/*
- * Copyright (c) 2000-2007 Apple Inc. All rights reserved.
+ * Copyright (c) 2000-2009 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
#include <mach_cluster_stats.h>
#include <mach_pagemap.h>
-#include <mach_kdb.h>
#include <libkern/OSAtomic.h>
#include <mach/mach_types.h>
#include <kern/macro_help.h>
#include <kern/zalloc.h>
#include <kern/misc_protos.h>
+#include <kern/policy_internal.h>
-#include <ppc/proc_reg.h>
-
+#include <vm/vm_compressor.h>
+#include <vm/vm_compressor_pager.h>
#include <vm/vm_fault.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_external.h>
#include <vm/memory_object.h>
#include <vm/vm_purgeable_internal.h> /* Needed by some vm_page.h macros */
+#include <vm/vm_shared_region.h>
+
+#include <sys/codesign.h>
+#include <sys/reason.h>
+#include <sys/signalvar.h>
-#include <sys/kdebug.h>
+#include <libsa/sys/timers.h> /* for struct timespec */
#define VM_FAULT_CLASSIFY 0
-/* Zero-filled pages are marked "m->zero_fill" and put on the
- * special zero-fill inactive queue only if they belong to
- * an object at least this big.
+#define TRACEFAULTPAGE 0 /* (TEST/DEBUG) */
+
+unsigned int vm_object_pagein_throttle = 16;
+
+/*
+ * We apply a hard throttle to the demand zero rate of tasks that we believe are running out of control which
+ * kicks in when swap space runs out. 64-bit programs have massive address spaces and can leak enormous amounts
+ * of memory if they're buggy and can run the system completely out of swap space. If this happens, we
+ * impose a hard throttle on them to prevent them from taking the last bit of memory left. This helps
+ * keep the UI active so that the user has a chance to kill the offending task before the system
+ * completely hangs.
+ *
+ * The hard throttle is only applied when the system is nearly completely out of swap space and is only applied
+ * to tasks that appear to be bloated. When swap runs out, any task using more than vm_hard_throttle_threshold
+ * will be throttled. The throttling is done by giving the thread that's trying to demand zero a page a
+ * delay of HARD_THROTTLE_DELAY microseconds before being allowed to try the page fault again.
*/
-#define VM_ZF_OBJECT_SIZE_THRESHOLD (0x200000)
-#define TRACEFAULTPAGE 0 /* (TEST/DEBUG) */
+extern void throttle_lowpri_io(int);
-int vm_object_pagein_throttle = 16;
+extern struct vnode *vnode_pager_lookup_vnode(memory_object_t);
-extern int cs_debug;
+uint64_t vm_hard_throttle_threshold;
-#if MACH_KDB
-extern struct db_watchpoint *db_watchpoint_list;
-#endif /* MACH_KDB */
+#define NEED_TO_HARD_THROTTLE_THIS_TASK() (vm_wants_task_throttled(current_task()) || \
+ (vm_page_free_count < vm_page_throttle_limit && \
+ proc_get_effective_thread_policy(current_thread(), TASK_POLICY_IO) > THROTTLE_LEVEL_THROTTLED))
+
+
+#define HARD_THROTTLE_DELAY 5000 /* 5000 us == 5 ms */
+#define SOFT_THROTTLE_DELAY 200 /* 200 us == .2 ms */
+
+#define VM_PAGE_CREATION_THROTTLE_PERIOD_SECS 6
+#define VM_PAGE_CREATION_THROTTLE_RATE_PER_SEC 20000
+
+
+boolean_t current_thread_aborted(void);
+
/* Forward declarations of internal routines. */
-extern kern_return_t vm_fault_wire_fast(
+static kern_return_t vm_fault_wire_fast(
vm_map_t map,
vm_map_offset_t va,
+ vm_prot_t prot,
vm_map_entry_t entry,
pmap_t pmap,
- vm_map_offset_t pmap_addr);
-
-extern void vm_fault_continue(void);
-
-extern void vm_fault_copy_cleanup(
+ vm_map_offset_t pmap_addr,
+ ppnum_t *physpage_p);
+
+static kern_return_t vm_fault_internal(
+ vm_map_t map,
+ vm_map_offset_t vaddr,
+ vm_prot_t caller_prot,
+ boolean_t change_wiring,
+ int interruptible,
+ pmap_t pmap,
+ vm_map_offset_t pmap_addr,
+ ppnum_t *physpage_p);
+
+static void vm_fault_copy_cleanup(
vm_page_t page,
vm_page_t top_page);
-extern void vm_fault_copy_dst_cleanup(
+static void vm_fault_copy_dst_cleanup(
vm_page_t page);
#if VM_FAULT_CLASSIFY
extern void vm_fault_classify_init(void);
#endif
+unsigned long vm_pmap_enter_blocked = 0;
+unsigned long vm_pmap_enter_retried = 0;
+
+unsigned long vm_cs_validates = 0;
+unsigned long vm_cs_revalidates = 0;
+unsigned long vm_cs_query_modified = 0;
+unsigned long vm_cs_validated_dirtied = 0;
+unsigned long vm_cs_bitmap_validated = 0;
+
+void vm_pre_fault(vm_map_offset_t);
+
+extern char *kdp_compressor_decompressed_page;
+extern addr64_t kdp_compressor_decompressed_page_paddr;
+extern ppnum_t kdp_compressor_decompressed_page_ppnum;
+
/*
* Routine: vm_fault_init
* Purpose:
void
vm_fault_init(void)
{
+ int i, vm_compressor_temp;
+ boolean_t need_default_val = TRUE;
+ /*
+ * Choose a value for the hard throttle threshold based on the amount of ram. The threshold is
+ * computed as a percentage of available memory, and the percentage used is scaled inversely with
+ * the amount of memory. The percentage runs between 10% and 35%. We use 35% for small memory systems
+ * and reduce the value down to 10% for very large memory configurations. This helps give us a
+ * definition of a memory hog that makes more sense relative to the amount of ram in the machine.
+ * The formula here simply uses the number of gigabytes of ram to adjust the percentage.
+ */
+
+ vm_hard_throttle_threshold = sane_size * (35 - MIN((int)(sane_size / (1024*1024*1024)), 25)) / 100;
+
+ /*
+ * Configure compressed pager behavior. A boot arg takes precedence over a device tree entry.
+ */
+
+ if (PE_parse_boot_argn("vm_compressor", &vm_compressor_temp, sizeof (vm_compressor_temp))) {
+ for ( i = 0; i < VM_PAGER_MAX_MODES; i++) {
+ if (vm_compressor_temp > 0 &&
+ ((vm_compressor_temp & ( 1 << i)) == vm_compressor_temp)) {
+ need_default_val = FALSE;
+ vm_compressor_mode = vm_compressor_temp;
+ break;
+ }
+ }
+ if (need_default_val)
+ printf("Ignoring \"vm_compressor\" boot arg %d\n", vm_compressor_temp);
+ }
+ if (need_default_val) {
+ /* If no boot arg or incorrect boot arg, try device tree. */
+ PE_get_default("kern.vm_compressor", &vm_compressor_mode, sizeof(vm_compressor_mode));
+ }
+ PE_parse_boot_argn("vm_compressor_threads", &vm_compressor_thread_count, sizeof (vm_compressor_thread_count));
+
+ if (PE_parse_boot_argn("vm_compressor_immediate", &vm_compressor_temp, sizeof (vm_compressor_temp)))
+ vm_compressor_immediate_preferred_override = TRUE;
+ else {
+ if (PE_get_default("kern.vm_compressor_immediate", &vm_compressor_temp, sizeof(vm_compressor_temp)))
+ vm_compressor_immediate_preferred_override = TRUE;
+ }
+ if (vm_compressor_immediate_preferred_override == TRUE) {
+ if (vm_compressor_temp)
+ vm_compressor_immediate_preferred = TRUE;
+ else
+ vm_compressor_immediate_preferred = FALSE;
+ }
+ printf("\"vm_compressor_mode\" is %d\n", vm_compressor_mode);
}
/*
*/
void
vm_fault_cleanup(
- register vm_object_t object,
- register vm_page_t top_page)
+ vm_object_t object,
+ vm_page_t top_page)
{
vm_object_paging_end(object);
- vm_object_unlock(object);
+ vm_object_unlock(object);
if (top_page != VM_PAGE_NULL) {
- object = top_page->object;
+ object = VM_PAGE_OBJECT(top_page);
vm_object_lock(object);
VM_PAGE_FREE(top_page);
/*
* default sizes given VM_BEHAVIOR_DEFAULT reference behavior
*/
-int vm_default_ahead = 0;
-int vm_default_behind = MAX_UPL_TRANSFER;
+#define VM_DEFAULT_DEACTIVATE_BEHIND_WINDOW 128
+#define VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER 16 /* don't make this too big... */
+ /* we use it to size an array on the stack */
+
+int vm_default_behind = VM_DEFAULT_DEACTIVATE_BEHIND_WINDOW;
#define MAX_SEQUENTIAL_RUN (1024 * 1024 * 1024)
}
+int vm_page_deactivate_behind_count = 0;
+
/*
* vm_page_deactivate_behind
*
vm_object_offset_t offset,
vm_behavior_t behavior)
{
- vm_page_t m = NULL;
+ int n;
+ int pages_in_run = 0;
+ int max_pages_in_run = 0;
int sequential_run;
int sequential_behavior = VM_BEHAVIOR_SEQUENTIAL;
+ vm_object_offset_t run_offset = 0;
+ vm_object_offset_t pg_offset = 0;
+ vm_page_t m;
+ vm_page_t page_run[VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER];
+ pages_in_run = 0;
#if TRACEFAULTPAGE
dbgTrace(0xBEEF0018, (unsigned int) object, (unsigned int) vm_fault_deactivate_behind); /* (TEST/DEBUG) */
#endif
case VM_BEHAVIOR_RANDOM:
break;
case VM_BEHAVIOR_SEQUENTIAL:
- if (sequential_run >= (int)PAGE_SIZE)
- m = vm_page_lookup(object, offset - PAGE_SIZE_64);
+ if (sequential_run >= (int)PAGE_SIZE) {
+ run_offset = 0 - PAGE_SIZE_64;
+ max_pages_in_run = 1;
+ }
break;
case VM_BEHAVIOR_RSEQNTL:
- if (sequential_run >= (int)PAGE_SIZE)
- m = vm_page_lookup(object, offset + PAGE_SIZE_64);
+ if (sequential_run >= (int)PAGE_SIZE) {
+ run_offset = PAGE_SIZE_64;
+ max_pages_in_run = 1;
+ }
break;
case VM_BEHAVIOR_DEFAULT:
default:
* long enough on an object with default access behavior
* to consider it for deactivation
*/
- if ((uint64_t)sequential_run >= behind) {
+ if ((uint64_t)sequential_run >= behind && (sequential_run % (VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER * PAGE_SIZE)) == 0) {
+ /*
+ * the comparisons between offset and behind are done
+ * in this kind of odd fashion in order to prevent wrap around
+ * at the end points
+ */
if (sequential_behavior == VM_BEHAVIOR_SEQUENTIAL) {
- if (offset >= behind)
- m = vm_page_lookup(object, offset - behind);
+ if (offset >= behind) {
+ run_offset = 0 - behind;
+ pg_offset = PAGE_SIZE_64;
+ max_pages_in_run = VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER;
+ }
} else {
- if (offset < -behind)
- m = vm_page_lookup(object, offset + behind);
+ if (offset < -behind) {
+ run_offset = behind;
+ pg_offset = 0 - PAGE_SIZE_64;
+ max_pages_in_run = VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER;
+ }
}
}
break;
}
}
- if (m) {
- if (!m->busy && !m->no_cache && !m->throttled && !m->fictitious && !m->absent) {
- pmap_clear_reference(m->phys_page);
- m->deactivated = TRUE;
+ for (n = 0; n < max_pages_in_run; n++) {
+ m = vm_page_lookup(object, offset + run_offset + (n * pg_offset));
+
+ if (m && !m->laundry && !m->busy && !m->no_cache && (m->vm_page_q_state != VM_PAGE_ON_THROTTLED_Q) && !m->fictitious && !m->absent) {
+ page_run[pages_in_run++] = m;
+
+ /*
+ * by not passing in a pmap_flush_context we will forgo any TLB flushing, local or otherwise...
+ *
+ * a TLB flush isn't really needed here since at worst we'll miss the reference bit being
+ * updated in the PTE if a remote processor still has this mapping cached in its TLB when the
+ * new reference happens. If no futher references happen on the page after that remote TLB flushes
+ * we'll see a clean, non-referenced page when it eventually gets pulled out of the inactive queue
+ * by pageout_scan, which is just fine since the last reference would have happened quite far
+ * in the past (TLB caches don't hang around for very long), and of course could just as easily
+ * have happened before we did the deactivate_behind.
+ */
+ pmap_clear_refmod_options(VM_PAGE_GET_PHYS_PAGE(m), VM_MEM_REFERENCED, PMAP_OPTIONS_NOFLUSH, (void *)NULL);
+ }
+ }
+ if (pages_in_run) {
+ vm_page_lockspin_queues();
+
+ for (n = 0; n < pages_in_run; n++) {
+
+ m = page_run[n];
+
+ vm_page_deactivate_internal(m, FALSE);
+
+ vm_page_deactivate_behind_count++;
#if TRACEFAULTPAGE
dbgTrace(0xBEEF0019, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */
#endif
- return TRUE;
}
+ vm_page_unlock_queues();
+
+ return TRUE;
}
return FALSE;
}
+#if (DEVELOPMENT || DEBUG)
+uint32_t vm_page_creation_throttled_hard = 0;
+uint32_t vm_page_creation_throttled_soft = 0;
+uint64_t vm_page_creation_throttle_avoided = 0;
+#endif /* DEVELOPMENT || DEBUG */
+
+static int
+vm_page_throttled(boolean_t page_kept)
+{
+ clock_sec_t elapsed_sec;
+ clock_sec_t tv_sec;
+ clock_usec_t tv_usec;
+
+ thread_t thread = current_thread();
+
+ if (thread->options & TH_OPT_VMPRIV)
+ return (0);
+
+ if (thread->t_page_creation_throttled) {
+ thread->t_page_creation_throttled = 0;
+
+ if (page_kept == FALSE)
+ goto no_throttle;
+ }
+ if (NEED_TO_HARD_THROTTLE_THIS_TASK()) {
+#if (DEVELOPMENT || DEBUG)
+ thread->t_page_creation_throttled_hard++;
+ OSAddAtomic(1, &vm_page_creation_throttled_hard);
+#endif /* DEVELOPMENT || DEBUG */
+ return (HARD_THROTTLE_DELAY);
+ }
+
+ if ((vm_page_free_count < vm_page_throttle_limit || (VM_CONFIG_COMPRESSOR_IS_PRESENT && SWAPPER_NEEDS_TO_UNTHROTTLE())) &&
+ thread->t_page_creation_count > (VM_PAGE_CREATION_THROTTLE_PERIOD_SECS * VM_PAGE_CREATION_THROTTLE_RATE_PER_SEC)) {
+
+ if (vm_page_free_wanted == 0 && vm_page_free_wanted_privileged == 0) {
+#if (DEVELOPMENT || DEBUG)
+ OSAddAtomic64(1, &vm_page_creation_throttle_avoided);
+#endif
+ goto no_throttle;
+ }
+ clock_get_system_microtime(&tv_sec, &tv_usec);
+
+ elapsed_sec = tv_sec - thread->t_page_creation_time;
+
+ if (elapsed_sec <= VM_PAGE_CREATION_THROTTLE_PERIOD_SECS ||
+ (thread->t_page_creation_count / elapsed_sec) >= VM_PAGE_CREATION_THROTTLE_RATE_PER_SEC) {
+
+ if (elapsed_sec >= (3 * VM_PAGE_CREATION_THROTTLE_PERIOD_SECS)) {
+ /*
+ * we'll reset our stats to give a well behaved app
+ * that was unlucky enough to accumulate a bunch of pages
+ * over a long period of time a chance to get out of
+ * the throttled state... we reset the counter and timestamp
+ * so that if it stays under the rate limit for the next second
+ * it will be back in our good graces... if it exceeds it, it
+ * will remain in the throttled state
+ */
+ thread->t_page_creation_time = tv_sec;
+ thread->t_page_creation_count = VM_PAGE_CREATION_THROTTLE_RATE_PER_SEC * (VM_PAGE_CREATION_THROTTLE_PERIOD_SECS - 1);
+ }
+ ++vm_page_throttle_count;
+
+ thread->t_page_creation_throttled = 1;
+
+ if (VM_CONFIG_COMPRESSOR_IS_PRESENT && HARD_THROTTLE_LIMIT_REACHED()) {
+#if (DEVELOPMENT || DEBUG)
+ thread->t_page_creation_throttled_hard++;
+ OSAddAtomic(1, &vm_page_creation_throttled_hard);
+#endif /* DEVELOPMENT || DEBUG */
+ return (HARD_THROTTLE_DELAY);
+ } else {
+#if (DEVELOPMENT || DEBUG)
+ thread->t_page_creation_throttled_soft++;
+ OSAddAtomic(1, &vm_page_creation_throttled_soft);
+#endif /* DEVELOPMENT || DEBUG */
+ return (SOFT_THROTTLE_DELAY);
+ }
+ }
+ thread->t_page_creation_time = tv_sec;
+ thread->t_page_creation_count = 0;
+ }
+no_throttle:
+ thread->t_page_creation_count++;
+
+ return (0);
+}
+
+
/*
* check for various conditions that would
* prevent us from creating a ZF page...
* object == m->object
*/
static vm_fault_return_t
-vm_fault_check(vm_object_t object, vm_page_t m, vm_page_t first_m, boolean_t interruptible_state)
+vm_fault_check(vm_object_t object, vm_page_t m, vm_page_t first_m, boolean_t interruptible_state, boolean_t page_throttle)
{
- if (object->shadow_severed) {
+ int throttle_delay;
+
+ if (object->shadow_severed ||
+ VM_OBJECT_PURGEABLE_FAULT_ERROR(object)) {
/*
- * the shadow chain was severed
- * just have to return an error at this point
+ * Either:
+ * 1. the shadow chain was severed,
+ * 2. the purgeable object is volatile or empty and is marked
+ * to fault on access while volatile.
