/*
- * Copyright (c) 2000-2012 Apple Computer, Inc. All rights reserved.
+ * Copyright (c) 2000-2019 Apple Computer, Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
- *
+ *
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
- *
+ *
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
- *
+ *
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
- *
+ *
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
/* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
#include <sys/disk.h>
#include <sys/uio_internal.h>
#include <sys/resource.h>
+#include <machine/machine_routines.h>
#include <miscfs/specfs/specdev.h>
#include <vfs/vfs_support.h>
+#include <vfs/vfs_disk_conditioner.h>
+
#include <kern/assert.h>
#include <kern/task.h>
+#include <kern/sched_prim.h>
+#include <kern/thread.h>
+#include <kern/policy_internal.h>
+#include <kern/timer_call.h>
+#include <kern/waitq.h>
+
#include <pexpert/pexpert.h>
#include <sys/kdebug.h>
+#include <libkern/section_keywords.h>
/* XXX following three prototypes should be in a header file somewhere */
-extern dev_t chrtoblk(dev_t dev);
-extern boolean_t iskmemdev(dev_t dev);
-extern int bpfkqfilter(dev_t dev, struct knote *kn);
-extern int ptsd_kqfilter(dev_t dev, struct knote *kn);
-
-extern int ignore_is_ssd;
+extern dev_t chrtoblk(dev_t dev);
+extern boolean_t iskmemdev(dev_t dev);
+extern int bpfkqfilter(dev_t dev, struct knote *kn);
+extern int ptsd_kqfilter(dev_t, struct knote *);
+extern int ptmx_kqfilter(dev_t, struct knote *);
struct vnode *speclisth[SPECHSZ];
/* symbolic sleep message strings for devices */
-char devopn[] = "devopn";
-char devio[] = "devio";
-char devwait[] = "devwait";
-char devin[] = "devin";
-char devout[] = "devout";
-char devioc[] = "devioc";
-char devcls[] = "devcls";
+char devopn[] = "devopn";
+char devio[] = "devio";
+char devwait[] = "devwait";
+char devin[] = "devin";
+char devout[] = "devout";
+char devioc[] = "devioc";
+char devcls[] = "devcls";
#define VOPFUNC int (*)(void *)
-int (**spec_vnodeop_p)(void *);
-struct vnodeopv_entry_desc spec_vnodeop_entries[] = {
- { &vnop_default_desc, (VOPFUNC)vn_default_error },
- { &vnop_lookup_desc, (VOPFUNC)spec_lookup }, /* lookup */
- { &vnop_create_desc, (VOPFUNC)err_create }, /* create */
- { &vnop_mknod_desc, (VOPFUNC)err_mknod }, /* mknod */
- { &vnop_open_desc, (VOPFUNC)spec_open }, /* open */
- { &vnop_close_desc, (VOPFUNC)spec_close }, /* close */
- { &vnop_access_desc, (VOPFUNC)spec_access }, /* access */
- { &vnop_getattr_desc, (VOPFUNC)spec_getattr }, /* getattr */
- { &vnop_setattr_desc, (VOPFUNC)spec_setattr }, /* setattr */
- { &vnop_read_desc, (VOPFUNC)spec_read }, /* read */
- { &vnop_write_desc, (VOPFUNC)spec_write }, /* write */
- { &vnop_ioctl_desc, (VOPFUNC)spec_ioctl }, /* ioctl */
- { &vnop_select_desc, (VOPFUNC)spec_select }, /* select */
- { &vnop_revoke_desc, (VOPFUNC)nop_revoke }, /* revoke */
- { &vnop_mmap_desc, (VOPFUNC)err_mmap }, /* mmap */
- { &vnop_fsync_desc, (VOPFUNC)spec_fsync }, /* fsync */
- { &vnop_remove_desc, (VOPFUNC)err_remove }, /* remove */
- { &vnop_link_desc, (VOPFUNC)err_link }, /* link */
- { &vnop_rename_desc, (VOPFUNC)err_rename }, /* rename */
- { &vnop_mkdir_desc, (VOPFUNC)err_mkdir }, /* mkdir */
- { &vnop_rmdir_desc, (VOPFUNC)err_rmdir }, /* rmdir */
- { &vnop_symlink_desc, (VOPFUNC)err_symlink }, /* symlink */
- { &vnop_readdir_desc, (VOPFUNC)err_readdir }, /* readdir */
- { &vnop_readlink_desc, (VOPFUNC)err_readlink }, /* readlink */
- { &vnop_inactive_desc, (VOPFUNC)nop_inactive }, /* inactive */
- { &vnop_reclaim_desc, (VOPFUNC)nop_reclaim }, /* reclaim */
- { &vnop_strategy_desc, (VOPFUNC)spec_strategy }, /* strategy */
- { &vnop_pathconf_desc, (VOPFUNC)spec_pathconf }, /* pathconf */
- { &vnop_advlock_desc, (VOPFUNC)err_advlock }, /* advlock */
- { &vnop_bwrite_desc, (VOPFUNC)spec_bwrite }, /* bwrite */
- { &vnop_pagein_desc, (VOPFUNC)err_pagein }, /* Pagein */
- { &vnop_pageout_desc, (VOPFUNC)err_pageout }, /* Pageout */
- { &vnop_copyfile_desc, (VOPFUNC)err_copyfile }, /* Copyfile */
- { &vnop_blktooff_desc, (VOPFUNC)spec_blktooff }, /* blktooff */
- { &vnop_offtoblk_desc, (VOPFUNC)spec_offtoblk }, /* offtoblk */
- { &vnop_blockmap_desc, (VOPFUNC)spec_blockmap }, /* blockmap */
- { (struct vnodeop_desc*)NULL, (int(*)())NULL }
+int(**spec_vnodeop_p)(void *);
+const struct vnodeopv_entry_desc spec_vnodeop_entries[] = {
+ { .opve_op = &vnop_default_desc, .opve_impl = (VOPFUNC)vn_default_error },
+ { .opve_op = &vnop_lookup_desc, .opve_impl = (VOPFUNC)spec_lookup }, /* lookup */
+ { .opve_op = &vnop_create_desc, .opve_impl = (VOPFUNC)err_create }, /* create */
+ { .opve_op = &vnop_mknod_desc, .opve_impl = (VOPFUNC)err_mknod }, /* mknod */
+ { .opve_op = &vnop_open_desc, .opve_impl = (VOPFUNC)spec_open }, /* open */
+ { .opve_op = &vnop_close_desc, .opve_impl = (VOPFUNC)spec_close }, /* close */
+ { .opve_op = &vnop_access_desc, .opve_impl = (VOPFUNC)spec_access }, /* access */
+ { .opve_op = &vnop_getattr_desc, .opve_impl = (VOPFUNC)spec_getattr }, /* getattr */
+ { .opve_op = &vnop_setattr_desc, .opve_impl = (VOPFUNC)spec_setattr }, /* setattr */
+ { .opve_op = &vnop_read_desc, .opve_impl = (VOPFUNC)spec_read }, /* read */
+ { .opve_op = &vnop_write_desc, .opve_impl = (VOPFUNC)spec_write }, /* write */
+ { .opve_op = &vnop_ioctl_desc, .opve_impl = (VOPFUNC)spec_ioctl }, /* ioctl */
+ { .opve_op = &vnop_select_desc, .opve_impl = (VOPFUNC)spec_select }, /* select */
+ { .opve_op = &vnop_revoke_desc, .opve_impl = (VOPFUNC)nop_revoke }, /* revoke */
+ { .opve_op = &vnop_mmap_desc, .opve_impl = (VOPFUNC)err_mmap }, /* mmap */
+ { .opve_op = &vnop_fsync_desc, .opve_impl = (VOPFUNC)spec_fsync }, /* fsync */
+ { .opve_op = &vnop_remove_desc, .opve_impl = (VOPFUNC)err_remove }, /* remove */
+ { .opve_op = &vnop_link_desc, .opve_impl = (VOPFUNC)err_link }, /* link */
+ { .opve_op = &vnop_rename_desc, .opve_impl = (VOPFUNC)err_rename }, /* rename */
+ { .opve_op = &vnop_mkdir_desc, .opve_impl = (VOPFUNC)err_mkdir }, /* mkdir */
+ { .opve_op = &vnop_rmdir_desc, .opve_impl = (VOPFUNC)err_rmdir }, /* rmdir */
+ { .opve_op = &vnop_symlink_desc, .opve_impl = (VOPFUNC)err_symlink }, /* symlink */
+ { .opve_op = &vnop_readdir_desc, .opve_impl = (VOPFUNC)err_readdir }, /* readdir */
+ { .opve_op = &vnop_readlink_desc, .opve_impl = (VOPFUNC)err_readlink }, /* readlink */
+ { .opve_op = &vnop_inactive_desc, .opve_impl = (VOPFUNC)nop_inactive }, /* inactive */
+ { .opve_op = &vnop_reclaim_desc, .opve_impl = (VOPFUNC)nop_reclaim }, /* reclaim */
+ { .opve_op = &vnop_strategy_desc, .opve_impl = (VOPFUNC)spec_strategy }, /* strategy */
+ { .opve_op = &vnop_pathconf_desc, .opve_impl = (VOPFUNC)spec_pathconf }, /* pathconf */
+ { .opve_op = &vnop_advlock_desc, .opve_impl = (VOPFUNC)err_advlock }, /* advlock */
+ { .opve_op = &vnop_bwrite_desc, .opve_impl = (VOPFUNC)spec_bwrite }, /* bwrite */
+ { .opve_op = &vnop_pagein_desc, .opve_impl = (VOPFUNC)err_pagein }, /* Pagein */
+ { .opve_op = &vnop_pageout_desc, .opve_impl = (VOPFUNC)err_pageout }, /* Pageout */
+ { .opve_op = &vnop_copyfile_desc, .opve_impl = (VOPFUNC)err_copyfile }, /* Copyfile */
+ { .opve_op = &vnop_blktooff_desc, .opve_impl = (VOPFUNC)spec_blktooff }, /* blktooff */
+ { .opve_op = &vnop_offtoblk_desc, .opve_impl = (VOPFUNC)spec_offtoblk }, /* offtoblk */
+ { .opve_op = &vnop_blockmap_desc, .opve_impl = (VOPFUNC)spec_blockmap }, /* blockmap */
+ { .opve_op = (struct vnodeop_desc*)NULL, .opve_impl = (int (*)(void *))NULL }
};
-struct vnodeopv_desc spec_vnodeop_opv_desc =
- { &spec_vnodeop_p, spec_vnodeop_entries };
+const struct vnodeopv_desc spec_vnodeop_opv_desc =
+{ .opv_desc_vector_p = &spec_vnodeop_p, .opv_desc_ops = spec_vnodeop_entries };
static void set_blocksize(vnode_t, dev_t);
-#define LOWPRI_TIER1_WINDOW_MSECS 25
-#define LOWPRI_TIER2_WINDOW_MSECS 100
-#define LOWPRI_TIER3_WINDOW_MSECS 500
+#define LOWPRI_TIER1_WINDOW_MSECS 25
+#define LOWPRI_TIER2_WINDOW_MSECS 100
+#define LOWPRI_TIER3_WINDOW_MSECS 500
-#define LOWPRI_TIER1_IO_PERIOD_MSECS 15
-#define LOWPRI_TIER2_IO_PERIOD_MSECS 50
-#define LOWPRI_TIER3_IO_PERIOD_MSECS 200
+#define LOWPRI_TIER1_IO_PERIOD_MSECS 40
+#define LOWPRI_TIER2_IO_PERIOD_MSECS 85
+#define LOWPRI_TIER3_IO_PERIOD_MSECS 200
#define LOWPRI_TIER1_IO_PERIOD_SSD_MSECS 5
#define LOWPRI_TIER2_IO_PERIOD_SSD_MSECS 15
#define LOWPRI_TIER3_IO_PERIOD_SSD_MSECS 25
-int throttle_windows_msecs[THROTTLE_LEVEL_END + 1] = {
+int throttle_windows_msecs[THROTTLE_LEVEL_END + 1] = {
0,
LOWPRI_TIER1_WINDOW_MSECS,
LOWPRI_TIER2_WINDOW_MSECS,
LOWPRI_TIER3_WINDOW_MSECS,
};
-int throttle_io_period_msecs[THROTTLE_LEVEL_END + 1] = {
+int throttle_io_period_msecs[THROTTLE_LEVEL_END + 1] = {
0,
LOWPRI_TIER1_IO_PERIOD_MSECS,
LOWPRI_TIER2_IO_PERIOD_MSECS,
LOWPRI_TIER3_IO_PERIOD_MSECS,
};
-int throttle_io_period_ssd_msecs[THROTTLE_LEVEL_END + 1] = {
+int throttle_io_period_ssd_msecs[THROTTLE_LEVEL_END + 1] = {
0,
LOWPRI_TIER1_IO_PERIOD_SSD_MSECS,
LOWPRI_TIER2_IO_PERIOD_SSD_MSECS,
};
-int throttled_count[THROTTLE_LEVEL_END + 1];
+int throttled_count[THROTTLE_LEVEL_END + 1];
struct _throttle_io_info_t {
- lck_mtx_t throttle_lock;
-
- struct timeval throttle_last_write_timestamp;
- struct timeval throttle_min_timer_deadline;
- struct timeval throttle_window_start_timestamp[THROTTLE_LEVEL_END + 1];
- struct timeval throttle_last_IO_timestamp[THROTTLE_LEVEL_END + 1];
- pid_t throttle_last_IO_pid[THROTTLE_LEVEL_END + 1];
- struct timeval throttle_start_IO_period_timestamp[THROTTLE_LEVEL_END + 1];
-
- TAILQ_HEAD( , uthread) throttle_uthlist[THROTTLE_LEVEL_END + 1]; /* Lists of throttled uthreads */
- int throttle_next_wake_level;
-
- thread_call_t throttle_timer_call;
- int32_t throttle_timer_ref;
- int32_t throttle_timer_active;
-
- int32_t throttle_io_count;
- int32_t throttle_io_count_begin;
- int *throttle_io_periods;
+ lck_mtx_t throttle_lock;
+
+ struct timeval throttle_last_write_timestamp;
+ struct timeval throttle_min_timer_deadline;
+ struct timeval throttle_window_start_timestamp[THROTTLE_LEVEL_END + 1]; /* window starts at both the beginning and completion of an I/O */
+ struct timeval throttle_last_IO_timestamp[THROTTLE_LEVEL_END + 1];
+ pid_t throttle_last_IO_pid[THROTTLE_LEVEL_END + 1];
+ struct timeval throttle_start_IO_period_timestamp[THROTTLE_LEVEL_END + 1];
+ int32_t throttle_inflight_count[THROTTLE_LEVEL_END + 1];
+
+ TAILQ_HEAD(, uthread) throttle_uthlist[THROTTLE_LEVEL_END + 1]; /* Lists of throttled uthreads */
+ int throttle_next_wake_level;
+
+ thread_call_t throttle_timer_call;
+ int32_t throttle_timer_ref;
+ int32_t throttle_timer_active;
+
+ int32_t throttle_io_count;
+ int32_t throttle_io_count_begin;
+ int *throttle_io_periods;
uint32_t throttle_io_period_num;
int32_t throttle_refcnt;
struct _throttle_io_info_t _throttle_io_info[LOWPRI_MAX_NUM_DEV];
-int lowpri_throttle_enabled = 1;
-
+int lowpri_throttle_enabled = 1;
-static void throttle_info_update_internal(struct _throttle_io_info_t *info, uthread_t ut, int flags, boolean_t isssd);
+static void throttle_info_end_io_internal(struct _throttle_io_info_t *info, int throttle_level);
+static int throttle_info_update_internal(struct _throttle_io_info_t *info, uthread_t ut, int flags, boolean_t isssd, boolean_t inflight, struct bufattr *bap);
static int throttle_get_thread_throttle_level(uthread_t ut);
+static int throttle_get_thread_throttle_level_internal(uthread_t ut, int io_tier);
+void throttle_info_mount_reset_period(mount_t mp, int isssd);
/*
* Trivial lookup routine that always fails.
int
spec_lookup(struct vnop_lookup_args *ap)
{
-
*ap->a_vpp = NULL;
- return (ENOTDIR);
+ return ENOTDIR;
}
static void
set_blocksize(struct vnode *vp, dev_t dev)
{
- int (*size)(dev_t);
- int rsize;
+ int (*size)(dev_t);
+ int rsize;
- if ((major(dev) < nblkdev) && (size = bdevsw[major(dev)].d_psize)) {
- rsize = (*size)(dev);
- if (rsize <= 0) /* did size fail? */
- vp->v_specsize = DEV_BSIZE;
- else
- vp->v_specsize = rsize;
- }
- else
- vp->v_specsize = DEV_BSIZE;
+ if ((major(dev) < nblkdev) && (size = bdevsw[major(dev)].d_psize)) {
+ rsize = (*size)(dev);
+ if (rsize <= 0) { /* did size fail? */
+ vp->v_specsize = DEV_BSIZE;
+ } else {
+ vp->v_specsize = rsize;
+ }
+ } else {
+ vp->v_specsize = DEV_BSIZE;
+ }
}
void
set_fsblocksize(struct vnode *vp)
{
-
if (vp->v_type == VBLK) {
dev_t dev = (dev_t)vp->v_rdev;
int maj = major(dev);
- if ((u_int)maj >= (u_int)nblkdev)
+ if ((u_int)maj >= (u_int)nblkdev) {
return;
+ }
vnode_lock(vp);
set_blocksize(vp, dev);
vnode_unlock(vp);
}
-
}
/*
* Don't allow open if fs is mounted -nodev.
