/*
- * Copyright (c) 2000-2013 Apple Inc. All rights reserved.
+ * Copyright (c) 2000-2020 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
- *
+ *
* This file contains Original Code and/or Modifications of Original Code
* as defined in and that are subject to the Apple Public Source License
* Version 2.0 (the 'License'). You may not use this file except in
* unlawful or unlicensed copies of an Apple operating system, or to
* circumvent, violate, or enable the circumvention or violation of, any
* terms of an Apple operating system software license agreement.
- *
+ *
* Please obtain a copy of the License at
* http://www.opensource.apple.com/apsl/ and read it before using this file.
- *
+ *
* The Original Code and all software distributed under the License are
* distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
* Please see the License for the specific language governing rights and
* limitations under the License.
- *
+ *
* @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
#include <vm/memory_object.h>
#include <vm/vm_compressor_algorithms.h>
#include <vm/vm_fault.h>
-#include <mach/mach_host.h> /* for host_info() */
+#include <vm/vm_protos.h>
+#include <mach/mach_host.h> /* for host_info() */
#include <kern/ledger.h>
#include <kern/policy_internal.h>
+#include <kern/thread_group.h>
+#include <san/kasan.h>
+#if defined(__x86_64__)
#include <i386/misc_protos.h>
+#endif
+#if defined(__arm64__)
+#include <arm/machine_routines.h>
+#endif
#include <IOKit/IOHibernatePrivate.h>
+extern boolean_t vm_darkwake_mode;
+extern zone_t vm_page_zone;
+
+#if DEVELOPMENT || DEBUG
+/* sysctl defined in bsd/dev/arm64/sysctl.c */
+int do_cseg_wedge_thread(void);
+int do_cseg_unwedge_thread(void);
+static event_t debug_cseg_wait_event = NULL;
+#endif /* DEVELOPMENT || DEBUG */
+
+#if CONFIG_FREEZE
+bool freezer_incore_cseg_acct = TRUE; /* Only count incore compressed memory for jetsams. */
+void task_disown_frozen_csegs(task_t owner_task);
+#endif /* CONFIG_FREEZE */
+
+#if POPCOUNT_THE_COMPRESSED_DATA
+boolean_t popcount_c_segs = TRUE;
+
+static inline uint32_t
+vmc_pop(uintptr_t ins, int sz)
+{
+ uint32_t rv = 0;
+
+ if (__probable(popcount_c_segs == FALSE)) {
+ return 0xDEAD707C;
+ }
+
+ while (sz >= 16) {
+ uint32_t rv1, rv2;
+ uint64_t *ins64 = (uint64_t *) ins;
+ uint64_t *ins642 = (uint64_t *) (ins + 8);
+ rv1 = __builtin_popcountll(*ins64);
+ rv2 = __builtin_popcountll(*ins642);
+ rv += rv1 + rv2;
+ sz -= 16;
+ ins += 16;
+ }
+
+ while (sz >= 4) {
+ uint32_t *ins32 = (uint32_t *) ins;
+ rv += __builtin_popcount(*ins32);
+ sz -= 4;
+ ins += 4;
+ }
+
+ while (sz > 0) {
+ char *ins8 = (char *)ins;
+ rv += __builtin_popcount(*ins8);
+ sz--;
+ ins++;
+ }
+ return rv;
+}
+#endif
+
+#if VALIDATE_C_SEGMENTS
+boolean_t validate_c_segs = TRUE;
+#endif
/*
* vm_compressor_mode has a heirarchy of control to set its value.
* boot-args are checked first, then device-tree, and finally
* the boot-arg & device-tree code.
*/
-int vm_compressor_mode = VM_PAGER_COMPRESSOR_WITH_SWAP;
-int vm_scale = 16;
+#if !XNU_TARGET_OS_OSX
+
+#if CONFIG_FREEZE
+int vm_compressor_mode = VM_PAGER_FREEZER_DEFAULT;
+struct freezer_context freezer_context_global;
+#else /* CONFIG_FREEZE */
+int vm_compressor_mode = VM_PAGER_NOT_CONFIGURED;
+#endif /* CONFIG_FREEZE */
+
+#else /* !XNU_TARGET_OS_OSX */
+int vm_compressor_mode = VM_PAGER_COMPRESSOR_WITH_SWAP;
+#endif /* !XNU_TARGET_OS_OSX */
-int vm_compressor_is_active = 0;
-int vm_compression_limit = 0;
-int vm_compressor_available = 0;
+TUNABLE(uint32_t, vm_compression_limit, "vm_compression_limit", 0);
+int vm_compressor_is_active = 0;
+int vm_compressor_available = 0;
-extern void vm_pageout_io_throttle(void);
+extern uint64_t vm_swap_get_max_configured_space(void);
+extern void vm_pageout_io_throttle(void);
#if CHECKSUM_THE_DATA || CHECKSUM_THE_SWAP || CHECKSUM_THE_COMPRESSED_DATA
extern unsigned int hash_string(char *cp, int len);
+static unsigned int vmc_hash(char *, int);
+boolean_t checksum_c_segs = TRUE;
+
+unsigned int
+vmc_hash(char *cp, int len)
+{
+ if (__probable(checksum_c_segs == FALSE)) {
+ return 0xDEAD7A37;
+ }
+ return hash_string(cp, len);
+}
#endif
-#define UNPACK_C_SIZE(cs) ((cs->c_size == (PAGE_SIZE-1)) ? PAGE_SIZE : cs->c_size)
-#define PACK_C_SIZE(cs, size) (cs->c_size = ((size == PAGE_SIZE) ? PAGE_SIZE - 1 : size))
+#define UNPACK_C_SIZE(cs) ((cs->c_size == (PAGE_SIZE-1)) ? PAGE_SIZE : cs->c_size)
+#define PACK_C_SIZE(cs, size) (cs->c_size = ((size == PAGE_SIZE) ? PAGE_SIZE - 1 : size))
struct c_sv_hash_entry {
union {
- struct {
- uint32_t c_sv_he_ref;
- uint32_t c_sv_he_data;
+ struct {
+ uint32_t c_sv_he_ref;
+ uint32_t c_sv_he_data;
} c_sv_he;
- uint64_t c_sv_he_record;
-
- } c_sv_he_un;
+ uint64_t c_sv_he_record;
+ } c_sv_he_un;
};
-#define he_ref c_sv_he_un.c_sv_he.c_sv_he_ref
-#define he_data c_sv_he_un.c_sv_he.c_sv_he_data
-#define he_record c_sv_he_un.c_sv_he_record
+#define he_ref c_sv_he_un.c_sv_he.c_sv_he_ref
+#define he_data c_sv_he_un.c_sv_he.c_sv_he_data
+#define he_record c_sv_he_un.c_sv_he_record
-#define C_SV_HASH_MAX_MISS 32
-#define C_SV_HASH_SIZE ((1 << 10))
-#define C_SV_HASH_MASK ((1 << 10) - 1)
-#define C_SV_CSEG_ID ((1 << 22) - 1)
-
-
-struct c_slot_mapping {
- uint32_t s_cseg:22, /* segment number + 1 */
- s_cindx:10; /* index in the segment */
-};
-#define C_SLOT_MAX_INDEX (1 << 10)
-
-typedef struct c_slot_mapping *c_slot_mapping_t;
+#define C_SV_HASH_MAX_MISS 32
+#define C_SV_HASH_SIZE ((1 << 10))
+#define C_SV_HASH_MASK ((1 << 10) - 1)
+#define C_SV_CSEG_ID ((1 << 22) - 1)
union c_segu {
- c_segment_t c_seg;
- uintptr_t c_segno;
+ c_segment_t c_seg;
+ uintptr_t c_segno;
};
+#define C_SLOT_ASSERT_PACKABLE(ptr) \
+ VM_ASSERT_POINTER_PACKABLE((vm_offset_t)(ptr), C_SLOT_PACKED_PTR);
+#define C_SLOT_PACK_PTR(ptr) \
+ VM_PACK_POINTER((vm_offset_t)(ptr), C_SLOT_PACKED_PTR)
-#define C_SLOT_PACK_PTR(ptr) (((uintptr_t)ptr - (uintptr_t) KERNEL_PMAP_HEAP_RANGE_START) >> 2)
-#define C_SLOT_UNPACK_PTR(cslot) ((uintptr_t)(cslot->c_packed_ptr << 2) + (uintptr_t) KERNEL_PMAP_HEAP_RANGE_START)
+#define C_SLOT_UNPACK_PTR(cslot) \
+ (c_slot_mapping_t)VM_UNPACK_POINTER((cslot)->c_packed_ptr, C_SLOT_PACKED_PTR)
+/* for debugging purposes */
+SECURITY_READ_ONLY_EARLY(vm_packing_params_t) c_slot_packing_params =
+ VM_PACKING_PARAMS(C_SLOT_PACKED_PTR);
-uint32_t c_segment_count = 0;
-uint32_t c_segment_count_max = 0;
+uint32_t c_segment_count = 0;
+uint32_t c_segment_count_max = 0;
-uint64_t c_generation_id = 0;
-uint64_t c_generation_id_flush_barrier;
+uint64_t c_generation_id = 0;
+uint64_t c_generation_id_flush_barrier;
-#define HIBERNATE_FLUSHING_SECS_TO_COMPLETE 120
+#define HIBERNATE_FLUSHING_SECS_TO_COMPLETE 120
-boolean_t hibernate_no_swapspace = FALSE;
-clock_sec_t hibernate_flushing_deadline = 0;
+boolean_t hibernate_no_swapspace = FALSE;
+clock_sec_t hibernate_flushing_deadline = 0;
#if RECORD_THE_COMPRESSED_DATA
-char *c_compressed_record_sbuf;
-char *c_compressed_record_ebuf;
-char *c_compressed_record_cptr;
+char *c_compressed_record_sbuf;
+char *c_compressed_record_ebuf;
+char *c_compressed_record_cptr;
#endif
-queue_head_t c_age_list_head;
-queue_head_t c_swapout_list_head;
-queue_head_t c_swappedin_list_head;
-queue_head_t c_swappedout_list_head;
-queue_head_t c_swappedout_sparse_list_head;
-queue_head_t c_major_list_head;
-queue_head_t c_filling_list_head;
-queue_head_t c_bad_list_head;
-
-uint32_t c_age_count = 0;
-uint32_t c_swapout_count = 0;
-uint32_t c_swappedin_count = 0;
-uint32_t c_swappedout_count = 0;
-uint32_t c_swappedout_sparse_count = 0;
-uint32_t c_major_count = 0;
-uint32_t c_filling_count = 0;
-uint32_t c_empty_count = 0;
-uint32_t c_bad_count = 0;
-
-
-queue_head_t c_minor_list_head;
-uint32_t c_minor_count = 0;
-
-int c_overage_swapped_count = 0;
-int c_overage_swapped_limit = 0;
-
-int c_seg_fixed_array_len;
-union c_segu *c_segments;
-vm_offset_t c_buffers;
+queue_head_t c_age_list_head;
+queue_head_t c_swappedin_list_head;
+queue_head_t c_swapout_list_head;
+queue_head_t c_swapio_list_head;
+queue_head_t c_swappedout_list_head;
+queue_head_t c_swappedout_sparse_list_head;
+queue_head_t c_major_list_head;
+queue_head_t c_filling_list_head;
+queue_head_t c_bad_list_head;
+
+uint32_t c_age_count = 0;
+uint32_t c_swappedin_count = 0;
+uint32_t c_swapout_count = 0;
+uint32_t c_swapio_count = 0;
+uint32_t c_swappedout_count = 0;
+uint32_t c_swappedout_sparse_count = 0;
+uint32_t c_major_count = 0;
+uint32_t c_filling_count = 0;
+uint32_t c_empty_count = 0;
+uint32_t c_bad_count = 0;
+
+
+queue_head_t c_minor_list_head;
+uint32_t c_minor_count = 0;
+
+int c_overage_swapped_count = 0;
+int c_overage_swapped_limit = 0;
+
+int c_seg_fixed_array_len;
+union c_segu *c_segments;
+vm_offset_t c_buffers;
vm_size_t c_buffers_size;
-caddr_t c_segments_next_page;
-boolean_t c_segments_busy;
-uint32_t c_segments_available;
-uint32_t c_segments_limit;
-uint32_t c_segments_nearing_limit;
-
-uint32_t c_segment_svp_in_hash;
-uint32_t c_segment_svp_hash_succeeded;
-uint32_t c_segment_svp_hash_failed;
-uint32_t c_segment_svp_zero_compressions;
-uint32_t c_segment_svp_nonzero_compressions;
-uint32_t c_segment_svp_zero_decompressions;
-uint32_t c_segment_svp_nonzero_decompressions;
+caddr_t c_segments_next_page;
+boolean_t c_segments_busy;
+uint32_t c_segments_available;
+uint32_t c_segments_limit;
+uint32_t c_segments_nearing_limit;
+
+uint32_t c_segment_svp_in_hash;
+uint32_t c_segment_svp_hash_succeeded;
+uint32_t c_segment_svp_hash_failed;
+uint32_t c_segment_svp_zero_compressions;
+uint32_t c_segment_svp_nonzero_compressions;
+uint32_t c_segment_svp_zero_decompressions;
+uint32_t c_segment_svp_nonzero_decompressions;
+
+uint32_t c_segment_noncompressible_pages;
+
+uint32_t c_segment_pages_compressed = 0; /* Tracks # of uncompressed pages fed into the compressor */
+#if CONFIG_FREEZE
+int32_t c_segment_pages_compressed_incore = 0; /* Tracks # of uncompressed pages fed into the compressor that are in memory */
+uint32_t c_segments_incore_limit = 0; /* Tracks # of segments allowed to be in-core. Based on compressor pool size */
+#endif /* CONFIG_FREEZE */
-uint32_t c_segment_noncompressible_pages;
+uint32_t c_segment_pages_compressed_limit;
+uint32_t c_segment_pages_compressed_nearing_limit;
+uint32_t c_free_segno_head = (uint32_t)-1;
-uint32_t c_segment_pages_compressed;
-uint32_t c_segment_pages_compressed_limit;
-uint32_t c_segment_pages_compressed_nearing_limit;
-uint32_t c_free_segno_head = (uint32_t)-1;
+uint32_t vm_compressor_minorcompact_threshold_divisor = 10;
+uint32_t vm_compressor_majorcompact_threshold_divisor = 10;
+uint32_t vm_compressor_unthrottle_threshold_divisor = 10;
+uint32_t vm_compressor_catchup_threshold_divisor = 10;
-uint32_t vm_compressor_minorcompact_threshold_divisor = 10;
-uint32_t vm_compressor_majorcompact_threshold_divisor = 10;
-uint32_t vm_compressor_unthrottle_threshold_divisor = 10;
-uint32_t vm_compressor_catchup_threshold_divisor = 10;
+uint32_t vm_compressor_minorcompact_threshold_divisor_overridden = 0;
+uint32_t vm_compressor_majorcompact_threshold_divisor_overridden = 0;
+uint32_t vm_compressor_unthrottle_threshold_divisor_overridden = 0;
+uint32_t vm_compressor_catchup_threshold_divisor_overridden = 0;
-#define C_SEGMENTS_PER_PAGE (PAGE_SIZE / sizeof(union c_segu))
+#define C_SEGMENTS_PER_PAGE (PAGE_SIZE / sizeof(union c_segu))
+LCK_GRP_DECLARE(vm_compressor_lck_grp, "vm_compressor");
+LCK_RW_DECLARE(c_master_lock, &vm_compressor_lck_grp);
+LCK_MTX_DECLARE(c_list_lock_storage, &vm_compressor_lck_grp);
-lck_grp_attr_t vm_compressor_lck_grp_attr;
-lck_attr_t vm_compressor_lck_attr;
-lck_grp_t vm_compressor_lck_grp;
-lck_mtx_t *c_list_lock;
-lck_rw_t c_master_lock;
-boolean_t decompressions_blocked = FALSE;
+boolean_t decompressions_blocked = FALSE;
-zone_t compressor_segment_zone;
-int c_compressor_swap_trigger = 0;
+zone_t compressor_segment_zone;
+int c_compressor_swap_trigger = 0;
-uint32_t compressor_cpus;
-char *compressor_scratch_bufs;
-char *kdp_compressor_scratch_buf;
-char *kdp_compressor_decompressed_page;
-addr64_t kdp_compressor_decompressed_page_paddr;
-ppnum_t kdp_compressor_decompressed_page_ppnum;
+uint32_t compressor_cpus;
+char *compressor_scratch_bufs;
+char *kdp_compressor_scratch_buf;
+char *kdp_compressor_decompressed_page;
+addr64_t kdp_compressor_decompressed_page_paddr;
+ppnum_t kdp_compressor_decompressed_page_ppnum;
-clock_sec_t start_of_sample_period_sec = 0;
-clock_nsec_t start_of_sample_period_nsec = 0;
-clock_sec_t start_of_eval_period_sec = 0;
-clock_nsec_t start_of_eval_period_nsec = 0;
-uint32_t sample_period_decompression_count = 0;
-uint32_t sample_period_compression_count = 0;
-uint32_t last_eval_decompression_count = 0;
-uint32_t last_eval_compression_count = 0;
+clock_sec_t start_of_sample_period_sec = 0;
+clock_nsec_t start_of_sample_period_nsec = 0;
+clock_sec_t start_of_eval_period_sec = 0;
+clock_nsec_t start_of_eval_period_nsec = 0;
+uint32_t sample_period_decompression_count = 0;
+uint32_t sample_period_compression_count = 0;
+uint32_t last_eval_decompression_count = 0;
+uint32_t last_eval_compression_count = 0;
-#define DECOMPRESSION_SAMPLE_MAX_AGE (60 * 30)
+#define DECOMPRESSION_SAMPLE_MAX_AGE (60 * 30)
-boolean_t vm_swapout_ripe_segments = FALSE;
-uint32_t vm_ripe_target_age = (60 * 60 * 48);
+boolean_t vm_swapout_ripe_segments = FALSE;
+uint32_t vm_ripe_target_age = (60 * 60 * 48);
-uint32_t swapout_target_age = 0;
-uint32_t age_of_decompressions_during_sample_period[DECOMPRESSION_SAMPLE_MAX_AGE];
-uint32_t overage_decompressions_during_sample_period = 0;
+uint32_t swapout_target_age = 0;
+uint32_t age_of_decompressions_during_sample_period[DECOMPRESSION_SAMPLE_MAX_AGE];
+uint32_t overage_decompressions_during_sample_period = 0;
-void do_fastwake_warmup(void);
-boolean_t fastwake_warmup = FALSE;
-boolean_t fastwake_recording_in_progress = FALSE;
-clock_sec_t dont_trim_until_ts = 0;
-uint64_t c_segment_warmup_count;
-uint64_t first_c_segment_to_warm_generation_id = 0;
-uint64_t last_c_segment_to_warm_generation_id = 0;
-boolean_t hibernate_flushing = FALSE;
+void do_fastwake_warmup(queue_head_t *, boolean_t);
+boolean_t fastwake_warmup = FALSE;
+boolean_t fastwake_recording_in_progress = FALSE;
+clock_sec_t dont_trim_until_ts = 0;
-int64_t c_segment_input_bytes __attribute__((aligned(8))) = 0;
-int64_t c_segment_compressed_bytes __attribute__((aligned(8))) = 0;
-int64_t compressor_bytes_used __attribute__((aligned(8))) = 0;
+uint64_t c_segment_warmup_count;
+uint64_t first_c_segment_to_warm_generation_id = 0;
+uint64_t last_c_segment_to_warm_generation_id = 0;
+boolean_t hibernate_flushing = FALSE;
+int64_t c_segment_input_bytes __attribute__((aligned(8))) = 0;
+int64_t c_segment_compressed_bytes __attribute__((aligned(8))) = 0;
+int64_t compressor_bytes_used __attribute__((aligned(8))) = 0;
-struct c_sv_hash_entry c_segment_sv_hash_table[C_SV_HASH_SIZE] __attribute__ ((aligned (8)));
+struct c_sv_hash_entry c_segment_sv_hash_table[C_SV_HASH_SIZE] __attribute__ ((aligned(8)));
static boolean_t compressor_needs_to_swap(void);
static void vm_compressor_swap_trigger_thread(void);
static void vm_compressor_compact_and_swap(boolean_t);
static void vm_compressor_age_swapped_in_segments(boolean_t);
+#if XNU_TARGET_OS_OSX
static void vm_compressor_take_paging_space_action(void);
-
-boolean_t vm_compressor_low_on_space(void);
+#endif /* XNU_TARGET_OS_OSX */
void compute_swapout_target_age(void);
* driven swapping, this will also cause swapouts to
* be initiated.
*/
-static inline boolean_t vm_compressor_needs_to_major_compact()
+static inline boolean_t
+vm_compressor_needs_to_major_compact()
{
- uint32_t incore_seg_count;
+ uint32_t incore_seg_count;
incore_seg_count = c_segment_count - c_swappedout_count - c_swappedout_sparse_count;
if ((c_segment_count >= (c_segments_nearing_limit / 8)) &&
((incore_seg_count * C_SEG_MAX_PAGES) - VM_PAGE_COMPRESSOR_COUNT) >
- ((incore_seg_count / 8) * C_SEG_MAX_PAGES))
- return (1);
- return (0);
+ ((incore_seg_count / 8) * C_SEG_MAX_PAGES)) {
+ return 1;
+ }
+ return 0;
}
uint64_t
vm_available_memory(void)
{
- return (((uint64_t)AVAILABLE_NON_COMPRESSED_MEMORY) * PAGE_SIZE_64);
+ return ((uint64_t)AVAILABLE_NON_COMPRESSED_MEMORY) * PAGE_SIZE_64;
}
uint64_t
vm_compressor_pages_compressed(void)
{
- return (c_segment_pages_compressed * PAGE_SIZE_64);
+ return c_segment_pages_compressed * PAGE_SIZE_64;
}
boolean_t
vm_compressor_low_on_space(void)
{
+#if CONFIG_FREEZE
+ uint64_t incore_seg_count;
+ uint32_t incore_compressed_pages;
+ if (freezer_incore_cseg_acct) {
+ incore_seg_count = c_segment_count - c_swappedout_count - c_swappedout_sparse_count;
+ incore_compressed_pages = c_segment_pages_compressed_incore;
+ } else {
+ incore_seg_count = c_segment_count;
+ incore_compressed_pages = c_segment_pages_compressed;
+ }
+
+ if ((incore_compressed_pages > c_segment_pages_compressed_nearing_limit) ||
+ (incore_seg_count > c_segments_nearing_limit)) {
+ return TRUE;
+ }
+#else /* CONFIG_FREEZE */
if ((c_segment_pages_compressed > c_segment_pages_compressed_nearing_limit) ||
- (c_segment_count > c_segments_nearing_limit))
- return (TRUE);
+ (c_segment_count > c_segments_nearing_limit)) {
+ return TRUE;
+ }
+#endif /* CONFIG_FREEZE */
+ return FALSE;
+}
+
- return (FALSE);
+boolean_t
+vm_compressor_out_of_space(void)
+{
+#if CONFIG_FREEZE
+ uint64_t incore_seg_count;
+ uint32_t incore_compressed_pages;
+ if (freezer_incore_cseg_acct) {
+ incore_seg_count = c_segment_count - c_swappedout_count - c_swappedout_sparse_count;
+ incore_compressed_pages = c_segment_pages_compressed_incore;
+ } else {
+ incore_seg_count = c_segment_count;
+ incore_compressed_pages = c_segment_pages_compressed;
+ }
+
+ if ((incore_compressed_pages >= c_segment_pages_compressed_limit) ||
+ (incore_seg_count > c_segments_incore_limit)) {
+ return TRUE;
+ }
+#else /* CONFIG_FREEZE */
+ if ((c_segment_pages_compressed >= c_segment_pages_compressed_limit) ||
+ (c_segment_count >= c_segments_limit)) {
+ return TRUE;
+ }
+#endif /* CONFIG_FREEZE */
+ return FALSE;
}
-
+
int
vm_wants_task_throttled(task_t task)
{
- if (task == kernel_task)
- return (0);
+ if (task == kernel_task) {
+ return 0;
+ }
if (VM_CONFIG_SWAP_IS_ACTIVE) {
if ((vm_compressor_low_on_space() || HARD_THROTTLE_LIMIT_REACHED()) &&
- (unsigned int)pmap_compressed(task->map->pmap) > (c_segment_pages_compressed / 4))
- return (1);
+ (unsigned int)pmap_compressed(task->map->pmap) > (c_segment_pages_compressed / 4)) {
+ return 1;
+ }
}
- return (0);
+ return 0;
}
+#if DEVELOPMENT || DEBUG
+/*
+ * On compressor/swap exhaustion, kill the largest process regardless of
+ * its chosen process policy.
+ */
+TUNABLE(bool, kill_on_no_paging_space, "-kill_on_no_paging_space", false);
+#endif /* DEVELOPMENT || DEBUG */
-static uint32_t no_paging_space_action_in_progress = 0;
+#if XNU_TARGET_OS_OSX
+
+static uint32_t no_paging_space_action_in_progress = 0;
extern void memorystatus_send_low_swap_note(void);
static void
vm_compressor_take_paging_space_action(void)
{
if (no_paging_space_action_in_progress == 0) {
-
if (OSCompareAndSwap(0, 1, (UInt32 *)&no_paging_space_action_in_progress)) {
-
if (no_paging_space_action()) {
+#if DEVELOPMENT || DEBUG
+ if (kill_on_no_paging_space) {
+ /*
+ * Since we are choosing to always kill a process, we don't need the
+ * "out of application memory" dialog box in this mode. And, hence we won't
+ * send the knote.
+ */
+ no_paging_space_action_in_progress = 0;
+ return;
+ }
+#endif /* DEVELOPMENT || DEBUG */
memorystatus_send_low_swap_note();
}
}
}
}
-
-
-void
-vm_compressor_init_locks(void)
-{
- lck_grp_attr_setdefault(&vm_compressor_lck_grp_attr);
- lck_grp_init(&vm_compressor_lck_grp, "vm_compressor", &vm_compressor_lck_grp_attr);
- lck_attr_setdefault(&vm_compressor_lck_attr);
-
- lck_rw_init(&c_master_lock, &vm_compressor_lck_grp, &vm_compressor_lck_attr);
-}
+#endif /* XNU_TARGET_OS_OSX */
void
PAGE_REPLACEMENT_ALLOWED(TRUE);
decompressions_blocked = TRUE;
-
+
PAGE_REPLACEMENT_ALLOWED(FALSE);
}
thread_wakeup((event_t)&decompressions_blocked);
}
-static inline void cslot_copy(c_slot_t cdst, c_slot_t csrc) {
+static inline void
+cslot_copy(c_slot_t cdst, c_slot_t csrc)
+{
#if CHECKSUM_THE_DATA
- cdst->c_hash_data = csrc->c_hash_data;
+ cdst->c_hash_data = csrc->c_hash_data;
#endif
#if CHECKSUM_THE_COMPRESSED_DATA
- cdst->c_hash_compressed_data = csrc->c_hash_compressed_data;
+ cdst->c_hash_compressed_data = csrc->c_hash_compressed_data;
+#endif
+#if POPCOUNT_THE_COMPRESSED_DATA
+ cdst->c_pop_cdata = csrc->c_pop_cdata;
+#endif
+ cdst->c_size = csrc->c_size;
+ cdst->c_packed_ptr = csrc->c_packed_ptr;
+#if defined(__arm__) || defined(__arm64__)
+ cdst->c_codec = csrc->c_codec;
+#endif
+#if __ARM_WKDM_POPCNT__
+ cdst->c_inline_popcount = csrc->c_inline_popcount;
#endif
- cdst->c_size = csrc->c_size;
- cdst->c_packed_ptr = csrc->c_packed_ptr;
}
vm_map_t compressor_map;
+uint64_t compressor_pool_max_size;
+uint64_t compressor_pool_size;
+uint32_t compressor_pool_multiplier;
+
+#if DEVELOPMENT || DEBUG
+/*
+ * Compressor segments are write-protected in development/debug
+ * kernels to help debug memory corruption.
