/*
- * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2000-2019 Apple Inc. All rights reserved.
+ *
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
- * @APPLE_LICENSE_HEADER_START@
- *
- * Copyright (c) 1999-2003 Apple Computer, Inc. All Rights Reserved.
- *
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
- * compliance with the License. Please obtain a copy of the License at
- * http://www.opensource.apple.com/apsl/ and read it before using this
- * file.
- *
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
+ *
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
+ *
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
- *
- * @APPLE_LICENSE_HEADER_END@
+ *
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/*
* @OSF_COPYRIGHT@
*/
-/*
+/*
* Mach Operating System
* Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
* All Rights Reserved.
- *
+ *
* Permission to use, copy, modify and distribute this software and its
* documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
- *
+ *
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
* ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
- *
+ *
* Carnegie Mellon requests users of this software to return to
- *
+ *
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
- *
+ *
* any improvements or extensions that they make and grant Carnegie Mellon
* the rights to redistribute these changes.
*/
* Support for machine independent machine abstraction.
*/
-#include <cpus.h>
-
#include <string.h>
+
+#include <mach/mach_types.h>
#include <mach/boolean.h>
#include <mach/kern_return.h>
-#include <mach/mach_types.h>
#include <mach/machine.h>
#include <mach/host_info.h>
#include <mach/host_reboot.h>
+#include <mach/host_priv_server.h>
+#include <mach/processor_server.h>
+
+#include <kern/kern_types.h>
#include <kern/counters.h>
#include <kern/cpu_data.h>
+#include <kern/cpu_quiesce.h>
#include <kern/ipc_host.h>
#include <kern/host.h>
-#include <kern/lock.h>
#include <kern/machine.h>
+#include <kern/misc_protos.h>
#include <kern/processor.h>
#include <kern/queue.h>
#include <kern/sched.h>
+#include <kern/startup.h>
#include <kern/task.h>
#include <kern/thread.h>
-#include <kern/thread_swap.h>
-#include <kern/misc_protos.h>
-#include <kern/mk_sp.h>
+#include <machine/commpage.h>
+
+#if HIBERNATION
+#include <IOKit/IOHibernatePrivate.h>
+#endif
+#include <IOKit/IOPlatformExpert.h>
+
+#if CONFIG_DTRACE
+extern void (*dtrace_cpu_state_changed_hook)(int, boolean_t);
+#endif
+
+#if defined(__x86_64__)
+#include <i386/misc_protos.h>
+#include <libkern/OSDebug.h>
+#endif
/*
* Exported variables:
*/
-struct machine_info machine_info;
-struct machine_slot machine_slot[NCPUS];
-
-static queue_head_t processor_action_queue;
-static boolean_t processor_action_active;
-static thread_call_t processor_action_call;
-static thread_call_data_t processor_action_call_data;
-decl_simple_lock_data(static,processor_action_lock)
-
-thread_t machine_wake_thread;
+struct machine_info machine_info;
/* Forwards */
-processor_set_t processor_request_action(
- processor_t processor,
- processor_set_t new_pset);
+static void
+processor_doshutdown(processor_t processor);
-void processor_doaction(
- processor_t processor);
+static void
+processor_offline(void * parameter, __unused wait_result_t result);
-void processor_doshutdown(
- processor_t processor);
+static void
+processor_offline_intstack(processor_t processor) __dead2;
/*
- * cpu_up:
+ * processor_up:
*
- * Flag specified cpu as up and running. Called when a processor comes
- * online.
+ * Flag processor as up and running, and available
+ * for scheduling.
*/
void
-cpu_up(
- int cpu)
+processor_up(
+ processor_t processor)
{
- processor_t processor = cpu_to_processor(cpu);
- processor_set_t pset = &default_pset;
- struct machine_slot *ms;
- spl_t s;
-
- /*
- * Just twiddle our thumbs; we've got nothing better to do
- * yet, anyway.
