/*
- * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2000-2010 Apple Inc. All rights reserved.
*
- * @APPLE_LICENSE_HEADER_START@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
- * The contents of this file constitute Original Code as defined in and
- * are subject to the Apple Public Source License Version 1.1 (the
- * "License"). You may not use this file except in compliance with the
- * License. Please obtain a copy of the License at
- * http://www.apple.com/publicsource and read it before using this file.
+ * This file contains Original Code and/or Modifications of Original Code
+ * as defined in and that are subject to the Apple Public Source License
+ * Version 2.0 (the 'License'). You may not use this file except in
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
*
- * This Original Code and all software distributed under the License are
- * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
+ *
+ * The Original Code and all software distributed under the License are
+ * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
- * License for the specific language governing rights and limitations
- * under the License.
+ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
+ * Please see the License for the specific language governing rights and
+ * limitations under the License.
*
- * @APPLE_LICENSE_HEADER_END@
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* Copyright (c) 1998-2002 Luigi Rizzo, Universita` di Pisa
#include <sys/socketvar.h>
#include <sys/time.h>
#include <sys/sysctl.h>
+//#include <sys/mcache.h>
#include <net/if.h>
#include <net/route.h>
#include <net/kpi_protocol.h>
#include <netinet/ip_dummynet.h>
#include <netinet/ip_var.h>
-#if BRIDGE
-#include <netinet/if_ether.h> /* for struct arpcom */
-#include <net/bridge.h>
-#endif
-
/*
* We keep a private variable for the simulation time, but we could
* probably use an existing one ("softticks" in sys/kern/kern_timer.c)
*/
static dn_key curr_time = 0 ; /* current simulation time */
+/* this is for the timer that fires to call dummynet() - we only enable the timer when
+ there are packets to process, otherwise it's disabled */
+static int timer_enabled = 0;
+
static int dn_hash_size = 64 ; /* default hash size */
/* statistics on number of queue searches and search steps */
static int red_avg_pkt_size = 512; /* RED - default medium packet size */
static int red_max_pkt_size = 1500; /* RED - default max packet size */
+static int serialize = 0;
+
/*
* Three heaps contain queues and pipes that the scheduler handles:
*
static int heap_insert (struct dn_heap *h, dn_key key1, void *p);
static void heap_extract(struct dn_heap *h, void *obj);
-static void transmit_event(struct dn_pipe *pipe);
-static void ready_event(struct dn_flow_queue *q);
-static struct dn_pipe *all_pipes = NULL ; /* list of all pipes */
-static struct dn_flow_set *all_flow_sets = NULL ;/* list of all flow_sets */
+static void transmit_event(struct dn_pipe *pipe, struct mbuf **head,
+ struct mbuf **tail);
+static void ready_event(struct dn_flow_queue *q, struct mbuf **head,
+ struct mbuf **tail);
+static void ready_event_wfq(struct dn_pipe *p, struct mbuf **head,
+ struct mbuf **tail);
+
+/*
+ * Packets are retrieved from queues in Dummynet in chains instead of
+ * packet-by-packet. The entire list of packets is first dequeued and
+ * sent out by the following function.
+ */
+static void dummynet_send(struct mbuf *m);
+
+#define HASHSIZE 16
+#define HASH(num) ((((num) >> 8) ^ ((num) >> 4) ^ (num)) & 0x0f)
+static struct dn_pipe_head pipehash[HASHSIZE]; /* all pipes */
+static struct dn_flow_set_head flowsethash[HASHSIZE]; /* all flowsets */
+
#ifdef SYSCTL_NODE
SYSCTL_NODE(_net_inet_ip, OID_AUTO, dummynet,
- CTLFLAG_RW, 0, "Dummynet");
+ CTLFLAG_RW | CTLFLAG_LOCKED, 0, "Dummynet");
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, hash_size,
- CTLFLAG_RW, &dn_hash_size, 0, "Default hash table size");
-SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, curr_time,
- CTLFLAG_RD, &curr_time, 0, "Current tick");
+ CTLFLAG_RW | CTLFLAG_LOCKED, &dn_hash_size, 0, "Default hash table size");
+SYSCTL_QUAD(_net_inet_ip_dummynet, OID_AUTO, curr_time,
+ CTLFLAG_RD | CTLFLAG_LOCKED, &curr_time, "Current tick");
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, ready_heap,
- CTLFLAG_RD, &ready_heap.size, 0, "Size of ready heap");
+ CTLFLAG_RD | CTLFLAG_LOCKED, &ready_heap.size, 0, "Size of ready heap");
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, extract_heap,
- CTLFLAG_RD, &extract_heap.size, 0, "Size of extract heap");
+ CTLFLAG_RD | CTLFLAG_LOCKED, &extract_heap.size, 0, "Size of extract heap");
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, searches,
- CTLFLAG_RD, &searches, 0, "Number of queue searches");
+ CTLFLAG_RD | CTLFLAG_LOCKED, &searches, 0, "Number of queue searches");
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, search_steps,
- CTLFLAG_RD, &search_steps, 0, "Number of queue search steps");
+ CTLFLAG_RD | CTLFLAG_LOCKED, &search_steps, 0, "Number of queue search steps");
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, expire,
- CTLFLAG_RW, &pipe_expire, 0, "Expire queue if empty");
+ CTLFLAG_RW | CTLFLAG_LOCKED, &pipe_expire, 0, "Expire queue if empty");
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, max_chain_len,
- CTLFLAG_RW, &dn_max_ratio, 0,
+ CTLFLAG_RW | CTLFLAG_LOCKED, &dn_max_ratio, 0,
"Max ratio between dynamic queues and buckets");
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_lookup_depth,
- CTLFLAG_RD, &red_lookup_depth, 0, "Depth of RED lookup table");
+ CTLFLAG_RD | CTLFLAG_LOCKED, &red_lookup_depth, 0, "Depth of RED lookup table");
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_avg_pkt_size,
- CTLFLAG_RD, &red_avg_pkt_size, 0, "RED Medium packet size");
+ CTLFLAG_RD | CTLFLAG_LOCKED, &red_avg_pkt_size, 0, "RED Medium packet size");
SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_max_pkt_size,
- CTLFLAG_RD, &red_max_pkt_size, 0, "RED Max packet size");
+ CTLFLAG_RD | CTLFLAG_LOCKED, &red_max_pkt_size, 0, "RED Max packet size");
#endif
#ifdef DUMMYNET_DEBUG
int dummynet_debug = 0;
#ifdef SYSCTL_NODE
-SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, debug, CTLFLAG_RW, &dummynet_debug,
+SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_LOCKED, &dummynet_debug,
0, "control debugging printfs");
#endif
#define DPRINTF(X) if (dummynet_debug) printf X
#define DPRINTF(X)
#endif
+/* contrary to the comment above random(), it does not actually
+ * return a value [0, 2^31 - 1], which breaks plr amongst other
+ * things. Masking it should work even if the behavior of
+ * the function is fixed.
+ */
+#define MY_RANDOM (random() & 0x7FFFFFFF)
+
/* dummynet lock */
-lck_grp_t *dn_mutex_grp;
-lck_grp_attr_t *dn_mutex_grp_attr;
-lck_attr_t *dn_mutex_attr;
-lck_mtx_t *dn_mutex;
+static lck_grp_t *dn_mutex_grp;
+static lck_grp_attr_t *dn_mutex_grp_attr;
+static lck_attr_t *dn_mutex_attr;
+static lck_mtx_t *dn_mutex;
static int config_pipe(struct dn_pipe *p);
static int ip_dn_ctl(struct sockopt *sopt);
int if_tx_rdy(struct ifnet *ifp);
-extern lck_mtx_t *rt_mtx; /* route global lock */
+static void cp_flow_set_to_64_user(struct dn_flow_set *set, struct dn_flow_set_64 *fs_bp);
+static void cp_queue_to_64_user( struct dn_flow_queue *q, struct dn_flow_queue_64 *qp);
+static char *cp_pipe_to_64_user(struct dn_pipe *p, struct dn_pipe_64 *pipe_bp);
+static char* dn_copy_set_64(struct dn_flow_set *set, char *bp);
+static int cp_pipe_from_user_64( struct sockopt *sopt, struct dn_pipe *p );
+
+static void cp_flow_set_to_32_user(struct dn_flow_set *set, struct dn_flow_set_32 *fs_bp);
+static void cp_queue_to_32_user( struct dn_flow_queue *q, struct dn_flow_queue_32 *qp);
+static char *cp_pipe_to_32_user(struct dn_pipe *p, struct dn_pipe_32 *pipe_bp);
+static char* dn_copy_set_32(struct dn_flow_set *set, char *bp);
+static int cp_pipe_from_user_32( struct sockopt *sopt, struct dn_pipe *p );
+
/*
* Heap management functions.