+ * In cases where performance is a concern, this can be disabled
+ * via the boot-arg "-disable_cseg_write_protection".
+ */
+boolean_t write_protect_c_segs = TRUE;
+int vm_compressor_test_seg_wp;
+uint32_t vm_ktrace_enabled;
+#endif /* DEVELOPMENT || DEBUG */
void
vm_compressor_init(void)
{
- thread_t thread;
- struct c_slot cs_dummy;
- c_slot_t cs = &cs_dummy;
- int c_segment_min_size;
- int c_segment_padded_size;
- kern_return_t retval = KERN_SUCCESS;
- vm_offset_t start_addr = 0;
+ thread_t thread;
+ int attempts = 1;
+ kern_return_t retval = KERN_SUCCESS;
+ vm_offset_t start_addr = 0;
vm_size_t c_segments_arr_size = 0, compressor_submap_size = 0;
+ vm_map_kernel_flags_t vmk_flags;
#if RECORD_THE_COMPRESSED_DATA
- vm_size_t c_compressed_record_sbuf_size = 0;
+ vm_size_t c_compressed_record_sbuf_size = 0;
#endif /* RECORD_THE_COMPRESSED_DATA */
- /*
- * ensure that any pointer that gets created from
- * the vm_page zone can be packed properly
- */
- cs->c_packed_ptr = C_SLOT_PACK_PTR(zone_map_min_address);
-
- if (C_SLOT_UNPACK_PTR(cs) != (uintptr_t)zone_map_min_address)
- panic("C_SLOT_UNPACK_PTR failed on zone_map_min_address - %p", (void *)zone_map_min_address);
+#if DEVELOPMENT || DEBUG || CONFIG_FREEZE
+ char bootarg_name[32];
+#endif /* DEVELOPMENT || DEBUG || CONFIG_FREEZE */
- cs->c_packed_ptr = C_SLOT_PACK_PTR(zone_map_max_address);
+#if DEVELOPMENT || DEBUG
+ if (PE_parse_boot_argn("-disable_cseg_write_protection", bootarg_name, sizeof(bootarg_name))) {
+ write_protect_c_segs = FALSE;
+ }
+ int vmcval = 1;
+ PE_parse_boot_argn("vm_compressor_validation", &vmcval, sizeof(vmcval));
- if (C_SLOT_UNPACK_PTR(cs) != (uintptr_t)zone_map_max_address)
- panic("C_SLOT_UNPACK_PTR failed on zone_map_max_address - %p", (void *)zone_map_max_address);
+ if (kern_feature_override(KF_COMPRSV_OVRD)) {
+ vmcval = 0;
+ }
+ if (vmcval == 0) {
+#if POPCOUNT_THE_COMPRESSED_DATA
+ popcount_c_segs = FALSE;
+#endif
+#if CHECKSUM_THE_DATA || CHECKSUM_THE_COMPRESSED_DATA
+ checksum_c_segs = FALSE;
+#endif
+#if VALIDATE_C_SEGMENTS
+ validate_c_segs = FALSE;
+#endif
+ write_protect_c_segs = FALSE;
+ }
+#endif /* DEVELOPMENT || DEBUG */
+#if CONFIG_FREEZE
+ if (PE_parse_boot_argn("-disable_freezer_cseg_acct", bootarg_name, sizeof(bootarg_name))) {
+ freezer_incore_cseg_acct = FALSE;
+ }
+#endif /* CONFIG_FREEZE */
assert((C_SEGMENTS_PER_PAGE * sizeof(union c_segu)) == PAGE_SIZE);
- PE_parse_boot_argn("vm_compression_limit", &vm_compression_limit, sizeof (vm_compression_limit));
-
+#if !XNU_TARGET_OS_OSX
+ vm_compressor_minorcompact_threshold_divisor = 20;
+ vm_compressor_majorcompact_threshold_divisor = 30;
+ vm_compressor_unthrottle_threshold_divisor = 40;
+ vm_compressor_catchup_threshold_divisor = 60;
+#else /* !XNU_TARGET_OS_OSX */
if (max_mem <= (3ULL * 1024ULL * 1024ULL * 1024ULL)) {
vm_compressor_minorcompact_threshold_divisor = 11;
vm_compressor_majorcompact_threshold_divisor = 13;
vm_compressor_unthrottle_threshold_divisor = 35;
vm_compressor_catchup_threshold_divisor = 50;
}
- /*
- * vm_page_init_lck_grp is now responsible for calling vm_compressor_init_locks
- * c_master_lock needs to be available early so that "vm_page_find_contiguous" can
- * use PAGE_REPLACEMENT_ALLOWED to coordinate with the compressor.
- */
-
- c_list_lock = lck_mtx_alloc_init(&vm_compressor_lck_grp, &vm_compressor_lck_attr);
+#endif /* !XNU_TARGET_OS_OSX */
queue_init(&c_bad_list_head);
queue_init(&c_age_list_head);
queue_init(&c_major_list_head);
queue_init(&c_filling_list_head);
queue_init(&c_swapout_list_head);
+ queue_init(&c_swapio_list_head);
queue_init(&c_swappedin_list_head);
queue_init(&c_swappedout_list_head);
queue_init(&c_swappedout_sparse_list_head);
- c_segment_min_size = sizeof(struct c_segment) + (C_SEG_SLOT_VAR_ARRAY_MIN_LEN * sizeof(struct c_slot));
-
- for (c_segment_padded_size = 128; c_segment_padded_size < c_segment_min_size; c_segment_padded_size = c_segment_padded_size << 1);
-
- compressor_segment_zone = zinit(c_segment_padded_size, 128000 * c_segment_padded_size, PAGE_SIZE, "compressor_segment");
- zone_change(compressor_segment_zone, Z_CALLERACCT, FALSE);
- zone_change(compressor_segment_zone, Z_NOENCRYPT, TRUE);
-
- c_seg_fixed_array_len = (c_segment_padded_size - sizeof(struct c_segment)) / sizeof(struct c_slot);
-
c_free_segno_head = -1;
c_segments_available = 0;
- if (vm_compression_limit == 0) {
- c_segment_pages_compressed_limit = (uint32_t)((max_mem / PAGE_SIZE)) * vm_scale;
+ if (vm_compression_limit) {
+ compressor_pool_size = ptoa_64(vm_compression_limit);
+ }
+
+ compressor_pool_max_size = C_SEG_MAX_LIMIT;
+ compressor_pool_max_size *= C_SEG_BUFSIZE;
-#define OLD_SWAP_LIMIT (1024 * 1024 * 16)
-#define MAX_SWAP_LIMIT (1024 * 1024 * 128)
-
- if (c_segment_pages_compressed_limit > (OLD_SWAP_LIMIT))
- c_segment_pages_compressed_limit = OLD_SWAP_LIMIT;
+#if XNU_TARGET_OS_OSX
- if (c_segment_pages_compressed_limit < (uint32_t)(max_mem / PAGE_SIZE_64))
- c_segment_pages_compressed_limit = (uint32_t)(max_mem / PAGE_SIZE_64);
+ if (vm_compression_limit == 0) {
+ if (max_mem <= (4ULL * 1024ULL * 1024ULL * 1024ULL)) {
+ compressor_pool_size = 16ULL * max_mem;
+ } else if (max_mem <= (8ULL * 1024ULL * 1024ULL * 1024ULL)) {
+ compressor_pool_size = 8ULL * max_mem;
+ } else if (max_mem <= (32ULL * 1024ULL * 1024ULL * 1024ULL)) {
+ compressor_pool_size = 4ULL * max_mem;
+ } else {
+ compressor_pool_size = 2ULL * max_mem;
+ }
+ }
+ if (max_mem <= (8ULL * 1024ULL * 1024ULL * 1024ULL)) {
+ compressor_pool_multiplier = 1;
+ } else if (max_mem <= (32ULL * 1024ULL * 1024ULL * 1024ULL)) {
+ compressor_pool_multiplier = 2;
} else {
- if (vm_compression_limit < MAX_SWAP_LIMIT)
- c_segment_pages_compressed_limit = vm_compression_limit;
- else
- c_segment_pages_compressed_limit = MAX_SWAP_LIMIT;
+ compressor_pool_multiplier = 4;
}
- if ((c_segments_limit = c_segment_pages_compressed_limit / (C_SEG_BUFSIZE / PAGE_SIZE)) > C_SEG_MAX_LIMIT)
- c_segments_limit = C_SEG_MAX_LIMIT;
- c_segment_pages_compressed_nearing_limit = (c_segment_pages_compressed_limit * 98) / 100;
- c_segments_nearing_limit = (c_segments_limit * 98) / 100;
+#elif defined(__arm__)
- c_segments_busy = FALSE;
+#define VM_RESERVE_SIZE (1024 * 1024 * 256)
+#define MAX_COMPRESSOR_POOL_SIZE (1024 * 1024 * 450)
+
+ if (compressor_pool_max_size > MAX_COMPRESSOR_POOL_SIZE) {
+ compressor_pool_max_size = MAX_COMPRESSOR_POOL_SIZE;
+ }
+
+ if (vm_compression_limit == 0) {
+ compressor_pool_size = ((kernel_map->max_offset - kernel_map->min_offset) - kernel_map->size) - VM_RESERVE_SIZE;
+ }
+ compressor_pool_multiplier = 1;
+
+#elif defined(__arm64__) && defined(XNU_TARGET_OS_WATCH)
+ /*
+ * On M9 watches the compressor can become big and can lead to
+ * churn in workingset resulting in audio drops. Setting a cap
+ * on the compressor size favors reclaiming unused memory
+ * sitting in idle band via jetsams
+ */
+
+#define COMPRESSOR_CAP_PERCENTAGE 37ULL
+
+ if (compressor_pool_max_size > max_mem) {
+ compressor_pool_max_size = max_mem;
+ }
+
+ if (vm_compression_limit == 0) {
+ compressor_pool_size = (max_mem * COMPRESSOR_CAP_PERCENTAGE) / 100ULL;
+ }
+ compressor_pool_multiplier = 1;
+
+#else
+
+ if (compressor_pool_max_size > max_mem) {
+ compressor_pool_max_size = max_mem;
+ }
+
+ if (vm_compression_limit == 0) {
+ compressor_pool_size = max_mem;
+ }
+ compressor_pool_multiplier = 1;
+#endif
+ if (compressor_pool_size > compressor_pool_max_size) {
+ compressor_pool_size = compressor_pool_max_size;
+ }
+
+try_again:
+ c_segments_limit = (uint32_t)(compressor_pool_size / (vm_size_t)(C_SEG_ALLOCSIZE));
+ c_segments_nearing_limit = (uint32_t)(((uint64_t)c_segments_limit * 98ULL) / 100ULL);
+
+ c_segment_pages_compressed_limit = (c_segments_limit * (C_SEG_BUFSIZE / PAGE_SIZE) * compressor_pool_multiplier);
+
+ if (c_segment_pages_compressed_limit < (uint32_t)(max_mem / PAGE_SIZE)) {
+ if (!vm_compression_limit) {
+ c_segment_pages_compressed_limit = (uint32_t)(max_mem / PAGE_SIZE);
+ }
+ }
+
+ c_segment_pages_compressed_nearing_limit = (uint32_t)(((uint64_t)c_segment_pages_compressed_limit * 98ULL) / 100ULL);
+
+#if CONFIG_FREEZE
+ /*
+ * Our in-core limits are based on the size of the compressor pool.
+ * The c_segments_nearing_limit is also based on the compressor pool
+ * size and calculated above.
+ */
+ c_segments_incore_limit = c_segments_limit;
+
+ if (freezer_incore_cseg_acct) {
+ /*
+ * Add enough segments to track all frozen c_segs that can be stored in swap.
+ */
+ c_segments_limit += (uint32_t)(vm_swap_get_max_configured_space() / (vm_size_t)(C_SEG_ALLOCSIZE));
+ }
+#endif
/*
* Submap needs space for:
* - c_segments
* - c_buffers
* - swap reclaimations -- C_SEG_BUFSIZE
*/
- c_segments_arr_size = vm_map_round_page((sizeof(union c_segu) * c_segments_limit),VM_MAP_PAGE_MASK(kernel_map));
+ c_segments_arr_size = vm_map_round_page((sizeof(union c_segu) * c_segments_limit), VM_MAP_PAGE_MASK(kernel_map));
c_buffers_size = vm_map_round_page(((vm_size_t)C_SEG_ALLOCSIZE * (vm_size_t)c_segments_limit), VM_MAP_PAGE_MASK(kernel_map));
compressor_submap_size = c_segments_arr_size + c_buffers_size + C_SEG_BUFSIZE;
#if RECORD_THE_COMPRESSED_DATA
- c_compressed_record_sbuf_size = (vm_size_t)C_SEG_ALLOCSIZE + (PAGE_SIZE * 2);
+ c_compressed_record_sbuf_size = (vm_size_t)C_SEG_ALLOCSIZE + (PAGE_SIZE * 2);
compressor_submap_size += c_compressed_record_sbuf_size;
#endif /* RECORD_THE_COMPRESSED_DATA */
+ vmk_flags = VM_MAP_KERNEL_FLAGS_NONE;
+ vmk_flags.vmkf_permanent = TRUE;
retval = kmem_suballoc(kernel_map, &start_addr, compressor_submap_size,
- FALSE, VM_FLAGS_ANYWHERE | VM_FLAGS_PERMANENT | VM_MAKE_TAG(0),
- &compressor_map);
+ FALSE, VM_FLAGS_ANYWHERE, vmk_flags, VM_KERN_MEMORY_COMPRESSOR,
+ &compressor_map);
+
+ if (retval != KERN_SUCCESS) {
+ if (++attempts > 3) {
+ panic("vm_compressor_init: kmem_suballoc failed - 0x%llx", (uint64_t)compressor_submap_size);
+ }
- if (retval != KERN_SUCCESS)
- panic("vm_compressor_init: kmem_suballoc failed");
+ compressor_pool_size = compressor_pool_size / 2;
- if (kernel_memory_allocate(compressor_map, (vm_offset_t *)(&c_segments), (sizeof(union c_segu) * c_segments_limit), 0, KMA_KOBJECT | KMA_VAONLY | KMA_PERMANENT, VM_KERN_MEMORY_COMPRESSOR) != KERN_SUCCESS)
+ kprintf("retrying creation of the compressor submap at 0x%llx bytes\n", compressor_pool_size);
+ goto try_again;
+ }
+ if (kernel_memory_allocate(compressor_map, (vm_offset_t *)(&c_segments),
+ (sizeof(union c_segu) * c_segments_limit), 0,
+ KMA_KOBJECT | KMA_VAONLY | KMA_PERMANENT, VM_KERN_MEMORY_COMPRESSOR) != KERN_SUCCESS) {
panic("vm_compressor_init: kernel_memory_allocate failed - c_segments\n");
- if (kernel_memory_allocate(compressor_map, &c_buffers, c_buffers_size, 0, KMA_COMPRESSOR | KMA_VAONLY | KMA_PERMANENT, VM_KERN_MEMORY_COMPRESSOR) != KERN_SUCCESS)
+ }
+ if (kernel_memory_allocate(compressor_map, &c_buffers, c_buffers_size, 0,
+ KMA_COMPRESSOR | KMA_VAONLY | KMA_PERMANENT, VM_KERN_MEMORY_COMPRESSOR) != KERN_SUCCESS) {
panic("vm_compressor_init: kernel_memory_allocate failed - c_buffers\n");
+ }
+
+
+ /*
+ * Pick a good size that will minimize fragmentation in zalloc
+ * by minimizing the fragmentation in a 16k run.
+ *
+ * C_SEG_SLOT_VAR_ARRAY_MIN_LEN is larger on 4k systems than 16k ones,
+ * making the fragmentation in a 4k page terrible. Using 16k for all
+ * systems matches zalloc() and will minimize fragmentation.
+ */
+ uint32_t c_segment_size = sizeof(struct c_segment) + (C_SEG_SLOT_VAR_ARRAY_MIN_LEN * sizeof(struct c_slot));
+ uint32_t cnt = (16 << 10) / c_segment_size;
+ uint32_t frag = (16 << 10) % c_segment_size;
+
+ c_seg_fixed_array_len = C_SEG_SLOT_VAR_ARRAY_MIN_LEN;
+
+ while (cnt * sizeof(struct c_slot) < frag) {
+ c_segment_size += sizeof(struct c_slot);
+ c_seg_fixed_array_len++;
+ frag -= cnt * sizeof(struct c_slot);
+ }
+
+ compressor_segment_zone = zone_create("compressor_segment",
+ c_segment_size, ZC_NOENCRYPT | ZC_ZFREE_CLEARMEM);
+
+ c_segments_busy = FALSE;
c_segments_next_page = (caddr_t)c_segments;
vm_compressor_algorithm_init();
{
host_basic_info_data_t hinfo;
mach_msg_type_number_t count = HOST_BASIC_INFO_COUNT;
+ size_t bufsize;
+ char *buf;
#define BSD_HOST 1
host_info((host_t)BSD_HOST, HOST_BASIC_INFO, (host_info_t)&hinfo, &count);
compressor_cpus = hinfo.max_cpus;
- compressor_scratch_bufs = kalloc_tag(compressor_cpus * vm_compressor_get_decode_scratch_size(), VM_KERN_MEMORY_COMPRESSOR);
- kdp_compressor_scratch_buf = kalloc_tag(vm_compressor_get_decode_scratch_size(), VM_KERN_MEMORY_COMPRESSOR);
- kdp_compressor_decompressed_page = kalloc_tag(PAGE_SIZE, VM_KERN_MEMORY_COMPRESSOR);
+ bufsize = PAGE_SIZE;
+ bufsize += compressor_cpus * vm_compressor_get_decode_scratch_size();
+ bufsize += vm_compressor_get_decode_scratch_size();
+#if CONFIG_FREEZE
+ bufsize += vm_compressor_get_encode_scratch_size();
+#endif
+#if RECORD_THE_COMPRESSED_DATA
+ bufsize += c_compressed_record_sbuf_size;
+#endif
+
+ if (kernel_memory_allocate(kernel_map, (vm_offset_t *)&buf, bufsize,
+ PAGE_MASK, KMA_KOBJECT | KMA_PERMANENT, VM_KERN_MEMORY_COMPRESSOR)) {
+ panic("vm_compressor_init: Unable to allocate %zd bytes", bufsize);
+ }
+
+ /*
+ * kdp_compressor_decompressed_page must be page aligned because we access
+ * it through the physical apperture by page number.
+ */
+ kdp_compressor_decompressed_page = buf;
kdp_compressor_decompressed_page_paddr = kvtophys((vm_offset_t)kdp_compressor_decompressed_page);
kdp_compressor_decompressed_page_ppnum = (ppnum_t) atop(kdp_compressor_decompressed_page_paddr);
- }
+ buf += PAGE_SIZE;
+ bufsize -= PAGE_SIZE;
+
+ compressor_scratch_bufs = buf;
+ buf += compressor_cpus * vm_compressor_get_decode_scratch_size();
+ bufsize -= compressor_cpus * vm_compressor_get_decode_scratch_size();
+
+ kdp_compressor_scratch_buf = buf;
+ buf += vm_compressor_get_decode_scratch_size();
+ bufsize -= vm_compressor_get_decode_scratch_size();
+
#if CONFIG_FREEZE
- freezer_compressor_scratch_buf = kalloc_tag(vm_compressor_get_encode_scratch_size(), VM_KERN_MEMORY_COMPRESSOR);
+ freezer_context_global.freezer_ctx_compressor_scratch_buf = buf;
+ buf += vm_compressor_get_encode_scratch_size();
+ bufsize -= vm_compressor_get_encode_scratch_size();
#endif
#if RECORD_THE_COMPRESSED_DATA
- if (kernel_memory_allocate(compressor_map, (vm_offset_t *)&c_compressed_record_sbuf, c_compressed_record_sbuf_size, 0, KMA_KOBJECT, VM_KERN_MEMORY_COMPRESSOR) != KERN_SUCCESS)
- panic("vm_compressor_init: kernel_memory_allocate failed - c_compressed_record_sbuf\n");
-
- c_compressed_record_cptr = c_compressed_record_sbuf;
- c_compressed_record_ebuf = c_compressed_record_sbuf + c_compressed_record_sbuf_size;
+ c_compressed_record_sbuf = buf;
+ c_compressed_record_cptr = buf;
+ c_compressed_record_ebuf = c_compressed_record_sbuf + c_compressed_record_sbuf_size;
+ buf += c_compressed_record_sbuf_size;
+ bufsize -= c_compressed_record_sbuf_size;
#endif
+ assert(bufsize == 0);
+ }
if (kernel_thread_start_priority((thread_continue_t)vm_compressor_swap_trigger_thread, NULL,
- BASEPRI_PREEMPT - 1, &thread) != KERN_SUCCESS) {
+ BASEPRI_VM, &thread) != KERN_SUCCESS) {
panic("vm_compressor_swap_trigger_thread: create failed");
}
thread_deallocate(thread);
if (vm_pageout_internal_start() != KERN_SUCCESS) {
panic("vm_compressor_init: Failed to start the internal pageout thread.\n");
}
- if (VM_CONFIG_SWAP_IS_PRESENT)
+ if (VM_CONFIG_SWAP_IS_PRESENT) {
vm_compressor_swap_init();
+ }
- if (VM_CONFIG_COMPRESSOR_IS_ACTIVE)
+ if (VM_CONFIG_COMPRESSOR_IS_ACTIVE) {
vm_compressor_is_active = 1;
+ }
#if CONFIG_FREEZE
memorystatus_freeze_enabled = TRUE;
static void
c_seg_validate(c_segment_t c_seg, boolean_t must_be_compact)
{
- int c_indx;
- int32_t bytes_used;
- int32_t bytes_unused;
- uint32_t c_rounded_size;
- uint32_t c_size;
- c_slot_t cs;
+ uint16_t c_indx;
+ int32_t bytes_used;
+ uint32_t c_rounded_size;
+ uint32_t c_size;
+ c_slot_t cs;
+ if (__probable(validate_c_segs == FALSE)) {
+ return;
+ }
if (c_seg->c_firstemptyslot < c_seg->c_nextslot) {
c_indx = c_seg->c_firstemptyslot;
cs = C_SEG_SLOT_FROM_INDEX(c_seg, c_indx);
- if (cs == NULL)
+ if (cs == NULL) {
panic("c_seg_validate: no slot backing c_firstemptyslot");
-
- if (cs->c_size)
+ }
+
+ if (cs->c_size) {
panic("c_seg_validate: c_firstemptyslot has non-zero size (%d)\n", cs->c_size);
+ }
}
bytes_used = 0;
- bytes_unused = 0;
for (c_indx = 0; c_indx < c_seg->c_nextslot; c_indx++) {
-
cs = C_SEG_SLOT_FROM_INDEX(c_seg, c_indx);
c_size = UNPACK_C_SIZE(cs);
bytes_used += c_rounded_size;
#if CHECKSUM_THE_COMPRESSED_DATA
- if (c_size && cs->c_hash_compressed_data != hash_string((char *)&c_seg->c_store.c_buffer[cs->c_offset], c_size))
- panic("compressed data doesn't match original");
+ unsigned csvhash;
+ if (c_size && cs->c_hash_compressed_data != (csvhash = vmc_hash((char *)&c_seg->c_store.c_buffer[cs->c_offset], c_size))) {
+ addr64_t csvphys = kvtophys((vm_offset_t)&c_seg->c_store.c_buffer[cs->c_offset]);
+ panic("Compressed data doesn't match original %p phys: 0x%llx %d %p %d %d 0x%x 0x%x", c_seg, csvphys, cs->c_offset, cs, c_indx, c_size, cs->c_hash_compressed_data, csvhash);
+ }
+#endif
+#if POPCOUNT_THE_COMPRESSED_DATA
+ unsigned csvpop;
+ if (c_size) {
+ uintptr_t csvaddr = (uintptr_t) &c_seg->c_store.c_buffer[cs->c_offset];
+ if (cs->c_pop_cdata != (csvpop = vmc_pop(csvaddr, c_size))) {
+ panic("Compressed data popcount doesn't match original, bit distance: %d %p (phys: %p) %p %p 0x%llx 0x%x 0x%x 0x%x", (csvpop - cs->c_pop_cdata), (void *)csvaddr, (void *) kvtophys(csvaddr), c_seg, cs, (uint64_t)cs->c_offset, c_size, csvpop, cs->c_pop_cdata);
+ }
+ }
#endif
}
- if (bytes_used != c_seg->c_bytes_used)
+ if (bytes_used != c_seg->c_bytes_used) {
panic("c_seg_validate: bytes_used mismatch - found %d, segment has %d\n", bytes_used, c_seg->c_bytes_used);
+ }
- if (c_seg->c_bytes_used > C_SEG_OFFSET_TO_BYTES((int32_t)c_seg->c_nextoffset))
+ if (c_seg->c_bytes_used > C_SEG_OFFSET_TO_BYTES((int32_t)c_seg->c_nextoffset)) {
panic("c_seg_validate: c_bytes_used > c_nextoffset - c_nextoffset = %d, c_bytes_used = %d\n",
- (int32_t)C_SEG_OFFSET_TO_BYTES((int32_t)c_seg->c_nextoffset), c_seg->c_bytes_used);
+ (int32_t)C_SEG_OFFSET_TO_BYTES((int32_t)c_seg->c_nextoffset), c_seg->c_bytes_used);
+ }
if (must_be_compact) {
- if (c_seg->c_bytes_used != C_SEG_OFFSET_TO_BYTES((int32_t)c_seg->c_nextoffset))
+ if (c_seg->c_bytes_used != C_SEG_OFFSET_TO_BYTES((int32_t)c_seg->c_nextoffset)) {
panic("c_seg_validate: c_bytes_used doesn't match c_nextoffset - c_nextoffset = %d, c_bytes_used = %d\n",
- (int32_t)C_SEG_OFFSET_TO_BYTES((int32_t)c_seg->c_nextoffset), c_seg->c_bytes_used);
+ (int32_t)C_SEG_OFFSET_TO_BYTES((int32_t)c_seg->c_nextoffset), c_seg->c_bytes_used);
+ }
}
}
void
c_seg_need_delayed_compaction(c_segment_t c_seg, boolean_t c_list_lock_held)
{
- boolean_t clear_busy = FALSE;
+ boolean_t clear_busy = FALSE;
if (c_list_lock_held == FALSE) {
- if ( !lck_mtx_try_lock_spin_always(c_list_lock)) {
+ if (!lck_mtx_try_lock_spin_always(c_list_lock)) {
C_SEG_BUSY(c_seg);
-
+
lck_mtx_unlock_always(&c_seg->c_lock);
lck_mtx_lock_spin_always(c_list_lock);
lck_mtx_lock_spin_always(&c_seg->c_lock);
}
assert(c_seg->c_state != C_IS_FILLING);
- if (!c_seg->c_on_minorcompact_q && !(C_SEG_IS_ONDISK(c_seg))) {
+ if (!c_seg->c_on_minorcompact_q && !(C_SEG_IS_ON_DISK_OR_SOQ(c_seg))) {
queue_enter(&c_minor_list_head, c_seg, c_segment_t, c_list);
c_seg->c_on_minorcompact_q = 1;
c_minor_count++;
}
- if (c_list_lock_held == FALSE)
+ if (c_list_lock_held == FALSE) {
lck_mtx_unlock_always(c_list_lock);
-
- if (clear_busy == TRUE)
+ }
+
+ if (clear_busy == TRUE) {
C_SEG_WAKEUP_DONE(c_seg);
+ }
}
void
c_seg_move_to_sparse_list(c_segment_t c_seg)
{
- boolean_t clear_busy = FALSE;
+ boolean_t clear_busy = FALSE;
- if ( !lck_mtx_try_lock_spin_always(c_list_lock)) {
+ if (!lck_mtx_try_lock_spin_always(c_list_lock)) {
C_SEG_BUSY(c_seg);
lck_mtx_unlock_always(&c_seg->c_lock);
lck_mtx_lock_spin_always(c_list_lock);
lck_mtx_lock_spin_always(&c_seg->c_lock);
-
+
clear_busy = TRUE;
}
c_seg_switch_state(c_seg, C_ON_SWAPPEDOUTSPARSE_Q, FALSE);
lck_mtx_unlock_always(c_list_lock);
- if (clear_busy == TRUE)
+ if (clear_busy == TRUE) {
C_SEG_WAKEUP_DONE(c_seg);
+ }
}
c_seg_next = (c_segment_t)queue_first(qhead);
while (TRUE) {
-
if (c_seg->c_generation_id < c_seg_next->c_generation_id) {
queue_insert_before(qhead, c_seg, c_seg_next, c_segment_t, c_age_list);
break;
}
c_seg_next = (c_segment_t) queue_next(&c_seg_next->c_age_list);
-
+
if (queue_end(qhead, (queue_entry_t) c_seg_next)) {
queue_enter(qhead, c_seg, c_segment_t, c_age_list);
break;
void
c_seg_try_minor_compaction_and_unlock(c_segment_t c_seg)
{
-
assert(c_seg->c_on_minorcompact_q);
/*
* c_seg is currently on the delayed minor compaction
* because the lock order is c_list_lock then c_seg's lock)
* we'll pull it from the delayed list and free it directly
*/
- if ( !lck_mtx_try_lock_spin_always(c_list_lock)) {
+ if (!lck_mtx_try_lock_spin_always(c_list_lock)) {
/*
* c_list_lock is held, we need to bail
*/
int
c_seg_do_minor_compaction_and_unlock(c_segment_t c_seg, boolean_t clear_busy, boolean_t need_list_lock, boolean_t disallow_page_replacement)
{
- int c_seg_freed;
+ int c_seg_freed;
assert(c_seg->c_busy);
+ assert(!C_SEG_IS_ON_DISK_OR_SOQ(c_seg));
/*
* check for the case that can occur when we are not swapping
* in the next major compaction sweep... if we don't do this
* we will eventually run into the c_segments_limit
*/
- if (c_seg->c_state == C_ON_MAJORCOMPACT_Q && C_SEG_SHOULD_MAJORCOMPACT(c_seg)) {
-
+ if (c_seg->c_state == C_ON_MAJORCOMPACT_Q && C_SEG_SHOULD_MAJORCOMPACT_NOW(c_seg)) {
c_seg_switch_state(c_seg, C_ON_AGE_Q, FALSE);
}
if (!c_seg->c_on_minorcompact_q) {
- if (clear_busy == TRUE)
+ if (clear_busy == TRUE) {
C_SEG_WAKEUP_DONE(c_seg);
+ }
lck_mtx_unlock_always(&c_seg->c_lock);
- return (0);
+ return 0;
}
queue_remove(&c_minor_list_head, c_seg, c_segment_t, c_list);
c_seg->c_on_minorcompact_q = 0;
c_minor_count--;
-
+
lck_mtx_unlock_always(c_list_lock);
if (disallow_page_replacement == TRUE) {
}
c_seg_freed = c_seg_minor_compaction_and_unlock(c_seg, clear_busy);
- if (disallow_page_replacement == TRUE)
+ if (disallow_page_replacement == TRUE) {
PAGE_REPLACEMENT_DISALLOWED(FALSE);
+ }
- if (need_list_lock == TRUE)
+ if (need_list_lock == TRUE) {
lck_mtx_lock_spin_always(c_list_lock);
+ }
- return (c_seg_freed);
+ return c_seg_freed;
}
+void
+kdp_compressor_busy_find_owner(event64_t wait_event, thread_waitinfo_t *waitinfo)
+{
+ c_segment_t c_seg = (c_segment_t) wait_event;
+
+ waitinfo->owner = thread_tid(c_seg->c_busy_for_thread);
+ waitinfo->context = VM_KERNEL_UNSLIDE_OR_PERM(c_seg);
+}
+
+#if DEVELOPMENT || DEBUG
+int
+do_cseg_wedge_thread(void)
+{
+ struct c_segment c_seg;
+ c_seg.c_busy_for_thread = current_thread();
+
+ debug_cseg_wait_event = (event_t) &c_seg;
+
+ thread_set_pending_block_hint(current_thread(), kThreadWaitCompressor);
+ assert_wait((event_t) (&c_seg), THREAD_INTERRUPTIBLE);
+
+ thread_block(THREAD_CONTINUE_NULL);
+
+ return 0;
+}
+
+int
+do_cseg_unwedge_thread(void)
+{
+ thread_wakeup(debug_cseg_wait_event);
+ debug_cseg_wait_event = NULL;
+
+ return 0;
+}
+#endif /* DEVELOPMENT || DEBUG */
void
c_seg_wait_on_busy(c_segment_t c_seg)
{
c_seg->c_wanted = 1;
+
+ thread_set_pending_block_hint(current_thread(), kThreadWaitCompressor);
assert_wait((event_t) (c_seg), THREAD_UNINT);
lck_mtx_unlock_always(&c_seg->c_lock);
thread_block(THREAD_CONTINUE_NULL);
}
+#if CONFIG_FREEZE
+/*
+ * We don't have the task lock held while updating the task's
+ * c_seg queues. We can do that because of the following restrictions:
+ *
+ * - SINGLE FREEZER CONTEXT:
+ * We 'insert' c_segs into the task list on the task_freeze path.
