#include <corecrypto/ccn.h> /* TODO: Remove dependency on this header. */
#include <corecrypto/ccmode_impl.h>
-/* Function and macros defined in this file are only to be used
+/* Function and macros defined in this file are only to be used
within corecrypto files.
*/
return &xts##_cipher_##_##_dir_; \
}
-#if 0
-
-/* example of how to make the selection function thread safe */
-
-struct ccmode_cbc cc3des_cbc_mode_encrypt;
-dispatch_once_t cc3des_mode_encrypt_init_once;
-
-void cc3des_mode_encrypt_init(void *ctx) {
- struct ccmode_ecb *ecb = cc3des_ecb_encrypt_mode();
- ccmode_factory_cbc_encrypt(&cc3des_mode_encrypt, ecb);
-}
-
-const struct ccmode_cbc *cc3des_cbc_encrypt_mode(void) {
- dispatch_once_f(&cc3des_mode_encrypt_init_once, NULL, cc3des_mode_encrypt_init);
- return &cc3des_mode_encrypt;
-}
-
-struct ccmode_cbc cc3des_cbc_mode_encrypt = {
- .n = CC3DES_LTC_ECB_ENCRYPT_N,
- .init = ccmode_cbc_init,
- .cbc = ccmode_cbc_encrypt,
- .custom = &cc3des_ltc_ecb_encrypt
-};
-
-const struct ccmode_cbc *cc3des_cbc_encrypt_mode(void) {
- return &cc3des_mode_encrypt;
-}
-
-#endif
-
-
-
-void ccmode_cbc_init(const struct ccmode_cbc *cbc, cccbc_ctx *ctx,
- size_t rawkey_len, const void *rawkey);
-void ccmode_cbc_decrypt(const cccbc_ctx *ctx, cccbc_iv *iv, size_t nblocks,
- const void *in, void *out);
-void ccmode_cbc_encrypt(const cccbc_ctx *ctx, cccbc_iv *iv, size_t nblocks,
- const void *in, void *out);
-
-struct _ccmode_cbc_key {
- const struct ccmode_ecb *ecb;
- cc_unit u[];
-};
-
-/* Use this to statically initialize a ccmode_cbc object for decryption. */
-#define CCMODE_FACTORY_CBC_DECRYPT(ECB) { \
-.size = ccn_sizeof_size(sizeof(struct _ccmode_cbc_key)) + ccn_sizeof_size((ECB)->block_size) + ccn_sizeof_size((ECB)->size), \
-.block_size = (ECB)->block_size, \
-.init = ccmode_cbc_init, \
-.cbc = ccmode_cbc_decrypt, \
-.custom = (ECB) \
-}
-
-/* Use this to statically initialize a ccmode_cbc object for encryption. */
-#define CCMODE_FACTORY_CBC_ENCRYPT(ECB) { \
-.size = ccn_sizeof_size(sizeof(struct _ccmode_cbc_key)) + ccn_sizeof_size((ECB)->block_size) + ccn_sizeof_size((ECB)->size), \
-.block_size = (ECB)->block_size, \
-.init = ccmode_cbc_init, \
-.cbc = ccmode_cbc_encrypt, \
-.custom = (ECB) \
-}
-
/* Use these function to runtime initialize a ccmode_cbc decrypt object (for
example if it's part of a larger structure). Normally you would pass a
ecb decrypt mode implementation of some underlying algorithm as the ecb
const struct ccmode_ecb *ecb);
-void ccmode_cfb_init(const struct ccmode_cfb *cfb, cccfb_ctx *ctx,
- size_t rawkey_len, const void *rawkey,
- const void *iv);
-void ccmode_cfb_decrypt(cccfb_ctx *ctx, size_t nbytes,
- const void *in, void *out);
-void ccmode_cfb_encrypt(cccfb_ctx *ctx, size_t nbytes,
- const void *in, void *out);
-struct _ccmode_cfb_key {
- const struct ccmode_ecb *ecb;
- size_t pad_len;
- cc_unit u[];
-};
-
-/* Use this to statically initialize a ccmode_cfb object for decryption. */
-#define CCMODE_FACTORY_CFB_DECRYPT(ECB) { \
-.size = ccn_sizeof_size(sizeof(struct _ccmode_cfb_key)) + 2 * ccn_sizeof_size((ECB)->block_size) + ccn_sizeof_size((ECB)->size), \
-.block_size = 1, \
-.init = ccmode_cfb_init, \