*/
- if (vp->v_mount && (vp->v_mount->mnt_flag & MNT_NODEV))
- return (ENXIO);
+ if (vp->v_mount && (vp->v_mount->mnt_flag & MNT_NODEV)) {
+ return ENXIO;
+ }
switch (vp->v_type) {
-
case VCHR:
- if ((u_int)maj >= (u_int)nchrdev)
- return (ENXIO);
+ if ((u_int)maj >= (u_int)nchrdev) {
+ return ENXIO;
+ }
if (cred != FSCRED && (ap->a_mode & FWRITE)) {
+#if 0
/*
* When running in very secure mode, do not allow
* opens for writing of any disk character devices.
*/
- if (securelevel >= 2 && isdisk(dev, VCHR))
- return (EPERM);
+ if (securelevel >= 2 && isdisk(dev, VCHR)) {
+ return EPERM;
+ }
+#endif
/* Never allow writing to /dev/mem or /dev/kmem */
- if (iskmemdev(dev))
- return (EPERM);
+ if (iskmemdev(dev)) {
+ return EPERM;
+ }
/*
* When running in secure mode, do not allow opens for
* writing of character devices whose corresponding block
* devices are currently mounted.
*/
if (securelevel >= 1) {
- if ((bdev = chrtoblk(dev)) != NODEV && check_mountedon(bdev, VBLK, &error))
- return (error);
+ if ((bdev = chrtoblk(dev)) != NODEV && check_mountedon(bdev, VBLK, &error)) {
+ return error;
+ }
}
}
devsw_unlock(dev, S_IFCHR);
if (error == 0 && cdevsw[maj].d_type == D_DISK && !vp->v_un.vu_specinfo->si_initted) {
- int isssd = 0;
+ int isssd = 0;
uint64_t throttle_mask = 0;
uint32_t devbsdunit = 0;
if (VNOP_IOCTL(vp, DKIOCGETTHROTTLEMASK, (caddr_t)&throttle_mask, 0, NULL) == 0) {
-
if (throttle_mask != 0 &&
VNOP_IOCTL(vp, DKIOCISSOLIDSTATE, (caddr_t)&isssd, 0, ap->a_context) == 0) {
/*
devbsdunit = num_trailing_0(throttle_mask);
vnode_lock(vp);
-
+
vp->v_un.vu_specinfo->si_isssd = isssd;
vp->v_un.vu_specinfo->si_devbsdunit = devbsdunit;
vp->v_un.vu_specinfo->si_throttle_mask = throttle_mask;
vnode_unlock(vp);
}
}
- return (error);
+ return error;
case VBLK:
- if ((u_int)maj >= (u_int)nblkdev)
- return (ENXIO);
+ if ((u_int)maj >= (u_int)nblkdev) {
+ return ENXIO;
+ }
/*
* When running in very secure mode, do not allow
* opens for writing of any disk block devices.
*/
if (securelevel >= 2 && cred != FSCRED &&
- (ap->a_mode & FWRITE) && bdevsw[maj].d_type == D_DISK)
- return (EPERM);
+ (ap->a_mode & FWRITE) && bdevsw[maj].d_type == D_DISK) {
+ return EPERM;
+ }
/*
* Do not allow opens of block devices that are
* currently mounted.
*/
- if ( (error = vfs_mountedon(vp)) )
- return (error);
+ if ((error = vfs_mountedon(vp))) {
+ return error;
+ }
devsw_lock(dev, S_IFBLK);
error = (*bdevsw[maj].d_open)(dev, ap->a_mode, S_IFBLK, p);
devsw_unlock(dev, S_IFBLK);
if (!error) {
- u_int64_t blkcnt;
- u_int32_t blksize;
+ u_int64_t blkcnt;
+ u_int32_t blksize;
int setsize = 0;
u_int32_t size512 = 512;
- if (!VNOP_IOCTL(vp, DKIOCGETBLOCKSIZE, (caddr_t)&blksize, 0, ap->a_context)) {
+ if (!VNOP_IOCTL(vp, DKIOCGETBLOCKSIZE, (caddr_t)&blksize, 0, ap->a_context)) {
/* Switch to 512 byte sectors (temporarily) */
if (!VNOP_IOCTL(vp, DKIOCSETBLOCKSIZE, (caddr_t)&size512, FWRITE, ap->a_context)) {
- /* Get the number of 512 byte physical blocks. */
- if (!VNOP_IOCTL(vp, DKIOCGETBLOCKCOUNT, (caddr_t)&blkcnt, 0, ap->a_context)) {
+ /* Get the number of 512 byte physical blocks. */
+ if (!VNOP_IOCTL(vp, DKIOCGETBLOCKCOUNT, (caddr_t)&blkcnt, 0, ap->a_context)) {
setsize = 1;
- }
+ }
}
/* If it doesn't set back, we can't recover */
- if (VNOP_IOCTL(vp, DKIOCSETBLOCKSIZE, (caddr_t)&blksize, FWRITE, ap->a_context))
- error = ENXIO;
- }
+ if (VNOP_IOCTL(vp, DKIOCSETBLOCKSIZE, (caddr_t)&blksize, FWRITE, ap->a_context)) {
+ error = ENXIO;
+ }
+ }
vnode_lock(vp);
- set_blocksize(vp, dev);
+ set_blocksize(vp, dev);
- /*
- * Cache the size in bytes of the block device for later
- * use by spec_write().
- */
- if (setsize)
+ /*
+ * Cache the size in bytes of the block device for later
+ * use by spec_write().
+ */
+ if (setsize) {
vp->v_specdevsize = blkcnt * (u_int64_t)size512;
- else
- vp->v_specdevsize = (u_int64_t)0; /* Default: Can't get */
-
+ } else {
+ vp->v_specdevsize = (u_int64_t)0; /* Default: Can't get */
+ }
vnode_unlock(vp);
-
}
- return(error);
+ return error;
default:
- panic("spec_open type");
+ panic("spec_open type");
}
- return (0);
+ return 0;
}
/*
struct buf *bp;
daddr64_t bn, nextbn;
long bsize, bscale;
- int devBlockSize=0;
+ int devBlockSize = 0;
int n, on;
int error = 0;
dev_t dev;
#if DIAGNOSTIC
- if (uio->uio_rw != UIO_READ)
+ if (uio->uio_rw != UIO_READ) {
panic("spec_read mode");
- if (UIO_SEG_IS_USER_SPACE(uio->uio_segflg))
+ }
+ if (UIO_SEG_IS_USER_SPACE(uio->uio_segflg)) {
panic("spec_read proc");
+ }
#endif
- if (uio_resid(uio) == 0)
- return (0);
+ if (uio_resid(uio) == 0) {
+ return 0;
+ }
switch (vp->v_type) {
-
case VCHR:
- if (cdevsw[major(vp->v_rdev)].d_type == D_DISK && vp->v_un.vu_specinfo->si_throttleable) {
- struct _throttle_io_info_t *throttle_info;
+ {
+ struct _throttle_io_info_t *throttle_info = NULL;
+ int thread_throttle_level;
+ uint64_t blkno = 0;
+ uint32_t iolen = 0;
+ int ddisk = 0;
+ int ktrace_code = DKIO_READ;
+ devBlockSize = vp->v_specsize;
+ uintptr_t our_id;
+
+ if (cdevsw[major(vp->v_rdev)].d_type == D_DISK) {
+ ddisk = 1;
+ }
+ if (ddisk && vp->v_un.vu_specinfo->si_throttleable) {
throttle_info = &_throttle_io_info[vp->v_un.vu_specinfo->si_devbsdunit];
- throttle_info_update_internal(throttle_info, NULL, 0, vp->v_un.vu_specinfo->si_isssd);
- }
+ thread_throttle_level = throttle_info_update_internal(throttle_info, NULL, 0, vp->v_un.vu_specinfo->si_isssd, TRUE, NULL);
+ }
+
+ if (kdebug_enable && ddisk) {
+ if (devBlockSize == 0) {
+ devBlockSize = 512; // default sector size
+ }
+
+ if (uio_offset(uio) && devBlockSize) {
+ blkno = ((uint64_t) uio_offset(uio) / ((uint64_t)devBlockSize));
+ }
+ iolen = (int) uio_resid(uio);
+ our_id = (uintptr_t)thread_tid(current_thread());
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_COMMON,
+ (FSDBG_CODE(DBG_DKRW, ktrace_code)) | DBG_FUNC_NONE, our_id,
+ vp->v_rdev, blkno, iolen, 0);
+ }
+
error = (*cdevsw[major(vp->v_rdev)].d_read)
- (vp->v_rdev, uio, ap->a_ioflag);
+ (vp->v_rdev, uio, ap->a_ioflag);
+
+
+ if (kdebug_enable && ddisk) {
+ uint32_t residual = (uint32_t)uio_resid(uio);
+ ktrace_code |= DKIO_DONE;
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_COMMON,
+ (FSDBG_CODE(DBG_DKRW, ktrace_code)) | DBG_FUNC_NONE, our_id,
+ (uintptr_t)VM_KERNEL_ADDRPERM(vp), residual, error, 0);
+ }
+
+ if (throttle_info) {
+ throttle_info_end_io_internal(throttle_info, thread_throttle_level);
+ }
- return (error);
+ return error;
+ }
case VBLK:
- if (uio->uio_offset < 0)
- return (EINVAL);
+ if (uio->uio_offset < 0) {
+ return EINVAL;
+ }
dev = vp->v_rdev;
devBlockSize = vp->v_specsize;
- if (devBlockSize > PAGE_SIZE)
- return (EINVAL);
+ if (devBlockSize > PAGE_SIZE) {
+ return EINVAL;
+ }
- bscale = PAGE_SIZE / devBlockSize;
+ bscale = PAGE_SIZE / devBlockSize;
bsize = bscale * devBlockSize;
do {
on = uio->uio_offset % bsize;
- bn = (daddr64_t)((uio->uio_offset / devBlockSize) &~ (bscale - 1));
-
+ bn = (daddr64_t)((uio->uio_offset / devBlockSize) & ~(bscale - 1));
+
if (vp->v_speclastr + bscale == bn) {
- nextbn = bn + bscale;
+ nextbn = bn + bscale;
error = buf_breadn(vp, bn, (int)bsize, &nextbn,
- (int *)&bsize, 1, NOCRED, &bp);
- } else
- error = buf_bread(vp, bn, (int)bsize, NOCRED, &bp);
+ (int *)&bsize, 1, NOCRED, &bp);
+ } else {
+ error = buf_bread(vp, bn, (int)bsize, NOCRED, &bp);
+ }
vnode_lock(vp);
vp->v_speclastr = bn;
n = bsize - buf_resid(bp);
if ((on > n) || error) {
- if (!error)
- error = EINVAL;
+ if (!error) {
+ error = EINVAL;
+ }
buf_brelse(bp);
- return (error);
+ return error;
}
n = min((unsigned)(n - on), uio_resid(uio));
error = uiomove((char *)buf_dataptr(bp) + on, n, uio);
- if (n + on == bsize)
+ if (n + on == bsize) {
buf_markaged(bp);
+ }
buf_brelse(bp);
} while (error == 0 && uio_resid(uio) > 0 && n != 0);
- return (error);
+ return error;
default:
panic("spec_read type");
}
/* NOTREACHED */
- return (0);
+ return 0;
}
/*
daddr64_t bn;
int bsize, blkmask, bscale;
int io_sync;
- int devBlockSize=0;
+ int devBlockSize = 0;
int n, on;
int error = 0;
dev_t dev;
#if DIAGNOSTIC
- if (uio->uio_rw != UIO_WRITE)
+ if (uio->uio_rw != UIO_WRITE) {
panic("spec_write mode");
- if (UIO_SEG_IS_USER_SPACE(uio->uio_segflg))
+ }
+ if (UIO_SEG_IS_USER_SPACE(uio->uio_segflg)) {
panic("spec_write proc");
+ }
#endif
switch (vp->v_type) {
-
case VCHR:
- if (cdevsw[major(vp->v_rdev)].d_type == D_DISK && vp->v_un.vu_specinfo->si_throttleable) {
- struct _throttle_io_info_t *throttle_info;
+ {
+ struct _throttle_io_info_t *throttle_info = NULL;
+ int thread_throttle_level;
+ dev = vp->v_rdev;
+ devBlockSize = vp->v_specsize;
+ uint32_t iolen = 0;
+ uint64_t blkno = 0;
+ int ddisk = 0;
+ int ktrace_code = 0; // write is implied; read must be OR'd in.