+ * Just have to return an error at this point
*/
if (m != VM_PAGE_NULL)
VM_PAGE_FREE(m);
return (VM_FAULT_RETRY);
}
}
- if (VM_PAGE_ZFILL_THROTTLED()) {
- /*
- * we're throttling zero-fills...
- * treat this as if we couldn't grab a page
- */
- if (m != VM_PAGE_NULL)
- VM_PAGE_FREE(m);
- vm_fault_cleanup(object, first_m);
+ if (page_throttle == TRUE) {
+ if ((throttle_delay = vm_page_throttled(FALSE))) {
+ /*
+ * we're throttling zero-fills...
+ * treat this as if we couldn't grab a page
+ */
+ if (m != VM_PAGE_NULL)
+ VM_PAGE_FREE(m);
+ vm_fault_cleanup(object, first_m);
- thread_interrupt_level(interruptible_state);
+ VM_DEBUG_EVENT(vmf_check_zfdelay, VMF_CHECK_ZFDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0);
+
+ delay(throttle_delay);
+
+ if (current_thread_aborted()) {
+ thread_interrupt_level(interruptible_state);
+ return VM_FAULT_INTERRUPTED;
+ }
+ thread_interrupt_level(interruptible_state);
- return (VM_FAULT_MEMORY_SHORTAGE);
+ return (VM_FAULT_MEMORY_SHORTAGE);
+ }
}
return (VM_FAULT_SUCCESS);
}
vm_fault_zero_page(vm_page_t m, boolean_t no_zero_fill)
{
int my_fault = DBG_ZERO_FILL_FAULT;
+ vm_object_t object;
+
+ object = VM_PAGE_OBJECT(m);
/*
* This is is a zero-fill page fault...
m->cs_validated = FALSE;
m->cs_tainted = FALSE;
+ m->cs_nx = FALSE;
- if (no_zero_fill == TRUE)
- my_fault = DBG_NZF_PAGE_FAULT;
- else {
+ if (no_zero_fill == TRUE) {
+ my_fault = DBG_NZF_PAGE_FAULT;
+
+ if (m->absent && m->busy)
+ return (my_fault);
+ } else {
vm_page_zero_fill(m);
VM_STAT_INCR(zero_fill_count);
DTRACE_VM2(zfod, int, 1, (uint64_t *), NULL);
}
assert(!m->laundry);
- assert(m->object != kernel_object);
- //assert(m->pageq.next == NULL && m->pageq.prev == NULL);
+ assert(object != kernel_object);
+ //assert(m->pageq.next == 0 && m->pageq.prev == 0);
- if (!IP_VALID(memory_manager_default) &&
- (m->object->purgable == VM_PURGABLE_DENY ||
- m->object->purgable == VM_PURGABLE_NONVOLATILE)) {
- vm_page_lock_queues();
+ if (!VM_DYNAMIC_PAGING_ENABLED() &&
+ (object->purgable == VM_PURGABLE_DENY ||
+ object->purgable == VM_PURGABLE_NONVOLATILE ||
+ object->purgable == VM_PURGABLE_VOLATILE )) {
- queue_enter(&vm_page_queue_throttled, m, vm_page_t, pageq);
- m->throttled = TRUE;
- vm_page_throttled_count++;
+ vm_page_lockspin_queues();
- vm_page_unlock_queues();
- } else {
- if (m->object->size > VM_ZF_OBJECT_SIZE_THRESHOLD) {
- m->zero_fill = TRUE;
- OSAddAtomic(1, (SInt32 *)&vm_zf_count);
+ if (!VM_DYNAMIC_PAGING_ENABLED()) {
+ assert(!VM_PAGE_WIRED(m));
+
+ /*
+ * can't be on the pageout queue since we don't
+ * have a pager to try and clean to
+ */
+ vm_page_queues_remove(m, TRUE);
+ vm_page_check_pageable_safe(m);
+ vm_page_queue_enter(&vm_page_queue_throttled, m, vm_page_t, pageq);
+ m->vm_page_q_state = VM_PAGE_ON_THROTTLED_Q;
+ vm_page_throttled_count++;
}
+ vm_page_unlock_queues();
}
return (my_fault);
}
* be destroyed when this guarantee is no longer required.
* The "result_page" is also left busy. It is not removed
* from the pageout queues.
+ * Special Case:
+ * A return value of VM_FAULT_SUCCESS_NO_PAGE means that the
+ * fault succeeded but there's no VM page (i.e. the VM object
+ * does not actually hold VM pages, but device memory or
+ * large pages). The object is still locked and we still hold a
+ * paging_in_progress reference.
*/
+unsigned int vm_fault_page_blocked_access = 0;
+unsigned int vm_fault_page_forced_retry = 0;
vm_fault_return_t
vm_fault_page(
vm_object_offset_t first_offset, /* Offset into object */
vm_prot_t fault_type, /* What access is requested */
boolean_t must_be_resident,/* Must page be resident? */
+ boolean_t caller_lookup, /* caller looked up page */
/* Modifies in place: */
vm_prot_t *protection, /* Protection for mapping */
- /* Returns: */
vm_page_t *result_page, /* Page found, if successful */
+ /* Returns: */
vm_page_t *top_page, /* Page in top object, if
* not result_page. */
int *type_of_fault, /* if non-null, fill in with type of fault
/* More arguments: */
kern_return_t *error_code, /* code if page is in error */
boolean_t no_zero_fill, /* don't zero fill absent pages */
-#if MACH_PAGEMAP
boolean_t data_supply, /* treat as data_supply if
* it is a write fault and a full
* page is provided */
-#else
- __unused boolean_t data_supply,
-#endif
vm_object_fault_info_t fault_info)
{
vm_page_t m;
vm_object_t next_object;
vm_object_t copy_object;
boolean_t look_for_page;
+ boolean_t force_fault_retry = FALSE;
vm_prot_t access_required = fault_type;
vm_prot_t wants_copy_flag;
CLUSTER_STAT(int pages_at_higher_offsets;)
CLUSTER_STAT(int pages_at_lower_offsets;)
kern_return_t wait_result;
boolean_t interruptible_state;
+ boolean_t data_already_requested = FALSE;
+ vm_behavior_t orig_behavior;
+ vm_size_t orig_cluster_size;
vm_fault_return_t error;
int my_fault;
uint32_t try_failed_count;
int interruptible; /* how may fault be interrupted? */
+ int external_state = VM_EXTERNAL_STATE_UNKNOWN;
memory_object_t pager;
+ vm_fault_return_t retval;
+ int grab_options;
/*
- * MACH page map - an optional optimization where a bit map is maintained
- * by the VM subsystem for internal objects to indicate which pages of
- * the object currently reside on backing store. This existence map
- * duplicates information maintained by the vnode pager. It is
- * created at the time of the first pageout against the object, i.e.
- * at the same time pager for the object is created. The optimization
- * is designed to eliminate pager interaction overhead, if it is
- * 'known' that the page does not exist on backing store.
- *
* MUST_ASK_PAGER() evaluates to TRUE if the page specified by object/offset is
- * either marked as paged out in the existence map for the object or no
- * existence map exists for the object. MUST_ASK_PAGER() is one of the
- * criteria in the decision to invoke the pager. It is also used as one
- * of the criteria to terminate the scan for adjacent pages in a clustered
- * pagein operation. Note that MUST_ASK_PAGER() always evaluates to TRUE for
- * permanent objects. Note also that if the pager for an internal object
+ * marked as paged out in the compressor pager or the pager doesn't exist.
+ * Note also that if the pager for an internal object
* has not been created, the pager is not invoked regardless of the value
- * of MUST_ASK_PAGER() and that clustered pagein scans are only done on an object
- * for which a pager has been created.
+ * of MUST_ASK_PAGER().
*
* PAGED_OUT() evaluates to TRUE if the page specified by the object/offset
- * is marked as paged out in the existence map for the object. PAGED_OUT()
+ * is marked as paged out in the compressor pager.
* PAGED_OUT() is used to determine if a page has already been pushed
* into a copy object in order to avoid a redundant page out operation.
*/
-#if MACH_PAGEMAP
-#define MUST_ASK_PAGER(o, f) (vm_external_state_get((o)->existence_map, (f)) \
- != VM_EXTERNAL_STATE_ABSENT)
-#define PAGED_OUT(o, f) (vm_external_state_get((o)->existence_map, (f)) \
- == VM_EXTERNAL_STATE_EXISTS)
-#else
-#define MUST_ASK_PAGER(o, f) (TRUE)
-#define PAGED_OUT(o, f) (FALSE)
-#endif
+#define MUST_ASK_PAGER(o, f, s) \
+ ((s = VM_COMPRESSOR_PAGER_STATE_GET((o), (f))) != VM_EXTERNAL_STATE_ABSENT)
+
+#define PAGED_OUT(o, f) \
+ (VM_COMPRESSOR_PAGER_STATE_GET((o), (f)) == VM_EXTERNAL_STATE_EXISTS)
/*
* Recovery actions
*/
-#define PREPARE_RELEASE_PAGE(m) \
- MACRO_BEGIN \
- vm_page_lock_queues(); \
- MACRO_END
-
-#define DO_RELEASE_PAGE(m) \
- MACRO_BEGIN \
- PAGE_WAKEUP_DONE(m); \
- if (!m->active && !m->inactive && !m->throttled)\
- vm_page_activate(m); \
- vm_page_unlock_queues(); \
- MACRO_END
-
#define RELEASE_PAGE(m) \
MACRO_BEGIN \
- PREPARE_RELEASE_PAGE(m); \
- DO_RELEASE_PAGE(m); \
+ PAGE_WAKEUP_DONE(m); \
+ if ( !VM_PAGE_PAGEABLE(m)) { \
+ vm_page_lockspin_queues(); \
+ if ( !VM_PAGE_PAGEABLE(m)) { \
+ if (VM_CONFIG_COMPRESSOR_IS_ACTIVE) \
+ vm_page_deactivate(m); \
+ else \
+ vm_page_activate(m); \
+ } \
+ vm_page_unlock_queues(); \
+ } \
MACRO_END
#if TRACEFAULTPAGE
dbgTrace(0xBEEF0002, (unsigned int) first_object, (unsigned int) first_offset); /* (TEST/DEBUG) */
#endif
-
-#if MACH_KDB
- /*
- * If there are watchpoints set, then
- * we don't want to give away write permission
- * on a read fault. Make the task write fault,
- * so that the watchpoint code notices the access.
- */
- if (db_watchpoint_list) {
- /*
- * If we aren't asking for write permission,
- * then don't give it away. We're using write
- * faults to set the dirty bit.
- */
- if (!(fault_type & VM_PROT_WRITE))
- *protection &= ~VM_PROT_WRITE;
- }
-#endif /* MACH_KDB */
-
interruptible = fault_info->interruptible;
interruptible_state = thread_interrupt_level(interruptible);
XPR(XPR_VM_FAULT,
"vm_f_page: obj 0x%X, offset 0x%X, type %d, prot %d\n",
- (integer_t)object, offset, fault_type, *protection, 0);
+ object, offset, fault_type, *protection, 0);
/*
* default type of fault
#if TRACEFAULTPAGE
dbgTrace(0xBEEF0003, (unsigned int) 0, (unsigned int) 0); /* (TEST/DEBUG) */
#endif
+
+ grab_options = 0;
+#if CONFIG_SECLUDED_MEMORY
+ if (object->can_grab_secluded) {
+ grab_options |= VM_PAGE_GRAB_SECLUDED;
+ }
+#endif /* CONFIG_SECLUDED_MEMORY */
+
if (!object->alive) {
/*
* object is no longer valid
return (VM_FAULT_MEMORY_ERROR);
}
+ if (!object->pager_created && object->phys_contiguous) {
+ /*
+ * A physically-contiguous object without a pager:
+ * must be a "large page" object. We do not deal
+ * with VM pages for this object.
+ */
+ caller_lookup = FALSE;
+ m = VM_PAGE_NULL;
+ goto phys_contig_object;
+ }
+
+ if (object->blocked_access) {
+ /*
+ * Access to this VM object has been blocked.
+ * Replace our "paging_in_progress" reference with
+ * a "activity_in_progress" reference and wait for
+ * access to be unblocked.
+ */
+ caller_lookup = FALSE; /* no longer valid after sleep */
+ vm_object_activity_begin(object);
+ vm_object_paging_end(object);
+ while (object->blocked_access) {
+ vm_object_sleep(object,
+ VM_OBJECT_EVENT_UNBLOCKED,
+ THREAD_UNINT);
+ }
+ vm_fault_page_blocked_access++;
+ vm_object_paging_begin(object);
+ vm_object_activity_end(object);
+ }
+
/*
* See whether the page at 'offset' is resident
*/
- m = vm_page_lookup(object, offset);
+ if (caller_lookup == TRUE) {
+ /*
+ * The caller has already looked up the page
+ * and gave us the result in "result_page".
+ * We can use this for the first lookup but
+ * it loses its validity as soon as we unlock
+ * the object.
+ */
+ m = *result_page;
+ caller_lookup = FALSE; /* no longer valid after that */
+ } else {
+ m = vm_page_lookup(object, offset);
+ }
#if TRACEFAULTPAGE
dbgTrace(0xBEEF0004, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */
#endif
/*
* The page is being brought in,
* wait for it and then retry.
- *
- * A possible optimization: if the page
- * is known to be resident, we can ignore
- * pages that are absent (regardless of
- * whether they're busy).
*/
#if TRACEFAULTPAGE
dbgTrace(0xBEEF0005, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */
#endif
wait_result = PAGE_SLEEP(object, m, interruptible);
+
XPR(XPR_VM_FAULT,
"vm_f_page: block busy obj 0x%X, offset 0x%X, page 0x%X\n",
- (integer_t)object, offset,
- (integer_t)m, 0, 0);
+ object, offset,
+ m, 0, 0);
counter(c_vm_fault_page_block_busy_kernel++);
if (wait_result != THREAD_AWAKENED) {
thread_interrupt_level(interruptible_state);
if (wait_result == THREAD_RESTART)
- return (VM_FAULT_RETRY);
+ return (VM_FAULT_RETRY);
else
return (VM_FAULT_INTERRUPTED);
}
continue;
}
+ if (m->laundry) {
+ m->free_when_done = FALSE;
- if (m->phys_page == vm_page_guard_addr) {
+ if (!m->cleaning)
+ vm_pageout_steal_laundry(m, FALSE);
+ }
+ if (VM_PAGE_GET_PHYS_PAGE(m) == vm_page_guard_addr) {
/*
* Guard page: off limits !
*/
*top_page = first_m;
if (type_of_fault)
*type_of_fault = DBG_GUARD_FAULT;
+ thread_interrupt_level(interruptible_state);
return VM_FAULT_SUCCESS;
} else {
/*
* fault cleanup in the case of an error condition
* including resetting the thread_interrupt_level
*/
- error = vm_fault_check(object, m, first_m, interruptible_state);
+ error = vm_fault_check(object, m, first_m, interruptible_state, (type_of_fault == NULL) ? TRUE : FALSE);
if (error != VM_FAULT_SUCCESS)
return (error);
XPR(XPR_VM_FAULT,
"vm_f_page: zero obj 0x%X, off 0x%X, page 0x%X, first_obj 0x%X\n",
- (integer_t)object, offset,
- (integer_t)m,
- (integer_t)first_object, 0);
+ object, offset,
+ m,
+ first_object, 0);
if (object != first_object) {
/*
m->absent = FALSE;
m->busy = TRUE;
}
+ if (fault_info->mark_zf_absent && no_zero_fill == TRUE)
+ m->absent = TRUE;
/*
* zero-fill the page and put it on
* the correct paging queue
m->busy = TRUE;
vm_page_lockspin_queues();
- VM_PAGE_QUEUES_REMOVE(m);
+ vm_page_queues_remove(m, FALSE);
vm_page_unlock_queues();
}
XPR(XPR_VM_FAULT,
"vm_f_page: unavail obj 0x%X, off 0x%X, next_obj 0x%X, newoff 0x%X\n",
- (integer_t)object, offset,
- (integer_t)next_object,
- offset+object->shadow_offset,0);
+ object, offset,
+ next_object,
+ offset+object->vo_shadow_offset,0);
- offset += object->shadow_offset;
- fault_info->lo_offset += object->shadow_offset;
- fault_info->hi_offset += object->shadow_offset;
+ offset += object->vo_shadow_offset;
+ fault_info->lo_offset += object->vo_shadow_offset;
+ fault_info->hi_offset += object->vo_shadow_offset;
access_required = VM_PROT_READ;
vm_object_lock(next_object);
#endif
XPR(XPR_VM_FAULT,
"vm_f_page: cleaning obj 0x%X, offset 0x%X, page 0x%X\n",
- (integer_t)object, offset,
- (integer_t)m, 0, 0);
+ object, offset,
+ m, 0, 0);
/*
* take an extra ref so that object won't die
*/
return (VM_FAULT_RETRY);
}
}
- if (type_of_fault == NULL && m->speculative) {
+ if (type_of_fault == NULL && (m->vm_page_q_state == VM_PAGE_ON_SPECULATIVE_Q) &&
+ !(fault_info != NULL && fault_info->stealth)) {
/*
* If we were passed a non-NULL pointer for
* "type_of_fault", than we came from
* take it off the speculative queue, we'll
* let the caller of vm_fault_page deal
* with getting it onto the correct queue
+ *
+ * If the caller specified in fault_info that
+ * it wants a "stealth" fault, we also leave
+ * the page in the speculative queue.
*/
vm_page_lockspin_queues();
- VM_PAGE_QUEUES_REMOVE(m);
+ if (m->vm_page_q_state == VM_PAGE_ON_SPECULATIVE_Q)
+ vm_page_queues_remove(m, FALSE);
vm_page_unlock_queues();
}
+ assert(object == VM_PAGE_OBJECT(m));
if (m->encrypted) {
/*
*/
m->busy = TRUE;
vm_page_decrypt(m, 0);
- assert(object == m->object);
assert(m->busy);
PAGE_WAKEUP_DONE(m);
}
ASSERT_PAGE_DECRYPTED(m);
- if (m->object->code_signed) {
+ if (object->code_signed) {
/*
* CODE SIGNING:
* We just paged in a page from a signed
#endif
XPR(XPR_VM_FAULT,
"vm_f_page: found page obj 0x%X, offset 0x%X, page 0x%X\n",
- (integer_t)object, offset, (integer_t)m, 0, 0);
+ object, offset, m, 0, 0);
assert(!m->busy);
assert(!m->absent);
* this object can provide the data or we're the top object...