-.cfb = ccmode_cfb_decrypt, \
-.custom = (ECB) \
-}
-
-/* Use this to statically initialize a ccmode_cfb object for encryption. */
-#define CCMODE_FACTORY_CFB_ENCRYPT(ECB) { \
-.size = ccn_sizeof_size(sizeof(struct _ccmode_cfb_key)) + 2 * ccn_sizeof_size((ECB)->block_size) + ccn_sizeof_size((ECB)->size), \
-.block_size = 1, \
-.init = ccmode_cfb_init, \
-.cfb = ccmode_cfb_encrypt, \
-.custom = (ECB) \
-}
-
/* Use these function to runtime initialize a ccmode_cfb decrypt object (for
example if it's part of a larger structure). Normally you would pass a
ecb encrypt mode implementation of some underlying algorithm as the ecb
void ccmode_factory_cfb_encrypt(struct ccmode_cfb *cfb,
const struct ccmode_ecb *ecb);
-void ccmode_cfb8_init(const struct ccmode_cfb8 *cfb8, cccfb8_ctx *ctx,
- size_t rawkey_len, const void *rawkey, const void *iv);
-void ccmode_cfb8_decrypt(cccfb8_ctx *ctx, size_t nbytes,
- const void *in, void *out);
-void ccmode_cfb8_encrypt(cccfb8_ctx *ctx, size_t nbytes,
- const void *in, void *out);
-
-struct _ccmode_cfb8_key {
- const struct ccmode_ecb *ecb;
- cc_unit u[];
-};
-
-/* Use this to statically initialize a ccmode_cfb8 object for decryption. */
-#define CCMODE_FACTORY_CFB8_DECRYPT(ECB) { \
-.size = ccn_sizeof_size(sizeof(struct _ccmode_cfb8_key)) + 2 * ccn_sizeof_size((ECB)->block_size) + ccn_sizeof_size((ECB)->size), \
-.block_size = 1, \
-.init = ccmode_cfb8_init, \
-.cfb8 = ccmode_cfb8_decrypt, \
-.custom = (ECB) \
-}
-
-/* Use this to statically initialize a ccmode_cfb8 object for encryption. */
-#define CCMODE_FACTORY_CFB8_ENCRYPT(ECB) { \
-.size = ccn_sizeof_size(sizeof(struct _ccmode_cfb8_key)) + 2 * ccn_sizeof_size((ECB)->block_size) + ccn_sizeof_size((ECB)->size), \
-.block_size = 1, \
-.init = ccmode_cfb8_init, \
-.cfb8 = ccmode_cfb8_encrypt, \
-.custom = (ECB) \
-}
-
/* Use these function to runtime initialize a ccmode_cfb8 decrypt object (for
example if it's part of a larger structure). Normally you would pass a
ecb decrypt mode implementation of some underlying algorithm as the ecb
void ccmode_factory_cfb8_encrypt(struct ccmode_cfb8 *cfb8,
const struct ccmode_ecb *ecb);
-void ccmode_ctr_init(const struct ccmode_ctr *ctr, ccctr_ctx *ctx,
- size_t rawkey_len, const void *rawkey, const void *iv);
-void ccmode_ctr_crypt(ccctr_ctx *ctx, size_t nbytes,
- const void *in, void *out);
-
-struct _ccmode_ctr_key {
- const struct ccmode_ecb *ecb;
- size_t pad_len;
- cc_unit u[];
-};
-
-/* Use this to statically initialize a ccmode_ctr object for decryption. */
-#define CCMODE_FACTORY_CTR_CRYPT(ECB_ENCRYPT) { \
-.size = ccn_sizeof_size(sizeof(struct _ccmode_ctr_key)) + 2 * ccn_sizeof_size((ECB_ENCRYPT)->block_size) + ccn_sizeof_size((ECB_ENCRYPT)->size), \
-.block_size = 1, \
-.init = ccmode_ctr_init, \
-.ctr = ccmode_ctr_crypt, \
-.custom = (ECB_ENCRYPT) \
-}
-
/* Use these function to runtime initialize a ccmode_ctr decrypt object (for
example if it's part of a larger structure). Normally you would pass a
ecb encrypt mode implementation of some underlying algorithm as the ecb
void ccmode_factory_ctr_crypt(struct ccmode_ctr *ctr,
const struct ccmode_ecb *ecb);
-
-/* Create a gcm key from a gcm mode object.
