]> git.saurik.com Git - apple/xnu.git/blobdiff - osfmk/i386/pmCPU.c
xnu-2050.22.13.tar.gz
[apple/xnu.git] / osfmk / i386 / pmCPU.c
index 1f12073fb5a2e7e543010031cb2d3f5afa5311b1..b22749df79e3ce64935e3ba068baf6815d4611f2 100644 (file)
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2004-2007 Apple Inc. All rights reserved.
+ * Copyright (c) 2004-2011 Apple Inc. All rights reserved.
  *
  * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
  * 
  *
  * Implements the "wrappers" to the KEXT.
  */
-#include <i386/machine_routines.h>
-#include <i386/machine_cpu.h>
-#include <i386/misc_protos.h>
-#include <i386/pmap.h>
 #include <i386/asm.h>
+#include <i386/machine_cpu.h>
 #include <i386/mp.h>
+#include <i386/machine_routines.h>
 #include <i386/proc_reg.h>
+#include <i386/pmap.h>
+#include <i386/misc_protos.h>
+#include <kern/machine.h>
 #include <kern/pms.h>
 #include <kern/processor.h>
+#include <kern/etimer.h>
 #include <i386/cpu_threads.h>
 #include <i386/pmCPU.h>
 #include <i386/cpuid.h>
-#include <i386/rtclock.h>
+#include <i386/rtclock_protos.h>
+#include <kern/sched_prim.h>
+#include <i386/lapic.h>
+#include <i386/pal_routines.h>
+
+#include <sys/kdebug.h>
 
 extern int disableConsoleOutput;
 
-decl_simple_lock_data(,pm_init_lock);
+#define DELAY_UNSET            0xFFFFFFFFFFFFFFFFULL
 
 /*
  * The following is set when the KEXT loads and initializes.
  */
 pmDispatch_t   *pmDispatch     = NULL;
 
-/*
- * Current power management states (for use until KEXT is loaded).
- */
-static pmInitState_t   pmInitState;
-
-static uint32_t                pmInitDone      = 0;
-
-/*
- * Nap control variables:
- */
-uint32_t forcenap = 0;                 /* Force nap (fn) boot-arg controls */
+static uint32_t                pmInitDone              = 0;
+static boolean_t       earlyTopology           = FALSE;
+static uint64_t                earlyMaxBusDelay        = DELAY_UNSET;
+static uint64_t                earlyMaxIntDelay        = DELAY_UNSET;
 
 /*
- * Do any initialization needed
- */
-void
-pmsInit(void)
-{
-    static int         initialized     = 0;
-
-    /*
-     * Initialize some of the initial state to "uninitialized" until
-     * it gets set with something more useful.  This allows the KEXT
-     * to determine if the initial value was actually set to something.
-     */
-    if (!initialized) {
-       pmInitState.PState = -1;
-       pmInitState.PLimit = -1;
-       pmInitState.maxBusDelay = -1;
-       initialized = 1;
-    }
-
-    if (pmDispatch != NULL && pmDispatch->pmsInit != NULL)
-       (*pmDispatch->pmsInit)();
-}
-
-/*
- * Start the power management stepper on all processors
- *
- * All processors must be parked.  This should be called when the hardware
- * is ready to step.  Probably only at boot and after wake from sleep.
- *
- */
-void
-pmsStart(void)
-{
-    if (pmDispatch != NULL && pmDispatch->pmsStart != NULL)
-       (*pmDispatch->pmsStart)();
-}
-
-/*
- * Park the stepper execution.  This will force the stepper on this
- * processor to abandon its current step and stop.  No changes to the
- * hardware state is made and any previous step is lost.
- *     
- * This is used as the initial state at startup and when the step table
- * is being changed.
- *
+ * Initialize the Cstate change code.
  */
 void
-pmsPark(void)
-{
-    if (pmDispatch != NULL && pmDispatch->pmsPark != NULL)
-       (*pmDispatch->pmsPark)();
-}
-
-/*
- * Control the Power Management Stepper.
- * Called from user state by the superuser.
- * Interrupts disabled.
- *
- * This interface is deprecated and is now a no-op.
- */
-kern_return_t
-pmsControl(__unused uint32_t request, __unused user_addr_t reqaddr,
-          __unused uint32_t reqsize)
+power_management_init(void)
 {
-    return(KERN_SUCCESS);
+    if (pmDispatch != NULL && pmDispatch->cstateInit != NULL)
+       (*pmDispatch->cstateInit)();
 }
 