* object is locked; m == NULL
*/
- look_for_page = (object->pager_created && (MUST_ASK_PAGER(object, offset) == TRUE) && !data_supply);
+ if (must_be_resident) {
+ if (fault_type == VM_PROT_NONE &&
+ object == kernel_object) {
+ /*
+ * We've been called from vm_fault_unwire()
+ * while removing a map entry that was allocated
+ * with KMA_KOBJECT and KMA_VAONLY. This page
+ * is not present and there's nothing more to
+ * do here (nothing to unwire).
+ */
+ vm_fault_cleanup(object, first_m);
+ thread_interrupt_level(interruptible_state);
+
+ return VM_FAULT_MEMORY_ERROR;
+ }
+
+ goto dont_look_for_page;
+ }
+ data_supply = FALSE;
+
+ look_for_page = (object->pager_created && (MUST_ASK_PAGER(object, offset, external_state) == TRUE) && !data_supply);
#if TRACEFAULTPAGE
dbgTrace(0xBEEF000C, (unsigned int) look_for_page, (unsigned int) object); /* (TEST/DEBUG) */
#endif
- if ((look_for_page || (object == first_object)) && !must_be_resident && !object->phys_contiguous) {
+ if (!look_for_page && object == first_object && !object->phys_contiguous) {
/*
- * Allocate a new page for this object/offset pair
+ * Allocate a new page for this object/offset pair as a placeholder
*/
- m = vm_page_grab();
+ m = vm_page_grab_options(grab_options);
#if TRACEFAULTPAGE
dbgTrace(0xBEEF000D, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */
#endif
return (VM_FAULT_MEMORY_SHORTAGE);
}
- vm_page_insert(m, object, offset);
+
+ if (fault_info && fault_info->batch_pmap_op == TRUE) {
+ vm_page_insert_internal(m, object, offset, VM_KERN_MEMORY_NONE, FALSE, TRUE, TRUE, FALSE, NULL);
+ } else {
+ vm_page_insert(m, object, offset);
+ }
}
- if (look_for_page && !must_be_resident) {
+ if (look_for_page) {
kern_return_t rc;
+ int my_fault_type;
/*
* If the memory manager is not ready, we
XPR(XPR_VM_FAULT,
"vm_f_page: ready wait obj 0x%X, offset 0x%X\n",
- (integer_t)object, offset, 0, 0, 0);
+ object, offset, 0, 0, 0);
/*
* take an extra ref so object won't die
vm_object_lock(object);
assert(object->ref_count > 0);
- if (object->paging_in_progress > vm_object_pagein_throttle) {
- vm_object_assert_wait(object, VM_OBJECT_EVENT_PAGING_IN_PROGRESS, interruptible);
+ if (object->paging_in_progress >= vm_object_pagein_throttle) {
+ vm_object_assert_wait(object, VM_OBJECT_EVENT_PAGING_ONLY_IN_PROGRESS, interruptible);
vm_object_unlock(object);
wait_result = thread_block(THREAD_CONTINUE_NULL);
return (VM_FAULT_RETRY);
}
}
- if (m != VM_PAGE_NULL) {
- /*
- * Indicate that the page is waiting for data
- * from the memory manager.
- */
- m->list_req_pending = TRUE;
+ if (object->internal) {
+ int compressed_count_delta;
+
+ assert(VM_CONFIG_COMPRESSOR_IS_PRESENT);
+
+ if (m == VM_PAGE_NULL) {
+ /*
+ * Allocate a new page for this object/offset pair as a placeholder
+ */
+ m = vm_page_grab_options(grab_options);
+#if TRACEFAULTPAGE
+ dbgTrace(0xBEEF000D, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */
+#endif
+ if (m == VM_PAGE_NULL) {
+
+ vm_fault_cleanup(object, first_m);
+ thread_interrupt_level(interruptible_state);
+
+ return (VM_FAULT_MEMORY_SHORTAGE);
+ }
+
+ m->absent = TRUE;
+ if (fault_info && fault_info->batch_pmap_op == TRUE) {
+ vm_page_insert_internal(m, object, offset, VM_KERN_MEMORY_NONE, FALSE, TRUE, TRUE, FALSE, NULL);
+ } else {
+ vm_page_insert(m, object, offset);
+ }
+ }
+ assert(m->busy);
+
m->absent = TRUE;
+ pager = object->pager;
+
+ assert(object->paging_in_progress > 0);
+ vm_object_unlock(object);
+
+ rc = vm_compressor_pager_get(
+ pager,
+ offset + object->paging_offset,
+ VM_PAGE_GET_PHYS_PAGE(m),
+ &my_fault_type,
+ 0,
+ &compressed_count_delta);
+
+ if (type_of_fault == NULL) {
+ int throttle_delay;
+
+ /*
+ * we weren't called from vm_fault, so we
+ * need to apply page creation throttling
+ * do it before we re-acquire any locks
+ */
+ if (my_fault_type == DBG_COMPRESSOR_FAULT) {
+ if ((throttle_delay = vm_page_throttled(TRUE))) {
+ VM_DEBUG_EVENT(vmf_compressordelay, VMF_COMPRESSORDELAY, DBG_FUNC_NONE, throttle_delay, 0, 1, 0);
+ delay(throttle_delay);
+ }
+ }
+ }
+ vm_object_lock(object);
+ assert(object->paging_in_progress > 0);
+
+ vm_compressor_pager_count(
+ pager,
+ compressed_count_delta,
+ FALSE, /* shared_lock */
+ object);
+
+ switch (rc) {
+ case KERN_SUCCESS:
+ m->absent = FALSE;
+ m->dirty = TRUE;
+ if ((object->wimg_bits &
+ VM_WIMG_MASK) !=
+ VM_WIMG_USE_DEFAULT) {
+ /*
+ * If the page is not cacheable,
+ * we can't let its contents
+ * linger in the data cache
+ * after the decompression.
+ */
+ pmap_sync_page_attributes_phys(
+ VM_PAGE_GET_PHYS_PAGE(m));
+ } else {
+ m->written_by_kernel = TRUE;
+ }
+
+ /*
+ * If the object is purgeable, its
+ * owner's purgeable ledgers have been
+ * updated in vm_page_insert() but the
+ * page was also accounted for in a
+ * "compressed purgeable" ledger, so
+ * update that now.
+ */
+ if ((object->purgable !=
+ VM_PURGABLE_DENY) &&
+ (object->vo_purgeable_owner !=
+ NULL)) {
+ /*
+ * One less compressed
+ * purgeable page.
+ */
+ vm_purgeable_compressed_update(
+ object,
+ -1);
+ }
+
+ break;
+ case KERN_MEMORY_FAILURE:
+ m->unusual = TRUE;
+ m->error = TRUE;
+ m->absent = FALSE;
+ break;
+ case KERN_MEMORY_ERROR:
+ assert(m->absent);
+ break;
+ default:
+ panic("vm_fault_page(): unexpected "
+ "error %d from "
+ "vm_compressor_pager_get()\n",
+ rc);
+ }
+ PAGE_WAKEUP_DONE(m);
+
+ rc = KERN_SUCCESS;
+ goto data_requested;
+ }
+ my_fault_type = DBG_PAGEIN_FAULT;
+
+ if (m != VM_PAGE_NULL) {
+ VM_PAGE_FREE(m);
+ m = VM_PAGE_NULL;
}
#if TRACEFAULTPAGE
XPR(XPR_VM_FAULT,
"vm_f_page: data_req obj 0x%X, offset 0x%X, page 0x%X, acc %d\n",
- (integer_t)object, offset, (integer_t)m,
+ object, offset, m,
access_required | wants_copy_flag, 0);
+ if (object->copy == first_object) {
+ /*
+ * if we issue the memory_object_data_request in
+ * this state, we are subject to a deadlock with
+ * the underlying filesystem if it is trying to
+ * shrink the file resulting in a push of pages
+ * into the copy object... that push will stall
+ * on the placeholder page, and if the pushing thread
+ * is holding a lock that is required on the pagein
+ * path (such as a truncate lock), we'll deadlock...
+ * to avoid this potential deadlock, we throw away
+ * our placeholder page before calling memory_object_data_request
+ * and force this thread to retry the vm_fault_page after
+ * we have issued the I/O. the second time through this path
+ * we will find the page already in the cache (presumably still
+ * busy waiting for the I/O to complete) and then complete
+ * the fault w/o having to go through memory_object_data_request again
+ */
+ assert(first_m != VM_PAGE_NULL);
+ assert(VM_PAGE_OBJECT(first_m) == first_object);
+
+ vm_object_lock(first_object);
+ VM_PAGE_FREE(first_m);
+ vm_object_paging_end(first_object);
+ vm_object_unlock(first_object);
+
+ first_m = VM_PAGE_NULL;
+ force_fault_retry = TRUE;
+
+ vm_fault_page_forced_retry++;
+ }
+
+ if (data_already_requested == TRUE) {
+ orig_behavior = fault_info->behavior;
+ orig_cluster_size = fault_info->cluster_size;
+
+ fault_info->behavior = VM_BEHAVIOR_RANDOM;
+ fault_info->cluster_size = PAGE_SIZE;
+ }
/*
* Call the memory manager to retrieve the data.
*/
access_required | wants_copy_flag,
(memory_object_fault_info_t)fault_info);
+ if (data_already_requested == TRUE) {
+ fault_info->behavior = orig_behavior;
+ fault_info->cluster_size = orig_cluster_size;
+ } else
+ data_already_requested = TRUE;
+
+ DTRACE_VM2(maj_fault, int, 1, (uint64_t *), NULL);
#if TRACEFAULTPAGE
dbgTrace(0xBEEF0013, (unsigned int) object, (unsigned int) rc); /* (TEST/DEBUG) */
#endif
vm_object_lock(object);
+ data_requested:
if (rc != KERN_SUCCESS) {
vm_fault_cleanup(object, first_m);
return ((rc == MACH_SEND_INTERRUPTED) ?
VM_FAULT_INTERRUPTED :
VM_FAULT_MEMORY_ERROR);
+ } else {
+ clock_sec_t tv_sec;
+ clock_usec_t tv_usec;
+
+ if (my_fault_type == DBG_PAGEIN_FAULT) {
+ clock_get_system_microtime(&tv_sec, &tv_usec);
+ current_thread()->t_page_creation_time = tv_sec;
+ current_thread()->t_page_creation_count = 0;
+ }
}
- if ((interruptible != THREAD_UNINT) && (current_thread()->sched_mode & TH_MODE_ABORT)) {
+ if ((interruptible != THREAD_UNINT) && (current_thread()->sched_flags & TH_SFLAG_ABORT)) {
vm_fault_cleanup(object, first_m);
thread_interrupt_level(interruptible_state);
return (VM_FAULT_INTERRUPTED);
}
+ if (force_fault_retry == TRUE) {
+
+ vm_fault_cleanup(object, first_m);
+ thread_interrupt_level(interruptible_state);
+
+ return (VM_FAULT_RETRY);
+ }
if (m == VM_PAGE_NULL && object->phys_contiguous) {
/*
* No page here means that the object we
* page fault against the object's new backing
* store (different memory object).
*/
- break;
+ phys_contig_object:
+ goto done;
}
/*
* potentially a pagein fault
* if we make it through the state checks
* above, than we'll count it as such
*/
- my_fault = DBG_PAGEIN_FAULT;
+ my_fault = my_fault_type;
/*
* Retry with same object/offset, since new data may
*/
continue;
}
-
+dont_look_for_page:
/*
* We get here if the object has no pager, or an existence map
* exists and indicates the page isn't present on the pager
XPR(XPR_VM_FAULT,
"vm_f_page: no pager obj 0x%X, offset 0x%X, page 0x%X, next_obj 0x%X\n",
- (integer_t)object, offset, (integer_t)m,
- (integer_t)object->shadow, 0);
+ object, offset, m,
+ object->shadow, 0);
next_object = object->shadow;
vm_object_lock(object);
}
m = first_m;
- assert(m->object == object);
+ assert(VM_PAGE_OBJECT(m) == object);
first_m = VM_PAGE_NULL;
/*
* fault cleanup in the case of an error condition
* including resetting the thread_interrupt_level
*/
- error = vm_fault_check(object, m, first_m, interruptible_state);
+ error = vm_fault_check(object, m, first_m, interruptible_state, (type_of_fault == NULL) ? TRUE : FALSE);
if (error != VM_FAULT_SUCCESS)
return (error);
if (m == VM_PAGE_NULL) {
- m = vm_page_grab();
+ m = vm_page_grab_options(grab_options);
if (m == VM_PAGE_NULL) {
vm_fault_cleanup(object, VM_PAGE_NULL);
}
vm_page_insert(m, object, offset);
}
+ if (fault_info->mark_zf_absent && no_zero_fill == TRUE)
+ m->absent = TRUE;
+
my_fault = vm_fault_zero_page(m, no_zero_fill);
break;
if ((object != first_object) || must_be_resident)
vm_object_paging_end(object);
- offset += object->shadow_offset;
- fault_info->lo_offset += object->shadow_offset;
- fault_info->hi_offset += object->shadow_offset;
+ offset += object->vo_shadow_offset;
+ fault_info->lo_offset += object->vo_shadow_offset;
+ fault_info->hi_offset += object->vo_shadow_offset;
access_required = VM_PROT_READ;
vm_object_lock(next_object);
dbgTrace(0xBEEF0015, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */
#endif
#if EXTRA_ASSERTIONS
- if (m != VM_PAGE_NULL) {
- assert(m->busy && !m->absent);
- assert((first_m == VM_PAGE_NULL) ||
- (first_m->busy && !first_m->absent &&
- !first_m->active && !first_m->inactive));
- }
+ assert(m->busy && !m->absent);
+ assert((first_m == VM_PAGE_NULL) ||
+ (first_m->busy && !first_m->absent &&
+ !first_m->active && !first_m->inactive && !first_m->secluded));
#endif /* EXTRA_ASSERTIONS */
/*
* If we found a page, we must have decrypted it before we
* get here...
*/
- if (m != VM_PAGE_NULL) {
- ASSERT_PAGE_DECRYPTED(m);
- }
+ ASSERT_PAGE_DECRYPTED(m);
XPR(XPR_VM_FAULT,
"vm_f_page: FOUND obj 0x%X, off 0x%X, page 0x%X, 1_obj 0x%X, 1_m 0x%X\n",
- (integer_t)object, offset, (integer_t)m,
- (integer_t)first_object, (integer_t)first_m);
+ object, offset, m,
+ first_object, first_m);
/*
* If the page is being written, but isn't
* we have to copy it into a new page owned
* by the top-level object.
*/
- if ((object != first_object) && (m != VM_PAGE_NULL)) {
+ if (object != first_object) {
#if TRACEFAULTPAGE
dbgTrace(0xBEEF0016, (unsigned int) object, (unsigned int) fault_type); /* (TEST/DEBUG) */
/*
* Allocate a page for the copy
*/
- copy_m = vm_page_grab();
+ copy_m = vm_page_grab_options(grab_options);
if (copy_m == VM_PAGE_NULL) {
RELEASE_PAGE(m);
}
XPR(XPR_VM_FAULT,
"vm_f_page: page_copy obj 0x%X, offset 0x%X, m 0x%X, copy_m 0x%X\n",
- (integer_t)object, offset,
- (integer_t)m, (integer_t)copy_m, 0);
+ object, offset,
+ m, copy_m, 0);
vm_page_copy(m, copy_m);
* avoid the pmap_disconnect() call.
*/
if (m->pmapped)
- pmap_disconnect(m->phys_page);
+ pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m));
+ if (m->clustered) {
+ VM_PAGE_COUNT_AS_PAGEIN(m);
+ VM_PAGE_CONSUME_CLUSTERED(m);
+ }
assert(!m->cleaning);
/*
* We no longer need the old page or object.
*/
- PAGE_WAKEUP_DONE(m);
+ RELEASE_PAGE(m);
+
+ /*
+ * This check helps with marking the object as having a sequential pattern
+ * Normally we'll miss doing this below because this fault is about COW to
+ * the first_object i.e. bring page in from disk, push to object above but
+ * don't update the file object's sequential pattern.
+ */
+ if (object->internal == FALSE) {
+ vm_fault_is_sequential(object, offset, fault_info->behavior);
+ }
+
vm_object_paging_end(object);
vm_object_unlock(object);
*/
assert(copy_m->busy);
vm_page_insert(copy_m, object, offset);
- copy_m->dirty = TRUE;
+ SET_PAGE_DIRTY(copy_m, TRUE);
m = copy_m;
/*
*/
try_failed_count = 0;
- while ((copy_object = first_object->copy) != VM_OBJECT_NULL && (m != VM_PAGE_NULL)) {
+ while ((copy_object = first_object->copy) != VM_OBJECT_NULL) {
vm_object_offset_t copy_offset;
vm_page_t copy_m;
/*
* Does the page exist in the copy?
*/
- copy_offset = first_offset - copy_object->shadow_offset;
+ copy_offset = first_offset - copy_object->vo_shadow_offset;
- if (copy_object->size <= copy_offset)
+ if (copy_object->vo_size <= copy_offset)
/*
* Copy object doesn't cover this page -- do nothing.
*/
* pmaps use it.)
*/
if (m->pmapped)
- pmap_disconnect(m->phys_page);
+ pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m));
+ if (m->clustered) {
+ VM_PAGE_COUNT_AS_PAGEIN(m);
+ VM_PAGE_CONSUME_CLUSTERED(m);
+ }
/*
* If there's a pager, then immediately
* page out this page, using the "initialize"
* option. Else, we use the copy.
