/*
- * Copyright (c) 2000-2014 Apple Inc. All rights reserved.
+ * Copyright (c) 2000-2016 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
* data blocks for which quick allocation/deallocation is possible.
*/
#include <zone_debug.h>
-#include <zone_alias_addr.h>
#include <mach/mach_types.h>
#include <mach/vm_param.h>
#include <mach_debug/zone_info.h>
#include <mach/vm_map.h>
+#include <kern/bits.h>
#include <kern/kern_types.h>
#include <kern/assert.h>
+#include <kern/backtrace.h>
#include <kern/host.h>
#include <kern/macro_help.h>
#include <kern/sched.h>
#include <kern/thread_call.h>
#include <kern/zalloc.h>
#include <kern/kalloc.h>
-#include <kern/btlog.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <libkern/OSAtomic.h>
#include <sys/kdebug.h>
+#include <san/kasan.h>
+
/*
- * ZONE_ALIAS_ADDR
- *
- * With this option enabled, zones with alloc_size <= PAGE_SIZE allocate
- * a virtual page from the zone_map, but before zcram-ing the allocated memory
- * into the zone, the page is translated to use the alias address of the page
- * in the static kernel region. zone_gc reverses that translation when
- * scanning the freelist to collect free pages so that it can look up the page
- * in the zone_page_table, and free it to kmem_free.
- *
- * The static kernel region is a flat 1:1 mapping of physical memory passed
- * to xnu by the booter. It is mapped to the range:
- * [gVirtBase, gVirtBase + gPhysSize]
- *
- * Accessing memory via the static kernel region is faster due to the
- * entire region being mapped via large pages, cutting down
- * on TLB misses.
- *
- * zinit favors using PAGE_SIZE backing allocations for a zone unless it would
- * waste more than 10% space to use a single page, in order to take advantage
- * of the speed benefit for as many zones as possible.
- *
- * Zones with > PAGE_SIZE allocations can't take advantage of this
- * because kernel_memory_allocate doesn't give out physically contiguous pages.
- *
- * zone_virtual_addr()
- * - translates an address from the static kernel region to the zone_map
- * - returns the same address if it's not from the static kernel region
- * It relies on the fact that a physical page mapped to the
- * zone_map is not mapped anywhere else (except the static kernel region).
- *
- * zone_alias_addr()
- * - translates a virtual memory address from the zone_map to the
- * corresponding address in the static kernel region
- *
+ * ZONE_ALIAS_ADDR (deprecated)
*/
-#if !ZONE_ALIAS_ADDR
#define from_zone_map(addr, size) \
((vm_offset_t)(addr) >= zone_map_min_address && \
((vm_offset_t)(addr) + size - 1) < zone_map_max_address )
-#else
-#define from_zone_map(addr, size) \
- ((vm_offset_t)(zone_virtual_addr((vm_map_address_t)(uintptr_t)addr)) >= zone_map_min_address && \
- ((vm_offset_t)(zone_virtual_addr((vm_map_address_t)(uintptr_t)addr)) + size -1) < zone_map_max_address )
-#endif
/*
* Zone Corruption Debugging
uintptr_t zp_poisoned_cookie = 0;
uintptr_t zp_nopoison_cookie = 0;
+#if VM_MAX_TAG_ZONES
+boolean_t zone_tagging_on;
+#endif /* VM_MAX_TAG_ZONES */
/*
* initialize zone poisoning
#endif
}
-/* zone_map page count for page table structure */
-uint64_t zone_map_table_page_count = 0;
-
/*
* These macros are used to keep track of the number
* of pages being used by the zone currently. The
- * z->page_count is protected by the zone lock.
+ * z->page_count is not protected by the zone lock.
*/
#define ZONE_PAGE_COUNT_INCR(z, count) \
{ \
OSAddAtomic64(-count, &(z->page_count)); \
}
+vm_map_t zone_map = VM_MAP_NULL;
+
/* for is_sane_zone_element and garbage collection */
vm_offset_t zone_map_min_address = 0; /* initialized in zone_init */
vm_offset_t zone_map_max_address = 0;
+/* Globals for random boolean generator for elements in free list */
+#define MAX_ENTROPY_PER_ZCRAM 4
+#define RANDOM_BOOL_GEN_SEED_COUNT 4
+static unsigned int bool_gen_seed[RANDOM_BOOL_GEN_SEED_COUNT];
+static unsigned int bool_gen_global = 0;
+decl_simple_lock_data(, bool_gen_lock)
+
+/* VM region for all metadata structures */
+vm_offset_t zone_metadata_region_min = 0;
+vm_offset_t zone_metadata_region_max = 0;
+decl_lck_mtx_data(static ,zone_metadata_region_lck)
+lck_attr_t zone_metadata_lock_attr;
+lck_mtx_ext_t zone_metadata_region_lck_ext;
+
/* Helpful for walking through a zone's free element list. */
struct zone_free_element {
struct zone_free_element *next;
/* void *backup_ptr; */
};
+/*
+ * Protects zone_array, num_zones, num_zones_in_use, and zone_empty_bitmap
+ */
+decl_simple_lock_data(, all_zones_lock)
+unsigned int num_zones_in_use;
+unsigned int num_zones;
+
+#define MAX_ZONES 288
+struct zone zone_array[MAX_ZONES];
+
+/* Used to keep track of empty slots in the zone_array */
+bitmap_t zone_empty_bitmap[BITMAP_LEN(MAX_ZONES)];
+
+#if DEBUG || DEVELOPMENT
+/*
+ * Used for sysctl kern.run_zone_test which is not thread-safe. Ensure only one thread goes through at a time.
+ * Or we can end up with multiple test zones (if a second zinit() comes through before zdestroy()), which could lead us to
+ * run out of zones.
+ */
+decl_simple_lock_data(, zone_test_lock)
+static boolean_t zone_test_running = FALSE;
+static zone_t test_zone_ptr = NULL;
+#endif /* DEBUG || DEVELOPMENT */
+
+#define PAGE_METADATA_GET_ZINDEX(page_meta) \
+ (page_meta->zindex)
+
+#define PAGE_METADATA_GET_ZONE(page_meta) \
+ (&(zone_array[page_meta->zindex]))
+
+#define PAGE_METADATA_SET_ZINDEX(page_meta, index) \
+ page_meta->zindex = (index);
+
struct zone_page_metadata {
- queue_chain_t pages;
- struct zone_free_element *elements;
- zone_t zone;
- uint16_t alloc_count;
- uint16_t free_count;
+ queue_chain_t pages; /* linkage pointer for metadata lists */
+
+ /* Union for maintaining start of element free list and real metadata (for multipage allocations) */
+ union {
+ /*
+ * The start of the freelist can be maintained as a 32-bit offset instead of a pointer because
+ * the free elements would be at max ZONE_MAX_ALLOC_SIZE bytes away from the metadata. Offset
+ * from start of the allocation chunk to free element list head.
+ */
+ uint32_t freelist_offset;
+ /*
+ * This field is used to lookup the real metadata for multipage allocations, where we mark the
+ * metadata for all pages except the first as "fake" metadata using MULTIPAGE_METADATA_MAGIC.
+ * Offset from this fake metadata to real metadata of allocation chunk (-ve offset).
+ */
+ uint32_t real_metadata_offset;
+ };
+
+ /*
+ * For the first page in the allocation chunk, this represents the total number of free elements in
+ * the chunk.
+ */
+ uint16_t free_count;
+ unsigned zindex : ZINDEX_BITS; /* Zone index within the zone_array */
+ unsigned page_count : PAGECOUNT_BITS; /* Count of pages within the allocation chunk */
};
+/* Macro to get page index (within zone_map) of page containing element */
+#define PAGE_INDEX_FOR_ELEMENT(element) \
+ (((vm_offset_t)trunc_page(element) - zone_map_min_address) / PAGE_SIZE)
+
+/* Macro to get metadata structure given a page index in zone_map */
+#define PAGE_METADATA_FOR_PAGE_INDEX(index) \
+ (zone_metadata_region_min + ((index) * sizeof(struct zone_page_metadata)))
+
+/* Macro to get index (within zone_map) for given metadata */
+#define PAGE_INDEX_FOR_METADATA(page_meta) \
+ (((vm_offset_t)page_meta - zone_metadata_region_min) / sizeof(struct zone_page_metadata))
+
+/* Macro to get page for given page index in zone_map */
+#define PAGE_FOR_PAGE_INDEX(index) \
+ (zone_map_min_address + (PAGE_SIZE * (index)))
+
+/* Macro to get the actual metadata for a given address */
+#define PAGE_METADATA_FOR_ELEMENT(element) \
+ (struct zone_page_metadata *)(PAGE_METADATA_FOR_PAGE_INDEX(PAGE_INDEX_FOR_ELEMENT(element)))
+
+/* Magic value to indicate empty element free list */
+#define PAGE_METADATA_EMPTY_FREELIST ((uint32_t)(~0))
+
+boolean_t is_zone_map_nearing_exhaustion(void);
+extern void vm_pageout_garbage_collect(int collect);
+
+static inline void *
+page_metadata_get_freelist(struct zone_page_metadata *page_meta)
+{
+ assert(PAGE_METADATA_GET_ZINDEX(page_meta) != MULTIPAGE_METADATA_MAGIC);
+ if (page_meta->freelist_offset == PAGE_METADATA_EMPTY_FREELIST)
+ return NULL;
+ else {
+ if (from_zone_map(page_meta, sizeof(struct zone_page_metadata)))
+ return (void *)(PAGE_FOR_PAGE_INDEX(PAGE_INDEX_FOR_METADATA(page_meta)) + page_meta->freelist_offset);
+ else
+ return (void *)((vm_offset_t)page_meta + page_meta->freelist_offset);
+ }
+}
+
+static inline void
+page_metadata_set_freelist(struct zone_page_metadata *page_meta, void *addr)
+{
+ assert(PAGE_METADATA_GET_ZINDEX(page_meta) != MULTIPAGE_METADATA_MAGIC);
+ if (addr == NULL)
+ page_meta->freelist_offset = PAGE_METADATA_EMPTY_FREELIST;
+ else {
+ if (from_zone_map(page_meta, sizeof(struct zone_page_metadata)))
+ page_meta->freelist_offset = (uint32_t)((vm_offset_t)(addr) - PAGE_FOR_PAGE_INDEX(PAGE_INDEX_FOR_METADATA(page_meta)));
+ else
+ page_meta->freelist_offset = (uint32_t)((vm_offset_t)(addr) - (vm_offset_t)page_meta);
+ }
+}
+
+static inline struct zone_page_metadata *
+page_metadata_get_realmeta(struct zone_page_metadata *page_meta)
+{
+ assert(PAGE_METADATA_GET_ZINDEX(page_meta) == MULTIPAGE_METADATA_MAGIC);
+ return (struct zone_page_metadata *)((vm_offset_t)page_meta - page_meta->real_metadata_offset);
+}
+
+static inline void
+page_metadata_set_realmeta(struct zone_page_metadata *page_meta, struct zone_page_metadata *real_meta)
+{
+ assert(PAGE_METADATA_GET_ZINDEX(page_meta) == MULTIPAGE_METADATA_MAGIC);
+ assert(PAGE_METADATA_GET_ZINDEX(real_meta) != MULTIPAGE_METADATA_MAGIC);
+ assert((vm_offset_t)page_meta > (vm_offset_t)real_meta);
+ vm_offset_t offset = (vm_offset_t)page_meta - (vm_offset_t)real_meta;
+ assert(offset <= UINT32_MAX);
+ page_meta->real_metadata_offset = (uint32_t)offset;
+}
+
/* The backup pointer is stored in the last pointer-sized location in an element. */
static inline vm_offset_t *
get_backup_ptr(vm_size_t elem_size,
return (vm_offset_t *) ((vm_offset_t)element + elem_size - sizeof(vm_offset_t));
}
+/*
+ * Routine to populate a page backing metadata in the zone_metadata_region.
+ * Must be called without the zone lock held as it might potentially block.
+ */
+static inline void
+zone_populate_metadata_page(struct zone_page_metadata *page_meta)
+{
+ vm_offset_t page_metadata_begin = trunc_page(page_meta);
+ vm_offset_t page_metadata_end = trunc_page((vm_offset_t)page_meta + sizeof(struct zone_page_metadata));
+
+ for(;page_metadata_begin <= page_metadata_end; page_metadata_begin += PAGE_SIZE) {
+ if (pmap_find_phys(kernel_pmap, (vm_map_address_t)page_metadata_begin))
+ continue;
+ /* All updates to the zone_metadata_region are done under the zone_metadata_region_lck */
+ lck_mtx_lock(&zone_metadata_region_lck);
+ if (0 == pmap_find_phys(kernel_pmap, (vm_map_address_t)page_metadata_begin)) {
+ kern_return_t __unused ret = kernel_memory_populate(zone_map,
+ page_metadata_begin,
+ PAGE_SIZE,
+ KMA_KOBJECT,
+ VM_KERN_MEMORY_OSFMK);
+
+ /* should not fail with the given arguments */
+ assert(ret == KERN_SUCCESS);
+ }
+ lck_mtx_unlock(&zone_metadata_region_lck);
+ }
+ return;
+}
+
+static inline uint16_t
+get_metadata_alloc_count(struct zone_page_metadata *page_meta)
+{
+ assert(PAGE_METADATA_GET_ZINDEX(page_meta) != MULTIPAGE_METADATA_MAGIC);
+ struct zone *z = PAGE_METADATA_GET_ZONE(page_meta);
+ return ((page_meta->page_count * PAGE_SIZE) / z->elem_size);
+}
+
+/*
+ * Routine to lookup metadata for any given address.
+ * If init is marked as TRUE, this should be called without holding the zone lock
+ * since the initialization might block.
+ */
static inline struct zone_page_metadata *
-get_zone_page_metadata(struct zone_free_element *element)
+get_zone_page_metadata(struct zone_free_element *element, boolean_t init)
+{
+ struct zone_page_metadata *page_meta = 0;
+
+ if (from_zone_map(element, sizeof(struct zone_free_element))) {
+ page_meta = (struct zone_page_metadata *)(PAGE_METADATA_FOR_ELEMENT(element));
+ if (init)
+ zone_populate_metadata_page(page_meta);
+ } else {
+ page_meta = (struct zone_page_metadata *)(trunc_page((vm_offset_t)element));
+ }
+ if (init)
+ __nosan_bzero((char *)page_meta, sizeof(struct zone_page_metadata));
+ return ((PAGE_METADATA_GET_ZINDEX(page_meta) != MULTIPAGE_METADATA_MAGIC) ? page_meta : page_metadata_get_realmeta(page_meta));
+}
+
+/* Routine to get the page for a given metadata */
+static inline vm_offset_t
+get_zone_page(struct zone_page_metadata *page_meta)
+{
+ if (from_zone_map(page_meta, sizeof(struct zone_page_metadata)))
+ return (vm_offset_t)(PAGE_FOR_PAGE_INDEX(PAGE_INDEX_FOR_METADATA(page_meta)));
+ else
+ return (vm_offset_t)(trunc_page(page_meta));
+}
+
+/*
+ * ZTAGS
+ */
+
+#if VM_MAX_TAG_ZONES
+
+// for zones with tagging enabled:
+
+// calculate a pointer to the tag base entry,
+// holding either a uint32_t the first tag offset for a page in the zone map,
+// or two uint16_t tags if the page can only hold one or two elements
+
+#define ZTAGBASE(zone, element) \
+ (&((uint32_t *)zone_tagbase_min)[atop((element) - zone_map_min_address)])
+
+// pointer to the tag for an element
+#define ZTAG(zone, element) \
+ ({ \
+ vm_tag_t * result; \
+ if ((zone)->tags_inline) { \
+ result = (vm_tag_t *) ZTAGBASE((zone), (element)); \
+ if ((page_mask & element) >= (zone)->elem_size) result++; \
+ } else { \
+ result = &((vm_tag_t *)zone_tags_min)[ZTAGBASE((zone), (element))[0] + ((element) & page_mask) / (zone)->elem_size]; \
+ } \
+ result; \
+ })
+
+
+static vm_offset_t zone_tagbase_min;
+static vm_offset_t zone_tagbase_max;
+static vm_offset_t zone_tagbase_map_size;
+static vm_map_t zone_tagbase_map;
+
+static vm_offset_t zone_tags_min;
+static vm_offset_t zone_tags_max;
+static vm_offset_t zone_tags_map_size;
+static vm_map_t zone_tags_map;
+
+// simple heap allocator for allocating the tags for new memory
+
+decl_lck_mtx_data(,ztLock) /* heap lock */
+enum
+{
+ ztFreeIndexCount = 8,
+ ztFreeIndexMax = (ztFreeIndexCount - 1),
+ ztTagsPerBlock = 4
+};
+
+struct ztBlock
+{
+#if __LITTLE_ENDIAN__
+ uint64_t free:1,
+ next:21,
+ prev:21,
+ size:21;
+#else
+// ztBlock needs free bit least significant
+#error !__LITTLE_ENDIAN__
+#endif
+};
+typedef struct ztBlock ztBlock;
+
+static ztBlock * ztBlocks;
+static uint32_t ztBlocksCount;
+static uint32_t ztBlocksFree;
+
+static uint32_t
+ztLog2up(uint32_t size)
+{
+ if (1 == size) size = 0;
+ else size = 32 - __builtin_clz(size - 1);
+ return (size);
+}
+
+static uint32_t
+ztLog2down(uint32_t size)
+{
+ size = 31 - __builtin_clz(size);
+ return (size);
+}
+
+static void
+ztFault(vm_map_t map, const void * address, size_t size, uint32_t flags)
+{
+ vm_map_offset_t addr = (vm_map_offset_t) address;
+ vm_map_offset_t page, end;
+
+ page = trunc_page(addr);
+ end = round_page(addr + size);
+
+ for (; page < end; page += page_size)
+ {
+ if (!pmap_find_phys(kernel_pmap, page))
+ {
+ kern_return_t __unused
+ ret = kernel_memory_populate(map, page, PAGE_SIZE,
+ KMA_KOBJECT | flags, VM_KERN_MEMORY_DIAG);
+ assert(ret == KERN_SUCCESS);
+ }
+ }
+}
+
+static boolean_t
+ztPresent(const void * address, size_t size)
+{
+ vm_map_offset_t addr = (vm_map_offset_t) address;
+ vm_map_offset_t page, end;
+ boolean_t result;
+
+ page = trunc_page(addr);
+ end = round_page(addr + size);
+ for (result = TRUE; (page < end); page += page_size)
+ {
+ result = pmap_find_phys(kernel_pmap, page);
+ if (!result) break;
+ }
+ return (result);
+}
+
+
+void __unused
+ztDump(boolean_t sanity);
+void __unused
+ztDump(boolean_t sanity)
+{
+ uint32_t q, cq, p;
+
+ for (q = 0; q <= ztFreeIndexMax; q++)
+ {
+ p = q;
+ do
+ {
+ if (sanity)
+ {
+ cq = ztLog2down(ztBlocks[p].size);
+ if (cq > ztFreeIndexMax) cq = ztFreeIndexMax;
+ if (!ztBlocks[p].free
+ || ((p != q) && (q != cq))
+ || (ztBlocks[ztBlocks[p].next].prev != p)
+ || (ztBlocks[ztBlocks[p].prev].next != p))
+ {
+ kprintf("zterror at %d", p);
+ ztDump(FALSE);
+ kprintf("zterror at %d", p);
+ assert(FALSE);
+ }
+ continue;
+ }
+ kprintf("zt[%03d]%c %d, %d, %d\n",
+ p, ztBlocks[p].free ? 'F' : 'A',
+ ztBlocks[p].next, ztBlocks[p].prev,
+ ztBlocks[p].size);
+ p = ztBlocks[p].next;
+ if (p == q) break;
+ }
+ while (p != q);
+ if (!sanity) printf("\n");
+ }
+ if (!sanity) printf("-----------------------\n");
+}
+
+
+
+#define ZTBDEQ(idx) \
+ ztBlocks[ztBlocks[(idx)].prev].next = ztBlocks[(idx)].next; \
+ ztBlocks[ztBlocks[(idx)].next].prev = ztBlocks[(idx)].prev;
+
+static void
+ztFree(zone_t zone __unused, uint32_t index, uint32_t count)
+{
+ uint32_t q, w, p, size, merge;
+
+ assert(count);
+ ztBlocksFree += count;
+
+ // merge with preceding
+ merge = (index + count);
+ if ((merge < ztBlocksCount)
+ && ztPresent(&ztBlocks[merge], sizeof(ztBlocks[merge]))
+ && ztBlocks[merge].free)
+ {
+ ZTBDEQ(merge);
+ count += ztBlocks[merge].size;
+ }
+
+ // merge with following
+ merge = (index - 1);
+ if ((merge > ztFreeIndexMax)
+ && ztPresent(&ztBlocks[merge], sizeof(ztBlocks[merge]))
+ && ztBlocks[merge].free)
+ {
+ size = ztBlocks[merge].size;
+ count += size;
+ index -= size;
+ ZTBDEQ(index);
+ }
+
+ q = ztLog2down(count);
+ if (q > ztFreeIndexMax) q = ztFreeIndexMax;
+ w = q;
+ // queue in order of size
+ while (TRUE)
+ {
+ p = ztBlocks[w].next;
+ if (p == q) break;
+ if (ztBlocks[p].size >= count) break;
+ w = p;
+ }
+ ztBlocks[p].prev = index;
+ ztBlocks[w].next = index;
+
+ // fault in first
+ ztFault(zone_tags_map, &ztBlocks[index], sizeof(ztBlocks[index]), 0);
+
+ // mark first & last with free flag and size
+ ztBlocks[index].free = TRUE;
+ ztBlocks[index].size = count;
+ ztBlocks[index].prev = w;
+ ztBlocks[index].next = p;
+ if (count > 1)
+ {
+ index += (count - 1);
+ // fault in last
+ ztFault(zone_tags_map, &ztBlocks[index], sizeof(ztBlocks[index]), 0);
+ ztBlocks[index].free = TRUE;
+ ztBlocks[index].size = count;
+ }
+}
+
+static uint32_t
+ztAlloc(zone_t zone, uint32_t count)
+{
+ uint32_t q, w, p, leftover;
+
+ assert(count);
+
+ q = ztLog2up(count);
+ if (q > ztFreeIndexMax) q = ztFreeIndexMax;
+ do
+ {
+ w = q;
+ while (TRUE)
+ {
+ p = ztBlocks[w].next;
+ if (p == q) break;
+ if (ztBlocks[p].size >= count)
+ {
+ // dequeue, mark both ends allocated
+ ztBlocks[w].next = ztBlocks[p].next;
+ ztBlocks[ztBlocks[p].next].prev = w;
+ ztBlocks[p].free = FALSE;
+ ztBlocksFree -= ztBlocks[p].size;
+ if (ztBlocks[p].size > 1) ztBlocks[p + ztBlocks[p].size - 1].free = FALSE;
+
+ // fault all the allocation
+ ztFault(zone_tags_map, &ztBlocks[p], count * sizeof(ztBlocks[p]), 0);
+ // mark last as allocated
+ if (count > 1) ztBlocks[p + count - 1].free = FALSE;
+ // free remainder
+ leftover = ztBlocks[p].size - count;
+ if (leftover) ztFree(zone, p + ztBlocks[p].size - leftover, leftover);
+
+ return (p);
+ }
+ w = p;
+ }
+ q++;
+ }
+ while (q <= ztFreeIndexMax);
+
+ return (-1U);
+}
+
+static void
+ztInit(vm_size_t max_zonemap_size, lck_grp_t * group)
+{
+ kern_return_t ret;
+ vm_map_kernel_flags_t vmk_flags;
+ uint32_t idx;
+
+ lck_mtx_init(&ztLock, group, LCK_ATTR_NULL);
+
+ // allocate submaps VM_KERN_MEMORY_DIAG
+
+ zone_tagbase_map_size = atop(max_zonemap_size) * sizeof(uint32_t);
+ vmk_flags = VM_MAP_KERNEL_FLAGS_NONE;
+ vmk_flags.vmkf_permanent = TRUE;
+ ret = kmem_suballoc(kernel_map, &zone_tagbase_min, zone_tagbase_map_size,
+ FALSE, VM_FLAGS_ANYWHERE, vmk_flags, VM_KERN_MEMORY_DIAG,
+ &zone_tagbase_map);
+
+ if (ret != KERN_SUCCESS) panic("zone_init: kmem_suballoc failed");
+ zone_tagbase_max = zone_tagbase_min + round_page(zone_tagbase_map_size);
+
+ zone_tags_map_size = 2048*1024 * sizeof(vm_tag_t);
+ vmk_flags = VM_MAP_KERNEL_FLAGS_NONE;
+ vmk_flags.vmkf_permanent = TRUE;
+ ret = kmem_suballoc(kernel_map, &zone_tags_min, zone_tags_map_size,
+ FALSE, VM_FLAGS_ANYWHERE, vmk_flags, VM_KERN_MEMORY_DIAG,
+ &zone_tags_map);
+
+ if (ret != KERN_SUCCESS) panic("zone_init: kmem_suballoc failed");
+ zone_tags_max = zone_tags_min + round_page(zone_tags_map_size);
+
+ ztBlocks = (ztBlock *) zone_tags_min;
+ ztBlocksCount = (uint32_t)(zone_tags_map_size / sizeof(ztBlock));
+
+ // initialize the qheads
+ lck_mtx_lock(&ztLock);
+
+ ztFault(zone_tags_map, &ztBlocks[0], sizeof(ztBlocks[0]), 0);
+ for (idx = 0; idx < ztFreeIndexCount; idx++)
+ {
+ ztBlocks[idx].free = TRUE;
+ ztBlocks[idx].next = idx;
+ ztBlocks[idx].prev = idx;
+ ztBlocks[idx].size = 0;
+ }
+ // free remaining space
+ ztFree(NULL, ztFreeIndexCount, ztBlocksCount - ztFreeIndexCount);
+
+ lck_mtx_unlock(&ztLock);
+}
+
+static void
+ztMemoryAdd(zone_t zone, vm_offset_t mem, vm_size_t size)
+{
+ uint32_t * tagbase;
+ uint32_t count, block, blocks, idx;
+ size_t pages;
+
+ pages = atop(size);
+ tagbase = ZTAGBASE(zone, mem);
+
+ lck_mtx_lock(&ztLock);
+
+ // fault tagbase
+ ztFault(zone_tagbase_map, tagbase, pages * sizeof(uint32_t), 0);
+
+ if (!zone->tags_inline)
+ {
+ // allocate tags
+ count = (uint32_t)(size / zone->elem_size);
+ blocks = ((count + ztTagsPerBlock - 1) / ztTagsPerBlock);
+ block = ztAlloc(zone, blocks);
+ if (-1U == block) ztDump(false);
+ assert(-1U != block);
+ }
+
+ lck_mtx_unlock(&ztLock);
+
+ if (!zone->tags_inline)
+ {
+ // set tag base for each page
+ block *= ztTagsPerBlock;
+ for (idx = 0; idx < pages; idx++)
+ {
+ tagbase[idx] = block + (uint32_t)((ptoa(idx) + (zone->elem_size - 1)) / zone->elem_size);
+ }
+ }
+}
+
+static void
+ztMemoryRemove(zone_t zone, vm_offset_t mem, vm_size_t size)
+{
+ uint32_t * tagbase;
+ uint32_t count, block, blocks, idx;
+ size_t pages;
+
+ // set tag base for each page
+ pages = atop(size);
+ tagbase = ZTAGBASE(zone, mem);
+ block = tagbase[0];
+ for (idx = 0; idx < pages; idx++)
+ {
+ tagbase[idx] = 0xFFFFFFFF;
+ }
+
+ lck_mtx_lock(&ztLock);
+ if (!zone->tags_inline)
+ {
+ count = (uint32_t)(size / zone->elem_size);
+ blocks = ((count + ztTagsPerBlock - 1) / ztTagsPerBlock);
+ assert(block != 0xFFFFFFFF);
+ block /= ztTagsPerBlock;
+ ztFree(NULL /* zone is unlocked */, block, blocks);
+ }
+
+ lck_mtx_unlock(&ztLock);
+}
+
+uint32_t
+zone_index_from_tag_index(uint32_t tag_zone_index, vm_size_t * elem_size)
+{
+ zone_t z;
+ uint32_t idx;
+
+ simple_lock(&all_zones_lock);
+
+ for (idx = 0; idx < num_zones; idx++)
+ {
+ z = &(zone_array[idx]);
+ if (!z->tags) continue;
+ if (tag_zone_index != z->tag_zone_index) continue;
+ *elem_size = z->elem_size;
+ break;
+ }
+
+ simple_unlock(&all_zones_lock);
+
+ if (idx == num_zones) idx = -1U;
+
+ return (idx);
+}
+
+#endif /* VM_MAX_TAG_ZONES */
+
+/* Routine to get the size of a zone allocated address. If the address doesnt belong to the
+ * zone_map, returns 0.