- */
- while (!simple_lock_try(&pset->processors_lock))
- continue;
+ processor_set_t pset;
+ spl_t s;
+ boolean_t pset_online = false;
s = splsched();
- processor_lock(processor);
init_ast_check(processor);
- ms = &machine_slot[cpu];
- ms->running = TRUE;
- machine_info.avail_cpus++;
- pset_add_processor(pset, processor);
- simple_lock(&pset->sched_lock);
- enqueue_tail(&pset->active_queue, (queue_entry_t)processor);
- processor->state = PROCESSOR_RUNNING;
- simple_unlock(&pset->sched_lock);
- processor_unlock(processor);
+ pset = processor->processor_set;
+ pset_lock(pset);
+ if (pset->online_processor_count == 0) {
+ /* About to bring the first processor of a pset online */
+ pset_online = true;
+ }
+ ++pset->online_processor_count;
+ pset_update_processor_state(pset, processor, PROCESSOR_RUNNING);
+ os_atomic_inc(&processor_avail_count, relaxed);
+ if (processor->is_recommended) {
+ os_atomic_inc(&processor_avail_count_user, relaxed);
+ }
+ commpage_update_active_cpus();
+ if (pset_online) {
+ /* New pset is coming up online; callout to the
+ * scheduler in case it wants to adjust runqs.
+ */
+ SCHED(pset_made_schedulable)(processor, pset, true);
+ /* pset lock dropped */
+ } else {
+ pset_unlock(pset);
+ }
+ ml_cpu_up();
splx(s);
- simple_unlock(&pset->processors_lock);
-}
-
-/*
- * cpu_down:
- *
- * Flag specified cpu as down. Called when a processor is about to
- * go offline.
- */
-void
-cpu_down(
- int cpu)
-{
- processor_t processor;
- struct machine_slot *ms;
- spl_t s;
-
- processor = cpu_to_processor(cpu);
-
- s = splsched();
- processor_lock(processor);
- ms = &machine_slot[cpu];
- ms->running = FALSE;
- machine_info.avail_cpus--;
- /*
- * processor has already been removed from pset.
- */
- processor->processor_set_next = PROCESSOR_SET_NULL;
- processor->state = PROCESSOR_OFF_LINE;
- processor_unlock(processor);
- splx(s);
+#if CONFIG_DTRACE
+ if (dtrace_cpu_state_changed_hook) {
+ (*dtrace_cpu_state_changed_hook)(processor->cpu_id, TRUE);
+ }
+#endif
}
+#include <atm/atm_internal.h>
kern_return_t
host_reboot(
- host_priv_t host_priv,
- int options)
+ host_priv_t host_priv,
+ int options)
{
- if (host_priv == HOST_PRIV_NULL)
- return (KERN_INVALID_HOST);
+ if (host_priv == HOST_PRIV_NULL) {
+ return KERN_INVALID_HOST;
+ }
assert(host_priv == &realhost);
+#if DEVELOPMENT || DEBUG
if (options & HOST_REBOOT_DEBUGGER) {
Debugger("Debugger");
+ return KERN_SUCCESS;
}
- else
+#endif
+
+ if (options & HOST_REBOOT_UPSDELAY) {
+ // UPS power cutoff path
+ PEHaltRestart( kPEUPSDelayHaltCPU );
+ } else {
halt_all_cpus(!(options & HOST_REBOOT_HALT));
+ }
- return (KERN_SUCCESS);
+ return KERN_SUCCESS;
}
-/*
- * processor_request_action:
- *
- * Common internals of processor_assign and processor_shutdown.
- * If new_pset is null, this is a shutdown, else it's an assign
- * and caller must donate a reference.
- * For assign operations, it returns an old pset that must be deallocated
- * if it's not NULL.
- * For shutdown operations, it always returns PROCESSOR_SET_NULL.