*/
- if ((!copy_object->pager_created)
-#if MACH_PAGEMAP
- || vm_external_state_get(copy_object->existence_map, copy_offset) == VM_EXTERNAL_STATE_ABSENT
-#endif
- ) {
+ if ((!copy_object->pager_ready)
+ || VM_COMPRESSOR_PAGER_STATE_GET(copy_object, copy_offset) == VM_EXTERNAL_STATE_ABSENT
+ ) {
vm_page_lockspin_queues();
assert(!m->cleaning);
vm_page_activate(copy_m);
vm_page_unlock_queues();
- copy_m->dirty = TRUE;
+ SET_PAGE_DIRTY(copy_m, TRUE);
PAGE_WAKEUP_DONE(copy_m);
- }
- else {
+
+ } else {
+
assert(copy_m->busy == TRUE);
assert(!m->cleaning);
/*
* dirty is protected by the object lock
*/
- copy_m->dirty = TRUE;
+ SET_PAGE_DIRTY(copy_m, TRUE);
/*
* The page is already ready for pageout:
*/
vm_object_lock(object);
}
+
/*
* Because we're pushing a page upward
* in the object tree, we must restart
break;
}
+
+done:
*result_page = m;
*top_page = first_m;
XPR(XPR_VM_FAULT,
"vm_f_page: DONE obj 0x%X, offset 0x%X, m 0x%X, first_m 0x%X\n",
- (integer_t)object, offset, (integer_t)m, (integer_t)first_m, 0);
+ object, offset, m, first_m, 0);
if (m != VM_PAGE_NULL) {
+ assert(VM_PAGE_OBJECT(m) == object);
+
+ retval = VM_FAULT_SUCCESS;
+
if (my_fault == DBG_PAGEIN_FAULT) {
- VM_STAT_INCR(pageins);
- DTRACE_VM2(pgin, int, 1, (uint64_t *), NULL);
- DTRACE_VM2(maj_fault, int, 1, (uint64_t *), NULL);
- current_task()->pageins++;
+ VM_PAGE_COUNT_AS_PAGEIN(m);
- if (m->object->internal) {
- DTRACE_VM2(anonpgin, int, 1, (uint64_t *), NULL);
- } else {
- DTRACE_VM2(fspgin, int, 1, (uint64_t *), NULL);
- }
+ if (object->internal)
+ my_fault = DBG_PAGEIND_FAULT;
+ else
+ my_fault = DBG_PAGEINV_FAULT;
/*
* evaluate access pattern and update state
vm_fault_is_sequential(object, offset, fault_info->behavior);
vm_fault_deactivate_behind(object, offset, fault_info->behavior);
+ } else if (my_fault == DBG_COMPRESSOR_FAULT || my_fault == DBG_COMPRESSOR_SWAPIN_FAULT) {
+
+ VM_STAT_INCR(decompressions);
}
if (type_of_fault)
*type_of_fault = my_fault;
- } else
- vm_object_unlock(object);
+ } else {
+ retval = VM_FAULT_SUCCESS_NO_VM_PAGE;
+ assert(first_m == VM_PAGE_NULL);
+ assert(object == first_object);
+ }
thread_interrupt_level(interruptible_state);
#if TRACEFAULTPAGE
dbgTrace(0xBEEF001A, (unsigned int) VM_FAULT_SUCCESS, 0); /* (TEST/DEBUG) */
#endif
- return (VM_FAULT_SUCCESS);
+ return retval;
backoff:
thread_interrupt_level(interruptible_state);
+/*
+ * CODE SIGNING:
+ * When soft faulting a page, we have to validate the page if:
+ * 1. the page is being mapped in user space
+ * 2. the page hasn't already been found to be "tainted"
+ * 3. the page belongs to a code-signed object
+ * 4. the page has not been validated yet or has been mapped for write.
+ */
+#define VM_FAULT_NEED_CS_VALIDATION(pmap, page, page_obj) \
+ ((pmap) != kernel_pmap /*1*/ && \
+ !(page)->cs_tainted /*2*/ && \
+ (page_obj)->code_signed /*3*/ && \
+ (!(page)->cs_validated || (page)->wpmapped /*4*/))
+
+
/*
* page queue lock must NOT be held
* m->object must be locked
* careful not to modify the VM object in any way that is not
* legal under a shared lock...
*/
+extern int panic_on_cs_killed;
+extern int proc_selfpid(void);
+extern char *proc_name_address(void *p);
unsigned long cs_enter_tainted_rejected = 0;
unsigned long cs_enter_tainted_accepted = 0;
kern_return_t
pmap_t pmap,
vm_map_offset_t vaddr,
vm_prot_t prot,
+ vm_prot_t caller_prot,
boolean_t wired,
boolean_t change_wiring,
boolean_t no_cache,
+ boolean_t cs_bypass,
+ __unused int user_tag,
+ int pmap_options,
+ boolean_t *need_retry,
int *type_of_fault)
{
- unsigned int cache_attr;
- kern_return_t kr;
+ kern_return_t kr, pe_result;
boolean_t previously_pmapped = m->pmapped;
+ boolean_t must_disconnect = 0;
+ boolean_t map_is_switched, map_is_switch_protected;
+ int cs_enforcement_enabled;
+ vm_prot_t fault_type;
+ vm_object_t object;
+
+ fault_type = change_wiring ? VM_PROT_NONE : caller_prot;
+ object = VM_PAGE_OBJECT(m);
- vm_object_lock_assert_held(m->object);
-#if DEBUG
- mutex_assert(&vm_page_queue_lock, MA_NOTOWNED);
-#endif /* DEBUG */
+ vm_object_lock_assert_held(object);
+ LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_NOTOWNED);
- if (m->phys_page == vm_page_guard_addr) {
+ if (VM_PAGE_GET_PHYS_PAGE(m) == vm_page_guard_addr) {
assert(m->fictitious);
return KERN_SUCCESS;
}
- cache_attr = ((unsigned int)m->object->wimg_bits) & VM_WIMG_MASK;
+ if (*type_of_fault == DBG_ZERO_FILL_FAULT) {
- if (m->object->code_signed && !m->cs_validated &&
- pmap != kernel_pmap) {
+ vm_object_lock_assert_exclusive(object);
+
+ } else if ((fault_type & VM_PROT_WRITE) == 0 && !m->wpmapped) {
/*
- * CODE SIGNING:
- * This page comes from a VM object backed by a
- * signed memory object and it hasn't been validated yet.
- * We're about to enter it into a process address space,
- * so we need to validate its signature now.
+ * This is not a "write" fault, so we
+ * might not have taken the object lock
+ * exclusively and we might not be able
+ * to update the "wpmapped" bit in
+ * vm_fault_enter().
+ * Let's just grant read access to
+ * the page for now and we'll
+ * soft-fault again if we need write
+ * access later...
*/
- vm_object_lock_assert_exclusive(m->object);
-
- /* VM map still locked, so 1 ref will remain on VM object */
-
- vm_page_validate_cs(m);
+ prot &= ~VM_PROT_WRITE;
}
-
if (m->pmapped == FALSE) {
- /*
- * This is the first time this page is being
- * mapped in an address space (pmapped == FALSE).
- *
- * Part of that page may still be in the data cache
- * and not flushed to memory. In case we end up
- * accessing that page via the instruction cache,
- * we need to ensure that the 2 caches are in sync.
- */
- pmap_sync_page_data_phys(m->phys_page);
- if ((*type_of_fault == DBG_CACHE_HIT_FAULT) && m->clustered) {
- /*
- * found it in the cache, but this
- * is the first fault-in of the page (m->pmapped == FALSE)
- * so it must have come in as part of
- * a cluster... account 1 pagein against it
- */
- VM_STAT_INCR(pageins);
- DTRACE_VM2(pgin, int, 1, (uint64_t *), NULL);
-
- if (m->object->internal) {
- DTRACE_VM2(anonpgin, int, 1, (uint64_t *), NULL);
- } else {
- DTRACE_VM2(fspgin, int, 1, (uint64_t *), NULL);
+ if (m->clustered) {
+ if (*type_of_fault == DBG_CACHE_HIT_FAULT) {
+ /*
+ * found it in the cache, but this
+ * is the first fault-in of the page (m->pmapped == FALSE)
+ * so it must have come in as part of
+ * a cluster... account 1 pagein against it
+ */
+ if (object->internal)
+ *type_of_fault = DBG_PAGEIND_FAULT;
+ else
+ *type_of_fault = DBG_PAGEINV_FAULT;
+
+ VM_PAGE_COUNT_AS_PAGEIN(m);
}
-
- current_task()->pageins++;
-
- *type_of_fault = DBG_PAGEIN_FAULT;
+ VM_PAGE_CONSUME_CLUSTERED(m);
}
- VM_PAGE_CONSUME_CLUSTERED(m);
-
- } else if (cache_attr != VM_WIMG_DEFAULT)
- pmap_sync_page_attributes_phys(m->phys_page);
+ }
if (*type_of_fault != DBG_COW_FAULT) {
DTRACE_VM2(as_fault, int, 1, (uint64_t *), NULL);
}
}
- if (m->cs_tainted) {
+ /* Validate code signature if necessary. */
+ if (VM_FAULT_NEED_CS_VALIDATION(pmap, m, object)) {
+ vm_object_lock_assert_exclusive(object);
+
+ if (m->cs_validated) {
+ vm_cs_revalidates++;
+ }
+
+ /* VM map is locked, so 1 ref will remain on VM object -
+ * so no harm if vm_page_validate_cs drops the object lock */
+ vm_page_validate_cs(m);
+ }
+
+#define page_immutable(m,prot) ((m)->cs_validated /*&& ((prot) & VM_PROT_EXECUTE)*/)
+#define page_nx(m) ((m)->cs_nx)
+
+ map_is_switched = ((pmap != vm_map_pmap(current_task()->map)) &&
+ (pmap == vm_map_pmap(current_thread()->map)));
+ map_is_switch_protected = current_thread()->map->switch_protect;
+
+ /* If the map is switched, and is switch-protected, we must protect
+ * some pages from being write-faulted: immutable pages because by
+ * definition they may not be written, and executable pages because that
+ * would provide a way to inject unsigned code.
+ * If the page is immutable, we can simply return. However, we can't
+ * immediately determine whether a page is executable anywhere. But,
+ * we can disconnect it everywhere and remove the executable protection
+ * from the current map. We do that below right before we do the
+ * PMAP_ENTER.
+ */
+ cs_enforcement_enabled = cs_enforcement(NULL);
+
+ if(cs_enforcement_enabled && map_is_switched &&
+ map_is_switch_protected && page_immutable(m, prot) &&
+ (prot & VM_PROT_WRITE))
+ {
+ return KERN_CODESIGN_ERROR;
+ }
+
+ if (cs_enforcement_enabled && page_nx(m) && (prot & VM_PROT_EXECUTE)) {
+ if (cs_debug)
+ printf("page marked to be NX, not letting it be mapped EXEC\n");
+ return KERN_CODESIGN_ERROR;
+ }
+
+ if (cs_enforcement_enabled &&
+ !m->cs_validated &&
+ (prot & VM_PROT_EXECUTE) &&
+ !(caller_prot & VM_PROT_EXECUTE)) {
/*
- * CODE SIGNING:
- * This page has been tainted and can not be trusted.
- * Let's notify the current process and let it take any
- * necessary precautions before we enter the tainted page
- * into its address space.
+ * FOURK PAGER:
+ * This page has not been validated and will not be
+ * allowed to be mapped for "execute".
+ * But the caller did not request "execute" access for this
+ * fault, so we should not raise a code-signing violation
+ * (and possibly kill the process) below.
+ * Instead, let's just remove the "execute" access request.
+ *
+ * This can happen on devices with a 4K page size if a 16K
+ * page contains a mix of signed&executable and
+ * unsigned&non-executable 4K pages, making the whole 16K
+ * mapping "executable".
*/
- if (cs_invalid_page()) {
- /* reject the tainted page: abort the page fault */
- kr = KERN_MEMORY_ERROR;
+ prot &= ~VM_PROT_EXECUTE;
+ }
+
+ /* A page could be tainted, or pose a risk of being tainted later.
+ * Check whether the receiving process wants it, and make it feel
+ * the consequences (that hapens in cs_invalid_page()).
+ * For CS Enforcement, two other conditions will
+ * cause that page to be tainted as well:
+ * - pmapping an unsigned page executable - this means unsigned code;
+ * - writeable mapping of a validated page - the content of that page
+ * can be changed without the kernel noticing, therefore unsigned
+ * code can be created
+ */
+ if (!cs_bypass &&
+ (m->cs_tainted ||
+ (cs_enforcement_enabled &&
+ (/* The page is unsigned and wants to be executable */
+ (!m->cs_validated && (prot & VM_PROT_EXECUTE)) ||
+ /* The page should be immutable, but is in danger of being modified
+ * This is the case where we want policy from the code directory -
+ * is the page immutable or not? For now we have to assume that
+ * code pages will be immutable, data pages not.
+ * We'll assume a page is a code page if it has a code directory
+ * and we fault for execution.
+ * That is good enough since if we faulted the code page for
+ * writing in another map before, it is wpmapped; if we fault
+ * it for writing in this map later it will also be faulted for executing
+ * at the same time; and if we fault for writing in another map
+ * later, we will disconnect it from this pmap so we'll notice
+ * the change.
+ */
+ (page_immutable(m, prot) && ((prot & VM_PROT_WRITE) || m->wpmapped))
+ ))
+ ))
+ {
+ /* We will have a tainted page. Have to handle the special case
+ * of a switched map now. If the map is not switched, standard
+ * procedure applies - call cs_invalid_page().
+ * If the map is switched, the real owner is invalid already.
+ * There is no point in invalidating the switching process since
+ * it will not be executing from the map. So we don't call
+ * cs_invalid_page() in that case. */
+ boolean_t reject_page, cs_killed;
+ if(map_is_switched) {
+ assert(pmap==vm_map_pmap(current_thread()->map));
+ assert(!(prot & VM_PROT_WRITE) || (map_is_switch_protected == FALSE));
+ reject_page = FALSE;
+ } else {
+ if (cs_debug > 5)
+ printf("vm_fault: signed: %s validate: %s tainted: %s wpmapped: %s slid: %s prot: 0x%x\n",
+ object->code_signed ? "yes" : "no",
+ m->cs_validated ? "yes" : "no",
+ m->cs_tainted ? "yes" : "no",
+ m->wpmapped ? "yes" : "no",
+ m->slid ? "yes" : "no",
+ (int)prot);
+ reject_page = cs_invalid_page((addr64_t) vaddr, &cs_killed);
+ }
+
+ if (reject_page) {
+ /* reject the invalid page: abort the page fault */
+ int pid;
+ const char *procname;
+ task_t task;
+ vm_object_t file_object, shadow;
+ vm_object_offset_t file_offset;
+ char *pathname, *filename;
+ vm_size_t pathname_len, filename_len;
+ boolean_t truncated_path;
+#define __PATH_MAX 1024
+ struct timespec mtime, cs_mtime;
+ int shadow_depth;
+ os_reason_t codesigning_exit_reason = OS_REASON_NULL;
+
+ kr = KERN_CODESIGN_ERROR;
cs_enter_tainted_rejected++;
+
+ /* get process name and pid */
+ procname = "?";
+ task = current_task();
+ pid = proc_selfpid();
+ if (task->bsd_info != NULL)
+ procname = proc_name_address(task->bsd_info);
+
+ /* get file's VM object */
+ file_object = object;
+ file_offset = m->offset;
+ for (shadow = file_object->shadow,
+ shadow_depth = 0;
+ shadow != VM_OBJECT_NULL;
+ shadow = file_object->shadow,
+ shadow_depth++) {
+ vm_object_lock_shared(shadow);
+ if (file_object != object) {
+ vm_object_unlock(file_object);
+ }
+ file_offset += file_object->vo_shadow_offset;
+ file_object = shadow;
+ }
+
+ mtime.tv_sec = 0;
+ mtime.tv_nsec = 0;
+ cs_mtime.tv_sec = 0;
+ cs_mtime.tv_nsec = 0;
+
+ /* get file's pathname and/or filename */
+ pathname = NULL;
+ filename = NULL;
+ pathname_len = 0;
+ filename_len = 0;
+ truncated_path = FALSE;
+ /* no pager -> no file -> no pathname, use "<nil>" in that case */
+ if (file_object->pager != NULL) {
+ pathname = (char *)kalloc(__PATH_MAX * 2);
+ if (pathname) {
+ pathname[0] = '\0';
+ pathname_len = __PATH_MAX;
+ filename = pathname + pathname_len;
+ filename_len = __PATH_MAX;
+ }
+ vnode_pager_get_object_name(file_object->pager,
+ pathname,
+ pathname_len,
+ filename,
+ filename_len,
+ &truncated_path);
+ if (pathname) {
+ /* safety first... */
+ pathname[__PATH_MAX-1] = '\0';
+ filename[__PATH_MAX-1] = '\0';
+ }
+ vnode_pager_get_object_mtime(file_object->pager,
+ &mtime,
+ &cs_mtime);
+ }
+ printf("CODE SIGNING: process %d[%s]: "
+ "rejecting invalid page at address 0x%llx "
+ "from offset 0x%llx in file \"%s%s%s\" "
+ "(cs_mtime:%lu.%ld %s mtime:%lu.%ld) "
+ "(signed:%d validated:%d tainted:%d nx:%d "
+ "wpmapped:%d slid:%d dirty:%d depth:%d)\n",
+ pid, procname, (addr64_t) vaddr,
+ file_offset,
+ (pathname ? pathname : "<nil>"),
+ (truncated_path ? "/.../" : ""),
+ (truncated_path ? filename : ""),
+ cs_mtime.tv_sec, cs_mtime.tv_nsec,
+ ((cs_mtime.tv_sec == mtime.tv_sec &&
+ cs_mtime.tv_nsec == mtime.tv_nsec)
+ ? "=="
+ : "!="),
+ mtime.tv_sec, mtime.tv_nsec,
+ object->code_signed,
+ m->cs_validated,
+ m->cs_tainted,
+ m->cs_nx,
+ m->wpmapped,
+ m->slid,
+ m->dirty,
+ shadow_depth);
+
+ /*
+ * We currently only generate an exit reason if cs_invalid_page directly killed a process. If cs_invalid_page
+ * did not kill the process (more the case on desktop), vm_fault_enter will not satisfy the fault and whether the
+ * process dies is dependent on whether there is a signal handler registered for SIGSEGV and how that handler
+ * will deal with the segmentation fault.
