/*
- * Copyright (c) 2000-2005 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2000-2007 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
#include <i386/machine_cpu.h>
#include <i386/misc_protos.h>
#include <i386/mtrr.h>
+#include <i386/vmx/vmx_cpu.h>
#include <i386/postcode.h>
#include <i386/perfmon.h>
#include <i386/cpu_threads.h>
#include <i386/machine_routines.h>
#include <i386/pmCPU.h>
#include <i386/hpet.h>
+#include <i386/machine_check.h>
#include <chud/chud_xnu.h>
#include <chud/chud_xnu_private.h>
volatile long mp_kdb_ncpus = 0;
#endif
-static void mp_kdp_wait(void);
+static void mp_kdp_wait(boolean_t flush);
static void mp_rendezvous_action(void);
+static void mp_broadcast_action(void);
-static int NMIInterruptHandler(void *regs);
+static int NMIInterruptHandler(x86_saved_state_t *regs);
static boolean_t cpu_signal_pending(int cpu, mp_event_t event);
-static void cpu_NMI_interrupt(int cpu);
+static void cpu_NMI_interrupt(int cpu);
boolean_t smp_initialized = FALSE;
+boolean_t force_immediate_debugger_NMI = FALSE;
decl_simple_lock_data(,mp_kdp_lock);
decl_mutex_data(static, mp_cpu_boot_lock);
/* Variables needed for MP rendezvous. */
+decl_simple_lock_data(,mp_rv_lock);
static void (*mp_rv_setup_func)(void *arg);
static void (*mp_rv_action_func)(void *arg);
static void (*mp_rv_teardown_func)(void *arg);
static void *mp_rv_func_arg;
static int mp_rv_ncpus;
-static volatile long mp_rv_waiters[2];
-decl_simple_lock_data(,mp_rv_lock);
+ /* Cache-aligned barriers: */
+static volatile long mp_rv_entry __attribute__((aligned(64)));
+static volatile long mp_rv_exit __attribute__((aligned(64)));
+static volatile long mp_rv_complete __attribute__((aligned(64)));
+
+/* Variables needed for MP broadcast. */
+static void (*mp_bc_action_func)(void *arg);
+static void *mp_bc_func_arg;
+static int mp_bc_ncpus;
+static volatile long mp_bc_count;
+decl_mutex_data(static, mp_bc_lock);
+
+static void mp_cpus_call_action(void);
int lapic_to_cpu[MAX_CPUS];
int cpu_to_lapic[MAX_CPUS];
simple_lock_init(&mp_kdp_lock, 0);
simple_lock_init(&mp_rv_lock, 0);
mutex_init(&mp_cpu_boot_lock, 0);
+ mutex_init(&mp_bc_lock, 0);
console_init();
/* Local APIC? */
/* Establish a map to the local apic */
lapic_start = vm_map_min(kernel_map);
- result = vm_map_find_space(kernel_map, &lapic_start,
+ result = vm_map_find_space(kernel_map,
+ (vm_map_address_t *) &lapic_start,
round_page(LAPIC_SIZE), 0,
VM_MAKE_TAG(VM_MEMORY_IOKIT), &entry);
if (result != KERN_SUCCESS) {
int retval = 0;
/* Did we just field an interruption for the HPET comparator? */
- if(current_cpu_datap()->cpu_pmHpetVec == ((uint32_t)interrupt - 0x40)) {
+ if(x86_core()->HpetVec == ((uint32_t)interrupt - 0x40)) {
/* Yes, go handle it... */
retval = HPETInterrupt();
/* Was it really handled? */
cpu_shutdown();
return KERN_SUCCESS;
} else {
- kprintf("Started cpu %d (lapic id %p)\n", slot_num, lapic);
- printf("Started CPU %02d\n", slot_num);
+ kprintf("Started cpu %d (lapic id %08x)\n", slot_num, lapic);
return KERN_SUCCESS;
}
}
* XXX 64-bit state?