- */
-processor_set_t
-processor_request_action(
- processor_t processor,
- processor_set_t new_pset)
+kern_return_t
+processor_assign(
+ __unused processor_t processor,
+ __unused processor_set_t new_pset,
+ __unused boolean_t wait)
{
- processor_set_t pset, old_pset;
+ return KERN_FAILURE;
+}
- /*
- * Processor must be in a processor set. Must lock its idle lock to
- * get at processor state.
- */
- pset = processor->processor_set;
- simple_lock(&pset->sched_lock);
+kern_return_t
+processor_shutdown(
+ processor_t processor)
+{
+ processor_set_t pset;
+ spl_t s;
- /*
- * If the processor is dispatching, let it finish - it will set its
- * state to running very soon.
- */
- while (*(volatile int *)&processor->state == PROCESSOR_DISPATCHING) {
- simple_unlock(&pset->sched_lock);
+ s = splsched();
+ pset = processor->processor_set;
+ pset_lock(pset);
+ if (processor->state == PROCESSOR_OFF_LINE) {
+ /*
+ * Success if already shutdown.
+ */
+ pset_unlock(pset);
+ splx(s);
- simple_lock(&pset->sched_lock);
+ return KERN_SUCCESS;
}
- assert( processor->state == PROCESSOR_IDLE ||
- processor->state == PROCESSOR_RUNNING ||
- processor->state == PROCESSOR_ASSIGN );
-
- /*
- * Now lock the action queue and do the dirty work.
- */
- simple_lock(&processor_action_lock);
+ if (processor->state == PROCESSOR_START) {
+ /*
+ * Failure if currently being started.
+ */
+ pset_unlock(pset);
+ splx(s);
- if (processor->state == PROCESSOR_IDLE) {
- remqueue(&pset->idle_queue, (queue_entry_t)processor);
- pset->idle_count--;
+ return KERN_FAILURE;
}
- else
- if (processor->state == PROCESSOR_RUNNING)
- remqueue(&pset->active_queue, (queue_entry_t)processor);
-
- if (processor->state != PROCESSOR_ASSIGN)
- enqueue_tail(&processor_action_queue, (queue_entry_t)processor);
/*
- * And ask the action_thread to do the work.
+ * If the processor is dispatching, let it finish.
*/
- if (new_pset != PROCESSOR_SET_NULL) {
- processor->state = PROCESSOR_ASSIGN;
- old_pset = processor->processor_set_next;
- processor->processor_set_next = new_pset;
- }
- else {
- processor->state = PROCESSOR_SHUTDOWN;
- old_pset = PROCESSOR_SET_NULL;
+ while (processor->state == PROCESSOR_DISPATCHING) {
+ pset_unlock(pset);
+ splx(s);
+ delay(1);
+ s = splsched();
+ pset_lock(pset);
}
- simple_unlock(&pset->sched_lock);
-
- if (processor_action_active) {
- simple_unlock(&processor_action_lock);
+ /*
+ * Success if already being shutdown.
+ */
+ if (processor->state == PROCESSOR_SHUTDOWN) {
+ pset_unlock(pset);
+ splx(s);
- return (old_pset);
+ return KERN_SUCCESS;
}
- processor_action_active = TRUE;
- simple_unlock(&processor_action_lock);
+ pset_update_processor_state(pset, processor, PROCESSOR_SHUTDOWN);
+ pset_unlock(pset);
- processor_unlock(processor);
+ processor_doshutdown(processor);
+ splx(s);
- thread_call_enter(processor_action_call);
- processor_lock(processor);
+ cpu_exit_wait(processor->cpu_id);
- return (old_pset);
-}
-
-kern_return_t
-processor_assign(
- processor_t processor,
- processor_set_t new_pset,
- boolean_t wait)
-{
-#ifdef lint
- processor++; new_pset++; wait++;
-#endif /* lint */
- return (KERN_FAILURE);
+ return KERN_SUCCESS;
}
/*
- * processor_shutdown() queues a processor up for shutdown.