+ */
+vm_size_t
+zone_element_size(void *addr, zone_t *z)
{
- return (struct zone_page_metadata *)(trunc_page((vm_offset_t)element));
+ struct zone *src_zone;
+ if (from_zone_map(addr, sizeof(void *))) {
+ struct zone_page_metadata *page_meta = get_zone_page_metadata((struct zone_free_element *)addr, FALSE);
+ src_zone = PAGE_METADATA_GET_ZONE(page_meta);
+ if (z) {
+ *z = src_zone;
+ }
+ return (src_zone->elem_size);
+ } else {
+#if CONFIG_GZALLOC
+ vm_size_t gzsize;
+ if (gzalloc_element_size(addr, z, &gzsize)) {
+ return gzsize;
+ }
+#endif /* CONFIG_GZALLOC */
+
+ return 0;
+ }
+}
+
+#if DEBUG || DEVELOPMENT
+
+vm_size_t
+zone_element_info(void *addr, vm_tag_t * ptag)
+{
+ vm_size_t size = 0;
+ vm_tag_t tag = VM_KERN_MEMORY_NONE;
+ struct zone * src_zone;
+
+ if (from_zone_map(addr, sizeof(void *))) {
+ struct zone_page_metadata *page_meta = get_zone_page_metadata((struct zone_free_element *)addr, FALSE);
+ src_zone = PAGE_METADATA_GET_ZONE(page_meta);
+#if VM_MAX_TAG_ZONES
+ if (__improbable(src_zone->tags)) {
+ tag = (ZTAG(src_zone, (vm_offset_t) addr)[0] >> 1);
+ }
+#endif /* VM_MAX_TAG_ZONES */
+ size = src_zone->elem_size;
+ } else {
+#if CONFIG_GZALLOC
+ gzalloc_element_size(addr, NULL, &size);
+#endif /* CONFIG_GZALLOC */
+ }
+ *ptag = tag;
+ return size;
}
+#endif /* DEBUG || DEVELOPMENT */
+
/*
* Zone checking helper function.
* A pointer that satisfies these conditions is OK to be a freelist next pointer
* zone using foreign memory is properly tagged with allows_foreign
*/
if (zone->collectable && !zone->allows_foreign) {
-#if ZONE_ALIAS_ADDR
- /*
- * If this address is in the static kernel region, it might be
- * the alias address of a valid zone element.
- * If we tried to find the zone_virtual_addr() of an invalid
- * address in the static kernel region, it will panic, so don't
- * check addresses in this region.
- *
- * TODO: Use a safe variant of zone_virtual_addr to
- * make this check more accurate
- *
- * The static kernel region is mapped at:
- * [gVirtBase, gVirtBase + gPhysSize]
- */
- if ((addr - gVirtBase) < gPhysSize)
- return TRUE;
-#endif
/* check if addr is from zone map */
if (addr >= zone_map_min_address &&
(addr + obj_size - 1) < zone_map_max_address )
vm_offset_t backup)
{
vm_offset_t likely_backup;
+ vm_offset_t likely_primary;
+ likely_primary = primary ^ zp_nopoison_cookie;
boolean_t sane_backup;
- boolean_t sane_primary = is_sane_zone_element(zone, primary);
+ boolean_t sane_primary = is_sane_zone_element(zone, likely_primary);
boolean_t element_was_poisoned = (backup & 0x1) ? TRUE : FALSE;
#if defined(__LP64__)
/* The primary is definitely the corrupted one */
if (!sane_primary && sane_backup)
- zone_element_was_modified_panic(zone, element, primary, likely_backup, 0);
+ zone_element_was_modified_panic(zone, element, primary, (likely_backup ^ zp_nopoison_cookie), 0);
/* The backup is definitely the corrupted one */
if (sane_primary && !sane_backup)
zone_element_was_modified_panic(zone, element, backup,
- (primary ^ (element_was_poisoned ? zp_poisoned_cookie : zp_nopoison_cookie)),
+ (likely_primary ^ (element_was_poisoned ? zp_poisoned_cookie : zp_nopoison_cookie)),
zone->elem_size - sizeof(vm_offset_t));
/*
* primary pointer has been overwritten with a sane but incorrect address.
*/
if (sane_primary && sane_backup)
- zone_element_was_modified_panic(zone, element, primary, likely_backup, 0);
+ zone_element_was_modified_panic(zone, element, primary, (likely_backup ^ zp_nopoison_cookie), 0);
/* Neither are sane, so just guess. */
- zone_element_was_modified_panic(zone, element, primary, likely_backup, 0);
-}
-
-/*
- * Sets the next element of tail to elem.
- * elem can be NULL.
- * Preserves the poisoning state of the element.
- */
-static inline void
-append_zone_element(zone_t zone,
- struct zone_free_element *tail,
- struct zone_free_element *elem)
-{
- vm_offset_t *backup = get_backup_ptr(zone->elem_size, (vm_offset_t *) tail);
-
- vm_offset_t old_backup = *backup;
-
- vm_offset_t old_next = (vm_offset_t) tail->next;
- vm_offset_t new_next = (vm_offset_t) elem;
-
- if (old_next == (old_backup ^ zp_nopoison_cookie))
- *backup = new_next ^ zp_nopoison_cookie;
- else if (old_next == (old_backup ^ zp_poisoned_cookie))
- *backup = new_next ^ zp_poisoned_cookie;
- else
- backup_ptr_mismatch_panic(zone,
- (vm_offset_t) tail,
- old_next,
- old_backup);
-
- tail->next = elem;
-}
-
-
-/*
- * Insert a linked list of elements (delineated by head and tail) at the head of
- * the zone free list. Every element in the list being added has already gone
- * through append_zone_element, so their backup pointers are already
- * set properly.
- * Precondition: There should be no elements after tail
- */
-static inline void
-add_list_to_zone(zone_t zone,
- struct zone_free_element *head,
- struct zone_free_element *tail)
-{
- assert(tail->next == NULL);
- assert(!zone->use_page_list);
-
- append_zone_element(zone, tail, zone->free_elements);
-
- zone->free_elements = head;
+ zone_element_was_modified_panic(zone, element, primary, (likely_backup ^ zp_nopoison_cookie), 0);
}
-
/*
* Adds the element to the head of the zone's free list
* Keeps a backup next-pointer at the end of the element
vm_offset_t *primary = (vm_offset_t *) element;
vm_offset_t *backup = get_backup_ptr(zone->elem_size, primary);
- if (zone->use_page_list) {
- page_meta = get_zone_page_metadata((struct zone_free_element *)element);
- assert(page_meta->zone == zone);
- old_head = (vm_offset_t)page_meta->elements;
- } else {
- old_head = (vm_offset_t)zone->free_elements;
- }
+ page_meta = get_zone_page_metadata((struct zone_free_element *)element, FALSE);
+ assert(PAGE_METADATA_GET_ZONE(page_meta) == zone);
+ old_head = (vm_offset_t)page_metadata_get_freelist(page_meta);
#if MACH_ASSERT
if (__improbable(!is_sane_zone_element(zone, old_head)))
*backup = old_head ^ (poison ? zp_poisoned_cookie : zp_nopoison_cookie);
- /* Insert this element at the head of the free list */
- *primary = old_head;
- if (zone->use_page_list) {
- page_meta->elements = (struct zone_free_element *)element;
- page_meta->free_count++;
- if (zone->allows_foreign && !from_zone_map(element, zone->elem_size)) {
- if (page_meta->free_count == 1) {
- /* first foreign element freed on page, move from all_used */
- remqueue((queue_entry_t)page_meta);
- enqueue_tail(&zone->pages.any_free_foreign, (queue_entry_t)page_meta);
- } else {
- /* no other list transitions */
- }
- } else if (page_meta->free_count == page_meta->alloc_count) {
- /* whether the page was on the intermediate or all_used, queue, move it to free */
- remqueue((queue_entry_t)page_meta);
- enqueue_tail(&zone->pages.all_free, (queue_entry_t)page_meta);
- } else if (page_meta->free_count == 1) {
- /* first free element on page, move from all_used */
- remqueue((queue_entry_t)page_meta);
- enqueue_tail(&zone->pages.intermediate, (queue_entry_t)page_meta);
+ /*
+ * Insert this element at the head of the free list. We also xor the
+ * primary pointer with the zp_nopoison_cookie to make sure a free
+ * element does not provide the location of the next free element directly.
+ */
+ *primary = old_head ^ zp_nopoison_cookie;
+ page_metadata_set_freelist(page_meta, (struct zone_free_element *)element);
+ page_meta->free_count++;
+ if (zone->allows_foreign && !from_zone_map(element, zone->elem_size)) {
+ if (page_meta->free_count == 1) {
+ /* first foreign element freed on page, move from all_used */
+ re_queue_tail(&zone->pages.any_free_foreign, &(page_meta->pages));
+ } else {
+ /* no other list transitions */
}
- } else {
- zone->free_elements = (struct zone_free_element *)element;
+ } else if (page_meta->free_count == get_metadata_alloc_count(page_meta)) {
+ /* whether the page was on the intermediate or all_used, queue, move it to free */
+ re_queue_tail(&zone->pages.all_free, &(page_meta->pages));
+ zone->count_all_free_pages += page_meta->page_count;
+ } else if (page_meta->free_count == 1) {
+ /* first free element on page, move from all_used */
+ re_queue_tail(&zone->pages.intermediate, &(page_meta->pages));
}
zone->count--;
zone->countfree++;
+
+#if KASAN_ZALLOC
+ kasan_poison_range(element, zone->elem_size, ASAN_HEAP_FREED);
+#endif
}
*/
static inline vm_offset_t
try_alloc_from_zone(zone_t zone,
+ vm_tag_t tag __unused,
boolean_t* check_poison)
{
vm_offset_t element;
*check_poison = FALSE;
/* if zone is empty, bail */
- if (zone->use_page_list) {
- if (zone->allows_foreign && !queue_empty(&zone->pages.any_free_foreign))
- page_meta = (struct zone_page_metadata *)queue_first(&zone->pages.any_free_foreign);
- else if (!queue_empty(&zone->pages.intermediate))
- page_meta = (struct zone_page_metadata *)queue_first(&zone->pages.intermediate);
- else if (!queue_empty(&zone->pages.all_free))
- page_meta = (struct zone_page_metadata *)queue_first(&zone->pages.all_free);
- else {
- return 0;
- }
-
- /* Check if page_meta passes is_sane_zone_element */
- if (__improbable(!is_sane_zone_page_metadata(zone, (vm_offset_t)page_meta)))
- panic("zalloc: invalid metadata structure %p for freelist of zone %s\n",
- (void *) page_meta, zone->zone_name);
- assert(page_meta->zone == zone);
- element = (vm_offset_t)page_meta->elements;
+ if (zone->allows_foreign && !queue_empty(&zone->pages.any_free_foreign))
+ page_meta = (struct zone_page_metadata *)queue_first(&zone->pages.any_free_foreign);
+ else if (!queue_empty(&zone->pages.intermediate))
+ page_meta = (struct zone_page_metadata *)queue_first(&zone->pages.intermediate);
+ else if (!queue_empty(&zone->pages.all_free)) {
+ page_meta = (struct zone_page_metadata *)queue_first(&zone->pages.all_free);
+ assert(zone->count_all_free_pages >= page_meta->page_count);
+ zone->count_all_free_pages -= page_meta->page_count;
} else {
- if (zone->free_elements == NULL)
- return 0;
-
- element = (vm_offset_t)zone->free_elements;
+ return 0;
}
-
-#if MACH_ASSERT
- if (__improbable(!is_sane_zone_element(zone, element)))
+ /* Check if page_meta passes is_sane_zone_element */
+ if (__improbable(!is_sane_zone_page_metadata(zone, (vm_offset_t)page_meta)))
+ panic("zalloc: invalid metadata structure %p for freelist of zone %s\n",
+ (void *) page_meta, zone->zone_name);
+ assert(PAGE_METADATA_GET_ZONE(page_meta) == zone);
+ element = (vm_offset_t)page_metadata_get_freelist(page_meta);
+
+ if (__improbable(!is_sane_zone_ptr(zone, element, zone->elem_size)))
panic("zfree: invalid head pointer %p for freelist of zone %s\n",
(void *) element, zone->zone_name);
-#endif
vm_offset_t *primary = (vm_offset_t *) element;
vm_offset_t *backup = get_backup_ptr(zone->elem_size, primary);
- vm_offset_t next_element = *primary;
+ /*
+ * Since the primary next pointer is xor'ed with zp_nopoison_cookie
+ * for obfuscation, retrieve the original value back
+ */
+ vm_offset_t next_element = *primary ^ zp_nopoison_cookie;
+ vm_offset_t next_element_primary = *primary;
vm_offset_t next_element_backup = *backup;
/*
* should have been, and print it appropriately
*/
if (__improbable(!is_sane_zone_element(zone, next_element)))
- backup_ptr_mismatch_panic(zone, element, next_element, next_element_backup);
+ backup_ptr_mismatch_panic(zone, element, next_element_primary, next_element_backup);
/* Check the backup pointer for the regular cookie */
if (__improbable(next_element != (next_element_backup ^ zp_nopoison_cookie))) {
/* Check for the poisoned cookie instead */
if (__improbable(next_element != (next_element_backup ^ zp_poisoned_cookie)))
/* Neither cookie is valid, corruption has occurred */
- backup_ptr_mismatch_panic(zone, element, next_element, next_element_backup);
+ backup_ptr_mismatch_panic(zone, element, next_element_primary, next_element_backup);
/*
* Element was marked as poisoned, so check its integrity before using it.
*check_poison = TRUE;
}
- if (zone->use_page_list) {
-
- /* Make sure the page_meta is at the correct offset from the start of page */
- if (__improbable(page_meta != get_zone_page_metadata((struct zone_free_element *)element)))
- panic("zalloc: metadata located at incorrect location on page of zone %s\n",
- zone->zone_name);
-
- /* Make sure next_element belongs to the same page as page_meta */
- if (next_element) {
- if (__improbable(page_meta != get_zone_page_metadata((struct zone_free_element *)next_element)))
- panic("zalloc: next element pointer %p for element %p points to invalid element for zone %s\n",
- (void *)next_element, (void *)element, zone->zone_name);
- }
+ /* Make sure the page_meta is at the correct offset from the start of page */
+ if (__improbable(page_meta != get_zone_page_metadata((struct zone_free_element *)element, FALSE)))
+ panic("zalloc: Incorrect metadata %p found in zone %s page queue. Expected metadata: %p\n",
+ page_meta, zone->zone_name, get_zone_page_metadata((struct zone_free_element *)element, FALSE));
+
+ /* Make sure next_element belongs to the same page as page_meta */
+ if (next_element) {
+ if (__improbable(page_meta != get_zone_page_metadata((struct zone_free_element *)next_element, FALSE)))
+ panic("zalloc: next element pointer %p for element %p points to invalid element for zone %s\n",
+ (void *)next_element, (void *)element, zone->zone_name);
}
/* Remove this element from the free list */
- if (zone->use_page_list) {
-
- page_meta->elements = (struct zone_free_element *)next_element;
- page_meta->free_count--;
+ page_metadata_set_freelist(page_meta, (struct zone_free_element *)next_element);
+ page_meta->free_count--;
- if (zone->allows_foreign && !from_zone_map(element, zone->elem_size)) {
- if (page_meta->free_count == 0) {
- /* move to all used */
- remqueue((queue_entry_t)page_meta);
- enqueue_tail(&zone->pages.all_used, (queue_entry_t)page_meta);
- } else {
- /* no other list transitions */
+ if (page_meta->free_count == 0) {
+ /* move to all used */
+ re_queue_tail(&zone->pages.all_used, &(page_meta->pages));
+ } else {
+ if (!zone->allows_foreign || from_zone_map(element, zone->elem_size)) {
+ if (get_metadata_alloc_count(page_meta) == page_meta->free_count + 1) {
+ /* remove from free, move to intermediate */
+ re_queue_tail(&zone->pages.intermediate, &(page_meta->pages));
}
- } else if (page_meta->free_count == 0) {
- /* remove from intermediate or free, move to all_used */
- remqueue((queue_entry_t)page_meta);
- enqueue_tail(&zone->pages.all_used, (queue_entry_t)page_meta);
- } else if (page_meta->alloc_count == page_meta->free_count + 1) {
- /* remove from free, move to intermediate */
- remqueue((queue_entry_t)page_meta);
- enqueue_tail(&zone->pages.intermediate, (queue_entry_t)page_meta);
}
- } else {
- zone->free_elements = (struct zone_free_element *)next_element;
}
zone->countfree--;
zone->count++;
zone->sum_count++;
+#if VM_MAX_TAG_ZONES
+ if (__improbable(zone->tags)) {
+ // set the tag with b0 clear so the block remains inuse
+ ZTAG(zone, element)[0] = (tag << 1);
+ }
+#endif /* VM_MAX_TAG_ZONES */
+
+
+#if KASAN_ZALLOC
+ kasan_poison_range(element, zone->elem_size, ASAN_VALID);
+#endif
+
return element;
}
-
/*
* End of zone poisoning
*/
-/*
- * Fake zones for things that want to report via zprint but are not actually zones.
- */
-struct fake_zone_info {
- const char* name;
- void (*init)(int);
- void (*query)(int *,
- vm_size_t *, vm_size_t *, vm_size_t *, vm_size_t *,
- uint64_t *, int *, int *, int *);
-};
-
-static const struct fake_zone_info fake_zones[] = {
-};
-static const unsigned int num_fake_zones =
- sizeof (fake_zones) / sizeof (fake_zones[0]);
-
/*
* Zone info options
*/
-boolean_t zinfo_per_task = FALSE; /* enabled by -zinfop in boot-args */
-#define ZINFO_SLOTS 200 /* for now */
-#define ZONES_MAX (ZINFO_SLOTS - num_fake_zones - 1)
-
-/*
- * Support for garbage collection of unused zone pages
- *
- * The kernel virtually allocates the "zone map" submap of the kernel
- * map. When an individual zone needs more storage, memory is allocated
- * out of the zone map, and the two-level "zone_page_table" is
- * on-demand expanded so that it has entries for those pages.
- * zone_page_init()/zone_page_alloc() initialize "alloc_count"
- * to the number of zone elements that occupy the zone page (which may
- * be a minimum of 1, including if a zone element spans multiple
- * pages).
- *
- * Asynchronously, the zone_gc() logic attempts to walk zone free
- * lists to see if all the elements on a zone page are free. If
- * "collect_count" (which it increments during the scan) matches
- * "alloc_count", the zone page is a candidate for collection and the
- * physical page is returned to the VM system. During this process, the
- * first word of the zone page is re-used to maintain a linked list of
- * to-be-collected zone pages.
- */
-typedef uint32_t zone_page_index_t;
-#define ZONE_PAGE_INDEX_INVALID ((zone_page_index_t)0xFFFFFFFFU)
-
-struct zone_page_table_entry {
- volatile uint16_t alloc_count;
- volatile uint16_t collect_count;
-};
-
-#define ZONE_PAGE_USED 0
-#define ZONE_PAGE_UNUSED 0xffff
-
-/* Forwards */
-void zone_page_init(
- vm_offset_t addr,
- vm_size_t size);
-
-void zone_page_alloc(
- vm_offset_t addr,
- vm_size_t size);
-
-void zone_page_free_element(
- zone_page_index_t *free_page_head,
- zone_page_index_t *free_page_tail,
- vm_offset_t addr,
- vm_size_t size);
-
-void zone_page_collect(
- vm_offset_t addr,
- vm_size_t size);
-
-boolean_t zone_page_collectable(
- vm_offset_t addr,
- vm_size_t size);
-
-void zone_page_keep(
- vm_offset_t addr,
- vm_size_t size);
-
-void zone_display_zprint(void);
+#define ZINFO_SLOTS MAX_ZONES /* for now */
zone_t zone_find_largest(void);
static thread_call_data_t call_async_alloc;
-vm_map_t zone_map = VM_MAP_NULL;
-
-zone_t zone_zone = ZONE_NULL; /* the zone containing other zones */
-
-zone_t zinfo_zone = ZONE_NULL; /* zone of per-task zone info */
-
-/*
- * The VM system gives us an initial chunk of memory.
- * It has to be big enough to allocate the zone_zone
- * all the way through the pmap zone.
- */
-
-vm_offset_t zdata;
-vm_size_t zdata_size;
/*
* Align elements that use the zone page list to 32 byte boundaries.
*/
#define zone_wakeup(zone) thread_wakeup((event_t)(zone))
#define zone_sleep(zone) \
- (void) lck_mtx_sleep(&(zone)->lock, LCK_SLEEP_SPIN, (event_t)(zone), THREAD_UNINT);
+ (void) lck_mtx_sleep(&(zone)->lock, LCK_SLEEP_SPIN_ALWAYS, (event_t)(zone), THREAD_UNINT);
/*
* The zone_locks_grp allows for collecting lock statistics.
