpus != ncpus) {
- cpumask_t cpus_NMI_pending = 0;
- DBG("mp_kdp_enter() timed-out on cpu %d, NMI-ing\n", my_cpu);
+ unsigned int wait_cycles = 0;
+ if (proceed_on_failure) {
+ paniclog_append_noflush("mp_kdp_enter() timed-out on cpu %d, NMI-ing\n", my_cpu);
+ } else {
+ DBG("mp_kdp_enter() timed-out on cpu %d, NMI-ing\n", my_cpu);
+ }
for (cpu = 0; cpu < real_ncpus; cpu++) {
- if (cpu == my_cpu || !cpu_is_running(cpu))
+ if (cpu == my_cpu || !cpu_is_running(cpu)) {
continue;
+ }
if (cpu_signal_pending(cpu, MP_KDP)) {
- cpus_NMI_pending |= cpu_to_cpumask(cpu);
+ cpu_datap(cpu)->cpu_NMI_acknowledged = FALSE;
cpu_NMI_interrupt(cpu);
}
}
while (mp_kdp_ncpus != ncpus && rdtsc64() < tsc_timeout) {
handle_pending_TLB_flushes();
cpu_pause();
+ ++wait_cycles;
}
if (mp_kdp_ncpus != ncpus) {
- kdb_printf("mp_kdp_enter(): %llu, %lu, %u TIMED-OUT WAITING FOR NMI-ACK, PROCEEDING\n", cpus_NMI_pending, mp_kdp_ncpus, ncpus);
+ paniclog_append_noflush("mp_kdp_enter() NMI pending on cpus:");
+ for (cpu = 0; cpu < real_ncpus; cpu++) {
+ if (cpu_is_running(cpu) && !cpu_datap(cpu)->cpu_NMI_acknowledged) {
+ paniclog_append_noflush(" %d", cpu);
+ }
+ }
+ paniclog_append_noflush("\n");
+ if (proceed_on_failure) {
+ paniclog_append_noflush("mp_kdp_enter() timed-out during %s wait after NMI;"
+ "expected %u acks but received %lu after %u loops in %llu ticks\n",
+ (locked ? "locked" : "unlocked"), ncpus, mp_kdp_ncpus, wait_cycles, LockTimeOutTSC);
+ } else {
+ panic("mp_kdp_enter() timed-out during %s wait after NMI;"
+ "expected %u acks but received %lu after %u loops in %llu ticks",
+ (locked ? "locked" : "unlocked"), ncpus, mp_kdp_ncpus, wait_cycles, LockTimeOutTSC);
+ }
}
}
- }
- else
+ } else {
for (cpu = 0; cpu < real_ncpus; cpu++) {
- if (cpu == my_cpu || !cpu_is_running(cpu))
+ if (cpu == my_cpu || !cpu_is_running(cpu)) {
continue;
+ }
cpu_NMI_interrupt(cpu);
}
+ }
if (locked) {
simple_unlock(&x86_topo_lock);
DBG("mp_kdp_enter() %d processors done %s\n",
(int)mp_kdp_ncpus, (mp_kdp_ncpus == ncpus) ? "OK" : "timed out");
-
+
postcode(MP_KDP_ENTER);
}
+boolean_t
+mp_kdp_all_cpus_halted()
+{
+ unsigned int ncpus = 0, cpu = 0, my_cpu = 0;
+
+ my_cpu = cpu_number();
+ ncpus = 1; /* current CPU */
+ for (cpu = 0; cpu < real_ncpus; cpu++) {
+ if (cpu == my_cpu || !cpu_is_running(cpu)) {
+ continue;
+ }
+ ncpus++;
+ }
+
+ return mp_kdp_ncpus == ncpus;
+}
+
static boolean_t
cpu_signal_pending(int cpu, mp_event_t event)
{
- volatile int *signals = &cpu_datap(cpu)->cpu_signals;
+ volatile int *signals = &cpu_datap(cpu)->cpu_signals;
boolean_t retval = FALSE;
- if (i_bit(event, signals))
+ if (i_bit(event, signals)) {
retval = TRUE;
+ }
return retval;
}
-long kdp_x86_xcpu_invoke(const uint16_t lcpu, kdp_x86_xcpu_func_t func,
- void *arg0, void *arg1)
+long
+kdp_x86_xcpu_invoke(const uint16_t lcpu, kdp_x86_xcpu_func_t func,
+ void *arg0, void *arg1)
{
- if (lcpu > (real_ncpus - 1))
+ if (lcpu > (real_ncpus - 1)) {
return -1;
+ }
- if (func == NULL)
+ if (func == NULL) {
return -1;
+ }
kdp_xcpu_call_func.func = func;
- kdp_xcpu_call_func.ret = -1;
+ kdp_xcpu_call_func.ret = -1;
kdp_xcpu_call_func.arg0 = arg0;
kdp_xcpu_call_func.arg1 = arg1;
kdp_xcpu_call_func.cpu = lcpu;
DBG("Invoking function %p on CPU %d\n", func, (int32_t)lcpu);
- while (kdp_xcpu_call_func.cpu != KDP_XCPU_NONE)
+ while (kdp_xcpu_call_func.cpu != KDP_XCPU_NONE) {
cpu_pause();
- return kdp_xcpu_call_func.ret;
+ }
+ return kdp_xcpu_call_func.ret;
}
static void
kdp_x86_xcpu_poll(void)
{
if ((uint16_t)cpu_number() == kdp_xcpu_call_func.cpu) {
- kdp_xcpu_call_func.ret =
+ kdp_xcpu_call_func.ret =
kdp_xcpu_call_func.func(kdp_xcpu_call_func.arg0,
- kdp_xcpu_call_func.arg1,
- cpu_number());
+ kdp_xcpu_call_func.arg1,
+ cpu_number());
kdp_xcpu_call_func.cpu = KDP_XCPU_NONE;
}
}
atomic_incl((volatile long *)&mp_kdp_ncpus, 1);
while (mp_kdp_trap || (isNMI == TRUE)) {
- /*
+ /*
* A TLB shootdown request may be pending--this would result
* in the requesting processor waiting in PMAP_UPDATE_TLBS()
* until this processor handles it.