*/
sync_iss_to_iks(saved_state32(regs));
- mp_kdp_wait();
+ mp_kdp_wait(TRUE);
} else
#endif /* MACH_KDP */
if (i_bit(MP_TLB_FLUSH, my_word)) {
DBGLOG(cpu_handle,my_cpu,MP_RENDEZVOUS);
i_bit_clear(MP_RENDEZVOUS, my_word);
mp_rendezvous_action();
+ } else if (i_bit(MP_BROADCAST, my_word)) {
+ DBGLOG(cpu_handle,my_cpu,MP_BROADCAST);
+ i_bit_clear(MP_BROADCAST, my_word);
+ mp_broadcast_action();
} else if (i_bit(MP_CHUD, my_word)) {
DBGLOG(cpu_handle,my_cpu,MP_CHUD);
i_bit_clear(MP_CHUD, my_word);
chudxnu_cpu_signal_handler();
+ } else if (i_bit(MP_CALL, my_word)) {
+ DBGLOG(cpu_handle,my_cpu,MP_CALL);
+ i_bit_clear(MP_CALL, my_word);
+ mp_cpus_call_action();
}
} while (*my_word);
}
-
-/* We want this to show up in backtraces, so mark it noinline
+/* We want this to show up in backtraces, hence marked noinline.
*/
static int __attribute__((noinline))
-NMIInterruptHandler(void *regs)
+NMIInterruptHandler(x86_saved_state_t *regs)
{
boolean_t state = ml_set_interrupts_enabled(FALSE);
sync_iss_to_iks_unconditionally(regs);
- mp_kdp_wait();
+ mp_kdp_wait(FALSE);
(void) ml_set_interrupts_enabled(state);
return 1;
}
#ifdef MP_DEBUG
extern int max_lock_loops;
+int trappedalready = 0; /* (BRINGUP */
#endif /* MP_DEBUG */
-int trappedalready = 0; /* (BRINGUP */
-
-void
-cpu_interrupt(int cpu)
+static void
+i386_cpu_IPI(int cpu)
{
boolean_t state;
+#ifdef MP_DEBUG
if(cpu_datap(cpu)->cpu_signals & 6) { /* (BRINGUP) */
- kprintf("cpu_interrupt: sending enter debugger signal (%08X) to cpu %d\n", cpu_datap(cpu)->cpu_signals, cpu);
+ kprintf("i386_cpu_IPI: sending enter debugger signal (%08X) to cpu %d\n", cpu_datap(cpu)->cpu_signals, cpu);
}
-
- if (smp_initialized) {
+#endif /* MP_DEBUG */
#if MACH_KDB
-// if(!trappedalready && (cpu_datap(cpu)->cpu_signals & 6)) { /* (BRINGUP) */
-// if(kdb_cpu != cpu_number()) {
-// trappedalready = 1;
-// panic("cpu_interrupt: sending enter debugger signal (%08X) to cpu %d and I do not own debugger, owner = %08X\n",
-// cpu_datap(cpu)->cpu_signals, cpu, kdb_cpu);
-// }
-// }
+#ifdef MP_DEBUG
+ if(!trappedalready && (cpu_datap(cpu)->cpu_signals & 6)) { /* (BRINGUP) */
+ if(kdb_cpu != cpu_number()) {
+ trappedalready = 1;
+ panic("i386_cpu_IPI: sending enter debugger signal (%08X) to cpu %d and I do not own debugger, owner = %08X\n",
+ cpu_datap(cpu)->cpu_signals, cpu, kdb_cpu);
+ }
+ }
+#endif /* MP_DEBUG */
#endif
- /* Wait for previous interrupt to be delivered... */
+ /* Wait for previous interrupt to be delivered... */
#ifdef MP_DEBUG
- int pending_busy_count = 0;
- while (LAPIC_REG(ICR) & LAPIC_ICR_DS_PENDING) {
- if (++pending_busy_count > max_lock_loops)
- panic("cpus_interrupt() deadlock\n");
+ int pending_busy_count = 0;
+ while (LAPIC_REG(ICR) & LAPIC_ICR_DS_PENDING) {
+ if (++pending_busy_count > max_lock_loops)
+ panic("i386_cpu_IPI() deadlock\n");
#else
- while (LAPIC_REG(ICR) & LAPIC_ICR_DS_PENDING) {
+ while (LAPIC_REG(ICR) & LAPIC_ICR_DS_PENDING) {
#endif /* MP_DEBUG */
- cpu_pause();
- }
-
- state = ml_set_interrupts_enabled(FALSE);
- LAPIC_REG(ICRD) =
- cpu_to_lapic[cpu] << LAPIC_ICRD_DEST_SHIFT;
- LAPIC_REG(ICR) =
- LAPIC_VECTOR(INTERPROCESSOR) | LAPIC_ICR_DM_FIXED;
- (void) ml_set_interrupts_enabled(state);
+ cpu_pause();
}
+ state = ml_set_interrupts_enabled(FALSE);
+ LAPIC_REG(ICRD) =
+ cpu_to_lapic[cpu] << LAPIC_ICRD_DEST_SHIFT;
+ LAPIC_REG(ICR) =
+ LAPIC_VECTOR(INTERPROCESSOR) | LAPIC_ICR_DM_FIXED;
+ (void) ml_set_interrupts_enabled(state);
+}
+
+/*
+ * cpu_interrupt is really just to be used by the scheduler to
+ * get a CPU's attention it may not always issue an IPI. If an
+ * IPI is always needed then use i386_cpu_IPI.