 /*
- * Broadcast a change to all processors including ourselves.
- *
- * Interrupts disabled.
+ * Called when the CPU is idle.  It calls into the power management kext
+ * to determine the best way to idle the CPU.
  */
 void
-pmsRun(uint32_t nstep)
+machine_idle(void)
 {
-    if (pmDispatch != NULL && pmDispatch->pmsRun != NULL)
-       (*pmDispatch->pmsRun)(nstep);
-}
+    cpu_data_t         *my_cpu         = current_cpu_datap();
 
-/*
- * Build the tables needed for the stepper.  This includes both the step
- * definitions and the step control table.
- *
- * We most absolutely need to be parked before this happens because we're
- * going to change the table.  We also have to be complte about checking
- * for errors.  A copy is always made because we don't want to be crippled
- * by not being able to change the table or description formats.
- *
- * We pass in a table of external functions and the new stepper def uses
- * the corresponding indexes rather than actual function addresses.  This
- * is done so that a proper table can be built with the control syscall.
- * It can't supply addresses, so the index has to do.  We internalize the
- * table so our caller does not need to keep it.  Note that passing in a 0
- * will use the current function table.  Also note that entry 0 is reserved
- * and must be 0, we will check and fail the build.
- *
- * The platformData parameter is a 32-bit word of data that is passed unaltered
- * to the set function.
- *
- * The queryFunc parameter is the address of a function that will return the
- * current state of the platform. The format of the data returned is the same
- * as the platform specific portions of pmsSetCmd, i.e., pmsXClk, pmsVoltage,
- * and any part of pmsPowerID that is maintained by the platform hardware
- * (an example would be the values of the gpios that correspond to pmsPowerID).
- * The value should be constructed by querying hardware rather than returning
- * a value cached by software. One of the intents of this function is to help
- * recover lost or determine initial power states.
- *
- */
-kern_return_t
-pmsBuild(pmsDef *pd, uint32_t pdsize, pmsSetFunc_t *functab,
-        uint32_t platformData, pmsQueryFunc_t queryFunc)
-{
-    kern_return_t      rc      = 0;
+    if (my_cpu == NULL)
+       goto out;
 
-    if (pmDispatch != NULL && pmDispatch->pmsBuild != NULL)
-       rc = (*pmDispatch->pmsBuild)(pd, pdsize, functab,
-                                    platformData, queryFunc);
+    my_cpu->lcpu.state = LCPU_IDLE;
+    DBGLOG(cpu_handle, cpu_number(), MP_IDLE);
+    MARK_CPU_IDLE(cpu_number());
 
-    return(rc);
-}
+    if (pmInitDone) {
+       /*
+        * Handle case where ml_set_maxbusdelay() or ml_set_maxintdelay()
+        * were called prior to the CPU PM kext being registered.  We do
+        * this here since we know at this point the values will be first
+        * used since idle is where the decisions using these values is made.
+        */
+       if (earlyMaxBusDelay != DELAY_UNSET)
+           ml_set_maxbusdelay((uint32_t)(earlyMaxBusDelay & 0xFFFFFFFF));
 
+       if (earlyMaxIntDelay != DELAY_UNSET)
+           ml_set_maxintdelay(earlyMaxIntDelay);
+    }
 
-/*
- * Load a new ratio/VID table.
- *
- * Note that this interface is specific to the Intel SpeedStep implementation.
- * It is expected that this will only be called once to override the default
- * ratio/VID table when the platform starts.
- *
- * Normally, the table will need to be replaced at the same time that the
- * stepper program proper is replaced, as the PState indices from an old
- * program may no longer be valid.  When replacing the default program this
- * should not be a problem as any new table will have at least two PState
- * entries and the default program only references P0 and P1.
- */
-kern_return_t
-pmsCPULoadVIDTable(uint16_t *tablep, int nstates)
-{
-    if (pmDispatch != NULL && pmDispatch->pmsCPULoadVIDTable != NULL)
-       return((*pmDispatch->pmsCPULoadVIDTable)(tablep, nstates));
+    if (pmInitDone
+       && pmDispatch != NULL
+       && pmDispatch->MachineIdle != NULL)
+       (*pmDispatch->MachineIdle)(0x7FFFFFFFFFFFFFFFULL);
     else {
-       int     i;
-
-       if (nstates > MAX_PSTATES)
-           return(KERN_FAILURE);
+       /*
+        * If no power management, re-enable interrupts and halt.
+        * This will keep the CPU from spinning through the scheduler
+        * and will allow at least some minimal power savings (but it
+        * cause problems in some MP configurations w.r.t. the APIC
+        * stopping during a GV3 transition).
+        */
+       pal_hlt();
 