+ */
+ if (cs_killed) {
+ KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE,
+ pid, OS_REASON_CODESIGNING, CODESIGNING_EXIT_REASON_INVALID_PAGE, 0, 0);
+
+ codesigning_exit_reason = os_reason_create(OS_REASON_CODESIGNING, CODESIGNING_EXIT_REASON_INVALID_PAGE);
+ if (codesigning_exit_reason == NULL) {
+ printf("vm_fault_enter: failed to allocate codesigning exit reason\n");
+ } else {
+ mach_vm_address_t data_addr = 0;
+ struct codesigning_exit_reason_info *ceri = NULL;
+ uint32_t reason_buffer_size_estimate = kcdata_estimate_required_buffer_size(1, sizeof(*ceri));
+
+ if (os_reason_alloc_buffer_noblock(codesigning_exit_reason, reason_buffer_size_estimate)) {
+ printf("vm_fault_enter: failed to allocate buffer for codesigning exit reason\n");
+ } else {
+ if (KERN_SUCCESS == kcdata_get_memory_addr(&codesigning_exit_reason->osr_kcd_descriptor,
+ EXIT_REASON_CODESIGNING_INFO, sizeof(*ceri), &data_addr)) {
+ ceri = (struct codesigning_exit_reason_info *)data_addr;
+ static_assert(__PATH_MAX == sizeof(ceri->ceri_pathname));
+
+ ceri->ceri_virt_addr = vaddr;
+ ceri->ceri_file_offset = file_offset;
+ if (pathname)
+ strncpy((char *)&ceri->ceri_pathname, pathname, sizeof(ceri->ceri_pathname));
+ else
+ ceri->ceri_pathname[0] = '\0';
+ if (filename)
+ strncpy((char *)&ceri->ceri_filename, filename, sizeof(ceri->ceri_filename));
+ else
+ ceri->ceri_filename[0] = '\0';
+ ceri->ceri_path_truncated = (truncated_path);
+ ceri->ceri_codesig_modtime_secs = cs_mtime.tv_sec;
+ ceri->ceri_codesig_modtime_nsecs = cs_mtime.tv_nsec;
+ ceri->ceri_page_modtime_secs = mtime.tv_sec;
+ ceri->ceri_page_modtime_nsecs = mtime.tv_nsec;
+ ceri->ceri_object_codesigned = (object->code_signed);
+ ceri->ceri_page_codesig_validated = (m->cs_validated);
+ ceri->ceri_page_codesig_tainted = (m->cs_tainted);
+ ceri->ceri_page_codesig_nx = (m->cs_nx);
+ ceri->ceri_page_wpmapped = (m->wpmapped);
+ ceri->ceri_page_slid = (m->slid);
+ ceri->ceri_page_dirty = (m->dirty);
+ ceri->ceri_page_shadow_depth = shadow_depth;
+ } else {
+#if DEBUG || DEVELOPMENT
+ panic("vm_fault_enter: failed to allocate kcdata for codesigning exit reason");
+#else
+ printf("vm_fault_enter: failed to allocate kcdata for codesigning exit reason\n");
+#endif /* DEBUG || DEVELOPMENT */
+ /* Free the buffer */
+ os_reason_alloc_buffer_noblock(codesigning_exit_reason, 0);
+ }
+ }
+ }
+
+ set_thread_exit_reason(current_thread(), codesigning_exit_reason, FALSE);
+ }
+ if (panic_on_cs_killed &&
+ object->object_slid) {
+ panic("CODE SIGNING: process %d[%s]: "
+ "rejecting invalid page at address 0x%llx "
+ "from offset 0x%llx in file \"%s%s%s\" "
+ "(cs_mtime:%lu.%ld %s mtime:%lu.%ld) "
+ "(signed:%d validated:%d tainted:%d nx:%d"
+ "wpmapped:%d slid:%d dirty:%d depth:%d)\n",
+ pid, procname, (addr64_t) vaddr,
+ file_offset,
+ (pathname ? pathname : "<nil>"),
+ (truncated_path ? "/.../" : ""),
+ (truncated_path ? filename : ""),
+ cs_mtime.tv_sec, cs_mtime.tv_nsec,
+ ((cs_mtime.tv_sec == mtime.tv_sec &&
+ cs_mtime.tv_nsec == mtime.tv_nsec)
+ ? "=="
+ : "!="),
+ mtime.tv_sec, mtime.tv_nsec,
+ object->code_signed,
+ m->cs_validated,
+ m->cs_tainted,
+ m->cs_nx,
+ m->wpmapped,
+ m->slid,
+ m->dirty,
+ shadow_depth);
+ }
+
+ if (file_object != object) {
+ vm_object_unlock(file_object);
+ }
+ if (pathname_len != 0) {
+ kfree(pathname, __PATH_MAX * 2);
+ pathname = NULL;
+ filename = NULL;
+ }
} else {
- /* proceed with the tainted page */
+ /* proceed with the invalid page */
kr = KERN_SUCCESS;
+ if (!m->cs_validated &&
+ !object->code_signed) {
+ /*
+ * This page has not been (fully) validated but
+ * does not belong to a code-signed object
+ * so it should not be forcefully considered
+ * as tainted.
+ * We're just concerned about it here because
+ * we've been asked to "execute" it but that
+ * does not mean that it should cause other
+ * accesses to fail.
+ * This happens when a debugger sets a
+ * breakpoint and we then execute code in
+ * that page. Marking the page as "tainted"
+ * would cause any inspection tool ("leaks",
+ * "vmmap", "CrashReporter", ...) to get killed
+ * due to code-signing violation on that page,
+ * even though they're just reading it and not
+ * executing from it.
+ */
+ } else {
+ /*
+ * Page might have been tainted before or not;
+ * now it definitively is. If the page wasn't
+ * tainted, we must disconnect it from all
+ * pmaps later, to force existing mappings
+ * through that code path for re-consideration
+ * of the validity of that page.
+ */
+ must_disconnect = !m->cs_tainted;
+ m->cs_tainted = TRUE;
+ }
cs_enter_tainted_accepted++;
}
- if (cs_debug || kr != KERN_SUCCESS) {
- printf("CODESIGNING: vm_fault_enter(0x%llx): "
- "page %p obj %p off 0x%llx *** TAINTED ***\n",
- (long long)vaddr, m, m->object, m->offset);
+ if (kr != KERN_SUCCESS) {
+ if (cs_debug) {
+ printf("CODESIGNING: vm_fault_enter(0x%llx): "
+ "*** INVALID PAGE ***\n",
+ (long long)vaddr);
+ }
+#if !SECURE_KERNEL
+ if (cs_enforcement_panic) {
+ panic("CODESIGNING: panicking on invalid page\n");
+ }
+#endif
}
+
} else {
/* proceed with the valid page */
kr = KERN_SUCCESS;
}
- if (kr == KERN_SUCCESS) {
- /*
- * NOTE: we may only hold the vm_object lock SHARED
- * at this point, but the update of pmapped is ok
- * since this is the ONLY bit updated behind the SHARED
- * lock... however, we need to figure out how to do an atomic
- * update on a bit field to make this less fragile... right
- * now I don'w know how to coerce 'C' to give me the offset info
- * that's needed for an AtomicCompareAndSwap
- */
- m->pmapped = TRUE;
-
- PMAP_ENTER(pmap, vaddr, m, prot, cache_attr, wired);
- }
+ boolean_t page_queues_locked = FALSE;
+#define __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED() \
+MACRO_BEGIN \
+ if (! page_queues_locked) { \
+ page_queues_locked = TRUE; \
+ vm_page_lockspin_queues(); \
+ } \
+MACRO_END
+#define __VM_PAGE_UNLOCK_QUEUES_IF_NEEDED() \
+MACRO_BEGIN \
+ if (page_queues_locked) { \
+ page_queues_locked = FALSE; \
+ vm_page_unlock_queues(); \
+ } \
+MACRO_END
/*
* Hold queues lock to manipulate
* the page queues. Change wiring
* case is obvious.
*/
- if (change_wiring) {
- vm_page_lockspin_queues();
+ assert((m->vm_page_q_state == VM_PAGE_USED_BY_COMPRESSOR) || object != compressor_object);
+
+#if CONFIG_BACKGROUND_QUEUE
+ vm_page_update_background_state(m);
+#endif
+ if (m->vm_page_q_state == VM_PAGE_USED_BY_COMPRESSOR) {
+ /*
+ * Compressor pages are neither wired
+ * nor pageable and should never change.
+ */
+ assert(object == compressor_object);
+ } else if (change_wiring) {
+ __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED();
if (wired) {
if (kr == KERN_SUCCESS) {
- vm_page_wire(m);
+ vm_page_wire(m, VM_PROT_MEMORY_TAG(caller_prot), TRUE);
}
} else {
- vm_page_unwire(m);
+ vm_page_unwire(m, TRUE);
}
- vm_page_unlock_queues();
+ /* we keep the page queues lock, if we need it later */
} else {
+ if (object->internal == TRUE) {
+ /*
+ * don't allow anonymous pages on
+ * the speculative queues
+ */
+ no_cache = FALSE;
+ }
if (kr != KERN_SUCCESS) {
- vm_page_lock_queues();
+ __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED();
vm_page_deactivate(m);
- vm_page_unlock_queues();
- } else {
- if (((!m->active && !m->inactive) || no_cache) && !m->wire_count && !m->throttled) {
- vm_page_lockspin_queues();
+ /* we keep the page queues lock, if we need it later */
+ } else if (((m->vm_page_q_state == VM_PAGE_NOT_ON_Q) ||
+ (m->vm_page_q_state == VM_PAGE_ON_SPECULATIVE_Q) ||
+ (m->vm_page_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q) ||
+ ((m->vm_page_q_state != VM_PAGE_ON_THROTTLED_Q) && no_cache)) &&
+ !VM_PAGE_WIRED(m)) {
+
+ if (vm_page_local_q &&
+ (*type_of_fault == DBG_COW_FAULT ||
+ *type_of_fault == DBG_ZERO_FILL_FAULT) ) {
+ struct vpl *lq;
+ uint32_t lid;
+
+ assert(m->vm_page_q_state == VM_PAGE_NOT_ON_Q);
+
+ __VM_PAGE_UNLOCK_QUEUES_IF_NEEDED();
+ vm_object_lock_assert_exclusive(object);
+
/*
- * test again now that we hold the page queue lock
+ * we got a local queue to stuff this
+ * new page on...
+ * its safe to manipulate local and
+ * local_id at this point since we're
+ * behind an exclusive object lock and
+ * the page is not on any global queue.
+ *
+ * we'll use the current cpu number to
+ * select the queue note that we don't
+ * need to disable preemption... we're
+ * going to be behind the local queue's
+ * lock to do the real work
*/
- if (((!m->active && !m->inactive) || no_cache) && !m->wire_count) {
+ lid = cpu_number();
+
+ lq = &vm_page_local_q[lid].vpl_un.vpl;
+
+ VPL_LOCK(&lq->vpl_lock);
+
+ vm_page_check_pageable_safe(m);
+ vm_page_queue_enter(&lq->vpl_queue, m,
+ vm_page_t, pageq);
+ m->vm_page_q_state = VM_PAGE_ON_ACTIVE_LOCAL_Q;
+ m->local_id = lid;
+ lq->vpl_count++;
+
+ if (object->internal)
+ lq->vpl_internal_count++;
+ else
+ lq->vpl_external_count++;
+
+ VPL_UNLOCK(&lq->vpl_lock);
+ if (lq->vpl_count > vm_page_local_q_soft_limit)
+ {
/*
- * If this is a no_cache mapping and the page has never been
- * mapped before or was previously a no_cache page, then we
- * want to leave pages in the speculative state so that they
- * can be readily recycled if free memory runs low. Otherwise
- * the page is activated as normal.
+ * we're beyond the soft limit
+ * for the local queue
+ * vm_page_reactivate_local will
+ * 'try' to take the global page
+ * queue lock... if it can't
+ * that's ok... we'll let the
+ * queue continue to grow up
+ * to the hard limit... at that
+ * point we'll wait for the
+ * lock... once we've got the
+ * lock, we'll transfer all of
+ * the pages from the local
+ * queue to the global active
+ * queue
*/
+ vm_page_reactivate_local(lid, FALSE, FALSE);
+ }
+ } else {
- if (no_cache && (!previously_pmapped || m->no_cache)) {
- m->no_cache = TRUE;
+ __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED();
+
+ /*
+ * test again now that we hold the
+ * page queue lock
+ */
+ if (!VM_PAGE_WIRED(m)) {
+ if (m->vm_page_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q) {
+ vm_page_queues_remove(m, FALSE);
+
+ vm_pageout_cleaned_reactivated++;
+ vm_pageout_cleaned_fault_reactivated++;
+ }
- if (m->active || m->inactive)
- VM_PAGE_QUEUES_REMOVE(m);
+ if ( !VM_PAGE_ACTIVE_OR_INACTIVE(m) ||
+ no_cache) {
+ /*
+ * If this is a no_cache mapping
+ * and the page has never been
+ * mapped before or was
+ * previously a no_cache page,
+ * then we want to leave pages
+ * in the speculative state so
+ * that they can be readily
+ * recycled if free memory runs
+ * low. Otherwise the page is
+ * activated as normal.
+ */
- if (!m->speculative)
- vm_page_speculate(m, TRUE);
+ if (no_cache &&
+ (!previously_pmapped ||
+ m->no_cache)) {
+ m->no_cache = TRUE;
- } else if (!m->active && !m->inactive)
- vm_page_activate(m);
+ if (m->vm_page_q_state != VM_PAGE_ON_SPECULATIVE_Q)
+ vm_page_speculate(m, FALSE);
+ } else if ( !VM_PAGE_ACTIVE_OR_INACTIVE(m)) {
+ vm_page_activate(m);
+ }
+ }
}
+ /* we keep the page queues lock, if we need it later */
+ }
+ }
+ }
+ /* we're done with the page queues lock, if we ever took it */
+ __VM_PAGE_UNLOCK_QUEUES_IF_NEEDED();
- vm_page_unlock_queues();
+
+ /* If we have a KERN_SUCCESS from the previous checks, we either have
+ * a good page, or a tainted page that has been accepted by the process.
+ * In both cases the page will be entered into the pmap.
+ * If the page is writeable, we need to disconnect it from other pmaps
+ * now so those processes can take note.
+ */
+ if (kr == KERN_SUCCESS) {
+ /*
+ * NOTE: we may only hold the vm_object lock SHARED
+ * at this point, so we need the phys_page lock to
+ * properly serialize updating the pmapped and
+ * xpmapped bits
+ */
+ if ((prot & VM_PROT_EXECUTE) && !m->xpmapped) {
+ ppnum_t phys_page = VM_PAGE_GET_PHYS_PAGE(m);
+
+ pmap_lock_phys_page(phys_page);
+ /*
+ * go ahead and take the opportunity
+ * to set 'pmapped' here so that we don't
+ * need to grab this lock a 2nd time
+ * just below
+ */
+ m->pmapped = TRUE;
+
+ if (!m->xpmapped) {
+
+ m->xpmapped = TRUE;
+
+ pmap_unlock_phys_page(phys_page);
+
+ if (!object->internal)
+ OSAddAtomic(1, &vm_page_xpmapped_external_count);
+
+ if (object->internal &&
+ object->pager != NULL) {
+ /*
+ * This page could have been
+ * uncompressed by the
+ * compressor pager and its
+ * contents might be only in
+ * the data cache.
+ * Since it's being mapped for
+ * "execute" for the fist time,
+ * make sure the icache is in
+ * sync.
+ */
+ assert(VM_CONFIG_COMPRESSOR_IS_PRESENT);
+ pmap_sync_page_data_phys(phys_page);
+ }
+ } else
+ pmap_unlock_phys_page(phys_page);
+ } else {
+ if (m->pmapped == FALSE) {
+ ppnum_t phys_page = VM_PAGE_GET_PHYS_PAGE(m);
+
+ pmap_lock_phys_page(phys_page);
+ m->pmapped = TRUE;
+ pmap_unlock_phys_page(phys_page);
+ }
+ }
+ if (vm_page_is_slideable(m)) {
+ boolean_t was_busy = m->busy;
+
+ vm_object_lock_assert_exclusive(object);
+
+ m->busy = TRUE;
+ kr = vm_page_slide(m, 0);
+ assert(m->busy);
+ if(!was_busy) {
+ PAGE_WAKEUP_DONE(m);
+ }
+ if (kr != KERN_SUCCESS) {
+ /*
+ * This page has not been slid correctly,
+ * do not do the pmap_enter() !
+ * Let vm_fault_enter() return the error
+ * so the caller can fail the fault.
+ */
+ goto after_the_pmap_enter;
+ }
+ }
+
+ if (fault_type & VM_PROT_WRITE) {
+
+ if (m->wpmapped == FALSE) {
+ vm_object_lock_assert_exclusive(object);
+ if (!object->internal && object->pager) {
+ task_update_logical_writes(current_task(), PAGE_SIZE, TASK_WRITE_DEFERRED, vnode_pager_lookup_vnode(object->pager));
+ }
+ m->wpmapped = TRUE;
+ }
+ if (must_disconnect) {
+ /*
+ * We can only get here
+ * because of the CSE logic
+ */
+ assert(cs_enforcement_enabled);
+ pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m));
+ /*
+ * If we are faulting for a write, we can clear
+ * the execute bit - that will ensure the page is
+ * checked again before being executable, which
+ * protects against a map switch.
+ * This only happens the first time the page
+ * gets tainted, so we won't get stuck here
+ * to make an already writeable page executable.
+ */
+ if (!cs_bypass){
+ prot &= ~VM_PROT_EXECUTE;
+ }
+ }
+ }
+ assert(VM_PAGE_OBJECT(m) == object);
+
+ /* Prevent a deadlock by not
+ * holding the object lock if we need to wait for a page in
+ * pmap_enter() - <rdar://problem/7138958> */
+ PMAP_ENTER_OPTIONS(pmap, vaddr, m, prot, fault_type, 0,
+ wired,
+ pmap_options | PMAP_OPTIONS_NOWAIT,
+ pe_result);
+
+ if(pe_result == KERN_RESOURCE_SHORTAGE) {
+
+ if (need_retry) {
+ /*
+ * this will be non-null in the case where we hold the lock
+ * on the top-object in this chain... we can't just drop
+ * the lock on the object we're inserting the page into
+ * and recall the PMAP_ENTER since we can still cause
+ * a deadlock if one of the critical paths tries to
+ * acquire the lock on the top-object and we're blocked
+ * in PMAP_ENTER waiting for memory... our only recourse
+ * is to deal with it at a higher level where we can
+ * drop both locks.
+ */
+ *need_retry = TRUE;
+ vm_pmap_enter_retried++;
+ goto after_the_pmap_enter;
+ }
+ /* The nonblocking version of pmap_enter did not succeed.