+ */
+void
+cpu_interrupt(int cpu)
+{
+ if (smp_initialized
+ && pmCPUExitIdle(cpu_datap(cpu))) {
+ i386_cpu_IPI(cpu);
+ }
}
/*
if (smp_initialized) {
state = ml_set_interrupts_enabled(FALSE);
+/* Program the interrupt command register */
LAPIC_REG(ICRD) =
cpu_to_lapic[cpu] << LAPIC_ICRD_DEST_SHIFT;
-/* The vector is ignored in this case, the other CPU will come in on the
+/* The vector is ignored in this case--the target CPU will enter on the
* NMI vector.
*/
LAPIC_REG(ICR) =
LAPIC_VECTOR(INTERPROCESSOR) | LAPIC_ICR_DM_NMI;
(void) ml_set_interrupts_enabled(state);
}
-
}
void
DBGLOG(cpu_signal, cpu, event);
i_bit_set(event, signals);
- cpu_interrupt(cpu);
+ i386_cpu_IPI(cpu);
if (mode == SYNC) {
again:
tsc_timeout = rdtsc64() + (1000*1000*1000);
KERNEL_DEBUG(0xef800020 | DBG_FUNC_END, cpu, 0, 0, 0, 0);
}
+/*
+ * Send event to all running cpus.
+ * Called with the topology locked.
+ */
void
i386_signal_cpus(mp_event_t event, mp_sync_t mode)
{
unsigned int cpu;
unsigned int my_cpu = cpu_number();
+ assert(hw_lock_held(&x86_topo_lock));
+
for (cpu = 0; cpu < real_ncpus; cpu++) {
if (cpu == my_cpu || !cpu_datap(cpu)->cpu_running)
continue;
}
}
+/*
+ * Return the number of running cpus.
+ * Called with the topology locked.
+ */
int
i386_active_cpus(void)
{
unsigned int cpu;
unsigned int ncpus = 0;
+ assert(hw_lock_held(&x86_topo_lock));
+
for (cpu = 0; cpu < real_ncpus; cpu++) {
if (cpu_datap(cpu)->cpu_running)
ncpus++;
static void
mp_rendezvous_action(void)
{
+ boolean_t intrs_enabled;
/* setup function */
if (mp_rv_setup_func != NULL)
mp_rv_setup_func(mp_rv_func_arg);
+
+ intrs_enabled = ml_get_interrupts_enabled();
+
/* spin on entry rendezvous */
- atomic_incl(&mp_rv_waiters[0], 1);
- while (mp_rv_waiters[0] < mp_rv_ncpus) {
- boolean_t intr = ml_set_interrupts_enabled(FALSE);
- /* poll for pesky tlb flushes */
- handle_pending_TLB_flushes();
- ml_set_interrupts_enabled(intr);
+ atomic_incl(&mp_rv_entry, 1);
+ while (mp_rv_entry < mp_rv_ncpus) {
+ /* poll for pesky tlb flushes if interrupts disabled */
+ if (!intrs_enabled)
+ handle_pending_TLB_flushes();
cpu_pause();
}
/* action function */
if (mp_rv_action_func != NULL)
mp_rv_action_func(mp_rv_func_arg);
/* spin on exit rendezvous */
- atomic_incl(&mp_rv_waiters[1], 1);
- while (mp_rv_waiters[1] < mp_rv_ncpus)
+ atomic_incl(&mp_rv_exit, 1);
+ while (mp_rv_exit < mp_rv_ncpus) {
+ if (!intrs_enabled)
+ handle_pending_TLB_flushes();
cpu_pause();
+ }
+
/* teardown function */
if (mp_rv_teardown_func != NULL)
mp_rv_teardown_func(mp_rv_func_arg);
+
+ /* Bump completion count */
+ atomic_incl(&mp_rv_complete, 1);
}
void
mp_rv_teardown_func = teardown_func;
mp_rv_func_arg = arg;
- mp_rv_waiters[0] = 0; /* entry rendezvous count */
- mp_rv_waiters[1] = 0; /* exit rendezvous count */
- mp_rv_ncpus = i386_active_cpus();
+ mp_rv_entry = 0;
+ mp_rv_exit = 0;
+ mp_rv_complete = 0;
/*
* signal other processors, which will call mp_rendezvous_action()
* with interrupts disabled
*/
+ simple_lock(&x86_topo_lock);
+ mp_rv_ncpus = i386_active_cpus();
i386_signal_cpus(MP_RENDEZVOUS, ASYNC);
+ simple_unlock(&x86_topo_lock);
/* call executor function on this cpu */
mp_rendezvous_action();
+ /*
+ * Spin for everyone to complete.