#define HEAP_SWAP(a, b, buffer) { buffer = a ; a = b ; b = buffer ; }
#define HEAP_INCREMENT 15
+
+int cp_pipe_from_user_32( struct sockopt *sopt, struct dn_pipe *p )
+{
+ struct dn_pipe_32 user_pipe_32;
+ int error=0;
+
+ error = sooptcopyin(sopt, &user_pipe_32, sizeof(struct dn_pipe_32), sizeof(struct dn_pipe_32));
+ if ( !error ){
+ p->pipe_nr = user_pipe_32.pipe_nr;
+ p->bandwidth = user_pipe_32.bandwidth;
+ p->delay = user_pipe_32.delay;
+ p->V = user_pipe_32.V;
+ p->sum = user_pipe_32.sum;
+ p->numbytes = user_pipe_32.numbytes;
+ p->sched_time = user_pipe_32.sched_time;
+ bcopy( user_pipe_32.if_name, p->if_name, IFNAMSIZ);
+ p->ready = user_pipe_32.ready;
+
+ p->fs.fs_nr = user_pipe_32.fs.fs_nr;
+ p->fs.flags_fs = user_pipe_32.fs.flags_fs;
+ p->fs.parent_nr = user_pipe_32.fs.parent_nr;
+ p->fs.weight = user_pipe_32.fs.weight;
+ p->fs.qsize = user_pipe_32.fs.qsize;
+ p->fs.plr = user_pipe_32.fs.plr;
+ p->fs.flow_mask = user_pipe_32.fs.flow_mask;
+ p->fs.rq_size = user_pipe_32.fs.rq_size;
+ p->fs.rq_elements = user_pipe_32.fs.rq_elements;
+ p->fs.last_expired = user_pipe_32.fs.last_expired;
+ p->fs.backlogged = user_pipe_32.fs.backlogged;
+ p->fs.w_q = user_pipe_32.fs.w_q;
+ p->fs.max_th = user_pipe_32.fs.max_th;
+ p->fs.min_th = user_pipe_32.fs.min_th;
+ p->fs.max_p = user_pipe_32.fs.max_p;
+ p->fs.c_1 = user_pipe_32.fs.c_1;
+ p->fs.c_2 = user_pipe_32.fs.c_2;
+ p->fs.c_3 = user_pipe_32.fs.c_3;
+ p->fs.c_4 = user_pipe_32.fs.c_4;
+ p->fs.lookup_depth = user_pipe_32.fs.lookup_depth;
+ p->fs.lookup_step = user_pipe_32.fs.lookup_step;
+ p->fs.lookup_weight = user_pipe_32.fs.lookup_weight;
+ p->fs.avg_pkt_size = user_pipe_32.fs.avg_pkt_size;
+ p->fs.max_pkt_size = user_pipe_32.fs.max_pkt_size;
+ }
+ return error;
+}
+
+
+int cp_pipe_from_user_64( struct sockopt *sopt, struct dn_pipe *p )
+{
+ struct dn_pipe_64 user_pipe_64;
+ int error=0;
+
+ error = sooptcopyin(sopt, &user_pipe_64, sizeof(struct dn_pipe_64), sizeof(struct dn_pipe_64));
+ if ( !error ){
+ p->pipe_nr = user_pipe_64.pipe_nr;
+ p->bandwidth = user_pipe_64.bandwidth;
+ p->delay = user_pipe_64.delay;
+ p->V = user_pipe_64.V;
+ p->sum = user_pipe_64.sum;
+ p->numbytes = user_pipe_64.numbytes;
+ p->sched_time = user_pipe_64.sched_time;
+ bcopy( user_pipe_64.if_name, p->if_name, IFNAMSIZ);
+ p->ready = user_pipe_64.ready;
+
+ p->fs.fs_nr = user_pipe_64.fs.fs_nr;
+ p->fs.flags_fs = user_pipe_64.fs.flags_fs;
+ p->fs.parent_nr = user_pipe_64.fs.parent_nr;
+ p->fs.weight = user_pipe_64.fs.weight;
+ p->fs.qsize = user_pipe_64.fs.qsize;
+ p->fs.plr = user_pipe_64.fs.plr;
+ p->fs.flow_mask = user_pipe_64.fs.flow_mask;
+ p->fs.rq_size = user_pipe_64.fs.rq_size;
+ p->fs.rq_elements = user_pipe_64.fs.rq_elements;
+ p->fs.last_expired = user_pipe_64.fs.last_expired;
+ p->fs.backlogged = user_pipe_64.fs.backlogged;
+ p->fs.w_q = user_pipe_64.fs.w_q;
+ p->fs.max_th = user_pipe_64.fs.max_th;
+ p->fs.min_th = user_pipe_64.fs.min_th;
+ p->fs.max_p = user_pipe_64.fs.max_p;
+ p->fs.c_1 = user_pipe_64.fs.c_1;
+ p->fs.c_2 = user_pipe_64.fs.c_2;
+ p->fs.c_3 = user_pipe_64.fs.c_3;
+ p->fs.c_4 = user_pipe_64.fs.c_4;
+ p->fs.lookup_depth = user_pipe_64.fs.lookup_depth;
+ p->fs.lookup_step = user_pipe_64.fs.lookup_step;
+ p->fs.lookup_weight = user_pipe_64.fs.lookup_weight;
+ p->fs.avg_pkt_size = user_pipe_64.fs.avg_pkt_size;
+ p->fs.max_pkt_size = user_pipe_64.fs.max_pkt_size;
+ }
+ return error;
+}
+
+static void
+cp_flow_set_to_32_user(struct dn_flow_set *set, struct dn_flow_set_32 *fs_bp)
+{
+ fs_bp->fs_nr = set->fs_nr;
+ fs_bp->flags_fs = set->flags_fs ;
+ fs_bp->parent_nr = set->parent_nr ;
+ fs_bp->weight = set->weight ;
+ fs_bp->qsize = set->qsize ;
+ fs_bp->plr = set->plr ;
+ fs_bp->flow_mask = set->flow_mask ;
+ fs_bp->rq_size = set->rq_size ;
+ fs_bp->rq_elements = set->rq_elements ;
+ fs_bp->last_expired = set->last_expired ;
+ fs_bp->backlogged = set->backlogged ;
+ fs_bp->w_q = set->w_q ;
+ fs_bp->max_th = set->max_th ;
+ fs_bp->min_th = set->min_th ;
+ fs_bp->max_p = set->max_p ;
+ fs_bp->c_1 = set->c_1 ;
+ fs_bp->c_2 = set->c_2 ;
+ fs_bp->c_3 = set->c_3 ;
+ fs_bp->c_4 = set->c_4 ;
+ fs_bp->w_q_lookup = CAST_DOWN_EXPLICIT(user32_addr_t, set->w_q_lookup) ;
+ fs_bp->lookup_depth = set->lookup_depth ;
+ fs_bp->lookup_step = set->lookup_step ;
+ fs_bp->lookup_weight = set->lookup_weight ;
+ fs_bp->avg_pkt_size = set->avg_pkt_size ;
+ fs_bp->max_pkt_size = set->max_pkt_size ;
+}
+
+static void
+cp_flow_set_to_64_user(struct dn_flow_set *set, struct dn_flow_set_64 *fs_bp)
+{
+ fs_bp->fs_nr = set->fs_nr;
+ fs_bp->flags_fs = set->flags_fs ;
+ fs_bp->parent_nr = set->parent_nr ;
+ fs_bp->weight = set->weight ;
+ fs_bp->qsize = set->qsize ;
+ fs_bp->plr = set->plr ;
+ fs_bp->flow_mask = set->flow_mask ;
+ fs_bp->rq_size = set->rq_size ;
+ fs_bp->rq_elements = set->rq_elements ;
+ fs_bp->last_expired = set->last_expired ;
+ fs_bp->backlogged = set->backlogged ;
+ fs_bp->w_q = set->w_q ;
+ fs_bp->max_th = set->max_th ;
+ fs_bp->min_th = set->min_th ;
+ fs_bp->max_p = set->max_p ;
+ fs_bp->c_1 = set->c_1 ;
+ fs_bp->c_2 = set->c_2 ;
+ fs_bp->c_3 = set->c_3 ;
+ fs_bp->c_4 = set->c_4 ;
+ fs_bp->w_q_lookup = CAST_DOWN(user64_addr_t, set->w_q_lookup) ;
+ fs_bp->lookup_depth = set->lookup_depth ;
+ fs_bp->lookup_step = set->lookup_step ;
+ fs_bp->lookup_weight = set->lookup_weight ;
+ fs_bp->avg_pkt_size = set->avg_pkt_size ;
+ fs_bp->max_pkt_size = set->max_pkt_size ;
+}
+
+static
+void cp_queue_to_32_user( struct dn_flow_queue *q, struct dn_flow_queue_32 *qp)
+{
+ qp->id = q->id;
+ qp->len = q->len;
+ qp->len_bytes = q->len_bytes;
+ qp->numbytes = q->numbytes;
+ qp->tot_pkts = q->tot_pkts;
+ qp->tot_bytes = q->tot_bytes;
+ qp->drops = q->drops;
+ qp->hash_slot = q->hash_slot;
+ qp->avg = q->avg;
+ qp->count = q->count;
+ qp->random = q->random;
+ qp->q_time = q->q_time;
+ qp->heap_pos = q->heap_pos;
+ qp->sched_time = q->sched_time;
+ qp->S = q->S;
+ qp->F = q->F;
+}
+
+static
+void cp_queue_to_64_user( struct dn_flow_queue *q, struct dn_flow_queue_64 *qp)
+{
+ qp->id = q->id;
+ qp->len = q->len;
+ qp->len_bytes = q->len_bytes;
+ qp->numbytes = q->numbytes;
+ qp->tot_pkts = q->tot_pkts;
+ qp->tot_bytes = q->tot_bytes;
+ qp->drops = q->drops;
+ qp->hash_slot = q->hash_slot;
+ qp->avg = q->avg;
+ qp->count = q->count;
+ qp->random = q->random;
+ qp->q_time = q->q_time;
+ qp->heap_pos = q->heap_pos;
+ qp->sched_time = q->sched_time;
+ qp->S = q->S;
+ qp->F = q->F;
+}
+
+static
+char *cp_pipe_to_32_user(struct dn_pipe *p, struct dn_pipe_32 *pipe_bp)
+{
+ char *bp;
+
+ pipe_bp->pipe_nr = p->pipe_nr;
+ pipe_bp->bandwidth = p->bandwidth;
+ pipe_bp->delay = p->delay;
+ bcopy( &(p->scheduler_heap), &(pipe_bp->scheduler_heap), sizeof(struct dn_heap_32));
+ pipe_bp->scheduler_heap.p = CAST_DOWN_EXPLICIT(user32_addr_t, pipe_bp->scheduler_heap.p);
+ bcopy( &(p->not_eligible_heap), &(pipe_bp->not_eligible_heap), sizeof(struct dn_heap_32));
+ pipe_bp->not_eligible_heap.p = CAST_DOWN_EXPLICIT(user32_addr_t, pipe_bp->not_eligible_heap.p);
+ bcopy( &(p->idle_heap), &(pipe_bp->idle_heap), sizeof(struct dn_heap_32));
+ pipe_bp->idle_heap.p = CAST_DOWN_EXPLICIT(user32_addr_t, pipe_bp->idle_heap.p);
+ pipe_bp->V = p->V;
+ pipe_bp->sum = p->sum;
+ pipe_bp->numbytes = p->numbytes;
+ pipe_bp->sched_time = p->sched_time;
+ bcopy( p->if_name, pipe_bp->if_name, IFNAMSIZ);
+ pipe_bp->ifp = CAST_DOWN_EXPLICIT(user32_addr_t, p->ifp);
+ pipe_bp->ready = p->ready;
+
+ cp_flow_set_to_32_user( &(p->fs), &(pipe_bp->fs));
+
+ pipe_bp->delay = (pipe_bp->delay * 1000) / (hz*10) ;
+ /*
+ * XXX the following is a hack based on ->next being the
+ * first field in dn_pipe and dn_flow_set. The correct
+ * solution would be to move the dn_flow_set to the beginning
+ * of struct dn_pipe.