- * Any assignment in progress is overriden.
+ * Called with interrupts disabled.
*/
-kern_return_t
-processor_shutdown(
- processor_t processor)
+static void
+processor_doshutdown(
+ processor_t processor)
{
- spl_t s;
+ thread_t self = current_thread();
- s = splsched();
- processor_lock(processor);
- if ( processor->state == PROCESSOR_OFF_LINE ||
- processor->state == PROCESSOR_SHUTDOWN ) {
- /*
- * Already shutdown or being shutdown -- nothing to do.
- */
- processor_unlock(processor);
- splx(s);
+ /*
+ * Get onto the processor to shutdown
+ */
+ processor_t prev = thread_bind(processor);
+ thread_block(THREAD_CONTINUE_NULL);
+
+ /* interrupts still disabled */
+ assert(ml_get_interrupts_enabled() == FALSE);
+
+ assert(processor == current_processor());
+ assert(processor->state == PROCESSOR_SHUTDOWN);
- return (KERN_SUCCESS);
+#if CONFIG_DTRACE
+ if (dtrace_cpu_state_changed_hook) {
+ (*dtrace_cpu_state_changed_hook)(processor->cpu_id, FALSE);
}
+#endif
- processor_request_action(processor, PROCESSOR_SET_NULL);
+ ml_cpu_down();
- assert_wait((event_t)processor, THREAD_UNINT);
+#if HIBERNATION
+ if (processor_avail_count < 2) {
+ hibernate_vm_lock();
+ hibernate_vm_unlock();
+ }
+#endif
- processor_unlock(processor);
- splx(s);
+ processor_set_t pset = processor->processor_set;
- thread_block(THREAD_CONTINUE_NULL);
+ pset_lock(pset);
+ pset_update_processor_state(pset, processor, PROCESSOR_OFF_LINE);
+ --pset->online_processor_count;
+ os_atomic_dec(&processor_avail_count, relaxed);
+ if (processor->is_recommended) {
+ os_atomic_dec(&processor_avail_count_user, relaxed);
+ }
+ commpage_update_active_cpus();
+ SCHED(processor_queue_shutdown)(processor);
+ /* pset lock dropped */
+ SCHED(rt_queue_shutdown)(processor);
+
+ thread_bind(prev);
- return (KERN_SUCCESS);
+ /* interrupts still disabled */
+
+ /*
+ * Continue processor shutdown on the processor's idle thread.
+ * The handoff won't fail because the idle thread has a reserved stack.
+ * Switching to the idle thread leaves interrupts disabled,
+ * so we can't accidentally take an interrupt after the context switch.
+ */
+ thread_t shutdown_thread = processor->idle_thread;
+ shutdown_thread->continuation = processor_offline;
+ shutdown_thread->parameter = processor;
+
+ thread_run(self, NULL, NULL, shutdown_thread);
}
/*
- * processor_action() shuts down processors or changes their assignment.
+ * Called in the context of the idle thread to shut down the processor
+ *
+ * A shut-down processor looks like it's 'running' the idle thread parked
+ * in this routine, but it's actually been powered off and has no hardware state.
*/
static void
-_processor_action(
- thread_call_param_t p0,
- thread_call_param_t p1)
+processor_offline(
+ void * parameter,
+ __unused wait_result_t result)
{
- register processor_t processor;
- spl_t s;
+ processor_t processor = (processor_t) parameter;
+ thread_t self = current_thread();
+ __assert_only thread_t old_thread = THREAD_NULL;
- s = splsched();
- simple_lock(&processor_action_lock);
-
- while (!queue_empty(&processor_action_queue)) {
- processor = (processor_t)dequeue_head(&processor_action_queue);
- simple_unlock(&processor_action_lock);
- splx(s);
+ assert(processor == current_processor());
+ assert(self->state & TH_IDLE);
+ assert(processor->idle_thread == self);
+ assert(ml_get_interrupts_enabled() == FALSE);
+ assert(self->continuation == NULL);
+ assert(processor->processor_offlined == false);
- processor_doaction(processor);
+ bool enforce_quiesce_safety = gEnforceQuiesceSafety;
- s = splsched();
- simple_lock(&processor_action_lock);
+ /*
+ * Scheduling is now disabled for this processor.