+ uintptr_t our_id;
+
+ if (cdevsw[major(dev)].d_type == D_DISK) {
+ ddisk = 1;
+ }
+ if (ddisk && vp->v_un.vu_specinfo->si_throttleable) {
throttle_info = &_throttle_io_info[vp->v_un.vu_specinfo->si_devbsdunit];
- throttle_info_update_internal(throttle_info, NULL, 0, vp->v_un.vu_specinfo->si_isssd);
+ thread_throttle_level = throttle_info_update_internal(throttle_info, NULL, 0, vp->v_un.vu_specinfo->si_isssd, TRUE, NULL);
microuptime(&throttle_info->throttle_last_write_timestamp);
- }
+ }
+
+ if (kdebug_enable && ddisk) {
+ if (devBlockSize == 0) {
+ devBlockSize = 512; // default sector size
+ }
+ if ((uio_offset(uio) != 0) && devBlockSize) {
+ blkno = ((uint64_t)uio_offset(uio)) / ((uint64_t)devBlockSize);
+ }
+ iolen = (int)uio_resid(uio);
+ our_id = (uintptr_t)thread_tid(current_thread());
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_COMMON,
+ (FSDBG_CODE(DBG_DKRW, ktrace_code)) | DBG_FUNC_NONE, our_id,
+ vp->v_rdev, blkno, iolen, 0);
+ }
error = (*cdevsw[major(vp->v_rdev)].d_write)
- (vp->v_rdev, uio, ap->a_ioflag);
+ (vp->v_rdev, uio, ap->a_ioflag);
+
+ if (kdebug_enable && ddisk) {
+ //emit the I/O completion
+ uint32_t residual = (uint32_t)uio_resid(uio);
+ ktrace_code |= DKIO_DONE;
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_COMMON,
+ (FSDBG_CODE(DBG_DKRW, ktrace_code)) | DBG_FUNC_NONE, our_id,
+ (uintptr_t)VM_KERNEL_ADDRPERM(vp), residual, error, 0);
+ }
- return (error);
+ if (throttle_info) {
+ throttle_info_end_io_internal(throttle_info, thread_throttle_level);
+ }
+
+ return error;
+ }
case VBLK:
- if (uio_resid(uio) == 0)
- return (0);
- if (uio->uio_offset < 0)
- return (EINVAL);
+ if (uio_resid(uio) == 0) {
+ return 0;
+ }
+ if (uio->uio_offset < 0) {
+ return EINVAL;
+ }
io_sync = (ap->a_ioflag & IO_SYNC);
dev = (vp->v_rdev);
devBlockSize = vp->v_specsize;
- if (devBlockSize > PAGE_SIZE)
- return(EINVAL);
+ if (devBlockSize > PAGE_SIZE) {
+ return EINVAL;
+ }
- bscale = PAGE_SIZE / devBlockSize;
+ bscale = PAGE_SIZE / devBlockSize;
blkmask = bscale - 1;
bsize = bscale * devBlockSize;
-
+
do {
- bn = (daddr64_t)((uio->uio_offset / devBlockSize) &~ blkmask);
+ bn = (daddr64_t)((uio->uio_offset / devBlockSize) & ~blkmask);
on = uio->uio_offset % bsize;
n = min((unsigned)(bsize - on), uio_resid(uio));
if (n == bsize &&
vp->v_specdevsize != (u_int64_t)0 &&
(uio->uio_offset + (u_int64_t)n) > vp->v_specdevsize) {
- /* reduce the size of the read to what is there */
- n = (uio->uio_offset + (u_int64_t)n) - vp->v_specdevsize;
+ /* reduce the size of the read to what is there */
+ n = (uio->uio_offset + (u_int64_t)n) - vp->v_specdevsize;
}
- if (n == bsize)
- bp = buf_getblk(vp, bn, bsize, 0, 0, BLK_WRITE);
- else
- error = (int)buf_bread(vp, bn, bsize, NOCRED, &bp);
+ if (n == bsize) {
+ bp = buf_getblk(vp, bn, bsize, 0, 0, BLK_WRITE);
+ } else {
+ error = (int)buf_bread(vp, bn, bsize, NOCRED, &bp);
+ }
/* Translate downstream error for upstream, if needed */
- if (!error)
+ if (!error) {
error = (int)buf_error(bp);
+ }
if (error) {
buf_brelse(bp);
- return (error);
+ return error;
}
n = min(n, bsize - buf_resid(bp));
error = uiomove((char *)buf_dataptr(bp) + on, n, uio);
if (error) {
buf_brelse(bp);
- return (error);
+ return error;
}
buf_markaged(bp);
- if (io_sync)
- error = buf_bwrite(bp);
- else {
- if ((n + on) == bsize)
- error = buf_bawrite(bp);
- else
- error = buf_bdwrite(bp);
+ if (io_sync) {
+ error = buf_bwrite(bp);
+ } else {
+ if ((n + on) == bsize) {
+ error = buf_bawrite(bp);
+ } else {
+ error = buf_bdwrite(bp);
+ }
}
} while (error == 0 && uio_resid(uio) > 0 && n != 0);
- return (error);
+ return error;
default:
panic("spec_write type");
}
/* NOTREACHED */
- return (0);
+ return 0;
}
/*
{
proc_t p = vfs_context_proc(ap->a_context);
dev_t dev = ap->a_vp->v_rdev;
- int retval = 0;
+ int retval = 0;
KERNEL_DEBUG_CONSTANT(FSDBG_CODE(DBG_IOCTL, 0) | DBG_FUNC_START,
- dev, ap->a_command, ap->a_fflag, ap->a_vp->v_type, 0);
+ dev, ap->a_command, ap->a_fflag, ap->a_vp->v_type, 0);
switch (ap->a_vp->v_type) {
-
case VCHR:
retval = (*cdevsw[major(dev)].d_ioctl)(dev, ap->a_command, ap->a_data,
- ap->a_fflag, p);
+ ap->a_fflag, p);
break;
case VBLK:
- if (kdebug_enable) {
- if (ap->a_command == DKIOCUNMAP) {
- dk_unmap_t *unmap;
- dk_extent_t *extent;
- uint32_t i;
-
- unmap = (dk_unmap_t *)ap->a_data;
- extent = unmap->extents;
-
- for (i = 0; i < unmap->extentsCount; i++, extent++) {
- KERNEL_DEBUG_CONSTANT(FSDBG_CODE(DBG_IOCTL, 1) | DBG_FUNC_NONE, dev,
- extent->offset/ap->a_vp->v_specsize, extent->length, 0, 0);
- }
- } else if (ap->a_command == DKIOCSYNCHRONIZE) {
- dk_synchronize_t *synch;
- synch = (dk_synchronize_t *)ap->a_data;
- KERNEL_DEBUG_CONSTANT(FSDBG_CODE(DBG_IOCTL, 1) | DBG_FUNC_NONE, dev, ap->a_command,
- synch->options, 0, 0);
- }
- }
retval = (*bdevsw[major(dev)].d_ioctl)(dev, ap->a_command, ap->a_data, ap->a_fflag, p);
+ if (!retval && ap->a_command == DKIOCSETBLOCKSIZE) {
+ ap->a_vp->v_specsize = *(uint32_t *)ap->a_data;
+ }
break;
default:
/* NOTREACHED */
}
KERNEL_DEBUG_CONSTANT(FSDBG_CODE(DBG_IOCTL, 0) | DBG_FUNC_END,
- dev, ap->a_command, ap->a_fflag, retval, 0);
+ dev, ap->a_command, ap->a_fflag, retval, 0);
- return (retval);
+ return retval;
}
int
dev_t dev;
switch (ap->a_vp->v_type) {
-
default:
- return (1); /* XXX */
+ return 1; /* XXX */
case VCHR:
dev = ap->a_vp->v_rdev;
}
}
-static int filt_specattach(struct knote *kn);
+static int filt_specattach(struct knote *kn, struct kevent_qos_s *kev);
int
-spec_kqfilter(vnode_t vp, struct knote *kn)
+spec_kqfilter(vnode_t vp, struct knote *kn, struct kevent_qos_s *kev)
{
dev_t dev;
- int err;
assert(vnode_ischr(vp));
dev = vnode_specrdev(vp);
#if NETWORKING
- /* Try a bpf device, as defined in bsd/net/bpf.c */
- if ((err = bpfkqfilter(dev, kn)) == 0) {
- return err;
+ /*
+ * Try a bpf device, as defined in bsd/net/bpf.c
+ * If it doesn't error out the attach, then it
+ * claimed it. Otherwise, fall through and try
+ * other attaches.
+ */
+ int32_t tmp_flags = kn->kn_flags;
+ int64_t tmp_sdata = kn->kn_sdata;
+ int res;
+
+ res = bpfkqfilter(dev, kn);
+ if ((kn->kn_flags & EV_ERROR) == 0) {
+ return res;
}
+ kn->kn_flags = tmp_flags;
+ kn->kn_sdata = tmp_sdata;
#endif
- /* Try to attach to other char special devices */
- err = filt_specattach(kn);
- return err;
+ if (major(dev) > nchrdev) {
+ knote_set_error(kn, ENXIO);
+ return 0;
+ }
+
+ kn->kn_vnode_kqok = !!(cdevsw_flags[major(dev)] & CDEVSW_SELECT_KQUEUE);
+ kn->kn_vnode_use_ofst = !!(cdevsw_flags[major(dev)] & CDEVSW_USE_OFFSET);
+
+ if (cdevsw_flags[major(dev)] & CDEVSW_IS_PTS) {
+ kn->kn_filtid = EVFILTID_PTSD;
+ return ptsd_kqfilter(dev, kn);
+ } else if (cdevsw_flags[major(dev)] & CDEVSW_IS_PTC) {
+ kn->kn_filtid = EVFILTID_PTMX;
+ return ptmx_kqfilter(dev, kn);
+ } else if (cdevsw[major(dev)].d_type == D_TTY && kn->kn_vnode_kqok) {
+ /*
+ * TTYs from drivers that use struct ttys use their own filter
+ * routines. The PTC driver doesn't use the tty for character
+ * counts, so it must go through the select fallback.
+ */
+ kn->kn_filtid = EVFILTID_TTY;
+ return knote_fops(kn)->f_attach(kn, kev);
+ }
+
+ /* Try to attach to other char special devices */
+ return filt_specattach(kn, kev);
}
/*
int
spec_fsync_internal(vnode_t vp, int waitfor, __unused vfs_context_t context)
{
- if (vp->v_type == VCHR)
- return (0);
+ if (vp->v_type == VCHR) {
+ return 0;
+ }
/*
* Flush all dirty buffers associated with a block device.
*/
buf_flushdirtyblks(vp, (waitfor == MNT_WAIT || waitfor == MNT_DWAIT), 0, "spec_fsync");
- return (0);
+ return 0;
}
int
void throttle_init(void);
-#if 0
-#define DEBUG_ALLOC_THROTTLE_INFO(format, debug_info, args...) \
- do { \
- if ((debug_info)->alloc) \
- printf("%s: "format, __FUNCTION__, ## args); \
+#if 0
+#define DEBUG_ALLOC_THROTTLE_INFO(format, debug_info, args...) \
+ do { \
+ if ((debug_info)->alloc) \
+ printf("%s: "format, __FUNCTION__, ## args); \
} while(0)
-#else
+#else
#define DEBUG_ALLOC_THROTTLE_INFO(format, debug_info, args...)
#endif
SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_enabled, CTLFLAG_RW | CTLFLAG_LOCKED, &lowpri_throttle_enabled, 0, "");
-static lck_grp_t *throttle_mtx_grp;
-static lck_attr_t *throttle_mtx_attr;
-static lck_grp_attr_t *throttle_mtx_grp_attr;
+static lck_grp_t *throttle_lock_grp;
+static lck_attr_t *throttle_lock_attr;
+static lck_grp_attr_t *throttle_lock_grp_attr;
/*
* since in most cases the number of trailing 0s is very small,
* we simply counting sequentially from the lowest bit
*/
- if (n == 0)
+ if (n == 0) {
return sizeof(n) * 8;
+ }
int count = 0;
while (!ISSET(n, 1)) {
n >>= 1;
{
SInt32 oldValue = OSDecrementAtomic(&info->throttle_refcnt);
- DEBUG_ALLOC_THROTTLE_INFO("refcnt = %d info = %p\n",
- info, (int)(oldValue -1), info );
+ DEBUG_ALLOC_THROTTLE_INFO("refcnt = %d info = %p\n",
+ info, (int)(oldValue - 1), info );
/* The reference count just went negative, very bad */
- if (oldValue == 0)
+ if (oldValue == 0) {
panic("throttle info ref cnt went negative!");
+ }
- /*
- * Once reference count is zero, no one else should be able to take a
- * reference
+ /*
+ * Once reference count is zero, no one else should be able to take a
+ * reference
*/
if ((info->throttle_refcnt == 0) && (info->throttle_alloc)) {
DEBUG_ALLOC_THROTTLE_INFO("Freeing info = %p\n", info);
-
- lck_mtx_destroy(&info->throttle_lock, throttle_mtx_grp);
- FREE(info, M_TEMP);
+
+ lck_mtx_destroy(&info->throttle_lock, throttle_lock_grp);
+ FREE(info, M_TEMP);
}
return oldValue;
}
{
SInt32 oldValue = OSIncrementAtomic(&info->throttle_refcnt);
- DEBUG_ALLOC_THROTTLE_INFO("refcnt = %d info = %p\n",
- info, (int)(oldValue -1), info );
+ DEBUG_ALLOC_THROTTLE_INFO("refcnt = %d info = %p\n",
+ info, (int)(oldValue - 1), info );
/* Allocated items should never have a reference of zero */
- if (info->throttle_alloc && (oldValue == 0))
+ if (info->throttle_alloc && (oldValue == 0)) {
panic("Taking a reference without calling create throttle info!\n");
+ }
return oldValue;
}
*/
static uint32_t
throttle_timer_start(struct _throttle_io_info_t *info, boolean_t update_io_count, int wakelevel)
-{
+{
struct timeval elapsed;
struct timeval now;
struct timeval period;
- uint64_t elapsed_msecs;
- int throttle_level;
- int level;
- int msecs;
- boolean_t throttled = FALSE;
- boolean_t need_timer = FALSE;
+ uint64_t elapsed_msecs;
+ int throttle_level;
+ int level;
+ int msecs;
+ boolean_t throttled = FALSE;
+ boolean_t need_timer = FALSE;
microuptime(&now);
info->throttle_io_count_begin = info->throttle_io_count;
info->throttle_io_period_num++;
- while (wakelevel >= THROTTLE_LEVEL_THROTTLED)
+ while (wakelevel >= THROTTLE_LEVEL_THROTTLED) {
info->throttle_start_IO_period_timestamp[wakelevel--] = now;
+ }
info->throttle_min_timer_deadline = now;
timevaladd(&info->throttle_min_timer_deadline, &period);
}
for (throttle_level = THROTTLE_LEVEL_START; throttle_level < THROTTLE_LEVEL_END; throttle_level++) {
-
elapsed = now;
timevalsub(&elapsed, &info->throttle_window_start_timestamp[throttle_level]);
elapsed_msecs = (uint64_t)elapsed.tv_sec * (uint64_t)1000 + (elapsed.tv_usec / 1000);
for (level = throttle_level + 1; level <= THROTTLE_LEVEL_END; level++) {
-
if (!TAILQ_EMPTY(&info->throttle_uthlist[level])) {
-
- if (elapsed_msecs < (uint64_t)throttle_windows_msecs[level]) {
+ if (elapsed_msecs < (uint64_t)throttle_windows_msecs[level] || info->throttle_inflight_count[throttle_level]) {
/*
* we had an I/O occur at a higher priority tier within
* this tier's throttle window
break;
}
}
- if (throttled == TRUE)
+ if (throttled == TRUE) {
break;
+ }
}
if (throttled == TRUE) {
- uint64_t deadline = 0;
+ uint64_t deadline = 0;
struct timeval target;
struct timeval min_target;
- /*
+ /*
* we've got at least one tier still in a throttled window
* so we need a timer running... compute the next deadline
* and schedule it
*/
- for (level = throttle_level+1; level <= THROTTLE_LEVEL_END; level++) {
-
- if (TAILQ_EMPTY(&info->throttle_uthlist[level]))
+ for (level = throttle_level + 1; level <= THROTTLE_LEVEL_END; level++) {
+ if (TAILQ_EMPTY(&info->throttle_uthlist[level])) {
continue;
+ }
target = info->throttle_start_IO_period_timestamp[level];
period.tv_usec = (msecs % 1000) * 1000;
timevaladd(&target, &period);
-
+
if (need_timer == FALSE || timevalcmp(&target, &min_target, <)) {
min_target = target;
need_timer = TRUE;
}
}
if (timevalcmp(&info->throttle_min_timer_deadline, &now, >)) {
- if (timevalcmp(&info->throttle_min_timer_deadline, &min_target, >))
- min_target = info->throttle_min_timer_deadline;
+ if (timevalcmp(&info->throttle_min_timer_deadline, &min_target, >)) {
+ min_target = info->throttle_min_timer_deadline;
+ }
}
if (info->throttle_timer_active) {
* proceed and eventually re-run this function
*/
need_timer = FALSE;
- } else
+ } else {
info->throttle_timer_active = 0;
+ }
}
if (need_timer == TRUE) {
/*
* 32-bit which allows us to use the clock_interval_to_deadline()
* routine.