+ */
+ pipe_bp->next = CAST_DOWN_EXPLICIT( user32_addr_t, DN_IS_PIPE );
+ /* clean pointers */
+ pipe_bp->head = pipe_bp->tail = (user32_addr_t) 0 ;
+ pipe_bp->fs.next = (user32_addr_t)0 ;
+ pipe_bp->fs.pipe = (user32_addr_t)0 ;
+ pipe_bp->fs.rq = (user32_addr_t)0 ;
+ bp = ((char *)pipe_bp) + sizeof(struct dn_pipe_32);
+ return( dn_copy_set_32( &(p->fs), bp) );
+}
+
+static
+char *cp_pipe_to_64_user(struct dn_pipe *p, struct dn_pipe_64 *pipe_bp)
+{
+ char *bp;
+
+ pipe_bp->pipe_nr = p->pipe_nr;
+ pipe_bp->bandwidth = p->bandwidth;
+ pipe_bp->delay = p->delay;
+ bcopy( &(p->scheduler_heap), &(pipe_bp->scheduler_heap), sizeof(struct dn_heap_64));
+ pipe_bp->scheduler_heap.p = CAST_DOWN(user64_addr_t, pipe_bp->scheduler_heap.p);
+ bcopy( &(p->not_eligible_heap), &(pipe_bp->not_eligible_heap), sizeof(struct dn_heap_64));
+ pipe_bp->not_eligible_heap.p = CAST_DOWN(user64_addr_t, pipe_bp->not_eligible_heap.p);
+ bcopy( &(p->idle_heap), &(pipe_bp->idle_heap), sizeof(struct dn_heap_64));
+ pipe_bp->idle_heap.p = CAST_DOWN(user64_addr_t, pipe_bp->idle_heap.p);
+ pipe_bp->V = p->V;
+ pipe_bp->sum = p->sum;
+ pipe_bp->numbytes = p->numbytes;
+ pipe_bp->sched_time = p->sched_time;
+ bcopy( p->if_name, pipe_bp->if_name, IFNAMSIZ);
+ pipe_bp->ifp = CAST_DOWN(user64_addr_t, p->ifp);
+ pipe_bp->ready = p->ready;
+
+ cp_flow_set_to_64_user( &(p->fs), &(pipe_bp->fs));
+
+ pipe_bp->delay = (pipe_bp->delay * 1000) / (hz*10) ;
+ /*
+ * XXX the following is a hack based on ->next being the
+ * first field in dn_pipe and dn_flow_set. The correct
+ * solution would be to move the dn_flow_set to the beginning
+ * of struct dn_pipe.
+ */
+ pipe_bp->next = CAST_DOWN( user64_addr_t, DN_IS_PIPE );
+ /* clean pointers */
+ pipe_bp->head = pipe_bp->tail = USER_ADDR_NULL ;
+ pipe_bp->fs.next = USER_ADDR_NULL ;
+ pipe_bp->fs.pipe = USER_ADDR_NULL ;
+ pipe_bp->fs.rq = USER_ADDR_NULL ;
+ bp = ((char *)pipe_bp) + sizeof(struct dn_pipe_64);
+ return( dn_copy_set_64( &(p->fs), bp) );
+}
+
static int
heap_init(struct dn_heap *h, int new_size)
{
static void
heap_extract(struct dn_heap *h, void *obj)
{
- int child, father, max = h->elements - 1 ;
+ int child, father, maxelt = h->elements - 1 ;
- if (max < 0) {
+ if (maxelt < 0) {
printf("dummynet: warning, extract from empty heap 0x%p\n", h);
return ;
}
}
RESET_OFFSET(h, father);
child = HEAP_LEFT(father) ; /* left child */
- while (child <= max) { /* valid entry */
- if (child != max && DN_KEY_LT(h->p[child+1].key, h->p[child].key) )
+ while (child <= maxelt) { /* valid entry */
+ if (child != maxelt && DN_KEY_LT(h->p[child+1].key, h->p[child].key) )
child = child+1 ; /* take right child, otherwise left */
h->p[father] = h->p[child] ;
SET_OFFSET(h, father);
child = HEAP_LEFT(child) ; /* left child for next loop */
}
h->elements-- ;
- if (father != max) {
+ if (father != maxelt) {
/*
* Fill hole with last entry and bubble up, reusing the insert code
*/
- h->p[father] = h->p[max] ;
+ h->p[father] = h->p[maxelt] ;
heap_insert(h, father, NULL); /* this one cannot fail */
}
}
-#if 0
-/*
- * change object position and update references
- * XXX this one is never used!
- */
-static void
-heap_move(struct dn_heap *h, dn_key new_key, void *object)
-{
- int temp;
- int i ;
- int max = h->elements-1 ;
- struct dn_heap_entry buf ;
-
- if (h->offset <= 0)
- panic("cannot move items on this heap");
-
- i = *((int *)((char *)object + h->offset));
- if (DN_KEY_LT(new_key, h->p[i].key) ) { /* must move up */
- h->p[i].key = new_key ;
- for (; i>0 && DN_KEY_LT(new_key, h->p[(temp = HEAP_FATHER(i))].key) ;
- i = temp ) { /* bubble up */
- HEAP_SWAP(h->p[i], h->p[temp], buf) ;
- SET_OFFSET(h, i);
- }
- } else { /* must move down */
- h->p[i].key = new_key ;
- while ( (temp = HEAP_LEFT(i)) <= max ) { /* found left child */
- if ((temp != max) && DN_KEY_GT(h->p[temp].key, h->p[temp+1].key))
- temp++ ; /* select child with min key */
- if (DN_KEY_GT(new_key, h->p[temp].key)) { /* go down */
- HEAP_SWAP(h->p[i], h->p[temp], buf) ;
- SET_OFFSET(h, i);
- } else
- break ;
- i = temp ;
- }
- }
- SET_OFFSET(h, i);
-}
-#endif /* heap_move, unused */
-
/*
* heapify() will reorganize data inside an array to maintain the
* heap property. It is needed when we delete a bunch of entries.
{
if (h->size >0 )
FREE(h->p, M_DUMMYNET);
- bzero(h, sizeof(*h) );
+ bzero(h, sizeof(*h));
}
/*
* invocations of the procedures.