#define lock_try_zone(zone) lck_mtx_try_lock_spin(&zone->lock)
-/*
- * Garbage collection map information
- */
-#define ZONE_PAGE_TABLE_FIRST_LEVEL_SIZE (32)
-struct zone_page_table_entry * volatile zone_page_table[ZONE_PAGE_TABLE_FIRST_LEVEL_SIZE];
-vm_size_t zone_page_table_used_size;
-unsigned int zone_pages;
-unsigned int zone_page_table_second_level_size; /* power of 2 */
-unsigned int zone_page_table_second_level_shift_amount;
-
-#define zone_page_table_first_level_slot(x) ((x) >> zone_page_table_second_level_shift_amount)
-#define zone_page_table_second_level_slot(x) ((x) & (zone_page_table_second_level_size - 1))
-
-void zone_page_table_expand(zone_page_index_t pindex);
-struct zone_page_table_entry *zone_page_table_lookup(zone_page_index_t pindex);
-
/*
* Exclude more than one concurrent garbage collection
*/
lck_grp_attr_t zone_gc_lck_grp_attr;
lck_mtx_ext_t zone_gc_lck_ext;
-/*
- * Protects first_zone, last_zone, num_zones,
- * and the next_zone field of zones.
- */
-decl_simple_lock_data(, all_zones_lock)
-zone_t first_zone;
-zone_t *last_zone;
-unsigned int num_zones;
-
boolean_t zone_gc_allowed = TRUE;
-boolean_t zone_gc_forced = FALSE;
boolean_t panic_include_zprint = FALSE;
-boolean_t zone_gc_allowed_by_time_throttle = TRUE;
-vm_offset_t panic_kext_memory_info = 0;
+mach_memory_info_t *panic_kext_memory_info = NULL;
vm_size_t panic_kext_memory_size = 0;
#define ZALLOC_DEBUG_ZONEGC 0x00000001
* corrupted to examine its history. This should lead to the source of the corruption.
*/
+static boolean_t log_records_init = FALSE;
static int log_records; /* size of the log, expressed in number of records */
-#define MAX_ZONE_NAME 32 /* max length of a zone name we can take from the boot-args */
+#define MAX_NUM_ZONES_ALLOWED_LOGGING 10 /* Maximum 10 zones can be logged at once */
+
+static int max_num_zones_to_log = MAX_NUM_ZONES_ALLOWED_LOGGING;
+static int num_zones_logged = 0;
static char zone_name_to_log[MAX_ZONE_NAME] = ""; /* the zone name we're logging, if any */
/* Log allocations and frees to help debug a zone element corruption */
boolean_t corruption_debug_flag = FALSE; /* enabled by "-zc" boot-arg */
+/* Making pointer scanning leaks detection possible for all zones */
+
+#if DEBUG || DEVELOPMENT
+boolean_t leak_scan_debug_flag = FALSE; /* enabled by "-zl" boot-arg */
+#endif /* DEBUG || DEVELOPMENT */
+
/*
* The number of records in the log is configurable via the zrecs parameter in boot-args. Set this to
- * the number of records you want in the log. For example, "zrecs=1000" sets it to 1000 records. Note
- * that the larger the size of the log, the slower the system will run due to linear searching in the log,
- * but one doesn't generally care about performance when tracking down a leak. The log is capped at 8000
- * records since going much larger than this tends to make the system unresponsive and unbootable on small
- * memory configurations. The default value is 4000 records.
+ * the number of records you want in the log. For example, "zrecs=10" sets it to 10 records. Since this
+ * is the number of stacks suspected of leaking, we don't need many records.
*/
#if defined(__LP64__)
-#define ZRECORDS_MAX 128000 /* Max records allowed in the log */
+#define ZRECORDS_MAX 2560 /* Max records allowed in the log */
#else
-#define ZRECORDS_MAX 8000 /* Max records allowed in the log */
+#define ZRECORDS_MAX 1536 /* Max records allowed in the log */
#endif
-#define ZRECORDS_DEFAULT 4000 /* default records in log if zrecs is not specificed in boot-args */
+#define ZRECORDS_DEFAULT 1024 /* default records in log if zrecs is not specificed in boot-args */
/*
* Each record in the log contains a pointer to the zone element it refers to,
#define ZOP_ALLOC 1
#define ZOP_FREE 0
-/*
- * The allocation log and all the related variables are protected by the zone lock for the zone_of_interest
- */
-static btlog_t *zlog_btlog; /* the log itself, dynamically allocated when logging is enabled */
-static zone_t zone_of_interest = NULL; /* the zone being watched; corresponds to zone_name_to_log */
-
/*
* Decide if we want to log this zone by doing a string compare between a zone name and the name
* of the zone to log. Return true if the strings are equal, false otherwise. Because it's not
* match a space in the zone name.
*/
-static int
-log_this_zone(const char *zonename, const char *logname)
+int
+track_this_zone(const char *zonename, const char *logname)
{
int len;
const char *zc = zonename;
* the buffer for the records has been allocated.
*/
-#define DO_LOGGING(z) (zlog_btlog && (z) == zone_of_interest)
+#define DO_LOGGING(z) (z->zone_logging == TRUE && z->zlog_btlog)
extern boolean_t kmem_alloc_ready;
zleak_global_tracking_threshold = max_zonemap_size / 2;
zleak_per_zone_tracking_threshold = zleak_global_tracking_threshold / 8;
+#if CONFIG_EMBEDDED
+ if (PE_parse_boot_argn("-zleakon", scratch_buf, sizeof(scratch_buf))) {
+ zleak_enable_flag = TRUE;
+ printf("zone leak detection enabled\n");
+ } else {
+ zleak_enable_flag = FALSE;
+ printf("zone leak detection disabled\n");
+ }
+#else /* CONFIG_EMBEDDED */
/* -zleakoff (flag to disable zone leak monitor) */
if (PE_parse_boot_argn("-zleakoff", scratch_buf, sizeof(scratch_buf))) {
zleak_enable_flag = FALSE;
zleak_enable_flag = TRUE;
printf("zone leak detection enabled\n");
}
+#endif /* CONFIG_EMBEDDED */
/* zfactor=XXXX (override how often to sample the zone allocator) */
if (PE_parse_boot_argn("zfactor", &zleak_sample_factor, sizeof(zleak_sample_factor))) {
* mbuf.c for mbuf leak-detection. This is why they lack the z_ prefix.
*/
-/*
- * This function captures a backtrace from the current stack and
- * returns the number of frames captured, limited by max_frames.
- * It's fast because it does no checking to make sure there isn't bad data.
- * Since it's only called from threads that we're going to keep executing,
- * if there's bad data we were going to die eventually.
- * If this function is inlined, it doesn't record the frame of the function it's inside.
- * (because there's no stack frame!)
- */
-
-uint32_t
-fastbacktrace(uintptr_t* bt, uint32_t max_frames)
-{
- uintptr_t* frameptr = NULL, *frameptr_next = NULL;
- uintptr_t retaddr = 0;
- uint32_t frame_index = 0, frames = 0;
- uintptr_t kstackb, kstackt;
- thread_t cthread = current_thread();
-
- if (__improbable(cthread == NULL))
- return 0;
-
- kstackb = cthread->kernel_stack;
- kstackt = kstackb + kernel_stack_size;
- /* Load stack frame pointer (EBP on x86) into frameptr */
- frameptr = __builtin_frame_address(0);
- if (((uintptr_t)frameptr > kstackt) || ((uintptr_t)frameptr < kstackb))
- frameptr = NULL;
-
- while (frameptr != NULL && frame_index < max_frames ) {
- /* Next frame pointer is pointed to by the previous one */
- frameptr_next = (uintptr_t*) *frameptr;
-
- /* Bail if we see a zero in the stack frame, that means we've reached the top of the stack */
- /* That also means the return address is worthless, so don't record it */
- if (frameptr_next == NULL)
- break;
- /* Verify thread stack bounds */
- if (((uintptr_t)frameptr_next > kstackt) || ((uintptr_t)frameptr_next < kstackb))
- break;
- /* Pull return address from one spot above the frame pointer */
- retaddr = *(frameptr + 1);
-
- /* Store it in the backtrace array */
- bt[frame_index++] = retaddr;
-
- frameptr = frameptr_next;
- }
-
- /* Save the number of frames captured for return value */
- frames = frame_index;
-
- /* Fill in the rest of the backtrace with zeros */
- while (frame_index < max_frames)
- bt[frame_index++] = 0;
-
- return frames;
-}
-
/* "Thomas Wang's 32/64 bit mix functions." http://www.concentric.net/~Ttwang/tech/inthash.htm */
uintptr_t
hash_mix(uintptr_t x)
/* End of all leak-detection code */
#pragma mark -
+#define ZONE_MAX_ALLOC_SIZE (32 * 1024)
+#define ZONE_ALLOC_FRAG_PERCENT(alloc_size, ele_size) (((alloc_size % ele_size) * 100) / alloc_size)
+
+/* Used to manage copying in of new zone names */
+static vm_offset_t zone_names_start;
+static vm_offset_t zone_names_next;
+
+static vm_size_t
+compute_element_size(vm_size_t requested_size)
+{
+ vm_size_t element_size = requested_size;
+
+ /* Zone elements must fit both a next pointer and a backup pointer */
+ vm_size_t minimum_element_size = sizeof(vm_offset_t) * 2;
+ if (element_size < minimum_element_size)
+ element_size = minimum_element_size;
+
+ /*
+ * Round element size to a multiple of sizeof(pointer)
+ * This also enforces that allocations will be aligned on pointer boundaries
+ */
+ element_size = ((element_size-1) + sizeof(vm_offset_t)) -
+ ((element_size-1) % sizeof(vm_offset_t));
+
+ return element_size;
+}
+
/*
* zinit initializes a new zone. The zone data structures themselves
* are stored in a zone, which is initially a static structure that
* is initialized by zone_init.
*/
+
zone_t
zinit(
vm_size_t size, /* the size of an element */
vm_size_t alloc, /* allocation size */
const char *name) /* a name for the zone */
{
- zone_t z;
- boolean_t use_page_list = FALSE;
-
- if (zone_zone == ZONE_NULL) {
-
- z = (struct zone *)zdata;
- /* special handling in zcram() because the first element is being used */
- } else
- z = (zone_t) zalloc(zone_zone);
-
- if (z == ZONE_NULL)
- return(ZONE_NULL);
+ zone_t z;
- /* Zone elements must fit both a next pointer and a backup pointer */
- vm_size_t minimum_element_size = sizeof(vm_offset_t) * 2;
- if (size < minimum_element_size)
- size = minimum_element_size;
+ size = compute_element_size(size);
- /*
- * Round element size to a multiple of sizeof(pointer)
- * This also enforces that allocations will be aligned on pointer boundaries
- */
- size = ((size-1) + sizeof(vm_offset_t)) -
- ((size-1) % sizeof(vm_offset_t));
+ simple_lock(&all_zones_lock);
- if (alloc == 0)
- alloc = PAGE_SIZE;
+ assert(num_zones < MAX_ZONES);
+ assert(num_zones_in_use <= num_zones);
- alloc = round_page(alloc);
- max = round_page(max);
+ /* If possible, find a previously zdestroy'ed zone in the zone_array that we can reuse instead of initializing a new zone. */
+ for (int index = bitmap_first(zone_empty_bitmap, MAX_ZONES);
+ index >= 0 && index < (int)num_zones;
+ index = bitmap_next(zone_empty_bitmap, index)) {
+ z = &(zone_array[index]);
- /*
- * we look for an allocation size with less than 1% waste
- * up to 5 pages in size...
- * otherwise, we look for an allocation size with least fragmentation
- * in the range of 1 - 5 pages
- * This size will be used unless
- * the user suggestion is larger AND has less fragmentation
- */
-#if ZONE_ALIAS_ADDR
- /* Favor PAGE_SIZE allocations unless we waste >10% space */
- if ((size < PAGE_SIZE) && (PAGE_SIZE % size <= PAGE_SIZE / 10))
- alloc = PAGE_SIZE;
- else
-#endif
-#if defined(__LP64__)
- if (((alloc % size) != 0) || (alloc > PAGE_SIZE * 8))
+ /*
+ * If the zone name and the element size are the same, we can just reuse the old zone struct.
+ * Otherwise hand out a new zone from the zone_array.
+ */
+ if (!strcmp(z->zone_name, name)) {
+ vm_size_t old_size = z->elem_size;
+#if KASAN_ZALLOC
+ old_size -= z->kasan_redzone * 2;
#endif
- {
- vm_size_t best, waste; unsigned int i;
- best = PAGE_SIZE;
- waste = best % size;
-
- for (i = 1; i <= 5; i++) {
- vm_size_t tsize, twaste;
-
- tsize = i * PAGE_SIZE;
-
- if ((tsize % size) < (tsize / 100)) {
- alloc = tsize;
- goto use_this_allocation;
+ if (old_size == size) {
+ /* Clear the empty bit for this zone, increment num_zones_in_use, and mark the zone as valid again. */
+ bitmap_clear(zone_empty_bitmap, index);
+ num_zones_in_use++;
+ z->zone_valid = TRUE;
+
+ /* All other state is already set up since the zone was previously in use. Return early. */
+ simple_unlock(&all_zones_lock);
+ return (z);
}
- twaste = tsize % size;
- if (twaste < waste)
- best = tsize, waste = twaste;
}
- if (alloc <= best || (alloc % size >= waste))
- alloc = best;
}
-use_this_allocation:
- if (max && (max < alloc))
- max = alloc;
+
+ /* If we're here, it means we didn't find a zone above that we could simply reuse. Set up a new zone. */
+
+ /* Clear the empty bit for the new zone */
+ bitmap_clear(zone_empty_bitmap, num_zones);
+
+ z = &(zone_array[num_zones]);
+ z->index = num_zones;
+
+ num_zones++;
+ num_zones_in_use++;
/*
- * Opt into page list tracking if we can reliably map an allocation
- * to its page_metadata, and if the wastage in the tail of
- * the allocation is not too large
+ * Initialize the zone lock here before dropping the all_zones_lock. Otherwise we could race with
+ * zalloc_async() and try to grab the zone lock before it has been initialized, causing a panic.
*/
+ lock_zone_init(z);
- /* zone_zone can't use page metadata since the page metadata will overwrite zone metadata */
- if (alloc == PAGE_SIZE && zone_zone != ZONE_NULL) {
- vm_offset_t first_element_offset;
- size_t zone_page_metadata_size = sizeof(struct zone_page_metadata);
+ simple_unlock(&all_zones_lock);
- if (zone_page_metadata_size % ZONE_ELEMENT_ALIGNMENT == 0) {
- first_element_offset = zone_page_metadata_size;
+#if KASAN_ZALLOC
+ /* Expand the zone allocation size to include the redzones. For page-multiple
+ * zones add a full guard page because they likely require alignment. kalloc
+ * and fakestack handles its own KASan state, so ignore those zones. */
+ /* XXX: remove this when zinit_with_options() is a thing */
+ const char *kalloc_name = "kalloc.";
+ const char *fakestack_name = "fakestack.";
+ if (strncmp(name, kalloc_name, strlen(kalloc_name)) == 0) {
+ z->kasan_redzone = 0;
+ } else if (strncmp(name, fakestack_name, strlen(fakestack_name)) == 0) {
+ z->kasan_redzone = 0;
+ } else {
+ if ((size % PAGE_SIZE) != 0) {
+ z->kasan_redzone = KASAN_GUARD_SIZE;
} else {
- first_element_offset = zone_page_metadata_size + (ZONE_ELEMENT_ALIGNMENT - (zone_page_metadata_size % ZONE_ELEMENT_ALIGNMENT));
+ z->kasan_redzone = PAGE_SIZE;
}
+ max = (max / size) * (size + z->kasan_redzone * 2);
+ size += z->kasan_redzone * 2;
+ }
+#endif
- if (((PAGE_SIZE - first_element_offset) % size) <= PAGE_SIZE / 100) {
- use_page_list = TRUE;
+ max = round_page(max);
+
+ vm_size_t best_alloc = PAGE_SIZE;
+
+ if ((size % PAGE_SIZE) == 0) {
+ /* zero fragmentation by definition */
+ best_alloc = size;
+ } else {
+ vm_size_t alloc_size;
+ for (alloc_size = (2 * PAGE_SIZE); alloc_size <= ZONE_MAX_ALLOC_SIZE; alloc_size += PAGE_SIZE) {
+ if (ZONE_ALLOC_FRAG_PERCENT(alloc_size, size) < ZONE_ALLOC_FRAG_PERCENT(best_alloc, size)) {
+ best_alloc = alloc_size;
+ }
}
}
+ alloc = best_alloc;
+ if (max && (max < alloc))
+ max = alloc;
+
z->free_elements = NULL;
queue_init(&z->pages.any_free_foreign);
queue_init(&z->pages.all_free);
z->max_size = max;
z->elem_size = size;
z->alloc_size = alloc;
- z->zone_name = name;
z->count = 0;
z->countfree = 0;
+ z->count_all_free_pages = 0;
z->sum_count = 0LL;
z->doing_alloc_without_vm_priv = FALSE;
z->doing_alloc_with_vm_priv = FALSE;
- z->doing_gc = FALSE;
z->exhaustible = FALSE;
z->collectable = TRUE;
z->allows_foreign = FALSE;
z->async_prio_refill = FALSE;
z->gzalloc_exempt = FALSE;
z->alignment_required = FALSE;
- z->use_page_list = use_page_list;
+ z->zone_replenishing = FALSE;
z->prio_refill_watermark = 0;
z->zone_replenish_thread = NULL;
z->zp_count = 0;
+ z->kasan_quarantine = TRUE;
+ z->zone_valid = TRUE;
+
#if CONFIG_ZLEAKS
z->zleak_capture = 0;
z->zleak_on = FALSE;
#endif /* CONFIG_ZLEAKS */
-#if ZONE_DEBUG
- z->active_zones.next = z->active_zones.prev = NULL;
- zone_debug_enable(z);
-#endif /* ZONE_DEBUG */
- lock_zone_init(z);
-
/*
- * Add the zone to the all-zones list.
- * If we are tracking zone info per task, and we have
- * already used all the available stat slots, then keep
- * using the overflow zone slot.
+ * If the VM is ready to handle kmem_alloc requests, copy the zone name passed in.
+ *
+ * Else simply maintain a pointer to the name string. The only zones we'll actually have
+ * to do this for would be the VM-related zones that are created very early on before any
+ * kexts can be loaded (unloaded). So we should be fine with just a pointer in this case.
*/
- z->next_zone = ZONE_NULL;
- simple_lock(&all_zones_lock);
- *last_zone = z;
- last_zone = &z->next_zone;
- z->index = num_zones;
- if (zinfo_per_task) {
- if (num_zones > ZONES_MAX)
- z->index = ZONES_MAX;
- }
- num_zones++;
- simple_unlock(&all_zones_lock);
+ if (kmem_alloc_ready) {
+ size_t len = MIN(strlen(name)+1, MACH_ZONE_NAME_MAX_LEN);
+
+ if (zone_names_start == 0 || ((zone_names_next - zone_names_start) + len) > PAGE_SIZE) {
+ printf("zalloc: allocating memory for zone names buffer\n");
+ kern_return_t retval = kmem_alloc_kobject(kernel_map, &zone_names_start,
+ PAGE_SIZE, VM_KERN_MEMORY_OSFMK);
+ if (retval != KERN_SUCCESS) {
+ panic("zalloc: zone_names memory allocation failed");
+ }
+ bzero((char *)zone_names_start, PAGE_SIZE);
+ zone_names_next = zone_names_start;
+ }
- /*
- * Check if we should be logging this zone. If so, remember the zone pointer.
- */
- if (log_this_zone(z->zone_name, zone_name_to_log)) {
- zone_of_interest = z;
+ strlcpy((char *)zone_names_next, name, len);
+ z->zone_name = (char *)zone_names_next;
+ zone_names_next += len;
+ } else {
+ z->zone_name = name;
}
/*
- * If we want to log a zone, see if we need to allocate buffer space for the log. Some vm related zones are
- * zinit'ed before we can do a kmem_alloc, so we have to defer allocation in that case. kmem_alloc_ready is set to
- * TRUE once enough of the VM system is up and running to allow a kmem_alloc to work. If we want to log one
- * of the VM related zones that's set up early on, we will skip allocation of the log until zinit is called again
- * later on some other zone. So note we may be allocating a buffer to log a zone other than the one being initialized
- * right now.
+ * Check for and set up zone leak detection if requested via boot-args. We recognized two
+ * boot-args:
+ *
+ * zlog=<zone_to_log>
+ * zrecs=<num_records_in_log>
+ *
+ * The zlog arg is used to specify the zone name that should be logged, and zrecs is used to
+ * control the size of the log. If zrecs is not specified, a default value is used.
*/
- if (zone_of_interest != NULL && zlog_btlog == NULL && kmem_alloc_ready) {
- zlog_btlog = btlog_create(log_records, MAX_ZTRACE_DEPTH, NULL, NULL, NULL);
- if (zlog_btlog) {
- printf("zone: logging started for zone %s\n", zone_of_interest->zone_name);
- } else {
- printf("zone: couldn't allocate memory for zrecords, turning off zleak logging\n");
- zone_of_interest = NULL;
+
+ if (num_zones_logged < max_num_zones_to_log) {
+
+ int i = 1; /* zlog0 isn't allowed. */
+ boolean_t zone_logging_enabled = FALSE;
+ char zlog_name[MAX_ZONE_NAME] = ""; /* Temp. buffer to create the strings zlog1, zlog2 etc... */
+
+ while (i <= max_num_zones_to_log) {
+
+ snprintf(zlog_name, MAX_ZONE_NAME, "zlog%d", i);
+
+ if (PE_parse_boot_argn(zlog_name, zone_name_to_log, sizeof(zone_name_to_log)) == TRUE) {
+ if (track_this_zone(z->zone_name, zone_name_to_log)) {
+ if (z->zone_valid) {
+ z->zone_logging = TRUE;
+ zone_logging_enabled = TRUE;
+ num_zones_logged++;
+ break;
+ }
+ }
+ }
+ i++;
+ }
+
+ if (zone_logging_enabled == FALSE) {
+ /*
+ * Backwards compat. with the old boot-arg used to specify single zone logging i.e. zlog
+ * Needs to happen after the newer zlogn checks because the prefix will match all the zlogn
+ * boot-args.
+ */
+ if (PE_parse_boot_argn("zlog", zone_name_to_log, sizeof(zone_name_to_log)) == TRUE) {
+ if (track_this_zone(z->zone_name, zone_name_to_log)) {
+ if (z->zone_valid) {
+ z->zone_logging = TRUE;
+ zone_logging_enabled = TRUE;
+ num_zones_logged++;
+ }
+ }
+ }
+ }
+
+ if (log_records_init == FALSE && zone_logging_enabled == TRUE) {
+ if (PE_parse_boot_argn("zrecs", &log_records, sizeof(log_records)) == TRUE) {
+ /*
+ * Don't allow more than ZRECORDS_MAX records even if the user asked for more.
+ * This prevents accidentally hogging too much kernel memory and making the system
+ * unusable.
+ */
+
+ log_records = MIN(ZRECORDS_MAX, log_records);
+ log_records_init = TRUE;
+ } else {
+ log_records = ZRECORDS_DEFAULT;
+ log_records_init = TRUE;
+ }
+ }
+
+ /*
+ * If we want to log a zone, see if we need to allocate buffer space for the log. Some vm related zones are
+ * zinit'ed before we can do a kmem_alloc, so we have to defer allocation in that case. kmem_alloc_ready is set to
+ * TRUE once enough of the VM system is up and running to allow a kmem_alloc to work. If we want to log one
+ * of the VM related zones that's set up early on, we will skip allocation of the log until zinit is called again
+ * later on some other zone. So note we may be allocating a buffer to log a zone other than the one being initialized
+ * right now.
+ */
+ if (kmem_alloc_ready) {
+
+ zone_t curr_zone = NULL;
+ unsigned int max_zones = 0, zone_idx = 0;
+
+ simple_lock(&all_zones_lock);
+ max_zones = num_zones;
+ simple_unlock(&all_zones_lock);
+
+ for (zone_idx = 0; zone_idx < max_zones; zone_idx++) {
+
+ curr_zone = &(zone_array[zone_idx]);
+
+ if (!curr_zone->zone_valid) {
+ continue;
+ }
+
+ /*
+ * We work with the zone unlocked here because we could end up needing the zone lock to
+ * enable logging for this zone e.g. need a VM object to allocate memory to enable logging for the
+ * VM objects zone.
+ *
+ * We don't expect these zones to be needed at this early a time in boot and so take this chance.