-       for (i = 0; i < nstates; i += 1)
-           pmInitState.VIDTable[i] = tablep[i];
+       /* Once woken, re-disable interrupts. */
+       pal_cli();
     }
-    return(KERN_SUCCESS);
-}
-
-/*
- * Set the (global) PState limit.  CPUs will not be permitted to run at
- * a lower (more performant) PState than this.
- */
-kern_return_t
-pmsCPUSetPStateLimit(uint32_t limit)
-{
-    if (pmDispatch != NULL && pmDispatch->pmsCPUSetPStateLimit != NULL)
-       return((*pmDispatch->pmsCPUSetPStateLimit)(limit));
-
-    pmInitState.PLimit = limit;
-    return(KERN_SUCCESS);
-}
-
-/*
- * Initialize the Cstate change code.
- */
-void
-power_management_init(void)
-{
-    static boolean_t   initialized     = FALSE;
 
     /*
-     * Initialize the lock for the KEXT initialization.
+     * Mark the CPU as running again.
      */
-    if (!initialized) {
-       simple_lock_init(&pm_init_lock, 0);
-       initialized = TRUE;
-    }
-
-    if (pmDispatch != NULL && pmDispatch->cstateInit != NULL)
-       (*pmDispatch->cstateInit)();
-}
-
-/*
- * ACPI calls the following routine to set/update mwait hints.  A table
- * (possibly null) specifies the available Cstates and their hints, all
- * other states are assumed to be invalid.  ACPI may update available
- * states to change the nap policy (for example, while AC power is
- * available).
- */
-kern_return_t
-Cstate_table_set(Cstate_hint_t *tablep, unsigned int nstates)
-{
-    if (forcenap)
-       return(KERN_SUCCESS);
-
-    if (pmDispatch != NULL && pmDispatch->cstateTableSet != NULL)
-       return((*pmDispatch->cstateTableSet)(tablep, nstates));
-    else {
-       unsigned int    i;
+    MARK_CPU_ACTIVE(cpu_number());
+    DBGLOG(cpu_handle, cpu_number(), MP_UNIDLE);
+    my_cpu->lcpu.state = LCPU_RUN;
 
-       for (i = 0; i < nstates; i += 1) {
-           pmInitState.CStates[i].number = tablep[i].number;
-           pmInitState.CStates[i].hint   = tablep[i].hint;
-       }
-
-       pmInitState.CStatesCount = nstates;
-    }
-    return(KERN_SUCCESS);
-}
-
-/*
- * Called when the CPU is idle.  It will choose the best C state to
- * be in.
- */
-void
-machine_idle_cstate(boolean_t halted)
-{
-       if (pmInitDone
-           && pmDispatch != NULL
-           && pmDispatch->cstateMachineIdle != NULL)
-               (*pmDispatch->cstateMachineIdle)(!halted ?
-                                                0x7FFFFFFFFFFFFFFFULL : 0ULL);
-       else if (halted) {
-           /*
-            * If no power managment and a processor is taken off-line,
-            * then invalidate the cache and halt it (it will not be able
-            * to be brought back on-line without resetting the CPU).
-            */
-           __asm__ volatile ( "wbinvd; hlt" );
-       } else {
-           /*
-            * If no power management, re-enable interrupts and halt.
-            * This will keep the CPU from spinning through the scheduler
-            * and will allow at least some minimal power savings (but it
-            * may cause problems in some MP configurations w.r.t to the
-            * APIC stopping during a P-State transition).
-            */
-           __asm__ volatile ( "sti; hlt" );
-       }
+    /*
+     * Re-enable interrupts.
+     */
+  out:
+    pal_sti();
 }
 