+ * This is necessary to ensure that all processors have proceeded
+ * from the exit barrier before we release the rendezvous structure.
+ */
+ while (mp_rv_complete < mp_rv_ncpus) {
+ cpu_pause();
+ }
+
+ /* Tidy up */
+ mp_rv_setup_func = NULL;
+ mp_rv_action_func = NULL;
+ mp_rv_teardown_func = NULL;
+ mp_rv_func_arg = NULL;
+
/* release lock */
simple_unlock(&mp_rv_lock);
}
{
volatile int *my_word = ¤t_cpu_datap()->cpu_signals;
- if (i_bit(MP_TLB_FLUSH, my_word)) {
- DBGLOG(cpu_handle, cpu_number(), MP_TLB_FLUSH);
+ if (i_bit(MP_TLB_FLUSH, my_word)) {
+ DBGLOG(cpu_handle, cpu_number(), MP_TLB_FLUSH);
i_bit_clear(MP_TLB_FLUSH, my_word);
pmap_update_interrupt();
}
}
+/*
+ * This is called from cpu_signal_handler() to process an MP_CALL signal.
+ */
+static void
+mp_cpus_call_action(void)
+{
+ if (mp_rv_action_func != NULL)
+ mp_rv_action_func(mp_rv_func_arg);
+ atomic_incl(&mp_rv_complete, 1);
+}
+
+/*
+ * mp_cpus_call() runs a given function on cpus specified in a given cpu mask.
+ * If the mode is SYNC, the function is called serially on the target cpus
+ * in logical cpu order. If the mode is ASYNC, the function is called in
+ * parallel over the specified cpus.
+ * The action function may be NULL.
+ * The cpu mask may include the local cpu. Offline cpus are ignored.
+ * Return does not occur until the function has completed on all cpus.
+ * The return value is the number of cpus on which the function was called.
+ */
+cpu_t
+mp_cpus_call(
+ cpumask_t cpus,
+ mp_sync_t mode,
+ void (*action_func)(void *),
+ void *arg)
+{
+ cpu_t cpu;
+ boolean_t intrs_enabled = ml_get_interrupts_enabled();
+ boolean_t call_self = FALSE;
+
+ if (!smp_initialized) {
+ if ((cpus & CPUMASK_SELF) == 0)
+ return 0;
+ if (action_func != NULL) {
+ (void) ml_set_interrupts_enabled(FALSE);
+ action_func(arg);
+ ml_set_interrupts_enabled(intrs_enabled);
+ }
+ return 1;
+ }
+
+ /* obtain rendezvous lock */
+ simple_lock(&mp_rv_lock);
+
+ /* Use the rendezvous data structures for this call */
+ mp_rv_action_func = action_func;
+ mp_rv_func_arg = arg;
+ mp_rv_ncpus = 0;
+ mp_rv_complete = 0;
+
+ simple_lock(&x86_topo_lock);
+ for (cpu = 0; cpu < (cpu_t) real_ncpus; cpu++) {
+ if (((cpu_to_cpumask(cpu) & cpus) == 0) ||
+ !cpu_datap(cpu)->cpu_running)
+ continue;
+ if (cpu == (cpu_t) cpu_number()) {
+ /*
+ * We don't IPI ourself and if calling asynchronously,
+ * we defer our call until we have signalled all others.