+ * There can only be one such freeze in progress and the task
+ * isn't disappearing because we have the VM map lock held throughout
+ * and we have a reference on the proc too.
+ *
+ * - SINGLE TASK DISOWN CONTEXT:
+ * We 'disown' c_segs of a task ONLY from the task_terminate context. So
+ * we don't need the task lock but we need the c_list_lock and the
+ * compressor master lock (shared). We also hold the individual
+ * c_seg locks (exclusive).
+ *
+ * If we either:
+ * - can't get the c_seg lock on a try, then we start again because maybe
+ * the c_seg is part of a compaction and might get freed. So we can't trust
+ * that linkage and need to restart our queue traversal.
+ * - OR, we run into a busy c_seg (say being swapped in or free-ing) we
+ * drop all locks again and wait and restart our queue traversal.
+ *
+ * - The new_owner_task below is currently only the kernel or NULL.
+ *
+ */
+void
+c_seg_update_task_owner(c_segment_t c_seg, task_t new_owner_task)
+{
+ task_t owner_task = c_seg->c_task_owner;
+ uint64_t uncompressed_bytes = ((c_seg->c_slots_used) * PAGE_SIZE_64);
+
+ LCK_MTX_ASSERT(c_list_lock, LCK_MTX_ASSERT_OWNED);
+ LCK_MTX_ASSERT(&c_seg->c_lock, LCK_MTX_ASSERT_OWNED);
+
+ if (owner_task) {
+ task_update_frozen_to_swap_acct(owner_task, uncompressed_bytes, DEBIT_FROM_SWAP);
+ queue_remove(&owner_task->task_frozen_cseg_q, c_seg,
+ c_segment_t, c_task_list_next_cseg);
+ }
+
+ if (new_owner_task) {
+ queue_enter(&new_owner_task->task_frozen_cseg_q, c_seg,
+ c_segment_t, c_task_list_next_cseg);
+ task_update_frozen_to_swap_acct(new_owner_task, uncompressed_bytes, CREDIT_TO_SWAP);
+ }
+
+ c_seg->c_task_owner = new_owner_task;
+}
+
+void
+task_disown_frozen_csegs(task_t owner_task)
+{
+ c_segment_t c_seg = NULL, next_cseg = NULL;
+
+again:
+ PAGE_REPLACEMENT_DISALLOWED(TRUE);
+ lck_mtx_lock_spin_always(c_list_lock);
+
+ for (c_seg = (c_segment_t) queue_first(&owner_task->task_frozen_cseg_q);
+ !queue_end(&owner_task->task_frozen_cseg_q, (queue_entry_t) c_seg);
+ c_seg = next_cseg) {
+ next_cseg = (c_segment_t) queue_next(&c_seg->c_task_list_next_cseg);;
+
+ if (!lck_mtx_try_lock_spin_always(&c_seg->c_lock)) {
+ lck_mtx_unlock(c_list_lock);
+ PAGE_REPLACEMENT_DISALLOWED(FALSE);
+ goto again;
+ }
+
+ if (c_seg->c_busy) {
+ lck_mtx_unlock(c_list_lock);
+ PAGE_REPLACEMENT_DISALLOWED(FALSE);
+
+ c_seg_wait_on_busy(c_seg);
+
+ goto again;
+ }
+ assert(c_seg->c_task_owner == owner_task);
+ c_seg_update_task_owner(c_seg, kernel_task);
+ lck_mtx_unlock_always(&c_seg->c_lock);
+ }
+
+ lck_mtx_unlock(c_list_lock);
+ PAGE_REPLACEMENT_DISALLOWED(FALSE);
+}
+#endif /* CONFIG_FREEZE */
void
c_seg_switch_state(c_segment_t c_seg, int new_state, boolean_t insert_head)
{
- int old_state = c_seg->c_state;
+ int old_state = c_seg->c_state;
-#if __i386__ || __x86_64__
- if (new_state != C_IS_FILLING)
+#if XNU_TARGET_OS_OSX
+#if DEVELOPMENT || DEBUG
+ if (new_state != C_IS_FILLING) {
LCK_MTX_ASSERT(&c_seg->c_lock, LCK_MTX_ASSERT_OWNED);
+ }
LCK_MTX_ASSERT(c_list_lock, LCK_MTX_ASSERT_OWNED);
#endif
+#endif /* XNU_TARGET_OS_OSX */
switch (old_state) {
+ case C_IS_EMPTY:
+ assert(new_state == C_IS_FILLING || new_state == C_IS_FREE);
- case C_IS_EMPTY:
- assert(new_state == C_IS_FILLING || new_state == C_IS_FREE);
+ c_empty_count--;
+ break;
- c_empty_count--;
- break;
+ case C_IS_FILLING:
+ assert(new_state == C_ON_AGE_Q || new_state == C_ON_SWAPOUT_Q);
- case C_IS_FILLING:
- assert(new_state == C_ON_AGE_Q || new_state == C_ON_SWAPOUT_Q);
+ queue_remove(&c_filling_list_head, c_seg, c_segment_t, c_age_list);
+ c_filling_count--;
+ break;
- queue_remove(&c_filling_list_head, c_seg, c_segment_t, c_age_list);
- c_filling_count--;
- break;
+ case C_ON_AGE_Q:
+ assert(new_state == C_ON_SWAPOUT_Q || new_state == C_ON_MAJORCOMPACT_Q ||
+ new_state == C_IS_FREE);
- case C_ON_AGE_Q:
- assert(new_state == C_ON_SWAPOUT_Q || new_state == C_ON_MAJORCOMPACT_Q ||
- new_state == C_IS_FREE);
+ queue_remove(&c_age_list_head, c_seg, c_segment_t, c_age_list);
+ c_age_count--;
+ break;
- queue_remove(&c_age_list_head, c_seg, c_segment_t, c_age_list);
- c_age_count--;
- break;
-
- case C_ON_SWAPPEDIN_Q:
- assert(new_state == C_ON_AGE_Q || new_state == C_IS_FREE);
+ case C_ON_SWAPPEDIN_Q:
+ assert(new_state == C_ON_AGE_Q || new_state == C_IS_FREE);
- queue_remove(&c_swappedin_list_head, c_seg, c_segment_t, c_age_list);
- c_swappedin_count--;
- break;
+ queue_remove(&c_swappedin_list_head, c_seg, c_segment_t, c_age_list);
+ c_swappedin_count--;
+ break;
- case C_ON_SWAPOUT_Q:
- assert(new_state == C_ON_SWAPPEDOUT_Q || new_state == C_ON_SWAPPEDOUTSPARSE_Q ||
- new_state == C_ON_AGE_Q || new_state == C_IS_FREE || new_state == C_IS_EMPTY);
+ case C_ON_SWAPOUT_Q:
+ assert(new_state == C_ON_AGE_Q || new_state == C_IS_FREE || new_state == C_IS_EMPTY || new_state == C_ON_SWAPIO_Q);
- queue_remove(&c_swapout_list_head, c_seg, c_segment_t, c_age_list);
- thread_wakeup((event_t)&compaction_swapper_running);
- c_swapout_count--;
- break;
+#if CONFIG_FREEZE
+ if (c_seg->c_task_owner && (new_state != C_ON_SWAPIO_Q)) {
+ c_seg_update_task_owner(c_seg, NULL);
+ }
+#endif /* CONFIG_FREEZE */
- case C_ON_SWAPPEDOUT_Q:
- assert(new_state == C_ON_SWAPPEDIN_Q || new_state == C_ON_AGE_Q ||
- new_state == C_ON_SWAPPEDOUTSPARSE_Q ||
- new_state == C_ON_BAD_Q || new_state == C_IS_EMPTY || new_state == C_IS_FREE);
+ queue_remove(&c_swapout_list_head, c_seg, c_segment_t, c_age_list);
+ thread_wakeup((event_t)&compaction_swapper_running);
+ c_swapout_count--;
+ break;
- queue_remove(&c_swappedout_list_head, c_seg, c_segment_t, c_age_list);
- c_swappedout_count--;
- break;
+ case C_ON_SWAPIO_Q:
+ assert(new_state == C_ON_SWAPPEDOUT_Q || new_state == C_ON_SWAPPEDOUTSPARSE_Q || new_state == C_ON_AGE_Q);
- case C_ON_SWAPPEDOUTSPARSE_Q:
- assert(new_state == C_ON_SWAPPEDIN_Q || new_state == C_ON_AGE_Q ||
- new_state == C_ON_BAD_Q || new_state == C_IS_EMPTY || new_state == C_IS_FREE);
+ queue_remove(&c_swapio_list_head, c_seg, c_segment_t, c_age_list);
+ c_swapio_count--;
+ break;
- queue_remove(&c_swappedout_sparse_list_head, c_seg, c_segment_t, c_age_list);
- c_swappedout_sparse_count--;
- break;
+ case C_ON_SWAPPEDOUT_Q:
+ assert(new_state == C_ON_SWAPPEDIN_Q || new_state == C_ON_AGE_Q ||
+ new_state == C_ON_SWAPPEDOUTSPARSE_Q ||
+ new_state == C_ON_BAD_Q || new_state == C_IS_EMPTY || new_state == C_IS_FREE);
- case C_ON_MAJORCOMPACT_Q:
- assert(new_state == C_ON_AGE_Q || new_state == C_IS_FREE);
+ queue_remove(&c_swappedout_list_head, c_seg, c_segment_t, c_age_list);
+ c_swappedout_count--;
+ break;
- queue_remove(&c_major_list_head, c_seg, c_segment_t, c_age_list);
- c_major_count--;
- break;
+ case C_ON_SWAPPEDOUTSPARSE_Q:
+ assert(new_state == C_ON_SWAPPEDIN_Q || new_state == C_ON_AGE_Q ||
+ new_state == C_ON_BAD_Q || new_state == C_IS_EMPTY || new_state == C_IS_FREE);
- case C_ON_BAD_Q:
- assert(new_state == C_IS_FREE);
+ queue_remove(&c_swappedout_sparse_list_head, c_seg, c_segment_t, c_age_list);
+ c_swappedout_sparse_count--;
+ break;
- queue_remove(&c_bad_list_head, c_seg, c_segment_t, c_age_list);
- c_bad_count--;
- break;
+ case C_ON_MAJORCOMPACT_Q:
+ assert(new_state == C_ON_AGE_Q || new_state == C_IS_FREE);
+
+ queue_remove(&c_major_list_head, c_seg, c_segment_t, c_age_list);
+ c_major_count--;
+ break;
- default:
- panic("c_seg %p has bad c_state = %d\n", c_seg, old_state);
+ case C_ON_BAD_Q:
+ assert(new_state == C_IS_FREE);
+
+ queue_remove(&c_bad_list_head, c_seg, c_segment_t, c_age_list);
+ c_bad_count--;
+ break;
+
+ default:
+ panic("c_seg %p has bad c_state = %d\n", c_seg, old_state);
}
- switch(new_state) {
- case C_IS_FREE:
- assert(old_state != C_IS_FILLING);
+ switch (new_state) {
+ case C_IS_FREE:
+ assert(old_state != C_IS_FILLING);
- break;
+ break;
- case C_IS_EMPTY:
- assert(old_state == C_ON_SWAPOUT_Q || old_state == C_ON_SWAPPEDOUT_Q || old_state == C_ON_SWAPPEDOUTSPARSE_Q);
+ case C_IS_EMPTY:
+ assert(old_state == C_ON_SWAPOUT_Q || old_state == C_ON_SWAPPEDOUT_Q || old_state == C_ON_SWAPPEDOUTSPARSE_Q);
- c_empty_count++;
- break;
+ c_empty_count++;
+ break;
- case C_IS_FILLING:
- assert(old_state == C_IS_EMPTY);
+ case C_IS_FILLING:
+ assert(old_state == C_IS_EMPTY);
- queue_enter(&c_filling_list_head, c_seg, c_segment_t, c_age_list);
- c_filling_count++;
- break;
+ queue_enter(&c_filling_list_head, c_seg, c_segment_t, c_age_list);
+ c_filling_count++;
+ break;
- case C_ON_AGE_Q:
- assert(old_state == C_IS_FILLING || old_state == C_ON_SWAPPEDIN_Q || old_state == C_ON_SWAPOUT_Q ||
- old_state == C_ON_MAJORCOMPACT_Q || old_state == C_ON_SWAPPEDOUT_Q || old_state == C_ON_SWAPPEDOUTSPARSE_Q);
-
- if (old_state == C_IS_FILLING)
- queue_enter(&c_age_list_head, c_seg, c_segment_t, c_age_list);
- else {
- if (!queue_empty(&c_age_list_head)) {
- c_segment_t c_first;
-
- c_first = (c_segment_t)queue_first(&c_age_list_head);
- c_seg->c_creation_ts = c_first->c_creation_ts;
- }
- queue_enter_first(&c_age_list_head, c_seg, c_segment_t, c_age_list);
+ case C_ON_AGE_Q:
+ assert(old_state == C_IS_FILLING || old_state == C_ON_SWAPPEDIN_Q ||
+ old_state == C_ON_SWAPOUT_Q || old_state == C_ON_SWAPIO_Q ||
+ old_state == C_ON_MAJORCOMPACT_Q || old_state == C_ON_SWAPPEDOUT_Q || old_state == C_ON_SWAPPEDOUTSPARSE_Q);
+
+ if (old_state == C_IS_FILLING) {
+ queue_enter(&c_age_list_head, c_seg, c_segment_t, c_age_list);
+ } else {
+ if (!queue_empty(&c_age_list_head)) {
+ c_segment_t c_first;
+
+ c_first = (c_segment_t)queue_first(&c_age_list_head);
+ c_seg->c_creation_ts = c_first->c_creation_ts;
}
- c_age_count++;
- break;
-
- case C_ON_SWAPPEDIN_Q:
- assert(c_seg->c_state == C_ON_SWAPPEDOUT_Q || c_seg->c_state == C_ON_SWAPPEDOUTSPARSE_Q);
-
- if (insert_head == TRUE)
- queue_enter_first(&c_swappedin_list_head, c_seg, c_segment_t, c_age_list);
- else
- queue_enter(&c_swappedin_list_head, c_seg, c_segment_t, c_age_list);
- c_swappedin_count++;
- break;
+ queue_enter_first(&c_age_list_head, c_seg, c_segment_t, c_age_list);
+ }
+ c_age_count++;
+ break;
- case C_ON_SWAPOUT_Q:
- assert(old_state == C_ON_AGE_Q || old_state == C_IS_FILLING);
+ case C_ON_SWAPPEDIN_Q:
+ assert(old_state == C_ON_SWAPPEDOUT_Q || old_state == C_ON_SWAPPEDOUTSPARSE_Q);
- if (insert_head == TRUE)
- queue_enter_first(&c_swapout_list_head, c_seg, c_segment_t, c_age_list);
- else
- queue_enter(&c_swapout_list_head, c_seg, c_segment_t, c_age_list);
- c_swapout_count++;
- break;
+ if (insert_head == TRUE) {
+ queue_enter_first(&c_swappedin_list_head, c_seg, c_segment_t, c_age_list);
+ } else {
+ queue_enter(&c_swappedin_list_head, c_seg, c_segment_t, c_age_list);
+ }
+ c_swappedin_count++;
+ break;
- case C_ON_SWAPPEDOUT_Q:
- assert(c_seg->c_state == C_ON_SWAPOUT_Q);
+ case C_ON_SWAPOUT_Q:
+ assert(old_state == C_ON_AGE_Q || old_state == C_IS_FILLING);
- if (insert_head == TRUE)
- queue_enter_first(&c_swappedout_list_head, c_seg, c_segment_t, c_age_list);
- else
- queue_enter(&c_swappedout_list_head, c_seg, c_segment_t, c_age_list);
- c_swappedout_count++;
- break;
+ if (insert_head == TRUE) {
+ queue_enter_first(&c_swapout_list_head, c_seg, c_segment_t, c_age_list);
+ } else {
+ queue_enter(&c_swapout_list_head, c_seg, c_segment_t, c_age_list);
+ }
+ c_swapout_count++;
+ break;
- case C_ON_SWAPPEDOUTSPARSE_Q:
- assert(c_seg->c_state == C_ON_SWAPOUT_Q || c_seg->c_state == C_ON_SWAPPEDOUT_Q);
-
- if (insert_head == TRUE)
- queue_enter_first(&c_swappedout_sparse_list_head, c_seg, c_segment_t, c_age_list);
- else
- queue_enter(&c_swappedout_sparse_list_head, c_seg, c_segment_t, c_age_list);
+ case C_ON_SWAPIO_Q:
+ assert(old_state == C_ON_SWAPOUT_Q);
- c_swappedout_sparse_count++;
- break;
+ if (insert_head == TRUE) {
+ queue_enter_first(&c_swapio_list_head, c_seg, c_segment_t, c_age_list);
+ } else {
+ queue_enter(&c_swapio_list_head, c_seg, c_segment_t, c_age_list);
+ }
+ c_swapio_count++;
+ break;
- case C_ON_MAJORCOMPACT_Q:
- assert(c_seg->c_state == C_ON_AGE_Q);
+ case C_ON_SWAPPEDOUT_Q:
+ assert(old_state == C_ON_SWAPIO_Q);
- if (insert_head == TRUE)
- queue_enter_first(&c_major_list_head, c_seg, c_segment_t, c_age_list);
- else
- queue_enter(&c_major_list_head, c_seg, c_segment_t, c_age_list);
- c_major_count++;
- break;
+ if (insert_head == TRUE) {
+ queue_enter_first(&c_swappedout_list_head, c_seg, c_segment_t, c_age_list);
+ } else {
+ queue_enter(&c_swappedout_list_head, c_seg, c_segment_t, c_age_list);
+ }
+ c_swappedout_count++;
+ break;
- case C_ON_BAD_Q:
- assert(c_seg->c_state == C_ON_SWAPPEDOUT_Q || c_seg->c_state == C_ON_SWAPPEDOUTSPARSE_Q);
+ case C_ON_SWAPPEDOUTSPARSE_Q:
+ assert(old_state == C_ON_SWAPIO_Q || old_state == C_ON_SWAPPEDOUT_Q);
- if (insert_head == TRUE)
- queue_enter_first(&c_bad_list_head, c_seg, c_segment_t, c_age_list);
- else
- queue_enter(&c_bad_list_head, c_seg, c_segment_t, c_age_list);
- c_bad_count++;
- break;
+ if (insert_head == TRUE) {
+ queue_enter_first(&c_swappedout_sparse_list_head, c_seg, c_segment_t, c_age_list);
+ } else {
+ queue_enter(&c_swappedout_sparse_list_head, c_seg, c_segment_t, c_age_list);
+ }
+
+ c_swappedout_sparse_count++;
+ break;
- default:
- panic("c_seg %p requesting bad c_state = %d\n", c_seg, new_state);
+ case C_ON_MAJORCOMPACT_Q:
+ assert(old_state == C_ON_AGE_Q);
+
+ if (insert_head == TRUE) {
+ queue_enter_first(&c_major_list_head, c_seg, c_segment_t, c_age_list);
+ } else {
+ queue_enter(&c_major_list_head, c_seg, c_segment_t, c_age_list);
+ }
+ c_major_count++;
+ break;
+
+ case C_ON_BAD_Q:
+ assert(old_state == C_ON_SWAPPEDOUT_Q || old_state == C_ON_SWAPPEDOUTSPARSE_Q);
+
+ if (insert_head == TRUE) {
+ queue_enter_first(&c_bad_list_head, c_seg, c_segment_t, c_age_list);
+ } else {
+ queue_enter(&c_bad_list_head, c_seg, c_segment_t, c_age_list);
+ }
+ c_bad_count++;
+ break;
+
+ default:
+ panic("c_seg %p requesting bad c_state = %d\n", c_seg, new_state);
}
c_seg->c_state = new_state;
}
void
c_seg_free_locked(c_segment_t c_seg)
{
- int segno;
- int pages_populated = 0;
- int32_t *c_buffer = NULL;
- uint64_t c_swap_handle = 0;
+ int segno;
+ int pages_populated = 0;
+ int32_t *c_buffer = NULL;
+ uint64_t c_swap_handle = 0;
assert(c_seg->c_busy);
+ assert(c_seg->c_slots_used == 0);
assert(!c_seg->c_on_minorcompact_q);
assert(!c_seg->c_busy_swapping);
if (c_seg->c_overage_swap == TRUE) {
c_overage_swapped_count--;
c_seg->c_overage_swap = FALSE;
- }
- if ( !(C_SEG_IS_ONDISK(c_seg)))
+ }
+ if (!(C_SEG_IS_ONDISK(c_seg))) {
c_buffer = c_seg->c_store.c_buffer;
- else
+ } else {
c_swap_handle = c_seg->c_store.c_swap_handle;
+ }
c_seg_switch_state(c_seg, C_IS_FREE, FALSE);
- lck_mtx_unlock_always(c_list_lock);
-
if (c_buffer) {
pages_populated = (round_page_32(C_SEG_OFFSET_TO_BYTES(c_seg->c_populated_offset))) / PAGE_SIZE;
c_seg->c_store.c_buffer = NULL;
- } else
+ } else {
+#if CONFIG_FREEZE
+ c_seg_update_task_owner(c_seg, NULL);
+#endif /* CONFIG_FREEZE */
+
c_seg->c_store.c_swap_handle = (uint64_t)-1;
+ }
lck_mtx_unlock_always(&c_seg->c_lock);
- if (c_buffer) {
- if (pages_populated)
- kernel_memory_depopulate(compressor_map, (vm_offset_t) c_buffer, pages_populated * PAGE_SIZE, KMA_COMPRESSOR);
+ lck_mtx_unlock_always(c_list_lock);
+ if (c_buffer) {
+ if (pages_populated) {
+ kernel_memory_depopulate(compressor_map, (vm_offset_t)c_buffer,
+ pages_populated * PAGE_SIZE, KMA_COMPRESSOR, VM_KERN_MEMORY_COMPRESSOR);
+ }
} else if (c_swap_handle) {
- /*
- * Free swap space on disk.