+ * Ensure that primitives that need scheduling (like mutexes) know this.
+ */
+ if (enforce_quiesce_safety) {
+ disable_preemption();
}
- processor_action_active = FALSE;
- simple_unlock(&processor_action_lock);
- splx(s);
-}
-
-void
-processor_action(void)
-{
- queue_init(&processor_action_queue);
- simple_lock_init(&processor_action_lock, ETAP_THREAD_ACTION);
- processor_action_active = FALSE;
-
- thread_call_setup(&processor_action_call_data, _processor_action, NULL);
- processor_action_call = &processor_action_call_data;
-}
-
-/*
- * processor_doaction actually does the shutdown. The trick here
- * is to schedule ourselves onto a cpu and then save our
- * context back into the runqs before taking out the cpu.
- */
-void
-processor_doaction(
- processor_t processor)
-{
- thread_t self = current_thread();
- processor_set_t pset;
- thread_t old_thread;
- spl_t s;
+ /* convince slave_main to come back here */
+ processor->processor_offlined = true;
/*
- * Get onto the processor to shutdown
+ * Switch to the interrupt stack and shut down the processor.
+ *
+ * When the processor comes back, it will eventually call load_context which
+ * restores the context saved by machine_processor_shutdown, returning here.
*/
- thread_bind(self, processor);
- thread_block(THREAD_CONTINUE_NULL);
+ old_thread = machine_processor_shutdown(self, processor_offline_intstack, processor);
- pset = processor->processor_set;
- simple_lock(&pset->processors_lock);
+ /* old_thread should be NULL because we got here through Load_context */
+ assert(old_thread == THREAD_NULL);
- if (pset->processor_count == 1) {
- thread_t thread;
- extern void start_cpu_thread(void);
+ assert(processor == current_processor());
+ assert(processor->idle_thread == current_thread());
- simple_unlock(&pset->processors_lock);
+ assert(ml_get_interrupts_enabled() == FALSE);
+ assert(self->continuation == NULL);
- /*
- * Create the thread, and point it at the routine.
- */
- thread = kernel_thread_with_priority(
- kernel_task, MAXPRI_KERNEL,
- start_cpu_thread, TRUE, FALSE);
+ /* Extract the machine_param value stashed by slave_main */
+ void * machine_param = self->parameter;
+ self->parameter = NULL;
- disable_preemption();
+ /* Re-initialize the processor */
+ slave_machine_init(machine_param);
- s = splsched();
- thread_lock(thread);
- machine_wake_thread = thread;
- thread_go_locked(thread, THREAD_AWAKENED);
- (void)rem_runq(thread);
- thread_unlock(thread);
- splx(s);
+ assert(processor->processor_offlined == true);
+ processor->processor_offlined = false;
- simple_lock(&pset->processors_lock);
+ if (enforce_quiesce_safety) {
enable_preemption();
}
- s = splsched();
- processor_lock(processor);
-
- /*
- * Do shutdown, make sure we live when processor dies.
- */
- if (processor->state != PROCESSOR_SHUTDOWN) {
- panic("action_thread -- bad processor state");
- }
-
- pset_remove_processor(pset, processor);
- processor_unlock(processor);
- simple_unlock(&pset->processors_lock);
-
/*
- * Clean up.
+ * Now that the processor is back, invoke the idle thread to find out what to do next.
+ * idle_thread will enable interrupts.