*/
- int target_msecs;
+ int target_msecs;
if (info->throttle_timer_ref == 0) {
/*
info->throttle_timer_active = 1;
}
}
- return (throttle_level);
+ return throttle_level;
}
throttle_timer(struct _throttle_io_info_t *info)
{
uthread_t ut, utlist;
- struct timeval elapsed;
- struct timeval now;
- uint64_t elapsed_msecs;
- int throttle_level;
- int level;
- int wake_level;
- caddr_t wake_address = NULL;
- boolean_t update_io_count = FALSE;
- boolean_t need_wakeup = FALSE;
- boolean_t need_release = FALSE;
+ struct timeval elapsed;
+ struct timeval now;
+ uint64_t elapsed_msecs;
+ int throttle_level;
+ int level;
+ int wake_level;
+ caddr_t wake_address = NULL;
+ boolean_t update_io_count = FALSE;
+ boolean_t need_wakeup = FALSE;
+ boolean_t need_release = FALSE;
ut = NULL;
- lck_mtx_lock(&info->throttle_lock);
+ lck_mtx_lock(&info->throttle_lock);
info->throttle_timer_active = 0;
microuptime(&now);
elapsed_msecs = (uint64_t)elapsed.tv_sec * (uint64_t)1000 + (elapsed.tv_usec / 1000);
if (elapsed_msecs >= (uint64_t)info->throttle_io_periods[THROTTLE_LEVEL_THROTTLED]) {
-
wake_level = info->throttle_next_wake_level;
for (level = THROTTLE_LEVEL_START; level < THROTTLE_LEVEL_END; level++) {
-
elapsed = now;
timevalsub(&elapsed, &info->throttle_start_IO_period_timestamp[wake_level]);
elapsed_msecs = (uint64_t)elapsed.tv_sec * (uint64_t)1000 + (elapsed.tv_usec / 1000);
info->throttle_next_wake_level = wake_level - 1;
- if (info->throttle_next_wake_level == THROTTLE_LEVEL_START)
+ if (info->throttle_next_wake_level == THROTTLE_LEVEL_START) {
info->throttle_next_wake_level = THROTTLE_LEVEL_END;
+ }
break;
}
wake_level--;
- if (wake_level == THROTTLE_LEVEL_START)
+ if (wake_level == THROTTLE_LEVEL_START) {
wake_level = THROTTLE_LEVEL_END;
+ }
}
}
if (need_wakeup == TRUE) {
if (!TAILQ_EMPTY(&info->throttle_uthlist[wake_level])) {
-
ut = (uthread_t)TAILQ_FIRST(&info->throttle_uthlist[wake_level]);
TAILQ_REMOVE(&info->throttle_uthlist[wake_level], ut, uu_throttlelist);
ut->uu_on_throttlelist = THROTTLE_LEVEL_NONE;
+ ut->uu_is_throttled = false;
wake_address = (caddr_t)&ut->uu_on_throttlelist;
}
- } else
+ } else {
wake_level = THROTTLE_LEVEL_START;
+ }
- throttle_level = throttle_timer_start(info, update_io_count, wake_level);
+ throttle_level = throttle_timer_start(info, update_io_count, wake_level);
- if (wake_address != NULL)
+ if (wake_address != NULL) {
wakeup(wake_address);
+ }
for (level = THROTTLE_LEVEL_THROTTLED; level <= throttle_level; level++) {
-
TAILQ_FOREACH_SAFE(ut, &info->throttle_uthlist[level], uu_throttlelist, utlist) {
-
TAILQ_REMOVE(&info->throttle_uthlist[level], ut, uu_throttlelist);
ut->uu_on_throttlelist = THROTTLE_LEVEL_NONE;
+ ut->uu_is_throttled = false;
wakeup(&ut->uu_on_throttlelist);
}
info->throttle_timer_ref = 0;
need_release = TRUE;
}
- lck_mtx_unlock(&info->throttle_lock);
+ lck_mtx_unlock(&info->throttle_lock);
- if (need_release == TRUE)
+ if (need_release == TRUE) {
throttle_info_rel(info);
+ }
}
start_timer = TRUE;
}
- if (insert_tail == TRUE)
+ if (insert_tail == TRUE) {
TAILQ_INSERT_TAIL(&info->throttle_uthlist[mylevel], ut, uu_throttlelist);
- else
+ } else {
TAILQ_INSERT_HEAD(&info->throttle_uthlist[mylevel], ut, uu_throttlelist);
+ }
ut->uu_on_throttlelist = mylevel;
}
}
}
- return (level);
+ return level;
}
static void
*/
/* Override global values with device-tree properties */
- if (PE_get_default("kern.io_throttle_window_tier1", &throttle_window_size, sizeof(throttle_window_size)))
+ if (PE_get_default("kern.io_throttle_window_tier1", &throttle_window_size, sizeof(throttle_window_size))) {
throttle_windows_msecs[THROTTLE_LEVEL_TIER1] = throttle_window_size;
+ }
- if (PE_get_default("kern.io_throttle_window_tier2", &throttle_window_size, sizeof(throttle_window_size)))
+ if (PE_get_default("kern.io_throttle_window_tier2", &throttle_window_size, sizeof(throttle_window_size))) {
throttle_windows_msecs[THROTTLE_LEVEL_TIER2] = throttle_window_size;
+ }
- if (PE_get_default("kern.io_throttle_window_tier3", &throttle_window_size, sizeof(throttle_window_size)))
+ if (PE_get_default("kern.io_throttle_window_tier3", &throttle_window_size, sizeof(throttle_window_size))) {
throttle_windows_msecs[THROTTLE_LEVEL_TIER3] = throttle_window_size;
-
+ }
+
/* Override with boot-args */
- if (PE_parse_boot_argn("io_throttle_window_tier1", &throttle_window_size, sizeof(throttle_window_size)))
+ if (PE_parse_boot_argn("io_throttle_window_tier1", &throttle_window_size, sizeof(throttle_window_size))) {
throttle_windows_msecs[THROTTLE_LEVEL_TIER1] = throttle_window_size;
+ }
- if (PE_parse_boot_argn("io_throttle_window_tier2", &throttle_window_size, sizeof(throttle_window_size)))
+ if (PE_parse_boot_argn("io_throttle_window_tier2", &throttle_window_size, sizeof(throttle_window_size))) {
throttle_windows_msecs[THROTTLE_LEVEL_TIER2] = throttle_window_size;
-
- if (PE_parse_boot_argn("io_throttle_window_tier3", &throttle_window_size, sizeof(throttle_window_size)))
+ }
+
+ if (PE_parse_boot_argn("io_throttle_window_tier3", &throttle_window_size, sizeof(throttle_window_size))) {
throttle_windows_msecs[THROTTLE_LEVEL_TIER3] = throttle_window_size;
+ }
}
static void
*/
/* Assign global defaults */
- if ((isssd == TRUE) && (info->throttle_is_fusion_with_priority == 0))
+ if ((isssd == TRUE) && (info->throttle_is_fusion_with_priority == 0)) {
info->throttle_io_periods = &throttle_io_period_ssd_msecs[0];
- else
+ } else {
info->throttle_io_periods = &throttle_io_period_msecs[0];
+ }
/* Override global values with device-tree properties */
- if (PE_get_default("kern.io_throttle_period_tier1", &throttle_period_size, sizeof(throttle_period_size)))
+ if (PE_get_default("kern.io_throttle_period_tier1", &throttle_period_size, sizeof(throttle_period_size))) {
info->throttle_io_periods[THROTTLE_LEVEL_TIER1] = throttle_period_size;
-
- if (PE_get_default("kern.io_throttle_period_tier2", &throttle_period_size, sizeof(throttle_period_size)))
+ }
+
+ if (PE_get_default("kern.io_throttle_period_tier2", &throttle_period_size, sizeof(throttle_period_size))) {
info->throttle_io_periods[THROTTLE_LEVEL_TIER2] = throttle_period_size;
+ }
- if (PE_get_default("kern.io_throttle_period_tier3", &throttle_period_size, sizeof(throttle_period_size)))
+ if (PE_get_default("kern.io_throttle_period_tier3", &throttle_period_size, sizeof(throttle_period_size))) {
info->throttle_io_periods[THROTTLE_LEVEL_TIER3] = throttle_period_size;
-
+ }
+
/* Override with boot-args */
- if (PE_parse_boot_argn("io_throttle_period_tier1", &throttle_period_size, sizeof(throttle_period_size)))
+ if (PE_parse_boot_argn("io_throttle_period_tier1", &throttle_period_size, sizeof(throttle_period_size))) {
info->throttle_io_periods[THROTTLE_LEVEL_TIER1] = throttle_period_size;
-
- if (PE_parse_boot_argn("io_throttle_period_tier2", &throttle_period_size, sizeof(throttle_period_size)))
+ }
+
+ if (PE_parse_boot_argn("io_throttle_period_tier2", &throttle_period_size, sizeof(throttle_period_size))) {
info->throttle_io_periods[THROTTLE_LEVEL_TIER2] = throttle_period_size;
+ }
- if (PE_parse_boot_argn("io_throttle_period_tier3", &throttle_period_size, sizeof(throttle_period_size)))
+ if (PE_parse_boot_argn("io_throttle_period_tier3", &throttle_period_size, sizeof(throttle_period_size))) {
info->throttle_io_periods[THROTTLE_LEVEL_TIER3] = throttle_period_size;
-
+ }
}
#if CONFIG_IOSCHED
-extern void vm_io_reprioritize_init(void);
-int iosched_enabled = 1;
+extern void vm_io_reprioritize_init(void);
+int iosched_enabled = 1;
#endif
void
throttle_init(void)
{
- struct _throttle_io_info_t *info;
- int i;
- int level;
+ struct _throttle_io_info_t *info;
+ int i;
+ int level;
#if CONFIG_IOSCHED
- int iosched;
+ int iosched;
#endif
- /*
- * allocate lock group attribute and group
- */
- throttle_mtx_grp_attr = lck_grp_attr_alloc_init();
- throttle_mtx_grp = lck_grp_alloc_init("throttle I/O", throttle_mtx_grp_attr);
+ /*
+ * allocate lock group attribute and group
+ */
+ throttle_lock_grp_attr = lck_grp_attr_alloc_init();
+ throttle_lock_grp = lck_grp_alloc_init("throttle I/O", throttle_lock_grp_attr);
/* Update throttle parameters based on device tree configuration */
throttle_init_throttle_window();
- /*
- * allocate the lock attribute
- */
- throttle_mtx_attr = lck_attr_alloc_init();
+ /*
+ * allocate the lock attribute
+ */
+ throttle_lock_attr = lck_attr_alloc_init();
for (i = 0; i < LOWPRI_MAX_NUM_DEV; i++) {
- info = &_throttle_io_info[i];
-
- lck_mtx_init(&info->throttle_lock, throttle_mtx_grp, throttle_mtx_attr);
+ info = &_throttle_io_info[i];
+
+ lck_mtx_init(&info->throttle_lock, throttle_lock_grp, throttle_lock_attr);
info->throttle_timer_call = thread_call_allocate((thread_call_func_t)throttle_timer, (thread_call_param_t)info);
for (level = 0; level <= THROTTLE_LEVEL_END; level++) {
TAILQ_INIT(&info->throttle_uthlist[level]);
info->throttle_last_IO_pid[level] = 0;
+ info->throttle_inflight_count[level] = 0;
}
info->throttle_next_wake_level = THROTTLE_LEVEL_END;
info->throttle_disabled = 0;
}
void
-sys_override_io_throttle(int flag)
+sys_override_io_throttle(boolean_t enable_override)
{
- if (flag == THROTTLE_IO_ENABLE)
- lowpri_throttle_enabled = 1;
-
- if (flag == THROTTLE_IO_DISABLE)
+ if (enable_override) {
lowpri_throttle_enabled = 0;
+ } else {
+ lowpri_throttle_enabled = 1;
+ }
}
-int rethrottle_removed_from_list = 0;
-int rethrottle_moved_to_new_list = 0;
+int rethrottle_wakeups = 0;
/*
- * move a throttled thread to the appropriate state based
- * on it's new throttle level... throttle_add_to_list will
- * reset the timer deadline if necessary... it may also
- * leave the thread off of the queue if we're already outside
- * the throttle window for the new level
- * takes a valid uthread (which may or may not be on the
- * throttle queue) as input
+ * the uu_rethrottle_lock is used to synchronize this function
+ * with "throttle_lowpri_io" which is where a throttled thread
+ * will block... that function will grab this lock before beginning
+ * it's decision making process concerning the need to block, and
+ * hold it through the assert_wait. When that thread is awakened
+ * for any reason (timer or rethrottle), it will reacquire the
+ * uu_rethrottle_lock before determining if it really is ok for
+ * it to now run. This is the point at which the thread could
+ * enter a different throttling queue and reblock or return from
+ * the throttle w/o having waited out it's entire throttle if
+ * the rethrottle has now moved it out of any currently
+ * active throttle window.
+ *
*
- * NOTE: This is called with the task lock held.
+ * NOTES:
+ * 1 - This may be called with the task lock held.
+ * 2 - This may be called with preemption and interrupts disabled
+ * in the kqueue wakeup path so we can't take the throttle_lock which is a mutex
+ * 3 - This cannot safely dereference uu_throttle_info, as it may
+ * get deallocated out from under us
*/
void
rethrottle_thread(uthread_t ut)
{
- struct _throttle_io_info_t *info;
- int my_new_level;
-
- if ((info = ut->uu_throttle_info) == NULL)
+ /*
+ * If uthread doesn't have throttle state, then there's no chance
+ * of it needing a rethrottle.
+ */
+ if (ut->uu_throttle_info == NULL) {
return;
+ }
- lck_mtx_lock(&info->throttle_lock);
-
- if (ut->uu_on_throttlelist >= THROTTLE_LEVEL_THROTTLED) {
+ boolean_t s = ml_set_interrupts_enabled(FALSE);
+ lck_spin_lock(&ut->uu_rethrottle_lock);
- my_new_level = throttle_get_thread_throttle_level(ut);
+ if (!ut->uu_is_throttled) {
+ ut->uu_was_rethrottled = true;
+ } else {
+ int my_new_level = throttle_get_thread_throttle_level(ut);
if (my_new_level != ut->uu_on_throttlelist) {
+ /*
+ * ut is currently blocked (as indicated by
+ * ut->uu_is_throttled == true)
+ * and we're changing it's throttle level, so
+ * we need to wake it up.