+ */
+ call_self = TRUE;
+ if (mode == SYNC && action_func != NULL) {
+ (void) ml_set_interrupts_enabled(FALSE);
+ action_func(arg);
+ ml_set_interrupts_enabled(intrs_enabled);
+ }
+ } else {
+ /*
+ * Bump count of other cpus called and signal this cpu.
+ * Note: we signal asynchronously regardless of mode
+ * because we wait on mp_rv_complete either here
+ * (if mode == SYNC) or later (if mode == ASYNC).
+ * While spinning, poll for TLB flushes if interrupts
+ * are disabled.
+ */
+ mp_rv_ncpus++;
+ i386_signal_cpu(cpu, MP_CALL, ASYNC);
+ if (mode == SYNC) {
+ simple_unlock(&x86_topo_lock);
+ while (mp_rv_complete < mp_rv_ncpus) {
+ if (!intrs_enabled)
+ handle_pending_TLB_flushes();
+ cpu_pause();
+ }
+ simple_lock(&x86_topo_lock);
+ }
+ }
+ }
+ simple_unlock(&x86_topo_lock);
+
+ /*
+ * If calls are being made asynchronously,
+ * make the local call now if needed, and then
+ * wait for all other cpus to finish their calls.
+ */
+ if (mode == ASYNC) {
+ if (call_self && action_func != NULL) {
+ (void) ml_set_interrupts_enabled(FALSE);
+ action_func(arg);
+ ml_set_interrupts_enabled(intrs_enabled);
+ }
+ while (mp_rv_complete < mp_rv_ncpus) {
+ if (!intrs_enabled)
+ handle_pending_TLB_flushes();
+ cpu_pause();
+ }
+ }
+
+ /* Determine the number of cpus called */
+ cpu = mp_rv_ncpus + (call_self ? 1 : 0);
+
+ simple_unlock(&mp_rv_lock);
+
+ return cpu;
+}
+
+static void
+mp_broadcast_action(void)
+{
+ /* call action function */
+ if (mp_bc_action_func != NULL)
+ mp_bc_action_func(mp_bc_func_arg);
+
+ /* if we're the last one through, wake up the instigator */
+ if (atomic_decl_and_test((volatile long *)&mp_bc_count, 1))
+ thread_wakeup(((event_t)(unsigned int *) &mp_bc_count));
+}
+
+/*
+ * mp_broadcast() runs a given function on all active cpus.
+ * The caller blocks until the functions has run on all cpus.
+ * The caller will also block if there is another pending braodcast.
+ */
+void
+mp_broadcast(
+ void (*action_func)(void *),
+ void *arg)
+{
+ if (!smp_initialized) {
+ if (action_func != NULL)
+ action_func(arg);
+ return;
+ }
+
+ /* obtain broadcast lock */
+ mutex_lock(&mp_bc_lock);
+
+ /* set static function pointers */
+ mp_bc_action_func = action_func;
+ mp_bc_func_arg = arg;
+
+ assert_wait(&mp_bc_count, THREAD_UNINT);
+
+ /*
+ * signal other processors, which will call mp_broadcast_action()
+ */
+ simple_lock(&x86_topo_lock);
+ mp_bc_ncpus = i386_active_cpus(); /* total including this cpu */
+ mp_bc_count = mp_bc_ncpus;
+ i386_signal_cpus(MP_BROADCAST, ASYNC);
+
+ /* call executor function on this cpu */
+ mp_broadcast_action();
+ simple_unlock(&x86_topo_lock);
+
+ /* block for all cpus to have run action_func */
+ if (mp_bc_ncpus > 1)
+ thread_block(THREAD_CONTINUE_NULL);
+ else
+ clear_wait(current_thread(), THREAD_AWAKENED);
+
+ /* release lock */
+ mutex_unlock(&mp_bc_lock);
+}
+
+void
+i386_activate_cpu(void)
+{
+ cpu_data_t *cdp = current_cpu_datap();
+
+ assert(!ml_get_interrupts_enabled());
+
+ if (!smp_initialized) {
+ cdp->cpu_running = TRUE;
+ return;
+ }
+
+ simple_lock(&x86_topo_lock);
+ cdp->cpu_running = TRUE;
+ simple_unlock(&x86_topo_lock);
+}
+
+void
+i386_deactivate_cpu(void)
+{
+ cpu_data_t *cdp = current_cpu_datap();
+
+ assert(!ml_get_interrupts_enabled());
+
+ simple_lock(&x86_topo_lock);
+ cdp->cpu_running = FALSE;
+ simple_unlock(&x86_topo_lock);
+
+ /*
+ * In case a rendezvous/braodcast/call was initiated to this cpu
+ * before we cleared cpu_running, we must perform any actions due.