+ */
+ if (curr_zone->zone_logging && curr_zone->zlog_btlog == NULL) {
+
+ curr_zone->zlog_btlog = btlog_create(log_records, MAX_ZTRACE_DEPTH, (corruption_debug_flag == FALSE) /* caller_will_remove_entries_for_element? */);
+
+ if (curr_zone->zlog_btlog) {
+
+ printf("zone: logging started for zone %s\n", curr_zone->zone_name);
+ } else {
+ printf("zone: couldn't allocate memory for zrecords, turning off zleak logging\n");
+ curr_zone->zone_logging = FALSE;
+ }
+ }
+
+ }
}
}
+
#if CONFIG_GZALLOC
gzalloc_zone_init(z);
#endif
+
return(z);
}
unsigned zone_replenish_loops, zone_replenish_wakeups, zone_replenish_wakeups_initiated, zone_replenish_throttle_count;
/* High priority VM privileged thread used to asynchronously refill a designated
* zone, such as the reserved VM map entry zone.
*/
-static void zone_replenish_thread(zone_t z) {
+__attribute__((noreturn))
+static void
+zone_replenish_thread(zone_t z)
+{
vm_size_t free_size;
current_thread()->options |= TH_OPT_VMPRIV;
for (;;) {
lock_zone(z);
+ assert(z->zone_valid);
+ z->zone_replenishing = TRUE;
assert(z->prio_refill_watermark != 0);
while ((free_size = (z->cur_size - (z->count * z->elem_size))) < (z->prio_refill_watermark * z->elem_size)) {
assert(z->doing_alloc_without_vm_priv == FALSE);
if (z->noencrypt)
zflags |= KMA_NOENCRYPT;
+ /* Trigger jetsams via the vm_pageout_garbage_collect thread if we're running out of zone memory */
+ if (is_zone_map_nearing_exhaustion()) {
+ thread_wakeup((event_t) &vm_pageout_garbage_collect);
+ }
+
kr = kernel_memory_allocate(zone_map, &space, alloc_size, 0, zflags, VM_KERN_MEMORY_ZONE);
if (kr == KERN_SUCCESS) {
-#if ZONE_ALIAS_ADDR
- if (alloc_size == PAGE_SIZE)
- space = zone_alias_addr(space);
-#endif
zcram(z, space, alloc_size);
} else if (kr == KERN_RESOURCE_SHORTAGE) {
VM_PAGE_WAIT();
} else if (kr == KERN_NO_SPACE) {
kr = kernel_memory_allocate(kernel_map, &space, alloc_size, 0, zflags, VM_KERN_MEMORY_ZONE);
if (kr == KERN_SUCCESS) {
-#if ZONE_ALIAS_ADDR
- if (alloc_size == PAGE_SIZE)
- space = zone_alias_addr(space);
-#endif
zcram(z, space, alloc_size);
} else {
assert_wait_timeout(&z->zone_replenish_thread, THREAD_UNINT, 1, 100 * NSEC_PER_USEC);
}
lock_zone(z);
+ assert(z->zone_valid);
zone_replenish_loops++;
}
- unlock_zone(z);
+ z->zone_replenishing = FALSE;
/* Signal any potential throttled consumers, terminating
* their timer-bounded waits.
*/
thread_wakeup(z);
assert_wait(&z->zone_replenish_thread, THREAD_UNINT);
+ unlock_zone(z);
thread_block(THREAD_CONTINUE_NULL);
zone_replenish_wakeups++;
}
thread_deallocate(z->zone_replenish_thread);
}
+void
+zdestroy(zone_t z)
+{
+ unsigned int zindex;
+
+ assert(z != NULL);
+
+ lock_zone(z);
+ assert(z->zone_valid);
+
+ /* Assert that the zone does not have any allocations in flight */
+ assert(z->doing_alloc_without_vm_priv == FALSE);
+ assert(z->doing_alloc_with_vm_priv == FALSE);
+ assert(z->async_pending == FALSE);
+ assert(z->waiting == FALSE);
+ assert(z->async_prio_refill == FALSE);
+
+#if !KASAN_ZALLOC
+ /*
+ * Unset the valid bit. We'll hit an assert failure on further operations on this zone, until zinit() is called again.
+ * Leave the zone valid for KASan as we will see zfree's on quarantined free elements even after the zone is destroyed.
+ */
+ z->zone_valid = FALSE;
+#endif
+ unlock_zone(z);
+
+ /* Dump all the free elements */
+ drop_free_elements(z);
+
+#if CONFIG_GZALLOC
+ /* If the zone is gzalloc managed dump all the elements in the free cache */
+ gzalloc_empty_free_cache(z);
+#endif
+
+ lock_zone(z);
+
+#if !KASAN_ZALLOC
+ /* Assert that all counts are zero */
+ assert(z->count == 0);
+ assert(z->countfree == 0);
+ assert(z->cur_size == 0);
+ assert(z->page_count == 0);
+ assert(z->count_all_free_pages == 0);
+
+ /* Assert that all queues except the foreign queue are empty. The zone allocator doesn't know how to free up foreign memory. */
+ assert(queue_empty(&z->pages.all_used));
+ assert(queue_empty(&z->pages.intermediate));
+ assert(queue_empty(&z->pages.all_free));
+#endif
+
+ zindex = z->index;
+
+ unlock_zone(z);
+
+ simple_lock(&all_zones_lock);
+
+ assert(!bitmap_test(zone_empty_bitmap, zindex));
+ /* Mark the zone as empty in the bitmap */
+ bitmap_set(zone_empty_bitmap, zindex);
+ num_zones_in_use--;
+ assert(num_zones_in_use > 0);
+
+ simple_unlock(&all_zones_lock);
+}
+
+/* Initialize the metadata for an allocation chunk */
+static inline void
+zcram_metadata_init(vm_offset_t newmem, vm_size_t size, struct zone_page_metadata *chunk_metadata)
+{
+ struct zone_page_metadata *page_metadata;
+
+ /* The first page is the real metadata for this allocation chunk. We mark the others as fake metadata */
+ size -= PAGE_SIZE;
+ newmem += PAGE_SIZE;
+
+ for (; size > 0; newmem += PAGE_SIZE, size -= PAGE_SIZE) {
+ page_metadata = get_zone_page_metadata((struct zone_free_element *)newmem, TRUE);
+ assert(page_metadata != chunk_metadata);
+ PAGE_METADATA_SET_ZINDEX(page_metadata, MULTIPAGE_METADATA_MAGIC);
+ page_metadata_set_realmeta(page_metadata, chunk_metadata);
+ page_metadata->free_count = 0;
+ }
+ return;
+}
+
+
+/*
+ * Boolean Random Number Generator for generating booleans to randomize
+ * the order of elements in newly zcram()'ed memory. The algorithm is a
+ * modified version of the KISS RNG proposed in the paper:
+ * http://stat.fsu.edu/techreports/M802.pdf
+ * The modifications have been documented in the technical paper
+ * paper from UCL:
+ * http://www0.cs.ucl.ac.uk/staff/d.jones/GoodPracticeRNG.pdf
+ */
+
+static void random_bool_gen_entropy(
+ int *buffer,
+ int count)
+{
+
+ int i, t;
+ simple_lock(&bool_gen_lock);
+ for (i = 0; i < count; i++) {
+ bool_gen_seed[1] ^= (bool_gen_seed[1] << 5);
+ bool_gen_seed[1] ^= (bool_gen_seed[1] >> 7);
+ bool_gen_seed[1] ^= (bool_gen_seed[1] << 22);
+ t = bool_gen_seed[2] + bool_gen_seed[3] + bool_gen_global;
+ bool_gen_seed[2] = bool_gen_seed[3];
+ bool_gen_global = t < 0;
+ bool_gen_seed[3] = t &2147483647;
+ bool_gen_seed[0] += 1411392427;
+ buffer[i] = (bool_gen_seed[0] + bool_gen_seed[1] + bool_gen_seed[3]);
+ }
+ simple_unlock(&bool_gen_lock);
+}
+
+static boolean_t random_bool_gen(
+ int *buffer,
+ int index,
+ int bufsize)
+{
+ int valindex, bitpos;
+ valindex = (index / (8 * sizeof(int))) % bufsize;
+ bitpos = index % (8 * sizeof(int));
+ return (boolean_t)(buffer[valindex] & (1 << bitpos));
+}
+
+static void
+random_free_to_zone(
+ zone_t zone,
+ vm_offset_t newmem,
+ vm_offset_t first_element_offset,
+ int element_count,
+ int *entropy_buffer)
+{
+ vm_offset_t last_element_offset;
+ vm_offset_t element_addr;
+ vm_size_t elem_size;
+ int index;
+
+ assert(element_count <= ZONE_CHUNK_MAXELEMENTS);
+ elem_size = zone->elem_size;
+ last_element_offset = first_element_offset + ((element_count * elem_size) - elem_size);
+ for (index = 0; index < element_count; index++) {
+ assert(first_element_offset <= last_element_offset);
+ if (
+#if DEBUG || DEVELOPMENT
+ leak_scan_debug_flag || __improbable(zone->tags) ||
+#endif /* DEBUG || DEVELOPMENT */
+ random_bool_gen(entropy_buffer, index, MAX_ENTROPY_PER_ZCRAM)) {
+ element_addr = newmem + first_element_offset;
+ first_element_offset += elem_size;
+ } else {
+ element_addr = newmem + last_element_offset;
+ last_element_offset -= elem_size;
+ }
+ if (element_addr != (vm_offset_t)zone) {
+ zone->count++; /* compensate for free_to_zone */
+ free_to_zone(zone, element_addr, FALSE);
+ }
+ zone->cur_size += elem_size;
+ }
+}
+
/*
* Cram the given memory into the specified zone. Update the zone page count accordingly.
*/
{
vm_size_t elem_size;
boolean_t from_zm = FALSE;
+ int element_count;
+ int entropy_buffer[MAX_ENTROPY_PER_ZCRAM];
/* Basic sanity checks */
assert(zone != ZONE_NULL && newmem != (vm_offset_t)0);
elem_size = zone->elem_size;
+ KDBG(MACHDBG_CODE(DBG_MACH_ZALLOC, ZALLOC_ZCRAM) | DBG_FUNC_START, zone->index, size);
+
if (from_zone_map(newmem, size))
from_zm = TRUE;
+ if (!from_zm) {
+ /* We cannot support elements larger than page size for foreign memory because we
+ * put metadata on the page itself for each page of foreign memory. We need to do
+ * this in order to be able to reach the metadata when any element is freed
+ */
+ assert((zone->allows_foreign == TRUE) && (zone->elem_size <= (PAGE_SIZE - sizeof(struct zone_page_metadata))));
+ }
+
if (zalloc_debug & ZALLOC_DEBUG_ZCRAM)
kprintf("zcram(%p[%s], 0x%lx%s, 0x%lx)\n", zone, zone->zone_name,
(unsigned long)newmem, from_zm ? "" : "[F]", (unsigned long)size);
- if (from_zm && !zone->use_page_list)
- zone_page_init(newmem, size);
-
ZONE_PAGE_COUNT_INCR(zone, (size / PAGE_SIZE));
- lock_zone(zone);
+ random_bool_gen_entropy(entropy_buffer, MAX_ENTROPY_PER_ZCRAM);
+
+ /*
+ * Initialize the metadata for all pages. We dont need the zone lock
+ * here because we are not manipulating any zone related state yet.
+ */
- if (zone->use_page_list) {
- struct zone_page_metadata *page_metadata;
- size_t zone_page_metadata_size = sizeof(struct zone_page_metadata);
+ struct zone_page_metadata *chunk_metadata;
+ size_t zone_page_metadata_size = sizeof(struct zone_page_metadata);
- assert((newmem & PAGE_MASK) == 0);
- assert((size & PAGE_MASK) == 0);
- for (; size > 0; newmem += PAGE_SIZE, size -= PAGE_SIZE) {
+ assert((newmem & PAGE_MASK) == 0);
+ assert((size & PAGE_MASK) == 0);
- vm_size_t pos_in_page;
- page_metadata = (struct zone_page_metadata *)(newmem);
-
- page_metadata->pages.next = NULL;
- page_metadata->pages.prev = NULL;
- page_metadata->elements = NULL;
- page_metadata->zone = zone;
- page_metadata->alloc_count = 0;
- page_metadata->free_count = 0;
+ chunk_metadata = get_zone_page_metadata((struct zone_free_element *)newmem, TRUE);
+ chunk_metadata->pages.next = NULL;
+ chunk_metadata->pages.prev = NULL;
+ page_metadata_set_freelist(chunk_metadata, 0);
+ PAGE_METADATA_SET_ZINDEX(chunk_metadata, zone->index);
+ chunk_metadata->free_count = 0;
+ assert((size / PAGE_SIZE) <= ZONE_CHUNK_MAXPAGES);
+ chunk_metadata->page_count = (unsigned)(size / PAGE_SIZE);
+
+ zcram_metadata_init(newmem, size, chunk_metadata);
+
+#if VM_MAX_TAG_ZONES
+ if (__improbable(zone->tags)) {
+ assert(from_zm);
+ ztMemoryAdd(zone, newmem, size);
+ }
+#endif /* VM_MAX_TAG_ZONES */
+
+ lock_zone(zone);
+ assert(zone->zone_valid);
+ enqueue_tail(&zone->pages.all_used, &(chunk_metadata->pages));
- enqueue_tail(&zone->pages.all_used, (queue_entry_t)page_metadata);
+ if (!from_zm) {
+ /* We cannot support elements larger than page size for foreign memory because we
+ * put metadata on the page itself for each page of foreign memory. We need to do
+ * this in order to be able to reach the metadata when any element is freed
+ */
- vm_offset_t first_element_offset;
+ for (; size > 0; newmem += PAGE_SIZE, size -= PAGE_SIZE) {
+ vm_offset_t first_element_offset = 0;
if (zone_page_metadata_size % ZONE_ELEMENT_ALIGNMENT == 0){
first_element_offset = zone_page_metadata_size;
} else {
first_element_offset = zone_page_metadata_size + (ZONE_ELEMENT_ALIGNMENT - (zone_page_metadata_size % ZONE_ELEMENT_ALIGNMENT));
}
-
- for (pos_in_page = first_element_offset; (newmem + pos_in_page + elem_size) < (vm_offset_t)(newmem + PAGE_SIZE); pos_in_page += elem_size) {
- page_metadata->alloc_count++;
- zone->count++; /* compensate for free_to_zone */
- free_to_zone(zone, newmem + pos_in_page, FALSE);
- zone->cur_size += elem_size;
- }
+ element_count = (int)((PAGE_SIZE - first_element_offset) / elem_size);
+ random_free_to_zone(zone, newmem, first_element_offset, element_count, entropy_buffer);
}
} else {
- while (size >= elem_size) {
- zone->count++; /* compensate for free_to_zone */
- if (newmem == (vm_offset_t)zone) {
- /* Don't free zone_zone zone */
- } else {
- free_to_zone(zone, newmem, FALSE);
- }
- if (from_zm)
- zone_page_alloc(newmem, elem_size);
- size -= elem_size;
- newmem += elem_size;
- zone->cur_size += elem_size;
- }
+ element_count = (int)(size / elem_size);
+ random_free_to_zone(zone, newmem, 0, element_count, entropy_buffer);
}
unlock_zone(zone);
-}
-
-
-/*
- * Steal memory for the zone package. Called from
- * vm_page_bootstrap().
- */
-void
-zone_steal_memory(void)
-{
-#if CONFIG_GZALLOC
- gzalloc_configure();
-#endif
- /* Request enough early memory to get to the pmap zone */
- zdata_size = 12 * sizeof(struct zone);
- zdata_size = round_page(zdata_size);
- zdata = (vm_offset_t)pmap_steal_memory(zdata_size);
-}
+
+ KDBG(MACHDBG_CODE(DBG_MACH_ZALLOC, ZALLOC_ZCRAM) | DBG_FUNC_END, zone->index);
+}
/*
* Fill a zone with enough memory to contain at least nelem elements.
- * Memory is obtained with kmem_alloc_kobject from the kernel_map.
* Return the number of elements actually put into the zone, which may
* be more than the caller asked for since the memory allocation is
- * rounded up to a full page.
+ * rounded up to the next zone allocation size.
*/
int
zfill(
zone_t zone,
int nelem)
{
- kern_return_t kr;
- vm_size_t size;
+ kern_return_t kr;
vm_offset_t memory;
- int nalloc;
- assert(nelem > 0);
- if (nelem <= 0)
- return 0;
- size = nelem * zone->elem_size;
- size = round_page(size);
- kr = kmem_alloc_kobject(kernel_map, &memory, size, VM_KERN_MEMORY_ZONE);
- if (kr != KERN_SUCCESS)
+ vm_size_t alloc_size = zone->alloc_size;
+ vm_size_t elem_per_alloc = alloc_size / zone->elem_size;
+ vm_size_t nalloc = (nelem + elem_per_alloc - 1) / elem_per_alloc;
+
+ /* Don't mix-and-match zfill with foreign memory */
+ assert(!zone->allows_foreign);
+
+ /* Trigger jetsams via the vm_pageout_garbage_collect thread if we're running out of zone memory */
+ if (is_zone_map_nearing_exhaustion()) {
+ thread_wakeup((event_t) &vm_pageout_garbage_collect);
+ }
+
+ kr = kernel_memory_allocate(zone_map, &memory, nalloc * alloc_size, 0, KMA_KOBJECT, VM_KERN_MEMORY_ZONE);
+ if (kr != KERN_SUCCESS) {
+ printf("%s: kernel_memory_allocate() of %lu bytes failed\n",
+ __func__, (unsigned long)(nalloc * alloc_size));
return 0;
+ }
- zone_change(zone, Z_FOREIGN, TRUE);
- zcram(zone, memory, size);
- nalloc = (int)(size / zone->elem_size);
- assert(nalloc >= nelem);
+ for (vm_size_t i = 0; i < nalloc; i++) {
+ zcram(zone, memory + i * alloc_size, alloc_size);
+ }
- return nalloc;
+ return (int)(nalloc * elem_per_alloc);
}
/*
zone_bootstrap(void)
{
char temp_buf[16];
-
- if (PE_parse_boot_argn("-zinfop", temp_buf, sizeof(temp_buf))) {
- zinfo_per_task = TRUE;
- }
+ unsigned int i;
if (!PE_parse_boot_argn("zalloc_debug", &zalloc_debug, sizeof(zalloc_debug)))
zalloc_debug = 0;
/* Set up zone element poisoning */
zp_init();
+ /* Seed the random boolean generator for elements in zone free list */
+ for (i = 0; i < RANDOM_BOOL_GEN_SEED_COUNT; i++) {
+ bool_gen_seed[i] = (unsigned int)early_random();
+ }
+ simple_lock_init(&bool_gen_lock, 0);
+
/* should zlog log to debug zone corruption instead of leaks? */
if (PE_parse_boot_argn("-zc", temp_buf, sizeof(temp_buf))) {
corruption_debug_flag = TRUE;
}
- /*
- * Check for and set up zone leak detection if requested via boot-args. We recognized two
- * boot-args:
- *
- * zlog=<zone_to_log>
- * zrecs=<num_records_in_log>
- *
- * The zlog arg is used to specify the zone name that should be logged, and zrecs is used to
- * control the size of the log. If zrecs is not specified, a default value is used.
- */
-
- if (PE_parse_boot_argn("zlog", zone_name_to_log, sizeof(zone_name_to_log)) == TRUE) {
- if (PE_parse_boot_argn("zrecs", &log_records, sizeof(log_records)) == TRUE) {
-
- /*
- * Don't allow more than ZRECORDS_MAX records even if the user asked for more.
- * This prevents accidentally hogging too much kernel memory and making the system
- * unusable.
- */
-
- log_records = MIN(ZRECORDS_MAX, log_records);
-
- } else {
- log_records = ZRECORDS_DEFAULT;
- }
+#if DEBUG || DEVELOPMENT
+#if VM_MAX_TAG_ZONES
+ /* enable tags for zones that ask for */
+ if (PE_parse_boot_argn("-zt", temp_buf, sizeof(temp_buf))) {
+ zone_tagging_on = TRUE;
+ }
+#endif /* VM_MAX_TAG_ZONES */
+ /* disable element location randomization in a page */
+ if (PE_parse_boot_argn("-zl", temp_buf, sizeof(temp_buf))) {
+ leak_scan_debug_flag = TRUE;
}
+#endif
simple_lock_init(&all_zones_lock, 0);
- first_zone = ZONE_NULL;
- last_zone = &first_zone;
+ num_zones_in_use = 0;
num_zones = 0;
+ /* Mark all zones as empty */
+ bitmap_full(zone_empty_bitmap, BITMAP_LEN(MAX_ZONES));
+ zone_names_next = zone_names_start = 0;
+
+#if DEBUG || DEVELOPMENT
+ simple_lock_init(&zone_test_lock, 0);
+#endif /* DEBUG || DEVELOPMENT */
+
thread_call_setup(&call_async_alloc, zalloc_async, NULL);
- /* assertion: nobody else called zinit before us */
- assert(zone_zone == ZONE_NULL);
-
/* initializing global lock group for zones */
lck_grp_attr_setdefault(&zone_locks_grp_attr);
lck_grp_init(&zone_locks_grp, "zone_locks", &zone_locks_grp_attr);
- zone_zone = zinit(sizeof(struct zone), 128 * sizeof(struct zone),
- sizeof(struct zone), "zones");
- zone_change(zone_zone, Z_COLLECT, FALSE);
- zone_change(zone_zone, Z_CALLERACCT, FALSE);
- zone_change(zone_zone, Z_NOENCRYPT, TRUE);
-
- zcram(zone_zone, zdata, zdata_size);
- VM_PAGE_MOVE_STOLEN(atop_64(zdata_size));
-
- /* initialize fake zones and zone info if tracking by task */
- if (zinfo_per_task) {
- vm_size_t zisize = sizeof(zinfo_usage_store_t) * ZINFO_SLOTS;
- unsigned int i;
-
- for (i = 0; i < num_fake_zones; i++)
- fake_zones[i].init(ZINFO_SLOTS - num_fake_zones + i);
- zinfo_zone = zinit(zisize, zisize * CONFIG_TASK_MAX,
- zisize, "per task zinfo");
- zone_change(zinfo_zone, Z_CALLERACCT, FALSE);
- }
+ lck_attr_setdefault(&zone_metadata_lock_attr);
+ lck_mtx_init_ext(&zone_metadata_region_lck, &zone_metadata_region_lck_ext, &zone_locks_grp, &zone_metadata_lock_attr);
}
-void
-zinfo_task_init(task_t task)
+/*
+ * We're being very conservative here and picking a value of 95%. We might need to lower this if
+ * we find that we're not catching the problem and are still hitting zone map exhaustion panics.
+ */
+#define ZONE_MAP_JETSAM_LIMIT_DEFAULT 95
+
+/*
+ * Trigger zone-map-exhaustion jetsams if the zone map is X% full, where X=zone_map_jetsam_limit.
+ * Can be set via boot-arg "zone_map_jetsam_limit". Set to 95% by default.
+ */
+unsigned int zone_map_jetsam_limit = ZONE_MAP_JETSAM_LIMIT_DEFAULT;
+
+/*
+ * Returns pid of the task with the largest number of VM map entries.
+ */
+extern pid_t find_largest_process_vm_map_entries(void);
+
+/*
+ * Callout to jetsam. If pid is -1, we wake up the memorystatus thread to do asynchronous kills.
+ * For any other pid we try to kill that process synchronously.
+ */
+boolean_t memorystatus_kill_on_zone_map_exhaustion(pid_t pid);
+
+void get_zone_map_size(uint64_t *current_size, uint64_t *capacity)
{
- if (zinfo_per_task) {
- task->tkm_zinfo = zalloc(zinfo_zone);
- memset(task->tkm_zinfo, 0, sizeof(zinfo_usage_store_t) * ZINFO_SLOTS);
- } else {
- task->tkm_zinfo = NULL;
+ *current_size = zone_map->size;
+ *capacity = vm_map_max(zone_map) - vm_map_min(zone_map);
+}
+
+void get_largest_zone_info(char *zone_name, size_t zone_name_len, uint64_t *zone_size)
+{
+ zone_t largest_zone = zone_find_largest();
+ strlcpy(zone_name, largest_zone->zone_name, zone_name_len);
+ *zone_size = largest_zone->cur_size;
+}
+
+boolean_t is_zone_map_nearing_exhaustion(void)
+{
+ uint64_t size = zone_map->size;
+ uint64_t capacity = vm_map_max(zone_map) - vm_map_min(zone_map);
+ if (size > ((capacity * zone_map_jetsam_limit) / 100)) {
+ return TRUE;
}
+ return FALSE;
}
-void
-zinfo_task_free(task_t task)
+extern zone_t vm_map_entry_zone;
+extern zone_t vm_object_zone;
+
+#define VMENTRY_TO_VMOBJECT_COMPARISON_RATIO 98
+
+/*
+ * Tries to kill a single process if it can attribute one to the largest zone. If not, wakes up the memorystatus thread
+ * to walk through the jetsam priority bands and kill processes.