+ */
+ ut->uu_is_throttled = false;
+ wakeup(&ut->uu_on_throttlelist);
- TAILQ_REMOVE(&info->throttle_uthlist[ut->uu_on_throttlelist], ut, uu_throttlelist);
- ut->uu_on_throttlelist = THROTTLE_LEVEL_NONE;
-
- if (my_new_level >= THROTTLE_LEVEL_THROTTLED) {
- throttle_add_to_list(info, ut, my_new_level, TRUE);
- rethrottle_moved_to_new_list++;
- }
-
- /* Thread no longer in window, need to wake it up */
- if (ut->uu_on_throttlelist == THROTTLE_LEVEL_NONE) {
- wakeup(&ut->uu_on_throttlelist);
- rethrottle_removed_from_list++;
- }
+ rethrottle_wakeups++;
+ KERNEL_DEBUG_CONSTANT((FSDBG_CODE(DBG_FSRW, 102)), thread_tid(ut->uu_thread), ut->uu_on_throttlelist, my_new_level, 0, 0);
}
}
-
- lck_mtx_unlock(&info->throttle_lock);
+ lck_spin_unlock(&ut->uu_rethrottle_lock);
+ ml_set_interrupts_enabled(s);
}
void *
throttle_info_create(void)
{
- struct _throttle_io_info_t *info;
- int level;
+ struct _throttle_io_info_t *info;
+ int level;
MALLOC(info, struct _throttle_io_info_t *, sizeof(*info), M_TEMP, M_ZERO | M_WAITOK);
/* Should never happen but just in case */
- if (info == NULL)
+ if (info == NULL) {
return NULL;
+ }
/* Mark that this one was allocated and needs to be freed */
DEBUG_ALLOC_THROTTLE_INFO("Creating info = %p\n", info, info );
info->throttle_alloc = TRUE;
- lck_mtx_init(&info->throttle_lock, throttle_mtx_grp, throttle_mtx_attr);
+ lck_mtx_init(&info->throttle_lock, throttle_lock_grp, throttle_lock_attr);
info->throttle_timer_call = thread_call_allocate((thread_call_func_t)throttle_timer, (thread_call_param_t)info);
for (level = 0; level <= THROTTLE_LEVEL_END; level++) {
/*
* KPI routine
*
- * Release the throttle info pointer if all the reference are gone. Should be
- * called to release reference taken by throttle_info_create
- */
+ * Release the throttle info pointer if all the reference are gone. Should be
+ * called to release reference taken by throttle_info_create
+ */
void
throttle_info_release(void *throttle_info)
{
DEBUG_ALLOC_THROTTLE_INFO("Releaseing info = %p\n",
- (struct _throttle_io_info_t *)throttle_info,
- (struct _throttle_io_info_t *)throttle_info);
- if (throttle_info) /* Just to be careful */
+ (struct _throttle_io_info_t *)throttle_info,
+ (struct _throttle_io_info_t *)throttle_info);
+ if (throttle_info) { /* Just to be careful */
throttle_info_rel(throttle_info);
+ }
}
/*
* File Systems that create an info structure, need to call this routine in
* their mount routine (used by cluster code). File Systems that call this in
* their mount routines must call throttle_info_mount_rel in their unmount
- * routines.
+ * routines.
*/
-void
+void
throttle_info_mount_ref(mount_t mp, void *throttle_info)
{
- if ((throttle_info == NULL) || (mp == NULL))
+ if ((throttle_info == NULL) || (mp == NULL)) {
return;
+ }
throttle_info_ref(throttle_info);
/*
* We already have a reference release it before adding the new one
*/
- if (mp->mnt_throttle_info)
+ if (mp->mnt_throttle_info) {
throttle_info_rel(mp->mnt_throttle_info);
+ }
mp->mnt_throttle_info = throttle_info;
}
int
throttle_info_ref_by_mask(uint64_t throttle_mask, throttle_info_handle_t *throttle_info_handle)
{
- int dev_index;
+ int dev_index;
struct _throttle_io_info_t *info;
- if (throttle_info_handle == NULL)
+ if (throttle_info_handle == NULL) {
return EINVAL;
-
+ }
+
dev_index = num_trailing_0(throttle_mask);
info = &_throttle_io_info[dev_index];
throttle_info_ref(info);
*
* File Systems that throttle_info_mount_ref, must call this routine in their
* umount routine.
- */
+ */
void
throttle_info_mount_rel(mount_t mp)
{
- if (mp->mnt_throttle_info)
+ if (mp->mnt_throttle_info) {
throttle_info_rel(mp->mnt_throttle_info);
+ }
mp->mnt_throttle_info = NULL;
}
+/*
+ * Reset throttling periods for the given mount point
+ *
+ * private interface used by disk conditioner to reset
+ * throttling periods when 'is_ssd' status changes
+ */
+void
+throttle_info_mount_reset_period(mount_t mp, int isssd)
+{
+ struct _throttle_io_info_t *info;
+
+ if (mp == NULL) {
+ info = &_throttle_io_info[LOWPRI_MAX_NUM_DEV - 1];
+ } else if (mp->mnt_throttle_info == NULL) {
+ info = &_throttle_io_info[mp->mnt_devbsdunit];
+ } else {
+ info = mp->mnt_throttle_info;
+ }
+
+ throttle_init_throttle_period(info, isssd);
+}
+
void
throttle_info_get_last_io_time(mount_t mp, struct timeval *tv)
{
- struct _throttle_io_info_t *info;
+ struct _throttle_io_info_t *info;
- if (mp == NULL)
+ if (mp == NULL) {
info = &_throttle_io_info[LOWPRI_MAX_NUM_DEV - 1];
- else if (mp->mnt_throttle_info == NULL)
+ } else if (mp->mnt_throttle_info == NULL) {
info = &_throttle_io_info[mp->mnt_devbsdunit];
- else
+ } else {
info = mp->mnt_throttle_info;
+ }
*tv = info->throttle_last_write_timestamp;
}
void
update_last_io_time(mount_t mp)
{
- struct _throttle_io_info_t *info;
-
- if (mp == NULL)
+ struct _throttle_io_info_t *info;
+
+ if (mp == NULL) {
info = &_throttle_io_info[LOWPRI_MAX_NUM_DEV - 1];
- else if (mp->mnt_throttle_info == NULL)
+ } else if (mp->mnt_throttle_info == NULL) {
info = &_throttle_io_info[mp->mnt_devbsdunit];
- else
+ } else {
info = mp->mnt_throttle_info;
+ }
microuptime(&info->throttle_last_write_timestamp);
- if (mp != NULL)
+ if (mp != NULL) {
mp->mnt_last_write_completed_timestamp = info->throttle_last_write_timestamp;
+ }
}
-
int
throttle_get_io_policy(uthread_t *ut)
{
- if (ut != NULL)
+ if (ut != NULL) {
*ut = get_bsdthread_info(current_thread());
+ }
- return (proc_get_effective_thread_policy(current_thread(), TASK_POLICY_IO));
+ return proc_get_effective_thread_policy(current_thread(), TASK_POLICY_IO);
}
int
throttle_get_passive_io_policy(uthread_t *ut)
{
- if (ut != NULL)
+ if (ut != NULL) {
*ut = get_bsdthread_info(current_thread());
+ }
- return (proc_get_effective_thread_policy(current_thread(), TASK_POLICY_PASSIVE_IO));
+ return proc_get_effective_thread_policy(current_thread(), TASK_POLICY_PASSIVE_IO);
}
static int
throttle_get_thread_throttle_level(uthread_t ut)
{
- int thread_throttle_level;
-
- if (ut == NULL)
- ut = get_bsdthread_info(current_thread());
-
- thread_throttle_level = proc_get_effective_thread_policy(ut->uu_thread, TASK_POLICY_IO);
-
- /* Bootcache misses should always be throttled */
- if (ut->uu_throttle_bc == TRUE)
- thread_throttle_level = THROTTLE_LEVEL_TIER3;
+ uthread_t *ut_p = (ut == NULL) ? &ut : NULL;
+ int io_tier = throttle_get_io_policy(ut_p);
- return (thread_throttle_level);
+ return throttle_get_thread_throttle_level_internal(ut, io_tier);
}
-
+/*
+ * Return a throttle level given an existing I/O tier (such as returned by throttle_get_io_policy)
+ */
static int
-throttle_io_will_be_throttled_internal(void * throttle_info, int * mylevel, int * throttling_level)
+throttle_get_thread_throttle_level_internal(uthread_t ut, int io_tier)
{
- struct _throttle_io_info_t *info = throttle_info;
- struct timeval elapsed;
- uint64_t elapsed_msecs;
- int thread_throttle_level;
- int throttle_level;
+ int thread_throttle_level = io_tier;
+ int user_idle_level;
- if ((thread_throttle_level = throttle_get_thread_throttle_level(NULL)) < THROTTLE_LEVEL_THROTTLED)
- return (THROTTLE_DISENGAGED);
+ assert(ut != NULL);
- for (throttle_level = THROTTLE_LEVEL_START; throttle_level < thread_throttle_level; throttle_level++) {
+ /* Bootcache misses should always be throttled */
+ if (ut->uu_throttle_bc) {
+ thread_throttle_level = THROTTLE_LEVEL_TIER3;
+ }
- microuptime(&elapsed);
+ /*
+ * Issue tier3 I/O as tier2 when the user is idle
+ * to allow maintenance tasks to make more progress.
+ *
+ * Assume any positive idle level is enough... for now it's
+ * only ever 0 or 128 but this is not defined anywhere.
+ */
+ if (thread_throttle_level >= THROTTLE_LEVEL_TIER3) {
+ user_idle_level = timer_get_user_idle_level();
+ if (user_idle_level > 0) {
+ thread_throttle_level--;
+ }
+ }
+
+ return thread_throttle_level;
+}
+
+/*
+ * I/O will be throttled if either of the following are true:
+ * - Higher tiers have in-flight I/O
+ * - The time delta since the last start/completion of a higher tier is within the throttle window interval
+ *
+ * In-flight I/O is bookended by throttle_info_update_internal/throttle_info_end_io_internal
+ */
+static int
+throttle_io_will_be_throttled_internal(void * throttle_info, int * mylevel, int * throttling_level)
+{
+ struct _throttle_io_info_t *info = throttle_info;
+ struct timeval elapsed;
+ struct timeval now;
+ uint64_t elapsed_msecs;
+ int thread_throttle_level;
+ int throttle_level;
+
+ if ((thread_throttle_level = throttle_get_thread_throttle_level(NULL)) < THROTTLE_LEVEL_THROTTLED) {
+ return THROTTLE_DISENGAGED;
+ }
+
+ microuptime(&now);
+
+ for (throttle_level = THROTTLE_LEVEL_START; throttle_level < thread_throttle_level; throttle_level++) {
+ if (info->throttle_inflight_count[throttle_level]) {
+ break;
+ }
+ elapsed = now;
timevalsub(&elapsed, &info->throttle_window_start_timestamp[throttle_level]);
elapsed_msecs = (uint64_t)elapsed.tv_sec * (uint64_t)1000 + (elapsed.tv_usec / 1000);
- if (elapsed_msecs < (uint64_t)throttle_windows_msecs[thread_throttle_level])
+ if (elapsed_msecs < (uint64_t)throttle_windows_msecs[thread_throttle_level]) {
break;
+ }
}
if (throttle_level >= thread_throttle_level) {
/*
* that affect the throttle level of this thread,
* so go ahead and treat as normal I/O
*/
- return (THROTTLE_DISENGAGED);
+ return THROTTLE_DISENGAGED;
}
- if (mylevel)
+ if (mylevel) {
*mylevel = thread_throttle_level;
- if (throttling_level)
+ }
+ if (throttling_level) {
*throttling_level = throttle_level;
+ }
if (info->throttle_io_count != info->throttle_io_count_begin) {
/*
* we've already issued at least one throttleable I/O
* in the current I/O window, so avoid issuing another one
*/
- return (THROTTLE_NOW);
+ return THROTTLE_NOW;
}
/*
* we're in the throttle window, so
* cut the I/O size back
*/
- return (THROTTLE_ENGAGED);
+ return THROTTLE_ENGAGED;
}
-/*
+/*
* If we have a mount point and it has a throttle info pointer then
* use it to do the check, otherwise use the device unit number to find
* the correct throttle info array element.
int
throttle_io_will_be_throttled(__unused int lowpri_window_msecs, mount_t mp)
{
- struct _throttle_io_info_t *info;
+ struct _throttle_io_info_t *info;
/*
* Should we just return zero if no mount point
*/
- if (mp == NULL)
- info = &_throttle_io_info[LOWPRI_MAX_NUM_DEV - 1];
- else if (mp->mnt_throttle_info == NULL)
- info = &_throttle_io_info[mp->mnt_devbsdunit];
- else
- info = mp->mnt_throttle_info;
+ if (mp == NULL) {
+ info = &_throttle_io_info[LOWPRI_MAX_NUM_DEV - 1];
+ } else if (mp->mnt_throttle_info == NULL) {
+ info = &_throttle_io_info[mp->mnt_devbsdunit];
+ } else {
+ info = mp->mnt_throttle_info;
+ }
if (info->throttle_is_fusion_with_priority) {
uthread_t ut = get_bsdthread_info(current_thread());
- if (ut->uu_lowpri_window == 0)
- return (THROTTLE_DISENGAGED);
+ if (ut->uu_lowpri_window == 0) {
+ return THROTTLE_DISENGAGED;
+ }
}
- if (info->throttle_disabled)
- return (THROTTLE_DISENGAGED);
- else
+ if (info->throttle_disabled) {
+ return THROTTLE_DISENGAGED;
+ } else {
return throttle_io_will_be_throttled_internal(info, NULL, NULL);
+ }
}
-/*
+/*
* Routine to increment I/O throttling counters maintained in the proc
*/
-static void
+static void
throttle_update_proc_stats(pid_t throttling_pid, int count)
{
proc_t throttling_proc;
/* The throttled_proc is always the current proc; so we are not concerned with refs */
OSAddAtomic64(count, &(throttled_proc->was_throttled));
-
+
/* The throttling pid might have exited by now */
throttling_proc = proc_find(throttling_pid);
if (throttling_proc != PROC_NULL) {
{
uthread_t ut;
struct _throttle_io_info_t *info;
- int throttle_type = 0;
- int mylevel = 0;
- int throttling_level = THROTTLE_LEVEL_NONE;
- int sleep_cnt = 0;
+ int throttle_type = 0;
+ int mylevel = 0;
+ int throttling_level = THROTTLE_LEVEL_NONE;
+ int sleep_cnt = 0;
uint32_t throttle_io_period_num = 0;
boolean_t insert_tail = TRUE;
+ boolean_t s;
ut = get_bsdthread_info(current_thread());
- if (ut->uu_lowpri_window == 0)
- return (0);
+ if (ut->uu_lowpri_window == 0) {
+ return 0;
+ }
info = ut->uu_throttle_info;
if (info == NULL) {
- ut->uu_throttle_bc = FALSE;
+ ut->uu_throttle_bc = false;
ut->uu_lowpri_window = 0;
- return (0);
+ return 0;
}
-
lck_mtx_lock(&info->throttle_lock);
+ assert(ut->uu_on_throttlelist < THROTTLE_LEVEL_THROTTLED);
- if (sleep_amount == 0)
+ if (sleep_amount == 0) {
goto done;
+ }
- if (sleep_amount == 1 && ut->uu_throttle_bc == FALSE)
+ if (sleep_amount == 1 && !ut->uu_throttle_bc) {
sleep_amount = 0;
+ }
throttle_io_period_num = info->throttle_io_period_num;
- while ( (throttle_type = throttle_io_will_be_throttled_internal(info, &mylevel, &throttling_level)) ) {
+ ut->uu_was_rethrottled = false;
+ while ((throttle_type = throttle_io_will_be_throttled_internal(info, &mylevel, &throttling_level))) {
if (throttle_type == THROTTLE_ENGAGED) {
- if (sleep_amount == 0)
- break;
- if (info->throttle_io_period_num < throttle_io_period_num)
+ if (sleep_amount == 0) {
break;
- if ((info->throttle_io_period_num - throttle_io_period_num) >= (uint32_t)sleep_amount)
+ }
+ if (info->throttle_io_period_num < throttle_io_period_num) {
+ break;
+ }
+ if ((info->throttle_io_period_num - throttle_io_period_num) >= (uint32_t)sleep_amount) {
break;
+ }
+ }
+ /*
+ * keep the same position in the list if "rethrottle_thread" changes our throttle level and
+ * then puts us back to the original level before we get a chance to run
+ */
+ if (ut->uu_on_throttlelist >= THROTTLE_LEVEL_THROTTLED && ut->uu_on_throttlelist != mylevel) {
+ /*
+ * must have been awakened via "rethrottle_thread" (the timer pulls us off the list)
+ * and we've changed our throttling level, so pull ourselves off of the appropriate list
+ * and make sure we get put on the tail of the new list since we're starting anew w/r to
+ * the throttling engine
+ */
+ TAILQ_REMOVE(&info->throttle_uthlist[ut->uu_on_throttlelist], ut, uu_throttlelist);
+ ut->uu_on_throttlelist = THROTTLE_LEVEL_NONE;
+ insert_tail = TRUE;
}
if (ut->uu_on_throttlelist < THROTTLE_LEVEL_THROTTLED) {
- if (throttle_add_to_list(info, ut, mylevel, insert_tail) == THROTTLE_LEVEL_END)
+ if (throttle_add_to_list(info, ut, mylevel, insert_tail) == THROTTLE_LEVEL_END) {
goto done;
+ }
}
assert(throttling_level >= THROTTLE_LEVEL_START && throttling_level <= THROTTLE_LEVEL_END);
+
+ s = ml_set_interrupts_enabled(FALSE);
+ lck_spin_lock(&ut->uu_rethrottle_lock);
+
+ /*
+ * this is the critical section w/r to our interaction
+ * with "rethrottle_thread"
+ */
+ if (ut->uu_was_rethrottled) {
+ lck_spin_unlock(&ut->uu_rethrottle_lock);
+ ml_set_interrupts_enabled(s);
+ lck_mtx_yield(&info->throttle_lock);
+
+ KERNEL_DEBUG_CONSTANT((FSDBG_CODE(DBG_FSRW, 103)), thread_tid(ut->uu_thread), ut->uu_on_throttlelist, 0, 0, 0);
+
+ ut->uu_was_rethrottled = false;
+ continue;
+ }
KERNEL_DEBUG_CONSTANT((FSDBG_CODE(DBG_THROTTLE, PROCESS_THROTTLED)) | DBG_FUNC_NONE,
- info->throttle_last_IO_pid[throttling_level], throttling_level, proc_selfpid(), mylevel, 0);
+ info->throttle_last_IO_pid[throttling_level], throttling_level, proc_selfpid(), mylevel, 0);
-
if (sleep_cnt == 0) {
KERNEL_DEBUG_CONSTANT((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_START,
- throttle_windows_msecs[mylevel], info->throttle_io_periods[mylevel], info->throttle_io_count, 0, 0);
+ throttle_windows_msecs[mylevel], info->throttle_io_periods[mylevel], info->throttle_io_count, 0, 0);
throttled_count[mylevel]++;
}
- msleep((caddr_t)&ut->uu_on_throttlelist, &info->throttle_lock, PRIBIO + 1, "throttle_lowpri_io", NULL);
+ ut->uu_wmesg = "throttle_lowpri_io";
+
+ assert_wait((caddr_t)&ut->uu_on_throttlelist, THREAD_UNINT);
+
+ ut->uu_is_throttled = true;
+ lck_spin_unlock(&ut->uu_rethrottle_lock);
+ ml_set_interrupts_enabled(s);
+
+ lck_mtx_unlock(&info->throttle_lock);
+
+ thread_block(THREAD_CONTINUE_NULL);
+
+ ut->uu_wmesg = NULL;
+
+ ut->uu_is_throttled = false;
+ ut->uu_was_rethrottled = false;
+
+ lck_mtx_lock(&info->throttle_lock);
sleep_cnt++;
-
- if (sleep_amount == 0)
+
+ if (sleep_amount == 0) {
insert_tail = FALSE;
- else if (info->throttle_io_period_num < throttle_io_period_num ||
- (info->throttle_io_period_num - throttle_io_period_num) >= (uint32_t)sleep_amount) {
+ } else if (info->throttle_io_period_num < throttle_io_period_num ||
+ (info->throttle_io_period_num - throttle_io_period_num) >= (uint32_t)sleep_amount) {
insert_tail = FALSE;
sleep_amount = 0;
}
TAILQ_REMOVE(&info->throttle_uthlist[ut->uu_on_throttlelist], ut, uu_throttlelist);
ut->uu_on_throttlelist = THROTTLE_LEVEL_NONE;
}
-
lck_mtx_unlock(&info->throttle_lock);
if (sleep_cnt) {
KERNEL_DEBUG_CONSTANT((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_END,
- throttle_windows_msecs[mylevel], info->throttle_io_periods[mylevel], info->throttle_io_count, 0, 0);
+ throttle_windows_msecs[mylevel], info->throttle_io_periods[mylevel], info->throttle_io_count, 0, 0);
/*
* We update the stats for the last pid which opened a throttle window for the throttled thread.