+ */
+ if (i_bit(MP_RENDEZVOUS, &cdp->cpu_signals))
+ mp_rendezvous_action();
+ if (i_bit(MP_BROADCAST, &cdp->cpu_signals))
+ mp_broadcast_action();
+ if (i_bit(MP_CALL, &cdp->cpu_signals))
+ mp_cpus_call_action();
+ cdp->cpu_signals = 0; /* all clear */
+}
+
+int pmsafe_debug = 1;
#if MACH_KDP
volatile boolean_t mp_kdp_trap = FALSE;
-volatile long mp_kdp_ncpus;
+volatile unsigned long mp_kdp_ncpus;
boolean_t mp_kdp_state;
mp_kdp_state = ml_set_interrupts_enabled(FALSE);
simple_lock(&mp_kdp_lock);
+ if (pmsafe_debug)
+ pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_SAFE);
+
while (mp_kdp_trap) {
simple_unlock(&mp_kdp_lock);
DBG("mp_kdp_enter() race lost\n");
- mp_kdp_wait();
+ mp_kdp_wait(TRUE);
simple_lock(&mp_kdp_lock);
}
mp_kdp_ncpus = 1; /* self */
* Deliver a nudge to other cpus, counting how many
*/
DBG("mp_kdp_enter() signaling other processors\n");
- for (ncpus = 1, cpu = 0; cpu < real_ncpus; cpu++) {
- if (cpu == my_cpu || !cpu_datap(cpu)->cpu_running)
- continue;
- ncpus++;
- i386_signal_cpu(cpu, MP_KDP, ASYNC);
- }
- /*
- * Wait other processors to synchronize
- */
- DBG("mp_kdp_enter() waiting for (%d) processors to suspend\n", ncpus);
+ if (force_immediate_debugger_NMI == FALSE) {
+ for (ncpus = 1, cpu = 0; cpu < real_ncpus; cpu++) {
+ if (cpu == my_cpu || !cpu_datap(cpu)->cpu_running)
+ continue;
+ ncpus++;
+ i386_signal_cpu(cpu, MP_KDP, ASYNC);
+ }
+ /*
+ * Wait other processors to synchronize
+ */
+ DBG("mp_kdp_enter() waiting for (%d) processors to suspend\n", ncpus);
- tsc_timeout = rdtsc64() + (ncpus * 100 * 1000 * 1000);
+ /*
+ * This timeout is rather arbitrary; we don't want to NMI
+ * processors that are executing at potentially
+ * "unsafe-to-interrupt" points such as the trampolines,
+ * but neither do we want to lose state by waiting too long.
+ */
+ tsc_timeout = rdtsc64() + (ncpus * 1000 * 1000);
- while (mp_kdp_ncpus != ncpus && rdtsc64() < tsc_timeout) {
- /*
- * A TLB shootdown request may be pending... this would
- * result in the requesting processor waiting in
- * PMAP_UPDATE_TLBS() until this processor deals with it.
- * Process it, so it can now enter mp_kdp_wait()
+ while (mp_kdp_ncpus != ncpus && rdtsc64() < tsc_timeout) {
+ /*
+ * A TLB shootdown request may be pending--this would
+ * result in the requesting processor waiting in
+ * PMAP_UPDATE_TLBS() until this processor deals with it.
+ * Process it, so it can now enter mp_kdp_wait()
+ */
+ handle_pending_TLB_flushes();
+ cpu_pause();
+ }
+ /* If we've timed out, and some processor(s) are still unresponsive,
+ * interrupt them with an NMI via the local APIC.
*/
- handle_pending_TLB_flushes();
- cpu_pause();
+ if (mp_kdp_ncpus != ncpus) {
+ for (cpu = 0; cpu < real_ncpus; cpu++) {
+ if (cpu == my_cpu || !cpu_datap(cpu)->cpu_running)
+ continue;
+ if (cpu_signal_pending(cpu, MP_KDP))
+ cpu_NMI_interrupt(cpu);
+ }
+ }
}
-/* If we've timed out, and some processor(s) are still unresponsive,
- * interrupt them with an NMI via the local APIC.