+ /*
+ * Free swap space on disk.
*/
vm_swap_free(c_swap_handle);
}
lck_mtx_lock_spin_always(&c_seg->c_lock);
-
+ /*
+ * c_seg must remain busy until
+ * after the call to vm_swap_free
+ */
C_SEG_WAKEUP_DONE(c_seg);
lck_mtx_unlock_always(&c_seg->c_lock);
/*
* because the c_buffer is now associated with the segno,
* we can't put the segno back on the free list until
- * after we have depopulated the c_buffer range, or
- * we run the risk of depopulating a range that is
+ * after we have depopulated the c_buffer range, or
+ * we run the risk of depopulating a range that is
* now being used in one of the compressor heads
*/
c_segments[segno].c_segno = c_free_segno_head;
lck_mtx_destroy(&c_seg->c_lock, &vm_compressor_lck_grp);
- if (c_seg->c_slot_var_array_len)
- kfree(c_seg->c_slot_var_array, sizeof(struct c_slot) * c_seg->c_slot_var_array_len);
+ if (c_seg->c_slot_var_array_len) {
+ kheap_free(KHEAP_DATA_BUFFERS, c_seg->c_slot_var_array,
+ sizeof(struct c_slot) * c_seg->c_slot_var_array_len);
+ }
zfree(compressor_segment_zone, c_seg);
}
-
+#if DEVELOPMENT || DEBUG
int c_seg_trim_page_count = 0;
+#endif
void
c_seg_trim_tail(c_segment_t c_seg)
{
- c_slot_t cs;
- uint32_t c_size;
- uint32_t c_offset;
- uint32_t c_rounded_size;
- uint16_t current_nextslot;
- uint32_t current_populated_offset;
+ c_slot_t cs;
+ uint32_t c_size;
+ uint32_t c_offset;
+ uint32_t c_rounded_size;
+ uint16_t current_nextslot;
+ uint32_t current_populated_offset;
- if (c_seg->c_bytes_used == 0)
+ if (c_seg->c_bytes_used == 0) {
return;
+ }
current_nextslot = c_seg->c_nextslot;
current_populated_offset = c_seg->c_populated_offset;
-
- while (c_seg->c_nextslot) {
+ while (c_seg->c_nextslot) {
cs = C_SEG_SLOT_FROM_INDEX(c_seg, (c_seg->c_nextslot - 1));
c_size = UNPACK_C_SIZE(cs);
c_offset = cs->c_offset + C_SEG_BYTES_TO_OFFSET(c_rounded_size);
c_seg->c_nextoffset = c_offset;
- c_seg->c_populated_offset = (c_offset + (C_SEG_BYTES_TO_OFFSET(PAGE_SIZE) - 1)) & ~(C_SEG_BYTES_TO_OFFSET(PAGE_SIZE) - 1);
+ c_seg->c_populated_offset = (c_offset + (C_SEG_BYTES_TO_OFFSET(PAGE_SIZE) - 1)) &
+ ~(C_SEG_BYTES_TO_OFFSET(PAGE_SIZE) - 1);
- if (c_seg->c_firstemptyslot > c_seg->c_nextslot)
+ if (c_seg->c_firstemptyslot > c_seg->c_nextslot) {
c_seg->c_firstemptyslot = c_seg->c_nextslot;
-
+ }
+#if DEVELOPMENT || DEBUG
c_seg_trim_page_count += ((round_page_32(C_SEG_OFFSET_TO_BYTES(current_populated_offset)) -
- round_page_32(C_SEG_OFFSET_TO_BYTES(c_seg->c_populated_offset))) / PAGE_SIZE);
+ round_page_32(C_SEG_OFFSET_TO_BYTES(c_seg->c_populated_offset))) /
+ PAGE_SIZE);
+#endif
}
break;
- }
+ }
c_seg->c_nextslot--;
}
assert(c_seg->c_nextslot);
c_seg_minor_compaction_and_unlock(c_segment_t c_seg, boolean_t clear_busy)
{
c_slot_mapping_t slot_ptr;
- uint32_t c_offset = 0;
- uint32_t old_populated_offset;
- uint32_t c_rounded_size;
- uint32_t c_size;
- int c_indx = 0;
- int i;
- c_slot_t c_dst;
- c_slot_t c_src;
+ uint32_t c_offset = 0;
+ uint32_t old_populated_offset;
+ uint32_t c_rounded_size;
+ uint32_t c_size;
+ uint16_t c_indx = 0;
+ int i;
+ c_slot_t c_dst;
+ c_slot_t c_src;
assert(c_seg->c_busy);
#endif
if (c_seg->c_bytes_used == 0) {
c_seg_free(c_seg);
- return (1);
+ return 1;
}
lck_mtx_unlock_always(&c_seg->c_lock);
- if (c_seg->c_firstemptyslot >= c_seg->c_nextslot || C_SEG_UNUSED_BYTES(c_seg) < PAGE_SIZE)
+ if (c_seg->c_firstemptyslot >= c_seg->c_nextslot || C_SEG_UNUSED_BYTES(c_seg) < PAGE_SIZE) {
goto done;
-
+ }
+
+/* TODO: assert first emptyslot's c_size is actually 0 */
+
#if DEVELOPMENT || DEBUG
C_SEG_MAKE_WRITEABLE(c_seg);
#endif
#endif
c_indx = c_seg->c_firstemptyslot;
c_dst = C_SEG_SLOT_FROM_INDEX(c_seg, c_indx);
-
+
old_populated_offset = c_seg->c_populated_offset;
c_offset = c_dst->c_offset;
for (i = c_indx + 1; i < c_seg->c_nextslot && c_offset < c_seg->c_nextoffset; i++) {
-
c_src = C_SEG_SLOT_FROM_INDEX(c_seg, i);
c_size = UNPACK_C_SIZE(c_src);
- if (c_size == 0)
+ if (c_size == 0) {
continue;
+ }
c_rounded_size = (c_size + C_SEG_OFFSET_ALIGNMENT_MASK) & ~C_SEG_OFFSET_ALIGNMENT_MASK;
-
+/* N.B.: This memcpy may be an overlapping copy */
memcpy(&c_seg->c_store.c_buffer[c_offset], &c_seg->c_store.c_buffer[c_src->c_offset], c_rounded_size);
cslot_copy(c_dst, c_src);
c_dst->c_offset = c_offset;
- slot_ptr = (c_slot_mapping_t)C_SLOT_UNPACK_PTR(c_dst);
+ slot_ptr = C_SLOT_UNPACK_PTR(c_dst);
slot_ptr->s_cindx = c_indx;
c_offset += C_SEG_BYTES_TO_OFFSET(c_rounded_size);
c_seg_validate(c_seg, TRUE);
#endif
if (old_populated_offset > c_seg->c_populated_offset) {
- uint32_t gc_size;
- int32_t *gc_ptr;
+ uint32_t gc_size;
+ int32_t *gc_ptr;
gc_size = C_SEG_OFFSET_TO_BYTES(old_populated_offset - c_seg->c_populated_offset);
gc_ptr = &c_seg->c_store.c_buffer[c_seg->c_populated_offset];
- kernel_memory_depopulate(compressor_map, (vm_offset_t)gc_ptr, gc_size, KMA_COMPRESSOR);
+ kernel_memory_depopulate(compressor_map, (vm_offset_t)gc_ptr, gc_size,
+ KMA_COMPRESSOR, VM_KERN_MEMORY_COMPRESSOR);
}
#if DEVELOPMENT || DEBUG
C_SEG_WAKEUP_DONE(c_seg);
lck_mtx_unlock_always(&c_seg->c_lock);
}
- return (0);
+ return 0;
}
static void
c_seg_alloc_nextslot(c_segment_t c_seg)
{
- struct c_slot *old_slot_array = NULL;
- struct c_slot *new_slot_array = NULL;
- int newlen;
- int oldlen;
+ struct c_slot *old_slot_array = NULL;
+ struct c_slot *new_slot_array = NULL;
+ int newlen;
+ int oldlen;
- if (c_seg->c_nextslot < c_seg_fixed_array_len)
+ if (c_seg->c_nextslot < c_seg_fixed_array_len) {
return;
+ }
if ((c_seg->c_nextslot - c_seg_fixed_array_len) >= c_seg->c_slot_var_array_len) {
-
oldlen = c_seg->c_slot_var_array_len;
old_slot_array = c_seg->c_slot_var_array;
- if (oldlen == 0)
+ if (oldlen == 0) {
newlen = C_SEG_SLOT_VAR_ARRAY_MIN_LEN;
- else
+ } else {
newlen = oldlen * 2;
+ }
- new_slot_array = (struct c_slot *)kalloc(sizeof(struct c_slot) * newlen);
+ new_slot_array = kheap_alloc(KHEAP_DATA_BUFFERS,
+ sizeof(struct c_slot) * newlen, Z_WAITOK);
lck_mtx_lock_spin_always(&c_seg->c_lock);
- if (old_slot_array)
- memcpy((char *)new_slot_array, (char *)old_slot_array, sizeof(struct c_slot) * oldlen);
+ if (old_slot_array) {
+ memcpy(new_slot_array, old_slot_array,
+ sizeof(struct c_slot) * oldlen);
+ }
c_seg->c_slot_var_array_len = newlen;
c_seg->c_slot_var_array = new_slot_array;
lck_mtx_unlock_always(&c_seg->c_lock);
-
- if (old_slot_array)
- kfree(old_slot_array, sizeof(struct c_slot) * oldlen);
+
+ if (old_slot_array) {
+ kheap_free(KHEAP_DATA_BUFFERS, old_slot_array,
+ sizeof(struct c_slot) * oldlen);
+ }
}
}
+#define C_SEG_MAJOR_COMPACT_STATS_MAX (30)
struct {
uint64_t asked_permission;
uint64_t wasted_space_in_swapouts;
uint64_t count_of_swapouts;
uint64_t count_of_freed_segs;
-} c_seg_major_compact_stats;
+ uint64_t bailed_compactions;
+ uint64_t bytes_freed_rate_us;
+} c_seg_major_compact_stats[C_SEG_MAJOR_COMPACT_STATS_MAX];
+int c_seg_major_compact_stats_now = 0;
-#define C_MAJOR_COMPACTION_SIZE_APPROPRIATE ((C_SEG_BUFSIZE * 90) / 100)
+
+#define C_MAJOR_COMPACTION_SIZE_APPROPRIATE ((C_SEG_BUFSIZE * 90) / 100)
boolean_t
c_segment_t c_seg_dst,
c_segment_t c_seg_src)
{
-
- c_seg_major_compact_stats.asked_permission++;
+ c_seg_major_compact_stats[c_seg_major_compact_stats_now].asked_permission++;
if (c_seg_src->c_bytes_used >= C_MAJOR_COMPACTION_SIZE_APPROPRIATE &&
- c_seg_dst->c_bytes_used >= C_MAJOR_COMPACTION_SIZE_APPROPRIATE)
- return (FALSE);
+ c_seg_dst->c_bytes_used >= C_MAJOR_COMPACTION_SIZE_APPROPRIATE) {
+ return FALSE;
+ }
if (c_seg_dst->c_nextoffset >= C_SEG_OFF_LIMIT || c_seg_dst->c_nextslot >= C_SLOT_MAX_INDEX) {
/*
* destination segment is full... can't compact
*/
- return (FALSE);
+ return FALSE;
}
- return (TRUE);
+ return TRUE;
}
c_segment_t c_seg_src)
{
c_slot_mapping_t slot_ptr;
- uint32_t c_rounded_size;
- uint32_t c_size;
- uint16_t dst_slot;
- int i;
- c_slot_t c_dst;
- c_slot_t c_src;
- boolean_t keep_compacting = TRUE;
-
+ uint32_t c_rounded_size;
+ uint32_t c_size;
+ uint16_t dst_slot;
+ int i;
+ c_slot_t c_dst;
+ c_slot_t c_src;
+ boolean_t keep_compacting = TRUE;
+
/*
* segments are not locked but they are both marked c_busy
* which keeps c_decompress from working on them...
c_seg_dst->c_was_major_compacted++;
c_seg_src->c_was_major_donor++;
#endif
- c_seg_major_compact_stats.compactions++;
+ c_seg_major_compact_stats[c_seg_major_compact_stats_now].compactions++;
dst_slot = c_seg_dst->c_nextslot;
for (i = 0; i < c_seg_src->c_nextslot; i++) {
-
c_src = C_SEG_SLOT_FROM_INDEX(c_seg_src, i);
c_size = UNPACK_C_SIZE(c_src);
}
if (C_SEG_OFFSET_TO_BYTES(c_seg_dst->c_populated_offset - c_seg_dst->c_nextoffset) < (unsigned) c_size) {
- int size_to_populate;
+ int size_to_populate;
/* doesn't fit */
size_to_populate = C_SEG_BUFSIZE - C_SEG_OFFSET_TO_BYTES(c_seg_dst->c_populated_offset);
- if (size_to_populate == 0) {
+ if (size_to_populate == 0) {
/* can't fit */
keep_compacting = FALSE;
break;
}
- if (size_to_populate > C_SEG_MAX_POPULATE_SIZE)
+ if (size_to_populate > C_SEG_MAX_POPULATE_SIZE) {
size_to_populate = C_SEG_MAX_POPULATE_SIZE;
+ }
kernel_memory_populate(compressor_map,
- (vm_offset_t) &c_seg_dst->c_store.c_buffer[c_seg_dst->c_populated_offset],
- size_to_populate,
- KMA_COMPRESSOR,
- VM_KERN_MEMORY_COMPRESSOR);
+ (vm_offset_t) &c_seg_dst->c_store.c_buffer[c_seg_dst->c_populated_offset],
+ size_to_populate,
+ KMA_COMPRESSOR,
+ VM_KERN_MEMORY_COMPRESSOR);
c_seg_dst->c_populated_offset += C_SEG_BYTES_TO_OFFSET(size_to_populate);
assert(C_SEG_OFFSET_TO_BYTES(c_seg_dst->c_populated_offset) <= C_SEG_BUFSIZE);
c_rounded_size = (c_size + C_SEG_OFFSET_ALIGNMENT_MASK) & ~C_SEG_OFFSET_ALIGNMENT_MASK;
- c_seg_major_compact_stats.moved_slots++;
- c_seg_major_compact_stats.moved_bytes += c_size;
+ c_seg_major_compact_stats[c_seg_major_compact_stats_now].moved_slots++;
+ c_seg_major_compact_stats[c_seg_major_compact_stats_now].moved_bytes += c_size;
cslot_copy(c_dst, c_src);
c_dst->c_offset = c_seg_dst->c_nextoffset;
- if (c_seg_dst->c_firstemptyslot == c_seg_dst->c_nextslot)
+ if (c_seg_dst->c_firstemptyslot == c_seg_dst->c_nextslot) {
c_seg_dst->c_firstemptyslot++;
+ }
+ c_seg_dst->c_slots_used++;
c_seg_dst->c_nextslot++;
c_seg_dst->c_bytes_used += c_rounded_size;
c_seg_dst->c_nextoffset += C_SEG_BYTES_TO_OFFSET(c_rounded_size);
c_seg_src->c_bytes_unused += c_rounded_size;
c_seg_src->c_firstemptyslot = 0;
+ assert(c_seg_src->c_slots_used);
+ c_seg_src->c_slots_used--;
+
if (c_seg_dst->c_nextoffset >= C_SEG_OFF_LIMIT || c_seg_dst->c_nextslot >= C_SLOT_MAX_INDEX) {
/* dest segment is now full */
keep_compacting = FALSE;
C_SEG_WRITE_PROTECT(c_seg_dst);
#endif
if (dst_slot < c_seg_dst->c_nextslot) {
-
PAGE_REPLACEMENT_ALLOWED(TRUE);
/*
- * we've now locked out c_decompress from
+ * we've now locked out c_decompress from
* converting the slot passed into it into
- * a c_segment_t which allows us to use
+ * a c_segment_t which allows us to use
* the backptr to change which c_segment and
* index the slot points to
*/
while (dst_slot < c_seg_dst->c_nextslot) {
-
c_dst = C_SEG_SLOT_FROM_INDEX(c_seg_dst, dst_slot);
-
- slot_ptr = (c_slot_mapping_t)C_SLOT_UNPACK_PTR(c_dst);
+
+ slot_ptr = C_SLOT_UNPACK_PTR(c_dst);
/* <csegno=0,indx=0> would mean "empty slot", so use csegno+1 */
slot_ptr->s_cseg = c_seg_dst->c_mysegno + 1;
slot_ptr->s_cindx = dst_slot++;
}
PAGE_REPLACEMENT_ALLOWED(FALSE);
}
- return (keep_compacting);
+ return keep_compacting;
}
uint64_t
vm_compressor_compute_elapsed_msecs(clock_sec_t end_sec, clock_nsec_t end_nsec, clock_sec_t start_sec, clock_nsec_t start_nsec)
{
- uint64_t end_msecs;
- uint64_t start_msecs;
-
+ uint64_t end_msecs;
+ uint64_t start_msecs;
+
end_msecs = (end_sec * 1000) + end_nsec / 1000000;
start_msecs = (start_sec * 1000) + start_nsec / 1000000;
- return (end_msecs - start_msecs);
+ return end_msecs - start_msecs;
}
uint32_t compressor_thrashing_min_per_10msecs = 20;
/* When true, reset sample data next chance we get. */
-static boolean_t compressor_need_sample_reset = FALSE;
-
-extern uint32_t vm_page_filecache_min;
+static boolean_t compressor_need_sample_reset = FALSE;
void
compute_swapout_target_age(void)
{
- clock_sec_t cur_ts_sec;
- clock_nsec_t cur_ts_nsec;
- uint32_t min_operations_needed_in_this_sample;
- uint64_t elapsed_msecs_in_eval;
- uint64_t elapsed_msecs_in_sample;
- boolean_t need_eval_reset = FALSE;
+ clock_sec_t cur_ts_sec;
+ clock_nsec_t cur_ts_nsec;
+ uint32_t min_operations_needed_in_this_sample;
+ uint64_t elapsed_msecs_in_eval;
+ uint64_t elapsed_msecs_in_sample;
+ boolean_t need_eval_reset = FALSE;
clock_get_system_nanotime(&cur_ts_sec, &cur_ts_nsec);
goto done;
}
elapsed_msecs_in_eval = vm_compressor_compute_elapsed_msecs(cur_ts_sec, cur_ts_nsec, start_of_eval_period_sec, start_of_eval_period_nsec);
-
- if (elapsed_msecs_in_eval < compressor_eval_period_in_msecs)
+
+ if (elapsed_msecs_in_eval < compressor_eval_period_in_msecs) {
goto done;
+ }
need_eval_reset = TRUE;
KERNEL_DEBUG(0xe0400020 | DBG_FUNC_START, elapsed_msecs_in_eval, sample_period_compression_count, sample_period_decompression_count, 0, 0);
if ((sample_period_compression_count - last_eval_compression_count) < min_operations_needed_in_this_sample ||
(sample_period_decompression_count - last_eval_decompression_count) < min_operations_needed_in_this_sample) {
-
KERNEL_DEBUG(0xe0400020 | DBG_FUNC_END, sample_period_compression_count - last_eval_compression_count,
- sample_period_decompression_count - last_eval_decompression_count, 0, 1, 0);
+ sample_period_decompression_count - last_eval_decompression_count, 0, 1, 0);
swapout_target_age = 0;
last_eval_decompression_count = sample_period_decompression_count;
if (elapsed_msecs_in_sample < compressor_sample_min_in_msecs) {
-
KERNEL_DEBUG(0xe0400020 | DBG_FUNC_END, swapout_target_age, 0, 0, 5, 0);
goto done;
}
if (sample_period_decompression_count > ((compressor_thrashing_threshold_per_10msecs * elapsed_msecs_in_sample) / 10)) {
-
- uint64_t running_total;
- uint64_t working_target;
- uint64_t aging_target;
- uint32_t oldest_age_of_csegs_sampled = 0;
- uint64_t working_set_approximation = 0;
+ uint64_t running_total;
+ uint64_t working_target;
+ uint64_t aging_target;
+ uint32_t oldest_age_of_csegs_sampled = 0;
+ uint64_t working_set_approximation = 0;
swapout_target_age = 0;
- working_target = (sample_period_decompression_count / 100) * 95; /* 95 percent */
- aging_target = (sample_period_decompression_count / 100) * 1; /* 1 percent */
+ working_target = (sample_period_decompression_count / 100) * 95; /* 95 percent */
+ aging_target = (sample_period_decompression_count / 100) * 1; /* 1 percent */
running_total = 0;
for (oldest_age_of_csegs_sampled = 0; oldest_age_of_csegs_sampled < DECOMPRESSION_SAMPLE_MAX_AGE; oldest_age_of_csegs_sampled++) {
-
running_total += age_of_decompressions_during_sample_period[oldest_age_of_csegs_sampled];
working_set_approximation += oldest_age_of_csegs_sampled * age_of_decompressions_during_sample_period[oldest_age_of_csegs_sampled];
- if (running_total >= working_target)
+ if (running_total >= working_target) {
break;
+ }
}
if (oldest_age_of_csegs_sampled < DECOMPRESSION_SAMPLE_MAX_AGE) {
-
working_set_approximation = (working_set_approximation * 1000) / elapsed_msecs_in_sample;
if (working_set_approximation < VM_PAGE_COMPRESSOR_COUNT) {
-
running_total = overage_decompressions_during_sample_period;
for (oldest_age_of_csegs_sampled = DECOMPRESSION_SAMPLE_MAX_AGE - 1; oldest_age_of_csegs_sampled; oldest_age_of_csegs_sampled--) {
running_total += age_of_decompressions_during_sample_period[oldest_age_of_csegs_sampled];
- if (running_total >= aging_target)
+ if (running_total >= aging_target) {
break;
+ }
}
swapout_target_age = (uint32_t)cur_ts_sec - oldest_age_of_csegs_sampled;
} else {
KERNEL_DEBUG(0xe0400020 | DBG_FUNC_END, working_set_approximation, VM_PAGE_COMPRESSOR_COUNT, 0, 3, 0);
}
- } else
+ } else {
KERNEL_DEBUG(0xe0400020 | DBG_FUNC_END, working_target, running_total, 0, 4, 0);
+ }
compressor_need_sample_reset = TRUE;
need_eval_reset = TRUE;
- } else
+ } else {
KERNEL_DEBUG(0xe0400020 | DBG_FUNC_END, sample_period_decompression_count, (compressor_thrashing_threshold_per_10msecs * elapsed_msecs_in_sample) / 10, 0, 6, 0);
+ }
done:
if (compressor_need_sample_reset == TRUE) {
bzero(age_of_decompressions_during_sample_period, sizeof(age_of_decompressions_during_sample_period));
}
-int compaction_swapper_init_now = 0;
-int compaction_swapper_running = 0;
-int compaction_swapper_awakened = 0;
-int compaction_swapper_abort = 0;
+int compaction_swapper_init_now = 0;
+int compaction_swapper_running = 0;
+int compaction_swapper_awakened = 0;
+int compaction_swapper_abort = 0;
#if CONFIG_JETSAM
-boolean_t memorystatus_kill_on_VM_thrashing(boolean_t);
-boolean_t memorystatus_kill_on_FC_thrashing(boolean_t);
-int compressor_thrashing_induced_jetsam = 0;
-int filecache_thrashing_induced_jetsam = 0;
-static boolean_t vm_compressor_thrashing_detected = FALSE;
+boolean_t memorystatus_kill_on_VM_compressor_thrashing(boolean_t);
+boolean_t memorystatus_kill_on_VM_compressor_space_shortage(boolean_t);
+boolean_t memorystatus_kill_on_FC_thrashing(boolean_t);
+int compressor_thrashing_induced_jetsam = 0;
+int filecache_thrashing_induced_jetsam = 0;
+static boolean_t vm_compressor_thrashing_detected = FALSE;
#endif /* CONFIG_JETSAM */
static boolean_t
compressor_needs_to_swap(void)
{
- boolean_t should_swap = FALSE;
+ boolean_t should_swap = FALSE;
if (vm_swapout_ripe_segments == TRUE && c_overage_swapped_count < c_overage_swapped_limit) {
- c_segment_t c_seg;
- clock_sec_t now;
- clock_sec_t age;
- clock_nsec_t nsec;
-
- clock_get_system_nanotime(&now, &nsec);
+ c_segment_t c_seg;
+ clock_sec_t now;
+ clock_sec_t age;
+ clock_nsec_t nsec;
+
+ clock_get_system_nanotime(&now, &nsec);
age = 0;
lck_mtx_lock_spin_always(c_list_lock);
- if ( !queue_empty(&c_age_list_head)) {
+ if (!queue_empty(&c_age_list_head)) {
c_seg = (c_segment_t) queue_first(&c_age_list_head);
age = now - c_seg->c_creation_ts;
}
lck_mtx_unlock_always(c_list_lock);
- if (age >= vm_ripe_target_age)
- return (TRUE);
+ if (age >= vm_ripe_target_age) {
+ should_swap = TRUE;
+ goto check_if_low_space;
+ }
}
if (VM_CONFIG_SWAP_IS_ACTIVE) {
if (COMPRESSOR_NEEDS_TO_SWAP()) {
- return (TRUE);
+ should_swap = TRUE;
+ goto check_if_low_space;
}
if (VM_PAGE_Q_THROTTLED(&vm_pageout_queue_external) && vm_page_anonymous_count < (vm_page_inactive_count / 20)) {
- return (TRUE);
+ should_swap = TRUE;
+ goto check_if_low_space;
+ }
+ if (vm_page_free_count < (vm_page_free_reserved - (COMPRESSOR_FREE_RESERVED_LIMIT * 2))) {
+ should_swap = TRUE;
+ goto check_if_low_space;
}
- if (vm_page_free_count < (vm_page_free_reserved - (COMPRESSOR_FREE_RESERVED_LIMIT * 2)))
- return (TRUE);
}
+
+#if (XNU_TARGET_OS_OSX && __arm64__)
+ /*
+ * Thrashing detection disabled.