* This might not be completely accurate since the multiple throttles seen by the lower tier pid
- * might have been caused by various higher prio pids. However, updating these stats accurately
+ * might have been caused by various higher prio pids. However, updating these stats accurately
* means doing a proc_find while holding the throttle lock which leads to deadlock.
*/
throttle_update_proc_stats(info->throttle_last_IO_pid[throttling_level], sleep_cnt);
}
- throttle_info_rel(info);
-
ut->uu_throttle_info = NULL;
- ut->uu_throttle_bc = FALSE;
+ ut->uu_throttle_bc = false;
ut->uu_lowpri_window = 0;
- return (sleep_cnt);
+ throttle_info_rel(info);
+
+ return sleep_cnt;
}
+/*
+ * returns TRUE if the throttle_lowpri_io called with the same sleep_amount would've slept
+ * This function mimics the most of the throttle_lowpri_io checks but without actual sleeping
+ */
+int
+throttle_lowpri_io_will_be_throttled(int sleep_amount)
+{
+ if (sleep_amount == 0) {
+ return FALSE;
+ }
+
+ uthread_t ut = get_bsdthread_info(current_thread());
+ if (ut->uu_lowpri_window == 0) {
+ return FALSE;
+ }
+
+ struct _throttle_io_info_t *info = ut->uu_throttle_info;
+ if (info == NULL) {
+ return FALSE;
+ }
+
+ lck_mtx_lock(&info->throttle_lock);
+ assert(ut->uu_on_throttlelist < THROTTLE_LEVEL_THROTTLED);
+
+ if (sleep_amount == 1 && !ut->uu_throttle_bc) {
+ sleep_amount = 0;
+ }
+
+ int result = FALSE;
+
+ int throttle_type = throttle_io_will_be_throttled_internal(info, NULL, NULL);
+ if (throttle_type > THROTTLE_DISENGAGED) {
+ result = TRUE;
+ if ((throttle_type == THROTTLE_ENGAGED) && (sleep_amount == 0)) {
+ result = FALSE;
+ }
+ }
+
+ lck_mtx_unlock(&info->throttle_lock);
+
+ return result;
+}
+
+
/*
* KPI routine
*
*
* explanations about these policies are in the man page of setiopolicy_np
*/
-void throttle_set_thread_io_policy(int policy)
+void
+throttle_set_thread_io_policy(int policy)
{
- proc_set_task_policy(current_task(), current_thread(),
- TASK_POLICY_INTERNAL, TASK_POLICY_IOPOL,
- policy);
+ proc_set_thread_policy(current_thread(), TASK_POLICY_INTERNAL, TASK_POLICY_IOPOL, policy);
}
+int
+throttle_get_thread_effective_io_policy()
+{
+ return proc_get_effective_thread_policy(current_thread(), TASK_POLICY_IO);
+}
-void throttle_info_reset_window(uthread_t ut)
+void
+throttle_info_reset_window(uthread_t ut)
{
struct _throttle_io_info_t *info;
- if (ut == NULL)
+ if (ut == NULL) {
ut = get_bsdthread_info(current_thread());
+ }
- if ( (info = ut->uu_throttle_info) ) {
+ if ((info = ut->uu_throttle_info)) {
throttle_info_rel(info);
ut->uu_throttle_info = NULL;
ut->uu_lowpri_window = 0;
- ut->uu_throttle_bc = FALSE;
+ ut->uu_throttle_bc = false;
}
}
static
-void throttle_info_set_initial_window(uthread_t ut, struct _throttle_io_info_t *info, boolean_t BC_throttle, boolean_t isssd)
+void
+throttle_info_set_initial_window(uthread_t ut, struct _throttle_io_info_t *info, boolean_t BC_throttle, boolean_t isssd)
{
- if (lowpri_throttle_enabled == 0 || info->throttle_disabled)
+ if (lowpri_throttle_enabled == 0 || info->throttle_disabled) {
return;
+ }
if (info->throttle_io_periods == 0) {
throttle_init_throttle_period(info, isssd);
}
if (ut->uu_throttle_info == NULL) {
-
ut->uu_throttle_info = info;
throttle_info_ref(info);
DEBUG_ALLOC_THROTTLE_INFO("updating info = %p\n", info, info );
}
}
+/*
+ * Update inflight IO count and throttling window
+ * Should be called when an IO is done
+ *
+ * Only affects IO that was sent through spec_strategy
+ */
+void
+throttle_info_end_io(buf_t bp)
+{
+ mount_t mp;
+ struct bufattr *bap;
+ struct _throttle_io_info_t *info;
+ int io_tier;
+ bap = &bp->b_attr;
+ if (!ISSET(bap->ba_flags, BA_STRATEGY_TRACKED_IO)) {
+ return;
+ }
+ CLR(bap->ba_flags, BA_STRATEGY_TRACKED_IO);
+
+ mp = buf_vnode(bp)->v_mount;
+ if (mp != NULL) {
+ info = &_throttle_io_info[mp->mnt_devbsdunit];
+ } else {
+ info = &_throttle_io_info[LOWPRI_MAX_NUM_DEV - 1];
+ }
+
+ io_tier = GET_BUFATTR_IO_TIER(bap);
+ if (ISSET(bap->ba_flags, BA_IO_TIER_UPGRADE)) {
+ io_tier--;
+ }
+
+ throttle_info_end_io_internal(info, io_tier);
+}
+
+/*
+ * Decrement inflight count initially incremented by throttle_info_update_internal
+ */
static
-void throttle_info_update_internal(struct _throttle_io_info_t *info, uthread_t ut, int flags, boolean_t isssd)
+void
+throttle_info_end_io_internal(struct _throttle_io_info_t *info, int throttle_level)
{
- int thread_throttle_level;
-
- if (lowpri_throttle_enabled == 0 || info->throttle_disabled)
+ if (throttle_level == THROTTLE_LEVEL_NONE) {
return;
+ }
- if (ut == NULL)
+ microuptime(&info->throttle_window_start_timestamp[throttle_level]);
+ OSDecrementAtomic(&info->throttle_inflight_count[throttle_level]);
+ assert(info->throttle_inflight_count[throttle_level] >= 0);
+}
+
+/*
+ * If inflight is TRUE and bap is NULL then the caller is responsible for calling
+ * throttle_info_end_io_internal to avoid leaking in-flight I/O.
+ */
+static
+int
+throttle_info_update_internal(struct _throttle_io_info_t *info, uthread_t ut, int flags, boolean_t isssd, boolean_t inflight, struct bufattr *bap)
+{
+ int thread_throttle_level;
+
+ if (lowpri_throttle_enabled == 0 || info->throttle_disabled) {
+ return THROTTLE_LEVEL_NONE;
+ }
+
+ if (ut == NULL) {
ut = get_bsdthread_info(current_thread());
+ }
- thread_throttle_level = throttle_get_thread_throttle_level(ut);
+ if (bap && inflight && !ut->uu_throttle_bc) {
+ thread_throttle_level = GET_BUFATTR_IO_TIER(bap);
+ if (ISSET(bap->ba_flags, BA_IO_TIER_UPGRADE)) {
+ thread_throttle_level--;
+ }
+ } else {
+ thread_throttle_level = throttle_get_thread_throttle_level(ut);
+ }
if (thread_throttle_level != THROTTLE_LEVEL_NONE) {
- if(!ISSET(flags, B_PASSIVE)) {
- microuptime(&info->throttle_window_start_timestamp[thread_throttle_level]);
+ if (!ISSET(flags, B_PASSIVE)) {
info->throttle_last_IO_pid[thread_throttle_level] = proc_selfpid();
+ if (inflight && !ut->uu_throttle_bc) {
+ if (NULL != bap) {
+ SET(bap->ba_flags, BA_STRATEGY_TRACKED_IO);
+ }
+ OSIncrementAtomic(&info->throttle_inflight_count[thread_throttle_level]);
+ } else {
+ microuptime(&info->throttle_window_start_timestamp[thread_throttle_level]);
+ }
KERNEL_DEBUG_CONSTANT((FSDBG_CODE(DBG_THROTTLE, OPEN_THROTTLE_WINDOW)) | DBG_FUNC_NONE,
- current_proc()->p_pid, thread_throttle_level, 0, 0, 0);
+ current_proc()->p_pid, thread_throttle_level, 0, 0, 0);
}
microuptime(&info->throttle_last_IO_timestamp[thread_throttle_level]);
}
* do the delay just before we return from the system
* call that triggered this I/O or from vnode_pagein
*/
- OSAddAtomic(1, &info->throttle_io_count);
+ OSAddAtomic(1, &info->throttle_io_count);
throttle_info_set_initial_window(ut, info, FALSE, isssd);
}
+
+ return thread_throttle_level;
}
-void *throttle_info_update_by_mount(mount_t mp)
+void *
+throttle_info_update_by_mount(mount_t mp)
{
struct _throttle_io_info_t *info;
uthread_t ut;
ut = get_bsdthread_info(current_thread());
if (mp != NULL) {
- if ((mp->mnt_kern_flag & MNTK_SSD) && !ignore_is_ssd)
+ if (disk_conditioner_mount_is_ssd(mp)) {
isssd = TRUE;
+ }
info = &_throttle_io_info[mp->mnt_devbsdunit];
- } else
+ } else {
info = &_throttle_io_info[LOWPRI_MAX_NUM_DEV - 1];
+ }
- if (!ut->uu_lowpri_window)
+ if (!ut->uu_lowpri_window) {
throttle_info_set_initial_window(ut, info, FALSE, isssd);
+ }
return info;
}
* this is usually called before every I/O, used for throttled I/O
* book keeping. This routine has low overhead and does not sleep
*/
-void throttle_info_update(void *throttle_info, int flags)
+void
+throttle_info_update(void *throttle_info, int flags)
{
- if (throttle_info)
- throttle_info_update_internal(throttle_info, NULL, flags, FALSE);
+ if (throttle_info) {
+ throttle_info_update_internal(throttle_info, NULL, flags, FALSE, FALSE, NULL);
+ }
}
/*
* this is usually called before every I/O, used for throttled I/O
* book keeping. This routine has low overhead and does not sleep
*/
-void throttle_info_update_by_mask(void *throttle_info_handle, int flags)
+void
+throttle_info_update_by_mask(void *throttle_info_handle, int flags)
{
void *throttle_info = throttle_info_handle;
}
/*
* KPI routine
- *
- * This routine marks the throttle info as disabled. Used for mount points which
+ *
+ * This routine marks the throttle info as disabled. Used for mount points which
* support I/O scheduling.