+ * and we don't need to drop other locks and retry
+ * at the level above us, so
+ * use the blocking version instead. Requires marking
+ * the page busy and unlocking the object */
+ boolean_t was_busy = m->busy;
+
+ vm_object_lock_assert_exclusive(object);
+
+ m->busy = TRUE;
+ vm_object_unlock(object);
+
+ PMAP_ENTER_OPTIONS(pmap, vaddr, m, prot, fault_type,
+ 0, wired,
+ pmap_options, pe_result);
+
+ assert(VM_PAGE_OBJECT(m) == object);
+
+ /* Take the object lock again. */
+ vm_object_lock(object);
+
+ /* If the page was busy, someone else will wake it up.
+ * Otherwise, we have to do it now. */
+ assert(m->busy);
+ if(!was_busy) {
+ PAGE_WAKEUP_DONE(m);
}
+ vm_pmap_enter_blocked++;
}
}
+
+after_the_pmap_enter:
return kr;
}
+void
+vm_pre_fault(vm_map_offset_t vaddr)
+{
+ if (pmap_find_phys(current_map()->pmap, vaddr) == 0) {
+
+ vm_fault(current_map(), /* map */
+ vaddr, /* vaddr */
+ VM_PROT_READ, /* fault_type */
+ FALSE, /* change_wiring */
+ THREAD_UNINT, /* interruptible */
+ NULL, /* caller_pmap */
+ 0 /* caller_pmap_addr */);
+ }
+}
+
/*
* Routine: vm_fault
*/
extern int _map_enter_debug;
+extern uint64_t get_current_unique_pid(void);
unsigned long vm_fault_collapse_total = 0;
unsigned long vm_fault_collapse_skipped = 0;
+
kern_return_t
vm_fault(
vm_map_t map,
int interruptible,
pmap_t caller_pmap,
vm_map_offset_t caller_pmap_addr)
+{
+ return vm_fault_internal(map, vaddr, fault_type, change_wiring,
+ interruptible, caller_pmap, caller_pmap_addr,
+ NULL);
+}
+
+
+kern_return_t
+vm_fault_internal(
+ vm_map_t map,
+ vm_map_offset_t vaddr,
+ vm_prot_t caller_prot,
+ boolean_t change_wiring,
+ int interruptible,
+ pmap_t caller_pmap,
+ vm_map_offset_t caller_pmap_addr,
+ ppnum_t *physpage_p)
{
vm_map_version_t version; /* Map version for verificiation */
boolean_t wired; /* Should mapping be wired down? */
vm_page_t m; /* Fast access to result_page */
kern_return_t error_code;
vm_object_t cur_object;
+ vm_object_t m_object = NULL;
vm_object_offset_t cur_offset;
vm_page_t cur_m;
vm_object_t new_object;
boolean_t interruptible_state;
vm_map_t real_map = map;
vm_map_t original_map = map;
+ vm_prot_t fault_type;
vm_prot_t original_fault_type;
struct vm_object_fault_info fault_info;
boolean_t need_collapse = FALSE;
+ boolean_t need_retry = FALSE;
+ boolean_t *need_retry_ptr = NULL;
int object_lock_type = 0;
int cur_object_lock_type;
+ vm_object_t top_object = VM_OBJECT_NULL;
+ int throttle_delay;
+ int compressed_count_delta;
+ int grab_options;
+ vm_map_offset_t trace_vaddr;
+ vm_map_offset_t trace_real_vaddr;
+#if DEVELOPMENT || DEBUG
+ vm_map_offset_t real_vaddr;
+
+ real_vaddr = vaddr;
+#endif /* DEVELOPMENT || DEBUG */
+ trace_real_vaddr = vaddr;
+ vaddr = vm_map_trunc_page(vaddr, PAGE_MASK);
+
+ if (map == kernel_map) {
+ trace_vaddr = VM_KERNEL_UNSLIDE_OR_PERM(vaddr);
+ trace_real_vaddr = VM_KERNEL_UNSLIDE_OR_PERM(trace_real_vaddr);
+ } else {
+ trace_vaddr = vaddr;
+ }
-
- KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_START,
- (int)((uint64_t)vaddr >> 32),
- (int)vaddr,
- 0,
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ (MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_START,
+ ((uint64_t)trace_vaddr >> 32),
+ trace_vaddr,
+ (map == kernel_map),
0,
0);
if (get_preemption_level() != 0) {
- KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_END,
- (int)((uint64_t)vaddr >> 32),
- (int)vaddr,
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ (MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_END,
+ ((uint64_t)trace_vaddr >> 32),
+ trace_vaddr,
KERN_FAILURE,
0,
0);
return (KERN_FAILURE);
}
+
interruptible_state = thread_interrupt_level(interruptible);
+ fault_type = (change_wiring ? VM_PROT_NONE : caller_prot);
+
VM_STAT_INCR(faults);
current_task()->faults++;
original_fault_type = fault_type;
&fault_info,
&real_map);
+
if (kr != KERN_SUCCESS) {
vm_map_unlock_read(map);
goto done;
}
pmap = real_map->pmap;
fault_info.interruptible = interruptible;
+ fault_info.stealth = FALSE;
+ fault_info.io_sync = FALSE;
+ fault_info.mark_zf_absent = FALSE;
+ fault_info.batch_pmap_op = FALSE;
/*
* If the page is wired, we must fault for the current protection
*/
if (wired) {
fault_type = prot | VM_PROT_WRITE;
-
/*
* since we're treating this fault as a 'write'
* we must hold the top object lock exclusively
cur_object = object;
cur_offset = offset;
+ grab_options = 0;
+#if CONFIG_SECLUDED_MEMORY
+ if (object->can_grab_secluded) {
+ grab_options |= VM_PAGE_GRAB_SECLUDED;
+ }
+#endif /* CONFIG_SECLUDED_MEMORY */
+
while (TRUE) {
+ if (!cur_object->pager_created &&
+ cur_object->phys_contiguous) /* superpage */
+ break;
+
+ if (cur_object->blocked_access) {
+ /*
+ * Access to this VM object has been blocked.
+ * Let the slow path handle it.
+ */
+ break;
+ }
+
m = vm_page_lookup(cur_object, cur_offset);
+ m_object = NULL;
if (m != VM_PAGE_NULL) {
+ m_object = cur_object;
+
if (m->busy) {
wait_result_t result;
* have object that 'm' belongs to locked exclusively
*/
if (object != cur_object) {
- vm_object_unlock(object);
if (cur_object_lock_type == OBJECT_LOCK_SHARED) {
if (vm_object_lock_upgrade(cur_object) == FALSE) {
/*
* couldn't upgrade so go do a full retry
- * immediately since we've already dropped
- * the top object lock associated with this page
- * and the current one got dropped due to the
- * failed upgrade... the state is no longer valid
+ * immediately since we can no longer be
+ * certain about cur_object (since we
+ * don't hold a reference on it)...
+ * first drop the top object lock
*/
+ vm_object_unlock(object);
+
vm_map_unlock_read(map);
if (real_map != map)
vm_map_unlock(real_map);
continue;
}
}
+ if ((m->vm_page_q_state == VM_PAGE_ON_PAGEOUT_Q) && m_object->internal) {
+ /*
+ * m->busy == TRUE and the object is locked exclusively
+ * if m->pageout_queue == TRUE after we acquire the
+ * queues lock, we are guaranteed that it is stable on
+ * the pageout queue and therefore reclaimable
+ *
+ * NOTE: this is only true for the internal pageout queue
+ * in the compressor world
+ */
+ assert(VM_CONFIG_COMPRESSOR_IS_PRESENT);
+
+ vm_page_lock_queues();
+
+ if (m->vm_page_q_state == VM_PAGE_ON_PAGEOUT_Q) {
+ vm_pageout_throttle_up(m);
+ vm_page_unlock_queues();
+
+ PAGE_WAKEUP_DONE(m);
+ goto reclaimed_from_pageout;
+ }
+ vm_page_unlock_queues();
+ }
+ if (object != cur_object)
+ vm_object_unlock(object);
+
vm_map_unlock_read(map);
if (real_map != map)
vm_map_unlock(real_map);
kr = KERN_ABORTED;
goto done;
}
- if (m->phys_page == vm_page_guard_addr) {
+reclaimed_from_pageout:
+ if (m->laundry) {
+ if (object != cur_object) {
+ if (cur_object_lock_type == OBJECT_LOCK_SHARED) {
+ cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE;
+
+ vm_object_unlock(object);
+ vm_object_unlock(cur_object);
+
+ vm_map_unlock_read(map);
+ if (real_map != map)
+ vm_map_unlock(real_map);
+
+ goto RetryFault;
+ }
+
+ } else if (object_lock_type == OBJECT_LOCK_SHARED) {
+
+ object_lock_type = OBJECT_LOCK_EXCLUSIVE;
+
+ if (vm_object_lock_upgrade(object) == FALSE) {
+ /*
+ * couldn't upgrade, so explictly take the lock
+ * exclusively and go relookup the page since we
+ * will have dropped the object lock and
+ * a different thread could have inserted
+ * a page at this offset
+ * no need for a full retry since we're
+ * at the top level of the object chain
+ */
+ vm_object_lock(object);
+
+ continue;
+ }
+ }
+ vm_pageout_steal_laundry(m, FALSE);
+ }
+
+ if (VM_PAGE_GET_PHYS_PAGE(m) == vm_page_guard_addr) {
/*
* Guard page: let the slow path deal with it
*/
*/
break;
}
+ if (VM_OBJECT_PURGEABLE_FAULT_ERROR(m_object)) {
+ if (object != cur_object)
+ vm_object_unlock(object);
+ vm_map_unlock_read(map);
+ if (real_map != map)
+ vm_map_unlock(real_map);
+ vm_object_unlock(cur_object);
+ kr = KERN_MEMORY_ERROR;
+ goto done;
+ }
+
if (m->encrypted) {
/*
* ENCRYPTED SWAP:
}
ASSERT_PAGE_DECRYPTED(m);
- if (m->object->code_signed && !m->cs_validated) {
+ if(vm_page_is_slideable(m)) {
+ /*
+ * We might need to slide this page, and so,
+ * we want to hold the VM object exclusively.
+ */
+ if (object != cur_object) {
+ if (cur_object_lock_type == OBJECT_LOCK_SHARED) {
+ vm_object_unlock(object);
+ vm_object_unlock(cur_object);
+
+ cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE;
+
+ vm_map_unlock_read(map);
+ if (real_map != map)
+ vm_map_unlock(real_map);
+
+ goto RetryFault;
+ }
+ } else if (object_lock_type == OBJECT_LOCK_SHARED) {
+
+ vm_object_unlock(object);
+ object_lock_type = OBJECT_LOCK_EXCLUSIVE;
+ vm_map_unlock_read(map);
+ goto RetryFault;
+ }
+ }
+ assert(m_object == VM_PAGE_OBJECT(m));
+
+ if (VM_FAULT_NEED_CS_VALIDATION(map->pmap, m, m_object) ||
+ (physpage_p != NULL && (prot & VM_PROT_WRITE))) {
+upgrade_for_validation:
/*
- * We will need to validate this page
+ * We might need to validate this page
* against its code signature, so we
* want to hold the VM object exclusively.
*/
* --> must disallow write.
*/
- if (object == cur_object && object->copy == VM_OBJECT_NULL)
+ if (object == cur_object && object->copy == VM_OBJECT_NULL) {
+
goto FastPmapEnter;
+ }
if ((fault_type & VM_PROT_WRITE) == 0) {
prot &= ~VM_PROT_WRITE;
- /*
- * Set up to map the page...
- * mark the page busy, drop
- * unneeded object lock
- */
if (object != cur_object) {
- /*
- * don't need the original object anymore
+ /*
+ * We still need to hold the top object
+ * lock here to prevent a race between
+ * a read fault (taking only "shared"
+ * locks) and a write fault (taking
+ * an "exclusive" lock on the top
+ * object.
+ * Otherwise, as soon as we release the
+ * top lock, the write fault could
+ * proceed and actually complete before
+ * the read fault, and the copied page's
+ * translation could then be overwritten
+ * by the read fault's translation for
+ * the original page.
+ *
+ * Let's just record what the top object
+ * is and we'll release it later.
*/
- vm_object_unlock(object);
+ top_object = object;
/*
* switch to the object that has the new page
object_lock_type = cur_object_lock_type;
}
FastPmapEnter:
+ assert(m_object == VM_PAGE_OBJECT(m));
+
/*
* prepare for the pmap_enter...
* object and map are both locked
* cur_object == NULL or it's been unlocked
* no paging references on either object or cur_object
*/
-#if MACH_KDB
- if (db_watchpoint_list && (fault_type & VM_PROT_WRITE) == 0)
- prot &= ~VM_PROT_WRITE;
-#endif
+ if (top_object != VM_OBJECT_NULL || object_lock_type != OBJECT_LOCK_EXCLUSIVE)
+ need_retry_ptr = &need_retry;
+ else
+ need_retry_ptr = NULL;
+
if (caller_pmap) {
kr = vm_fault_enter(m,
caller_pmap,
caller_pmap_addr,
prot,
+ caller_prot,
wired,
change_wiring,
fault_info.no_cache,
+ fault_info.cs_bypass,
+ fault_info.user_tag,
+ fault_info.pmap_options,
+ need_retry_ptr,
&type_of_fault);
} else {
kr = vm_fault_enter(m,
pmap,
vaddr,
prot,
+ caller_prot,
wired,
change_wiring,
fault_info.no_cache,
+ fault_info.cs_bypass,
+ fault_info.user_tag,
+ fault_info.pmap_options,
+ need_retry_ptr,
&type_of_fault);
}
+#if DEVELOPMENT || DEBUG
+ {
+ int event_code = 0;
+
+ if (m_object->internal)
+ event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_INTERNAL));
+ else if (m_object->object_slid)
+ event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_SHAREDCACHE));
+ else
+ event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_EXTERNAL));
+
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, event_code, trace_real_vaddr, (fault_info.user_tag << 16) | (caller_prot << 8) | type_of_fault, m->offset, get_current_unique_pid(), 0);
+
+ DTRACE_VM6(real_fault, vm_map_offset_t, real_vaddr, vm_map_offset_t, m->offset, int, event_code, int, caller_prot, int, type_of_fault, int, fault_info.user_tag);
+ }
+#endif
+ if (kr == KERN_SUCCESS &&
+ physpage_p != NULL) {
+ /* for vm_map_wire_and_extract() */
+ *physpage_p = VM_PAGE_GET_PHYS_PAGE(m);
+ if (prot & VM_PROT_WRITE) {
+ vm_object_lock_assert_exclusive(m_object);
+ m->dirty = TRUE;
+ }
+ }
+
+ if (top_object != VM_OBJECT_NULL) {
+ /*
+ * It's safe to drop the top object
+ * now that we've done our
+ * vm_fault_enter(). Any other fault
+ * in progress for that virtual
+ * address will either find our page
+ * and translation or put in a new page
+ * and translation.
+ */
+ vm_object_unlock(top_object);
+ top_object = VM_OBJECT_NULL;
+ }
if (need_collapse == TRUE)
vm_object_collapse(object, offset, TRUE);
-
- if (type_of_fault == DBG_PAGEIN_FAULT) {
+
+ if (need_retry == FALSE &&
+ (type_of_fault == DBG_PAGEIND_FAULT || type_of_fault == DBG_PAGEINV_FAULT || type_of_fault == DBG_CACHE_HIT_FAULT)) {
/*
* evaluate access pattern and update state
* vm_fault_deactivate_behind depends on the
if (real_map != map)
vm_map_unlock(real_map);
+ if (need_retry == TRUE) {
+ /*
+ * vm_fault_enter couldn't complete the PMAP_ENTER...
+ * at this point we don't hold any locks so it's safe
+ * to ask the pmap layer to expand the page table to
+ * accommodate this mapping... once expanded, we'll
+ * re-drive the fault which should result in vm_fault_enter
+ * being able to successfully enter the mapping this time around
+ */
+ (void)pmap_enter_options(
+ pmap, vaddr, 0, 0, 0, 0, 0,
+ PMAP_OPTIONS_NOENTER, NULL);
+
+ need_retry = FALSE;
+ goto RetryFault;
+ }
goto done;
}
/*
* COPY ON WRITE FAULT
- *
+ */
+ assert(object_lock_type == OBJECT_LOCK_EXCLUSIVE);
+
+ /*
* If objects match, then
* object->copy must not be NULL (else control
* would be in previous code block), and we
*/
break;
}
- assert(object_lock_type == OBJECT_LOCK_EXCLUSIVE);
-
+
/*
* This is now a shadow based copy on write
* fault -- it requires a copy up the shadow
* chain.
- *
+ */
+ assert(m_object == VM_PAGE_OBJECT(m));
+
+ if ((cur_object_lock_type == OBJECT_LOCK_SHARED) &&
+ VM_FAULT_NEED_CS_VALIDATION(NULL, m, m_object)) {
+ goto upgrade_for_validation;
+ }
+
+ /*
* Allocate a page in the original top level
* object. Give up if allocate fails. Also
* need to remember current page, as it's the
* the page has been copied and inserted
*/
cur_m = m;
- m = vm_page_grab();
+ m = vm_page_grab_options(grab_options);
+ m_object = NULL;
if (m == VM_PAGE_NULL) {
/*
*/
vm_page_copy(cur_m, m);
vm_page_insert(m, object, offset);
- m->dirty = TRUE;
+ m_object = object;
+ SET_PAGE_DIRTY(m, FALSE);
/*
* Now cope with the source page and object
*/
if (object->ref_count > 1 && cur_m->pmapped)
- pmap_disconnect(cur_m->phys_page);
-
+ pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(cur_m));
+
+ if (cur_m->clustered) {
+ VM_PAGE_COUNT_AS_PAGEIN(cur_m);
+ VM_PAGE_CONSUME_CLUSTERED(cur_m);
+ vm_fault_is_sequential(cur_object, cur_offset, fault_info.behavior);
+ }
need_collapse = TRUE;
if (!cur_object->internal &&
* No page at cur_object, cur_offset... m == NULL
*/
if (cur_object->pager_created) {
- if (MUST_ASK_PAGER(cur_object, cur_offset) == TRUE) {
+ int compressor_external_state = VM_EXTERNAL_STATE_UNKNOWN;
+
+ if (MUST_ASK_PAGER(cur_object, cur_offset, compressor_external_state) == TRUE) {
+ int my_fault_type;
+ int c_flags = C_DONT_BLOCK;
+ boolean_t insert_cur_object = FALSE;
+
/*
* May have to talk to a pager...
- * take the slow path.