+ */
+static void kill_process_in_largest_zone(void)
{
- assert(task != kernel_task);
- if (task->tkm_zinfo != NULL) {
- zfree(zinfo_zone, task->tkm_zinfo);
- task->tkm_zinfo = NULL;
+ pid_t pid = -1;
+ zone_t largest_zone = zone_find_largest();
+
+ printf("zone_map_exhaustion: Zone map size %lld, capacity %lld [jetsam limit %d%%]\n", (uint64_t)zone_map->size,
+ (uint64_t)(vm_map_max(zone_map) - vm_map_min(zone_map)), zone_map_jetsam_limit);
+ printf("zone_map_exhaustion: Largest zone %s, size %lu\n", largest_zone->zone_name, (uintptr_t)largest_zone->cur_size);
+
+ /*
+ * We want to make sure we don't call this function from userspace. Or we could end up trying to synchronously kill the process
+ * whose context we're in, causing the system to hang.
+ */
+ assert(current_task() == kernel_task);
+
+ /*
+ * If vm_object_zone is the largest, check to see if the number of elements in vm_map_entry_zone is comparable. If so, consider
+ * vm_map_entry_zone as the largest. This lets us target a specific process to jetsam to quickly recover from the zone map bloat.
+ */
+ if (largest_zone == vm_object_zone) {
+ int vm_object_zone_count = vm_object_zone->count;
+ int vm_map_entry_zone_count = vm_map_entry_zone->count;
+ /* Is the VM map entries zone count >= 98% of the VM objects zone count? */
+ if (vm_map_entry_zone_count >= ((vm_object_zone_count * VMENTRY_TO_VMOBJECT_COMPARISON_RATIO) / 100)) {
+ largest_zone = vm_map_entry_zone;
+ printf("zone_map_exhaustion: Picking VM map entries as the zone to target, size %lu\n", (uintptr_t)largest_zone->cur_size);
+ }
+ }
+
+ /* TODO: Extend this to check for the largest process in other zones as well. */
+ if (largest_zone == vm_map_entry_zone) {
+ pid = find_largest_process_vm_map_entries();
+ } else {
+ printf("zone_map_exhaustion: Nothing to do for the largest zone [%s]. Waking up memorystatus thread.\n", largest_zone->zone_name);
+ }
+ if (!memorystatus_kill_on_zone_map_exhaustion(pid)) {
+ printf("zone_map_exhaustion: Call to memorystatus failed, victim pid: %d\n", pid);
}
}
-
+
/* Global initialization of Zone Allocator.
* Runs after zone_bootstrap.
*/
kern_return_t retval;
vm_offset_t zone_min;
vm_offset_t zone_max;
+ vm_offset_t zone_metadata_space;
+ unsigned int zone_pages;
+ vm_map_kernel_flags_t vmk_flags;
+
+#if VM_MAX_TAG_ZONES
+ if (zone_tagging_on) ztInit(max_zonemap_size, &zone_locks_grp);
+#endif
+ vmk_flags = VM_MAP_KERNEL_FLAGS_NONE;
+ vmk_flags.vmkf_permanent = TRUE;
retval = kmem_suballoc(kernel_map, &zone_min, max_zonemap_size,
- FALSE, VM_FLAGS_ANYWHERE | VM_FLAGS_PERMANENT | VM_MAKE_TAG(VM_KERN_MEMORY_ZONE),
+ FALSE, VM_FLAGS_ANYWHERE, vmk_flags, VM_KERN_MEMORY_ZONE,
&zone_map);
if (retval != KERN_SUCCESS)
zone_map_min_address = zone_min;
zone_map_max_address = zone_max;
+ zone_pages = (unsigned int)atop_kernel(zone_max - zone_min);
+ zone_metadata_space = round_page(zone_pages * sizeof(struct zone_page_metadata));
+ retval = kernel_memory_allocate(zone_map, &zone_metadata_region_min, zone_metadata_space,
+ 0, KMA_KOBJECT | KMA_VAONLY | KMA_PERMANENT, VM_KERN_MEMORY_OSFMK);
+ if (retval != KERN_SUCCESS)
+ panic("zone_init: zone_metadata_region initialization failed!");
+ zone_metadata_region_max = zone_metadata_region_min + zone_metadata_space;
+
#if defined(__LP64__)
/*
* ensure that any vm_page_t that gets created from
* the vm_page zone can be packed properly (see vm_page.h
* for the packing requirements
*/
- if (VM_PAGE_UNPACK_PTR(VM_PAGE_PACK_PTR(zone_map_min_address)) != (vm_page_t)zone_map_min_address)
- panic("VM_PAGE_PACK_PTR failed on zone_map_min_address - %p", (void *)zone_map_min_address);
+ if ((vm_page_t)(VM_PAGE_UNPACK_PTR(VM_PAGE_PACK_PTR(zone_metadata_region_max))) != (vm_page_t)zone_metadata_region_max)
+ panic("VM_PAGE_PACK_PTR failed on zone_metadata_region_max - %p", (void *)zone_metadata_region_max);
- if (VM_PAGE_UNPACK_PTR(VM_PAGE_PACK_PTR(zone_map_max_address)) != (vm_page_t)zone_map_max_address)
+ if ((vm_page_t)(VM_PAGE_UNPACK_PTR(VM_PAGE_PACK_PTR(zone_map_max_address))) != (vm_page_t)zone_map_max_address)
panic("VM_PAGE_PACK_PTR failed on zone_map_max_address - %p", (void *)zone_map_max_address);
#endif
- zone_pages = (unsigned int)atop_kernel(zone_max - zone_min);
- zone_page_table_used_size = sizeof(zone_page_table);
-
- zone_page_table_second_level_size = 1;
- zone_page_table_second_level_shift_amount = 0;
-
- /*
- * Find the power of 2 for the second level that allows
- * the first level to fit in ZONE_PAGE_TABLE_FIRST_LEVEL_SIZE
- * slots.
- */
- while ((zone_page_table_first_level_slot(zone_pages-1)) >= ZONE_PAGE_TABLE_FIRST_LEVEL_SIZE) {
- zone_page_table_second_level_size <<= 1;
- zone_page_table_second_level_shift_amount++;
- }
-
lck_grp_attr_setdefault(&zone_gc_lck_grp_attr);
lck_grp_init(&zone_gc_lck_grp, "zone_gc", &zone_gc_lck_grp_attr);
lck_attr_setdefault(&zone_gc_lck_attr);
*/
zleak_init(max_zonemap_size);
#endif /* CONFIG_ZLEAKS */
-}
-
-void
-zone_page_table_expand(zone_page_index_t pindex)
-{
- unsigned int first_index;
- struct zone_page_table_entry * volatile * first_level_ptr;
-
- assert(pindex < zone_pages);
-
- first_index = zone_page_table_first_level_slot(pindex);
- first_level_ptr = &zone_page_table[first_index];
-
- if (*first_level_ptr == NULL) {
- /*
- * We were able to verify the old first-level slot
- * had NULL, so attempt to populate it.
- */
-
- vm_offset_t second_level_array = 0;
- vm_size_t second_level_size = round_page(zone_page_table_second_level_size * sizeof(struct zone_page_table_entry));
- zone_page_index_t i;
- struct zone_page_table_entry *entry_array;
-
- if (kmem_alloc_kobject(zone_map, &second_level_array,
- second_level_size, VM_KERN_MEMORY_OSFMK) != KERN_SUCCESS) {
- panic("zone_page_table_expand");
- }
- zone_map_table_page_count += (second_level_size / PAGE_SIZE);
-
- /*
- * zone_gc() may scan the "zone_page_table" directly,
- * so make sure any slots have a valid unused state.
- */
- entry_array = (struct zone_page_table_entry *)second_level_array;
- for (i=0; i < zone_page_table_second_level_size; i++) {
- entry_array[i].alloc_count = ZONE_PAGE_UNUSED;
- entry_array[i].collect_count = 0;
- }
-
- if (OSCompareAndSwapPtr(NULL, entry_array, first_level_ptr)) {
- /* Old slot was NULL, replaced with expanded level */
- OSAddAtomicLong(second_level_size, &zone_page_table_used_size);
- } else {
- /* Old slot was not NULL, someone else expanded first */
- kmem_free(zone_map, second_level_array, second_level_size);
- zone_map_table_page_count -= (second_level_size / PAGE_SIZE);
- }
- } else {
- /* Old slot was not NULL, already been expanded */
- }
-}
-struct zone_page_table_entry *
-zone_page_table_lookup(zone_page_index_t pindex)
-{
- unsigned int first_index = zone_page_table_first_level_slot(pindex);
- struct zone_page_table_entry *second_level = zone_page_table[first_index];
-
- if (second_level) {
- return &second_level[zone_page_table_second_level_slot(pindex)];
- }
+#if VM_MAX_TAG_ZONES
+ if (zone_tagging_on) vm_allocation_zones_init();
+#endif
- return NULL;
+ int jetsam_limit_temp = 0;
+ if (PE_parse_boot_argn("zone_map_jetsam_limit", &jetsam_limit_temp, sizeof (jetsam_limit_temp)) &&
+ jetsam_limit_temp > 0 && jetsam_limit_temp <= 100)
+ zone_map_jetsam_limit = jetsam_limit_temp;
}
extern volatile SInt32 kfree_nop_count;
#pragma mark -
#pragma mark zalloc_canblock
+extern boolean_t early_boot_complete;
+
/*
* zalloc returns an element from the specified zone.
*/
zalloc_internal(
zone_t zone,
boolean_t canblock,
- boolean_t nopagewait)
+ boolean_t nopagewait,
+ vm_size_t
+#if !VM_MAX_TAG_ZONES
+ __unused
+#endif
+ reqsize,
+ vm_tag_t tag)
{
vm_offset_t addr = 0;
kern_return_t retval;
uintptr_t zbt[MAX_ZTRACE_DEPTH]; /* used in zone leak logging and zone leak detection */
int numsaved = 0;
boolean_t zone_replenish_wakeup = FALSE, zone_alloc_throttle = FALSE;
-#if CONFIG_GZALLOC || ZONE_DEBUG
- boolean_t did_gzalloc = FALSE;
-#endif
thread_t thr = current_thread();
boolean_t check_poison = FALSE;
boolean_t set_doing_alloc_with_vm_priv = FALSE;
uint32_t zleak_tracedepth = 0; /* log this allocation if nonzero */
#endif /* CONFIG_ZLEAKS */
+#if KASAN
+ /*
+ * KASan uses zalloc() for fakestack, which can be called anywhere. However,
+ * we make sure these calls can never block.
+ */
+ boolean_t irq_safe = FALSE;
+ const char *fakestack_name = "fakestack.";
+ if (strncmp(zone->zone_name, fakestack_name, strlen(fakestack_name)) == 0) {
+ irq_safe = TRUE;
+ }
+#elif MACH_ASSERT
+ /* In every other case, zalloc() from interrupt context is unsafe. */
+ const boolean_t irq_safe = FALSE;
+#endif
+
assert(zone != ZONE_NULL);
+ assert(irq_safe || ml_get_interrupts_enabled() || ml_is_quiescing() || debug_mode_active() || !early_boot_complete);
#if CONFIG_GZALLOC
addr = gzalloc_alloc(zone, canblock);
- did_gzalloc = (addr != 0);
#endif
-
/*
* If zone logging is turned on and this is the zone we're tracking, grab a backtrace.
*/
if (__improbable(zone->zleak_on && sample_counter(&zone->zleak_capture, zleak_sample_factor) == TRUE)) {
/* Avoid backtracing twice if zone logging is on */
if (numsaved == 0)
- zleak_tracedepth = fastbacktrace(zbt, MAX_ZTRACE_DEPTH);
+ zleak_tracedepth = backtrace(zbt, MAX_ZTRACE_DEPTH);
else
zleak_tracedepth = numsaved;
}
#endif /* CONFIG_ZLEAKS */
+#if VM_MAX_TAG_ZONES
+ if (__improbable(zone->tags)) vm_tag_will_update_zone(tag, zone->tag_zone_index);
+#endif /* VM_MAX_TAG_ZONES */
+
lock_zone(zone);
+ assert(zone->zone_valid);
if (zone->async_prio_refill && zone->zone_replenish_thread) {
- do {
- vm_size_t zfreec = (zone->cur_size - (zone->count * zone->elem_size));
- vm_size_t zrefillwm = zone->prio_refill_watermark * zone->elem_size;
- zone_replenish_wakeup = (zfreec < zrefillwm);
- zone_alloc_throttle = (zfreec < (zrefillwm / 2)) && ((thr->options & TH_OPT_VMPRIV) == 0);
+ vm_size_t zfreec = (zone->cur_size - (zone->count * zone->elem_size));
+ vm_size_t zrefillwm = zone->prio_refill_watermark * zone->elem_size;
+ zone_replenish_wakeup = (zfreec < zrefillwm);
+ zone_alloc_throttle = (((zfreec < (zrefillwm / 2)) && ((thr->options & TH_OPT_VMPRIV) == 0)) || (zfreec == 0));
+ do {
if (zone_replenish_wakeup) {
zone_replenish_wakeups_initiated++;
- unlock_zone(zone);
/* Signal the potentially waiting
* refill thread.
*/
thread_wakeup(&zone->zone_replenish_thread);
+ /* We don't want to wait around for zone_replenish_thread to bump up the free count
+ * if we're in zone_gc(). This keeps us from deadlocking with zone_replenish_thread.
+ */
+ if (thr->options & TH_OPT_ZONE_GC)
+ break;
+
+ unlock_zone(zone);
/* Scheduling latencies etc. may prevent
* the refill thread from keeping up
* with demand. Throttle consumers
thread_block(THREAD_CONTINUE_NULL);
}
lock_zone(zone);
+ assert(zone->zone_valid);
}
+
+ zfreec = (zone->cur_size - (zone->count * zone->elem_size));
+ zrefillwm = zone->prio_refill_watermark * zone->elem_size;
+ zone_replenish_wakeup = (zfreec < zrefillwm);
+ zone_alloc_throttle = (((zfreec < (zrefillwm / 2)) && ((thr->options & TH_OPT_VMPRIV) == 0)) || (zfreec == 0));
+
} while (zone_alloc_throttle == TRUE);
}
if (__probable(addr == 0))
- addr = try_alloc_from_zone(zone, &check_poison);
+ addr = try_alloc_from_zone(zone, tag, &check_poison);
+ /* If we're here because of zone_gc(), we didn't wait for zone_replenish_thread to finish.
+ * So we need to ensure that we did successfully grab an element. And we only need to assert
+ * this for zones that have a replenish thread configured (in this case, the Reserved VM map
+ * entries zone).
+ */
+ if (thr->options & TH_OPT_ZONE_GC && zone->async_prio_refill)
+ assert(addr != 0);
while ((addr == 0) && canblock) {
/*
*/
zone->waiting = TRUE;
zone_sleep(zone);
- } else if (zone->doing_gc) {
- /*
- * zone_gc() is running. Since we need an element
- * from the free list that is currently being
- * collected, set the waiting bit and
- * wait for the GC process to finish
- * before trying again
- */
- zone->waiting = TRUE;
- zone_sleep(zone);
} else {
vm_offset_t space;
vm_size_t alloc_size;
panic("zalloc: zone \"%s\" empty.", zone->zone_name);
}
}
+ /*
+ * It is possible that a BG thread is refilling/expanding the zone
+ * and gets pre-empted during that operation. That blocks all other
+ * threads from making progress leading to a watchdog timeout. To
+ * avoid that, boost the thread priority using the rwlock boost
+ */
+ set_thread_rwlock_boost();
+
if ((thr->options & TH_OPT_VMPRIV)) {
zone->doing_alloc_with_vm_priv = TRUE;
set_doing_alloc_with_vm_priv = TRUE;
if (zone->noencrypt)
zflags |= KMA_NOENCRYPT;
+ /* Trigger jetsams via the vm_pageout_garbage_collect thread if we're running out of zone memory */
+ if (is_zone_map_nearing_exhaustion()) {
+ thread_wakeup((event_t) &vm_pageout_garbage_collect);
+ }
+
retval = kernel_memory_allocate(zone_map, &space, alloc_size, 0, zflags, VM_KERN_MEMORY_ZONE);
if (retval == KERN_SUCCESS) {
-#if ZONE_ALIAS_ADDR
- if (alloc_size == PAGE_SIZE)
- space = zone_alias_addr(space);
-#endif
-
#if CONFIG_ZLEAKS
if ((zleak_state & (ZLEAK_STATE_ENABLED | ZLEAK_STATE_ACTIVE)) == ZLEAK_STATE_ENABLED) {
if (zone_map->size >= zleak_global_tracking_threshold) {
} else if (retval != KERN_RESOURCE_SHORTAGE) {
retry++;
- if (retry == 2) {
- zone_gc(TRUE);
- printf("zalloc did gc\n");
- zone_display_zprint();
- }
if (retry == 3) {
panic_include_zprint = TRUE;
#if CONFIG_ZLEAKS
}
}
lock_zone(zone);
+ assert(zone->zone_valid);
if (set_doing_alloc_with_vm_priv == TRUE)
zone->doing_alloc_with_vm_priv = FALSE;
zone->waiting = FALSE;
zone_wakeup(zone);
}
- addr = try_alloc_from_zone(zone, &check_poison);
+ clear_thread_rwlock_boost();
+
+ addr = try_alloc_from_zone(zone, tag, &check_poison);
if (addr == 0 &&
retval == KERN_RESOURCE_SHORTAGE) {
if (nopagewait == TRUE)
VM_PAGE_WAIT();
lock_zone(zone);
+ assert(zone->zone_valid);
}
}
if (addr == 0)
- addr = try_alloc_from_zone(zone, &check_poison);
+ addr = try_alloc_from_zone(zone, tag, &check_poison);
}
#if CONFIG_ZLEAKS
unlock_zone(zone);
thread_call_enter(&call_async_alloc);
lock_zone(zone);
- addr = try_alloc_from_zone(zone, &check_poison);
+ assert(zone->zone_valid);
+ addr = try_alloc_from_zone(zone, tag, &check_poison);
}
- /*
- * See if we should be logging allocations in this zone. Logging is rarely done except when a leak is
- * suspected, so this code rarely executes. We need to do this code while still holding the zone lock
- * since it protects the various log related data structures.
- */
+#if VM_MAX_TAG_ZONES
+ if (__improbable(zone->tags) && addr) {
+ if (reqsize) reqsize = zone->elem_size - reqsize;
+ vm_tag_update_zone_size(tag, zone->tag_zone_index, zone->elem_size, reqsize);
+ }
+#endif /* VM_MAX_TAG_ZONES */
- if (__improbable(DO_LOGGING(zone) && addr)) {
- btlog_add_entry(zlog_btlog, (void *)addr, ZOP_ALLOC, (void **)zbt, numsaved);
- }
+ unlock_zone(zone);
vm_offset_t inner_size = zone->elem_size;
-
-#if ZONE_DEBUG
- if (!did_gzalloc && addr && zone_debug_enabled(zone)) {
- enqueue_tail(&zone->active_zones, (queue_entry_t)addr);
- addr += ZONE_DEBUG_OFFSET;
- inner_size -= ZONE_DEBUG_OFFSET;
- }
-#endif
- unlock_zone(zone);
+ if (__improbable(DO_LOGGING(zone) && addr)) {
+ btlog_add_entry(zone->zlog_btlog, (void *)addr, ZOP_ALLOC, (void **)zbt, numsaved);
+ }
if (__improbable(check_poison && addr)) {
vm_offset_t *element_cursor = ((vm_offset_t *) addr) + 1;
*primary = ZP_POISON;
*backup = ZP_POISON;
+
+#if DEBUG || DEVELOPMENT
+ if (__improbable(leak_scan_debug_flag && !(zone->elem_size & (sizeof(uintptr_t) - 1)))) {
+ int count, idx;
+ /* Fill element, from tail, with backtrace in reverse order */
+ if (numsaved == 0) numsaved = backtrace(zbt, MAX_ZTRACE_DEPTH);
+ count = (int) (zone->elem_size / sizeof(uintptr_t));
+ if (count >= numsaved) count = numsaved - 1;
+ for (idx = 0; idx < count; idx++) ((uintptr_t *)addr)[count - 1 - idx] = zbt[idx + 1];
+ }
+#endif /* DEBUG || DEVELOPMENT */
}
TRACE_MACHLEAKS(ZALLOC_CODE, ZALLOC_CODE_2, zone->elem_size, addr);
- if (addr) {
- task_t task;
- zinfo_usage_t zinfo;
- vm_size_t sz = zone->elem_size;
-
- if (zone->caller_acct)
- ledger_credit(thr->t_ledger, task_ledgers.tkm_private, sz);
- else
- ledger_credit(thr->t_ledger, task_ledgers.tkm_shared, sz);
-
- if ((task = thr->task) != NULL && (zinfo = task->tkm_zinfo) != NULL)
- OSAddAtomic64(sz, (int64_t *)&zinfo[zone->index].alloc);
+#if KASAN_ZALLOC
+ /* Fixup the return address to skip the redzone */
+ if (zone->kasan_redzone) {
+ addr = kasan_alloc(addr, zone->elem_size,
+ zone->elem_size - 2 * zone->kasan_redzone, zone->kasan_redzone);
}
+#endif
+
return((void *)addr);
}
-
void *
zalloc(zone_t zone)
{
- return (zalloc_internal(zone, TRUE, FALSE));
+ return (zalloc_internal(zone, TRUE, FALSE, 0, VM_KERN_MEMORY_NONE));
}
void *
zalloc_noblock(zone_t zone)
{
- return (zalloc_internal(zone, FALSE, FALSE));
+ return (zalloc_internal(zone, FALSE, FALSE, 0, VM_KERN_MEMORY_NONE));
}
void *
zalloc_nopagewait(zone_t zone)
{
- return (zalloc_internal(zone, TRUE, TRUE));
+ return (zalloc_internal(zone, TRUE, TRUE, 0, VM_KERN_MEMORY_NONE));
+}
+
+void *
+zalloc_canblock_tag(zone_t zone, boolean_t canblock, vm_size_t reqsize, vm_tag_t tag)
+{
+ return (zalloc_internal(zone, canblock, FALSE, reqsize, tag));
}
void *
zalloc_canblock(zone_t zone, boolean_t canblock)
{
- return (zalloc_internal(zone, canblock, FALSE));
+ return (zalloc_internal(zone, canblock, FALSE, 0, VM_KERN_MEMORY_NONE));
}
__unused thread_call_param_t p0,
__unused thread_call_param_t p1)
{
- zone_t current_z = NULL, head_z;
+ zone_t current_z = NULL;
unsigned int max_zones, i;
void *elt = NULL;
boolean_t pending = FALSE;
simple_lock(&all_zones_lock);
- head_z = first_zone;
max_zones = num_zones;
simple_unlock(&all_zones_lock);
- current_z = head_z;
for (i = 0; i < max_zones; i++) {
+ current_z = &(zone_array[i]);
+
+ if (current_z->no_callout == TRUE) {
+ /* async_pending will never be set */
+ continue;
+ }
+
lock_zone(current_z);
- if (current_z->async_pending == TRUE) {
+ if (current_z->zone_valid && current_z->async_pending == TRUE) {
current_z->async_pending = FALSE;
pending = TRUE;
}
unlock_zone(current_z);
if (pending == TRUE) {
- elt = zalloc_canblock(current_z, TRUE);
+ elt = zalloc_canblock_tag(current_z, TRUE, 0, VM_KERN_MEMORY_OSFMK);
zfree(current_z, elt);
pending = FALSE;
}
- /*
- * This is based on assumption that zones never get
- * freed once allocated and linked.
- * Hence a read outside of lock is OK.
- */
- current_z = current_z->next_zone;
}
}
/*
* zget returns an element from the specified zone
* and immediately returns nothing if there is nothing there.
- *
- * This form should be used when you can not block (like when
- * processing an interrupt).
- *
- * XXX: It seems like only vm_page_grab_fictitious_common uses this, and its
- * friend vm_page_more_fictitious can block, so it doesn't seem like
- * this is used for interrupts any more....