+ */
+#else /* (XNU_TARGET_OS_OSX && __arm64__) */
+
compute_swapout_target_age();
-
+
if (swapout_target_age) {
- c_segment_t c_seg;
+ c_segment_t c_seg;
lck_mtx_lock_spin_always(c_list_lock);
if (!queue_empty(&c_age_list_head)) {
-
c_seg = (c_segment_t) queue_first(&c_age_list_head);
- if (c_seg->c_creation_ts > swapout_target_age)
+ if (c_seg->c_creation_ts > swapout_target_age) {
swapout_target_age = 0;
+ }
}
lck_mtx_unlock_always(c_list_lock);
}
#if CONFIG_PHANTOM_CACHE
- if (vm_phantom_cache_check_pressure())
+ if (vm_phantom_cache_check_pressure()) {
should_swap = TRUE;
+ }
#endif
- if (swapout_target_age)
+ if (swapout_target_age) {
should_swap = TRUE;
+ }
+#endif /* (XNU_TARGET_OS_OSX && __arm64__) */
-#if CONFIG_JETSAM
- if (should_swap || c_segment_pages_compressed > c_segment_pages_compressed_nearing_limit) {
+check_if_low_space:
+#if CONFIG_JETSAM
+ if (should_swap || vm_compressor_low_on_space() == TRUE) {
if (vm_compressor_thrashing_detected == FALSE) {
vm_compressor_thrashing_detected = TRUE;
-
- if (swapout_target_age || c_segment_pages_compressed > c_segment_pages_compressed_nearing_limit) {
- memorystatus_kill_on_VM_thrashing(TRUE /* async */);
+
+ if (swapout_target_age) {
+ /* The compressor is thrashing. */
+ memorystatus_kill_on_VM_compressor_thrashing(TRUE /* async */);
+ compressor_thrashing_induced_jetsam++;
+ } else if (vm_compressor_low_on_space() == TRUE) {
+ /* The compressor is running low on space. */
+ memorystatus_kill_on_VM_compressor_space_shortage(TRUE /* async */);
compressor_thrashing_induced_jetsam++;
} else {
memorystatus_kill_on_FC_thrashing(TRUE /* async */);
should_swap = FALSE;
}
+#else /* CONFIG_JETSAM */
+ if (should_swap && vm_swap_low_on_space()) {
+ vm_compressor_take_paging_space_action();
+ }
#endif /* CONFIG_JETSAM */
if (should_swap == FALSE) {
* segments that have been major compacted
* will be moved to the majorcompact queue
*/
- return (should_swap);
+ return should_swap;
}
#if CONFIG_JETSAM
void
vm_run_compactor(void)
{
- if (c_segment_count == 0)
+ if (c_segment_count == 0) {
return;
+ }
lck_mtx_lock_spin_always(c_list_lock);
return;
}
if (compaction_swapper_running) {
-
- if (vm_restricted_to_single_processor == FALSE) {
+ if (vm_pageout_state.vm_restricted_to_single_processor == FALSE) {
vm_run_compactor_already_running++;
lck_mtx_unlock_always(c_list_lock);
assert_wait((event_t)&compaction_swapper_running, THREAD_UNINT);
lck_mtx_unlock_always(c_list_lock);
-
+
thread_block(THREAD_CONTINUE_NULL);
return;
void
vm_wake_compactor_swapper(void)
{
- if (compaction_swapper_running || compaction_swapper_awakened || c_segment_count == 0)
+ if (compaction_swapper_running || compaction_swapper_awakened || c_segment_count == 0) {
return;
+ }
if (c_minor_count || vm_compressor_needs_to_major_compact()) {
-
lck_mtx_lock_spin_always(c_list_lock);
fastwake_warmup = FALSE;
if (compaction_swapper_running == 0 && compaction_swapper_awakened == 0) {
-
vm_wake_compactor_swapper_calls++;
compaction_swapper_awakened = 1;
void
vm_consider_swapping()
{
- c_segment_t c_seg, c_seg_next;
- clock_sec_t now;
- clock_nsec_t nsec;
+ c_segment_t c_seg, c_seg_next;
+ clock_sec_t now;
+ clock_nsec_t nsec;
assert(VM_CONFIG_SWAP_IS_PRESENT);
assert_wait((event_t)&compaction_swapper_running, THREAD_UNINT);
lck_mtx_unlock_always(c_list_lock);
-
+
thread_block(THREAD_CONTINUE_NULL);
lck_mtx_lock_spin_always(c_list_lock);
vm_swapout_ripe_segments = TRUE;
if (!queue_empty(&c_major_list_head)) {
-
clock_get_system_nanotime(&now, &nsec);
-
+
c_seg = (c_segment_t)queue_first(&c_major_list_head);
while (!queue_end(&c_major_list_head, (queue_entry_t)c_seg)) {
-
- if (c_overage_swapped_count >= c_overage_swapped_limit)
+ if (c_overage_swapped_count >= c_overage_swapped_limit) {
break;
+ }
c_seg_next = (c_segment_t) queue_next(&c_seg->c_age_list);
if ((now - c_seg->c_creation_ts) >= vm_ripe_target_age) {
-
lck_mtx_lock_spin_always(&c_seg->c_lock);
-
+
c_seg_switch_state(c_seg, C_ON_AGE_Q, FALSE);
lck_mtx_unlock_always(&c_seg->c_lock);
compaction_swapper_running = 0;
vm_swapout_ripe_segments = FALSE;
-
+
lck_mtx_unlock_always(c_list_lock);
thread_wakeup((event_t)&compaction_swapper_running);
void
vm_consider_waking_compactor_swapper(void)
{
- boolean_t need_wakeup = FALSE;
+ boolean_t need_wakeup = FALSE;
- if (c_segment_count == 0)
+ if (c_segment_count == 0) {
return;
+ }
- if (compaction_swapper_running || compaction_swapper_awakened)
+ if (compaction_swapper_running || compaction_swapper_awakened) {
return;
+ }
if (!compaction_swapper_inited && !compaction_swapper_init_now) {
compaction_swapper_init_now = 1;
}
if (c_minor_count && (COMPRESSOR_NEEDS_TO_MINOR_COMPACT())) {
-
need_wakeup = TRUE;
-
} else if (compressor_needs_to_swap()) {
-
need_wakeup = TRUE;
-
} else if (c_minor_count) {
- uint64_t total_bytes;
+ uint64_t total_bytes;
total_bytes = compressor_object->resident_page_count * PAGE_SIZE_64;
- if ((total_bytes - compressor_bytes_used) > total_bytes / 10)
+ if ((total_bytes - compressor_bytes_used) > total_bytes / 10) {
need_wakeup = TRUE;
+ }
}
if (need_wakeup == TRUE) {
-
lck_mtx_lock_spin_always(c_list_lock);
fastwake_warmup = FALSE;
}
-#define C_SWAPOUT_LIMIT 4
-#define DELAYED_COMPACTIONS_PER_PASS 30
+#define C_SWAPOUT_LIMIT 4
+#define DELAYED_COMPACTIONS_PER_PASS 30
void
vm_compressor_do_delayed_compactions(boolean_t flush_all)
{
- c_segment_t c_seg;
- int number_compacted = 0;
- boolean_t needs_to_swap = FALSE;
+ c_segment_t c_seg;
+ int number_compacted = 0;
+ boolean_t needs_to_swap = FALSE;
+
+ VM_DEBUG_CONSTANT_EVENT(vm_compressor_do_delayed_compactions, VM_COMPRESSOR_DO_DELAYED_COMPACTIONS, DBG_FUNC_START, c_minor_count, flush_all, 0, 0);
+#if XNU_TARGET_OS_OSX
LCK_MTX_ASSERT(c_list_lock, LCK_MTX_ASSERT_OWNED);
+#endif /* XNU_TARGET_OS_OSX */
while (!queue_empty(&c_minor_list_head) && needs_to_swap == FALSE) {
-
c_seg = (c_segment_t)queue_first(&c_minor_list_head);
-
+
lck_mtx_lock_spin_always(&c_seg->c_lock);
if (c_seg->c_busy) {
-
lck_mtx_unlock_always(c_list_lock);
c_seg_wait_on_busy(c_seg);
lck_mtx_lock_spin_always(c_list_lock);
c_seg_do_minor_compaction_and_unlock(c_seg, TRUE, FALSE, TRUE);
if (VM_CONFIG_SWAP_IS_ACTIVE && (number_compacted++ > DELAYED_COMPACTIONS_PER_PASS)) {
-
- if ((flush_all == TRUE || compressor_needs_to_swap() == TRUE) && c_swapout_count < C_SWAPOUT_LIMIT)
+ if ((flush_all == TRUE || compressor_needs_to_swap() == TRUE) && c_swapout_count < C_SWAPOUT_LIMIT) {
needs_to_swap = TRUE;
+ }
number_compacted = 0;
}
lck_mtx_lock_spin_always(c_list_lock);
}
+
+ VM_DEBUG_CONSTANT_EVENT(vm_compressor_do_delayed_compactions, VM_COMPRESSOR_DO_DELAYED_COMPACTIONS, DBG_FUNC_END, c_minor_count, number_compacted, needs_to_swap, 0);
}
-#define C_SEGMENT_SWAPPEDIN_AGE_LIMIT 10
+#define C_SEGMENT_SWAPPEDIN_AGE_LIMIT 10
static void
vm_compressor_age_swapped_in_segments(boolean_t flush_all)
{
- c_segment_t c_seg;
- clock_sec_t now;
- clock_nsec_t nsec;
+ c_segment_t c_seg;
+ clock_sec_t now;
+ clock_nsec_t nsec;
- clock_get_system_nanotime(&now, &nsec);
-
- while (!queue_empty(&c_swappedin_list_head)) {
+ clock_get_system_nanotime(&now, &nsec);
+ while (!queue_empty(&c_swappedin_list_head)) {
c_seg = (c_segment_t)queue_first(&c_swappedin_list_head);
- if (flush_all == FALSE && (now - c_seg->c_swappedin_ts) < C_SEGMENT_SWAPPEDIN_AGE_LIMIT)
+ if (flush_all == FALSE && (now - c_seg->c_swappedin_ts) < C_SEGMENT_SWAPPEDIN_AGE_LIMIT) {
break;
-
+ }
+
lck_mtx_lock_spin_always(&c_seg->c_lock);
c_seg_switch_state(c_seg, C_ON_AGE_Q, FALSE);
}
-extern int vm_num_swap_files;
-extern int vm_num_pinned_swap_files;
-extern int vm_swappin_enabled;
+extern int vm_num_swap_files;
+extern int vm_num_pinned_swap_files;
+extern int vm_swappin_enabled;
-extern unsigned int vm_swapfile_total_segs_used;
-extern unsigned int vm_swapfile_total_segs_alloced;
+extern unsigned int vm_swapfile_total_segs_used;
+extern unsigned int vm_swapfile_total_segs_alloced;
void
vm_compressor_flush(void)
{
- uint64_t vm_swap_put_failures_at_start;
- wait_result_t wait_result = 0;
- AbsoluteTime startTime, endTime;
- clock_sec_t now_sec;
- clock_nsec_t now_nsec;
- uint64_t nsec;
+ uint64_t vm_swap_put_failures_at_start;
+ wait_result_t wait_result = 0;
+ AbsoluteTime startTime, endTime;
+ clock_sec_t now_sec;
+ clock_nsec_t now_nsec;
+ uint64_t nsec;
HIBLOG("vm_compressor_flush - starting\n");
assert_wait((event_t)&compaction_swapper_running, THREAD_UNINT);
lck_mtx_unlock_always(c_list_lock);
-
+
thread_block(THREAD_CONTINUE_NULL);
lck_mtx_lock_spin_always(c_list_lock);
vm_compressor_compact_and_swap(TRUE);
while (!queue_empty(&c_swapout_list_head)) {
-
- assert_wait_timeout((event_t) &compaction_swapper_running, THREAD_INTERRUPTIBLE, 5000, 1000*NSEC_PER_USEC);
+ assert_wait_timeout((event_t) &compaction_swapper_running, THREAD_INTERRUPTIBLE, 5000, 1000 * NSEC_PER_USEC);
lck_mtx_unlock_always(c_list_lock);
-
+
wait_result = thread_block(THREAD_CONTINUE_NULL);
lck_mtx_lock_spin_always(c_list_lock);
- if (wait_result == THREAD_TIMED_OUT)
+ if (wait_result == THREAD_TIMED_OUT) {
break;
+ }
}
hibernate_flushing = FALSE;
compaction_swapper_running = 0;
- if (vm_swap_put_failures > vm_swap_put_failures_at_start)
+ if (vm_swap_put_failures > vm_swap_put_failures_at_start) {
HIBLOG("vm_compressor_flush failed to clean %llu segments - vm_page_compressor_count(%d)\n",
- vm_swap_put_failures - vm_swap_put_failures_at_start, VM_PAGE_COMPRESSOR_COUNT);
-
+ vm_swap_put_failures - vm_swap_put_failures_at_start, VM_PAGE_COMPRESSOR_COUNT);
+ }
+
lck_mtx_unlock_always(c_list_lock);
thread_wakeup((event_t)&compaction_swapper_running);
- clock_get_uptime(&endTime);
- SUB_ABSOLUTETIME(&endTime, &startTime);
- absolutetime_to_nanoseconds(endTime, &nsec);
+ clock_get_uptime(&endTime);
+ SUB_ABSOLUTETIME(&endTime, &startTime);
+ absolutetime_to_nanoseconds(endTime, &nsec);
HIBLOG("vm_compressor_flush completed - took %qd msecs - vm_num_swap_files = %d, vm_num_pinned_swap_files = %d, vm_swappin_enabled = %d\n",
- nsec / 1000000ULL, vm_num_swap_files, vm_num_pinned_swap_files, vm_swappin_enabled);
+ nsec / 1000000ULL, vm_num_swap_files, vm_num_pinned_swap_files, vm_swappin_enabled);
}
-int compaction_swap_trigger_thread_awakened = 0;
+int compaction_swap_trigger_thread_awakened = 0;
static void
vm_compressor_swap_trigger_thread(void)
/*
* compaction_swapper_init_now is set when the first call to
- * vm_consider_waking_compactor_swapper is made from
- * vm_pageout_scan... since this function is called upon
+ * vm_consider_waking_compactor_swapper is made from
+ * vm_pageout_scan... since this function is called upon
* thread creation, we want to make sure to delay adjusting
* the tuneables until we are awakened via vm_pageout_scan
* so that we are at a point where the vm_swapfile_open will
* be operating on the correct directory (in case the default
- * of /var/vm/ is overridden by the dymanic_pager
+ * of using the VM volume is overridden by the dynamic_pager)
*/
if (compaction_swapper_init_now) {
vm_compaction_swapper_do_init();
- if (vm_restricted_to_single_processor == TRUE)
+ if (vm_pageout_state.vm_restricted_to_single_processor == TRUE) {
thread_vm_bind_group_add();
-
+ }
+#if CONFIG_THREAD_GROUPS
+ thread_group_vm_add();
+#endif
+ thread_set_thread_name(current_thread(), "VM_cswap_trigger");
compaction_swapper_init_now = 0;
}
lck_mtx_lock_spin_always(c_list_lock);
compaction_swapper_awakened = 0;
if (compaction_swapper_running == 0) {
-
compaction_swapper_running = 1;
vm_compressor_compact_and_swap(FALSE);
}
assert_wait((event_t)&c_compressor_swap_trigger, THREAD_UNINT);
- if (compaction_swapper_running == 0)
+ if (compaction_swapper_running == 0) {
thread_wakeup((event_t)&compaction_swapper_running);
+ }
lck_mtx_unlock_always(c_list_lock);
-
+
thread_block((thread_continue_t)vm_compressor_swap_trigger_thread);
-
+
/* NOTREACHED */
}
void
vm_compressor_record_warmup_start(void)
{
- c_segment_t c_seg;
+ c_segment_t c_seg;
lck_mtx_lock_spin_always(c_list_lock);
if (first_c_segment_to_warm_generation_id == 0) {
if (!queue_empty(&c_age_list_head)) {
-
c_seg = (c_segment_t)queue_last(&c_age_list_head);
first_c_segment_to_warm_generation_id = c_seg->c_generation_id;
- } else
+ } else {
first_c_segment_to_warm_generation_id = 0;
+ }
fastwake_recording_in_progress = TRUE;
}
}
-void
+void
vm_compressor_record_warmup_end(void)
{
- c_segment_t c_seg;
+ c_segment_t c_seg;
lck_mtx_lock_spin_always(c_list_lock);
if (fastwake_recording_in_progress == TRUE) {
-
if (!queue_empty(&c_age_list_head)) {
-
c_seg = (c_segment_t)queue_last(&c_age_list_head);
last_c_segment_to_warm_generation_id = c_seg->c_generation_id;
- } else
+ } else {
last_c_segment_to_warm_generation_id = first_c_segment_to_warm_generation_id;
+ }
fastwake_recording_in_progress = FALSE;
}
-#define DELAY_TRIM_ON_WAKE_SECS 25
+#define DELAY_TRIM_ON_WAKE_SECS 25
void
vm_compressor_delay_trim(void)
{
- clock_sec_t sec;
- clock_nsec_t nsec;
+ clock_sec_t sec;
+ clock_nsec_t nsec;
clock_get_system_nanotime(&sec, &nsec);
dont_trim_until_ts = sec + DELAY_TRIM_ON_WAKE_SECS;
vm_compressor_do_warmup(void)
{
lck_mtx_lock_spin_always(c_list_lock);
-
+
if (first_c_segment_to_warm_generation_id == last_c_segment_to_warm_generation_id) {
first_c_segment_to_warm_generation_id = last_c_segment_to_warm_generation_id = 0;
}
if (compaction_swapper_running == 0 && compaction_swapper_awakened == 0) {
-
fastwake_warmup = TRUE;
compaction_swapper_awakened = 1;
lck_mtx_unlock_always(c_list_lock);
}
+void
+do_fastwake_warmup_all(void)
+{
+ lck_mtx_lock_spin_always(c_list_lock);
+
+ if (queue_empty(&c_swappedout_list_head) && queue_empty(&c_swappedout_sparse_list_head)) {
+ lck_mtx_unlock_always(c_list_lock);
+ return;
+ }
+
+ fastwake_warmup = TRUE;
+
+ do_fastwake_warmup(&c_swappedout_list_head, TRUE);
+
+ do_fastwake_warmup(&c_swappedout_sparse_list_head, TRUE);
+
+ fastwake_warmup = FALSE;
+
+ lck_mtx_unlock_always(c_list_lock);
+}
void
-do_fastwake_warmup(void)
+do_fastwake_warmup(queue_head_t *c_queue, boolean_t consider_all_cseg)
{
- c_segment_t c_seg = NULL;
- AbsoluteTime startTime, endTime;
- uint64_t nsec;
+ c_segment_t c_seg = NULL;
+ AbsoluteTime startTime, endTime;
+ uint64_t nsec;
HIBLOG("vm_compressor_fastwake_warmup (%qd - %qd) - starting\n", first_c_segment_to_warm_generation_id, last_c_segment_to_warm_generation_id);
lck_mtx_unlock_always(c_list_lock);
proc_set_thread_policy(current_thread(),
- TASK_POLICY_INTERNAL, TASK_POLICY_IO, THROTTLE_LEVEL_COMPRESSOR_TIER2);
+ TASK_POLICY_INTERNAL, TASK_POLICY_IO, THROTTLE_LEVEL_COMPRESSOR_TIER2);
PAGE_REPLACEMENT_DISALLOWED(TRUE);
lck_mtx_lock_spin_always(c_list_lock);
- while (!queue_empty(&c_swappedout_list_head) && fastwake_warmup == TRUE) {
-
- c_seg = (c_segment_t) queue_first(&c_swappedout_list_head);
+ while (!queue_empty(c_queue) && fastwake_warmup == TRUE) {
+ c_seg = (c_segment_t) queue_first(c_queue);
- if (c_seg->c_generation_id < first_c_segment_to_warm_generation_id ||
- c_seg->c_generation_id > last_c_segment_to_warm_generation_id)
- break;
+ if (consider_all_cseg == FALSE) {
+ if (c_seg->c_generation_id < first_c_segment_to_warm_generation_id ||
+ c_seg->c_generation_id > last_c_segment_to_warm_generation_id) {
+ break;
+ }
- if (vm_page_free_count < (AVAILABLE_MEMORY / 4))
- break;
+ if (vm_page_free_count < (AVAILABLE_MEMORY / 4)) {
+ break;
+ }
+ }
lck_mtx_lock_spin_always(&c_seg->c_lock);
lck_mtx_unlock_always(c_list_lock);
-
+
if (c_seg->c_busy) {
PAGE_REPLACEMENT_DISALLOWED(FALSE);
c_seg_wait_on_busy(c_seg);
PAGE_REPLACEMENT_DISALLOWED(TRUE);
} else {
- if (c_seg_swapin(c_seg, TRUE, FALSE) == 0)
+ if (c_seg_swapin(c_seg, TRUE, FALSE) == 0) {
lck_mtx_unlock_always(&c_seg->c_lock);
+ }
c_segment_warmup_count++;
PAGE_REPLACEMENT_DISALLOWED(FALSE);
PAGE_REPLACEMENT_DISALLOWED(FALSE);
proc_set_thread_policy(current_thread(),
- TASK_POLICY_INTERNAL, TASK_POLICY_IO, THROTTLE_LEVEL_COMPRESSOR_TIER0);
+ TASK_POLICY_INTERNAL, TASK_POLICY_IO, THROTTLE_LEVEL_COMPRESSOR_TIER0);
- clock_get_uptime(&endTime);
- SUB_ABSOLUTETIME(&endTime, &startTime);
- absolutetime_to_nanoseconds(endTime, &nsec);
+ clock_get_uptime(&endTime);
+ SUB_ABSOLUTETIME(&endTime, &startTime);
+ absolutetime_to_nanoseconds(endTime, &nsec);
HIBLOG("vm_compressor_fastwake_warmup completed - took %qd msecs\n", nsec / 1000000ULL);
lck_mtx_lock_spin_always(c_list_lock);
- first_c_segment_to_warm_generation_id = last_c_segment_to_warm_generation_id = 0;
+ if (consider_all_cseg == FALSE) {
+ first_c_segment_to_warm_generation_id = last_c_segment_to_warm_generation_id = 0;
+ }
}
+int min_csegs_per_major_compaction = DELAYED_COMPACTIONS_PER_PASS;
+extern bool vm_swapout_thread_running;
+extern boolean_t compressor_store_stop_compaction;
void
vm_compressor_compact_and_swap(boolean_t flush_all)
{
- c_segment_t c_seg, c_seg_next;
- boolean_t keep_compacting;
- clock_sec_t now;
- clock_nsec_t nsec;
+ c_segment_t c_seg, c_seg_next;
+ boolean_t keep_compacting, switch_state;
+ clock_sec_t now;
+ clock_nsec_t nsec;
+ mach_timespec_t start_ts, end_ts;
+ unsigned int number_considered, wanted_cseg_found, yield_after_considered_per_pass, number_yields;
+ uint64_t bytes_to_free, bytes_freed, delta_usec;
+ VM_DEBUG_CONSTANT_EVENT(vm_compressor_compact_and_swap, VM_COMPRESSOR_COMPACT_AND_SWAP, DBG_FUNC_START, c_age_count, c_minor_count, c_major_count, vm_page_free_count);
if (fastwake_warmup == TRUE) {
- uint64_t starting_warmup_count;
+ uint64_t starting_warmup_count;
starting_warmup_count = c_segment_warmup_count;
KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 11) | DBG_FUNC_START, c_segment_warmup_count,
- first_c_segment_to_warm_generation_id, last_c_segment_to_warm_generation_id, 0, 0);
- do_fastwake_warmup();
+ first_c_segment_to_warm_generation_id, last_c_segment_to_warm_generation_id, 0, 0);
+ do_fastwake_warmup(&c_swappedout_list_head, FALSE);
KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE, 11) | DBG_FUNC_END, c_segment_warmup_count, c_segment_warmup_count - starting_warmup_count, 0, 0, 0);
fastwake_warmup = FALSE;
/*
* we only need to grab the timestamp once per
- * invocation of this function since the
+ * invocation of this function since the
* timescale we're interested in is measured
* in days
*/
- clock_get_system_nanotime(&now, &nsec);
-
- while (!queue_empty(&c_age_list_head) && compaction_swapper_abort == 0) {
-
+ clock_get_system_nanotime(&now, &nsec);
+
+ start_ts.tv_sec = (int) now;
+ start_ts.tv_nsec = nsec;
+ delta_usec = 0;
+ number_considered = 0;
+ wanted_cseg_found = 0;
+ number_yields = 0;
+ bytes_to_free = 0;
+ bytes_freed = 0;
+ yield_after_considered_per_pass = MAX(min_csegs_per_major_compaction, DELAYED_COMPACTIONS_PER_PASS);
+
+ while (!queue_empty(&c_age_list_head) && !compaction_swapper_abort && !compressor_store_stop_compaction) {
if (hibernate_flushing == TRUE) {
- clock_sec_t sec;
+ clock_sec_t sec;
if (hibernate_should_abort()) {
HIBLOG("vm_compressor_flush - hibernate_should_abort returned TRUE\n");
break;
}
clock_get_system_nanotime(&sec, &nsec);
-
+
if (sec > hibernate_flushing_deadline) {
HIBLOG("vm_compressor_flush - failed to finish before deadline\n");
break;
}
}
- if (c_swapout_count >= C_SWAPOUT_LIMIT) {
+ if (!vm_swap_out_of_space() && c_swapout_count >= C_SWAPOUT_LIMIT) {
+ assert_wait_timeout((event_t) &compaction_swapper_running, THREAD_INTERRUPTIBLE, 100, 1000 * NSEC_PER_USEC);
- assert_wait_timeout((event_t) &compaction_swapper_running, THREAD_INTERRUPTIBLE, 100, 1000*NSEC_PER_USEC);
+ if (!vm_swapout_thread_running) {
+ thread_wakeup((event_t)&c_swapout_list_head);
+ }
lck_mtx_unlock_always(c_list_lock);
+ VM_DEBUG_CONSTANT_EVENT(vm_compressor_compact_and_swap, VM_COMPRESSOR_COMPACT_AND_SWAP, DBG_FUNC_NONE, 1, c_swapout_count, 0, 0);
+
thread_block(THREAD_CONTINUE_NULL);
lck_mtx_lock_spin_always(c_list_lock);
vm_compressor_age_swapped_in_segments(flush_all);
- if (c_swapout_count >= C_SWAPOUT_LIMIT) {
+ if (!vm_swap_out_of_space() && c_swapout_count >= C_SWAPOUT_LIMIT) {
/*
* we timed out on the above thread_block
* let's loop around and try again
* to do minor compactions to make
* more memory available
*/
+ VM_DEBUG_CONSTANT_EVENT(vm_compressor_compact_and_swap, VM_COMPRESSOR_COMPACT_AND_SWAP, DBG_FUNC_NONE, 2, c_swapout_count, 0, 0);
+
continue;
}
* Swap out segments?