*/
-void throttle_info_disable_throttle(int devno, boolean_t isfusion)
+void
+throttle_info_disable_throttle(int devno, boolean_t isfusion)
{
struct _throttle_io_info_t *info;
- if (devno < 0 || devno >= LOWPRI_MAX_NUM_DEV)
+ if (devno < 0 || devno >= LOWPRI_MAX_NUM_DEV) {
panic("Illegal devno (%d) passed into throttle_info_disable_throttle()", devno);
+ }
info = &_throttle_io_info[devno];
// don't disable software throttling on devices that are part of a fusion device
}
info->throttle_disabled = !info->throttle_is_fusion_with_priority;
return;
-}
+}
/*
* KPI routine (private)
* Called to determine if this IO is being throttled to this level so that it can be treated specially
*/
-int throttle_info_io_will_be_throttled(void * throttle_info, int policy)
+int
+throttle_info_io_will_be_throttled(void * throttle_info, int policy)
{
- struct _throttle_io_info_t *info = throttle_info;
+ struct _throttle_io_info_t *info = throttle_info;
struct timeval elapsed;
uint64_t elapsed_msecs;
- int throttle_level;
- int thread_throttle_level;
-
- switch (policy) {
-
- case IOPOL_THROTTLE:
- thread_throttle_level = THROTTLE_LEVEL_TIER3;
- break;
- case IOPOL_UTILITY:
- thread_throttle_level = THROTTLE_LEVEL_TIER2;
- break;
- case IOPOL_STANDARD:
- thread_throttle_level = THROTTLE_LEVEL_TIER1;
- break;
- default:
- thread_throttle_level = THROTTLE_LEVEL_TIER0;
+ int throttle_level;
+ int thread_throttle_level;
+
+ switch (policy) {
+ case IOPOL_THROTTLE:
+ thread_throttle_level = THROTTLE_LEVEL_TIER3;
+ break;
+ case IOPOL_UTILITY:
+ thread_throttle_level = THROTTLE_LEVEL_TIER2;
+ break;
+ case IOPOL_STANDARD:
+ thread_throttle_level = THROTTLE_LEVEL_TIER1;
+ break;
+ default:
+ thread_throttle_level = THROTTLE_LEVEL_TIER0;
break;
}
for (throttle_level = THROTTLE_LEVEL_START; throttle_level < thread_throttle_level; throttle_level++) {
+ if (info->throttle_inflight_count[throttle_level]) {
+ break;
+ }
microuptime(&elapsed);
timevalsub(&elapsed, &info->throttle_window_start_timestamp[throttle_level]);
elapsed_msecs = (uint64_t)elapsed.tv_sec * (uint64_t)1000 + (elapsed.tv_usec / 1000);
- if (elapsed_msecs < (uint64_t)throttle_windows_msecs[thread_throttle_level])
+ if (elapsed_msecs < (uint64_t)throttle_windows_msecs[thread_throttle_level]) {
break;
+ }
}
if (throttle_level >= thread_throttle_level) {
/*
* we're beyond all of the throttle windows
* so go ahead and treat as normal I/O
*/
- return (THROTTLE_DISENGAGED);
+ return THROTTLE_DISENGAGED;
}
/*
* we're in the throttle window
*/
- return (THROTTLE_ENGAGED);
+ return THROTTLE_ENGAGED;
}
+int
+throttle_lowpri_window(void)
+{
+ struct uthread *ut = get_bsdthread_info(current_thread());
+ return ut->uu_lowpri_window;
+}
+
+
+#if CONFIG_IOSCHED
+int upl_get_cached_tier(void *);
+#endif
+
int
spec_strategy(struct vnop_strategy_args *ap)
{
- buf_t bp;
- int bflags;
- int io_tier;
- int passive;
- dev_t bdev;
+ buf_t bp;
+ int bflags;
+ int io_tier;
+ int passive;
+ dev_t bdev;
uthread_t ut;
mount_t mp;
- struct bufattr *bap;
- int strategy_ret;
+ struct bufattr *bap;
+ int strategy_ret;
struct _throttle_io_info_t *throttle_info;
boolean_t isssd = FALSE;
+ boolean_t inflight = FALSE;
+ boolean_t upgrade = FALSE;
int code = 0;
+#if !CONFIG_EMBEDDED
proc_t curproc = current_proc();
+#endif /* !CONFIG_EMBEDDED */
- bp = ap->a_bp;
+ bp = ap->a_bp;
bdev = buf_device(bp);
mp = buf_vnode(bp)->v_mount;
bap = &bp->b_attr;
+#if CONFIG_IOSCHED
+ if (bp->b_flags & B_CLUSTER) {
+ io_tier = upl_get_cached_tier(bp->b_upl);
+
+ if (io_tier == -1) {
+ io_tier = throttle_get_io_policy(&ut);
+ }
+#if DEVELOPMENT || DEBUG
+ else {
+ int my_io_tier = throttle_get_io_policy(&ut);
+
+ if (io_tier != my_io_tier) {
+ KERNEL_DEBUG_CONSTANT((FSDBG_CODE(DBG_THROTTLE, IO_TIER_UPL_MISMATCH)) | DBG_FUNC_NONE, buf_kernel_addrperm_addr(bp), my_io_tier, io_tier, 0, 0);
+ }
+ }
+#endif
+ } else {
+ io_tier = throttle_get_io_policy(&ut);
+ }
+#else
io_tier = throttle_get_io_policy(&ut);
+#endif
passive = throttle_get_passive_io_policy(&ut);
- if (bp->b_flags & B_META)
+ /*
+ * Mark if the I/O was upgraded by throttle_get_thread_throttle_level
+ * while preserving the original issued tier (throttle_get_io_policy
+ * does not return upgraded tiers)
+ */
+ if (mp && io_tier > throttle_get_thread_throttle_level_internal(ut, io_tier)) {
+#if CONFIG_IOSCHED
+ if (!(mp->mnt_ioflags & MNT_IOFLAGS_IOSCHED_SUPPORTED)) {
+ upgrade = TRUE;
+ }
+#else /* CONFIG_IOSCHED */
+ upgrade = TRUE;
+#endif /* CONFIG_IOSCHED */
+ }
+
+ if (bp->b_flags & B_META) {
bap->ba_flags |= BA_META;
+ }
#if CONFIG_IOSCHED
- /*
+ /*
* For I/O Scheduling, we currently do not have a way to track and expedite metadata I/Os.
* To ensure we dont get into priority inversions due to metadata I/Os, we use the following rules:
* For metadata reads, ceil all I/Os to IOSCHED_METADATA_TIER & mark them passive if the I/O tier was upgraded
* For metadata writes, unconditionally mark them as IOSCHED_METADATA_TIER and passive
*/
if (bap->ba_flags & BA_META) {
- if (mp && (mp->mnt_ioflags & MNT_IOFLAGS_IOSCHED_SUPPORTED)) {
+ if ((mp && (mp->mnt_ioflags & MNT_IOFLAGS_IOSCHED_SUPPORTED)) || (bap->ba_flags & BA_IO_SCHEDULED)) {
if (bp->b_flags & B_READ) {
if (io_tier > IOSCHED_METADATA_TIER) {
io_tier = IOSCHED_METADATA_TIER;
}
}
#endif /* CONFIG_IOSCHED */
-
+
SET_BUFATTR_IO_TIER(bap, io_tier);
if (passive) {
bap->ba_flags |= BA_PASSIVE;
}
- if ((curproc != NULL) && ((curproc->p_flag & P_DELAYIDLESLEEP) == P_DELAYIDLESLEEP))
+#if !CONFIG_EMBEDDED
+ if ((curproc != NULL) && ((curproc->p_flag & P_DELAYIDLESLEEP) == P_DELAYIDLESLEEP)) {
bap->ba_flags |= BA_DELAYIDLESLEEP;
-
+ }
+#endif /* !CONFIG_EMBEDDED */
+
bflags = bp->b_flags;
- if (((bflags & B_READ) == 0) && ((bflags & B_ASYNC) == 0))
+ if (((bflags & B_READ) == 0) && ((bflags & B_ASYNC) == 0)) {
bufattr_markquickcomplete(bap);
+ }
+
+ if (bflags & B_READ) {
+ code |= DKIO_READ;
+ }
+ if (bflags & B_ASYNC) {
+ code |= DKIO_ASYNC;
+ }
- if (bflags & B_READ)
- code |= DKIO_READ;
- if (bflags & B_ASYNC)
- code |= DKIO_ASYNC;
- if (bflags & B_META)
- code |= DKIO_META;
- else if (bflags & B_PAGEIO)
- code |= DKIO_PAGING;
+ if (bap->ba_flags & BA_META) {
+ code |= DKIO_META;
+ } else if (bflags & B_PAGEIO) {
+ code |= DKIO_PAGING;
+ }
- if (io_tier != 0)
+ if (io_tier != 0) {
code |= DKIO_THROTTLE;
+ }
code |= ((io_tier << DKIO_TIER_SHIFT) & DKIO_TIER_MASK);
- if (bflags & B_PASSIVE)
+ if (bflags & B_PASSIVE) {
code |= DKIO_PASSIVE;
+ }
- if (bap->ba_flags & BA_NOCACHE)
+ if (bap->ba_flags & BA_NOCACHE) {
code |= DKIO_NOCACHE;
+ }
+
+ if (upgrade) {
+ code |= DKIO_TIER_UPGRADE;
+ SET(bap->ba_flags, BA_IO_TIER_UPGRADE);
+ }
if (kdebug_enable) {
KERNEL_DEBUG_CONSTANT_IST(KDEBUG_COMMON, FSDBG_CODE(DBG_DKRW, code) | DBG_FUNC_NONE,
- buf_kernel_addrperm_addr(bp), bdev, (int)buf_blkno(bp), buf_count(bp), 0);
- }
+ buf_kernel_addrperm_addr(bp), bdev, buf_blkno(bp), buf_count(bp), 0);
+ }
thread_update_io_stats(current_thread(), buf_count(bp), code);
if (mp != NULL) {
- if ((mp->mnt_kern_flag & MNTK_SSD) && !ignore_is_ssd)
+ if (disk_conditioner_mount_is_ssd(mp)) {
isssd = TRUE;
+ }
+ /*
+ * Partially initialized mounts don't have a final devbsdunit and should not be tracked.
+ * Verify that devbsdunit is initialized (non-zero) or that 0 is the correct initialized value
+ * (mnt_throttle_mask is initialized and num_trailing_0 would be 0)
+ */
+ if (mp->mnt_devbsdunit || (mp->mnt_throttle_mask != LOWPRI_MAX_NUM_DEV - 1 && mp->mnt_throttle_mask & 0x1)) {
+ inflight = TRUE;
+ }
throttle_info = &_throttle_io_info[mp->mnt_devbsdunit];
- } else
+ } else {
throttle_info = &_throttle_io_info[LOWPRI_MAX_NUM_DEV - 1];
+ }
- throttle_info_update_internal(throttle_info, ut, bflags, isssd);
+ throttle_info_update_internal(throttle_info, ut, bflags, isssd, inflight, bap);
if ((bflags & B_READ) == 0) {
microuptime(&throttle_info->throttle_last_write_timestamp);
* the boot cache too often.
*
* Note that typical strategy routines are defined with
- * a void return so we'll get garbage here. In the
+ * a void return so we'll get garbage here. In the
* unlikely case the garbage matches our special return
* value, it's not a big deal since we're only adjusting
* the throttling delay.
- */
+ */
#define IO_SATISFIED_BY_CACHE ((int)0xcafefeed)
#define IO_SHOULD_BE_THROTTLED ((int)0xcafebeef)
- typedef int strategy_fcn_ret_t(struct buf *bp);
-
+ typedef int strategy_fcn_ret_t(struct buf *bp);
+
strategy_ret = (*(strategy_fcn_ret_t*)bdevsw[major(bdev)].d_strategy)(bp);
-
+
+ // disk conditioner needs to track when this I/O actually starts
+ // which means track it after `strategy` which may include delays
+ // from inflight I/Os
+ microuptime(&bp->b_timestamp_tv);
+
if (IO_SATISFIED_BY_CACHE == strategy_ret) {
/*
* If this was a throttled IO satisfied by the boot cache,
* don't delay the thread.
*/
throttle_info_reset_window(ut);
-
} else if (IO_SHOULD_BE_THROTTLED == strategy_ret) {
/*
* If the boot cache indicates this IO should be throttled,
*/
throttle_info_set_initial_window(ut, throttle_info, TRUE, isssd);
}
- return (0);
+ return 0;
}
int
spec_blockmap(__unused struct vnop_blockmap_args *ap)
{
- return (ENOTSUP);
+ return ENOTSUP;
}
struct session *sessp;
switch (vp->v_type) {
-
case VCHR:
/*
* Hack: a tty device that is a controlling terminal
sessp->s_ttyvid = 0;
sessp->s_ttyp = TTY_NULL;
sessp->s_ttypgrpid = NO_PID;
- }
+ }
session_unlock(sessp);
if (tp != TTY_NULL) {
session_rele(sessp);
}
- if (--vp->v_specinfo->si_opencount < 0)
+ if (--vp->v_specinfo->si_opencount < 0) {
panic("negative open count (c, %u, %u)", major(dev), minor(dev));
+ }
/*
* close on last reference or on vnode revoke call
*/
- if (vcount(vp) == 0 || (flags & IO_REVOKE) != 0)
+ if (vcount(vp) == 0 || (flags & IO_REVOKE) != 0) {
error = cdevsw[major(dev)].d_close(dev, flags, S_IFCHR, p);
+ }
devsw_unlock(dev, S_IFCHR);
break;
if (vcount(vp) > 1) {
vp->v_specinfo->si_opencount--;
devsw_unlock(dev, S_IFBLK);
- return (0);
+ return 0;
}
devsw_unlock(dev, S_IFBLK);
* we must invalidate any in core blocks, so that
* we can, for instance, change floppy disks.
*/
- if ((error = spec_fsync_internal(vp, MNT_WAIT, ap->a_context)))
- return (error);
+ if ((error = spec_fsync_internal(vp, MNT_WAIT, ap->a_context))) {
+ return error;
+ }
error = buf_invalidateblks(vp, BUF_WRITE_DATA, 0, 0);
- if (error)
- return (error);
+ if (error) {
+ return error;
+ }
devsw_lock(dev, S_IFBLK);
- if (--vp->v_specinfo->si_opencount < 0)
+ if (--vp->v_specinfo->si_opencount < 0) {
panic("negative open count (b, %u, %u)", major(dev), minor(dev));
+ }
- if (vcount(vp) == 0)
+ if (vcount(vp) == 0) {
error = bdevsw[major(dev)].d_close(dev, flags, S_IFBLK, p);
+ }
devsw_unlock(dev, S_IFBLK);
break;
default:
panic("spec_close: not special");
- return(EBADF);
+ return EBADF;
}
return error;
int
spec_pathconf(struct vnop_pathconf_args *ap)
{
-
switch (ap->a_name) {
case _PC_LINK_MAX:
*ap->a_retval = LINK_MAX;
- return (0);
+ return 0;
case _PC_MAX_CANON:
*ap->a_retval = MAX_CANON;
- return (0);
+ return 0;
case _PC_MAX_INPUT:
*ap->a_retval = MAX_INPUT;
- return (0);
+ return 0;
case _PC_PIPE_BUF:
*ap->a_retval = PIPE_BUF;
- return (0);
+ return 0;
case _PC_CHOWN_RESTRICTED:
- *ap->a_retval = 200112; /* _POSIX_CHOWN_RESTRICTED */
- return (0);
+ *ap->a_retval = 200112; /* _POSIX_CHOWN_RESTRICTED */
+ return 0;
case _PC_VDISABLE:
*ap->a_retval = _POSIX_VDISABLE;
- return (0);
+ return 0;
default:
- return (EINVAL);
+ return EINVAL;
}
/* NOTREACHED */
}
int
spec_ebadf(__unused void *dummy)
{
-
- return (EBADF);
+ return EBADF;
}
/* Blktooff derives file offset from logical block number */
switch (vp->v_type) {
case VCHR:
*ap->a_offset = (off_t)-1; /* failure */
- return (ENOTSUP);
+ return ENOTSUP;
case VBLK:
printf("spec_blktooff: not implemented for VBLK\n");
*ap->a_offset = (off_t)-1; /* failure */
- return (ENOTSUP);
+ return ENOTSUP;
default:
panic("spec_blktooff type");
}
/* NOTREACHED */
- return (0);
+ return 0;
}
/* Offtoblk derives logical block number from file offset */
switch (vp->v_type) {
case VCHR:
*ap->a_lblkno = (daddr64_t)-1; /* failure */
- return (ENOTSUP);
+ return ENOTSUP;
case VBLK:
printf("spec_offtoblk: not implemented for VBLK\n");
*ap->a_lblkno = (daddr64_t)-1; /* failure */
- return (ENOTSUP);
+ return ENOTSUP;
default:
panic("spec_offtoblk type");
}
/* NOTREACHED */
- return (0);
+ return 0;
}
static void filt_specdetach(struct knote *kn);
-static int filt_spec(struct knote *kn, long hint);
-static unsigned filt_specpeek(struct knote *kn);
-
-struct filterops spec_filtops = {
- .f_isfd = 1,
- .f_attach = filt_specattach,
- .f_detach = filt_specdetach,
- .f_event = filt_spec,
- .f_peek = filt_specpeek
+static int filt_specevent(struct knote *kn, long hint);
+static int filt_spectouch(struct knote *kn, struct kevent_qos_s *kev);
+static int filt_specprocess(struct knote *kn, struct kevent_qos_s *kev);
+static int filt_specpeek(struct knote *kn);
+
+SECURITY_READ_ONLY_EARLY(struct filterops) spec_filtops = {
+ .f_isfd = 1,
+ .f_attach = filt_specattach,
+ .f_detach = filt_specdetach,
+ .f_event = filt_specevent,
+ .f_touch = filt_spectouch,
+ .f_process = filt_specprocess,
+ .f_peek = filt_specpeek
};
-static int
-filter_to_seltype(int16_t filter)
-{
- switch (filter) {
- case EVFILT_READ:
- return FREAD;
- case EVFILT_WRITE:
- return FWRITE;
- break;
- default:
- panic("filt_to_seltype(): invalid filter %d\n", filter);
- return 0;
- }
-}
-
-static int
-filt_specattach(struct knote *kn)
-{
- vnode_t vp;
- dev_t dev;
-
- vp = (vnode_t)kn->kn_fp->f_fglob->fg_data; /* Already have iocount, and vnode is alive */
-
- assert(vnode_ischr(vp));
-
- dev = vnode_specrdev(vp);
- if (major(dev) > nchrdev) {
- return ENXIO;
- }
-
- /*
- * For a few special kinds of devices, we can attach knotes with
- * no restrictions because their "select" vectors return the amount
- * of data available. Others require an explicit NOTE_LOWAT with
- * data of 1, indicating that the caller doesn't care about actual
- * data counts, just an indication that the device has data.