*/
static void
-transmit_event(struct dn_pipe *pipe)
+transmit_event(struct dn_pipe *pipe, struct mbuf **head, struct mbuf **tail)
{
struct mbuf *m ;
struct dn_pkt_tag *pkt ;
- struct ip *ip;
-
+ u_int64_t schedule_time;
+
lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
-
- while ( (m = pipe->head) ) {
- pkt = dn_tag_get(m);
- if ( !DN_KEY_LEQ(pkt->output_time, curr_time) )
- break;
- /*
- * first unlink, then call procedures, since ip_input() can invoke
- * ip_output() and viceversa, thus causing nested calls
- */
- pipe->head = m->m_nextpkt ;
- m->m_nextpkt = NULL;
-
- /* XXX: drop the lock for now to avoid LOR's */
- lck_mtx_unlock(dn_mutex);
- switch (pkt->dn_dir) {
- case DN_TO_IP_OUT: {
- struct route tmp_rt = pkt->ro;
- (void)ip_output(m, NULL, NULL, pkt->flags, NULL);
- if (tmp_rt.ro_rt) {
- rtfree(tmp_rt.ro_rt);
- }
- break ;
- }
- case DN_TO_IP_IN :
- ip = mtod(m, struct ip *);
- ip->ip_len = htons(ip->ip_len);
- ip->ip_off = htons(ip->ip_off);
- proto_inject(PF_INET, m);
- break ;
-
-#if BRIDGE
- case DN_TO_BDG_FWD :
- /*
- * The bridge requires/assumes the Ethernet header is
- * contiguous in the first mbuf header. Insure this is true.
- */
- if (BDG_LOADED) {
- if (m->m_len < ETHER_HDR_LEN &&
- (m = m_pullup(m, ETHER_HDR_LEN)) == NULL) {
- printf("dummynet/bridge: pullup fail, dropping pkt\n");
- break;
- }
- m = bdg_forward_ptr(m, pkt->ifp);
- } else {
- /* somebody unloaded the bridge module. Drop pkt */
- /* XXX rate limit */
- printf("dummynet: dropping bridged packet trapped in pipe\n");
- }
- if (m)
- m_freem(m);
+ ASSERT(serialize >= 0);
+ if (serialize == 0) {
+ while ((m = pipe->head) != NULL) {
+ pkt = dn_tag_get(m);
+ if (!DN_KEY_LEQ(pkt->output_time, curr_time))
break;
-#endif
- default:
- printf("dummynet: bad switch %d!\n", pkt->dn_dir);
- m_freem(m);
- break ;
+
+ pipe->head = m->m_nextpkt;
+ if (*tail != NULL)
+ (*tail)->m_nextpkt = m;
+ else
+ *head = m;
+ *tail = m;
}
- lck_mtx_lock(dn_mutex);
- }
- /* if there are leftover packets, put into the heap for next event */
- if ( (m = pipe->head) ) {
+
+ if (*tail != NULL)
+ (*tail)->m_nextpkt = NULL;
+ }
+
+ schedule_time = DN_KEY_LEQ(pkt->output_time, curr_time) ?
+ curr_time+1 : pkt->output_time;
+
+ /* if there are leftover packets, put the pipe into the heap for next ready event */
+ if ((m = pipe->head) != NULL) {
pkt = dn_tag_get(m);
/* XXX should check errors on heap_insert, by draining the
* whole pipe p and hoping in the future we are more successful
*/
- heap_insert(&extract_heap, pkt->output_time, pipe);
+ heap_insert(&extract_heap, schedule_time, pipe);
}
}
* before being able to transmit a packet. The credit is taken from
* either a pipe (WF2Q) or a flow_queue (per-flow queueing)
*/
+
+/* hz is 100, which gives a granularity of 10ms in the old timer.
+ * The timer has been changed to fire every 1ms, so the use of
+ * hz has been modified here. All instances of hz have been left
+ * in place but adjusted by a factor of 10 so that hz is functionally
+ * equal to 1000.
+ */
#define SET_TICKS(_m, q, p) \
- ((_m)->m_pkthdr.len*8*hz - (q)->numbytes + p->bandwidth - 1 ) / \
+ ((_m)->m_pkthdr.len*8*(hz*10) - (q)->numbytes + p->bandwidth - 1 ) / \
p->bandwidth ;
/*
* if there are leftover packets reinsert the pkt in the scheduler.
*/
static void
-ready_event(struct dn_flow_queue *q)
+ready_event(struct dn_flow_queue *q, struct mbuf **head, struct mbuf **tail)
{
struct mbuf *pkt;
struct dn_pipe *p = q->fs->pipe ;
lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
if (p == NULL) {
- printf("dummynet: ready_event- pipe is gone\n");
- return ;
+ printf("dummynet: ready_event pipe is gone\n");
+ return ;
}
p_was_empty = (p->head == NULL) ;
q->numbytes += ( curr_time - q->sched_time ) * p->bandwidth;
while ( (pkt = q->head) != NULL ) {
int len = pkt->m_pkthdr.len;
- int len_scaled = p->bandwidth ? len*8*hz : 0 ;
+ int len_scaled = p->bandwidth ? len*8*(hz*10) : 0 ;
if (len_scaled > q->numbytes )
break ;
q->numbytes -= len_scaled ;
* Otherwise, the scheduler will take care of it.
*/
if (p_was_empty)
- transmit_event(p);
+ transmit_event(p, head, tail);
}
/*
* there is an additional delay.
*/
static void
-ready_event_wfq(struct dn_pipe *p)
+ready_event_wfq(struct dn_pipe *p, struct mbuf **head, struct mbuf **tail)
{
int p_was_empty = (p->head == NULL) ;
struct dn_heap *sch = &(p->scheduler_heap);
struct dn_heap *neh = &(p->not_eligible_heap) ;
+ int64_t p_numbytes = p->numbytes;
lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
if (p->if_name[0] == 0) /* tx clock is simulated */
- p->numbytes += ( curr_time - p->sched_time ) * p->bandwidth;
+ p_numbytes += ( curr_time - p->sched_time ) * p->bandwidth;
else { /* tx clock is for real, the ifq must be empty or this is a NOP */
if (p->ifp && p->ifp->if_snd.ifq_head != NULL)
return ;
* While we have backlogged traffic AND credit, we need to do
* something on the queue.
*/
- while ( p->numbytes >=0 && (sch->elements>0 || neh->elements >0) ) {
+ while ( p_numbytes >=0 && (sch->elements>0 || neh->elements >0) ) {
if (sch->elements > 0) { /* have some eligible pkts to send out */
struct dn_flow_queue *q = sch->p[0].object ;
struct mbuf *pkt = q->head;
struct dn_flow_set *fs = q->fs;
u_int64_t len = pkt->m_pkthdr.len;
- int len_scaled = p->bandwidth ? len*8*hz : 0 ;
+ int len_scaled = p->bandwidth ? len*8*(hz*10) : 0 ;
heap_extract(sch, NULL); /* remove queue from heap */
- p->numbytes -= len_scaled ;
+ p_numbytes -= len_scaled ;
move_pkt(pkt, q, p, len);
p->V += (len<<MY_M) / p->sum ; /* update V */
}
if (p->if_name[0] != '\0') {/* tx clock is from a real thing */
- p->numbytes = -1 ; /* mark not ready for I/O */
+ p_numbytes = -1 ; /* mark not ready for I/O */
break ;
}
}
- if (sch->elements == 0 && neh->elements == 0 && p->numbytes >= 0
+ if (sch->elements == 0 && neh->elements == 0 && p_numbytes >= 0
&& p->idle_heap.elements > 0) {
/*
* no traffic and no events scheduled. We can get rid of idle-heap.
* If we are under credit, schedule the next ready event.
* Also fix the delivery time of the last packet.
*/
- if (p->if_name[0]==0 && p->numbytes < 0) { /* this implies bandwidth >0 */
+ if (p->if_name[0]==0 && p_numbytes < 0) { /* this implies bandwidth >0 */
dn_key t=0 ; /* number of ticks i have to wait */
if (p->bandwidth > 0)
- t = ( p->bandwidth -1 - p->numbytes) / p->bandwidth ;
+ t = ( p->bandwidth -1 - p_numbytes) / p->bandwidth ;
dn_tag_get(p->tail)->output_time += t ;
p->sched_time = curr_time ;
heap_insert(&wfq_ready_heap, curr_time + t, (void *)p);
* queue on error hoping next time we are luckier.
*/
}
+
+ /* Fit (adjust if necessary) 64bit result into 32bit variable. */
+ if (p_numbytes > INT_MAX)
+ p->numbytes = INT_MAX;
+ else if (p_numbytes < INT_MIN)
+ p->numbytes = INT_MIN;
+ else
+ p->numbytes = p_numbytes;
+
/*
* If the delay line was empty call transmit_event(p) now.
* Otherwise, the scheduler will take care of it.
*/
if (p_was_empty)
- transmit_event(p);
+ transmit_event(p, head, tail);
+
}
/*
- * This is called once per tick, or HZ times per second. It is used to
+ * This is called every 1ms. It is used to
* increment the current tick counter and schedule expired events.