+ * if so, take the slow path by
+ * doing a 'break' from the while (TRUE) loop
+ *
+ * external_state will only be set to VM_EXTERNAL_STATE_EXISTS
+ * if the compressor is active and the page exists there
*/
- break;
+ if (compressor_external_state != VM_EXTERNAL_STATE_EXISTS)
+ break;
+
+ if (map == kernel_map || real_map == kernel_map) {
+ /*
+ * can't call into the compressor with the kernel_map
+ * lock held, since the compressor may try to operate
+ * on the kernel map in order to return an empty c_segment
+ */
+ break;
+ }
+ if (object != cur_object) {
+ if (fault_type & VM_PROT_WRITE)
+ c_flags |= C_KEEP;
+ else
+ insert_cur_object = TRUE;
+ }
+ if (insert_cur_object == TRUE) {
+
+ if (cur_object_lock_type == OBJECT_LOCK_SHARED) {
+
+ cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE;
+
+ if (vm_object_lock_upgrade(cur_object) == FALSE) {
+ /*
+ * couldn't upgrade so go do a full retry
+ * immediately since we can no longer be
+ * certain about cur_object (since we
+ * don't hold a reference on it)...
+ * first drop the top object lock
+ */
+ vm_object_unlock(object);
+
+ vm_map_unlock_read(map);
+ if (real_map != map)
+ vm_map_unlock(real_map);
+
+ goto RetryFault;
+ }
+ }
+ } else if (object_lock_type == OBJECT_LOCK_SHARED) {
+
+ object_lock_type = OBJECT_LOCK_EXCLUSIVE;
+
+ if (object != cur_object) {
+ /*
+ * we can't go for the upgrade on the top
+ * lock since the upgrade may block waiting
+ * for readers to drain... since we hold
+ * cur_object locked at this point, waiting
+ * for the readers to drain would represent
+ * a lock order inversion since the lock order
+ * for objects is the reference order in the
+ * shadown chain
+ */
+ vm_object_unlock(object);
+ vm_object_unlock(cur_object);
+
+ vm_map_unlock_read(map);
+ if (real_map != map)
+ vm_map_unlock(real_map);
+
+ goto RetryFault;
+ }
+ if (vm_object_lock_upgrade(object) == FALSE) {
+ /*
+ * couldn't upgrade, so explictly take the lock
+ * exclusively and go relookup the page since we
+ * will have dropped the object lock and
+ * a different thread could have inserted
+ * a page at this offset
+ * no need for a full retry since we're
+ * at the top level of the object chain
+ */
+ vm_object_lock(object);
+
+ continue;
+ }
+ }
+ m = vm_page_grab_options(grab_options);
+ m_object = NULL;
+
+ if (m == VM_PAGE_NULL) {
+ /*
+ * no free page currently available...
+ * must take the slow path
+ */
+ break;
+ }
+
+ /*
+ * The object is and remains locked
+ * so no need to take a
+ * "paging_in_progress" reference.
+ */
+ boolean_t shared_lock;
+ if ((object == cur_object &&
+ object_lock_type == OBJECT_LOCK_EXCLUSIVE) ||
+ (object != cur_object &&
+ cur_object_lock_type == OBJECT_LOCK_EXCLUSIVE)) {
+ shared_lock = FALSE;
+ } else {
+ shared_lock = TRUE;
+ }
+
+ kr = vm_compressor_pager_get(
+ cur_object->pager,
+ (cur_offset +
+ cur_object->paging_offset),
+ VM_PAGE_GET_PHYS_PAGE(m),
+ &my_fault_type,
+ c_flags,
+ &compressed_count_delta);
+
+ vm_compressor_pager_count(
+ cur_object->pager,
+ compressed_count_delta,
+ shared_lock,
+ cur_object);
+
+ if (kr != KERN_SUCCESS) {
+ vm_page_release(m, FALSE);
+ m = VM_PAGE_NULL;
+ break;
+ }
+ m->dirty = TRUE;
+
+ /*
+ * If the object is purgeable, its
+ * owner's purgeable ledgers will be
+ * updated in vm_page_insert() but the
+ * page was also accounted for in a
+ * "compressed purgeable" ledger, so
+ * update that now.
+ */
+ if (object != cur_object &&
+ !insert_cur_object) {
+ /*
+ * We're not going to insert
+ * the decompressed page into
+ * the object it came from.
+ *
+ * We're dealing with a
+ * copy-on-write fault on
+ * "object".
+ * We're going to decompress
+ * the page directly into the
+ * target "object" while
+ * keepin the compressed
+ * page for "cur_object", so
+ * no ledger update in that
+ * case.
+ */
+ } else if ((cur_object->purgable ==
+ VM_PURGABLE_DENY) ||
+ (cur_object->vo_purgeable_owner ==
+ NULL)) {
+ /*
+ * "cur_object" is not purgeable
+ * or is not owned, so no
+ * purgeable ledgers to update.
+ */
+ } else {
+ /*
+ * One less compressed
+ * purgeable page for
+ * cur_object's owner.
+ */
+ vm_purgeable_compressed_update(
+ cur_object,
+ -1);
+ }
+
+ if (insert_cur_object) {
+ vm_page_insert(m, cur_object, cur_offset);
+ m_object = cur_object;
+ } else {
+ vm_page_insert(m, object, offset);
+ m_object = object;
+ }
+
+ if ((m_object->wimg_bits & VM_WIMG_MASK) != VM_WIMG_USE_DEFAULT) {
+ /*
+ * If the page is not cacheable,
+ * we can't let its contents
+ * linger in the data cache
+ * after the decompression.
+ */
+ pmap_sync_page_attributes_phys(VM_PAGE_GET_PHYS_PAGE(m));
+ }
+
+ type_of_fault = my_fault_type;
+
+ VM_STAT_INCR(decompressions);
+
+ if (cur_object != object) {
+ if (insert_cur_object) {
+ top_object = object;
+ /*
+ * switch to the object that has the new page
+ */
+ object = cur_object;
+ object_lock_type = cur_object_lock_type;
+ } else {
+ vm_object_unlock(cur_object);
+ cur_object = object;
+ }
+ }
+ goto FastPmapEnter;
}
/*
* existence map present and indicates
* Zero fill fault. Page gets
* inserted into the original object.
*/
- if (cur_object->shadow_severed) {
-
+ if (cur_object->shadow_severed ||
+ VM_OBJECT_PURGEABLE_FAULT_ERROR(cur_object) ||
+ cur_object == compressor_object ||
+ cur_object == kernel_object ||
+ cur_object == vm_submap_object) {
if (object != cur_object)
vm_object_unlock(cur_object);
vm_object_unlock(object);
kr = KERN_MEMORY_ERROR;
goto done;
}
- if (VM_PAGE_ZFILL_THROTTLED()) {
- /*
- * drop all of our locks...
- * wait until the free queue is
- * pumped back up and then
- * redrive the fault
- */
- if (object != cur_object)
- vm_object_unlock(cur_object);
- vm_object_unlock(object);
- vm_map_unlock_read(map);
- if (real_map != map)
- vm_map_unlock(real_map);
-
- if (vm_page_wait((change_wiring) ?
- THREAD_UNINT :
- THREAD_ABORTSAFE))
- goto RetryFault;
-
- kr = KERN_ABORTED;
- goto done;
- }
if (vm_backing_store_low) {
/*
* we are protecting the system from
}
}
m = vm_page_alloc(object, offset);
+ m_object = NULL;
if (m == VM_PAGE_NULL) {
/*
*/
break;
}
+ m_object = object;
/*
* Now zero fill page...
/*
* On to the next level in the shadow chain
*/
- cur_offset += cur_object->shadow_offset;
+ cur_offset += cur_object->vo_shadow_offset;
new_object = cur_object->shadow;
/*
if (real_map != map)
vm_map_unlock(real_map);
+ assert(object != compressor_object);
+ assert(object != kernel_object);
+ assert(object != vm_submap_object);
+
/*
* Make a reference to this object to
* prevent its disposal while we are messing with
error_code = 0;
+ result_page = VM_PAGE_NULL;
kr = vm_fault_page(object, offset, fault_type,
(change_wiring && !wired),
+ FALSE, /* page not looked up */
&prot, &result_page, &top_page,
&type_of_fault,
&error_code, map->no_zero_fill,
* if kr == VM_FAULT_SUCCESS, then the paging reference
* is still held along with the ref_count on the original object
*
- * if m != NULL, then the object it belongs to
- * is returned locked with a paging reference
+ * the object is returned locked with a paging reference
*
* if top_page != NULL, then it's BUSY and the
* object it belongs to has a paging reference
* but is returned unlocked
*/
- if (kr != VM_FAULT_SUCCESS) {
+ if (kr != VM_FAULT_SUCCESS &&
+ kr != VM_FAULT_SUCCESS_NO_VM_PAGE) {
/*
* we didn't succeed, lose the object reference immediately.
*/
else
kr = KERN_MEMORY_ERROR;
goto done;
+ default:
+ panic("vm_fault: unexpected error 0x%x from "
+ "vm_fault_page()\n", kr);
}
}
m = result_page;
+ m_object = NULL;
if (m != VM_PAGE_NULL) {
+ m_object = VM_PAGE_OBJECT(m);
assert((change_wiring && !wired) ?
- (top_page == VM_PAGE_NULL) :
- ((top_page == VM_PAGE_NULL) == (m->object == object)));
+ (top_page == VM_PAGE_NULL) :
+ ((top_page == VM_PAGE_NULL) == (m_object == object)));
}
/*
#define RELEASE_PAGE(m) \
MACRO_BEGIN \
PAGE_WAKEUP_DONE(m); \
- vm_page_lockspin_queues(); \
- if (!m->active && !m->inactive && !m->throttled)\
- vm_page_activate(m); \
- vm_page_unlock_queues(); \
+ if ( !VM_PAGE_PAGEABLE(m)) { \
+ vm_page_lockspin_queues(); \
+ if ( !VM_PAGE_PAGEABLE(m)) \
+ vm_page_activate(m); \
+ vm_page_unlock_queues(); \
+ } \
MACRO_END
/*
* since our last lookup.
*/
if (m != VM_PAGE_NULL) {
- old_copy_object = m->object->copy;
- vm_object_unlock(m->object);
- } else
+ old_copy_object = m_object->copy;
+ vm_object_unlock(m_object);
+ } else {
old_copy_object = VM_OBJECT_NULL;
+ vm_object_unlock(object);
+ }
/*
* no object locks are held at this point
vm_map_unlock_read(map);
if (m != VM_PAGE_NULL) {
+ assert(VM_PAGE_OBJECT(m) == m_object);
+
/*
* retake the lock so that
* we can drop the paging reference
* in vm_fault_cleanup and do the
* PAGE_WAKEUP_DONE in RELEASE_PAGE
*/
- vm_object_lock(m->object);
+ vm_object_lock(m_object);
RELEASE_PAGE(m);
- vm_fault_cleanup(m->object, top_page);
+ vm_fault_cleanup(m_object, top_page);
} else {
/*
* retake the lock so that
vm_map_unlock(real_map);
if (m != VM_PAGE_NULL) {
+ assert(VM_PAGE_OBJECT(m) == m_object);
+
/*
* retake the lock so that
* we can drop the paging reference
* in vm_fault_cleanup and do the
* PAGE_WAKEUP_DONE in RELEASE_PAGE
*/
- vm_object_lock(m->object);
+ vm_object_lock(m_object);
RELEASE_PAGE(m);
- vm_fault_cleanup(m->object, top_page);
+ vm_fault_cleanup(m_object, top_page);
} else {
/*
* retake the lock so that
prot &= retry_prot;
}
if (m != VM_PAGE_NULL) {
- vm_object_lock(m->object);
+ vm_object_lock(m_object);
- if (m->object->copy != old_copy_object) {
+ if (m_object->copy != old_copy_object) {
/*
* The copy object changed while the top-level object
* was unlocked, so take away write permission.
vm_map_unlock(real_map);
if (m != VM_PAGE_NULL) {
+ assert(VM_PAGE_OBJECT(m) == m_object);
+
RELEASE_PAGE(m);
- vm_fault_cleanup(m->object, top_page);
+ vm_fault_cleanup(m_object, top_page);
} else
vm_fault_cleanup(object, top_page);
caller_pmap,
caller_pmap_addr,
prot,
+ caller_prot,
wired,
change_wiring,
fault_info.no_cache,
+ fault_info.cs_bypass,
+ fault_info.user_tag,
+ fault_info.pmap_options,
+ NULL,
&type_of_fault);
} else {
kr = vm_fault_enter(m,
pmap,
vaddr,
prot,
+ caller_prot,
wired,
change_wiring,
fault_info.no_cache,
+ fault_info.cs_bypass,
+ fault_info.user_tag,
+ fault_info.pmap_options,
+ NULL,
&type_of_fault);
}
+ assert(VM_PAGE_OBJECT(m) == m_object);
+
+#if DEVELOPMENT || DEBUG
+ {
+ int event_code = 0;
+
+ if (m_object->internal)
+ event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_INTERNAL));
+ else if (m_object->object_slid)
+ event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_SHAREDCACHE));
+ else
+ event_code = (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_REAL_FAULT_ADDR_EXTERNAL));
+
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, event_code, trace_real_vaddr, (fault_info.user_tag << 16) | (caller_prot << 8) | type_of_fault, m->offset, get_current_unique_pid(), 0);
+
+ DTRACE_VM6(real_fault, vm_map_offset_t, real_vaddr, vm_map_offset_t, m->offset, int, event_code, int, caller_prot, int, type_of_fault, int, fault_info.user_tag);
+ }
+#endif
if (kr != KERN_SUCCESS) {
/* abort this page fault */
vm_map_verify_done(map, &version);
if (real_map != map)
vm_map_unlock(real_map);
PAGE_WAKEUP_DONE(m);
- vm_fault_cleanup(m->object, top_page);
+ vm_fault_cleanup(m_object, top_page);
vm_object_deallocate(object);
goto done;
}
+ if (physpage_p != NULL) {
+ /* for vm_map_wire_and_extract() */
+ *physpage_p = VM_PAGE_GET_PHYS_PAGE(m);
+ if (prot & VM_PROT_WRITE) {
+ vm_object_lock_assert_exclusive(m_object);
+ m->dirty = TRUE;
+ }
+ }
} else {
vm_map_entry_t entry;
/* to execute, we return with a protection failure. */
if ((fault_type & VM_PROT_EXECUTE) &&
- (!pmap_eligible_for_execute((ppnum_t)(object->shadow_offset >> 12)))) {
+ (!pmap_eligible_for_execute((ppnum_t)(object->vo_shadow_offset >> 12)))) {
vm_map_verify_done(map, &version);
hdelta = entry->vme_end - laddr;
if (entry->is_sub_map) {
- laddr = (laddr - entry->vme_start)
- + entry->offset;
- vm_map_lock_read(entry->object.sub_map);
+ laddr = ((laddr - entry->vme_start)
+ + VME_OFFSET(entry));
+ vm_map_lock_read(VME_SUBMAP(entry));
if (map != real_map)
vm_map_unlock_read(map);
if (entry->use_pmap) {
vm_map_unlock_read(real_map);
- real_map = entry->object.sub_map;
+ real_map = VME_SUBMAP(entry);
}
- map = entry->object.sub_map;
+ map = VME_SUBMAP(entry);
} else {
break;
}
if (vm_map_lookup_entry(map, laddr, &entry) &&
- (entry->object.vm_object != NULL) &&
- (entry->object.vm_object == object)) {
+ (VME_OBJECT(entry) != NULL) &&
+ (VME_OBJECT(entry) == object)) {
+ int superpage;
+
+ if (!object->pager_created &&
+ object->phys_contiguous &&
+ VME_OFFSET(entry) == 0 &&
+ (entry->vme_end - entry->vme_start == object->vo_size) &&
+ VM_MAP_PAGE_ALIGNED(entry->vme_start, (object->vo_size-1))) {
+ superpage = VM_MEM_SUPERPAGE;
+ } else {
+ superpage = 0;
+ }
+
+ if (superpage && physpage_p) {
+ /* for vm_map_wire_and_extract() */
+ *physpage_p = (ppnum_t)
+ ((((vm_map_offset_t)
+ object->vo_shadow_offset)
+ + VME_OFFSET(entry)
+ + (laddr - entry->vme_start))
+ >> PAGE_SHIFT);
+ }
if (caller_pmap) {
/*
* Set up a block mapped area
*/
+ assert((uint32_t)((ldelta + hdelta) >> PAGE_SHIFT) == ((ldelta + hdelta) >> PAGE_SHIFT));
pmap_map_block(caller_pmap,
(addr64_t)(caller_pmap_addr - ldelta),
- (((vm_map_offset_t) (entry->object.vm_object->shadow_offset)) +
- entry->offset + (laddr - entry->vme_start) - ldelta) >> 12,
- ((ldelta + hdelta) >> 12), prot,
- (VM_WIMG_MASK & (int)object->wimg_bits), 0);
+ (ppnum_t)((((vm_map_offset_t) (VME_OBJECT(entry)->vo_shadow_offset)) +
+ VME_OFFSET(entry) + (laddr - entry->vme_start) - ldelta) >> PAGE_SHIFT),
+ (uint32_t)((ldelta + hdelta) >> PAGE_SHIFT), prot,
+ (VM_WIMG_MASK & (int)object->wimg_bits) | superpage, 0);
} else {
/*
* Set up a block mapped area
*/
+ assert((uint32_t)((ldelta + hdelta) >> PAGE_SHIFT) == ((ldelta + hdelta) >> PAGE_SHIFT));
pmap_map_block(real_map->pmap,
(addr64_t)(vaddr - ldelta),
- (((vm_map_offset_t)(entry->object.vm_object->shadow_offset)) +
- entry->offset + (laddr - entry->vme_start) - ldelta) >> 12,
- ((ldelta + hdelta) >> 12), prot,
- (VM_WIMG_MASK & (int)object->wimg_bits), 0);
+ (ppnum_t)((((vm_map_offset_t)(VME_OBJECT(entry)->vo_shadow_offset)) +
+ VME_OFFSET(entry) + (laddr - entry->vme_start) - ldelta) >> PAGE_SHIFT),
+ (uint32_t)((ldelta + hdelta) >> PAGE_SHIFT), prot,
+ (VM_WIMG_MASK & (int)object->wimg_bits) | superpage, 0);
}
}
}
vm_map_unlock(real_map);
if (m != VM_PAGE_NULL) {
+ assert(VM_PAGE_OBJECT(m) == m_object);
+
PAGE_WAKEUP_DONE(m);
- vm_fault_cleanup(m->object, top_page);
+ vm_fault_cleanup(m_object, top_page);
} else
vm_fault_cleanup(object, top_page);
done:
thread_interrupt_level(interruptible_state);
- KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_END,
- (int)((uint64_t)vaddr >> 32),
- (int)vaddr,
+ /*
+ * Only I/O throttle on faults which cause a pagein/swapin.