*/
- thread_bind(self, PROCESSOR_NULL);
- self->continuation = 0;
- old_thread = switch_to_shutdown_context(self,
- processor_doshutdown, processor);
- if (processor != current_processor())
- timer_call_shutdown(processor);
- thread_dispatch(old_thread);
- thread_wakeup((event_t)processor);
- splx(s);
+ thread_block(idle_thread);
+ /*NOTREACHED*/
}
/*
- * Actually do the processor shutdown. This is called at splsched,
- * running on the processor's shutdown stack.
+ * Complete the shutdown and place the processor offline.
+ *
+ * Called at splsched in the shutdown context
+ * (i.e. on the idle thread, on the interrupt stack)
+ *
+ * The onlining half of this is done in load_context().
*/
-
-void
-processor_doshutdown(
- processor_t processor)
+static void
+processor_offline_intstack(
+ processor_t processor)
{
- register int cpu = processor->slot_num;
+ assert(processor == current_processor());
+ assert(processor->active_thread == current_thread());
- timer_call_cancel(&processor->quantum_timer);
- thread_dispatch(current_thread());
- timer_switch(&kernel_timer[cpu]);
+ timer_stop(PROCESSOR_DATA(processor, current_state), processor->last_dispatch);
+
+ cpu_quiescent_counter_leave(processor->last_dispatch);
+
+ PMAP_DEACTIVATE_KERNEL(processor->cpu_id);
- /*
- * OK, now exit this cpu.
- */
- PMAP_DEACTIVATE_KERNEL(cpu);
- thread_machine_set_current(processor->idle_thread);
- cpu_down(cpu);
cpu_sleep();
panic("zombie processor");
/*NOTREACHED*/
kern_return_t
host_get_boot_info(
- host_priv_t host_priv,
- kernel_boot_info_t boot_info)
+ host_priv_t host_priv,
+ kernel_boot_info_t boot_info)
{
- char *src = "";
- extern char *machine_boot_info(
- kernel_boot_info_t boot_info,
- vm_size_t buf_len);
-
- if (host_priv == HOST_PRIV_NULL)
- return (KERN_INVALID_HOST);
+ const char *src = "";
+ if (host_priv == HOST_PRIV_NULL) {
+ return KERN_INVALID_HOST;
+ }
assert(host_priv == &realhost);
* standardized strings generated from boot string.
*/
src = machine_boot_info(boot_info, KERNEL_BOOT_INFO_MAX);
- if (src != boot_info)
+ if (src != boot_info) {
(void) strncpy(boot_info, src, KERNEL_BOOT_INFO_MAX);
+ }
+
+ return KERN_SUCCESS;
+}
+
+#if CONFIG_DTRACE
+#include <mach/sdt.h>
+#endif
+
+unsigned long long
+ml_io_read(uintptr_t vaddr, int size)
+{
+ unsigned long long result = 0;
+ unsigned char s1;
+ unsigned short s2;
+
+#if defined(__x86_64__)
+ uint64_t sabs, eabs;
+ boolean_t istate, timeread = FALSE;
+#if DEVELOPMENT || DEBUG
+ extern uint64_t simulate_stretched_io;
+ uintptr_t paddr = pmap_verify_noncacheable(vaddr);
+#endif /* x86_64 DEVELOPMENT || DEBUG */
+ if (__improbable(reportphyreaddelayabs != 0)) {
+ istate = ml_set_interrupts_enabled(FALSE);