*/
if (flush_all == FALSE) {
- boolean_t needs_to_swap;
+ boolean_t needs_to_swap;
lck_mtx_unlock_always(c_list_lock);
needs_to_swap = compressor_needs_to_swap();
- if (needs_to_swap == TRUE && vm_swap_low_on_space())
- vm_compressor_take_paging_space_action();
-
lck_mtx_lock_spin_always(c_list_lock);
-
- if (needs_to_swap == FALSE)
+
+ VM_DEBUG_CONSTANT_EVENT(vm_compressor_compact_and_swap, VM_COMPRESSOR_COMPACT_AND_SWAP, DBG_FUNC_NONE, 3, needs_to_swap, 0, 0);
+
+ if (needs_to_swap == FALSE) {
break;
+ }
}
- if (queue_empty(&c_age_list_head))
+ if (queue_empty(&c_age_list_head)) {
+ VM_DEBUG_CONSTANT_EVENT(vm_compressor_compact_and_swap, VM_COMPRESSOR_COMPACT_AND_SWAP, DBG_FUNC_NONE, 4, c_age_count, 0, 0);
break;
+ }
c_seg = (c_segment_t) queue_first(&c_age_list_head);
assert(c_seg->c_state == C_ON_AGE_Q);
- if (flush_all == TRUE && c_seg->c_generation_id > c_generation_id_flush_barrier)
+ if (flush_all == TRUE && c_seg->c_generation_id > c_generation_id_flush_barrier) {
+ VM_DEBUG_CONSTANT_EVENT(vm_compressor_compact_and_swap, VM_COMPRESSOR_COMPACT_AND_SWAP, DBG_FUNC_NONE, 5, 0, 0, 0);
break;
-
+ }
+
lck_mtx_lock_spin_always(&c_seg->c_lock);
if (c_seg->c_busy) {
+ VM_DEBUG_CONSTANT_EVENT(vm_compressor_compact_and_swap, VM_COMPRESSOR_COMPACT_AND_SWAP, DBG_FUNC_NONE, 6, (void*) VM_KERNEL_ADDRPERM(c_seg), 0, 0);
lck_mtx_unlock_always(c_list_lock);
c_seg_wait_on_busy(c_seg);
* found an empty c_segment and freed it
* so go grab the next guy in the queue
*/
- c_seg_major_compact_stats.count_of_freed_segs++;
+ VM_DEBUG_CONSTANT_EVENT(vm_compressor_compact_and_swap, VM_COMPRESSOR_COMPACT_AND_SWAP, DBG_FUNC_NONE, 7, 0, 0, 0);
+ c_seg_major_compact_stats[c_seg_major_compact_stats_now].count_of_freed_segs++;
continue;
}
/*
* Major compaction
*/
keep_compacting = TRUE;
+ switch_state = TRUE;
while (keep_compacting == TRUE) {
-
assert(c_seg->c_busy);
/* look for another segment to consolidate */
c_seg_next = (c_segment_t) queue_next(&c_seg->c_age_list);
-
- if (queue_end(&c_age_list_head, (queue_entry_t)c_seg_next))
+
+ if (queue_end(&c_age_list_head, (queue_entry_t)c_seg_next)) {
break;
+ }
assert(c_seg_next->c_state == C_ON_AGE_Q);
- if (c_seg_major_compact_ok(c_seg, c_seg_next) == FALSE)
+ number_considered++;
+
+ if (c_seg_major_compact_ok(c_seg, c_seg_next) == FALSE) {
break;
+ }
lck_mtx_lock_spin_always(&c_seg_next->c_lock);
if (c_seg_next->c_busy) {
+ /*
+ * We are going to block for our neighbor.
+ * If our c_seg is wanted, we should unbusy
+ * it because we don't know how long we might
+ * have to block here.
+ */
+ if (c_seg->c_wanted) {
+ lck_mtx_unlock_always(&c_seg_next->c_lock);
+ switch_state = FALSE;
+ c_seg_major_compact_stats[c_seg_major_compact_stats_now].bailed_compactions++;
+ wanted_cseg_found++;
+ break;
+ }
lck_mtx_unlock_always(c_list_lock);
+
+ VM_DEBUG_CONSTANT_EVENT(vm_compressor_compact_and_swap, VM_COMPRESSOR_COMPACT_AND_SWAP, DBG_FUNC_NONE, 8, (void*) VM_KERNEL_ADDRPERM(c_seg_next), 0, 0);
+
c_seg_wait_on_busy(c_seg_next);
lck_mtx_lock_spin_always(c_list_lock);
/* grab that segment */
C_SEG_BUSY(c_seg_next);
+ bytes_to_free = C_SEG_OFFSET_TO_BYTES(c_seg_next->c_populated_offset);
if (c_seg_do_minor_compaction_and_unlock(c_seg_next, FALSE, TRUE, TRUE)) {
/*
* found an empty c_segment and freed it
* so we can't continue to use c_seg_next
*/
- c_seg_major_compact_stats.count_of_freed_segs++;
+ bytes_freed += bytes_to_free;
+ c_seg_major_compact_stats[c_seg_major_compact_stats_now].count_of_freed_segs++;
continue;
}
keep_compacting = c_seg_major_compact(c_seg, c_seg_next);
+ VM_DEBUG_CONSTANT_EVENT(vm_compressor_compact_and_swap, VM_COMPRESSOR_COMPACT_AND_SWAP, DBG_FUNC_NONE, 9, keep_compacting, 0, 0);
+
PAGE_REPLACEMENT_DISALLOWED(TRUE);
lck_mtx_lock_spin_always(&c_seg_next->c_lock);
/*
* run a minor compaction on the donor segment
- * since we pulled at least some of it's
+ * since we pulled at least some of it's
* data into our target... if we've emptied
* it, now is a good time to free it which
* c_seg_minor_compaction_and_unlock also takes care of
* by passing TRUE, we ask for c_busy to be cleared
* and c_wanted to be taken care of
*/
- if (c_seg_minor_compaction_and_unlock(c_seg_next, TRUE))
- c_seg_major_compact_stats.count_of_freed_segs++;
+ bytes_to_free = C_SEG_OFFSET_TO_BYTES(c_seg_next->c_populated_offset);
+ if (c_seg_minor_compaction_and_unlock(c_seg_next, TRUE)) {
+ bytes_freed += bytes_to_free;
+ c_seg_major_compact_stats[c_seg_major_compact_stats_now].count_of_freed_segs++;
+ } else {
+ bytes_to_free -= C_SEG_OFFSET_TO_BYTES(c_seg_next->c_populated_offset);
+ bytes_freed += bytes_to_free;
+ }
PAGE_REPLACEMENT_DISALLOWED(FALSE);
/* relock the list */
lck_mtx_lock_spin_always(c_list_lock);
+ if (c_seg->c_wanted) {
+ /*
+ * Our c_seg is in demand. Let's
+ * unbusy it and wakeup the waiters
+ * instead of continuing the compaction
+ * because we could be in this loop
+ * for a while.
+ */
+ switch_state = FALSE;
+ wanted_cseg_found++;
+ c_seg_major_compact_stats[c_seg_major_compact_stats_now].bailed_compactions++;
+ break;
+ }
} /* major compaction */
+ VM_DEBUG_CONSTANT_EVENT(vm_compressor_compact_and_swap, VM_COMPRESSOR_COMPACT_AND_SWAP, DBG_FUNC_NONE, 10, number_considered, wanted_cseg_found, 0);
+
lck_mtx_lock_spin_always(&c_seg->c_lock);
assert(c_seg->c_busy);
assert(!c_seg->c_on_minorcompact_q);
- if (VM_CONFIG_SWAP_IS_ACTIVE) {
- /*
- * This mode of putting a generic c_seg on the swapout list is
- * only supported when we have general swapping enabled
- */
- c_seg_switch_state(c_seg, C_ON_SWAPOUT_Q, FALSE);
- } else {
- if ((vm_swapout_ripe_segments == TRUE && c_overage_swapped_count < c_overage_swapped_limit)) {
-
- assert(VM_CONFIG_SWAP_IS_PRESENT);
+ if (switch_state) {
+ if (VM_CONFIG_SWAP_IS_ACTIVE) {
/*
- * we are running compressor sweeps with swap-behind
- * make sure the c_seg has aged enough before swapping it
- * out...
+ * This mode of putting a generic c_seg on the swapout list is
+ * only supported when we have general swapping enabled
*/
- if ((now - c_seg->c_creation_ts) >= vm_ripe_target_age) {
- c_seg->c_overage_swap = TRUE;
- c_overage_swapped_count++;
- c_seg_switch_state(c_seg, C_ON_SWAPOUT_Q, FALSE);
+ c_seg_switch_state(c_seg, C_ON_SWAPOUT_Q, FALSE);
+ } else {
+ if ((vm_swapout_ripe_segments == TRUE && c_overage_swapped_count < c_overage_swapped_limit)) {
+ assert(VM_CONFIG_SWAP_IS_PRESENT);
+ /*
+ * we are running compressor sweeps with swap-behind
+ * make sure the c_seg has aged enough before swapping it
+ * out...
+ */
+ if ((now - c_seg->c_creation_ts) >= vm_ripe_target_age) {
+ c_seg->c_overage_swap = TRUE;
+ c_overage_swapped_count++;
+ c_seg_switch_state(c_seg, C_ON_SWAPOUT_Q, FALSE);
+ }
}
}
+ if (c_seg->c_state == C_ON_AGE_Q) {
+ /*
+ * this c_seg didn't get moved to the swapout queue
+ * so we need to move it out of the way...
+ * we just did a major compaction on it so put it
+ * on that queue
+ */
+ c_seg_switch_state(c_seg, C_ON_MAJORCOMPACT_Q, FALSE);
+ } else {
+ c_seg_major_compact_stats[c_seg_major_compact_stats_now].wasted_space_in_swapouts += C_SEG_BUFSIZE - c_seg->c_bytes_used;
+ c_seg_major_compact_stats[c_seg_major_compact_stats_now].count_of_swapouts++;
+ }
}
- if (c_seg->c_state == C_ON_AGE_Q) {
- /*
- * this c_seg didn't get moved to the swapout queue
- * so we need to move it out of the way...
- * we just did a major compaction on it so put it
- * on that queue
- */
- c_seg_switch_state(c_seg, C_ON_MAJORCOMPACT_Q, FALSE);
- } else {
- c_seg_major_compact_stats.wasted_space_in_swapouts += C_SEG_BUFSIZE - c_seg->c_bytes_used;
- c_seg_major_compact_stats.count_of_swapouts++;
- }
+
C_SEG_WAKEUP_DONE(c_seg);
lck_mtx_unlock_always(&c_seg->c_lock);
if (c_swapout_count) {
- lck_mtx_unlock_always(c_list_lock);
+ /*
+ * We don't pause/yield here because we will either
+ * yield below or at the top of the loop with the
+ * assert_wait_timeout.
+ */
+ if (!vm_swapout_thread_running) {
+ thread_wakeup((event_t)&c_swapout_list_head);
+ }
+ }
- thread_wakeup((event_t)&c_swapout_list_head);
-
- lck_mtx_lock_spin_always(c_list_lock);
+ if (number_considered >= yield_after_considered_per_pass) {
+ if (wanted_cseg_found) {
+ /*
+ * We stopped major compactions on a c_seg
+ * that is wanted. We don't know the priority
+ * of the waiter unfortunately but we are at
+ * a very high priority and so, just in case
+ * the waiter is a critical system daemon or
+ * UI thread, let's give up the CPU in case
+ * the system is running a few CPU intensive
+ * tasks.
+ */
+ lck_mtx_unlock_always(c_list_lock);
+
+ mutex_pause(2); /* 100us yield */
+
+ number_yields++;
+
+ VM_DEBUG_CONSTANT_EVENT(vm_compressor_compact_and_swap, VM_COMPRESSOR_COMPACT_AND_SWAP, DBG_FUNC_NONE, 11, number_considered, number_yields, 0);
+
+ lck_mtx_lock_spin_always(c_list_lock);
+ }
+
+ number_considered = 0;
+ wanted_cseg_found = 0;
}
}
+ clock_get_system_nanotime(&now, &nsec);
+ end_ts.tv_sec = (int) now;
+ end_ts.tv_nsec = nsec;
+
+ SUB_MACH_TIMESPEC(&end_ts, &start_ts);
+
+ delta_usec = (end_ts.tv_sec * USEC_PER_SEC) + (end_ts.tv_nsec / NSEC_PER_USEC) - (number_yields * 100);
+
+ delta_usec = MAX(1, delta_usec); /* we could have 0 usec run if conditions weren't right */
+
+ c_seg_major_compact_stats[c_seg_major_compact_stats_now].bytes_freed_rate_us = (bytes_freed / delta_usec);
+
+ if ((c_seg_major_compact_stats_now + 1) == C_SEG_MAJOR_COMPACT_STATS_MAX) {
+ c_seg_major_compact_stats_now = 0;
+ } else {
+ c_seg_major_compact_stats_now++;
+ }
+
+ assert(c_seg_major_compact_stats_now < C_SEG_MAJOR_COMPACT_STATS_MAX);
+
+ VM_DEBUG_CONSTANT_EVENT(vm_compressor_compact_and_swap, VM_COMPRESSOR_COMPACT_AND_SWAP, DBG_FUNC_END, c_age_count, c_minor_count, c_major_count, vm_page_free_count);
}
static c_segment_t
c_seg_allocate(c_segment_t *current_chead)
{
- c_segment_t c_seg;
- int min_needed;
- int size_to_populate;
+ c_segment_t c_seg;
+ int min_needed;
+ int size_to_populate;
- if (vm_compressor_low_on_space())
+#if XNU_TARGET_OS_OSX
+ if (vm_compressor_low_on_space()) {
vm_compressor_take_paging_space_action();
+ }
+#endif /* XNU_TARGET_OS_OSX */
- if ( (c_seg = *current_chead) == NULL ) {
- uint32_t c_segno;
+ if ((c_seg = *current_chead) == NULL) {
+ uint32_t c_segno;
lck_mtx_lock_spin_always(c_list_lock);
while (c_segments_busy == TRUE) {
assert_wait((event_t) (&c_segments_busy), THREAD_UNINT);
-
+
lck_mtx_unlock_always(c_list_lock);
thread_block(THREAD_CONTINUE_NULL);
lck_mtx_lock_spin_always(c_list_lock);
}
if (c_free_segno_head == (uint32_t)-1) {
- uint32_t c_segments_available_new;
+ uint32_t c_segments_available_new;
+ uint32_t compressed_pages;
+
+#if CONFIG_FREEZE
+ if (freezer_incore_cseg_acct) {
+ compressed_pages = c_segment_pages_compressed_incore;
+ } else {
+ compressed_pages = c_segment_pages_compressed;
+ }
+#else
+ compressed_pages = c_segment_pages_compressed;
+#endif /* CONFIG_FREEZE */
- if (c_segments_available >= c_segments_limit || c_segment_pages_compressed >= c_segment_pages_compressed_limit) {
+ if (c_segments_available >= c_segments_limit || compressed_pages >= c_segment_pages_compressed_limit) {
lck_mtx_unlock_always(c_list_lock);
- return (NULL);
+ return NULL;
}
c_segments_busy = TRUE;
lck_mtx_unlock_always(c_list_lock);
- kernel_memory_populate(compressor_map, (vm_offset_t)c_segments_next_page,
- PAGE_SIZE, KMA_KOBJECT, VM_KERN_MEMORY_COMPRESSOR);
+ kernel_memory_populate(compressor_map, (vm_offset_t)c_segments_next_page,
+ PAGE_SIZE, KMA_KOBJECT, VM_KERN_MEMORY_COMPRESSOR);
c_segments_next_page += PAGE_SIZE;
c_segments_available_new = c_segments_available + C_SEGMENTS_PER_PAGE;
- if (c_segments_available_new > c_segments_limit)
+ if (c_segments_available_new > c_segments_limit) {
c_segments_available_new = c_segments_limit;
+ }
- for (c_segno = c_segments_available + 1; c_segno < c_segments_available_new; c_segno++)
+ for (c_segno = c_segments_available + 1; c_segno < c_segments_available_new; c_segno++) {
c_segments[c_segno - 1].c_segno = c_segno;
+ }
lck_mtx_lock_spin_always(c_list_lock);
* so that we can install it once we have the c_seg allocated
*/
c_segment_count++;
- if (c_segment_count > c_segment_count_max)
+ if (c_segment_count > c_segment_count_max) {
c_segment_count_max = c_segment_count;
+ }
lck_mtx_unlock_always(c_list_lock);
- c_seg = (c_segment_t)zalloc(compressor_segment_zone);
- bzero((char *)c_seg, sizeof(struct c_segment));
+ c_seg = zalloc_flags(compressor_segment_zone, Z_WAITOK | Z_ZERO);
c_seg->c_store.c_buffer = (int32_t *)C_SEG_BUFFER_ADDRESS(c_segno);
- lck_mtx_init(&c_seg->c_lock, &vm_compressor_lck_grp, &vm_compressor_lck_attr);
-
+ lck_mtx_init(&c_seg->c_lock, &vm_compressor_lck_grp, LCK_ATTR_NULL);
+
c_seg->c_state = C_IS_EMPTY;
c_seg->c_firstemptyslot = C_SLOT_MAX_INDEX;
c_seg->c_mysegno = c_segno;
#if DEVELOPMENT || DEBUG
C_SEG_MAKE_WRITEABLE(c_seg);
#endif
-
}
c_seg_alloc_nextslot(c_seg);
size_to_populate = C_SEG_ALLOCSIZE - C_SEG_OFFSET_TO_BYTES(c_seg->c_populated_offset);
-
- if (size_to_populate) {
+ if (size_to_populate) {
min_needed = PAGE_SIZE + (C_SEG_ALLOCSIZE - C_SEG_BUFSIZE);
if (C_SEG_OFFSET_TO_BYTES(c_seg->c_populated_offset - c_seg->c_nextoffset) < (unsigned) min_needed) {
-
- if (size_to_populate > C_SEG_MAX_POPULATE_SIZE)
+ if (size_to_populate > C_SEG_MAX_POPULATE_SIZE) {
size_to_populate = C_SEG_MAX_POPULATE_SIZE;
+ }
+
+ OSAddAtomic64(size_to_populate / PAGE_SIZE, &vm_pageout_vminfo.vm_compressor_pages_grabbed);
kernel_memory_populate(compressor_map,
- (vm_offset_t) &c_seg->c_store.c_buffer[c_seg->c_populated_offset],
- size_to_populate,
- KMA_COMPRESSOR,
- VM_KERN_MEMORY_COMPRESSOR);
- } else
+ (vm_offset_t) &c_seg->c_store.c_buffer[c_seg->c_populated_offset],
+ size_to_populate,
+ KMA_COMPRESSOR,
+ VM_KERN_MEMORY_COMPRESSOR);
+ } else {
size_to_populate = 0;
+ }
}
PAGE_REPLACEMENT_DISALLOWED(TRUE);
lck_mtx_lock_spin_always(&c_seg->c_lock);
- if (size_to_populate)
+ if (size_to_populate) {
c_seg->c_populated_offset += C_SEG_BYTES_TO_OFFSET(size_to_populate);
+ }
- return (c_seg);
+ return c_seg;
}
+#if DEVELOPMENT || DEBUG
+#if CONFIG_FREEZE
+extern boolean_t memorystatus_freeze_to_memory;
+#endif /* CONFIG_FREEZE */
+#endif /* DEVELOPMENT || DEBUG */
static void
c_current_seg_filled(c_segment_t c_seg, c_segment_t *current_chead)
{
- uint32_t unused_bytes;
- uint32_t offset_to_depopulate;
- int new_state = C_ON_AGE_Q;
- clock_sec_t sec;
- clock_nsec_t nsec;
+ uint32_t unused_bytes;
+ uint32_t offset_to_depopulate;
+ int new_state = C_ON_AGE_Q;
+ clock_sec_t sec;
+ clock_nsec_t nsec;
+ boolean_t head_insert = FALSE;
unused_bytes = trunc_page_32(C_SEG_OFFSET_TO_BYTES(c_seg->c_populated_offset - c_seg->c_nextoffset));
if (unused_bytes) {
-
offset_to_depopulate = C_SEG_BYTES_TO_OFFSET(round_page_32(C_SEG_OFFSET_TO_BYTES(c_seg->c_nextoffset)));
/*
compressor_map,
(vm_offset_t) &c_seg->c_store.c_buffer[offset_to_depopulate],
unused_bytes,
- KMA_COMPRESSOR);
+ KMA_COMPRESSOR,
+ VM_KERN_MEMORY_COMPRESSOR);
lck_mtx_lock_spin_always(&c_seg->c_lock);
#if DEVELOPMENT || DEBUG
{
- boolean_t c_seg_was_busy = FALSE;
+ boolean_t c_seg_was_busy = FALSE;
- if ( !c_seg->c_busy)
- C_SEG_BUSY(c_seg);
- else
- c_seg_was_busy = TRUE;
+ if (!c_seg->c_busy) {
+ C_SEG_BUSY(c_seg);
+ } else {
+ c_seg_was_busy = TRUE;
+ }
- lck_mtx_unlock_always(&c_seg->c_lock);
+ lck_mtx_unlock_always(&c_seg->c_lock);
- C_SEG_WRITE_PROTECT(c_seg);
+ C_SEG_WRITE_PROTECT(c_seg);
- lck_mtx_lock_spin_always(&c_seg->c_lock);
+ lck_mtx_lock_spin_always(&c_seg->c_lock);
- if (c_seg_was_busy == FALSE)
- C_SEG_WAKEUP_DONE(c_seg);
+ if (c_seg_was_busy == FALSE) {
+ C_SEG_WAKEUP_DONE(c_seg);
+ }
}
#endif
#if CONFIG_FREEZE
- if (current_chead == (c_segment_t*)&freezer_chead &&
+ if (current_chead == (c_segment_t*) &(freezer_context_global.freezer_ctx_chead) &&
VM_CONFIG_SWAP_IS_PRESENT &&
- VM_CONFIG_FREEZER_SWAP_IS_ACTIVE &&
- c_freezer_swapout_count < VM_MAX_FREEZER_CSEG_SWAP_COUNT) {
+ VM_CONFIG_FREEZER_SWAP_IS_ACTIVE
+#if DEVELOPMENT || DEBUG
+ && !memorystatus_freeze_to_memory
+#endif /* DEVELOPMENT || DEBUG */
+ ) {
new_state = C_ON_SWAPOUT_Q;
}
#endif /* CONFIG_FREEZE */
- clock_get_system_nanotime(&sec, &nsec);
- c_seg->c_creation_ts = (uint32_t)sec;
-
- lck_mtx_lock_spin_always(c_list_lock);
-
+ if (vm_darkwake_mode == TRUE) {
+ new_state = C_ON_SWAPOUT_Q;
+ head_insert = TRUE;
+ }
+
+ clock_get_system_nanotime(&sec, &nsec);
+ c_seg->c_creation_ts = (uint32_t)sec;
+
+ lck_mtx_lock_spin_always(c_list_lock);
+
+ c_seg->c_generation_id = c_generation_id++;
+ c_seg_switch_state(c_seg, new_state, head_insert);
+
+#if CONFIG_FREEZE
+ if (c_seg->c_state == C_ON_SWAPOUT_Q) {
+ /*
+ * darkwake and freezer can't co-exist together
+ * We'll need to fix this accounting as a start.
+ */
+ assert(vm_darkwake_mode == FALSE);
+ c_seg_update_task_owner(c_seg, freezer_context_global.freezer_ctx_task);
+ freezer_context_global.freezer_ctx_swapped_bytes += c_seg->c_bytes_used;
+ }
+#endif /* CONFIG_FREEZE */
+
+ if (c_seg->c_state == C_ON_AGE_Q && C_SEG_UNUSED_BYTES(c_seg) >= PAGE_SIZE) {
#if CONFIG_FREEZE
- if (c_seg->c_state == C_ON_SWAPOUT_Q)
- c_freezer_swapout_count++;
+ assert(c_seg->c_task_owner == NULL);
#endif /* CONFIG_FREEZE */
-
- c_seg->c_generation_id = c_generation_id++;
- c_seg_switch_state(c_seg, new_state, FALSE);
-
- if (c_seg->c_state == C_ON_AGE_Q && C_SEG_UNUSED_BYTES(c_seg) >= PAGE_SIZE)
c_seg_need_delayed_compaction(c_seg, TRUE);
+ }
lck_mtx_unlock_always(c_list_lock);
-#if CONFIG_FREEZE
- if (c_seg->c_state == C_ON_SWAPOUT_Q)
+ if (c_seg->c_state == C_ON_SWAPOUT_Q) {
+ /*
+ * Darkwake and Freeze configs always
+ * wake up the swapout thread because
+ * the compactor thread that normally handles
+ * it may not be running as much in these
+ * configs.