- key must point to at least sizeof(CCMODE_GCM_KEY(ecb)) bytes of free
- storage. */
-int ccmode_gcm_init(const struct ccmode_gcm *gcm, ccgcm_ctx *ctx,
- size_t rawkey_len, const void *rawkey);
-int ccmode_gcm_set_iv(ccgcm_ctx *ctx, size_t iv_size, const void *iv);
-int ccmode_gcm_aad(ccgcm_ctx *ctx, size_t nbytes, const void *in);
-int ccmode_gcm_decrypt(ccgcm_ctx *ctx, size_t nbytes, const void *in,
- void *out);
-int ccmode_gcm_encrypt(ccgcm_ctx *ctx, size_t nbytes, const void *in,
- void *out);
-
-/*!
- @function ccmode_gcm_finalize() finalizes AES-GCM call sequence
- @param key encryption or decryption key
- @param tag_size
- @param tag
- @result 0=success or non zero= error
- @discussion For decryption, the tag parameter must be the expected-tag. A secure compare is performed between the provided expected-tag and the computed-tag. If they are the same, 0 is returned. Otherwise, non zero is returned. For encryption, tag is output and provides the authentication tag.
-
- */
-int ccmode_gcm_finalize(ccgcm_ctx *key, size_t tag_size, void *tag);
-int ccmode_gcm_reset(ccgcm_ctx *key);
-
-
-// Here is what the structure looks like in memory
-// [ temp space | length | *ecb | *ecb_key | table | ecb_key ]
-// size of table depends on the implementation (VNG vs factory)
-struct _ccmode_gcm_key {
- // 5 blocks of temp space.
- unsigned char H[16]; /* multiplier */
- unsigned char X[16]; /* accumulator */
- unsigned char Y[16]; /* counter */
- unsigned char Y_0[16]; /* initial counter */
- unsigned char buf[16]; /* buffer for stuff */
-
- // State and length
- uint32_t ivmode; /* Which mode is the IV in? */
- uint32_t state; /* state the GCM code is in */
- uint32_t buflen; /* length of data in buf */
-
- uint64_t totlen; /* 64-bit counter used for IV and AAD */
- uint64_t pttotlen; /* 64-bit counter for the plaintext PT */
-
- // ECB
- const struct ccmode_ecb *ecb; // ecb mode
- // Pointer to the ECB key in the buffer
- void *ecb_key; // address of the ecb_key in u, set in init function
- int encdec; //is it an encrypt or decrypt object
-
- // Buffer with ECB key and H table if applicable
- unsigned char u[] __attribute__ ((aligned (16))); // ecb key + tables
-};
-
-#define GCM_ECB_KEY_SIZE(ECB_ENCRYPT) \
- ((5 * ccn_sizeof_size((ECB_ENCRYPT)->block_size)) \
- + ccn_sizeof_size((ECB_ENCRYPT)->size))
-
/* Use these function to runtime initialize a ccmode_gcm decrypt object (for
example if it's part of a larger structure). For GCM you always pass a
ecb encrypt mode implementation of some underlying algorithm as the ecb
void ccmode_factory_gcm_encrypt(struct ccmode_gcm *gcm,
const struct ccmode_ecb *ecb_encrypt);
-
-/* CCM (only NIST approved with AES) */
-int ccmode_ccm_init(const struct ccmode_ccm *ccm, ccccm_ctx *ctx,
- size_t rawkey_len, const void *rawkey);
-int ccmode_ccm_set_iv(ccccm_ctx *ctx, ccccm_nonce *nonce_ctx, size_t nonce_len, const void *nonce,
- size_t mac_size, size_t auth_len, size_t data_len);
-/* internal function */
-void ccmode_ccm_macdata(ccccm_ctx *key, ccccm_nonce *nonce_ctx, unsigned new_block, size_t nbytes, const void *in);
-/* api function - disallows only mac'd data after data to encrypt was sent */
-int ccmode_ccm_cbcmac(ccccm_ctx *ctx, ccccm_nonce *nonce_ctx, size_t nbytes, const void *in);
-/* internal function */
-void ccmode_ccm_crypt(ccccm_ctx *key, ccccm_nonce *nonce_ctx, size_t nbytes, const void *in, void *out);
-int ccmode_ccm_decrypt(ccccm_ctx *ctx, ccccm_nonce *nonce_ctx, size_t nbytes, const void *in,
- void *out);