 /*
@@ -320,53 +145,74 @@ machine_idle_cstate(boolean_t halted)
 void
 pmCPUHalt(uint32_t reason)
 {
+    cpu_data_t *cpup   = current_cpu_datap();
 
     switch (reason) {
     case PM_HALT_DEBUG:
-       __asm__ volatile ("wbinvd; hlt");
+       cpup->lcpu.state = LCPU_PAUSE;
+       pal_stop_cpu(FALSE);
        break;
 
     case PM_HALT_PANIC:
-       __asm__ volatile ("cli; wbinvd; hlt");
+       cpup->lcpu.state = LCPU_PAUSE;
+       pal_stop_cpu(TRUE);
        break;
 
     case PM_HALT_NORMAL:
     default:
-       __asm__ volatile ("cli");
+        pal_cli();
 
        if (pmInitDone
            && pmDispatch != NULL
            && pmDispatch->pmCPUHalt != NULL) {
+           /*
+            * Halt the CPU (and put it in a low power state.
+            */
            (*pmDispatch->pmCPUHalt)();
-       } else {
-           cpu_data_t  *cpup   = current_cpu_datap();
 
+           /*
+            * We've exited halt, so get the the CPU schedulable again.
+            */
+           i386_init_slave_fast();
+
+           panic("init_slave_fast returned");
+       } else
+       {
            /*
             * If no power managment and a processor is taken off-line,
             * then invalidate the cache and halt it (it will not be able
             * to be brought back on-line without resetting the CPU).
             */
            __asm__ volatile ("wbinvd");
-           cpup->lcpu.halted = TRUE;
-           __asm__ volatile ( "wbinvd; hlt" );
+           cpup->lcpu.state = LCPU_HALT;
+           pal_stop_cpu(FALSE);
+
+           panic("back from Halt");
        }
+
        break;
     }
 }
 
-/*
- * Called to initialize the power management structures for the CPUs.
- */
 void
-pmCPUStateInit(void)
+pmMarkAllCPUsOff(void)
 {
-    if (pmDispatch != NULL && pmDispatch->pmCPUStateInit != NULL)
-       (*pmDispatch->pmCPUStateInit)();
+    if (pmInitDone
+       && pmDispatch != NULL
+       && pmDispatch->markAllCPUsOff != NULL)
+       (*pmDispatch->markAllCPUsOff)();
 }
 
 static void
 pmInitComplete(void)
 {
+    if (earlyTopology
+       && pmDispatch != NULL
+       && pmDispatch->pmCPUStateInit != NULL) {
+       (*pmDispatch->pmCPUStateInit)();
+       earlyTopology = FALSE;
+    }
+
     pmInitDone = 1;
 }
 
@@ -398,6 +244,20 @@ pmGetMyCore(void)
     return(cpup->lcpu.core);
 }
 
+static x86_die_t *
+pmGetDie(int cpu)
+{
+    return(cpu_to_die(cpu));
+}
+
+static x86_die_t *
+pmGetMyDie(void)
+{
+    cpu_data_t *cpup   = current_cpu_datap();
+
+    return(cpup->lcpu.die);
+}
+
 static x86_pkg_t *
 pmGetPackage(int cpu)
 {
@@ -409,7 +269,7 @@ pmGetMyPackage(void)
 {
     cpu_data_t *cpup   = current_cpu_datap();
 
-    return(cpup->lcpu.core->package);
+    return(cpup->lcpu.package);
 }
 
 static void
@@ -425,11 +285,13 @@ pmLockCPUTopology(int lock)
 /*
  * Called to get the next deadline that has been set by the
  * power management code.
+ * Note: a return of 0 from AICPM and this routine signifies
+ * that no deadline is set.
  */
 uint64_t
 pmCPUGetDeadline(cpu_data_t *cpu)
 {
-    uint64_t   deadline        = EndOfAllTime;
+    uint64_t   deadline        = 0;
 
     if (pmInitDone
        && pmDispatch != NULL
@@ -446,7 +308,7 @@ pmCPUGetDeadline(cpu_data_t *cpu)
 uint64_t
 pmCPUSetDeadline(cpu_data_t *cpu, uint64_t deadline)
 {
-    if (pmInitDone
+   if (pmInitDone
        && pmDispatch != NULL
        && pmDispatch->SetDeadline != NULL)
        deadline = (*pmDispatch->SetDeadline)(&cpu->lcpu, deadline);
@@ -484,29 +346,58 @@ pmCPUExitIdle(cpu_data_t *cpu)
     return(do_ipi);
 }
 