+ */
thread_wakeup((event_t)&c_swapout_list_head);
-#endif /* CONFIG_FREEZE */
+ }
*current_chead = NULL;
}
void
c_seg_swapin_requeue(c_segment_t c_seg, boolean_t has_data, boolean_t minor_compact_ok, boolean_t age_on_swapin_q)
{
- clock_sec_t sec;
- clock_nsec_t nsec;
+ clock_sec_t sec;
+ clock_nsec_t nsec;
clock_get_system_nanotime(&sec, &nsec);
if (c_seg->c_overage_swap == TRUE) {
c_overage_swapped_count--;
c_seg->c_overage_swap = FALSE;
- }
+ }
if (has_data == TRUE) {
- if (age_on_swapin_q == TRUE)
+ if (age_on_swapin_q == TRUE) {
c_seg_switch_state(c_seg, C_ON_SWAPPEDIN_Q, FALSE);
- else
+ } else {
c_seg_switch_state(c_seg, C_ON_AGE_Q, FALSE);
+ }
- if (minor_compact_ok == TRUE && !c_seg->c_on_minorcompact_q && C_SEG_UNUSED_BYTES(c_seg) >= PAGE_SIZE)
+ if (minor_compact_ok == TRUE && !c_seg->c_on_minorcompact_q && C_SEG_UNUSED_BYTES(c_seg) >= PAGE_SIZE) {
c_seg_need_delayed_compaction(c_seg, TRUE);
+ }
} else {
c_seg->c_store.c_buffer = (int32_t*) NULL;
c_seg->c_populated_offset = C_SEG_BYTES_TO_OFFSET(0);
int
c_seg_swapin(c_segment_t c_seg, boolean_t force_minor_compaction, boolean_t age_on_swapin_q)
{
- vm_offset_t addr = 0;
- uint32_t io_size = 0;
- uint64_t f_offset;
+ vm_offset_t addr = 0;
+ uint32_t io_size = 0;
+ uint64_t f_offset;
assert(C_SEG_IS_ONDISK(c_seg));
-
+
#if !CHECKSUM_THE_SWAP
c_seg_trim_tail(c_seg);
#endif
if (vm_swap_get(c_seg, f_offset, io_size) != KERN_SUCCESS) {
PAGE_REPLACEMENT_DISALLOWED(TRUE);
- c_seg->c_store.c_swap_handle = f_offset;
-
- kernel_memory_depopulate(compressor_map, addr, io_size, KMA_COMPRESSOR);
+ kernel_memory_depopulate(compressor_map, addr, io_size, KMA_COMPRESSOR, VM_KERN_MEMORY_COMPRESSOR);
c_seg_swapin_requeue(c_seg, FALSE, TRUE, age_on_swapin_q);
} else {
- c_seg->c_store.c_buffer = (int32_t*) addr;
#if ENCRYPTED_SWAP
vm_swap_decrypt(c_seg);
#endif /* ENCRYPTED_SWAP */
#if CHECKSUM_THE_SWAP
- if (c_seg->cseg_swap_size != io_size)
+ if (c_seg->cseg_swap_size != io_size) {
panic("swapin size doesn't match swapout size");
+ }
- if (c_seg->cseg_hash != hash_string((char*) c_seg->c_store.c_buffer, (int)io_size)) {
+ if (c_seg->cseg_hash != vmc_hash((char*) c_seg->c_store.c_buffer, (int)io_size)) {
panic("c_seg_swapin - Swap hash mismatch\n");
}
#endif /* CHECKSUM_THE_SWAP */
c_seg_swapin_requeue(c_seg, TRUE, force_minor_compaction == TRUE ? FALSE : TRUE, age_on_swapin_q);
+#if CONFIG_FREEZE
+ /*
+ * c_seg_swapin_requeue() returns with the c_seg lock held.
+ */
+ if (!lck_mtx_try_lock_spin_always(c_list_lock)) {
+ assert(c_seg->c_busy);
+
+ lck_mtx_unlock_always(&c_seg->c_lock);
+ lck_mtx_lock_spin_always(c_list_lock);
+ lck_mtx_lock_spin_always(&c_seg->c_lock);
+ }
+
+ if (c_seg->c_task_owner) {
+ c_seg_update_task_owner(c_seg, NULL);
+ }
+
+ lck_mtx_unlock_always(c_list_lock);
+
+ OSAddAtomic(c_seg->c_slots_used, &c_segment_pages_compressed_incore);
+#endif /* CONFIG_FREEZE */
+
OSAddAtomic64(c_seg->c_bytes_used, &compressor_bytes_used);
if (force_minor_compaction == TRUE) {
if (c_seg_minor_compaction_and_unlock(c_seg, FALSE)) {
/*
+ * c_seg was completely empty so it was freed,
+ * so be careful not to reference it again
+ *
* Drop the rwlock_count so that the thread priority
* is returned back to where it is supposed to be.
*/
clear_thread_rwlock_boost();
- return (1);
+ return 1;
}
lck_mtx_lock_spin_always(&c_seg->c_lock);
*/
clear_thread_rwlock_boost();
- return (0);
+ return 0;
}
struct c_sv_hash_entry o_sv_he, n_sv_he;
while (1) {
-
o_sv_he.he_record = c_segment_sv_hash_table[hash_indx].he_record;
n_sv_he.he_ref = o_sv_he.he_ref - 1;
n_sv_he.he_data = o_sv_he.he_data;
if (OSCompareAndSwap64((UInt64)o_sv_he.he_record, (UInt64)n_sv_he.he_record, (UInt64 *) &c_segment_sv_hash_table[hash_indx].he_record) == TRUE) {
- if (n_sv_he.he_ref == 0)
+ if (n_sv_he.he_ref == 0) {
OSAddAtomic(-1, &c_segment_svp_in_hash);
+ }
break;
}
}
static int
c_segment_sv_hash_insert(uint32_t data)
{
- int hash_sindx;
- int misses;
+ int hash_sindx;
+ int misses;
struct c_sv_hash_entry o_sv_he, n_sv_he;
- boolean_t got_ref = FALSE;
+ boolean_t got_ref = FALSE;
- if (data == 0)
+ if (data == 0) {
OSAddAtomic(1, &c_segment_svp_zero_compressions);
- else
+ } else {
OSAddAtomic(1, &c_segment_svp_nonzero_compressions);
+ }
hash_sindx = data & C_SV_HASH_MASK;
-
- for (misses = 0; misses < C_SV_HASH_MAX_MISS; misses++)
- {
+
+ for (misses = 0; misses < C_SV_HASH_MAX_MISS; misses++) {
o_sv_he.he_record = c_segment_sv_hash_table[hash_sindx].he_record;
while (o_sv_he.he_data == data || o_sv_he.he_ref == 0) {
n_sv_he.he_data = data;
if (OSCompareAndSwap64((UInt64)o_sv_he.he_record, (UInt64)n_sv_he.he_record, (UInt64 *) &c_segment_sv_hash_table[hash_sindx].he_record) == TRUE) {
- if (n_sv_he.he_ref == 1)
+ if (n_sv_he.he_ref == 1) {
OSAddAtomic(1, &c_segment_svp_in_hash);
+ }
got_ref = TRUE;
break;
}
o_sv_he.he_record = c_segment_sv_hash_table[hash_sindx].he_record;
}
- if (got_ref == TRUE)
+ if (got_ref == TRUE) {
break;
+ }
hash_sindx++;
- if (hash_sindx == C_SV_HASH_SIZE)
+ if (hash_sindx == C_SV_HASH_SIZE) {
hash_sindx = 0;
+ }
+ }
+ if (got_ref == FALSE) {
+ return -1;
}
- if (got_ref == FALSE)
- return(-1);
- return (hash_sindx);
+ return hash_sindx;
}
static void
c_compressed_record_data(char *src, int c_size)
{
- if ((c_compressed_record_cptr + c_size + 4) >= c_compressed_record_ebuf)
+ if ((c_compressed_record_cptr + c_size + 4) >= c_compressed_record_ebuf) {
panic("c_compressed_record_cptr >= c_compressed_record_ebuf");
+ }
*(int *)((void *)c_compressed_record_cptr) = c_size;
static int
c_compress_page(char *src, c_slot_mapping_t slot_ptr, c_segment_t *current_chead, char *scratch_buf)
{
- int c_size;
- int c_rounded_size = 0;
- int max_csize;
- c_slot_t cs;
- c_segment_t c_seg;
+ int c_size;
+ int c_rounded_size = 0;
+ int max_csize;
+ c_slot_t cs;
+ c_segment_t c_seg;
KERNEL_DEBUG(0xe0400000 | DBG_FUNC_START, *current_chead, 0, 0, 0, 0);
retry:
- if ((c_seg = c_seg_allocate(current_chead)) == NULL)
- return (1);
+ if ((c_seg = c_seg_allocate(current_chead)) == NULL) {
+ return 1;
+ }
/*
* returns with c_seg lock held
* and PAGE_REPLACEMENT_DISALLOWED(TRUE)...
cs = C_SEG_SLOT_FROM_INDEX(c_seg, c_seg->c_nextslot);
+ C_SLOT_ASSERT_PACKABLE(slot_ptr);
cs->c_packed_ptr = C_SLOT_PACK_PTR(slot_ptr);
- assert(slot_ptr == (c_slot_mapping_t)C_SLOT_UNPACK_PTR(cs));
cs->c_offset = c_seg->c_nextoffset;
max_csize = C_SEG_BUFSIZE - C_SEG_OFFSET_TO_BYTES((int32_t)cs->c_offset);
- if (max_csize > PAGE_SIZE)
+ if (max_csize > PAGE_SIZE) {
max_csize = PAGE_SIZE;
+ }
#if CHECKSUM_THE_DATA
- cs->c_hash_data = hash_string(src, PAGE_SIZE);
+ cs->c_hash_data = vmc_hash(src, PAGE_SIZE);
#endif
+ boolean_t incomp_copy = FALSE;
+ int max_csize_adj = (max_csize - 4);
if (vm_compressor_algorithm() != VM_COMPRESSOR_DEFAULT_CODEC) {
+#if defined(__arm__) || defined(__arm64__)
+ uint16_t ccodec = CINVALID;
+ uint32_t inline_popcount;
+ if (max_csize >= C_SEG_OFFSET_ALIGNMENT_BOUNDARY) {
+ c_size = metacompressor((const uint8_t *) src,
+ (uint8_t *) &c_seg->c_store.c_buffer[cs->c_offset],
+ max_csize_adj, &ccodec,
+ scratch_buf, &incomp_copy, &inline_popcount);
+#if __ARM_WKDM_POPCNT__
+ cs->c_inline_popcount = inline_popcount;
+#else
+ assert(inline_popcount == C_SLOT_NO_POPCOUNT);
+#endif
+
+#if C_SEG_OFFSET_ALIGNMENT_BOUNDARY > 4
+ if (c_size > max_csize_adj) {
+ c_size = -1;
+ }
+#endif
+ } else {
+ c_size = -1;
+ }
+ assert(ccodec == CCWK || ccodec == CCLZ4);
+ cs->c_codec = ccodec;
+#endif
} else {
- c_size = WKdm_compress_new((const WK_word *)(uintptr_t)src, (WK_word *)(uintptr_t)&c_seg->c_store.c_buffer[cs->c_offset],
- (WK_word *)(uintptr_t)scratch_buf, max_csize - 4);
+#if defined(__arm__) || defined(__arm64__)
+ cs->c_codec = CCWK;
+#endif
+#if defined(__arm64__)
+ __unreachable_ok_push
+ if (PAGE_SIZE == 4096) {
+ c_size = WKdm_compress_4k((WK_word *)(uintptr_t)src, (WK_word *)(uintptr_t)&c_seg->c_store.c_buffer[cs->c_offset],
+ (WK_word *)(uintptr_t)scratch_buf, max_csize_adj);
+ } else {
+ c_size = WKdm_compress_16k((WK_word *)(uintptr_t)src, (WK_word *)(uintptr_t)&c_seg->c_store.c_buffer[cs->c_offset],
+ (WK_word *)(uintptr_t)scratch_buf, max_csize_adj);
+ }
+ __unreachable_ok_pop
+#else
+ c_size = WKdm_compress_new((const WK_word *)(uintptr_t)src, (WK_word *)(uintptr_t)&c_seg->c_store.c_buffer[cs->c_offset],
+ (WK_word *)(uintptr_t)scratch_buf, max_csize_adj);
+#endif
}
- assert(c_size <= (max_csize - 4) && c_size >= -1);
+ assertf(((c_size <= max_csize_adj) && (c_size >= -1)),
+ "c_size invalid (%d, %d), cur compressions: %d", c_size, max_csize_adj, c_segment_pages_compressed);
if (c_size == -1) {
-
if (max_csize < PAGE_SIZE) {
c_current_seg_filled(c_seg, current_chead);
assert(*current_chead == NULL);
lck_mtx_unlock_always(&c_seg->c_lock);
-
+ /* TODO: it may be worth requiring codecs to distinguish
+ * between incompressible inputs and failures due to
+ * budget exhaustion.
+ */
PAGE_REPLACEMENT_DISALLOWED(FALSE);
goto retry;
}
c_size = PAGE_SIZE;
- memcpy(&c_seg->c_store.c_buffer[cs->c_offset], src, c_size);
+ if (incomp_copy == FALSE) {
+ memcpy(&c_seg->c_store.c_buffer[cs->c_offset], src, c_size);
+ }
OSAddAtomic(1, &c_segment_noncompressible_pages);
-
} else if (c_size == 0) {
- int hash_index;
+ int hash_index;
/*
* special case - this is a page completely full of a single 32 bit value
goto sv_compression;
}
c_size = 4;
-
+
memcpy(&c_seg->c_store.c_buffer[cs->c_offset], src, c_size);
OSAddAtomic(1, &c_segment_svp_hash_failed);
#if RECORD_THE_COMPRESSED_DATA
c_compressed_record_data((char *)&c_seg->c_store.c_buffer[cs->c_offset], c_size);
#endif
-
#if CHECKSUM_THE_COMPRESSED_DATA
- cs->c_hash_compressed_data = hash_string((char *)&c_seg->c_store.c_buffer[cs->c_offset], c_size);
+ cs->c_hash_compressed_data = vmc_hash((char *)&c_seg->c_store.c_buffer[cs->c_offset], c_size);
+#endif
+#if POPCOUNT_THE_COMPRESSED_DATA
+ cs->c_pop_cdata = vmc_pop((uintptr_t) &c_seg->c_store.c_buffer[cs->c_offset], c_size);
#endif
c_rounded_size = (c_size + C_SEG_OFFSET_ALIGNMENT_MASK) & ~C_SEG_OFFSET_ALIGNMENT_MASK;
PACK_C_SIZE(cs, c_size);
c_seg->c_bytes_used += c_rounded_size;
c_seg->c_nextoffset += C_SEG_BYTES_TO_OFFSET(c_rounded_size);
+ c_seg->c_slots_used++;
slot_ptr->s_cindx = c_seg->c_nextslot++;
/* <csegno=0,indx=0> would mean "empty slot", so use csegno+1 */
- slot_ptr->s_cseg = c_seg->c_mysegno + 1;
+ slot_ptr->s_cseg = c_seg->c_mysegno + 1;
sv_compression:
if (c_seg->c_nextoffset >= C_SEG_OFF_LIMIT || c_seg->c_nextslot >= C_SLOT_MAX_INDEX) {
OSAddAtomic64(PAGE_SIZE, &c_segment_input_bytes);
OSAddAtomic(1, &c_segment_pages_compressed);
+#if CONFIG_FREEZE
+ OSAddAtomic(1, &c_segment_pages_compressed_incore);
+#endif /* CONFIG_FREEZE */
OSAddAtomic(1, &sample_period_compression_count);
KERNEL_DEBUG(0xe0400000 | DBG_FUNC_END, *current_chead, c_size, c_segment_input_bytes, c_segment_compressed_bytes, 0);
- return (0);
+ return 0;
}
-static inline void sv_decompress(int32_t *ddst, int32_t pattern) {
-#if __x86_64__
- memset_word(ddst, pattern, PAGE_SIZE / sizeof(int32_t));
+static inline void
+sv_decompress(int32_t *ddst, int32_t pattern)
+{
+// assert(__builtin_constant_p(PAGE_SIZE) != 0);
+#if defined(__x86_64__)
+ memset_word(ddst, pattern, PAGE_SIZE / sizeof(int32_t));
+#elif defined(__arm64__)
+ assert((PAGE_SIZE % 128) == 0);
+ if (pattern == 0) {
+ fill32_dczva((addr64_t)ddst, PAGE_SIZE);
+ } else {
+ fill32_nt((addr64_t)ddst, PAGE_SIZE, pattern);
+ }
#else
- size_t i;
-
- /* Unroll the pattern fill loop 4x to encourage the
- * compiler to emit NEON stores, cf.
- * <rdar://problem/25839866> Loop autovectorization
- * anomalies.
- * We use separate loops for each PAGE_SIZE
- * to allow the autovectorizer to engage, as PAGE_SIZE
- * is currently not a constant.
- */
+ size_t i;
- if (PAGE_SIZE == 4096) {
- for (i = 0; i < (4096U / sizeof(int32_t)); i += 4) {
- *ddst++ = pattern;
- *ddst++ = pattern;
- *ddst++ = pattern;
- *ddst++ = pattern;
- }
- } else {
- assert(PAGE_SIZE == 16384);
- for (i = 0; i < (int)(16384U / sizeof(int32_t)); i += 4) {
- *ddst++ = pattern;
- *ddst++ = pattern;
- *ddst++ = pattern;
- *ddst++ = pattern;
- }
- }
+ /* Unroll the pattern fill loop 4x to encourage the
+ * compiler to emit NEON stores, cf.
+ * <rdar://problem/25839866> Loop autovectorization
+ * anomalies.
+ */
+ /* * We use separate loops for each PAGE_SIZE
+ * to allow the autovectorizer to engage, as PAGE_SIZE
+ * may not be a constant.
+ */
+
+ __unreachable_ok_push
+ if (PAGE_SIZE == 4096) {
+ for (i = 0; i < (4096U / sizeof(int32_t)); i += 4) {
+ *ddst++ = pattern;
+ *ddst++ = pattern;
+ *ddst++ = pattern;
+ *ddst++ = pattern;
+ }
+ } else {
+ assert(PAGE_SIZE == 16384);
+ for (i = 0; i < (int)(16384U / sizeof(int32_t)); i += 4) {
+ *ddst++ = pattern;
+ *ddst++ = pattern;
+ *ddst++ = pattern;
+ *ddst++ = pattern;
+ }
+ }
+ __unreachable_ok_pop
#endif
}
static int
c_decompress_page(char *dst, volatile c_slot_mapping_t slot_ptr, int flags, int *zeroslot)
{
- c_slot_t cs;
- c_segment_t c_seg;
- uint32_t c_segno;
- int c_indx;
- int c_rounded_size;
- uint32_t c_size;
- int retval = 0;
- boolean_t need_unlock = TRUE;
- boolean_t consider_defragmenting = FALSE;
- boolean_t kdp_mode = FALSE;
+ c_slot_t cs;
+ c_segment_t c_seg;
+ uint32_t c_segno;
+ uint16_t c_indx;
+ int c_rounded_size;
+ uint32_t c_size;
+ int retval = 0;
+ boolean_t need_unlock = TRUE;
+ boolean_t consider_defragmenting = FALSE;
+ boolean_t kdp_mode = FALSE;
if (__improbable(flags & C_KDP)) {
if (not_in_kdp) {
panic("C_KDP passed to decompress page from outside of debugger context");
}
- assert((flags & C_KEEP) == C_KEEP);
+ assert((flags & C_KEEP) == C_KEEP);
assert((flags & C_DONT_BLOCK) == C_DONT_BLOCK);
if ((flags & (C_DONT_BLOCK | C_KEEP)) != (C_DONT_BLOCK | C_KEEP)) {
- return (-2);
+ return -2;
}
kdp_mode = TRUE;
PAGE_REPLACEMENT_DISALLOWED(TRUE);
} else {
if (kdp_lck_rw_lock_is_acquired_exclusive(&c_master_lock)) {
- return (-2);
+ return -2;
}
}
* to disk... in this state we allow freeing of compressed
* pages and must honor the C_DONT_BLOCK case
*/
- if (dst && decompressions_blocked == TRUE) {
+ if (__improbable(dst && decompressions_blocked == TRUE)) {
if (flags & C_DONT_BLOCK) {
-
if (__probable(!kdp_mode)) {
PAGE_REPLACEMENT_DISALLOWED(FALSE);
}
*zeroslot = 0;
- return (-2);
+ return -2;
}
/*
* it's safe to atomically assert and block behind the
/* s_cseg is actually "segno+1" */
c_segno = slot_ptr->s_cseg - 1;
- if (__improbable(c_segno >= c_segments_available))
+ if (__improbable(c_segno >= c_segments_available)) {
panic("c_decompress_page: c_segno %d >= c_segments_available %d, slot_ptr(%p), slot_data(%x)",
- c_segno, c_segments_available, slot_ptr, *(int *)((void *)slot_ptr));
+ c_segno, c_segments_available, slot_ptr, *(int *)((void *)slot_ptr));
+ }
- if (__improbable(c_segments[c_segno].c_segno < c_segments_available))
+ if (__improbable(c_segments[c_segno].c_segno < c_segments_available)) {
panic("c_decompress_page: c_segno %d is free, slot_ptr(%p), slot_data(%x)",
- c_segno, slot_ptr, *(int *)((void *)slot_ptr));
+ c_segno, slot_ptr, *(int *)((void *)slot_ptr));
+ }
c_seg = c_segments[c_segno].c_seg;
lck_mtx_lock_spin_always(&c_seg->c_lock);
} else {
if (kdp_lck_mtx_lock_spin_is_acquired(&c_seg->c_lock)) {
- return (-2);
+ return -2;
}
}
}
}
if (c_seg->c_busy) {
-
PAGE_REPLACEMENT_DISALLOWED(FALSE);
c_seg_wait_on_busy(c_seg);
c_indx = slot_ptr->s_cindx;
- if (__improbable(c_indx >= c_seg->c_nextslot))
+ if (__improbable(c_indx >= c_seg->c_nextslot)) {
panic("c_decompress_page: c_indx %d >= c_nextslot %d, c_seg(%p), slot_ptr(%p), slot_data(%x)",
- c_indx, c_seg->c_nextslot, c_seg, slot_ptr, *(int *)((void *)slot_ptr));
+ c_indx, c_seg->c_nextslot, c_seg, slot_ptr, *(int *)((void *)slot_ptr));
+ }
cs = C_SEG_SLOT_FROM_INDEX(c_seg, c_indx);
c_size = UNPACK_C_SIZE(cs);
- if (__improbable(c_size == 0))
+ if (__improbable(c_size == 0)) {
panic("c_decompress_page: c_size == 0, c_seg(%p), slot_ptr(%p), slot_data(%x)",
- c_seg, slot_ptr, *(int *)((void *)slot_ptr));
+ c_seg, slot_ptr, *(int *)((void *)slot_ptr));
+ }
c_rounded_size = (c_size + C_SEG_OFFSET_ALIGNMENT_MASK) & ~C_SEG_OFFSET_ALIGNMENT_MASK;
if (dst) {
- uint32_t age_of_cseg;
- clock_sec_t cur_ts_sec;
- clock_nsec_t cur_ts_nsec;
+ uint32_t age_of_cseg;
+ clock_sec_t cur_ts_sec;
+ clock_nsec_t cur_ts_nsec;
if (C_SEG_IS_ONDISK(c_seg)) {
+#if CONFIG_FREEZE
+ if (freezer_incore_cseg_acct) {
+ if ((c_seg->c_slots_used + c_segment_pages_compressed_incore) >= c_segment_pages_compressed_nearing_limit) {
+ PAGE_REPLACEMENT_DISALLOWED(FALSE);
+ lck_mtx_unlock_always(&c_seg->c_lock);
+
+ memorystatus_kill_on_VM_compressor_space_shortage(FALSE /* async */);
+
+ goto ReTry;
+ }
+
+ uint32_t incore_seg_count = c_segment_count - c_swappedout_count - c_swappedout_sparse_count;
+ if ((incore_seg_count + 1) >= c_segments_nearing_limit) {
+ PAGE_REPLACEMENT_DISALLOWED(FALSE);
+ lck_mtx_unlock_always(&c_seg->c_lock);
+
+ memorystatus_kill_on_VM_compressor_space_shortage(FALSE /* async */);
+
+ goto ReTry;
+ }
+ }
+#endif /* CONFIG_FREEZE */
assert(kdp_mode == FALSE);
retval = c_seg_swapin(c_seg, FALSE, TRUE);
assert(retval == 0);
retval = 1;
- }
+ }
if (c_seg->c_state == C_ON_BAD_Q) {
assert(c_seg->c_store.c_buffer == NULL);
+ *zeroslot = 0;
retval = -1;
- goto c_seg_invalid_data;
+ goto done;
+ }
+
+#if POPCOUNT_THE_COMPRESSED_DATA
+ unsigned csvpop;
+ uintptr_t csvaddr = (uintptr_t) &c_seg->c_store.c_buffer[cs->c_offset];
+ if (cs->c_pop_cdata != (csvpop = vmc_pop(csvaddr, c_size))) {
+ panic("Compressed data popcount doesn't match original, bit distance: %d %p (phys: %p) %p %p 0x%x 0x%x 0x%x 0x%x", (csvpop - cs->c_pop_cdata), (void *)csvaddr, (void *) kvtophys(csvaddr), c_seg, cs, cs->c_offset, c_size, csvpop, cs->c_pop_cdata);
}
+#endif
+
#if CHECKSUM_THE_COMPRESSED_DATA
- if (cs->c_hash_compressed_data != hash_string((char *)&c_seg->c_store.c_buffer[cs->c_offset], c_size))
- panic("compressed data doesn't match original hash: 0x%x, seg: %p, offset: %d, c_size: %d", cs->c_hash_compressed_data, c_seg, cs->c_offset, c_size);
+ unsigned csvhash;
+ if (cs->c_hash_compressed_data != (csvhash = vmc_hash((char *)&c_seg->c_store.c_buffer[cs->c_offset], c_size))) {
+ panic("Compressed data doesn't match original %p %p %u %u %u", c_seg, cs, c_size, cs->c_hash_compressed_data, csvhash);
+ }
#endif
if (c_rounded_size == PAGE_SIZE) {
/*
*/
memcpy(dst, &c_seg->c_store.c_buffer[cs->c_offset], PAGE_SIZE);
} else if (c_size == 4) {
- int32_t data;
- int32_t *dptr;
+ int32_t data;
+ int32_t *dptr;
/*
* page was populated with a single value
data = *(int32_t *)(&c_seg->c_store.c_buffer[cs->c_offset]);
sv_decompress(dptr, data);
} else {
- uint32_t my_cpu_no;
- char *scratch_buf;
+ uint32_t my_cpu_no;
+ char *scratch_buf;
if (__probable(!kdp_mode)) {
/*
}
if (vm_compressor_algorithm() != VM_COMPRESSOR_DEFAULT_CODEC) {
+#if defined(__arm__) || defined(__arm64__)
+ uint16_t c_codec = cs->c_codec;
+ uint32_t inline_popcount;
+ if (!metadecompressor((const uint8_t *) &c_seg->c_store.c_buffer[cs->c_offset],
+ (uint8_t *)dst, c_size, c_codec, (void *)scratch_buf, &inline_popcount)) {
+ retval = -1;
+ } else {
+#if __ARM_WKDM_POPCNT__
+ if (inline_popcount != cs->c_inline_popcount) {
+ /*
+ * The codec choice in compression and
+ * decompression must agree, so there
+ * should never be a disagreement in
+ * whether an inline population count
+ * was performed.