*/
static void
-dummynet(void * __unused unused)
+dummynet(__unused void * unused)
{
void *p ; /* generic parameter to handler */
struct dn_heap *h ;
struct dn_heap *heaps[3];
+ struct mbuf *head = NULL, *tail = NULL;
int i;
struct dn_pipe *pe ;
+ struct timespec ts;
+ struct timeval tv;
heaps[0] = &ready_heap ; /* fixed-rate queues */
heaps[1] = &wfq_ready_heap ; /* wfq queues */
heaps[2] = &extract_heap ; /* delay line */
-
+
lck_mtx_lock(dn_mutex);
- curr_time++ ;
+ /* make all time measurements in milliseconds (ms) -
+ * here we convert secs and usecs to msecs (just divide the
+ * usecs and take the closest whole number).
+ */
+ microuptime(&tv);
+ curr_time = (tv.tv_sec * 1000) + (tv.tv_usec / 1000);
+
for (i=0; i < 3 ; i++) {
h = heaps[i];
while (h->elements > 0 && DN_KEY_LEQ(h->p[0].key, curr_time) ) {
- if (h->p[0].key > curr_time)
- printf("dummynet: warning, heap %d is %d ticks late\n",
- i, (int)(curr_time - h->p[0].key));
- p = h->p[0].object ; /* store a copy before heap_extract */
- heap_extract(h, NULL); /* need to extract before processing */
- if (i == 0)
- ready_event(p) ;
- else if (i == 1) {
- struct dn_pipe *pipe = p;
- if (pipe->if_name[0] != '\0')
- printf("dummynet: bad ready_event_wfq for pipe %s\n",
- pipe->if_name);
- else
- ready_event_wfq(p) ;
- } else
- transmit_event(p);
+ if (h->p[0].key > curr_time)
+ printf("dummynet: warning, heap %d is %d ticks late\n",
+ i, (int)(curr_time - h->p[0].key));
+ p = h->p[0].object ; /* store a copy before heap_extract */
+ heap_extract(h, NULL); /* need to extract before processing */
+ if (i == 0)
+ ready_event(p, &head, &tail) ;
+ else if (i == 1) {
+ struct dn_pipe *pipe = p;
+ if (pipe->if_name[0] != '\0')
+ printf("dummynet: bad ready_event_wfq for pipe %s\n",
+ pipe->if_name);
+ else
+ ready_event_wfq(p, &head, &tail) ;
+ } else {
+ transmit_event(p, &head, &tail);
+ }
}
}
/* sweep pipes trying to expire idle flow_queues */
- for (pe = all_pipes; pe ; pe = pe->next )
+ for (i = 0; i < HASHSIZE; i++)
+ SLIST_FOREACH(pe, &pipehash[i], next)
if (pe->idle_heap.elements > 0 &&
DN_KEY_LT(pe->idle_heap.p[0].key, pe->V) ) {
struct dn_flow_queue *q = pe->idle_heap.p[0].object ;
pe->sum -= q->fs->weight ;
}
+ /* check the heaps to see if there's still stuff in there, and
+ * only set the timer if there are packets to process
+ */
+ timer_enabled = 0;
+ for (i=0; i < 3 ; i++) {
+ h = heaps[i];
+ if (h->elements > 0) { // set the timer
+ ts.tv_sec = 0;
+ ts.tv_nsec = 1 * 1000000; // 1ms
+ timer_enabled = 1;
+ bsd_timeout(dummynet, NULL, &ts);
+ break;
+ }
+ }
+
+ if (head != NULL)
+ serialize++;
+
lck_mtx_unlock(dn_mutex);
+
+ /* Send out the de-queued list of ready-to-send packets */
+ if (head != NULL) {
+ dummynet_send(head);
+ lck_mtx_lock(dn_mutex);
+ serialize--;
+ lck_mtx_unlock(dn_mutex);
+ }
+}
+
+
+static void
+dummynet_send(struct mbuf *m)
+{
+ struct dn_pkt_tag *pkt;
+ struct mbuf *n;
+
+ for (; m != NULL; m = n) {
+ n = m->m_nextpkt;
+ m->m_nextpkt = NULL;
+ pkt = dn_tag_get(m);
+
+ switch (pkt->dn_dir) {
+ case DN_TO_IP_OUT: {
+ struct route tmp_rt = pkt->ro;
+ (void)ip_output(m, NULL, &tmp_rt, pkt->flags, NULL, NULL);
+ if (tmp_rt.ro_rt) {
+ rtfree(tmp_rt.ro_rt);
+ tmp_rt.ro_rt = NULL;
+ }
+ break ;
+ }
+ case DN_TO_IP_IN :
+ proto_inject(PF_INET, m);
+ break ;
- timeout(dummynet, NULL, 1);
+ default:
+ printf("dummynet: bad switch %d!\n", pkt->dn_dir);
+ m_freem(m);
+ break ;
+ }
+ }
}
+
+
/*
* called by an interface when tx_rdy occurs.
if_tx_rdy(struct ifnet *ifp)
{
struct dn_pipe *p;
-
+ struct mbuf *head = NULL, *tail = NULL;
+ int i;
+
lck_mtx_lock(dn_mutex);
- for (p = all_pipes; p ; p = p->next )
- if (p->ifp == ifp)
- break ;
+
+ for (i = 0; i < HASHSIZE; i++)
+ SLIST_FOREACH(p, &pipehash[i], next)
+ if (p->ifp == ifp)
+ break ;
if (p == NULL) {
char buf[32];
- sprintf(buf, "%s%d",ifp->if_name, ifp->if_unit);
- for (p = all_pipes; p ; p = p->next )
+ snprintf(buf, sizeof(buf), "%s%d",ifp->if_name, ifp->if_unit);
+ for (i = 0; i < HASHSIZE; i++)
+ SLIST_FOREACH(p, &pipehash[i], next)
if (!strcmp(p->if_name, buf) ) {
p->ifp = ifp ;
DPRINTF(("dummynet: ++ tx rdy from %s (now found)\n", buf));
DPRINTF(("dummynet: ++ tx rdy from %s%d - qlen %d\n", ifp->if_name,
ifp->if_unit, ifp->if_snd.ifq_len));
p->numbytes = 0 ; /* mark ready for I/O */
- ready_event_wfq(p);
+ ready_event_wfq(p, &head, &tail);
}
- lck_mtx_lock(dn_mutex);
+
+ if (head != NULL) {
+ serialize++;
+ }
+
+ lck_mtx_unlock(dn_mutex);
+
+ /* Send out the de-queued list of ready-to-send packets */
+ if (head != NULL) {
+ dummynet_send(head);
+ serialize--;
+ }
return 0;
}
int i, initial_elements = fs->rq_elements ;
struct timeval timenow;
+ /* reviewed for getmicrotime usage */
getmicrotime(&timenow);
if (fs->last_expired == timenow.tv_sec)
if (fs->flags_fs & DN_QSIZE_IS_BYTES)
p_b = (p_b * len) / fs->max_pkt_size;
if (++q->count == 0)
- q->random = random() & 0xffff;
+ q->random = MY_RANDOM & 0xffff;
else {
/*
* q->count counts packets arrived since last drop, so a greater
q->count = 0;
DPRINTF(("dummynet: - red drop"));
/* after a drop we calculate a new random value */
- q->random = random() & 0xffff;
+ q->random = MY_RANDOM & 0xffff;
return 1; /* drop */
}
}
static __inline
struct dn_flow_set *
-locate_flowset(int pipe_nr, struct ip_fw *rule)
+locate_flowset(int fs_nr)
{
struct dn_flow_set *fs;
- ipfw_insn *cmd = rule->cmd + rule->act_ofs;
+ SLIST_FOREACH(fs, &flowsethash[HASH(fs_nr)], next)
+ if (fs->fs_nr == fs_nr)
+ return fs ;
+
+ return (NULL);
+}
- if (cmd->opcode == O_LOG)
- cmd += F_LEN(cmd);
+static __inline struct dn_pipe *
+locate_pipe(int pipe_nr)
+{
+ struct dn_pipe *pipe;
- bcopy(& ((ipfw_insn_pipe *)cmd)->pipe_ptr, &fs, sizeof(fs));
+ SLIST_FOREACH(pipe, &pipehash[HASH(pipe_nr)], next)
+ if (pipe->pipe_nr == pipe_nr)
+ return (pipe);
- if (fs != NULL)
- return fs;
+ return (NULL);
+}
- if (cmd->opcode == O_QUEUE) {
- for (fs=all_flow_sets; fs && fs->fs_nr != pipe_nr; fs=fs->next)
- ;
- }
- else {
- struct dn_pipe *p1;
- for (p1 = all_pipes; p1 && p1->pipe_nr != pipe_nr; p1 = p1->next)
- ;
- if (p1 != NULL)
- fs = &(p1->fs) ;
- }
- /* record for the future */
- bcopy(&fs, & ((ipfw_insn_pipe *)cmd)->pipe_ptr, sizeof(fs));
- return fs ;
-}
/*
* dummynet hook for packets. Below 'pipe' is a pipe or a queue
static int
dummynet_io(struct mbuf *m, int pipe_nr, int dir, struct ip_fw_args *fwa)
{
+ struct mbuf *head = NULL, *tail = NULL;
struct dn_pkt_tag *pkt;
struct m_tag *mtag;
- struct dn_flow_set *fs;
+ struct dn_flow_set *fs = NULL;
struct dn_pipe *pipe ;
u_int64_t len = m->m_pkthdr.len ;
struct dn_flow_queue *q = NULL ;
int is_pipe;
+ struct timespec ts;
+ struct timeval tv;
#if IPFW2
ipfw_insn *cmd = fwa->rule->cmd + fwa->rule->act_ofs;
pipe_nr &= 0xffff ;
lck_mtx_lock(dn_mutex);
+
+ /* make all time measurements in milliseconds (ms) -
+ * here we convert secs and usecs to msecs (just divide the
+ * usecs and take the closest whole number).