* Process it, so it can now enter mp_kdp_wait()
*/
- if (flush)
+ if (flush) {
handle_pending_TLB_flushes();
+ }
kdp_x86_xcpu_poll();
cpu_pause();
/* Wait other processors to stop spinning. XXX needs timeout */
DBG("mp_kdp_exit() waiting for processors to resume\n");
while (mp_kdp_ncpus > 0) {
- /*
+ /*
* a TLB shootdown request may be pending... this would result in the requesting
* processor waiting in PMAP_UPDATE_TLBS() until this processor deals with it.
* Process it, so it can now enter mp_kdp_wait()
*/
- handle_pending_TLB_flushes();
+ handle_pending_TLB_flushes();
cpu_pause();
}
- if (pmsafe_debug && !kdp_snapshot)
- pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_NORMAL);
+ if (pmsafe_debug && !kdp_snapshot) {
+ pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_NORMAL);
+ }
debugger_exit_time = mach_absolute_time();
postcode(MP_KDP_EXIT);
}
-#endif /* MACH_KDP */
+#endif /* MACH_KDP */
boolean_t
-mp_recent_debugger_activity(void) {
+mp_recent_debugger_activity(void)
+{
uint64_t abstime = mach_absolute_time();
- return (((abstime - debugger_entry_time) < LastDebuggerEntryAllowance) ||
- ((abstime - debugger_exit_time) < LastDebuggerEntryAllowance));
+ return ((abstime - debugger_entry_time) < LastDebuggerEntryAllowance) ||
+ ((abstime - debugger_exit_time) < LastDebuggerEntryAllowance);
}
/*ARGSUSED*/
void
init_ast_check(
- __unused processor_t processor)
+ __unused processor_t processor)
{
}
void
cause_ast_check(
- processor_t processor)
+ processor_t processor)
{
- int cpu = processor->cpu_id;
+ int cpu = processor->cpu_id;
if (cpu != cpu_number()) {
i386_signal_cpu(cpu, MP_AST, ASYNC);
slave_machine_init(void *param)
{
/*
- * Here in process context, but with interrupts disabled.
+ * Here in process context, but with interrupts disabled.
*/
DBG("slave_machine_init() CPU%d\n", get_cpu_number());
*/
clock_init();
}
- cpu_machine_init(); /* Interrupts enabled hereafter */
+ cpu_machine_init(); /* Interrupts enabled hereafter */
}
#undef cpu_number
-int cpu_number(void)
+int
+cpu_number(void)
{
return get_cpu_number();
}
timer_call_t call = NULL;
x = splsched();
- simple_lock(&cpu_warm_lock);
+ simple_lock(&cpu_warm_lock, LCK_GRP_NULL);
if (!queue_empty(&cpu_warm_call_list)) {
call = (timer_call_t) dequeue_head(&cpu_warm_call_list);
}
spl_t x;
x = splsched();
- simple_lock(&cpu_warm_lock);
+ simple_lock(&cpu_warm_lock, LCK_GRP_NULL);
enqueue_head(&cpu_warm_call_list, (queue_entry_t)call);
simple_unlock(&cpu_warm_lock);
splx(x);
*/
static void
cpu_warm_timer_call_func(
- call_entry_param_t p0,
- __unused call_entry_param_t p1)
+ call_entry_param_t p0,
+ __unused call_entry_param_t p1)
{
free_warm_timer_call((timer_call_t)p0);
return;
*/
static void
_cpu_warm_setup(
- void *arg)
+ void *arg)
{
cpu_warm_data_t cwdp = (cpu_warm_data_t)arg;
*/
kern_return_t
ml_interrupt_prewarm(
- uint64_t deadline)
+ uint64_t deadline)
{
struct cpu_warm_data cwd;
timer_call_t call;
panic("%s: Interrupts disabled?\n", __FUNCTION__);
}
- /*
- * If the platform doesn't need our help, say that we succeeded.