*/
void *
zget(
- register zone_t zone)
+ zone_t zone)
{
- vm_offset_t addr;
- boolean_t check_poison = FALSE;
-
-#if CONFIG_ZLEAKS
- uintptr_t zbt[MAX_ZTRACE_DEPTH]; /* used for zone leak detection */
- uint32_t zleak_tracedepth = 0; /* log this allocation if nonzero */
-#endif /* CONFIG_ZLEAKS */
-
- assert( zone != ZONE_NULL );
-
-#if CONFIG_ZLEAKS
- /*
- * Zone leak detection: capture a backtrace
- */
- if (__improbable(zone->zleak_on && sample_counter(&zone->zleak_capture, zleak_sample_factor) == TRUE)) {
- zleak_tracedepth = fastbacktrace(zbt, MAX_ZTRACE_DEPTH);
- }
-#endif /* CONFIG_ZLEAKS */
-
- if (!lock_try_zone(zone))
- return NULL;
-
- addr = try_alloc_from_zone(zone, &check_poison);
-
- vm_offset_t inner_size = zone->elem_size;
-
-#if ZONE_DEBUG
- if (addr && zone_debug_enabled(zone)) {
- enqueue_tail(&zone->active_zones, (queue_entry_t)addr);
- addr += ZONE_DEBUG_OFFSET;
- inner_size -= ZONE_DEBUG_OFFSET;
- }
-#endif /* ZONE_DEBUG */
-
-#if CONFIG_ZLEAKS
- /*
- * Zone leak detection: record the allocation
- */
- if (zone->zleak_on && zleak_tracedepth > 0 && addr) {
- /* Sampling can fail if another sample is happening at the same time in a different zone. */
- if (!zleak_log(zbt, addr, zleak_tracedepth, zone->elem_size)) {
- /* If it failed, roll back the counter so we sample the next allocation instead. */
- zone->zleak_capture = zleak_sample_factor;
- }
- }
-#endif /* CONFIG_ZLEAKS */
-
- unlock_zone(zone);
-
- if (__improbable(check_poison && addr)) {
- vm_offset_t *element_cursor = ((vm_offset_t *) addr) + 1;
- vm_offset_t *backup = get_backup_ptr(inner_size, (vm_offset_t *) addr);
-
- for ( ; element_cursor < backup ; element_cursor++)
- if (__improbable(*element_cursor != ZP_POISON))
- zone_element_was_modified_panic(zone,
- addr,
- *element_cursor,
- ZP_POISON,
- ((vm_offset_t)element_cursor) - addr);
- }
-
- if (addr) {
- /*
- * Clear out the old next pointer and backup to avoid leaking the cookie
- * and so that only values on the freelist have a valid cookie
- */
- vm_offset_t *primary = (vm_offset_t *) addr;
- vm_offset_t *backup = get_backup_ptr(inner_size, primary);
-
- *primary = ZP_POISON;
- *backup = ZP_POISON;
- }
-
- return((void *) addr);
+ return zalloc_internal(zone, FALSE, TRUE, 0, VM_KERN_MEMORY_NONE);
}
/* Keep this FALSE by default. Large memory machine run orders of magnitude
struct zone_free_element *this;
struct zone_page_metadata *thispage;
- if (zone->use_page_list) {
- if (zone->allows_foreign) {
- for (thispage = (struct zone_page_metadata *)queue_first(&zone->pages.any_free_foreign);
- !queue_end(&zone->pages.any_free_foreign, (queue_entry_t)thispage);
- thispage = (struct zone_page_metadata *)queue_next((queue_chain_t *)thispage)) {
- for (this = thispage->elements;
- this != NULL;
- this = this->next) {
- if (!is_sane_zone_element(zone, (vm_address_t)this) || (vm_address_t)this == elem)
- panic("zone_check_freelist");
- }
- }
- }
- for (thispage = (struct zone_page_metadata *)queue_first(&zone->pages.all_free);
- !queue_end(&zone->pages.all_free, (queue_entry_t)thispage);
- thispage = (struct zone_page_metadata *)queue_next((queue_chain_t *)thispage)) {
- for (this = thispage->elements;
+ if (zone->allows_foreign) {
+ for (thispage = (struct zone_page_metadata *)queue_first(&zone->pages.any_free_foreign);
+ !queue_end(&zone->pages.any_free_foreign, &(thispage->pages));
+ thispage = (struct zone_page_metadata *)queue_next(&(thispage->pages))) {
+ for (this = page_metadata_get_freelist(thispage);
this != NULL;
this = this->next) {
if (!is_sane_zone_element(zone, (vm_address_t)this) || (vm_address_t)this == elem)
panic("zone_check_freelist");
}
}
- for (thispage = (struct zone_page_metadata *)queue_first(&zone->pages.intermediate);
- !queue_end(&zone->pages.intermediate, (queue_entry_t)thispage);
- thispage = (struct zone_page_metadata *)queue_next((queue_chain_t *)thispage)) {
- for (this = thispage->elements;
- this != NULL;
- this = this->next) {
- if (!is_sane_zone_element(zone, (vm_address_t)this) || (vm_address_t)this == elem)
- panic("zone_check_freelist");
- }
+ }
+ for (thispage = (struct zone_page_metadata *)queue_first(&zone->pages.all_free);
+ !queue_end(&zone->pages.all_free, &(thispage->pages));
+ thispage = (struct zone_page_metadata *)queue_next(&(thispage->pages))) {
+ for (this = page_metadata_get_freelist(thispage);
+ this != NULL;
+ this = this->next) {
+ if (!is_sane_zone_element(zone, (vm_address_t)this) || (vm_address_t)this == elem)
+ panic("zone_check_freelist");
}
- } else {
- for (this = zone->free_elements;
- this != NULL;
- this = this->next) {
+ }
+ for (thispage = (struct zone_page_metadata *)queue_first(&zone->pages.intermediate);
+ !queue_end(&zone->pages.intermediate, &(thispage->pages));
+ thispage = (struct zone_page_metadata *)queue_next(&(thispage->pages))) {
+ for (this = page_metadata_get_freelist(thispage);
+ this != NULL;
+ this = this->next) {
if (!is_sane_zone_element(zone, (vm_address_t)this) || (vm_address_t)this == elem)
panic("zone_check_freelist");
}
}
}
-static zone_t zone_last_bogus_zone = ZONE_NULL;
-static vm_offset_t zone_last_bogus_elem = 0;
-
void
zfree(
- register zone_t zone,
+ zone_t zone,
void *addr)
{
vm_offset_t elem = (vm_offset_t) addr;
int numsaved = 0;
boolean_t gzfreed = FALSE;
boolean_t poison = FALSE;
+#if VM_MAX_TAG_ZONES
+ vm_tag_t tag;
+#endif /* VM_MAX_TAG_ZONES */
assert(zone != ZONE_NULL);
-#if 1
- if (zone->use_page_list) {
- struct zone_page_metadata *page_meta = get_zone_page_metadata((struct zone_free_element *)addr);
- if (zone != page_meta->zone) {
- /*
- * Something bad has happened. Someone tried to zfree a pointer but the metadata says it is from
- * a different zone (or maybe it's from a zone that doesn't use page free lists at all). We can repair
- * some cases of this, if:
- * 1) The specified zone had use_page_list, and the true zone also has use_page_list set. In that case
- * we can swap the zone_t
- * 2) The specified zone had use_page_list, but the true zone does not. In this case page_meta is garbage,
- * and dereferencing page_meta->zone might panic.
- * To distinguish the two, we enumerate the zone list to match it up.
- * We do not handle the case where an incorrect zone is passed that does not have use_page_list set,
- * even if the true zone did have this set.
- */
- zone_t fixed_zone = NULL;
- int fixed_i, max_zones;
-
- simple_lock(&all_zones_lock);
- max_zones = num_zones;
- fixed_zone = first_zone;
- simple_unlock(&all_zones_lock);
-
- for (fixed_i=0; fixed_i < max_zones; fixed_i++, fixed_zone = fixed_zone->next_zone) {
- if (fixed_zone == page_meta->zone && fixed_zone->use_page_list) {
- /* we can fix this */
- printf("Fixing incorrect zfree from zone %s to zone %s\n", zone->zone_name, fixed_zone->zone_name);
- zone = fixed_zone;
- break;
- }
- }
+#if KASAN_ZALLOC
+ /*
+ * Resize back to the real allocation size and hand off to the KASan
+ * quarantine. `addr` may then point to a different allocation.
+ */
+ vm_size_t usersz = zone->elem_size - 2 * zone->kasan_redzone;
+ vm_size_t sz = usersz;
+ if (addr && zone->kasan_redzone) {
+ kasan_check_free((vm_address_t)addr, usersz, KASAN_HEAP_ZALLOC);
+ addr = (void *)kasan_dealloc((vm_address_t)addr, &sz);
+ assert(sz == zone->elem_size);
+ }
+ if (addr && zone->kasan_quarantine) {
+ kasan_free(&addr, &sz, KASAN_HEAP_ZALLOC, &zone, usersz, true);
+ if (!addr) {
+ return;
}
}
+ elem = (vm_offset_t)addr;
#endif
/*
/* Basic sanity checks */
if (zone == ZONE_NULL || elem == (vm_offset_t)0)
panic("zfree: NULL");
- /* zone_gc assumes zones are never freed */
- if (zone == zone_zone)
- panic("zfree: freeing to zone_zone breaks zone_gc!");
#endif
#if CONFIG_GZALLOC
gzfreed = gzalloc_free(zone, addr);
#endif
+ if (!gzfreed) {
+ struct zone_page_metadata *page_meta = get_zone_page_metadata((struct zone_free_element *)addr, FALSE);
+ if (zone != PAGE_METADATA_GET_ZONE(page_meta)) {
+ panic("Element %p from zone %s caught being freed to wrong zone %s\n", addr, PAGE_METADATA_GET_ZONE(page_meta)->zone_name, zone->zone_name);
+ }
+ }
+
TRACE_MACHLEAKS(ZFREE_CODE, ZFREE_CODE_2, zone->elem_size, (uintptr_t)addr);
if (__improbable(!gzfreed && zone->collectable && !zone->allows_foreign &&
!from_zone_map(elem, zone->elem_size))) {
-#if MACH_ASSERT
panic("zfree: non-allocated memory in collectable zone!");
-#endif
- zone_last_bogus_zone = zone;
- zone_last_bogus_elem = elem;
- return;
}
if ((zp_factor != 0 || zp_tiny_zone_limit != 0) && !gzfreed) {
vm_offset_t inner_size = zone->elem_size;
-#if ZONE_DEBUG
- if (!gzfreed && zone_debug_enabled(zone)) {
- inner_size -= ZONE_DEBUG_OFFSET;
- }
-#endif
uint32_t sample_factor = zp_factor + (((uint32_t)inner_size) >> zp_scale);
if (inner_size <= zp_tiny_zone_limit)
}
}
- lock_zone(zone);
-
/*
* See if we're doing logging on this zone. There are two styles of logging used depending on
* whether we're trying to catch a leak or corruption. See comments above in zalloc for details.
* We're logging to catch a corruption. Add a record of this zfree operation
* to log.
*/
- btlog_add_entry(zlog_btlog, (void *)addr, ZOP_FREE, (void **)zbt, numsaved);
+ btlog_add_entry(zone->zlog_btlog, (void *)addr, ZOP_FREE, (void **)zbt, numsaved);
} else {
/*
* We're logging to catch a leak. Remove any record we might have for this
* overflowed and that's OK. Since the log is of a limited size, old records
* get overwritten if there are more zallocs than zfrees.
*/
- btlog_remove_entries_for_element(zlog_btlog, (void *)addr);
+ btlog_remove_entries_for_element(zone->zlog_btlog, (void *)addr);
}
}
-#if ZONE_DEBUG
- if (!gzfreed && zone_debug_enabled(zone)) {
- queue_t tmp_elem;
-
- elem -= ZONE_DEBUG_OFFSET;
- if (zone_check) {
- /* check the zone's consistency */
+ lock_zone(zone);
+ assert(zone->zone_valid);
- for (tmp_elem = queue_first(&zone->active_zones);
- !queue_end(tmp_elem, &zone->active_zones);
- tmp_elem = queue_next(tmp_elem))
- if (elem == (vm_offset_t)tmp_elem)
- break;
- if (elem != (vm_offset_t)tmp_elem)
- panic("zfree()ing element from wrong zone");
- }
- remqueue((queue_t) elem);
- }
-#endif /* ZONE_DEBUG */
if (zone_check) {
zone_check_freelist(zone, elem);
}
- if (__probable(!gzfreed))
+ if (__probable(!gzfreed)) {
+#if VM_MAX_TAG_ZONES
+ if (__improbable(zone->tags)) {
+ tag = (ZTAG(zone, elem)[0] >> 1);
+ // set the tag with b0 clear so the block remains inuse
+ ZTAG(zone, elem)[0] = 0xFFFE;
+ }
+#endif /* VM_MAX_TAG_ZONES */
free_to_zone(zone, elem, poison);
+ }
#if MACH_ASSERT
if (zone->count < 0)
}
#endif /* CONFIG_ZLEAKS */
- /*
- * If elements have one or more pages, and memory is low,
- * request to run the garbage collection in the zone the next
- * time the pageout thread runs.
- */
- if (zone->elem_size >= PAGE_SIZE &&
- vm_pool_low()){
- zone_gc_forced = TRUE;
+#if VM_MAX_TAG_ZONES
+ if (__improbable(zone->tags) && __probable(!gzfreed)) {
+ vm_tag_update_zone_size(tag, zone->tag_zone_index, -((int64_t)zone->elem_size), 0);
}
- unlock_zone(zone);
-
- {
- thread_t thr = current_thread();
- task_t task;
- zinfo_usage_t zinfo;
- vm_size_t sz = zone->elem_size;
+#endif /* VM_MAX_TAG_ZONES */
- if (zone->caller_acct)
- ledger_debit(thr->t_ledger, task_ledgers.tkm_private, sz);
- else
- ledger_debit(thr->t_ledger, task_ledgers.tkm_shared, sz);
-
- if ((task = thr->task) != NULL && (zinfo = task->tkm_zinfo) != NULL)
- OSAddAtomic64(sz, (int64_t *)&zinfo[zone->index].free);
- }
+ unlock_zone(zone);
}
-
/* Change a zone's flags.
* This routine must be called immediately after zinit.
*/
case Z_NOCALLOUT:
zone->no_callout = value;
break;
+ case Z_TAGS_ENABLED:
+#if VM_MAX_TAG_ZONES
+ {
+ static int tag_zone_index;
+ zone->tags = TRUE;
+ zone->tags_inline = (((page_size + zone->elem_size - 1) / zone->elem_size) <= (sizeof(uint32_t) / sizeof(uint16_t)));
+ zone->tag_zone_index = OSAddAtomic(1, &tag_zone_index);
+ }
+#endif /* VM_MAX_TAG_ZONES */
+ break;
case Z_GZALLOC_EXEMPT:
zone->gzalloc_exempt = value;
#if CONFIG_GZALLOC
break;
case Z_ALIGNMENT_REQUIRED:
zone->alignment_required = value;
- /*
- * Disable the page list optimization here to provide
- * more of an alignment guarantee. This prevents
- * the alignment from being modified by the metadata stored
- * at the beginning of the page.
- */
- zone->use_page_list = FALSE;
-#if ZONE_DEBUG
- zone_debug_disable(zone);
+#if KASAN_ZALLOC
+ if (zone->kasan_redzone == KASAN_GUARD_SIZE) {
+ /* Don't disturb alignment with the redzone for zones with
+ * specific alignment requirements. */
+ zone->elem_size -= zone->kasan_redzone * 2;
+ zone->kasan_redzone = 0;
+ }
#endif
#if CONFIG_GZALLOC
gzalloc_reconfigure(zone);
#endif
break;
+ case Z_KASAN_QUARANTINE:
+ zone->kasan_quarantine = value;
+ break;
default:
panic("Zone_change: Wrong Item Type!");
/* break; */
return(free_count);
}
-/*
- * Zone garbage collection subroutines
- */
-
-boolean_t
-zone_page_collectable(
- vm_offset_t addr,
- vm_size_t size)
-{
- struct zone_page_table_entry *zp;
- zone_page_index_t i, j;
-
-#if ZONE_ALIAS_ADDR
- addr = zone_virtual_addr(addr);
-#endif
-#if MACH_ASSERT
- if (!from_zone_map(addr, size))
- panic("zone_page_collectable");
-#endif
-
- i = (zone_page_index_t)atop_kernel(addr-zone_map_min_address);
- j = (zone_page_index_t)atop_kernel((addr+size-1) - zone_map_min_address);
-
- for (; i <= j; i++) {
- zp = zone_page_table_lookup(i);
- if (zp->collect_count == zp->alloc_count)
- return (TRUE);
- }
-
- return (FALSE);
-}
-
-void
-zone_page_keep(
- vm_offset_t addr,
- vm_size_t size)
-{
- struct zone_page_table_entry *zp;
- zone_page_index_t i, j;
-
-#if ZONE_ALIAS_ADDR
- addr = zone_virtual_addr(addr);
-#endif
-#if MACH_ASSERT
- if (!from_zone_map(addr, size))
- panic("zone_page_keep");
-#endif
-
- i = (zone_page_index_t)atop_kernel(addr-zone_map_min_address);
- j = (zone_page_index_t)atop_kernel((addr+size-1) - zone_map_min_address);
-
- for (; i <= j; i++) {
- zp = zone_page_table_lookup(i);
- zp->collect_count = 0;
- }
-}
-
-void
-zone_page_collect(
- vm_offset_t addr,
- vm_size_t size)
-{
- struct zone_page_table_entry *zp;
- zone_page_index_t i, j;
-
-#if ZONE_ALIAS_ADDR
- addr = zone_virtual_addr(addr);
-#endif
-#if MACH_ASSERT
- if (!from_zone_map(addr, size))
- panic("zone_page_collect");
-#endif
-
- i = (zone_page_index_t)atop_kernel(addr-zone_map_min_address);
- j = (zone_page_index_t)atop_kernel((addr+size-1) - zone_map_min_address);
-
- for (; i <= j; i++) {
- zp = zone_page_table_lookup(i);
- ++zp->collect_count;
- }
-}
-
+/* Drops the elements in the free queue of a zone. Called by zone_gc() on each zone, and when a zone is zdestroy'ed. */
void
-zone_page_init(
- vm_offset_t addr,
- vm_size_t size)
+drop_free_elements(zone_t z)
{
- struct zone_page_table_entry *zp;
- zone_page_index_t i, j;
-
-#if ZONE_ALIAS_ADDR
- addr = zone_virtual_addr(addr);
-#endif
-#if MACH_ASSERT
- if (!from_zone_map(addr, size))
- panic("zone_page_init");
-#endif
-
- i = (zone_page_index_t)atop_kernel(addr-zone_map_min_address);
- j = (zone_page_index_t)atop_kernel((addr+size-1) - zone_map_min_address);
-
- for (; i <= j; i++) {
- /* make sure entry exists before marking unused */
- zone_page_table_expand(i);
-
- zp = zone_page_table_lookup(i);
- assert(zp);
- zp->alloc_count = ZONE_PAGE_UNUSED;
- zp->collect_count = 0;
+ vm_size_t elt_size, size_freed;
+ int total_freed_pages = 0;
+ uint64_t old_all_free_count;
+ struct zone_page_metadata *page_meta;
+ queue_head_t page_meta_head;
+
+ lock_zone(z);
+ if (queue_empty(&z->pages.all_free)) {
+ unlock_zone(z);
+ return;
}
-}
-
-void
-zone_page_alloc(
- vm_offset_t addr,
- vm_size_t size)
-{
- struct zone_page_table_entry *zp;
- zone_page_index_t i, j;
-
-#if ZONE_ALIAS_ADDR
- addr = zone_virtual_addr(addr);
-#endif
-#if MACH_ASSERT
- if (!from_zone_map(addr, size))
- panic("zone_page_alloc");
-#endif
-
- i = (zone_page_index_t)atop_kernel(addr-zone_map_min_address);
- j = (zone_page_index_t)atop_kernel((addr+size-1) - zone_map_min_address);
-
- for (; i <= j; i++) {
- zp = zone_page_table_lookup(i);
- assert(zp);
-
- /*
- * Set alloc_count to ZONE_PAGE_USED if
- * it was previously set to ZONE_PAGE_UNUSED.
- */
- if (zp->alloc_count == ZONE_PAGE_UNUSED)
- zp->alloc_count = ZONE_PAGE_USED;
- ++zp->alloc_count;
+ /*
+ * Snatch all of the free elements away from the zone.
+ */
+ elt_size = z->elem_size;
+ old_all_free_count = z->count_all_free_pages;
+ queue_new_head(&z->pages.all_free, &page_meta_head, struct zone_page_metadata *, pages);
+ queue_init(&z->pages.all_free);
+ z->count_all_free_pages = 0;
+ unlock_zone(z);
+
+ /* Iterate through all elements to find out size and count of elements we snatched */
+ size_freed = 0;
+ queue_iterate(&page_meta_head, page_meta, struct zone_page_metadata *, pages) {
+ assert(from_zone_map((vm_address_t)page_meta, sizeof(*page_meta))); /* foreign elements should be in any_free_foreign */
+ size_freed += elt_size * page_meta->free_count;
}
-}
-
-void
-zone_page_free_element(
- zone_page_index_t *free_page_head,
- zone_page_index_t *free_page_tail,
- vm_offset_t addr,
- vm_size_t size)
-{
- struct zone_page_table_entry *zp;
- zone_page_index_t i, j;
-#if ZONE_ALIAS_ADDR
- addr = zone_virtual_addr(addr);
-#endif
-#if MACH_ASSERT
- if (!from_zone_map(addr, size))
- panic("zone_page_free_element");
+ /* Update the zone size and free element count */
+ lock_zone(z);
+ z->cur_size -= size_freed;
+ z->countfree -= size_freed/elt_size;
+ unlock_zone(z);
+
+ while ((page_meta = (struct zone_page_metadata *)dequeue_head(&page_meta_head)) != NULL) {
+ vm_address_t free_page_address;
+ /* Free the pages for metadata and account for them */
+ free_page_address = get_zone_page(page_meta);
+ ZONE_PAGE_COUNT_DECR(z, page_meta->page_count);
+ total_freed_pages += page_meta->page_count;
+ old_all_free_count -= page_meta->page_count;
+#if KASAN_ZALLOC
+ kasan_poison_range(free_page_address, page_meta->page_count * PAGE_SIZE, ASAN_VALID);
#endif
-
- /* Clear out the old next and backup pointers */
- vm_offset_t *primary = (vm_offset_t *) addr;
- vm_offset_t *backup = get_backup_ptr(size, primary);
-
- *primary = ZP_POISON;
- *backup = ZP_POISON;
-
- i = (zone_page_index_t)atop_kernel(addr-zone_map_min_address);
- j = (zone_page_index_t)atop_kernel((addr+size-1) - zone_map_min_address);
-
- for (; i <= j; i++) {
- zp = zone_page_table_lookup(i);
-
- if (zp->collect_count > 0)
- --zp->collect_count;
- if (--zp->alloc_count == 0) {
- vm_address_t free_page_address;
- vm_address_t prev_free_page_address;
-
- zp->alloc_count = ZONE_PAGE_UNUSED;
- zp->collect_count = 0;
-
-
- /*
- * This element was the last one on this page, re-use the page's
- * storage for a page freelist
- */
- free_page_address = zone_map_min_address + PAGE_SIZE * ((vm_size_t)i);
- *(zone_page_index_t *)free_page_address = ZONE_PAGE_INDEX_INVALID;
-
- if (*free_page_head == ZONE_PAGE_INDEX_INVALID) {
- *free_page_head = i;
- *free_page_tail = i;
- } else {
- prev_free_page_address = zone_map_min_address + PAGE_SIZE * ((vm_size_t)(*free_page_tail));
- *(zone_page_index_t *)prev_free_page_address = i;
- *free_page_tail = i;
- }
+#if VM_MAX_TAG_ZONES
+ if (z->tags) ztMemoryRemove(z, free_page_address, (page_meta->page_count * PAGE_SIZE));
+#endif /* VM_MAX_TAG_ZONES */
+ kmem_free(zone_map, free_page_address, (page_meta->page_count * PAGE_SIZE));
+ if (current_thread()->options & TH_OPT_ZONE_GC) {
+ thread_yield_to_preemption();
}
}
-}
-
-#define ZONEGC_SMALL_ELEMENT_SIZE 4096
+ /* We freed all the pages from the all_free list for this zone */
+ assert(old_all_free_count == 0);
-struct {
- uint64_t zgc_invoked;
- uint64_t zgc_bailed;
- uint32_t pgs_freed;
-
- uint32_t elems_collected,
- elems_freed,
- elems_kept;
-} zgc_stats;
+ if (zalloc_debug & ZALLOC_DEBUG_ZONEGC)
+ kprintf("zone_gc() of zone %s freed %lu elements, %d pages\n", z->zone_name, (unsigned long)size_freed/elt_size, total_freed_pages);
+}
/* Zone garbage collection
*
* zones that are marked collectable looking for reclaimable
* pages. zone_gc is called by consider_zone_gc when the system
* begins to run out of memory.
+ *
+ * We should ensure that zone_gc never blocks.
*/
void
-zone_gc(boolean_t all_zones)
+zone_gc(boolean_t consider_jetsams)
{
unsigned int max_zones;
zone_t z;
unsigned int i;
- uint32_t old_pgs_freed;
- zone_page_index_t zone_free_page_head;
- zone_page_index_t zone_free_page_tail;
- thread_t mythread = current_thread();
+
+ if (consider_jetsams) {
+ kill_process_in_largest_zone();
+ /*
+ * If we do end up jetsamming something, we need to do a zone_gc so that
+ * we can reclaim free zone elements and update the zone map size.
+ * Fall through.