-int ccmode_ccm_encrypt(ccccm_ctx *ctx, ccccm_nonce *nonce_ctx, size_t nbytes, const void *in,
- void *out);
-int ccmode_ccm_finalize(ccccm_ctx *key, ccccm_nonce *nonce_ctx, void *mac);
-int ccmode_ccm_reset(ccccm_ctx *key, ccccm_nonce *nonce_ctx);
-
-struct _ccmode_ccm_key {
- const struct ccmode_ecb *ecb;
- cc_unit u[];
-};
-
-struct _ccmode_ccm_nonce {
- unsigned char A_i[16]; /* crypto block iv */
- unsigned char B_i[16]; /* mac block iv */
- unsigned char MAC[16]; /* crypted mac */
- unsigned char buf[16]; /* crypt buffer */
-
- uint32_t mode; /* mode: IV -> AD -> DATA */
- uint32_t buflen; /* length of data in buf */
- uint32_t b_i_len; /* length of cbcmac data in B_i */
-
- size_t nonce_size;
- size_t mac_size;
-};
-
-/* Use this to statically initialize a ccmode_ccm object for decryption. */
-#define CCMODE_FACTORY_CCM_DECRYPT(ECB_ENCRYPT) { \
-.size = ccn_sizeof_size(sizeof(struct _ccmode_ccm_key)) + ccn_sizeof_size((ECB_ENCRYPT)->block_size) + ccn_sizeof_size((ECB_ENCRYPT)->size), \
-.nonce_size = ccn_sizeof_size(sizeof(struct _ccmode_ccm_nonce)), \
-.block_size = 1, \
-.init = ccmode_ccm_init, \
-.set_iv = ccmode_ccm_set_iv, \
-.cbcmac = ccmode_ccm_cbcmac, \
-.ccm = ccmode_ccm_decrypt, \
-.finalize = ccmode_ccm_finalize, \
-.reset = ccmode_ccm_reset, \
-.custom = (ECB_ENCRYPT) \
-}
-
-/* Use this to statically initialize a ccmode_ccm object for encryption. */
-#define CCMODE_FACTORY_CCM_ENCRYPT(ECB_ENCRYPT) { \
-.size = ccn_sizeof_size(sizeof(struct _ccmode_ccm_key)) + ccn_sizeof_size((ECB_ENCRYPT)->block_size) + ccn_sizeof_size((ECB_ENCRYPT)->size), \
-.nonce_size = ccn_sizeof_size(sizeof(struct _ccmode_ccm_nonce)), \
-.block_size = 1, \
-.init = ccmode_ccm_init, \
-.set_iv = ccmode_ccm_set_iv, \
-.cbcmac = ccmode_ccm_cbcmac, \
-.ccm = ccmode_ccm_encrypt, \
-.finalize = ccmode_ccm_finalize, \
-.reset = ccmode_ccm_reset, \
-.custom = (ECB_ENCRYPT) \
-}
-
/* Use these function to runtime initialize a ccmode_ccm decrypt object (for
example if it's part of a larger structure). For CCM you always pass a
ecb encrypt mode implementation of some underlying algorithm as the ecb
void ccmode_factory_ccm_encrypt(struct ccmode_ccm *ccm,
const struct ccmode_ecb *ecb_encrypt);
-
-void ccmode_ofb_init(const struct ccmode_ofb *ofb, ccofb_ctx *ctx,
- size_t rawkey_len, const void *rawkey,
- const void *iv);
-void ccmode_ofb_crypt(ccofb_ctx *ctx, size_t nbytes,
- const void *in, void *out);
-
-struct _ccmode_ofb_key {
- const struct ccmode_ecb *ecb;
- size_t pad_len;
- cc_unit u[];
-};
-
-/* Use this to statically initialize a ccmode_ofb object. */
-#define CCMODE_FACTORY_OFB_CRYPT(ECB) { \
-.size = ccn_sizeof_size(sizeof(struct _ccmode_ofb_key)) + ccn_sizeof_size((ECB)->block_size) + ccn_sizeof_size((ECB)->size), \
-.block_size = 1, \
-.init = ccmode_ofb_init, \
-.ofb = ccmode_ofb_crypt, \
-.custom = (ECB) \
-}
-
/* Use these function to runtime initialize a ccmode_ofb encrypt object (for
example if it's part of a larger structure). Normally you would pass a
ecb encrypt mode implementation of some underlying algorithm as the ecb
void ccmode_factory_ofb_crypt(struct ccmode_ofb *ofb,
const struct ccmode_ecb *ecb);
-int ccmode_omac_decrypt(ccomac_ctx *ctx, size_t nblocks,
- const void *tweak, const void *in, void *out);
-int ccmode_omac_encrypt(ccomac_ctx *ctx, size_t nblocks,
- const void *tweak, const void *in, void *out);
-
-/* Create a omac key from a omac mode object. The tweak_len here
- determines how long the tweak is in bytes, for each subsequent call to
- ccmode_omac->omac().