- */
-
- if ((cdevsw_flags[major(dev)] & CDEVSW_SELECT_KQUEUE) == 0 &&
- ((kn->kn_sfflags & NOTE_LOWAT) == 0 || kn->kn_sdata != 1)) {
- return EINVAL;
- }
-
- kn->kn_hook_data = 0;
-
- kn->kn_fop = &spec_filtops;
- kn->kn_hookid = vnode_vid(vp);
-
- knote_markstayqueued(kn);
-
- return 0;
-}
-
-static void
-filt_specdetach(struct knote *kn)
-{
- knote_clearstayqueued(kn);
-
- /*
- * This is potentially tricky: the device's selinfo waitq that was
- * tricked into being part of this knote's waitq set may not be a part
- * of any other set, and the device itself may have revoked the memory
- * in which the waitq was held. We use the knote's kn_hook_data field
- * to keep the ID of the waitq's prepost table object. This
- * object keeps a pointer back to the waitq, and gives us a safe way
- * to decouple the dereferencing of driver allocated memory: if the
- * driver goes away (taking the waitq with it) then the prepost table
- * object will be invalidated. The waitq details are handled in the
- * waitq API invoked here.
- */
- if (kn->kn_hook_data) {
- waitq_unlink_by_prepost_id(kn->kn_hook_data, kn->kn_kq->kq_wqs);
- kn->kn_hook_data = 0;
- }
-}
+/*
+ * Given a waitq that is assumed to be embedded within a selinfo structure,
+ * return the containing selinfo structure. While 'wq' is not really a queue
+ * element, this macro simply does the offset_of calculation to get back to a
+ * containing struct given the struct type and member name.
+ */
+#define selinfo_from_waitq(wq) \
+ qe_element((wq), struct selinfo, si_waitq)
-static int
-filt_spec(struct knote *kn, long hint)
+static int
+spec_knote_select_and_link(struct knote *kn)
{
- vnode_t vp;
uthread_t uth;
- struct waitq_set *old_wqs;
vfs_context_t ctx;
- int selres;
- int error;
- int use_offset;
- dev_t dev;
- uint64_t flags;
+ vnode_t vp;
+ struct waitq_set *old_wqs;
uint64_t rsvd, rsvd_arg;
uint64_t *rlptr = NULL;
-
- if (hint != 0) {
- panic("filt_spec(): nonzero hint?");
- }
+ struct selinfo *si = NULL;
+ int selres = 0;
uth = get_bsdthread_info(current_thread());
+
ctx = vfs_context_current();
vp = (vnode_t)kn->kn_fp->f_fglob->fg_data;
- error = vnode_getwithvid(vp, kn->kn_hookid);
+ int error = vnode_getwithvid(vp, vnode_vid(vp));
if (error != 0) {
- kn->kn_flags |= (EV_EOF | EV_ONESHOT);
- return 1;
+ knote_set_error(kn, ENOENT);
+ return 0;
}
-
- dev = vnode_specrdev(vp);
- flags = cdevsw_flags[major(dev)];
- use_offset = ((flags & CDEVSW_USE_OFFSET) != 0);
/*
* This function may be called many times to link or re-link the
* underlying vnode to the kqueue. If we've already linked the two,
- * we will have a valid kn_hook_data which ties us to the underlying
+ * we will have a valid kn_hook_waitqid which ties us to the underlying
* device's waitq via a the waitq's prepost table object. However,
* devices can abort any select action by calling selthreadclear().
* This is OK because the table object will be invalidated by the
rlptr = (void *)&rsvd_arg;
/*
- * Trick selrecord() into hooking kqueue's wait queue set
- * set into device's selinfo wait queue
+ * Trick selrecord() into hooking kqueue's wait queue set into the device's
+ * selinfo wait queue.
*/
old_wqs = uth->uu_wqset;
- uth->uu_wqset = kn->kn_kq->kq_wqs;
- selres = VNOP_SELECT(vp, filter_to_seltype(kn->kn_filter),
- 0, rlptr, ctx);
+ uth->uu_wqset = &(knote_get_kq(kn)->kq_wqs);
+
+ /*
+ * Be sure that the waitq set is linked
+ * before calling select to avoid possible
+ * allocation under spinlocks.
+ */
+ waitq_set_lazy_init_link(uth->uu_wqset);
+
+ /*
+ * Now these are the laws of VNOP_SELECT, as old and as true as the sky,
+ * And the device that shall keep it may prosper, but the device that shall
+ * break it must receive ENODEV:
+ *
+ * 1. Take a lock to protect against other selects on the same vnode.
+ * 2. Return 1 if data is ready to be read.
+ * 3. Return 0 and call `selrecord` on a handy `selinfo` structure if there
+ * is no data.
+ * 4. Call `selwakeup` when the vnode has an active `selrecord` and data
+ * can be read or written (depending on the seltype).
+ * 5. If there's a `selrecord` and no corresponding `selwakeup`, but the
+ * vnode is going away, call `selthreadclear`.
+ */
+ selres = VNOP_SELECT(vp, knote_get_seltype(kn), 0, rlptr, ctx);
uth->uu_wqset = old_wqs;
/*
- * make sure to cleanup the reserved link - this guards against
+ * Make sure to cleanup the reserved link - this guards against
* drivers that may not actually call selrecord().
*/
waitq_link_release(rsvd);
if (rsvd != rsvd_arg) {
- /* the driver / handler called selrecord() */
+ /* The driver / handler called selrecord() */
struct waitq *wq;
memcpy(&wq, rlptr, sizeof(void *));
+ /*
+ * The waitq is part of the selinfo structure managed by the
+ * driver. For certain drivers, we want to hook the knote into
+ * the selinfo structure's si_note field so selwakeup can call
+ * KNOTE.
+ */
+ si = selinfo_from_waitq(wq);
+
/*
* The waitq_get_prepost_id() function will (potentially)
* allocate a prepost table object for the waitq and return
* the table object's ID to us. It will also set the
* waitq_prepost_id field within the waitq structure.
*
- * We can just overwrite kn_hook_data because it's simply a
+ * We can just overwrite kn_hook_waitqid because it's simply a
* table ID used to grab a reference when needed.
*
* We have a reference on the vnode, so we know that the
* device won't go away while we get this ID.
+ *
+ * Note: on 32bit this field is 32bit only.
+ */
+ kn->kn_hook_waitqid = (typeof(kn->kn_hook_waitqid))waitq_get_prepost_id(wq);
+ } else if (selres == 0) {
+ /*
+ * The device indicated that there's no data to read, but didn't call
+ * `selrecord`. Nothing will be notified of changes to this vnode, so
+ * return an error back to user space, to make it clear that the knote
+ * is not attached.
*/
- kn->kn_hook_data = waitq_get_prepost_id(wq);
+ knote_set_error(kn, ENODEV);
}
- if (use_offset) {
+ vnode_put(vp);
+
+ return selres;
+}
+
+static int
+filt_spec_common(struct knote *kn, struct kevent_qos_s *kev, int selres)
+{
+ int64_t data;
+ int ret;
+
+ if (kn->kn_vnode_use_ofst) {
if (kn->kn_fp->f_fglob->fg_offset >= (uint32_t)selres) {
- kn->kn_data = 0;
+ data = 0;
} else {
- kn->kn_data = ((uint32_t)selres) - kn->kn_fp->f_fglob->fg_offset;
+ data = ((uint32_t)selres) - kn->kn_fp->f_fglob->fg_offset;
}
} else {
- kn->kn_data = selres;
+ data = selres;
}
- vnode_put(vp);
+ ret = data >= knote_low_watermark(kn);
- if ((kn->kn_sfflags & NOTE_LOWAT) != 0)
- return (kn->kn_data >= kn->kn_sdata);
+ if (ret && kev) {
+ knote_fill_kevent(kn, kev, data);
+ }
- return (kn->kn_data != 0);
+ return ret;
}
-static unsigned
-filt_specpeek(struct knote *kn)
+static int
+filt_specattach(struct knote *kn, __unused struct kevent_qos_s *kev)
{
vnode_t vp;
- uthread_t uth;
- struct waitq_set *old_wqs;
- vfs_context_t ctx;
- int error, selres;
- uint64_t rsvd, rsvd_arg;
- uint64_t *rlptr = NULL;
-
- uth = get_bsdthread_info(current_thread());
- ctx = vfs_context_current();
- vp = (vnode_t)kn->kn_fp->f_fglob->fg_data;
+ dev_t dev;
- error = vnode_getwithvid(vp, kn->kn_hookid);
- if (error != 0) {
- return 1; /* Just like VNOP_SELECT() on recycled vnode */
+ vp = (vnode_t)kn->kn_fp->f_fglob->fg_data; /* Already have iocount, and vnode is alive */
+
+ assert(vnode_ischr(vp));
+
+ dev = vnode_specrdev(vp);
+
+ /*
+ * For a few special kinds of devices, we can attach knotes with
+ * no restrictions because their "select" vectors return the amount
+ * of data available. Others require an explicit NOTE_LOWAT with
+ * data of 1, indicating that the caller doesn't care about actual
+ * data counts, just an indication that the device has data.
+ */
+ if (!kn->kn_vnode_kqok &&
+ ((kn->kn_sfflags & NOTE_LOWAT) == 0 || kn->kn_sdata != 1)) {
+ knote_set_error(kn, EINVAL);
+ return 0;
}
/*
- * Even if we've already registered, we need to pass a pointer
- * to a reserved link structure. Otherwise, selrecord() will
- * infer that we're in the second pass of select() and won't
- * actually do anything!
+ * This forces the select fallback to call through VNOP_SELECT and hook
+ * up selinfo on every filter routine.
+ *
+ * Pseudo-terminal controllers are opted out of native kevent support --
+ * remove this when they get their own EVFILTID.
*/
- rsvd = rsvd_arg = waitq_link_reserve(NULL);
- rlptr = (void *)&rsvd_arg;
+ if (cdevsw_flags[major(dev)] & CDEVSW_IS_PTC) {
+ kn->kn_vnode_kqok = 0;
+ }
- old_wqs = uth->uu_wqset;
- uth->uu_wqset = kn->kn_kq->kq_wqs;
- selres = VNOP_SELECT(vp, filter_to_seltype(kn->kn_filter),
- 0, (void *)rlptr, ctx);
- uth->uu_wqset = old_wqs;
+ kn->kn_filtid = EVFILTID_SPEC;
+ kn->kn_hook_waitqid = 0;
+
+ knote_markstayactive(kn);
+ return spec_knote_select_and_link(kn);
+}
+
+static void
+filt_specdetach(struct knote *kn)
+{
+ knote_clearstayactive(kn);
+
+ /*
+ * This is potentially tricky: the device's selinfo waitq that was
+ * tricked into being part of this knote's waitq set may not be a part
+ * of any other set, and the device itself may have revoked the memory
+ * in which the waitq was held. We use the knote's kn_hook_waitqid field
+ * to keep the ID of the waitq's prepost table object. This
+ * object keeps a pointer back to the waitq, and gives us a safe way
+ * to decouple the dereferencing of driver allocated memory: if the
+ * driver goes away (taking the waitq with it) then the prepost table
+ * object will be invalidated. The waitq details are handled in the
+ * waitq API invoked here.
+ */
+ if (kn->kn_hook_waitqid) {
+ waitq_unlink_by_prepost_id(kn->kn_hook_waitqid, &(knote_get_kq(kn)->kq_wqs));
+ kn->kn_hook_waitqid = 0;
+ }
+}
+static int
+filt_specevent(struct knote *kn, __unused long hint)
+{
/*
- * make sure to cleanup the reserved link - this guards against
- * drivers that may not actually call selrecord()
+ * Nothing should call knote or knote_vanish on this knote.
*/
- waitq_link_release(rsvd);
- if (rsvd != rsvd_arg) {
- /* the driver / handler called selrecord() */
- struct waitq *wq;
- memcpy(&wq, rlptr, sizeof(void *));
+ panic("filt_specevent(%p)", kn);
+ return 0;
+}
- /*
- * The waitq_get_prepost_id() function will (potentially)
- * allocate a prepost table object for the waitq and return
- * the table object's ID to us. It will also set the
- * waitq_prepost_id field within the waitq structure.
- *
- * We can just overwrite kn_hook_data because it's simply a
- * table ID used to grab a reference when needed.
- *
- * We have a reference on the vnode, so we know that the
- * device won't go away while we get this ID.
- */
- kn->kn_hook_data = waitq_get_prepost_id(wq);
+static int
+filt_spectouch(struct knote *kn, struct kevent_qos_s *kev)
+{
+ kn->kn_sdata = kev->data;
+ kn->kn_sfflags = kev->fflags;
+
+ if (kev->flags & EV_ENABLE) {
+ return spec_knote_select_and_link(kn);
}
+ return 0;
+}
+
+static int
+filt_specprocess(struct knote *kn, struct kevent_qos_s *kev)
+{
+ vnode_t vp;
+ uthread_t uth;
+ vfs_context_t ctx;
+ int res;
+ int selres;
+ int error;
+
+ uth = get_bsdthread_info(current_thread());
+ ctx = vfs_context_current();
+ vp = (vnode_t)kn->kn_fp->f_fglob->fg_data;
+
+ error = vnode_getwithvid(vp, vnode_vid(vp));
+ if (error != 0) {
+ kn->kn_flags |= (EV_EOF | EV_ONESHOT);
+ knote_fill_kevent(kn, kev, 0);
+ return 1;
+ }
+
+ selres = spec_knote_select_and_link(kn);
+ res = filt_spec_common(kn, kev, selres);
+
vnode_put(vp);
- return selres;
+
+ return res;
}
+static int
+filt_specpeek(struct knote *kn)
+{
+ int selres = 0;
+
+ selres = spec_knote_select_and_link(kn);
+ return filt_spec_common(kn, NULL, selres);
+}