+ */
+ }
lck_mtx_lock(&zone_gc_lock);
- zgc_stats.zgc_invoked++;
- old_pgs_freed = zgc_stats.pgs_freed;
+ current_thread()->options |= TH_OPT_ZONE_GC;
simple_lock(&all_zones_lock);
max_zones = num_zones;
- z = first_zone;
simple_unlock(&all_zones_lock);
if (zalloc_debug & ZALLOC_DEBUG_ZONEGC)
- kprintf("zone_gc(all_zones=%s) starting...\n", all_zones ? "TRUE" : "FALSE");
-
- /*
- * it's ok to allow eager kernel preemption while
- * while holding a zone lock since it's taken
- * as a spin lock (which prevents preemption)
- */
- thread_set_eager_preempt(mythread);
-
-#if MACH_ASSERT
- for (i = 0; i < zone_pages; i++) {
- struct zone_page_table_entry *zp;
-
- zp = zone_page_table_lookup(i);
- assert(!zp || (zp->collect_count == 0));
- }
-#endif /* MACH_ASSERT */
-
- for (i = 0; i < max_zones; i++, z = z->next_zone) {
- unsigned int n, m;
- vm_size_t elt_size, size_freed;
- struct zone_free_element *elt, *base_elt, *base_prev, *prev, *scan, *keep, *tail;
- int kmem_frees = 0, total_freed_pages = 0;
- struct zone_page_metadata *page_meta;
- queue_head_t page_meta_head;
+ kprintf("zone_gc() starting...\n");
+ for (i = 0; i < max_zones; i++) {
+ z = &(zone_array[i]);
assert(z != ZONE_NULL);
- if (!z->collectable)
+ if (!z->collectable) {
continue;
-
- if (all_zones == FALSE && z->elem_size < ZONEGC_SMALL_ELEMENT_SIZE && !z->use_page_list)
+ }
+
+ if (queue_empty(&z->pages.all_free)) {
continue;
+ }
+
+ drop_free_elements(z);
+ }
- lock_zone(z);
+ current_thread()->options &= ~TH_OPT_ZONE_GC;
- elt_size = z->elem_size;
+ lck_mtx_unlock(&zone_gc_lock);
+}
- /*
- * Do a quick feasibility check before we scan the zone:
- * skip unless there is likelihood of getting pages back
- * (i.e we need a whole allocation block's worth of free
- * elements before we can garbage collect) and
- * the zone has more than 10 percent of it's elements free
- * or the element size is a multiple of the PAGE_SIZE
- */
- if ((elt_size & PAGE_MASK) &&
- !z->use_page_list &&
- (((z->cur_size - z->count * elt_size) <= (2 * z->alloc_size)) ||
- ((z->cur_size - z->count * elt_size) <= (z->cur_size / 10)))) {
- unlock_zone(z);
- continue;
- }
+extern vm_offset_t kmapoff_kaddr;
+extern unsigned int kmapoff_pgcnt;
- z->doing_gc = TRUE;
+/*
+ * consider_zone_gc:
+ *
+ * Called by the pageout daemon when the system needs more free pages.
+ */
+void
+consider_zone_gc(boolean_t consider_jetsams)
+{
+ if (kmapoff_kaddr != 0) {
/*
- * Snatch all of the free elements away from the zone.
+ * One-time reclaim of kernel_map resources we allocated in
+ * early boot.
*/
+ (void) vm_deallocate(kernel_map,
+ kmapoff_kaddr, kmapoff_pgcnt * PAGE_SIZE_64);
+ kmapoff_kaddr = 0;
+ }
- if (z->use_page_list) {
- queue_new_head(&z->pages.all_free, &page_meta_head, struct zone_page_metadata *, pages);
- queue_init(&z->pages.all_free);
- } else {
- scan = (void *)z->free_elements;
- z->free_elements = 0;
- }
-
- unlock_zone(z);
-
- if (z->use_page_list) {
- /*
- * For zones that maintain page lists (which in turn
- * track free elements on those pages), zone_gc()
- * is incredibly easy, and we bypass all the logic
- * for scanning elements and mapping them to
- * collectable pages
- */
-
- size_freed = 0;
-
- queue_iterate(&page_meta_head, page_meta, struct zone_page_metadata *, pages) {
- assert(from_zone_map((vm_address_t)page_meta, sizeof(*page_meta))); /* foreign elements should be in any_free_foreign */
+ if (zone_gc_allowed)
+ zone_gc(consider_jetsams);
+}
- zgc_stats.elems_freed += page_meta->free_count;
- size_freed += elt_size * page_meta->free_count;
- zgc_stats.elems_collected += page_meta->free_count;
- }
-
- lock_zone(z);
+kern_return_t
+task_zone_info(
+ __unused task_t task,
+ __unused mach_zone_name_array_t *namesp,
+ __unused mach_msg_type_number_t *namesCntp,
+ __unused task_zone_info_array_t *infop,
+ __unused mach_msg_type_number_t *infoCntp)
+{
+ return KERN_FAILURE;
+}
- if (size_freed > 0) {
- z->cur_size -= size_freed;
- z->countfree -= size_freed/elt_size;
- }
+kern_return_t
+mach_zone_info(
+ host_priv_t host,
+ mach_zone_name_array_t *namesp,
+ mach_msg_type_number_t *namesCntp,
+ mach_zone_info_array_t *infop,
+ mach_msg_type_number_t *infoCntp)
+{
+ return (mach_memory_info(host, namesp, namesCntp, infop, infoCntp, NULL, NULL));
+}
- z->doing_gc = FALSE;
- if (z->waiting) {
- z->waiting = FALSE;
- zone_wakeup(z);
- }
- unlock_zone(z);
+kern_return_t
+mach_memory_info(
+ host_priv_t host,
+ mach_zone_name_array_t *namesp,
+ mach_msg_type_number_t *namesCntp,
+ mach_zone_info_array_t *infop,
+ mach_msg_type_number_t *infoCntp,
+ mach_memory_info_array_t *memoryInfop,
+ mach_msg_type_number_t *memoryInfoCntp)
+{
+ mach_zone_name_t *names;
+ vm_offset_t names_addr;
+ vm_size_t names_size;
- if (queue_empty(&page_meta_head))
- continue;
+ mach_zone_info_t *info;
+ vm_offset_t info_addr;
+ vm_size_t info_size;
- thread_clear_eager_preempt(mythread);
+ mach_memory_info_t *memory_info;
+ vm_offset_t memory_info_addr;
+ vm_size_t memory_info_size;
+ vm_size_t memory_info_vmsize;
+ unsigned int num_info;
- while ((page_meta = (struct zone_page_metadata *)dequeue_head(&page_meta_head)) != NULL) {
- vm_address_t free_page_address;
+ unsigned int max_zones, used_zones, i;
+ zone_t z;
+ mach_zone_name_t *zn;
+ mach_zone_info_t *zi;
+ kern_return_t kr;
+
+ vm_size_t used;
+ vm_map_copy_t copy;
+ uint64_t zones_collectable_bytes = 0;
- free_page_address = trunc_page((vm_address_t)page_meta);
-#if ZONE_ALIAS_ADDR
- free_page_address = zone_virtual_addr(free_page_address);
+ if (host == HOST_NULL)
+ return KERN_INVALID_HOST;
+#if CONFIG_DEBUGGER_FOR_ZONE_INFO
+ if (!PE_i_can_has_debugger(NULL))
+ return KERN_INVALID_HOST;
#endif
- kmem_free(zone_map, free_page_address, PAGE_SIZE);
- ZONE_PAGE_COUNT_DECR(z, 1);
- total_freed_pages++;
- zgc_stats.pgs_freed += 1;
-
- if (++kmem_frees == 32) {
- thread_yield_internal(1);
- kmem_frees = 0;
- }
- }
- if (zalloc_debug & ZALLOC_DEBUG_ZONEGC)
- kprintf("zone_gc() of zone %s freed %lu elements, %d pages\n", z->zone_name, (unsigned long)size_freed/elt_size, total_freed_pages);
-
- thread_set_eager_preempt(mythread);
- continue; /* go to next zone */
- }
-
- /*
- * Pass 1:
- *
- * Determine which elements we can attempt to collect
- * and count them up in the page table. Foreign elements
- * are returned to the zone.
- */
-
- prev = (void *)&scan;
- elt = scan;
- n = 0; tail = keep = NULL;
-
- zone_free_page_head = ZONE_PAGE_INDEX_INVALID;
- zone_free_page_tail = ZONE_PAGE_INDEX_INVALID;
-
-
- while (elt != NULL) {
- if (from_zone_map(elt, elt_size)) {
- zone_page_collect((vm_offset_t)elt, elt_size);
-
- prev = elt;
- elt = elt->next;
-
- ++zgc_stats.elems_collected;
- }
- else {
- if (keep == NULL)
- keep = tail = elt;
- else {
- append_zone_element(z, tail, elt);
- tail = elt;
- }
-
- append_zone_element(z, prev, elt->next);
- elt = elt->next;
- append_zone_element(z, tail, NULL);
- }
-
- /*
- * Dribble back the elements we are keeping.
- * If there are none, give some elements that we haven't looked at yet
- * back to the freelist so that others waiting on the zone don't get stuck
- * for too long. This might prevent us from recovering some memory,
- * but allows us to avoid having to allocate new memory to serve requests
- * while zone_gc has all the free memory tied up.
- * <rdar://problem/3893406>
- */
-
- if (++n >= 50) {
- if (z->waiting == TRUE) {
- /* z->waiting checked without lock held, rechecked below after locking */
- lock_zone(z);
-
- if (keep != NULL) {
- add_list_to_zone(z, keep, tail);
- tail = keep = NULL;
- } else {
- m =0;
- base_elt = elt;
- base_prev = prev;
- while ((elt != NULL) && (++m < 50)) {
- prev = elt;
- elt = elt->next;
- }
- if (m !=0 ) {
- /* Extract the elements from the list and
- * give them back */
- append_zone_element(z, prev, NULL);
- add_list_to_zone(z, base_elt, prev);
- append_zone_element(z, base_prev, elt);
- prev = base_prev;
- }
- }
-
- if (z->waiting) {
- z->waiting = FALSE;
- zone_wakeup(z);
- }
-
- unlock_zone(z);
- }
- n =0;
- }
- }
-
- /*
- * Return any remaining elements.
- */
-
- if (keep != NULL) {
- lock_zone(z);
-
- add_list_to_zone(z, keep, tail);
-
- if (z->waiting) {
- z->waiting = FALSE;
- zone_wakeup(z);
- }
-
- unlock_zone(z);
- }
-
- /*
- * Pass 2:
- *
- * Determine which pages we can reclaim and
- * free those elements.
- */
-
- size_freed = 0;
- elt = scan;
- n = 0; tail = keep = NULL;
-
- while (elt != NULL) {
- if (zone_page_collectable((vm_offset_t)elt, elt_size)) {
- struct zone_free_element *next_elt = elt->next;
-
- size_freed += elt_size;
-
- /*
- * If this is the last allocation on the page(s),
- * we may use their storage to maintain the linked
- * list of free-able pages. So store elt->next because
- * "elt" may be scribbled over.
- */
- zone_page_free_element(&zone_free_page_head, &zone_free_page_tail, (vm_offset_t)elt, elt_size);
-
- elt = next_elt;
-
- ++zgc_stats.elems_freed;
- }
- else {
- zone_page_keep((vm_offset_t)elt, elt_size);
-
- if (keep == NULL)
- keep = tail = elt;
- else {
- append_zone_element(z, tail, elt);
- tail = elt;
- }
-
- elt = elt->next;
- append_zone_element(z, tail, NULL);
-
- ++zgc_stats.elems_kept;
- }
-
- /*
- * Dribble back the elements we are keeping,
- * and update the zone size info.
- */
-
- if (++n >= 50) {
- lock_zone(z);
-
- z->cur_size -= size_freed;
- z->countfree -= size_freed/elt_size;
- size_freed = 0;
-
- if (keep != NULL) {
- add_list_to_zone(z, keep, tail);
- }
-
- if (z->waiting) {
- z->waiting = FALSE;
- zone_wakeup(z);
- }
-
- unlock_zone(z);
-
- n = 0; tail = keep = NULL;
- }
- }
-
- /*
- * Return any remaining elements, and update
- * the zone size info.
- */
-
- lock_zone(z);
-
- if (size_freed > 0 || keep != NULL) {
-
- z->cur_size -= size_freed;
- z->countfree -= size_freed/elt_size;
-
- if (keep != NULL) {
- add_list_to_zone(z, keep, tail);
- }
-
- }
-
- z->doing_gc = FALSE;
- if (z->waiting) {
- z->waiting = FALSE;
- zone_wakeup(z);
- }
- unlock_zone(z);
-
- if (zone_free_page_head == ZONE_PAGE_INDEX_INVALID)
- continue;
-
- /*
- * we don't want to allow eager kernel preemption while holding the
- * various locks taken in the kmem_free path of execution
- */
- thread_clear_eager_preempt(mythread);
-
-
- /*
- * This loop counts the number of pages that should be freed by the
- * next loop that tries to coalesce the kmem_frees()
- */
- uint32_t pages_to_free_count = 0;
- vm_address_t fpa;
- zone_page_index_t index;
- for (index = zone_free_page_head; index != ZONE_PAGE_INDEX_INVALID;) {
- pages_to_free_count++;
- fpa = zone_map_min_address + PAGE_SIZE * ((vm_size_t)index);
- index = *(zone_page_index_t *)fpa;
- }
-
- /*
- * Reclaim the pages we are freeing.
- */
- while (zone_free_page_head != ZONE_PAGE_INDEX_INVALID) {
- zone_page_index_t zind = zone_free_page_head;
- vm_address_t free_page_address;
- int page_count;
-
- /*
- * Use the first word of the page about to be freed to find the next free page
- */
- free_page_address = zone_map_min_address + PAGE_SIZE * ((vm_size_t)zind);
- zone_free_page_head = *(zone_page_index_t *)free_page_address;
-
- page_count = 1;
- total_freed_pages++;
-
- while (zone_free_page_head != ZONE_PAGE_INDEX_INVALID) {
- zone_page_index_t next_zind = zone_free_page_head;
- vm_address_t next_free_page_address;
-
- next_free_page_address = zone_map_min_address + PAGE_SIZE * ((vm_size_t)next_zind);
-
- if (next_free_page_address == (free_page_address - PAGE_SIZE)) {
- free_page_address = next_free_page_address;
- } else if (next_free_page_address != (free_page_address + (PAGE_SIZE * page_count)))
- break;
-
- zone_free_page_head = *(zone_page_index_t *)next_free_page_address;
- page_count++;
- total_freed_pages++;
- }
- kmem_free(zone_map, free_page_address, page_count * PAGE_SIZE);
- ZONE_PAGE_COUNT_DECR(z, page_count);
- zgc_stats.pgs_freed += page_count;
- pages_to_free_count -= page_count;
-
- if (++kmem_frees == 32) {
- thread_yield_internal(1);
- kmem_frees = 0;
- }
- }
-
- /* Check that we actually free the exact number of pages we were supposed to */
- assert(pages_to_free_count == 0);
-
- if (zalloc_debug & ZALLOC_DEBUG_ZONEGC)
- kprintf("zone_gc() of zone %s freed %lu elements, %d pages\n", z->zone_name, (unsigned long)size_freed/elt_size, total_freed_pages);
-
- thread_set_eager_preempt(mythread);
- }
-
- if (old_pgs_freed == zgc_stats.pgs_freed)
- zgc_stats.zgc_bailed++;
-
- thread_clear_eager_preempt(mythread);
-
- lck_mtx_unlock(&zone_gc_lock);
-
-}
-
-extern vm_offset_t kmapoff_kaddr;
-extern unsigned int kmapoff_pgcnt;
-
-/*
- * consider_zone_gc:
- *
- * Called by the pageout daemon when the system needs more free pages.
- */
-
-void
-consider_zone_gc(boolean_t force)
-{
- boolean_t all_zones = FALSE;
-
- if (kmapoff_kaddr != 0) {
- /*
- * One-time reclaim of kernel_map resources we allocated in
- * early boot.
- */
- (void) vm_deallocate(kernel_map,
- kmapoff_kaddr, kmapoff_pgcnt * PAGE_SIZE_64);
- kmapoff_kaddr = 0;
- }
-
- if (zone_gc_allowed &&
- (zone_gc_allowed_by_time_throttle ||
- zone_gc_forced ||
- force)) {
- if (zone_gc_allowed_by_time_throttle == TRUE) {
- zone_gc_allowed_by_time_throttle = FALSE;
- all_zones = TRUE;
- }
- zone_gc_forced = FALSE;
-
- zone_gc(all_zones);
- }
-}
-
-/*
- * By default, don't attempt zone GC more frequently
- * than once / 1 minutes.
- */
-void
-compute_zone_gc_throttle(void *arg __unused)
-{
- zone_gc_allowed_by_time_throttle = TRUE;
-}
-
-
-#if CONFIG_TASK_ZONE_INFO
-
-kern_return_t
-task_zone_info(
- task_t task,
- mach_zone_name_array_t *namesp,
- mach_msg_type_number_t *namesCntp,
- task_zone_info_array_t *infop,
- mach_msg_type_number_t *infoCntp)
-{
- mach_zone_name_t *names;
- vm_offset_t names_addr;
- vm_size_t names_size;
- task_zone_info_t *info;
- vm_offset_t info_addr;
- vm_size_t info_size;
- unsigned int max_zones, i;
- zone_t z;
- mach_zone_name_t *zn;
- task_zone_info_t *zi;
- kern_return_t kr;
-
- vm_size_t used;
- vm_map_copy_t copy;
-
-
- if (task == TASK_NULL)
- return KERN_INVALID_TASK;
-
- /*
- * We assume that zones aren't freed once allocated.
- * We won't pick up any zones that are allocated later.
- */
+ /*
+ * We assume that zones aren't freed once allocated.
+ * We won't pick up any zones that are allocated later.
+ */
simple_lock(&all_zones_lock);
- max_zones = (unsigned int)(num_zones + num_fake_zones);
- z = first_zone;
+ max_zones = (unsigned int)(num_zones);
simple_unlock(&all_zones_lock);
names_size = round_page(max_zones * sizeof *names);
names_addr, names_size);
return kr;
}
-
- info = (task_zone_info_t *) info_addr;
+ info = (mach_zone_info_t *) info_addr;
zn = &names[0];
zi = &info[0];
- for (i = 0; i < max_zones - num_fake_zones; i++) {
+ used_zones = max_zones;
+ for (i = 0; i < max_zones; i++) {
struct zone zcopy;
-
+ z = &(zone_array[i]);
assert(z != ZONE_NULL);
lock_zone(z);
+ if (!z->zone_valid) {
+ unlock_zone(z);
+ used_zones--;
+ continue;
+ }
zcopy = *z;
unlock_zone(z);
- simple_lock(&all_zones_lock);
- z = z->next_zone;
- simple_unlock(&all_zones_lock);
-
/* assuming here the name data is static */
- (void) strncpy(zn->mzn_name, zcopy.zone_name,
+ (void) __nosan_strncpy(zn->mzn_name, zcopy.zone_name,
sizeof zn->mzn_name);
zn->mzn_name[sizeof zn->mzn_name - 1] = '\0';
- zi->tzi_count = (uint64_t)zcopy.count;
- zi->tzi_cur_size = ptoa_64(zcopy.page_count);
- zi->tzi_max_size = (uint64_t)zcopy.max_size;
- zi->tzi_elem_size = (uint64_t)zcopy.elem_size;
- zi->tzi_alloc_size = (uint64_t)zcopy.alloc_size;
- zi->tzi_sum_size = zcopy.sum_count * zcopy.elem_size;
- zi->tzi_exhaustible = (uint64_t)zcopy.exhaustible;
- zi->tzi_collectable = (uint64_t)zcopy.collectable;
- zi->tzi_caller_acct = (uint64_t)zcopy.caller_acct;
- if (task->tkm_zinfo != NULL) {
- zi->tzi_task_alloc = task->tkm_zinfo[zcopy.index].alloc;
- zi->tzi_task_free = task->tkm_zinfo[zcopy.index].free;
- } else {
- zi->tzi_task_alloc = 0;
- zi->tzi_task_free = 0;
- }
- zn++;
- zi++;
- }
-
- /*
- * loop through the fake zones and fill them using the specialized
- * functions
- */
- for (i = 0; i < num_fake_zones; i++) {
- int count, collectable, exhaustible, caller_acct, index;
- vm_size_t cur_size, max_size, elem_size, alloc_size;
- uint64_t sum_size;
-
- strncpy(zn->mzn_name, fake_zones[i].name, sizeof zn->mzn_name);
- zn->mzn_name[sizeof zn->mzn_name - 1] = '\0';
- fake_zones[i].query(&count, &cur_size,
- &max_size, &elem_size,
- &alloc_size, &sum_size,
- &collectable, &exhaustible, &caller_acct);
- zi->tzi_count = (uint64_t)count;
- zi->tzi_cur_size = (uint64_t)cur_size;
- zi->tzi_max_size = (uint64_t)max_size;
- zi->tzi_elem_size = (uint64_t)elem_size;
- zi->tzi_alloc_size = (uint64_t)alloc_size;
- zi->tzi_sum_size = sum_size;
- zi->tzi_collectable = (uint64_t)collectable;
- zi->tzi_exhaustible = (uint64_t)exhaustible;
- zi->tzi_caller_acct = (uint64_t)caller_acct;
- if (task->tkm_zinfo != NULL) {
- index = ZINFO_SLOTS - num_fake_zones + i;
- zi->tzi_task_alloc = task->tkm_zinfo[index].alloc;
- zi->tzi_task_free = task->tkm_zinfo[index].free;
- } else {
- zi->tzi_task_alloc = 0;
- zi->tzi_task_free = 0;
- }
+ zi->mzi_count = (uint64_t)zcopy.count;
+ zi->mzi_cur_size = ptoa_64(zcopy.page_count);
+ zi->mzi_max_size = (uint64_t)zcopy.max_size;
+ zi->mzi_elem_size = (uint64_t)zcopy.elem_size;
+ zi->mzi_alloc_size = (uint64_t)zcopy.alloc_size;
+ zi->mzi_sum_size = zcopy.sum_count * zcopy.elem_size;
+ zi->mzi_exhaustible = (uint64_t)zcopy.exhaustible;
+ zi->mzi_collectable = (uint64_t)zcopy.collectable;
+ zones_collectable_bytes += ((uint64_t)zcopy.count_all_free_pages * PAGE_SIZE);
zn++;
zi++;
}
- used = max_zones * sizeof *names;
+ used = used_zones * sizeof *names;
if (used != names_size)
bzero((char *) (names_addr + used), names_size - used);
kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)names_addr,
- (vm_map_size_t)names_size, TRUE, ©);
+ (vm_map_size_t)used, TRUE, ©);
assert(kr == KERN_SUCCESS);
*namesp = (mach_zone_name_t *) copy;
- *namesCntp = max_zones;
+ *namesCntp = used_zones;
- used = max_zones * sizeof *info;
+ used = used_zones * sizeof *info;
if (used != info_size)
bzero((char *) (info_addr + used), info_size - used);
kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)info_addr,
- (vm_map_size_t)info_size, TRUE, ©);
+ (vm_map_size_t)used, TRUE, ©);
assert(kr == KERN_SUCCESS);
- *infop = (task_zone_info_t *) copy;
- *infoCntp = max_zones;
-
- return KERN_SUCCESS;
-}
-
-#else /* CONFIG_TASK_ZONE_INFO */
-
-kern_return_t
-task_zone_info(
- __unused task_t task,
- __unused mach_zone_name_array_t *namesp,
- __unused mach_msg_type_number_t *namesCntp,
- __unused task_zone_info_array_t *infop,
- __unused mach_msg_type_number_t *infoCntp)
-{
- return KERN_FAILURE;
-}
-
-#endif /* CONFIG_TASK_ZONE_INFO */
-
-kern_return_t
-mach_zone_info(
- host_priv_t host,
- mach_zone_name_array_t *namesp,
- mach_msg_type_number_t *namesCntp,
- mach_zone_info_array_t *infop,
- mach_msg_type_number_t *infoCntp)
-{
- return (mach_memory_info(host, namesp, namesCntp, infop, infoCntp, NULL, NULL));
-}
-
-kern_return_t
-mach_memory_info(
- host_priv_t host,
- mach_zone_name_array_t *namesp,
- mach_msg_type_number_t *namesCntp,
- mach_zone_info_array_t *infop,
- mach_msg_type_number_t *infoCntp,
- mach_memory_info_array_t *memoryInfop,
- mach_msg_type_number_t *memoryInfoCntp)
-{
- mach_zone_name_t *names;
- vm_offset_t names_addr;
- vm_size_t names_size;
-
- mach_zone_info_t *info;
- vm_offset_t info_addr;
- vm_size_t info_size;
-
- mach_memory_info_t *memory_info;
- vm_offset_t memory_info_addr;
- vm_size_t memory_info_size;
- unsigned int num_sites;
-
- unsigned int max_zones, i;
- zone_t z;
- mach_zone_name_t *zn;
- mach_zone_info_t *zi;
- kern_return_t kr;
+ *infop = (mach_zone_info_t *) copy;
+ *infoCntp = used_zones;
- vm_size_t used;
- vm_map_copy_t copy;
-
-
- if (host == HOST_NULL)
- return KERN_INVALID_HOST;
-#if CONFIG_DEBUGGER_FOR_ZONE_INFO
- if (!PE_i_can_has_debugger(NULL))
- return KERN_INVALID_HOST;
-#endif
-
- /*
- * We assume that zones aren't freed once allocated.