+ */
+ assert(inline_popcount != C_SLOT_NO_POPCOUNT);
+ assert(cs->c_inline_popcount != C_SLOT_NO_POPCOUNT);
+ printf("decompression failure from physical region %llx+%05x: popcount mismatch (%d != %d)\n",
+ (unsigned long long)kvtophys((uintptr_t)&c_seg->c_store.c_buffer[cs->c_offset]), c_size,
+ inline_popcount,
+ cs->c_inline_popcount);
+ retval = -1;
+ }
+#else
+ assert(inline_popcount == C_SLOT_NO_POPCOUNT);
+#endif /* __ARM_WKDM_POPCNT__ */
+ }
+#endif
} else {
- WKdm_decompress_new((WK_word *)(uintptr_t)&c_seg->c_store.c_buffer[cs->c_offset],
+#if defined(__arm64__)
+ __unreachable_ok_push
+ if (PAGE_SIZE == 4096) {
+ WKdm_decompress_4k((WK_word *)(uintptr_t)&c_seg->c_store.c_buffer[cs->c_offset],
(WK_word *)(uintptr_t)dst, (WK_word *)(uintptr_t)scratch_buf, c_size);
+ } else {
+ WKdm_decompress_16k((WK_word *)(uintptr_t)&c_seg->c_store.c_buffer[cs->c_offset],
+ (WK_word *)(uintptr_t)dst, (WK_word *)(uintptr_t)scratch_buf, c_size);
+ }
+ __unreachable_ok_pop
+#else
+ WKdm_decompress_new((WK_word *)(uintptr_t)&c_seg->c_store.c_buffer[cs->c_offset],
+ (WK_word *)(uintptr_t)dst, (WK_word *)(uintptr_t)scratch_buf, c_size);
+#endif
}
}
#if CHECKSUM_THE_DATA
- if (cs->c_hash_data != hash_string(dst, PAGE_SIZE))
- panic("decompressed data doesn't match original cs: %p, hash: %d, offset: %d, c_size: %d", cs, cs->c_hash_data, cs->c_offset, c_size);
-
+ if (cs->c_hash_data != vmc_hash(dst, PAGE_SIZE)) {
+#if defined(__arm__) || defined(__arm64__)
+ int32_t *dinput = &c_seg->c_store.c_buffer[cs->c_offset];
+ panic("decompressed data doesn't match original cs: %p, hash: 0x%x, offset: %d, c_size: %d, c_rounded_size: %d, codec: %d, header: 0x%x 0x%x 0x%x", cs, cs->c_hash_data, cs->c_offset, c_size, c_rounded_size, cs->c_codec, *dinput, *(dinput + 1), *(dinput + 2));
+#else
+ panic("decompressed data doesn't match original cs: %p, hash: %d, offset: 0x%x, c_size: %d", cs, cs->c_hash_data, cs->c_offset, c_size);
+#endif
+ }
#endif
if (c_seg->c_swappedin_ts == 0 && !kdp_mode) {
-
clock_get_system_nanotime(&cur_ts_sec, &cur_ts_nsec);
age_of_cseg = (uint32_t)cur_ts_sec - c_seg->c_creation_ts;
- if (age_of_cseg < DECOMPRESSION_SAMPLE_MAX_AGE)
+ if (age_of_cseg < DECOMPRESSION_SAMPLE_MAX_AGE) {
OSAddAtomic(1, &age_of_decompressions_during_sample_period[age_of_cseg]);
- else
+ } else {
OSAddAtomic(1, &overage_decompressions_during_sample_period);
+ }
OSAddAtomic(1, &sample_period_decompression_count);
}
}
-c_seg_invalid_data:
+#if CONFIG_FREEZE
+ else {
+ /*
+ * We are freeing an uncompressed page from this c_seg and so balance the ledgers.
+ */
+ if (C_SEG_IS_ONDISK(c_seg)) {
+ /*
+ * The compression sweep feature will push out anonymous pages to disk
+ * without going through the freezer path and so those c_segs, while
+ * swapped out, won't have an owner.
+ */
+ if (c_seg->c_task_owner) {
+ task_update_frozen_to_swap_acct(c_seg->c_task_owner, PAGE_SIZE_64, DEBIT_FROM_SWAP);
+ }
+
+ /*
+ * We are freeing a page in swap without swapping it in. We bump the in-core
+ * count here to simulate a swapin of a page so that we can accurately
+ * decrement it below.
+ */
+ OSAddAtomic(1, &c_segment_pages_compressed_incore);
+ }
+ }
+#endif /* CONFIG_FREEZE */
if (flags & C_KEEP) {
*zeroslot = 0;
c_seg->c_bytes_unused += c_rounded_size;
c_seg->c_bytes_used -= c_rounded_size;
+
+ assert(c_seg->c_slots_used);
+ c_seg->c_slots_used--;
+
PACK_C_SIZE(cs, 0);
- if (c_indx < c_seg->c_firstemptyslot)
+ if (c_indx < c_seg->c_firstemptyslot) {
c_seg->c_firstemptyslot = c_indx;
+ }
OSAddAtomic(-1, &c_segment_pages_compressed);
+#if CONFIG_FREEZE
+ OSAddAtomic(-1, &c_segment_pages_compressed_incore);
+ assertf(c_segment_pages_compressed_incore >= 0, "-ve incore count %p 0x%x", c_seg, c_segment_pages_compressed_incore);
+#endif /* CONFIG_FREEZE */
if (c_seg->c_state != C_ON_BAD_Q && !(C_SEG_IS_ONDISK(c_seg))) {
/*
if (c_seg->c_state != C_IS_FILLING) {
if (c_seg->c_bytes_used == 0) {
- if ( !(C_SEG_IS_ONDISK(c_seg))) {
- int pages_populated;
+ if (!(C_SEG_IS_ONDISK(c_seg))) {
+ int pages_populated;
pages_populated = (round_page_32(C_SEG_OFFSET_TO_BYTES(c_seg->c_populated_offset))) / PAGE_SIZE;
c_seg->c_populated_offset = C_SEG_BYTES_TO_OFFSET(0);
if (pages_populated) {
-
assert(c_seg->c_state != C_ON_BAD_Q);
assert(c_seg->c_store.c_buffer != NULL);
C_SEG_BUSY(c_seg);
lck_mtx_unlock_always(&c_seg->c_lock);
- kernel_memory_depopulate(compressor_map, (vm_offset_t) c_seg->c_store.c_buffer, pages_populated * PAGE_SIZE, KMA_COMPRESSOR);
+ kernel_memory_depopulate(compressor_map,
+ (vm_offset_t) c_seg->c_store.c_buffer,
+ pages_populated * PAGE_SIZE, KMA_COMPRESSOR, VM_KERN_MEMORY_COMPRESSOR);
lck_mtx_lock_spin_always(&c_seg->c_lock);
C_SEG_WAKEUP_DONE(c_seg);
}
- if (!c_seg->c_on_minorcompact_q && c_seg->c_state != C_ON_SWAPOUT_Q)
+ if (!c_seg->c_on_minorcompact_q && c_seg->c_state != C_ON_SWAPOUT_Q && c_seg->c_state != C_ON_SWAPIO_Q) {
c_seg_need_delayed_compaction(c_seg, FALSE);
+ }
} else {
if (c_seg->c_state != C_ON_SWAPPEDOUTSPARSE_Q) {
-
c_seg_move_to_sparse_list(c_seg);
consider_defragmenting = TRUE;
}
}
} else if (c_seg->c_on_minorcompact_q) {
-
assert(c_seg->c_state != C_ON_BAD_Q);
+ assert(!C_SEG_IS_ON_DISK_OR_SOQ(c_seg));
- if (C_SEG_SHOULD_MINORCOMPACT(c_seg)) {
+ if (C_SEG_SHOULD_MINORCOMPACT_NOW(c_seg)) {
c_seg_try_minor_compaction_and_unlock(c_seg);
need_unlock = FALSE;
}
- } else if ( !(C_SEG_IS_ONDISK(c_seg))) {
-
- if (c_seg->c_state != C_ON_BAD_Q && c_seg->c_state != C_ON_SWAPOUT_Q && C_SEG_UNUSED_BYTES(c_seg) >= PAGE_SIZE) {
+ } else if (!(C_SEG_IS_ONDISK(c_seg))) {
+ if (c_seg->c_state != C_ON_BAD_Q && c_seg->c_state != C_ON_SWAPOUT_Q && c_seg->c_state != C_ON_SWAPIO_Q &&
+ C_SEG_UNUSED_BYTES(c_seg) >= PAGE_SIZE) {
c_seg_need_delayed_compaction(c_seg, FALSE);
}
} else if (c_seg->c_state != C_ON_SWAPPEDOUTSPARSE_Q && C_SEG_ONDISK_IS_SPARSE(c_seg)) {
-
c_seg_move_to_sparse_list(c_seg);
consider_defragmenting = TRUE;
}
return retval;
}
- if (need_unlock == TRUE)
+ if (need_unlock == TRUE) {
lck_mtx_unlock_always(&c_seg->c_lock);
+ }
PAGE_REPLACEMENT_DISALLOWED(FALSE);
- if (consider_defragmenting == TRUE)
- vm_swap_consider_defragmenting();
+ if (consider_defragmenting == TRUE) {
+ vm_swap_consider_defragmenting(VM_SWAP_FLAGS_NONE);
+ }
+#if !XNU_TARGET_OS_OSX
+ if ((c_minor_count && COMPRESSOR_NEEDS_TO_MINOR_COMPACT()) || vm_compressor_needs_to_major_compact()) {
+ vm_wake_compactor_swapper();
+ }
+#endif /* !XNU_TARGET_OS_OSX */
- return (retval);
+ return retval;
}
vm_compressor_get(ppnum_t pn, int *slot, int flags)
{
c_slot_mapping_t slot_ptr;
- char *dst;
- int zeroslot = 1;
- int retval;
+ char *dst;
+ int zeroslot = 1;
+ int retval;
-#if __x86_64__
- dst = PHYSMAP_PTOV((uint64_t)pn << (uint64_t)PAGE_SHIFT);
-#else
-#error "unsupported architecture"
-#endif
+ dst = pmap_map_compressor_page(pn);
slot_ptr = (c_slot_mapping_t)slot;
+ assert(dst != NULL);
+
if (slot_ptr->s_cseg == C_SV_CSEG_ID) {
- int32_t data;
- int32_t *dptr;
+ int32_t data;
+ int32_t *dptr;
/*
* page was populated with a single value
*/
dptr = (int32_t *)(uintptr_t)dst;
data = c_segment_sv_hash_table[slot_ptr->s_cindx].he_data;
-#if __x86_64__
- memset_word(dptr, data, PAGE_SIZE / sizeof(int32_t));
-#else
- {
- int i;
-
- for (i = 0; i < (int)(PAGE_SIZE / sizeof(int32_t)); i++)
- *dptr++ = data;
- }
-#endif
- c_segment_sv_hash_drop_ref(slot_ptr->s_cindx);
+ sv_decompress(dptr, data);
+ if (!(flags & C_KEEP)) {
+ c_segment_sv_hash_drop_ref(slot_ptr->s_cindx);
- if ( !(flags & C_KEEP)) {
OSAddAtomic(-1, &c_segment_pages_compressed);
+#if CONFIG_FREEZE
+ OSAddAtomic(-1, &c_segment_pages_compressed_incore);
+ assertf(c_segment_pages_compressed_incore >= 0, "-ve incore count 0x%x", c_segment_pages_compressed_incore);
+#endif /* CONFIG_FREEZE */
*slot = 0;
}
- if (data)
+ if (data) {
OSAddAtomic(1, &c_segment_svp_nonzero_decompressions);
- else
+ } else {
OSAddAtomic(1, &c_segment_svp_zero_decompressions);
+ }
- return (0);
+ pmap_unmap_compressor_page(pn, dst);
+ return 0;
}
retval = c_decompress_page(dst, slot_ptr, flags, &zeroslot);
if (zeroslot) {
*slot = 0;
}
+
+ pmap_unmap_compressor_page(pn, dst);
+
/*
* returns 0 if we successfully decompressed a page from a segment already in memory
* returns 1 if we had to first swap in the segment, before successfully decompressing the page
* returns -1 if we encountered an error swapping in the segment - decompression failed
* returns -2 if (flags & C_DONT_BLOCK) and we found 'c_busy' or 'C_SEG_IS_ONDISK' to be true
*/
- return (retval);
+ return retval;
+}
+
+#if DEVELOPMENT || DEBUG
+
+void
+vm_compressor_inject_error(int *slot)
+{
+ c_slot_mapping_t slot_ptr = (c_slot_mapping_t)slot;
+
+ /* No error detection for single-value compression. */
+ if (slot_ptr->s_cseg == C_SV_CSEG_ID) {
+ printf("%s(): cannot inject errors in SV-compressed pages\n", __func__ );
+ return;
+ }
+
+ /* s_cseg is actually "segno+1" */
+ const uint32_t c_segno = slot_ptr->s_cseg - 1;
+
+ assert(c_segno < c_segments_available);
+ assert(c_segments[c_segno].c_segno >= c_segments_available);
+
+ const c_segment_t c_seg = c_segments[c_segno].c_seg;
+
+ PAGE_REPLACEMENT_DISALLOWED(TRUE);
+
+ lck_mtx_lock_spin_always(&c_seg->c_lock);
+ assert(c_seg->c_state != C_IS_EMPTY && c_seg->c_state != C_IS_FREE);
+
+ const uint16_t c_indx = slot_ptr->s_cindx;
+ assert(c_indx < c_seg->c_nextslot);
+
+ /*
+ * To safely make this segment temporarily writable, we need to mark
+ * the segment busy, which allows us to release the segment lock.
+ */
+ while (c_seg->c_busy) {
+ c_seg_wait_on_busy(c_seg);
+ lck_mtx_lock_spin_always(&c_seg->c_lock);
+ }
+ C_SEG_BUSY(c_seg);
+
+ bool already_writable = (c_seg->c_state == C_IS_FILLING);
+ if (!already_writable) {
+ /*
+ * Protection update must be performed preemptibly, so temporarily drop
+ * the lock. Having set c_busy will prevent most other concurrent
+ * operations.
+ */
+ lck_mtx_unlock_always(&c_seg->c_lock);
+ C_SEG_MAKE_WRITEABLE(c_seg);
+ lck_mtx_lock_spin_always(&c_seg->c_lock);
+ }
+
+ /*
+ * Once we've released the lock following our c_state == C_IS_FILLING check,
+ * c_current_seg_filled() can (re-)write-protect the segment. However, it
+ * will transition from C_IS_FILLING before releasing the c_seg lock, so we
+ * can detect this by re-checking after we've reobtained the lock.
+ */
+ if (already_writable && c_seg->c_state != C_IS_FILLING) {
+ lck_mtx_unlock_always(&c_seg->c_lock);
+ C_SEG_MAKE_WRITEABLE(c_seg);
+ lck_mtx_lock_spin_always(&c_seg->c_lock);
+ already_writable = false;
+ /* Segment can't be freed while c_busy is set. */
+ assert(c_seg->c_state != C_IS_FILLING);
+ }
+
+ c_slot_t cs = C_SEG_SLOT_FROM_INDEX(c_seg, c_indx);
+ int32_t *data = &c_seg->c_store.c_buffer[cs->c_offset];
+ /* assume that the compressed data holds at least one int32_t */
+ assert(UNPACK_C_SIZE(cs) > sizeof(*data));
+ /*
+ * This bit is known to be in the payload of a MISS packet resulting from
+ * the pattern used in the test pattern from decompression_failure.c.
+ * Flipping it should result in many corrupted bits in the test page.
+ */
+ data[0] ^= 0x00000100;
+ if (!already_writable) {
+ lck_mtx_unlock_always(&c_seg->c_lock);
+ C_SEG_WRITE_PROTECT(c_seg);
+ lck_mtx_lock_spin_always(&c_seg->c_lock);
+ }
+
+ C_SEG_WAKEUP_DONE(c_seg);
+ lck_mtx_unlock_always(&c_seg->c_lock);
+
+ PAGE_REPLACEMENT_DISALLOWED(FALSE);
}
+#endif /* DEVELOPMENT || DEBUG */
int
vm_compressor_free(int *slot, int flags)
{
c_slot_mapping_t slot_ptr;
- int zeroslot = 1;
- int retval;
+ int zeroslot = 1;
+ int retval;
assert(flags == 0 || flags == C_DONT_BLOCK);
slot_ptr = (c_slot_mapping_t)slot;
if (slot_ptr->s_cseg == C_SV_CSEG_ID) {
-
c_segment_sv_hash_drop_ref(slot_ptr->s_cindx);
OSAddAtomic(-1, &c_segment_pages_compressed);
+#if CONFIG_FREEZE
+ OSAddAtomic(-1, &c_segment_pages_compressed_incore);
+ assertf(c_segment_pages_compressed_incore >= 0, "-ve incore count 0x%x", c_segment_pages_compressed_incore);
+#endif /* CONFIG_FREEZE */
*slot = 0;
- return (0);
+ return 0;
}
retval = c_decompress_page(NULL, slot_ptr, flags, &zeroslot);
/*
* returns -2 if (flags & C_DONT_BLOCK) and we found 'c_busy' set
*/
- if (retval == 0)
+ if (retval == 0) {
*slot = 0;
- else
+ } else {
assert(retval == -2);
+ }
- return (retval);
+ return retval;
}
int
vm_compressor_put(ppnum_t pn, int *slot, void **current_chead, char *scratch_buf)
{
- char *src;
- int retval;
+ char *src;
+ int retval;
+
+ src = pmap_map_compressor_page(pn);
+ assert(src != NULL);
-#if __x86_64__
- src = PHYSMAP_PTOV((uint64_t)pn << (uint64_t)PAGE_SHIFT);
-#else
-#error "unsupported architecture"
-#endif
retval = c_compress_page(src, (c_slot_mapping_t)slot, (c_segment_t *)current_chead, scratch_buf);
+ pmap_unmap_compressor_page(pn, src);
- return (retval);
+ return retval;
}
void
vm_compressor_transfer(
- int *dst_slot_p,
- int *src_slot_p)
+ int *dst_slot_p,
+ int *src_slot_p)
{
- c_slot_mapping_t dst_slot, src_slot;
- c_segment_t c_seg;
- int c_indx;
- c_slot_t cs;
+ c_slot_mapping_t dst_slot, src_slot;
+ c_segment_t c_seg;
+ uint16_t c_indx;
+ c_slot_t cs;
src_slot = (c_slot_mapping_t) src_slot_p;
Retry:
PAGE_REPLACEMENT_DISALLOWED(TRUE);
/* get segment for src_slot */
- c_seg = c_segments[src_slot->s_cseg -1].c_seg;
+ c_seg = c_segments[src_slot->s_cseg - 1].c_seg;
/* lock segment */
lck_mtx_lock_spin_always(&c_seg->c_lock);
/* wait if it's busy */
c_indx = src_slot->s_cindx;
cs = C_SEG_SLOT_FROM_INDEX(c_seg, c_indx);
/* point the c_slot back to dst_slot instead of src_slot */
+ C_SLOT_ASSERT_PACKABLE(dst_slot);
cs->c_packed_ptr = C_SLOT_PACK_PTR(dst_slot);
/* transfer */
*dst_slot_p = *src_slot_p;
#if CONFIG_FREEZE
-int freezer_finished_filling = 0;
+int freezer_finished_filling = 0;
void
vm_compressor_finished_filling(
- void **current_chead)
+ void **current_chead)
{
- c_segment_t c_seg;
+ c_segment_t c_seg;
- if ((c_seg = *(c_segment_t *)current_chead) == NULL)
+ if ((c_seg = *(c_segment_t *)current_chead) == NULL) {
return;
+ }
assert(c_seg->c_state == C_IS_FILLING);
-
+
lck_mtx_lock_spin_always(&c_seg->c_lock);
c_current_seg_filled(c_seg, (c_segment_t *)current_chead);
*
* Currently, this routine is only used by the "freezer backed by
* compressor with swap" mode to create a series of c_segs that
- * only contain compressed data belonging to one task. So, we
+ * only contain compressed data belonging to one task. So, we
* move a task's previously compressed data into a set of new
* c_segs which will also hold the task's yet to be compressed data.
*/
kern_return_t
vm_compressor_relocate(
- void **current_chead,
- int *slot_p)
-{
- c_slot_mapping_t slot_ptr;
- c_slot_mapping_t src_slot;
- uint32_t c_rounded_size;
- uint32_t c_size;
- uint16_t dst_slot;
- c_slot_t c_dst;
- c_slot_t c_src;
- int c_indx;
- c_segment_t c_seg_dst = NULL;
- c_segment_t c_seg_src = NULL;
- kern_return_t kr = KERN_SUCCESS;
+ void **current_chead,
+ int *slot_p)
+{
+ c_slot_mapping_t slot_ptr;
+ c_slot_mapping_t src_slot;
+ uint32_t c_rounded_size;
+ uint32_t c_size;
+ uint16_t dst_slot;
+ c_slot_t c_dst;
+ c_slot_t c_src;
+ uint16_t c_indx;
+ c_segment_t c_seg_dst = NULL;
+ c_segment_t c_seg_src = NULL;
+ kern_return_t kr = KERN_SUCCESS;
src_slot = (c_slot_mapping_t) slot_p;
* value which is hashed to a single entry not contained
* in a c_segment_t
*/
- return (kr);
+ return kr;
}
Relookup_dst:
C_SEG_BUSY(c_seg_dst);
dst_slot = c_seg_dst->c_nextslot;
-
+
lck_mtx_unlock_always(&c_seg_dst->c_lock);
Relookup_src:
lck_mtx_lock_spin_always(&c_seg_src->c_lock);
- if (C_SEG_IS_ONDISK(c_seg_src)) {
-
+ if (C_SEG_IS_ON_DISK_OR_SOQ(c_seg_src) ||
+ c_seg_src->c_state == C_IS_FILLING) {
/*
- * A "thaw" can mark a process as eligible for
+ * Skip this page if :-
+ * a) the src c_seg is already on-disk (or on its way there)
+ * A "thaw" can mark a process as eligible for
* another freeze cycle without bringing any of
* its swapped out c_segs back from disk (because
* that is done on-demand).
+ * Or, this page may be mapped elsewhere in the task's map,
+ * and we may have marked it for swap already.
*
- * If the src c_seg we find for our pre-compressed
- * data is already on-disk, then we are dealing
- * with an app's data that is already packed and
- * swapped out. Don't do anything.
+ * b) Or, the src c_seg is being filled by the compressor
+ * thread. We don't want the added latency of waiting for
+ * this c_seg in the freeze path and so we skip it.
*/
-
+
PAGE_REPLACEMENT_DISALLOWED(FALSE);
lck_mtx_unlock_always(&c_seg_src->c_lock);
}
if (c_seg_src->c_busy) {
-
PAGE_REPLACEMENT_DISALLOWED(FALSE);
c_seg_wait_on_busy(c_seg_src);
-
+
c_seg_src = NULL;
PAGE_REPLACEMENT_DISALLOWED(TRUE);
C_SEG_BUSY(c_seg_src);
lck_mtx_unlock_always(&c_seg_src->c_lock);
-
+
PAGE_REPLACEMENT_DISALLOWED(FALSE);
/* find the c_slot */
*/
PAGE_REPLACEMENT_DISALLOWED(TRUE);
-
+
lck_mtx_lock_spin_always(&c_seg_src->c_lock);
C_SEG_WAKEUP_DONE(c_seg_src);
lck_mtx_unlock_always(&c_seg_src->c_lock);
c_current_seg_filled(c_seg_dst, (c_segment_t *)current_chead);
assert(*current_chead == NULL);
-
+
C_SEG_WAKEUP_DONE(c_seg_dst);
-
+
lck_mtx_unlock_always(&c_seg_dst->c_lock);
c_seg_dst = NULL;
c_dst = C_SEG_SLOT_FROM_INDEX(c_seg_dst, c_seg_dst->c_nextslot);
memcpy(&c_seg_dst->c_store.c_buffer[c_seg_dst->c_nextoffset], &c_seg_src->c_store.c_buffer[c_src->c_offset], c_size);
-
+ /*
+ * Is platform alignment actually necessary since wkdm aligns its output?
+ */
c_rounded_size = (c_size + C_SEG_OFFSET_ALIGNMENT_MASK) & ~C_SEG_OFFSET_ALIGNMENT_MASK;
cslot_copy(c_dst, c_src);
c_dst->c_offset = c_seg_dst->c_nextoffset;
- if (c_seg_dst->c_firstemptyslot == c_seg_dst->c_nextslot)
+ if (c_seg_dst->c_firstemptyslot == c_seg_dst->c_nextslot) {
c_seg_dst->c_firstemptyslot++;
+ }
+ c_seg_dst->c_slots_used++;
c_seg_dst->c_nextslot++;
c_seg_dst->c_bytes_used += c_rounded_size;
c_seg_dst->c_nextoffset += C_SEG_BYTES_TO_OFFSET(c_rounded_size);
-
+
PACK_C_SIZE(c_src, 0);
c_seg_src->c_bytes_used -= c_rounded_size;
c_seg_src->c_bytes_unused += c_rounded_size;
-
+
+ assert(c_seg_src->c_slots_used);
+ c_seg_src->c_slots_used--;
+
if (c_indx < c_seg_src->c_firstemptyslot) {
c_seg_src->c_firstemptyslot = c_indx;
}
c_dst = C_SEG_SLOT_FROM_INDEX(c_seg_dst, dst_slot);
-
+
PAGE_REPLACEMENT_ALLOWED(TRUE);
- slot_ptr = (c_slot_mapping_t)C_SLOT_UNPACK_PTR(c_dst);
+ slot_ptr = C_SLOT_UNPACK_PTR(c_dst);
/* <csegno=0,indx=0> would mean "empty slot", so use csegno+1 */
slot_ptr->s_cseg = c_seg_dst->c_mysegno + 1;
slot_ptr->s_cindx = dst_slot;
out:
if (c_seg_src) {
-
lck_mtx_lock_spin_always(&c_seg_src->c_lock);
C_SEG_WAKEUP_DONE(c_seg_src);
if (c_seg_src->c_bytes_used == 0 && c_seg_src->c_state != C_IS_FILLING) {
- if (!c_seg_src->c_on_minorcompact_q)
+ if (!c_seg_src->c_on_minorcompact_q) {
c_seg_need_delayed_compaction(c_seg_src, FALSE);
+ }
}
lck_mtx_unlock_always(&c_seg_src->c_lock);
}
-
- if (c_seg_dst) {
+ if (c_seg_dst) {
PAGE_REPLACEMENT_DISALLOWED(TRUE);
lck_mtx_lock_spin_always(&c_seg_dst->c_lock);
c_current_seg_filled(c_seg_dst, (c_segment_t *)current_chead);
assert(*current_chead == NULL);
- }
-
+ }
+
C_SEG_WAKEUP_DONE(c_seg_dst);
lck_mtx_unlock_always(&c_seg_dst->c_lock);