+kern_return_t
+pmCPUExitHalt(int cpu)
+{
+    kern_return_t      rc      = KERN_INVALID_ARGUMENT;
+
+    if (pmInitDone
+       && pmDispatch != NULL
+       && pmDispatch->exitHalt != NULL)
+       rc = pmDispatch->exitHalt(cpu_to_lcpu(cpu));
+
+    return(rc);
+}
+
+kern_return_t
+pmCPUExitHaltToOff(int cpu)
+{
+    kern_return_t      rc      = KERN_INVALID_ARGUMENT;
+
+    if (pmInitDone
+       && pmDispatch != NULL
+       && pmDispatch->exitHaltToOff != NULL)
+       rc = pmDispatch->exitHaltToOff(cpu_to_lcpu(cpu));
+
+    return(rc);
+}
+
 /*
- * Called when a CPU is being restarted after being powered off (as in S3).
+ * Called to initialize the power management structures for the CPUs.
  */
 void
-pmCPUMarkRunning(cpu_data_t *cpu)
+pmCPUStateInit(void)
 {
-    if (pmInitDone
-       && pmDispatch != NULL
-       && pmDispatch->markCPURunning != NULL)
-       (*pmDispatch->markCPURunning)(&cpu->lcpu);
+    if (pmDispatch != NULL && pmDispatch->pmCPUStateInit != NULL)
+       (*pmDispatch->pmCPUStateInit)();
+    else
+       earlyTopology = TRUE;
 }
 
 /*
- * Called from the HPET interrupt handler to perform the
- * necessary power management work.
+ * Called when a CPU is being restarted after being powered off (as in S3).
  */
 void
-pmHPETInterrupt(void)
+pmCPUMarkRunning(cpu_data_t *cpu)
 {
+    cpu_data_t *cpup   = current_cpu_datap();
+
     if (pmInitDone
        && pmDispatch != NULL
-       && pmDispatch->HPETInterrupt != NULL)
-       (*pmDispatch->HPETInterrupt)();
+       && pmDispatch->markCPURunning != NULL)
+       (*pmDispatch->markCPURunning)(&cpu->lcpu);
+    else
+       cpup->lcpu.state = LCPU_RUN;
 }
 
 /*
@@ -524,6 +415,30 @@ pmCPUControl(uint32_t cmd, void *datap)
     return(rc);
 }
 
+/*
+ * Called to save the timer state used by power management prior
+ * to "sleeping".
+ */
+void
+pmTimerSave(void)
+{
+    if (pmDispatch != NULL
+       && pmDispatch->pmTimerStateSave != NULL)
+       (*pmDispatch->pmTimerStateSave)();
+}
+
+/*
+ * Called to restore the timer state used by power management after
+ * waking from "sleep".
+ */
+void
+pmTimerRestore(void)
+{
+    if (pmDispatch != NULL
+       && pmDispatch->pmTimerStateRestore != NULL)
+       (*pmDispatch->pmTimerStateRestore)();
+}
+
 /*
  * Set the worst-case time for the C4 to C2 transition.
  * No longer does anything.
@@ -542,7 +457,8 @@ ml_get_maxsnoop(void)
 {
     uint64_t   max_snoop       = 0;
 
-    if (pmDispatch != NULL
+    if (pmInitDone
+       && pmDispatch != NULL
        && pmDispatch->getMaxSnoop != NULL)
        max_snoop = pmDispatch->getMaxSnoop();
 
@@ -555,7 +471,8 @@ ml_get_maxbusdelay(void)
 {
     uint64_t   max_delay       = 0;
 
-    if (pmDispatch != NULL
+    if (pmInitDone
+       && pmDispatch != NULL
        && pmDispatch->getMaxBusDelay != NULL)
        max_delay = pmDispatch->getMaxBusDelay();
 
@@ -576,10 +493,50 @@ ml_set_maxbusdelay(uint32_t mdelay)
     uint64_t   maxdelay        = mdelay;
 
     if (pmDispatch != NULL
-       && pmDispatch->setMaxBusDelay != NULL)
+       && pmDispatch->setMaxBusDelay != NULL) {
+       earlyMaxBusDelay = DELAY_UNSET;
        pmDispatch->setMaxBusDelay(maxdelay);
-    else
-       pmInitState.maxBusDelay = maxdelay;
+    } else
+       earlyMaxBusDelay = maxdelay;
+}
+
+uint64_t
+ml_get_maxintdelay(void)
+{
+    uint64_t   max_delay       = 0;
+
+    if (pmDispatch != NULL
+       && pmDispatch->getMaxIntDelay != NULL)
+       max_delay = pmDispatch->getMaxIntDelay();
+
+    return(max_delay);
+}
+
+/*
+ * Set the maximum delay allowed for an interrupt.
+ */
+void
+ml_set_maxintdelay(uint64_t mdelay)
+{
+    if (pmDispatch != NULL
+       && pmDispatch->setMaxIntDelay != NULL) {
+       earlyMaxIntDelay = DELAY_UNSET;
+       pmDispatch->setMaxIntDelay(mdelay);
+    } else
+       earlyMaxIntDelay = mdelay;
+}
+
+boolean_t
+ml_get_interrupt_prewake_applicable()
+{
+    boolean_t applicable = FALSE;
+
+    if (pmInitDone 
+       && pmDispatch != NULL
+       && pmDispatch->pmInterruptPrewakeApplicable != NULL)
+       applicable = pmDispatch->pmInterruptPrewakeApplicable();
+
+    return applicable;
 }
 