- key must point to at least sizeof(CCMODE_OMAC_KEY(ecb)) bytes of free
- storage. */
-void ccmode_omac_init(const struct ccmode_omac *omac, ccomac_ctx *ctx,
- size_t tweak_len, size_t rawkey_len,
- const void *rawkey);
-
-struct _ccmode_omac_key {
- const struct ccmode_ecb *ecb;
- size_t tweak_len;
- cc_unit u[];
-};
-
-/* Use this to statically initialize a ccmode_omac object for decryption. */
-#define CCMODE_FACTORY_OMAC_DECRYPT(ECB) { \
-.size = ccn_sizeof_size(sizeof(struct _ccmode_omac_key)) + 2 * ccn_sizeof_size((ECB)->size), \
-.block_size = (ECB)->block_size, \
-.init = ccmode_omac_init, \
-.omac = ccmode_omac_decrypt, \
-.custom = (ECB) \
-}
-
-/* Use this to statically initialize a ccmode_omac object for encryption. */
-#define CCMODE_FACTORY_OMAC_ENCRYPT(ECB) { \
-.size = ccn_sizeof_size(sizeof(struct _ccmode_omac_key)) + 2 * ccn_sizeof_size((ECB)->size), \
-.block_size = (ECB)->block_size, \
-.init = ccmode_omac_init, \
-.omac = ccmode_omac_encrypt, \
-.custom = (ECB) \
-}
-
/* Use these function to runtime initialize a ccmode_omac decrypt object (for
example if it's part of a larger structure). Normally you would pass a
ecb decrypt mode implementation of some underlying algorithm as the ecb
void ccmode_factory_omac_encrypt(struct ccmode_omac *omac,
const struct ccmode_ecb *ecb);
-
-/* Function prototypes used by the macros below, do not call directly. */
-void ccmode_xts_init(const struct ccmode_xts *xts, ccxts_ctx *ctx,
- size_t key_len, const void *data_key,
- const void *tweak_key);
-void *ccmode_xts_crypt(const ccxts_ctx *ctx, ccxts_tweak *tweak,
- size_t nblocks, const void *in, void *out);
-void ccmode_xts_set_tweak(const ccxts_ctx *ctx, ccxts_tweak *tweak,
- const void *iv);
-
-
-struct _ccmode_xts_key {
- const struct ccmode_ecb *ecb;
- const struct ccmode_ecb *ecb_encrypt;
- cc_unit u[];
-};
-
-struct _ccmode_xts_tweak {
- // FIPS requires that for XTS that no more that 2^20 AES blocks may be processed for any given
- // Key, Tweak Key, and tweak combination
- // the bytes_processed field in the context will accumuate the number of blocks processed and
- // will fail the encrypt/decrypt if the size is violated. This counter will be reset to 0
- // when set_tweak is called.
- size_t blocks_processed;
- cc_unit u[];
-};
-
-/* Use this to statically initialize a ccmode_xts object for decryption. */
-#define CCMODE_FACTORY_XTS_DECRYPT(ECB, ECB_ENCRYPT) { \
-.size = ccn_sizeof_size(sizeof(struct _ccmode_xts_key)) + 2 * ccn_sizeof_size((ECB)->size), \
-.tweak_size = ccn_sizeof_size(sizeof(struct _ccmode_xts_tweak)) + ccn_sizeof_size(ecb->block_size), \
-.block_size = ecb->block_size, \
-.init = ccmode_xts_init, \
-.set_tweak = ccmode_xts_set_tweak, \
-.xts = ccmode_xts_crypt, \
-.custom = (ECB), \
-.custom1 = (ECB_ENCRYPT) \
-}
-
-/* Use this to statically initialize a ccmode_xts object for encryption. */
-#define CCMODE_FACTORY_XTS_ENCRYPT(ECB, ECB_ENCRYPT) { \
-.size = ccn_sizeof_size(sizeof(struct _ccmode_xts_key)) + 2 * ccn_sizeof_size((ECB)->size), \
-.tweak_size = ccn_sizeof_size(sizeof(struct _ccmode_xts_tweak)) + ccn_sizeof_size(ecb->block_size), \
-.block_size = ecb->block_size, \
-.init = ccmode_xts_init, \
-.set_tweak = ccmode_xts_set_tweak, \
-.xts = ccmode_xts_crypt, \
-.custom = (ECB), \
-.custom1 = (ECB_ENCRYPT) \
-}
-
/* Use these function to runtime initialize a ccmode_xts decrypt object (for
example if it's part of a larger structure). Normally you would pass a
ecb decrypt mode implementation of some underlying algorithm as the ecb