+ /*
+ * If the platform doesn't need our help, say that we succeeded.
*/
if (!ml_get_interrupt_prewake_applicable()) {
return KERN_SUCCESS;
void
kernel_spin(uint64_t spin_ns)
{
- boolean_t istate;
- uint64_t spin_abs;
- uint64_t deadline;
- cpu_data_t *cdp;
+ boolean_t istate;
+ uint64_t spin_abs;
+ uint64_t deadline;
+ cpu_data_t *cdp;
kprintf("kernel_spin(%llu) spinning uninterruptibly\n", spin_ns);
istate = ml_set_interrupts_enabled(FALSE);
cdp->cpu_int_state = (void *) USER_STATE(current_thread());
deadline = mach_absolute_time() + spin_ns;
- while (mach_absolute_time() < deadline)
+ while (mach_absolute_time() < deadline) {
cpu_pause();
+ }
cdp->cpu_int_event_time = 0;
cdp->cpu_int_state = NULL;
void
mp_interrupt_watchdog(void)
{
- cpu_t cpu;
- boolean_t intrs_enabled = FALSE;
- uint16_t cpu_int_num;
- uint64_t cpu_int_event_time;
- uint64_t cpu_rip;
- uint64_t cpu_int_duration;
- uint64_t now;
- x86_saved_state_t *cpu_int_state;
-
- if (__improbable(!mp_interrupt_watchdog_enabled))
+ cpu_t cpu;
+ boolean_t intrs_enabled = FALSE;
+ uint16_t cpu_int_num;
+ uint64_t cpu_int_event_time;
+ uint64_t cpu_rip;
+ uint64_t cpu_int_duration;
+ uint64_t now;
+ x86_saved_state_t *cpu_int_state;
+
+ if (__improbable(!mp_interrupt_watchdog_enabled)) {
return;
+ }
intrs_enabled = ml_set_interrupts_enabled(FALSE);
now = mach_absolute_time();
* check all other processors for long outstanding interrupt handling.
*/
for (cpu = 0;
- cpu < (cpu_t) real_ncpus && !machine_timeout_suspended();
- cpu++) {
+ cpu < (cpu_t) real_ncpus && !machine_timeout_suspended();
+ cpu++) {
if ((cpu == (cpu_t) cpu_number()) ||
- (!cpu_is_running(cpu)))
+ (!cpu_is_running(cpu))) {
continue;
+ }
cpu_int_event_time = cpu_datap(cpu)->cpu_int_event_time;
- if (cpu_int_event_time == 0)
+ if (cpu_int_event_time == 0) {
continue;
- if (__improbable(now < cpu_int_event_time))
- continue; /* skip due to inter-processor skew */
+ }
+ if (__improbable(now < cpu_int_event_time)) {
+ continue; /* skip due to inter-processor skew */
+ }
cpu_int_state = cpu_datap(cpu)->cpu_int_state;
- if (__improbable(cpu_int_state == NULL))
+ if (__improbable(cpu_int_state == NULL)) {
/* The interrupt may have been dismissed */
continue;
+ }
/* Here with a cpu handling an interrupt */
vector_timed_out = cpu_int_num;
NMIPI_panic(cpu_to_cpumask(cpu), INTERRUPT_WATCHDOG);
panic("Interrupt watchdog, "
- "cpu: %d interrupt: 0x%x time: %llu..%llu state: %p RIP: 0x%llx",
- cpu, cpu_int_num, cpu_int_event_time, now, cpu_int_state, cpu_rip);
+ "cpu: %d interrupt: 0x%x time: %llu..%llu state: %p RIP: 0x%llx",
+ cpu, cpu_int_num, cpu_int_event_time, now, cpu_int_state, cpu_rip);
/* NOT REACHED */
} else if (__improbable(cpu_int_duration > (uint64_t) std_quantum)) {
mp_interrupt_watchdog_events++;
cpu_rip = saved_state64(cpu_int_state)->isf.rip;
ml_set_interrupts_enabled(intrs_enabled);
printf("Interrupt watchdog, "
- "cpu: %d interrupt: 0x%x time: %llu..%llu RIP: 0x%llx\n",
- cpu, cpu_int_num, cpu_int_event_time, now, cpu_rip);
+ "cpu: %d interrupt: 0x%x time: %llu..%llu RIP: 0x%llx\n",
+ cpu, cpu_int_num, cpu_int_event_time, now, cpu_rip);
return;
}
}