 /*
@@ -602,15 +559,14 @@ pmSafeMode(x86_lcpu_t *lcpu, uint32_t flags)
         * We only look at the PAUSE and RESUME flags.  The other flag(s)
         * will not make any sense without the KEXT, so just ignore them.
         *
-        * We set the halted flag in the LCPU structure to indicate
-        * that this CPU isn't to do anything.  If it's the CPU we're
-        * currently running on, then spin until the halted flag is
-        * reset.
+        * We set the CPU's state to indicate that it's halted.  If this
+        * is the CPU we're currently running on, then spin until the
+        * state becomes non-halted.
         */
        if (flags & PM_SAFE_FL_PAUSE) {
-           lcpu->halted = TRUE;
+           lcpu->state = LCPU_PAUSE;
            if (lcpu == x86_lcpu()) {
-               while (lcpu->halted)
+               while (lcpu->state == LCPU_PAUSE)
                    cpu_pause();
            }
        }
@@ -620,11 +576,144 @@ pmSafeMode(x86_lcpu_t *lcpu, uint32_t flags)
         * get it out of it's spin loop.
         */
        if (flags & PM_SAFE_FL_RESUME) {
-           lcpu->halted = FALSE;
+           lcpu->state = LCPU_RUN;
        }
     }
 }
 