+ sabs = mach_absolute_time();
+ timeread = TRUE;
+ }
+
+#if DEVELOPMENT || DEBUG
+ if (__improbable(timeread && simulate_stretched_io)) {
+ sabs -= simulate_stretched_io;
+ }
+#endif /* x86_64 DEVELOPMENT || DEBUG */
+
+#endif /* x86_64 */
+
+ switch (size) {
+ case 1:
+ s1 = *(volatile unsigned char *)vaddr;
+ result = s1;
+ break;
+ case 2:
+ s2 = *(volatile unsigned short *)vaddr;
+ result = s2;
+ break;
+ case 4:
+ result = *(volatile unsigned int *)vaddr;
+ break;
+ case 8:
+ result = *(volatile unsigned long long *)vaddr;
+ break;
+ default:
+ panic("Invalid size %d for ml_io_read(%p)", size, (void *)vaddr);
+ break;
+ }
+
+#if defined(__x86_64__)
+ if (__improbable(timeread == TRUE)) {
+ eabs = mach_absolute_time();
+
+#if DEVELOPMENT || DEBUG
+ iotrace(IOTRACE_IO_READ, vaddr, paddr, size, result, sabs, eabs - sabs);
+#endif
+
+ if (__improbable((eabs - sabs) > reportphyreaddelayabs)) {
+#if !(DEVELOPMENT || DEBUG)
+ uintptr_t paddr = kvtophys(vaddr);
+#endif
+
+ (void)ml_set_interrupts_enabled(istate);
+
+ if (phyreadpanic && (machine_timeout_suspended() == FALSE)) {
+ panic_io_port_read();
+ panic("Read from IO vaddr 0x%lx paddr 0x%lx took %llu ns, "
+ "result: 0x%llx (start: %llu, end: %llu), ceiling: %llu",
+ vaddr, paddr, (eabs - sabs), result, sabs, eabs,
+ reportphyreaddelayabs);
+ }
+
+ if (reportphyreadosbt) {
+ OSReportWithBacktrace("ml_io_read(v=%p, p=%p) size %d result 0x%llx "
+ "took %lluus",
+ (void *)vaddr, (void *)paddr, size, result,
+ (eabs - sabs) / NSEC_PER_USEC);
+ }
+#if CONFIG_DTRACE
+ DTRACE_PHYSLAT5(physioread, uint64_t, (eabs - sabs),
+ uint64_t, vaddr, uint32_t, size, uint64_t, paddr, uint64_t, result);
+#endif /* CONFIG_DTRACE */
+ } else if (__improbable(tracephyreaddelayabs > 0 && (eabs - sabs) > tracephyreaddelayabs)) {
+#if !(DEVELOPMENT || DEBUG)
+ uintptr_t paddr = kvtophys(vaddr);
+#endif
+
+ KDBG(MACHDBG_CODE(DBG_MACH_IO, DBC_MACH_IO_MMIO_READ),
+ (eabs - sabs), VM_KERNEL_UNSLIDE_OR_PERM(vaddr), paddr, result);
+
+ (void)ml_set_interrupts_enabled(istate);
+ } else {
+ (void)ml_set_interrupts_enabled(istate);
+ }
+ }
+#endif /* x86_64 */
+ return result;
+}
+
+unsigned int
+ml_io_read8(uintptr_t vaddr)
+{
+ return (unsigned) ml_io_read(vaddr, 1);
+}
+
+unsigned int
+ml_io_read16(uintptr_t vaddr)
+{
+ return (unsigned) ml_io_read(vaddr, 2);
+}
+
+unsigned int
+ml_io_read32(uintptr_t vaddr)
+{
+ return (unsigned) ml_io_read(vaddr, 4);
+}
+
+unsigned long long
+ml_io_read64(uintptr_t vaddr)
+{
+ return ml_io_read(vaddr, 8);
+}
+
+/* ml_io_write* */
+
+void
+ml_io_write(uintptr_t vaddr, uint64_t val, int size)
+{
+#if defined(__x86_64__)
+ uint64_t sabs, eabs;
+ boolean_t istate, timewrite = FALSE;
+#if DEVELOPMENT || DEBUG