- */
- if (mp_kdp_ncpus != ncpus) {
+ else
for (cpu = 0; cpu < real_ncpus; cpu++) {
if (cpu == my_cpu || !cpu_datap(cpu)->cpu_running)
continue;
- if (cpu_signal_pending(cpu, MP_KDP))
- cpu_NMI_interrupt(cpu);
+ cpu_NMI_interrupt(cpu);
}
- }
- DBG("mp_kdp_enter() %d processors done %s\n",
- mp_kdp_ncpus, (mp_kdp_ncpus == ncpus) ? "OK" : "timed out");
+ DBG("mp_kdp_enter() %u processors done %s\n",
+ mp_kdp_ncpus, (mp_kdp_ncpus == ncpus) ? "OK" : "timed out");
postcode(MP_KDP_ENTER);
}
retval = TRUE;
return retval;
}
+
static void
-mp_kdp_wait(void)
+mp_kdp_wait(boolean_t flush)
{
DBG("mp_kdp_wait()\n");
-
+ /* If an I/O port has been specified as a debugging aid, issue a read */
panic_io_port_read();
- atomic_incl(&mp_kdp_ncpus, 1);
+ /* If we've trapped due to a machine-check, save MCA registers */
+ mca_check_save();
+
+ if (pmsafe_debug)
+ pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_SAFE);
+
+ atomic_incl((volatile long *)&mp_kdp_ncpus, 1);
while (mp_kdp_trap) {
/*
- * a TLB shootdown request may be pending... this would result in the requesting
- * processor waiting in PMAP_UPDATE_TLBS() until this processor deals with it.
+ * A TLB shootdown request may be pending--this would result
+ * in the requesting processor waiting in PMAP_UPDATE_TLBS()
+ * until this processor handles it.
* Process it, so it can now enter mp_kdp_wait()
*/
- handle_pending_TLB_flushes();
-
+ if (flush)
+ handle_pending_TLB_flushes();
cpu_pause();
}
- atomic_decl(&mp_kdp_ncpus, 1);
+
+ if (pmsafe_debug)
+ pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_NORMAL);
+
+ atomic_decl((volatile long *)&mp_kdp_ncpus, 1);
DBG("mp_kdp_wait() done\n");
}
mp_kdp_exit(void)
{
DBG("mp_kdp_exit()\n");
- atomic_decl(&mp_kdp_ncpus, 1);
+ atomic_decl((volatile long *)&mp_kdp_ncpus, 1);
mp_kdp_trap = FALSE;
__asm__ volatile("mfence");
cpu_pause();
}
+
+ if (pmsafe_debug)
+ pmSafeMode(¤t_cpu_datap()->lcpu, PM_SAFE_FL_NORMAL);
+
DBG("mp_kdp_exit() done\n");
(void) ml_set_interrupts_enabled(mp_kdp_state);
postcode(0);
{
DBG("mp_kdb_wait()\n");
+ /* If an I/O port has been specified as a debugging aid, issue a read */
panic_io_port_read();
atomic_incl(&mp_kdb_ncpus, 1);
cpu_pause();
}
- atomic_decl(&mp_kdb_ncpus, 1);
+ atomic_decl((volatile long *)&mp_kdb_ncpus, 1);
DBG("mp_kdb_wait() done\n");
}
mp_kdb_exit(void)
{
DBG("mp_kdb_exit()\n");
- atomic_decl(&mp_kdb_ncpus, 1);
+ atomic_decl((volatile long *)&mp_kdb_ncpus, 1);
mp_kdb_trap = FALSE;
__asm__ volatile("mfence");
cpu_pause();
}
+
DBG("mp_kdb_exit() done\n");
}
get_cpu_number(), get_cpu_phys_number());
assert(!ml_get_interrupts_enabled());
- if (cpu_mode_is64bit()) {
- cpu_IA32e_enable(current_cpu_datap());
- cpu_desc_load64(current_cpu_datap());
- fast_syscall_init64();
- } else {
- fast_syscall_init();
- }
- lapic_init();
+ cpu_mode_init(current_cpu_datap());
+
+ mca_cpu_init();
+ lapic_init();
LAPIC_DUMP();
LAPIC_CPU_MAP_DUMP();
mtrr_update_cpu();
+ /* resume VT operation */
+ vmx_resume();
+
pat_init();
- cpu_thread_init();
+ cpu_thread_init(); /* not strictly necessary */
cpu_init(); /* Sets cpu_running which starter cpu waits for */