+ */
+ microuptime(&tv);
+ curr_time = (tv.tv_sec * 1000) + (tv.tv_usec / 1000);
/*
* This is a dummynet rule, so we expect an O_PIPE or O_QUEUE rule.
*/
- fs = locate_flowset(pipe_nr, fwa->rule);
- if (fs == NULL)
+ if (is_pipe) {
+ pipe = locate_pipe(pipe_nr);
+ if (pipe != NULL)
+ fs = &(pipe->fs);
+ } else
+ fs = locate_flowset(pipe_nr);
+
+
+ if (fs == NULL){
goto dropit ; /* this queue/pipe does not exist! */
+ }
pipe = fs->pipe ;
if (pipe == NULL) { /* must be a queue, try find a matching pipe */
- for (pipe = all_pipes; pipe && pipe->pipe_nr != fs->parent_nr;
- pipe = pipe->next)
- ;
+ pipe = locate_pipe(fs->parent_nr);
+
if (pipe != NULL)
fs->pipe = pipe ;
else {
*/
q->tot_bytes += len ;
q->tot_pkts++ ;
- if ( fs->plr && random() < fs->plr )
+ if ( fs->plr && (MY_RANDOM < fs->plr) )
goto dropit ; /* random pkt drop */
if ( fs->flags_fs & DN_QSIZE_IS_BYTES) {
if (q->len_bytes > fs->qsize)
goto dropit ;
/* XXX expensive to zero, see if we can remove it*/
- mtag = m_tag_alloc(KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_DUMMYNET,
- sizeof(struct dn_pkt_tag), M_NOWAIT|M_ZERO);
+ mtag = m_tag_create(KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_DUMMYNET,
+ sizeof(struct dn_pkt_tag), M_NOWAIT, m);
if ( mtag == NULL )
goto dropit ; /* cannot allocate packet header */
m_tag_prepend(m, mtag); /* attach to mbuf chain */
pkt = (struct dn_pkt_tag *)(mtag+1);
+ bzero(pkt, sizeof(struct dn_pkt_tag));
/* ok, i can handle the pkt now... */
/* build and enqueue packet + parameters */
pkt->rule = fwa->rule ;
* the caller passed a pointer into the stack; dst might also be
* a pointer into *ro so it needs to be updated.
*/
- lck_mtx_lock(rt_mtx);
pkt->ro = *(fwa->ro);
if (fwa->ro->ro_rt)
- fwa->ro->ro_rt->rt_refcnt++ ;
+ RT_ADDREF(fwa->ro->ro_rt);
+
if (fwa->dst == (struct sockaddr_in *)&fwa->ro->ro_dst) /* dst points into ro */
fwa->dst = (struct sockaddr_in *)&(pkt->ro.ro_dst) ;
- lck_mtx_unlock(rt_mtx);
-
- pkt->dn_dst = fwa->dst;
+
+ bcopy (fwa->dst, &pkt->dn_dst, sizeof(pkt->dn_dst));
pkt->flags = fwa->flags;
+ if (fwa->ipoa != NULL)
+ pkt->ipoa = *(fwa->ipoa);
}
if (q->head == NULL)
q->head = m;
if (pipe->bandwidth)
t = SET_TICKS(m, q, pipe);
q->sched_time = curr_time ;
- if (t == 0) /* must process it now */
- ready_event( q );
+ if (t == 0) /* must process it now */
+ ready_event( q , &head, &tail );
else
heap_insert(&ready_heap, curr_time + t , q );
} else {
DPRINTF(("dummynet: waking up pipe %d at %d\n",
pipe->pipe_nr, (int)(q->F >> MY_M)));
pipe->sched_time = curr_time ;
- ready_event_wfq(pipe);
+ ready_event_wfq(pipe, &head, &tail);
}
}
}
done:
+ /* start the timer and set global if not already set */
+ if (!timer_enabled) {
+ ts.tv_sec = 0;
+ ts.tv_nsec = 1 * 1000000; // 1ms
+ timer_enabled = 1;
+ bsd_timeout(dummynet, NULL, &ts);
+ }
+
lck_mtx_unlock(dn_mutex);
+
+ if (head != NULL)
+ dummynet_send(head);
+
return 0;
dropit:
* Below, the rtfree is only needed when (pkt->dn_dir == DN_TO_IP_OUT)
* Doing this would probably save us the initial bzero of dn_pkt
*/
-#define DN_FREE_PKT(_m) do { \
+#define DN_FREE_PKT(_m) do { \
struct m_tag *tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_DUMMYNET, NULL); \
- if (tag) { \
+ if (tag) { \
struct dn_pkt_tag *n = (struct dn_pkt_tag *)(tag+1); \
- if (n->ro.ro_rt) \
- rtfree(n->ro.ro_rt); \
- } \
- m_tag_delete(_m, tag); \
- m_freem(_m); \
+ if (n->ro.ro_rt != NULL) { \
+ rtfree(n->ro.ro_rt); \
+ n->ro.ro_rt = NULL; \
+ } \
+ } \
+ m_tag_delete(_m, tag); \
+ m_freem(_m); \
} while (0)
/*
* remove references from all ipfw rules to all pipes.
*/
static void
-dummynet_flush()
+dummynet_flush(void)
{
- struct dn_pipe *curr_p, *p ;
- struct dn_flow_set *fs, *curr_fs;
+ struct dn_pipe *pipe, *pipe1;
+ struct dn_flow_set *fs, *fs1;
+ int i;
lck_mtx_lock(dn_mutex);
/* remove all references to pipes ...*/
flush_pipe_ptrs(NULL);
- /* prevent future matches... */
- p = all_pipes ;
- all_pipes = NULL ;
- fs = all_flow_sets ;
- all_flow_sets = NULL ;
- /* and free heaps so we don't have unwanted events */
- heap_free(&ready_heap);
- heap_free(&wfq_ready_heap);
- heap_free(&extract_heap);
+
+ /* Free heaps so we don't have unwanted events. */
+ heap_free(&ready_heap);
+ heap_free(&wfq_ready_heap);
+ heap_free(&extract_heap);
- /*
- * Now purge all queued pkts and delete all pipes
- */
- /* scan and purge all flow_sets. */
- for ( ; fs ; ) {
- curr_fs = fs ;
- fs = fs->next ;
- purge_flow_set(curr_fs, 1);
- }
- for ( ; p ; ) {
- purge_pipe(p);
- curr_p = p ;
- p = p->next ;
- FREE(curr_p, M_DUMMYNET);
- }
+ /*
+ * Now purge all queued pkts and delete all pipes.
+ *
+ * XXXGL: can we merge the for(;;) cycles into one or not?
+ */
+ for (i = 0; i < HASHSIZE; i++)
+ SLIST_FOREACH_SAFE(fs, &flowsethash[i], next, fs1) {
+ SLIST_REMOVE(&flowsethash[i], fs, dn_flow_set, next);
+ purge_flow_set(fs, 1);
+ }
+ for (i = 0; i < HASHSIZE; i++)
+ SLIST_FOREACH_SAFE(pipe, &pipehash[i], next, pipe1) {
+ SLIST_REMOVE(&pipehash[i], pipe, dn_pipe, next);
+ purge_pipe(pipe);
+ FREE(pipe, M_DUMMYNET);
+ }
lck_mtx_unlock(dn_mutex);
}
struct dn_flow_set *fs ;
struct dn_pkt_tag *pkt ;
struct mbuf *m ;
+ int i;
lck_mtx_lock(dn_mutex);
* the flow set, otherwise scan pipes. Should do either, but doing
* both does not harm.
*/
- for ( fs = all_flow_sets ; fs ; fs = fs->next )
- dn_rule_delete_fs(fs, r);
- for ( p = all_pipes ; p ; p = p->next ) {
- fs = &(p->fs) ;
- dn_rule_delete_fs(fs, r);
- for (m = p->head ; m ; m = m->m_nextpkt ) {
- pkt = dn_tag_get(m) ;
- if (pkt->rule == r)
- pkt->rule = ip_fw_default_rule ;
+ for (i = 0; i < HASHSIZE; i++)
+ SLIST_FOREACH(fs, &flowsethash[i], next)
+ dn_rule_delete_fs(fs, r);
+
+ for (i = 0; i < HASHSIZE; i++)
+ SLIST_FOREACH(p, &pipehash[i], next) {
+ fs = &(p->fs);
+ dn_rule_delete_fs(fs, r);
+ for (m = p->head ; m ; m = m->m_nextpkt ) {
+ pkt = dn_tag_get(m);
+ if (pkt->rule == r)
+ pkt->rule = ip_fw_default_rule;
+ }
}
- }
- lck_mtx_unlock(dn_mutex);
+ lck_mtx_unlock(dn_mutex);
}
/*
x->qsize = 1024*1024 ;
} else {
if (x->qsize == 0)
- x->qsize = 50 ;
+ x->qsize = 50;
if (x->qsize > 100)
- x->qsize = 50 ;
+ x->qsize = 50;
}
/* configuring RED */
if ( x->flags_fs & DN_IS_RED )
* delay = ms, must be translated into ticks.