- * We won't pick up any zones that are allocated later.
- */
-
- simple_lock(&all_zones_lock);
- max_zones = (unsigned int)(num_zones + num_fake_zones);
- z = first_zone;
- simple_unlock(&all_zones_lock);
-
- names_size = round_page(max_zones * sizeof *names);
- kr = kmem_alloc_pageable(ipc_kernel_map,
- &names_addr, names_size, VM_KERN_MEMORY_IPC);
- if (kr != KERN_SUCCESS)
- return kr;
- names = (mach_zone_name_t *) names_addr;
-
- info_size = round_page(max_zones * sizeof *info);
- kr = kmem_alloc_pageable(ipc_kernel_map,
- &info_addr, info_size, VM_KERN_MEMORY_IPC);
- if (kr != KERN_SUCCESS) {
- kmem_free(ipc_kernel_map,
- names_addr, names_size);
- return kr;
- }
- info = (mach_zone_info_t *) info_addr;
-
- num_sites = 0;
+ num_info = 0;
memory_info_addr = 0;
+
if (memoryInfop && memoryInfoCntp)
{
- num_sites = VM_KERN_MEMORY_COUNT + VM_KERN_COUNTER_COUNT;
- memory_info_size = round_page(num_sites * sizeof *info);
+ num_info = vm_page_diagnose_estimate();
+ memory_info_size = num_info * sizeof(*memory_info);
+ memory_info_vmsize = round_page(memory_info_size);
kr = kmem_alloc_pageable(ipc_kernel_map,
- &memory_info_addr, memory_info_size, VM_KERN_MEMORY_IPC);
+ &memory_info_addr, memory_info_vmsize, VM_KERN_MEMORY_IPC);
if (kr != KERN_SUCCESS) {
kmem_free(ipc_kernel_map,
names_addr, names_size);
return kr;
}
- kr = vm_map_wire(ipc_kernel_map, memory_info_addr, memory_info_addr + memory_info_size,
- VM_PROT_READ|VM_PROT_WRITE|VM_PROT_MEMORY_TAG_MAKE(VM_KERN_MEMORY_IPC), FALSE);
+ kr = vm_map_wire_kernel(ipc_kernel_map, memory_info_addr, memory_info_addr + memory_info_vmsize,
+ VM_PROT_READ|VM_PROT_WRITE, VM_KERN_MEMORY_IPC, FALSE);
assert(kr == KERN_SUCCESS);
memory_info = (mach_memory_info_t *) memory_info_addr;
- vm_page_diagnose(memory_info, num_sites);
+ vm_page_diagnose(memory_info, num_info, zones_collectable_bytes);
- kr = vm_map_unwire(ipc_kernel_map, memory_info_addr, memory_info_addr + memory_info_size, FALSE);
+ kr = vm_map_unwire(ipc_kernel_map, memory_info_addr, memory_info_addr + memory_info_vmsize, FALSE);
assert(kr == KERN_SUCCESS);
- }
-
- zn = &names[0];
- zi = &info[0];
-
- for (i = 0; i < max_zones - num_fake_zones; i++) {
- struct zone zcopy;
-
- assert(z != ZONE_NULL);
-
- lock_zone(z);
- zcopy = *z;
- unlock_zone(z);
-
- simple_lock(&all_zones_lock);
- z = z->next_zone;
- simple_unlock(&all_zones_lock);
-
- /* assuming here the name data is static */
- (void) strncpy(zn->mzn_name, zcopy.zone_name,
- sizeof zn->mzn_name);
- zn->mzn_name[sizeof zn->mzn_name - 1] = '\0';
-
- zi->mzi_count = (uint64_t)zcopy.count;
- zi->mzi_cur_size = ptoa_64(zcopy.page_count);
- zi->mzi_max_size = (uint64_t)zcopy.max_size;
- zi->mzi_elem_size = (uint64_t)zcopy.elem_size;
- zi->mzi_alloc_size = (uint64_t)zcopy.alloc_size;
- zi->mzi_sum_size = zcopy.sum_count * zcopy.elem_size;
- zi->mzi_exhaustible = (uint64_t)zcopy.exhaustible;
- zi->mzi_collectable = (uint64_t)zcopy.collectable;
- zn++;
- zi++;
- }
-
- /*
- * loop through the fake zones and fill them using the specialized
- * functions
- */
- for (i = 0; i < num_fake_zones; i++) {
- int count, collectable, exhaustible, caller_acct;
- vm_size_t cur_size, max_size, elem_size, alloc_size;
- uint64_t sum_size;
-
- strncpy(zn->mzn_name, fake_zones[i].name, sizeof zn->mzn_name);
- zn->mzn_name[sizeof zn->mzn_name - 1] = '\0';
- fake_zones[i].query(&count, &cur_size,
- &max_size, &elem_size,
- &alloc_size, &sum_size,
- &collectable, &exhaustible, &caller_acct);
- zi->mzi_count = (uint64_t)count;
- zi->mzi_cur_size = (uint64_t)cur_size;
- zi->mzi_max_size = (uint64_t)max_size;
- zi->mzi_elem_size = (uint64_t)elem_size;
- zi->mzi_alloc_size = (uint64_t)alloc_size;
- zi->mzi_sum_size = sum_size;
- zi->mzi_collectable = (uint64_t)collectable;
- zi->mzi_exhaustible = (uint64_t)exhaustible;
-
- zn++;
- zi++;
- }
-
- used = max_zones * sizeof *names;
- if (used != names_size)
- bzero((char *) (names_addr + used), names_size - used);
-
- kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)names_addr,
- (vm_map_size_t)names_size, TRUE, ©);
- assert(kr == KERN_SUCCESS);
-
- *namesp = (mach_zone_name_t *) copy;
- *namesCntp = max_zones;
-
- used = max_zones * sizeof *info;
-
- if (used != info_size)
- bzero((char *) (info_addr + used), info_size - used);
-
- kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)info_addr,
- (vm_map_size_t)info_size, TRUE, ©);
- assert(kr == KERN_SUCCESS);
-
- *infop = (mach_zone_info_t *) copy;
- *infoCntp = max_zones;
-
- if (memoryInfop && memoryInfoCntp)
- {
+
kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)memory_info_addr,
(vm_map_size_t)memory_info_size, TRUE, ©);
assert(kr == KERN_SUCCESS);
*memoryInfop = (mach_memory_info_t *) copy;
- *memoryInfoCntp = num_sites;
+ *memoryInfoCntp = num_info;
}
return KERN_SUCCESS;
}
-/*
- * host_zone_info - LEGACY user interface for Mach zone information
- * Should use mach_zone_info() instead!
- */
-kern_return_t
-host_zone_info(
- host_priv_t host,
- zone_name_array_t *namesp,
- mach_msg_type_number_t *namesCntp,
- zone_info_array_t *infop,
- mach_msg_type_number_t *infoCntp)
+uint64_t
+get_zones_collectable_bytes(void)
{
- zone_name_t *names;
- vm_offset_t names_addr;
- vm_size_t names_size;
- zone_info_t *info;
- vm_offset_t info_addr;
- vm_size_t info_size;
- unsigned int max_zones, i;
- zone_t z;
- zone_name_t *zn;
- zone_info_t *zi;
- kern_return_t kr;
-
- vm_size_t used;
- vm_map_copy_t copy;
-
-
- if (host == HOST_NULL)
- return KERN_INVALID_HOST;
-#if CONFIG_DEBUGGER_FOR_ZONE_INFO
- if (!PE_i_can_has_debugger(NULL))
- return KERN_INVALID_HOST;
-#endif
-
-#if defined(__LP64__)
- if (!thread_is_64bit(current_thread()))
- return KERN_NOT_SUPPORTED;
-#else
- if (thread_is_64bit(current_thread()))
- return KERN_NOT_SUPPORTED;
-#endif
-
- /*
- * We assume that zones aren't freed once allocated.
- * We won't pick up any zones that are allocated later.
- */
+ zone_t z;
+ unsigned int i, max_zones;
+ uint64_t zones_collectable_bytes = 0;
simple_lock(&all_zones_lock);
- max_zones = (unsigned int)(num_zones + num_fake_zones);
- z = first_zone;
+ max_zones = (unsigned int)(num_zones);
simple_unlock(&all_zones_lock);
- names_size = round_page(max_zones * sizeof *names);
- kr = kmem_alloc_pageable(ipc_kernel_map,
- &names_addr, names_size, VM_KERN_MEMORY_IPC);
- if (kr != KERN_SUCCESS)
- return kr;
- names = (zone_name_t *) names_addr;
-
- info_size = round_page(max_zones * sizeof *info);
- kr = kmem_alloc_pageable(ipc_kernel_map,
- &info_addr, info_size, VM_KERN_MEMORY_IPC);
- if (kr != KERN_SUCCESS) {
- kmem_free(ipc_kernel_map,
- names_addr, names_size);
- return kr;
- }
-
- info = (zone_info_t *) info_addr;
-
- zn = &names[0];
- zi = &info[0];
-
- for (i = 0; i < max_zones - num_fake_zones; i++) {
- struct zone zcopy;
-
+ for (i = 0; i < max_zones; i++) {
+ z = &(zone_array[i]);
assert(z != ZONE_NULL);
lock_zone(z);
- zcopy = *z;
+ zones_collectable_bytes += ((uint64_t)z->count_all_free_pages * PAGE_SIZE);
unlock_zone(z);
-
- simple_lock(&all_zones_lock);
- z = z->next_zone;
- simple_unlock(&all_zones_lock);
-
- /* assuming here the name data is static */
- (void) strncpy(zn->zn_name, zcopy.zone_name,
- sizeof zn->zn_name);
- zn->zn_name[sizeof zn->zn_name - 1] = '\0';
-
- zi->zi_count = zcopy.count;
- zi->zi_cur_size = ptoa(zcopy.page_count);
- zi->zi_max_size = zcopy.max_size;
- zi->zi_elem_size = zcopy.elem_size;
- zi->zi_alloc_size = zcopy.alloc_size;
- zi->zi_exhaustible = zcopy.exhaustible;
- zi->zi_collectable = zcopy.collectable;
-
- zn++;
- zi++;
}
- /*
- * loop through the fake zones and fill them using the specialized
- * functions
- */
- for (i = 0; i < num_fake_zones; i++) {
- int caller_acct;
- uint64_t sum_space;
- strncpy(zn->zn_name, fake_zones[i].name, sizeof zn->zn_name);
- zn->zn_name[sizeof zn->zn_name - 1] = '\0';
- fake_zones[i].query(&zi->zi_count, &zi->zi_cur_size,
- &zi->zi_max_size, &zi->zi_elem_size,
- &zi->zi_alloc_size, &sum_space,
- &zi->zi_collectable, &zi->zi_exhaustible, &caller_acct);
- zn++;
- zi++;
- }
-
- used = max_zones * sizeof *names;
- if (used != names_size)
- bzero((char *) (names_addr + used), names_size - used);
-
- kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)names_addr,
- (vm_map_size_t)names_size, TRUE, ©);
- assert(kr == KERN_SUCCESS);
-
- *namesp = (zone_name_t *) copy;
- *namesCntp = max_zones;
+ return zones_collectable_bytes;
+}
- used = max_zones * sizeof *info;
- if (used != info_size)
- bzero((char *) (info_addr + used), info_size - used);
+#if DEBUG || DEVELOPMENT
- kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)info_addr,
- (vm_map_size_t)info_size, TRUE, ©);
- assert(kr == KERN_SUCCESS);
+kern_return_t
+mach_memory_info_check(void)
+{
+ mach_memory_info_t * memory_info;
+ mach_memory_info_t * info;
+ zone_t zone;
+ unsigned int idx, num_info, max_zones;
+ vm_offset_t memory_info_addr;
+ kern_return_t kr;
+ size_t memory_info_size, memory_info_vmsize;
+ uint64_t top_wired, zonestotal, total;
+
+ num_info = vm_page_diagnose_estimate();
+ memory_info_size = num_info * sizeof(*memory_info);
+ memory_info_vmsize = round_page(memory_info_size);
+ kr = kmem_alloc(kernel_map, &memory_info_addr, memory_info_vmsize, VM_KERN_MEMORY_DIAG);
+ assert (kr == KERN_SUCCESS);
+
+ memory_info = (mach_memory_info_t *) memory_info_addr;
+ vm_page_diagnose(memory_info, num_info, 0);
- *infop = (zone_info_t *) copy;
- *infoCntp = max_zones;
+ simple_lock(&all_zones_lock);
+ max_zones = num_zones;
+ simple_unlock(&all_zones_lock);
- return KERN_SUCCESS;
+ top_wired = total = zonestotal = 0;
+ for (idx = 0; idx < max_zones; idx++)
+ {
+ zone = &(zone_array[idx]);
+ assert(zone != ZONE_NULL);
+ lock_zone(zone);
+ zonestotal += ptoa_64(zone->page_count);
+ unlock_zone(zone);
+ }
+ for (idx = 0; idx < num_info; idx++)
+ {
+ info = &memory_info[idx];
+ if (!info->size) continue;
+ if (VM_KERN_COUNT_WIRED == info->site) top_wired = info->size;
+ if (VM_KERN_SITE_HIDE & info->flags) continue;
+ if (!(VM_KERN_SITE_WIRED & info->flags)) continue;
+ total += info->size;
+ }
+ total += zonestotal;
+
+ printf("vm_page_diagnose_check %qd of %qd, zones %qd, short 0x%qx\n", total, top_wired, zonestotal, top_wired - total);
+
+ kmem_free(kernel_map, memory_info_addr, memory_info_vmsize);
+
+ return (kr);
}
+#endif /* DEBUG || DEVELOPMENT */
+
kern_return_t
mach_zone_force_gc(
host_t host)
{
-
if (host == HOST_NULL)
return KERN_INVALID_HOST;
- consider_zone_gc(TRUE);
-
+#if DEBUG || DEVELOPMENT
+ consider_zone_gc(FALSE);
+#endif /* DEBUG || DEVELOPMENT */
return (KERN_SUCCESS);
}
extern long long alloc_ptepages_count;
#endif
-void zone_display_zprint()
-{
- unsigned int i;
- zone_t the_zone;
-
- if(first_zone!=NULL) {
- the_zone = first_zone;
- for (i = 0; i < num_zones; i++) {
- if(the_zone->cur_size > (1024*1024)) {
- printf("%.20s:\t%lu\n",the_zone->zone_name,(uintptr_t)the_zone->cur_size);
- }
-
- if(the_zone->next_zone == NULL) {
- break;
- }
-
- the_zone = the_zone->next_zone;
- }
- }
-
- printf("Kernel Stacks:\t%lu\n",(uintptr_t)(kernel_stack_size * stack_total));
-
-#if defined(__i386__) || defined (__x86_64__)
- printf("PageTables:\t%lu\n",(uintptr_t)(PAGE_SIZE * inuse_ptepages_count));
-#endif
-
- printf("Kalloc.Large:\t%lu\n",(uintptr_t)kalloc_large_total);
-}
-
zone_t
zone_find_largest(void)
{
zone_t zone_largest;
simple_lock(&all_zones_lock);
- the_zone = first_zone;
max_zones = num_zones;
simple_unlock(&all_zones_lock);
- zone_largest = the_zone;
+ zone_largest = &(zone_array[0]);
for (i = 0; i < max_zones; i++) {
+ the_zone = &(zone_array[i]);
if (the_zone->cur_size > zone_largest->cur_size) {
zone_largest = the_zone;
}
-
- if (the_zone->next_zone == NULL) {
- break;
- }
-
- the_zone = the_zone->next_zone;
}
return zone_largest;
}
|| !queue_empty(&z->pages.intermediate) \
|| (z->allows_foreign && !queue_empty(&z->pages.any_free_foreign)))
-void
-zone_debug_enable(
- zone_t z)
+
+#endif /* ZONE_DEBUG */
+
+
+/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
+
+#if DEBUG || DEVELOPMENT
+
+static uintptr_t *
+zone_copy_all_allocations_inqueue(zone_t z, queue_head_t * queue, uintptr_t * elems)
{
- if (zone_debug_enabled(z) || zone_in_use(z) ||
- z->alloc_size < (z->elem_size + ZONE_DEBUG_OFFSET))
- return;
- queue_init(&z->active_zones);
- z->elem_size += ZONE_DEBUG_OFFSET;
+ struct zone_page_metadata *page_meta;
+ vm_offset_t free, elements;
+ vm_offset_t idx, numElements, freeCount, bytesAvail, metaSize;
+
+ queue_iterate(queue, page_meta, struct zone_page_metadata *, pages)
+ {
+ elements = get_zone_page(page_meta);
+ bytesAvail = ptoa(page_meta->page_count);
+ freeCount = 0;
+ if (z->allows_foreign && !from_zone_map(elements, z->elem_size))
+ {
+ metaSize = (sizeof(struct zone_page_metadata) + ZONE_ELEMENT_ALIGNMENT - 1) & ~(ZONE_ELEMENT_ALIGNMENT - 1);
+ bytesAvail -= metaSize;
+ elements += metaSize;
+ }
+ numElements = bytesAvail / z->elem_size;
+ // construct array of all possible elements
+ for (idx = 0; idx < numElements; idx++)
+ {
+ elems[idx] = INSTANCE_PUT(elements + idx * z->elem_size);
+ }
+ // remove from the array all free elements
+ free = (vm_offset_t)page_metadata_get_freelist(page_meta);
+ while (free)
+ {
+ // find idx of free element
+ for (idx = 0; (idx < numElements) && (elems[idx] != INSTANCE_PUT(free)); idx++) {}
+ assert(idx < numElements);
+ // remove it
+ bcopy(&elems[idx + 1], &elems[idx], (numElements - (idx + 1)) * sizeof(elems[0]));
+ numElements--;
+ freeCount++;
+ // next free element
+ vm_offset_t *primary = (vm_offset_t *) free;
+ free = *primary ^ zp_nopoison_cookie;
+ }
+ elems += numElements;
+ }
+
+ return (elems);
}
-void
-zone_debug_disable(
- zone_t z)
+kern_return_t
+zone_leaks(const char * zoneName, uint32_t nameLen, leak_site_proc proc, void * refCon)
{
- if (!zone_debug_enabled(z) || zone_in_use(z))
- return;
- z->elem_size -= ZONE_DEBUG_OFFSET;
- z->active_zones.next = z->active_zones.prev = NULL;
+ uintptr_t zbt[MAX_ZTRACE_DEPTH];
+ zone_t zone;
+ uintptr_t * array;
+ uintptr_t * next;
+ uintptr_t element, bt;
+ uint32_t idx, count, found;
+ uint32_t btidx, btcount, nobtcount, btfound;
+ uint32_t elemSize;
+ uint64_t maxElems;
+ unsigned int max_zones;
+ kern_return_t kr;
+
+ simple_lock(&all_zones_lock);
+ max_zones = num_zones;
+ simple_unlock(&all_zones_lock);
+
+ for (idx = 0; idx < max_zones; idx++)
+ {
+ if (!strncmp(zoneName, zone_array[idx].zone_name, nameLen)) break;
+ }
+ if (idx >= max_zones) return (KERN_INVALID_NAME);
+ zone = &zone_array[idx];
+
+ elemSize = (uint32_t) zone->elem_size;
+ maxElems = ptoa(zone->page_count) / elemSize;
+
+ if ((zone->alloc_size % elemSize)
+ && !leak_scan_debug_flag) return (KERN_INVALID_CAPABILITY);
+
+ kr = kmem_alloc_kobject(kernel_map, (vm_offset_t *) &array,
+ maxElems * sizeof(uintptr_t), VM_KERN_MEMORY_DIAG);
+ if (KERN_SUCCESS != kr) return (kr);
+
+ lock_zone(zone);
+
+ next = array;
+ next = zone_copy_all_allocations_inqueue(zone, &zone->pages.any_free_foreign, next);
+ next = zone_copy_all_allocations_inqueue(zone, &zone->pages.intermediate, next);
+ next = zone_copy_all_allocations_inqueue(zone, &zone->pages.all_used, next);
+ count = (uint32_t)(next - array);
+
+ unlock_zone(zone);
+
+ zone_leaks_scan(array, count, (uint32_t)zone->elem_size, &found);
+ assert(found <= count);
+
+ for (idx = 0; idx < count; idx++)
+ {
+ element = array[idx];
+ if (kInstanceFlagReferenced & element) continue;
+ element = INSTANCE_PUT(element) & ~kInstanceFlags;
+ }
+
+ if (zone->zlog_btlog && !corruption_debug_flag)
+ {
+ // btlog_copy_backtraces_for_elements will set kInstanceFlagReferenced on elements it found
+ btlog_copy_backtraces_for_elements(zone->zlog_btlog, array, &count, elemSize, proc, refCon);
+ }
+
+ for (nobtcount = idx = 0; idx < count; idx++)
+ {
+ element = array[idx];
+ if (!element) continue;
+ if (kInstanceFlagReferenced & element) continue;
+ element = INSTANCE_PUT(element) & ~kInstanceFlags;
+
+ // see if we can find any backtrace left in the element
+ btcount = (typeof(btcount)) (zone->elem_size / sizeof(uintptr_t));
+ if (btcount >= MAX_ZTRACE_DEPTH) btcount = MAX_ZTRACE_DEPTH - 1;
+ for (btfound = btidx = 0; btidx < btcount; btidx++)
+ {
+ bt = ((uintptr_t *)element)[btcount - 1 - btidx];
+ if (!VM_KERNEL_IS_SLID(bt)) break;
+ zbt[btfound++] = bt;
+ }
+ if (btfound) (*proc)(refCon, 1, elemSize, &zbt[0], btfound);
+ else nobtcount++;
+ }
+ if (nobtcount)
+ {
+ // fake backtrace when we found nothing
+ zbt[0] = (uintptr_t) &zalloc;
+ (*proc)(refCon, nobtcount, elemSize, &zbt[0], 1);
+ }
+
+ kmem_free(kernel_map, (vm_offset_t) array, maxElems * sizeof(uintptr_t));
+
+ return (KERN_SUCCESS);
+}
+
+boolean_t
+kdp_is_in_zone(void *addr, const char *zone_name)
+{
+ zone_t z;
+ return (zone_element_size(addr, &z) && !strcmp(z->zone_name, zone_name));
}
+boolean_t
+run_zone_test(void)
+{
+ int i = 0, max_iter = 5;
+ void * test_ptr;
+ zone_t test_zone;
-#endif /* ZONE_DEBUG */
+ simple_lock(&zone_test_lock);
+ if (!zone_test_running) {
+ zone_test_running = TRUE;
+ } else {
+ simple_unlock(&zone_test_lock);
+ printf("run_zone_test: Test already running.\n");
+ return FALSE;
+ }
+ simple_unlock(&zone_test_lock);
+
+ printf("run_zone_test: Testing zinit(), zalloc(), zfree() and zdestroy() on zone \"test_zone_sysctl\"\n");
+
+ /* zinit() and zdestroy() a zone with the same name a bunch of times, verify that we get back the same zone each time */
+ do {
+ test_zone = zinit(sizeof(uint64_t), 100 * sizeof(uint64_t), sizeof(uint64_t), "test_zone_sysctl");
+ if (test_zone == NULL) {
+ printf("run_zone_test: zinit() failed\n");
+ return FALSE;
+ }
+
+#if KASAN_ZALLOC
+ if (test_zone_ptr == NULL && zone_free_count(test_zone) != 0) {
+#else
+ if (zone_free_count(test_zone) != 0) {
+#endif
+ printf("run_zone_test: free count is not zero\n");
+ return FALSE;
+ }
+
+ if (test_zone_ptr == NULL) {
+ /* Stash the zone pointer returned on the fist zinit */
+ printf("run_zone_test: zone created for the first time\n");
+ test_zone_ptr = test_zone;
+ } else if (test_zone != test_zone_ptr) {
+ printf("run_zone_test: old zone pointer and new zone pointer don't match\n");
+ return FALSE;
+ }
+
+ test_ptr = zalloc(test_zone);
+ if (test_ptr == NULL) {
+ printf("run_zone_test: zalloc() failed\n");
+ return FALSE;
+ }
+ zfree(test_zone, test_ptr);
+
+ zdestroy(test_zone);
+ i++;
+
+ printf("run_zone_test: Iteration %d successful\n", i);
+ } while (i < max_iter);
+
+ printf("run_zone_test: Test passed\n");
+
+ simple_lock(&zone_test_lock);
+ zone_test_running = FALSE;
+ simple_unlock(&zone_test_lock);
+
+ return TRUE;
+}
+
+#endif /* DEBUG || DEVELOPMENT */