+static uint32_t                saved_run_count = 0;
+
+void
+machine_run_count(uint32_t count)
+{
+    if (pmDispatch != NULL
+       && pmDispatch->pmSetRunCount != NULL)
+       pmDispatch->pmSetRunCount(count);
+    else
+       saved_run_count = count;
+}
+
+boolean_t
+machine_processor_is_inactive(processor_t processor)
+{
+    int                cpu = processor->cpu_id;
+
+    if (pmDispatch != NULL
+       && pmDispatch->pmIsCPUUnAvailable != NULL)
+       return(pmDispatch->pmIsCPUUnAvailable(cpu_to_lcpu(cpu)));
+    else
+       return(FALSE);
+}
+
+processor_t
+machine_choose_processor(processor_set_t pset,
+                        processor_t preferred)
+{
+    int                startCPU;
+    int                endCPU;
+    int                preferredCPU;
+    int                chosenCPU;
+
+    if (!pmInitDone)
+       return(preferred);
+
+    if (pset == NULL) {
+       startCPU = -1;
+       endCPU = -1;
+    } else {
+       startCPU = pset->cpu_set_low;
+       endCPU = pset->cpu_set_hi;
+    }
+
+    if (preferred == NULL)
+       preferredCPU = -1;
+    else
+       preferredCPU = preferred->cpu_id;
+
+    if (pmDispatch != NULL
+       && pmDispatch->pmChooseCPU != NULL) {
+       chosenCPU = pmDispatch->pmChooseCPU(startCPU, endCPU, preferredCPU);
+
+       if (chosenCPU == -1)
+           return(NULL);
+       return(cpu_datap(chosenCPU)->cpu_processor);
+    }
+
+    return(preferred);
+}
+
+static int
+pmThreadGetUrgency(uint64_t *rt_period, uint64_t *rt_deadline)
+{
+
+    return(thread_get_urgency(rt_period, rt_deadline));
+}
+
+#if    DEBUG
+uint32_t       urgency_stats[64][THREAD_URGENCY_MAX];
+#endif
+
+#define                URGENCY_NOTIFICATION_ASSERT_NS (5 * 1000 * 1000)
+uint64_t       urgency_notification_assert_abstime_threshold, urgency_notification_max_recorded;
+
+void
+thread_tell_urgency(int urgency,
+    uint64_t rt_period,
+    uint64_t rt_deadline)
+{
+       uint64_t        urgency_notification_time_start, delta;
+       boolean_t       urgency_assert = (urgency_notification_assert_abstime_threshold != 0);
+       assert(get_preemption_level() > 0 || ml_get_interrupts_enabled() == FALSE);
+#if    DEBUG
+       urgency_stats[cpu_number() % 64][urgency]++;
+#endif
+       if (!pmInitDone
+           || pmDispatch == NULL
+           || pmDispatch->pmThreadTellUrgency == NULL)
+               return;
+
+       KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED,MACH_URGENCY) | DBG_FUNC_START, urgency, rt_period, (rt_deadline >> 32), rt_deadline, 0);
+
+       if (__improbable((urgency_assert == TRUE)))
+               urgency_notification_time_start = mach_absolute_time();
+
+       pmDispatch->pmThreadTellUrgency(urgency, rt_period, rt_deadline);
+
+       if (__improbable((urgency_assert == TRUE))) {
+               delta = mach_absolute_time() - urgency_notification_time_start;
+
+               if (__improbable(delta > urgency_notification_max_recorded)) {
+                       /* This is not synchronized, but it doesn't matter
+                        * if we (rarely) miss an event, as it is statistically
+                        * unlikely that it will never recur.
+                        */
+                       urgency_notification_max_recorded = delta;
+
+                       if (__improbable((delta > urgency_notification_assert_abstime_threshold) && !machine_timeout_suspended()))
+                               panic("Urgency notification callout %p exceeded threshold, 0x%llx abstime units", pmDispatch->pmThreadTellUrgency, delta);
+               }
+       }
+
+       KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED,MACH_URGENCY) | DBG_FUNC_END, urgency, rt_period, (rt_deadline >> 32), rt_deadline, 0);
+}
+
+void
+active_rt_threads(boolean_t active)
+{
+    if (!pmInitDone
+       || pmDispatch == NULL
+       || pmDispatch->pmActiveRTThreads == NULL)
+       return;
+
+    pmDispatch->pmActiveRTThreads(active);
+}
+
+static uint32_t
+pmGetSavedRunCount(void)
+{
+    return(saved_run_count);
+}
+
 /*
  * Returns the root of the package tree.
  */
@@ -646,6 +735,54 @@ pmLCPUtoProcessor(int lcpu)
     return(cpu_datap(lcpu)->cpu_processor);
 }
 