* qsize = slots/bytes
*/
- p->delay = ( p->delay * hz ) / 1000 ;
+ p->delay = ( p->delay * (hz*10) ) / 1000 ;
/* We need either a pipe number or a flow_set number */
if (p->pipe_nr == 0 && pfs->fs_nr == 0)
return EINVAL ;
if (p->pipe_nr != 0 && pfs->fs_nr != 0)
return EINVAL ;
if (p->pipe_nr != 0) { /* this is a pipe */
- struct dn_pipe *x, *a, *b;
+ struct dn_pipe *x, *b;
lck_mtx_lock(dn_mutex);
-/* locate pipe */
- for (a = NULL , b = all_pipes ; b && b->pipe_nr < p->pipe_nr ;
- a = b , b = b->next) ;
+ /* locate pipe */
+ b = locate_pipe(p->pipe_nr);
+
if (b == NULL || b->pipe_nr != p->pipe_nr) { /* new pipe */
x = _MALLOC(sizeof(struct dn_pipe), M_DUMMYNET, M_DONTWAIT | M_ZERO) ;
if (x == NULL) {
/* idle_heap is the only one from which we extract from the middle.
*/
x->idle_heap.size = x->idle_heap.elements = 0 ;
- x->idle_heap.offset=OFFSET_OF(struct dn_flow_queue, heap_pos);
+ x->idle_heap.offset=offsetof(struct dn_flow_queue, heap_pos);
} else {
x = b;
/* Flush accumulated credit for all queues */
FREE(x, M_DUMMYNET);
return r ;
}
- x->next = b ;
- if (a == NULL)
- all_pipes = x ;
- else
- a->next = x ;
+ SLIST_INSERT_HEAD(&pipehash[HASH(x->pipe_nr)],
+ x, next);
}
lck_mtx_unlock(dn_mutex);
} else { /* config queue */
- struct dn_flow_set *x, *a, *b ;
+ struct dn_flow_set *x, *b ;
lck_mtx_lock(dn_mutex);
/* locate flow_set */
- for (a=NULL, b=all_flow_sets ; b && b->fs_nr < pfs->fs_nr ;
- a = b , b = b->next) ;
+ b = locate_flowset(pfs->fs_nr);
if (b == NULL || b->fs_nr != pfs->fs_nr) { /* new */
if (pfs->parent_nr == 0) { /* need link to a pipe */
FREE(x, M_DUMMYNET);
return r ;
}
- x->next = b;
- if (a == NULL)
- all_flow_sets = x;
- else
- a->next = x;
+ SLIST_INSERT_HEAD(&flowsethash[HASH(x->fs_nr)],
+ x, next);
}
lck_mtx_unlock(dn_mutex);
}
* drain all queues. Called in case of severe mbuf shortage.
*/
void
-dummynet_drain()
+dummynet_drain(void)
{
struct dn_flow_set *fs;
struct dn_pipe *p;
struct mbuf *m, *mnext;
+ int i;
lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
heap_free(&wfq_ready_heap);
heap_free(&extract_heap);
/* remove all references to this pipe from flow_sets */
- for (fs = all_flow_sets; fs; fs= fs->next )
- purge_flow_set(fs, 0);
+ for (i = 0; i < HASHSIZE; i++)
+ SLIST_FOREACH(fs, &flowsethash[i], next)
+ purge_flow_set(fs, 0);
- for (p = all_pipes; p; p= p->next ) {
- purge_flow_set(&(p->fs), 0);
+ for (i = 0; i < HASHSIZE; i++)
+ SLIST_FOREACH(p, &pipehash[i], next) {
+ purge_flow_set(&(p->fs), 0);
mnext = p->head;
while ((m = mnext) != NULL) {
if (p->pipe_nr != 0 && p->fs.fs_nr != 0)
return EINVAL ;
if (p->pipe_nr != 0) { /* this is an old-style pipe */
- struct dn_pipe *a, *b;
+ struct dn_pipe *b;
struct dn_flow_set *fs;
+ int i;
lck_mtx_lock(dn_mutex);
/* locate pipe */
- for (a = NULL , b = all_pipes ; b && b->pipe_nr < p->pipe_nr ;
- a = b , b = b->next) ;
- if (b == NULL || (b->pipe_nr != p->pipe_nr) ) {
+ b = locate_pipe(p->pipe_nr);
+ if(b == NULL){
lck_mtx_unlock(dn_mutex);
return EINVAL ; /* not found */
}
- /* unlink from list of pipes */
- if (a == NULL)
- all_pipes = b->next ;
- else
- a->next = b->next ;
+ /* Unlink from list of pipes. */
+ SLIST_REMOVE(&pipehash[HASH(b->pipe_nr)], b, dn_pipe, next);
+
/* remove references to this pipe from the ip_fw rules. */
flush_pipe_ptrs(&(b->fs));
- /* remove all references to this pipe from flow_sets */
- for (fs = all_flow_sets; fs; fs= fs->next )
- if (fs->pipe == b) {
- printf("dummynet: ++ ref to pipe %d from fs %d\n",
- p->pipe_nr, fs->fs_nr);
- fs->pipe = NULL ;
- purge_flow_set(fs, 0);
- }
+ /* Remove all references to this pipe from flow_sets. */
+ for (i = 0; i < HASHSIZE; i++)
+ SLIST_FOREACH(fs, &flowsethash[i], next)
+ if (fs->pipe == b) {
+ printf("dummynet: ++ ref to pipe %d from fs %d\n",
+ p->pipe_nr, fs->fs_nr);
+ fs->pipe = NULL ;
+ purge_flow_set(fs, 0);
+ }
fs_remove_from_heap(&ready_heap, &(b->fs));
+
purge_pipe(b); /* remove all data associated to this pipe */
/* remove reference to here from extract_heap and wfq_ready_heap */
pipe_remove_from_heap(&extract_heap, b);
FREE(b, M_DUMMYNET);
} else { /* this is a WF2Q queue (dn_flow_set) */
- struct dn_flow_set *a, *b;
+ struct dn_flow_set *b;
lck_mtx_lock(dn_mutex);
/* locate set */
- for (a = NULL, b = all_flow_sets ; b && b->fs_nr < p->fs.fs_nr ;
- a = b , b = b->next) ;
- if (b == NULL || (b->fs_nr != p->fs.fs_nr) ) {
+ b = locate_flowset(p->fs.fs_nr);
+ if (b == NULL) {
lck_mtx_unlock(dn_mutex);
return EINVAL ; /* not found */
}
- if (a == NULL)
- all_flow_sets = b->next ;
- else
- a->next = b->next ;
/* remove references to this flow_set from the ip_fw rules. */
flush_pipe_ptrs(b);
+ /* Unlink from list of flowsets. */
+ SLIST_REMOVE( &flowsethash[HASH(b->fs_nr)], b, dn_flow_set, next);
+
if (b->pipe != NULL) {
/* Update total weight on parent pipe and cleanup parent heaps */
b->pipe->sum -= b->weight * b->backlogged ;
/*
* helper function used to copy data from kernel in DUMMYNET_GET
*/
-static char *
-dn_copy_set(struct dn_flow_set *set, char *bp)
+static
+char* dn_copy_set_32(struct dn_flow_set *set, char *bp)
{
int i, copied = 0 ;
- struct dn_flow_queue *q, *qp = (struct dn_flow_queue *)bp;
-
+ struct dn_flow_queue *q;
+ struct dn_flow_queue_32 *qp = (struct dn_flow_queue_32 *)bp;
+
lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
+
+ for (i = 0 ; i <= set->rq_size ; i++)
+ for (q = set->rq[i] ; q ; q = q->next, qp++ ) {
+ if (q->hash_slot != i)
+ printf("dummynet: ++ at %d: wrong slot (have %d, "
+ "should be %d)\n", copied, q->hash_slot, i);
+ if (q->fs != set)
+ printf("dummynet: ++ at %d: wrong fs ptr (have %p, should be %p)\n",
+ i, q->fs, set);
+ copied++ ;
+ cp_queue_to_32_user( q, qp );
+ /* cleanup pointers */
+ qp->next = (user32_addr_t)0 ;
+ qp->head = qp->tail = (user32_addr_t)0 ;
+ qp->fs = (user32_addr_t)0 ;
+ }
+ if (copied != set->rq_elements)
+ printf("dummynet: ++ wrong count, have %d should be %d\n",
+ copied, set->rq_elements);
+ return (char *)qp ;
+}
+static
+char* dn_copy_set_64(struct dn_flow_set *set, char *bp)
+{
+ int i, copied = 0 ;
+ struct dn_flow_queue *q;
+ struct dn_flow_queue_64 *qp = (struct dn_flow_queue_64 *)bp;
+
+ lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
+
for (i = 0 ; i <= set->rq_size ; i++)
- for (q = set->rq[i] ; q ; q = q->next, qp++ ) {
- if (q->hash_slot != i)
- printf("dummynet: ++ at %d: wrong slot (have %d, "
- "should be %d)\n", copied, q->hash_slot, i);
- if (q->fs != set)
- printf("dummynet: ++ at %d: wrong fs ptr (have %p, should be %p)\n",
- i, q->fs, set);
- copied++ ;
- bcopy(q, qp, sizeof( *q ) );
- /* cleanup pointers */
- qp->next = NULL ;
- qp->head = qp->tail = NULL ;
- qp->fs = NULL ;
- }
+ for (q = set->rq[i] ; q ; q = q->next, qp++ ) {
+ if (q->hash_slot != i)
+ printf("dummynet: ++ at %d: wrong slot (have %d, "
+ "should be %d)\n", copied, q->hash_slot, i);
+ if (q->fs != set)
+ printf("dummynet: ++ at %d: wrong fs ptr (have %p, should be %p)\n",
+ i, q->fs, set);
+ copied++ ;
+ //bcopy(q, qp, sizeof(*q));
+ cp_queue_to_64_user( q, qp );
+ /* cleanup pointers */
+ qp->next = USER_ADDR_NULL ;
+ qp->head = qp->tail = USER_ADDR_NULL ;
+ qp->fs = USER_ADDR_NULL ;
+ }
if (copied != set->rq_elements)
- printf("dummynet: ++ wrong count, have %d should be %d\n",
- copied, set->rq_elements);
+ printf("dummynet: ++ wrong count, have %d should be %d\n",
+ copied, set->rq_elements);
return (char *)qp ;
}
static size_t
-dn_calc_size(void)
+dn_calc_size(int is64user)
{
struct dn_flow_set *set ;
struct dn_pipe *p ;
- size_t size ;
+ size_t size = 0 ;
+ size_t pipesize;
+ size_t queuesize;
+ size_t setsize;
+ int i;
lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
-
+ if ( is64user ){
+ pipesize = sizeof(struct dn_pipe_64);
+ queuesize = sizeof(struct dn_flow_queue_64);
+ setsize = sizeof(struct dn_flow_set_64);
+ }
+ else {
+ pipesize = sizeof(struct dn_pipe_32);
+ queuesize = sizeof( struct dn_flow_queue_32 );
+ setsize = sizeof(struct dn_flow_set_32);
+ }
/*
* compute size of data structures: list of pipes and flow_sets.