+ extern uint64_t simulate_stretched_io;
+ uintptr_t paddr = pmap_verify_noncacheable(vaddr);
+#endif /* x86_64 DEVELOPMENT || DEBUG */
+ if (__improbable(reportphywritedelayabs != 0)) {
+ istate = ml_set_interrupts_enabled(FALSE);
+ sabs = mach_absolute_time();
+ timewrite = TRUE;
+ }
+
+#if DEVELOPMENT || DEBUG
+ if (__improbable(timewrite && simulate_stretched_io)) {
+ sabs -= simulate_stretched_io;
+ }
+#endif /* x86_64 DEVELOPMENT || DEBUG */
+#endif /* x86_64 */
+
+ switch (size) {
+ case 1:
+ *(volatile uint8_t *)vaddr = (uint8_t)val;
+ break;
+ case 2:
+ *(volatile uint16_t *)vaddr = (uint16_t)val;
+ break;
+ case 4:
+ *(volatile uint32_t *)vaddr = (uint32_t)val;
+ break;
+ case 8:
+ *(volatile uint64_t *)vaddr = (uint64_t)val;
+ break;
+ default:
+ panic("Invalid size %d for ml_io_write(%p, 0x%llx)", size, (void *)vaddr, val);
+ break;
+ }
+
+#if defined(__x86_64__)
+ if (__improbable(timewrite == TRUE)) {
+ eabs = mach_absolute_time();
+
+#if DEVELOPMENT || DEBUG
+ iotrace(IOTRACE_IO_WRITE, vaddr, paddr, size, val, sabs, eabs - sabs);
+#endif
+
+ if (__improbable((eabs - sabs) > reportphywritedelayabs)) {
+#if !(DEVELOPMENT || DEBUG)
+ uintptr_t paddr = kvtophys(vaddr);
+#endif
+
+ (void)ml_set_interrupts_enabled(istate);
+
+ if (phywritepanic && (machine_timeout_suspended() == FALSE)) {
+ panic_io_port_read();
+ panic("Write to IO vaddr %p paddr %p val 0x%llx took %llu ns,"
+ " (start: %llu, end: %llu), ceiling: %llu",
+ (void *)vaddr, (void *)paddr, val, (eabs - sabs), sabs, eabs,
+ reportphywritedelayabs);
+ }
+
+ if (reportphywriteosbt) {
+ OSReportWithBacktrace("ml_io_write size %d (v=%p, p=%p, 0x%llx) "
+ "took %lluus",
+ size, (void *)vaddr, (void *)paddr, val, (eabs - sabs) / NSEC_PER_USEC);
+ }
+#if CONFIG_DTRACE
+ DTRACE_PHYSLAT5(physiowrite, uint64_t, (eabs - sabs),
+ uint64_t, vaddr, uint32_t, size, uint64_t, paddr, uint64_t, val);
+#endif /* CONFIG_DTRACE */
+ } else if (__improbable(tracephywritedelayabs > 0 && (eabs - sabs) > tracephywritedelayabs)) {
+#if !(DEVELOPMENT || DEBUG)
+ uintptr_t paddr = kvtophys(vaddr);
+#endif
+
+ KDBG(MACHDBG_CODE(DBG_MACH_IO, DBC_MACH_IO_MMIO_WRITE),
+ (eabs - sabs), VM_KERNEL_UNSLIDE_OR_PERM(vaddr), paddr, val);
+
+ (void)ml_set_interrupts_enabled(istate);
+ } else {
+ (void)ml_set_interrupts_enabled(istate);
+ }
+ }
+#endif /* x86_64 */
+}
+
+void
+ml_io_write8(uintptr_t vaddr, uint8_t val)
+{
+ ml_io_write(vaddr, val, 1);
+}
+
+void
+ml_io_write16(uintptr_t vaddr, uint16_t val)
+{
+ ml_io_write(vaddr, val, 2);
+}
- return (KERN_SUCCESS);
+void
+ml_io_write32(uintptr_t vaddr, uint32_t val)
+{
+ ml_io_write(vaddr, val, 4);
+}
+
+void
+ml_io_write64(uintptr_t vaddr, uint64_t val)
+{
+ ml_io_write(vaddr, val, 8);
}