+static void
+pmReSyncDeadlines(int cpu)
+{
+    static boolean_t   registered      = FALSE;
+
+    if (!registered) {
+       PM_interrupt_register(&etimer_resync_deadlines);
+       registered = TRUE;
+    }
+
+    if ((uint32_t)cpu == current_cpu_datap()->lcpu.cpu_num)
+       etimer_resync_deadlines();
+    else
+       cpu_PM_interrupt(cpu);
+}
+
+static void
+pmSendIPI(int cpu)
+{
+    lapic_send_ipi(cpu, LAPIC_PM_INTERRUPT);
+}
+
+static void
+pmGetNanotimeInfo(pm_rtc_nanotime_t *rtc_nanotime)
+{
+       /*
+        * Make sure that nanotime didn't change while we were reading it.
+        */
+       do {
+               rtc_nanotime->generation = pal_rtc_nanotime_info.generation; /* must be first */
+               rtc_nanotime->tsc_base = pal_rtc_nanotime_info.tsc_base;
+               rtc_nanotime->ns_base = pal_rtc_nanotime_info.ns_base;
+               rtc_nanotime->scale = pal_rtc_nanotime_info.scale;
+               rtc_nanotime->shift = pal_rtc_nanotime_info.shift;
+       } while(pal_rtc_nanotime_info.generation != 0
+               && rtc_nanotime->generation != pal_rtc_nanotime_info.generation);
+}
+
+static uint32_t
+pmTimerQueueMigrate(int target_cpu)
+{
+    /* Call the etimer code to do this. */
+    return (target_cpu != cpu_number())
+               ? etimer_queue_migrate(target_cpu)
+               : 0;
+}
+
+
 /*
  * Called by the power management kext to register itself and to get the
  * callbacks it might need into other kernel functions.  This interface
@@ -657,25 +794,49 @@ pmKextRegister(uint32_t version, pmDispatch_t *cpuFuncs,
               pmCallBacks_t *callbacks)
 {
     if (callbacks != NULL && version == PM_DISPATCH_VERSION) {
-       callbacks->InitState   = &pmInitState;
-       callbacks->setRTCPop   = setPop;
-       callbacks->resyncDeadlines = etimer_resync_deadlines;
-       callbacks->initComplete= pmInitComplete;
-       callbacks->GetLCPU     = pmGetLogicalCPU;
-       callbacks->GetCore     = pmGetCore;
-       callbacks->GetPackage  = pmGetPackage;
-       callbacks->GetMyLCPU   = pmGetMyLogicalCPU;
-       callbacks->GetMyCore   = pmGetMyCore;
-       callbacks->GetMyPackage= pmGetMyPackage;
-       callbacks->CoresPerPkg = cpuid_info()->cpuid_cores_per_package;
-       callbacks->GetPkgRoot  = pmGetPkgRoot;
-       callbacks->LockCPUTopology = pmLockCPUTopology;
-       callbacks->GetHibernate    = pmCPUGetHibernate;
-       callbacks->LCPUtoProcessor = pmLCPUtoProcessor;
+       callbacks->setRTCPop            = setPop;
+       callbacks->resyncDeadlines      = pmReSyncDeadlines;
+       callbacks->initComplete         = pmInitComplete;
+       callbacks->GetLCPU              = pmGetLogicalCPU;
+       callbacks->GetCore              = pmGetCore;
+       callbacks->GetDie               = pmGetDie;
+       callbacks->GetPackage           = pmGetPackage;
+       callbacks->GetMyLCPU            = pmGetMyLogicalCPU;
+       callbacks->GetMyCore            = pmGetMyCore;
+       callbacks->GetMyDie             = pmGetMyDie;
+       callbacks->GetMyPackage         = pmGetMyPackage;
+       callbacks->GetPkgRoot           = pmGetPkgRoot;
+       callbacks->LockCPUTopology      = pmLockCPUTopology;
+       callbacks->GetHibernate         = pmCPUGetHibernate;
+       callbacks->LCPUtoProcessor      = pmLCPUtoProcessor;
+       callbacks->ThreadBind           = thread_bind;
+       callbacks->GetSavedRunCount     = pmGetSavedRunCount;
+       callbacks->GetNanotimeInfo      = pmGetNanotimeInfo;
+       callbacks->ThreadGetUrgency     = pmThreadGetUrgency;
+       callbacks->RTCClockAdjust       = rtc_clock_adjust;
+       callbacks->timerQueueMigrate    = pmTimerQueueMigrate;
+       callbacks->topoParms            = &topoParms;
+       callbacks->pmSendIPI            = pmSendIPI;
+       callbacks->InterruptPending     = lapic_is_interrupt_pending;
+       callbacks->IsInterrupting       = lapic_is_interrupting;
+       callbacks->InterruptStats       = lapic_interrupt_counts;
+       callbacks->DisableApicTimer     = lapic_disable_timer;
+    } else {
+       panic("Version mis-match between Kernel and CPU PM");
     }
 
     if (cpuFuncs != NULL) {
        pmDispatch = cpuFuncs;
+
+       if (earlyTopology
+           && pmDispatch->pmCPUStateInit != NULL) {
+           (*pmDispatch->pmCPUStateInit)();
+           earlyTopology = FALSE;
+       }
+
+       if (pmDispatch->pmIPIHandler != NULL) {
+           lapic_set_pm_func((i386_intr_func_t)pmDispatch->pmIPIHandler);
+       }
     }
 }
 
@@ -690,3 +851,42 @@ pmUnRegister(pmDispatch_t *cpuFuncs)
     }
 }
 
+/******************************************************************************
+ *
+ * All of the following are deprecated interfaces and no longer used.
+ *
+ ******************************************************************************/
+kern_return_t
+pmsControl(__unused uint32_t request, __unused user_addr_t reqaddr,
+          __unused uint32_t reqsize)
+{
+    return(KERN_SUCCESS);
+}
+
+void
+pmsInit(void)
+{
+}
+
+void
+pmsStart(void)
+{
+}
+
+void
+pmsPark(void)
+{
+}
+
+void
+pmsRun(__unused uint32_t nstep)
+{
+}
+
+kern_return_t
+pmsBuild(__unused pmsDef *pd, __unused uint32_t pdsize,
+        __unused pmsSetFunc_t *functab,
+        __unused uint32_t platformData, __unused pmsQueryFunc_t queryFunc)
+{
+    return(KERN_SUCCESS);
+}