*/
- for (p = all_pipes, size = 0 ; p ; p = p->next )
- size += sizeof( *p ) +
- p->fs.rq_elements * sizeof(struct dn_flow_queue);
- for (set = all_flow_sets ; set ; set = set->next )
- size += sizeof ( *set ) +
- set->rq_elements * sizeof(struct dn_flow_queue);
- return size ;
+ for (i = 0; i < HASHSIZE; i++) {
+ SLIST_FOREACH(p, &pipehash[i], next)
+ size += sizeof(*p) +
+ p->fs.rq_elements * sizeof(struct dn_flow_queue);
+ SLIST_FOREACH(set, &flowsethash[i], next)
+ size += sizeof (*set) +
+ set->rq_elements * sizeof(struct dn_flow_queue);
+ }
+ return size;
}
static int
dummynet_get(struct sockopt *sopt)
{
- char *buf, *bp ; /* bp is the "copy-pointer" */
+ char *buf, *bp=NULL; /* bp is the "copy-pointer" */
size_t size ;
struct dn_flow_set *set ;
struct dn_pipe *p ;
int error=0, i ;
+ int is64user = 0;
/* XXX lock held too long */
lck_mtx_lock(dn_mutex);
* XXX: Ugly, but we need to allocate memory with M_WAITOK flag and we
* cannot use this flag while holding a mutex.
*/
+ if (proc_is64bit(sopt->sopt_p))
+ is64user = 1;
for (i = 0; i < 10; i++) {
- size = dn_calc_size();
+ size = dn_calc_size(is64user);
lck_mtx_unlock(dn_mutex);
buf = _MALLOC(size, M_TEMP, M_WAITOK);
+ if (buf == NULL)
+ return ENOBUFS;
lck_mtx_lock(dn_mutex);
- if (size == dn_calc_size())
+ if (size == dn_calc_size(is64user))
break;
FREE(buf, M_TEMP);
buf = NULL;
lck_mtx_unlock(dn_mutex);
return ENOBUFS ;
}
- for (p = all_pipes, bp = buf ; p ; p = p->next ) {
- struct dn_pipe *pipe_bp = (struct dn_pipe *)bp ;
- /*
- * copy pipe descriptor into *bp, convert delay back to ms,
- * then copy the flow_set descriptor(s) one at a time.
- * After each flow_set, copy the queue descriptor it owns.
- */
- bcopy(p, bp, sizeof( *p ) );
- pipe_bp->delay = (pipe_bp->delay * 1000) / hz ;
- /*
- * XXX the following is a hack based on ->next being the
- * first field in dn_pipe and dn_flow_set. The correct
- * solution would be to move the dn_flow_set to the beginning
- * of struct dn_pipe.
- */
- pipe_bp->next = (struct dn_pipe *)DN_IS_PIPE ;
- /* clean pointers */
- pipe_bp->head = pipe_bp->tail = NULL ;
- pipe_bp->fs.next = NULL ;
- pipe_bp->fs.pipe = NULL ;
- pipe_bp->fs.rq = NULL ;
- bp += sizeof( *p ) ;
- bp = dn_copy_set( &(p->fs), bp );
+ bp = buf;
+ for (i = 0; i < HASHSIZE; i++)
+ SLIST_FOREACH(p, &pipehash[i], next) {
+ /*
+ * copy pipe descriptor into *bp, convert delay back to ms,
+ * then copy the flow_set descriptor(s) one at a time.
+ * After each flow_set, copy the queue descriptor it owns.
+ */
+ if ( is64user ){
+ bp = cp_pipe_to_64_user(p, (struct dn_pipe_64 *)bp);
+ }
+ else{
+ bp = cp_pipe_to_32_user(p, (struct dn_pipe_32 *)bp);
+ }
}
- for (set = all_flow_sets ; set ; set = set->next ) {
- struct dn_flow_set *fs_bp = (struct dn_flow_set *)bp ;
- bcopy(set, bp, sizeof( *set ) );
- /* XXX same hack as above */
- fs_bp->next = (struct dn_flow_set *)DN_IS_QUEUE ;
- fs_bp->pipe = NULL ;
- fs_bp->rq = NULL ;
- bp += sizeof( *set ) ;
- bp = dn_copy_set( set, bp );
+ for (i = 0; i < HASHSIZE; i++)
+ SLIST_FOREACH(set, &flowsethash[i], next) {
+ struct dn_flow_set_64 *fs_bp = (struct dn_flow_set_64 *)bp ;
+ cp_flow_set_to_64_user(set, fs_bp);
+ /* XXX same hack as above */
+ fs_bp->next = CAST_DOWN(user64_addr_t, DN_IS_QUEUE);
+ fs_bp->pipe = USER_ADDR_NULL;
+ fs_bp->rq = USER_ADDR_NULL ;
+ bp += sizeof(struct dn_flow_set_64);
+ bp = dn_copy_set_64( set, bp );
}
lck_mtx_unlock(dn_mutex);
case IP_DUMMYNET_CONFIGURE :
p = &tmp_pipe ;
- error = sooptcopyin(sopt, p, sizeof *p, sizeof *p);
+ if (proc_is64bit(sopt->sopt_p))
+ error = cp_pipe_from_user_64( sopt, p );
+ else
+ error = cp_pipe_from_user_32( sopt, p );
+
if (error)
break ;
error = config_pipe(p);
case IP_DUMMYNET_DEL : /* remove a pipe or queue */
p = &tmp_pipe ;
- error = sooptcopyin(sopt, p, sizeof *p, sizeof *p);
+ if (proc_is64bit(sopt->sopt_p))
+ error = cp_pipe_from_user_64( sopt, p );
+ else
+ error = cp_pipe_from_user_32( sopt, p );
if (error)
break ;
dn_mutex_grp_attr = lck_grp_attr_alloc_init();
dn_mutex_grp = lck_grp_alloc_init("dn", dn_mutex_grp_attr);
dn_mutex_attr = lck_attr_alloc_init();
- lck_attr_setdefault(dn_mutex_attr);
if ((dn_mutex = lck_mtx_alloc_init(dn_mutex_grp, dn_mutex_attr)) == NULL) {
printf("ip_dn_init: can't alloc dn_mutex\n");
return;
}
- all_pipes = NULL ;
- all_flow_sets = NULL ;
- ready_heap.size = ready_heap.elements = 0 ;
+ ready_heap.size = ready_heap.elements = 0 ;
ready_heap.offset = 0 ;
wfq_ready_heap.size = wfq_ready_heap.elements = 0 ;
ip_dn_ctl_ptr = ip_dn_ctl;
ip_dn_io_ptr = dummynet_io;
ip_dn_ruledel_ptr = dn_rule_delete;
-
- timeout(dummynet, NULL, 1);
}