+ */
+ if ((type_of_fault == DBG_PAGEIND_FAULT) || (type_of_fault == DBG_PAGEINV_FAULT) || (type_of_fault == DBG_COMPRESSOR_SWAPIN_FAULT)) {
+ throttle_lowpri_io(1);
+ } else {
+ if (kr == KERN_SUCCESS && type_of_fault != DBG_CACHE_HIT_FAULT && type_of_fault != DBG_GUARD_FAULT) {
+
+ if ((throttle_delay = vm_page_throttled(TRUE))) {
+
+ if (vm_debug_events) {
+ if (type_of_fault == DBG_COMPRESSOR_FAULT)
+ VM_DEBUG_EVENT(vmf_compressordelay, VMF_COMPRESSORDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0);
+ else if (type_of_fault == DBG_COW_FAULT)
+ VM_DEBUG_EVENT(vmf_cowdelay, VMF_COWDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0);
+ else
+ VM_DEBUG_EVENT(vmf_zfdelay, VMF_ZFDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0);
+ }
+ delay(throttle_delay);
+ }
+ }
+ }
+ KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
+ (MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_END,
+ ((uint64_t)trace_vaddr >> 32),
+ trace_vaddr,
kr,
type_of_fault,
0);
vm_fault_wire(
vm_map_t map,
vm_map_entry_t entry,
+ vm_prot_t prot,
pmap_t pmap,
- vm_map_offset_t pmap_addr)
+ vm_map_offset_t pmap_addr,
+ ppnum_t *physpage_p)
{
-
- register vm_map_offset_t va;
- register vm_map_offset_t end_addr = entry->vme_end;
- register kern_return_t rc;
+ vm_map_offset_t va;
+ vm_map_offset_t end_addr = entry->vme_end;
+ kern_return_t rc;
assert(entry->in_transition);
- if ((entry->object.vm_object != NULL) &&
- !entry->is_sub_map &&
- entry->object.vm_object->phys_contiguous) {
+ if ((VME_OBJECT(entry) != NULL) &&
+ !entry->is_sub_map &&
+ VME_OBJECT(entry)->phys_contiguous) {
return KERN_SUCCESS;
}
*/
for (va = entry->vme_start; va < end_addr; va += PAGE_SIZE) {
- if ((rc = vm_fault_wire_fast(
- map, va, entry, pmap,
- pmap_addr + (va - entry->vme_start)
- )) != KERN_SUCCESS) {
- rc = vm_fault(map, va, VM_PROT_NONE, TRUE,
- (pmap == kernel_pmap) ?
- THREAD_UNINT : THREAD_ABORTSAFE,
- pmap, pmap_addr + (va - entry->vme_start));
+ rc = vm_fault_wire_fast(map, va, prot, entry, pmap,
+ pmap_addr + (va - entry->vme_start),
+ physpage_p);
+ if (rc != KERN_SUCCESS) {
+ rc = vm_fault_internal(map, va, prot, TRUE,
+ ((pmap == kernel_pmap)
+ ? THREAD_UNINT
+ : THREAD_ABORTSAFE),
+ pmap,
+ (pmap_addr +
+ (va - entry->vme_start)),
+ physpage_p);
DTRACE_VM2(softlock, int, 1, (uint64_t *), NULL);
}
pmap_t pmap,
vm_map_offset_t pmap_addr)
{
- register vm_map_offset_t va;
- register vm_map_offset_t end_addr = entry->vme_end;
+ vm_map_offset_t va;
+ vm_map_offset_t end_addr = entry->vme_end;
vm_object_t object;
struct vm_object_fault_info fault_info;
- object = (entry->is_sub_map)
- ? VM_OBJECT_NULL : entry->object.vm_object;
+ object = (entry->is_sub_map) ? VM_OBJECT_NULL : VME_OBJECT(entry);
/*
* If it's marked phys_contiguous, then vm_fault_wire() didn't actually
fault_info.interruptible = THREAD_UNINT;
fault_info.behavior = entry->behavior;
- fault_info.user_tag = entry->alias;
- fault_info.lo_offset = entry->offset;
- fault_info.hi_offset = (entry->vme_end - entry->vme_start) + entry->offset;
+ fault_info.user_tag = VME_ALIAS(entry);
+ fault_info.pmap_options = 0;
+ if (entry->iokit_acct ||
+ (!entry->is_sub_map && !entry->use_pmap)) {
+ fault_info.pmap_options |= PMAP_OPTIONS_ALT_ACCT;
+ }
+ fault_info.lo_offset = VME_OFFSET(entry);
+ fault_info.hi_offset = (entry->vme_end - entry->vme_start) + VME_OFFSET(entry);
fault_info.no_cache = entry->no_cache;
+ fault_info.stealth = TRUE;
+ fault_info.io_sync = FALSE;
+ fault_info.cs_bypass = FALSE;
+ fault_info.mark_zf_absent = FALSE;
+ fault_info.batch_pmap_op = FALSE;
/*
* Since the pages are wired down, we must be able to
for (va = entry->vme_start; va < end_addr; va += PAGE_SIZE) {
- if (pmap) {
- pmap_change_wiring(pmap,
- pmap_addr + (va - entry->vme_start), FALSE);
- }
if (object == VM_OBJECT_NULL) {
+ if (pmap) {
+ pmap_change_wiring(pmap,
+ pmap_addr + (va - entry->vme_start), FALSE);
+ }
(void) vm_fault(map, va, VM_PROT_NONE,
TRUE, THREAD_UNINT, pmap, pmap_addr);
} else {
vm_object_t result_object;
vm_fault_return_t result;
- fault_info.cluster_size = end_addr - va;
+ if (end_addr - va > (vm_size_t) -1) {
+ /* 32-bit overflow */
+ fault_info.cluster_size = (vm_size_t) (0 - PAGE_SIZE);
+ } else {
+ fault_info.cluster_size = (vm_size_t) (end_addr - va);
+ assert(fault_info.cluster_size == end_addr - va);
+ }
do {
prot = VM_PROT_NONE;
XPR(XPR_VM_FAULT,
"vm_fault_unwire -> vm_fault_page\n",
0,0,0,0,0);
+ result_page = VM_PAGE_NULL;
result = vm_fault_page(
object,
- entry->offset + (va - entry->vme_start),
+ (VME_OFFSET(entry) +
+ (va - entry->vme_start)),
VM_PROT_NONE, TRUE,
+ FALSE, /* page not looked up */
&prot, &result_page, &top_page,
(int *)0,
NULL, map->no_zero_fill,
if (result == VM_FAULT_MEMORY_ERROR && !object->alive)
continue;
+ if (result == VM_FAULT_MEMORY_ERROR &&
+ object == kernel_object) {
+ /*
+ * This must have been allocated with
+ * KMA_KOBJECT and KMA_VAONLY and there's
+ * no physical page at this offset.
+ * We're done (no page to free).
+ */
+ assert(deallocate);
+ continue;
+ }
+
if (result != VM_FAULT_SUCCESS)
panic("vm_fault_unwire: failure");
- result_object = result_page->object;
+ result_object = VM_PAGE_OBJECT(result_page);
if (deallocate) {
- assert(result_page->phys_page !=
+ assert(VM_PAGE_GET_PHYS_PAGE(result_page) !=
vm_page_fictitious_addr);
- pmap_disconnect(result_page->phys_page);
+ pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(result_page));
VM_PAGE_FREE(result_page);
} else {
- vm_page_lockspin_queues();
- vm_page_unwire(result_page);
- vm_page_unlock_queues();
+ if ((pmap) && (VM_PAGE_GET_PHYS_PAGE(result_page) != vm_page_guard_addr))
+ pmap_change_wiring(pmap,
+ pmap_addr + (va - entry->vme_start), FALSE);
+
+
+ if (VM_PAGE_WIRED(result_page)) {
+ vm_page_lockspin_queues();
+ vm_page_unwire(result_page, TRUE);
+ vm_page_unlock_queues();
+ }
+ if(entry->zero_wired_pages) {
+ pmap_zero_page(VM_PAGE_GET_PHYS_PAGE(result_page));
+ entry->zero_wired_pages = FALSE;
+ }
+
PAGE_WAKEUP_DONE(result_page);
}
vm_fault_cleanup(result_object, top_page);
* other than the common case will return KERN_FAILURE, and the caller
* is expected to call vm_fault().
*/
-kern_return_t
+static kern_return_t
vm_fault_wire_fast(
__unused vm_map_t map,
vm_map_offset_t va,
+ vm_prot_t caller_prot,
vm_map_entry_t entry,
- pmap_t pmap,
- vm_map_offset_t pmap_addr)
+ pmap_t pmap,
+ vm_map_offset_t pmap_addr,
+ ppnum_t *physpage_p)
{
vm_object_t object;
vm_object_offset_t offset;
- register vm_page_t m;
+ vm_page_t m;
vm_prot_t prot;
thread_t thread = current_thread();
int type_of_fault;
#define RELEASE_PAGE(m) { \
PAGE_WAKEUP_DONE(m); \
vm_page_lockspin_queues(); \
- vm_page_unwire(m); \
+ vm_page_unwire(m, TRUE); \
vm_page_unlock_queues(); \
}
/*
* If this entry is not directly to a vm_object, bail out.
*/
- if (entry->is_sub_map)
+ if (entry->is_sub_map) {
+ assert(physpage_p == NULL);
return(KERN_FAILURE);
+ }
/*
* Find the backing store object and offset into it.
*/
- object = entry->object.vm_object;
- offset = (va - entry->vme_start) + entry->offset;
+ object = VME_OBJECT(entry);
+ offset = (va - entry->vme_start) + VME_OFFSET(entry);
prot = entry->protection;
/*
ASSERT_PAGE_DECRYPTED(m);
if (m->fictitious &&
- m->phys_page == vm_page_guard_addr) {
+ VM_PAGE_GET_PHYS_PAGE(m) == vm_page_guard_addr) {
/*
* Guard pages are fictitious pages and are never
* entered into a pmap, so let's say it's been wired...
*/
vm_page_lockspin_queues();
- vm_page_wire(m);
+ vm_page_wire(m, VM_PROT_MEMORY_TAG(caller_prot), TRUE);
vm_page_unlock_queues();
/*
pmap,
pmap_addr,
prot,
+ prot,
TRUE,
FALSE,
FALSE,
+ FALSE,
+ VME_ALIAS(entry),
+ ((entry->iokit_acct ||
+ (!entry->is_sub_map && !entry->use_pmap))
+ ? PMAP_OPTIONS_ALT_ACCT
+ : 0),
+ NULL,
&type_of_fault);
+ if (kr != KERN_SUCCESS) {
+ RELEASE_PAGE(m);
+ GIVE_UP;
+ }
done:
/*
* Unlock everything, and return
*/
+ if (physpage_p) {
+ /* for vm_map_wire_and_extract() */
+ if (kr == KERN_SUCCESS) {
+ assert(object == VM_PAGE_OBJECT(m));
+ *physpage_p = VM_PAGE_GET_PHYS_PAGE(m);
+ if (prot & VM_PROT_WRITE) {
+ vm_object_lock_assert_exclusive(object);
+ m->dirty = TRUE;
+ }
+ } else {
+ *physpage_p = 0;
+ }
+ }
+
PAGE_WAKEUP_DONE(m);
UNLOCK_AND_DEALLOCATE;
* Release a page used by vm_fault_copy.
*/
-void
+static void
vm_fault_copy_cleanup(
vm_page_t page,
vm_page_t top_page)
{
- vm_object_t object = page->object;
+ vm_object_t object = VM_PAGE_OBJECT(page);
vm_object_lock(object);
PAGE_WAKEUP_DONE(page);
- vm_page_lockspin_queues();
- if (!page->active && !page->inactive && !page->throttled)
- vm_page_activate(page);
- vm_page_unlock_queues();
+ if ( !VM_PAGE_PAGEABLE(page)) {
+ vm_page_lockspin_queues();
+ if ( !VM_PAGE_PAGEABLE(page)) {
+ vm_page_activate(page);
+ }
+ vm_page_unlock_queues();
+ }
vm_fault_cleanup(object, top_page);
}
-void
+static void
vm_fault_copy_dst_cleanup(
vm_page_t page)
{
vm_object_t object;
if (page != VM_PAGE_NULL) {
- object = page->object;
+ object = VM_PAGE_OBJECT(page);
vm_object_lock(object);
vm_page_lockspin_queues();
- vm_page_unwire(page);
+ vm_page_unwire(page, TRUE);
vm_page_unlock_queues();
vm_object_paging_end(object);
vm_object_unlock(object);
vm_map_size_t amount_left;
vm_object_t old_copy_object;
+ vm_object_t result_page_object = NULL;
kern_return_t error = 0;
+ vm_fault_return_t result;
vm_map_size_t part_size;
struct vm_object_fault_info fault_info_src;
fault_info_src.interruptible = interruptible;
fault_info_src.behavior = VM_BEHAVIOR_SEQUENTIAL;
fault_info_src.user_tag = 0;
+ fault_info_src.pmap_options = 0;
fault_info_src.lo_offset = vm_object_trunc_page(src_offset);
fault_info_src.hi_offset = fault_info_src.lo_offset + amount_left;
fault_info_src.no_cache = FALSE;
+ fault_info_src.stealth = TRUE;
+ fault_info_src.io_sync = FALSE;
+ fault_info_src.cs_bypass = FALSE;
+ fault_info_src.mark_zf_absent = FALSE;
+ fault_info_src.batch_pmap_op = FALSE;
fault_info_dst.interruptible = interruptible;
fault_info_dst.behavior = VM_BEHAVIOR_SEQUENTIAL;
fault_info_dst.user_tag = 0;
+ fault_info_dst.pmap_options = 0;
fault_info_dst.lo_offset = vm_object_trunc_page(dst_offset);
fault_info_dst.hi_offset = fault_info_dst.lo_offset + amount_left;
fault_info_dst.no_cache = FALSE;
+ fault_info_dst.stealth = TRUE;
+ fault_info_dst.io_sync = FALSE;
+ fault_info_dst.cs_bypass = FALSE;
+ fault_info_dst.mark_zf_absent = FALSE;
+ fault_info_dst.batch_pmap_op = FALSE;
do { /* while (amount_left > 0) */
/*
vm_object_lock(dst_object);
vm_object_paging_begin(dst_object);
- fault_info_dst.cluster_size = amount_left;
+ if (amount_left > (vm_size_t) -1) {
+ /* 32-bit overflow */
+ fault_info_dst.cluster_size = (vm_size_t) (0 - PAGE_SIZE);
+ } else {
+ fault_info_dst.cluster_size = (vm_size_t) amount_left;
+ assert(fault_info_dst.cluster_size == amount_left);
+ }
XPR(XPR_VM_FAULT,"vm_fault_copy -> vm_fault_page\n",0,0,0,0,0);
- switch (vm_fault_page(dst_object,
- vm_object_trunc_page(dst_offset),
- VM_PROT_WRITE|VM_PROT_READ,
- FALSE,
- &dst_prot, &dst_page, &dst_top_page,
- (int *)0,
- &error,
- dst_map->no_zero_fill,
- FALSE, &fault_info_dst)) {
+ dst_page = VM_PAGE_NULL;
+ result = vm_fault_page(dst_object,
+ vm_object_trunc_page(dst_offset),
+ VM_PROT_WRITE|VM_PROT_READ,
+ FALSE,
+ FALSE, /* page not looked up */
+ &dst_prot, &dst_page, &dst_top_page,
+ (int *)0,
+ &error,
+ dst_map->no_zero_fill,
+ FALSE, &fault_info_dst);
+ switch (result) {
case VM_FAULT_SUCCESS:
break;
case VM_FAULT_RETRY:
/* fall thru */
case VM_FAULT_INTERRUPTED:
RETURN(MACH_SEND_INTERRUPTED);
+ case VM_FAULT_SUCCESS_NO_VM_PAGE:
+ /* success but no VM page: fail the copy */
+ vm_object_paging_end(dst_object);
+ vm_object_unlock(dst_object);
+ /*FALLTHROUGH*/
case VM_FAULT_MEMORY_ERROR:
if (error)
return (error);
else
return(KERN_MEMORY_ERROR);
+ default:
+ panic("vm_fault_copy: unexpected error 0x%x from "
+ "vm_fault_page()\n", result);
}
assert ((dst_prot & VM_PROT_WRITE) != VM_PROT_NONE);
- old_copy_object = dst_page->object->copy;
+ assert(dst_object == VM_PAGE_OBJECT(dst_page));
+ old_copy_object = dst_object->copy;
/*
* There exists the possiblity that the source and
*/
vm_page_lockspin_queues();
- vm_page_wire(dst_page);
+ vm_page_wire(dst_page, VM_KERN_MEMORY_OSFMK, TRUE);
vm_page_unlock_queues();
PAGE_WAKEUP_DONE(dst_page);
- vm_object_unlock(dst_page->object);
+ vm_object_unlock(dst_object);
if (dst_top_page != VM_PAGE_NULL) {
vm_object_lock(dst_object);
src_prot = VM_PROT_READ;
vm_object_paging_begin(src_object);
- fault_info_src.cluster_size = amount_left;
+ if (amount_left > (vm_size_t) -1) {
+ /* 32-bit overflow */
+ fault_info_src.cluster_size = (vm_size_t) (0 - PAGE_SIZE);
+ } else {
+ fault_info_src.cluster_size = (vm_size_t) amount_left;
+ assert(fault_info_src.cluster_size == amount_left);
+ }
XPR(XPR_VM_FAULT,
"vm_fault_copy(2) -> vm_fault_page\n",
0,0,0,0,0);
- switch (vm_fault_page(
- src_object,
- vm_object_trunc_page(src_offset),
- VM_PROT_READ, FALSE,
- &src_prot,
- &result_page, &src_top_page,
- (int *)0, &error, FALSE,
- FALSE, &fault_info_src)) {
-
+ result_page = VM_PAGE_NULL;
+ result = vm_fault_page(
+ src_object,
+ vm_object_trunc_page(src_offset),
+ VM_PROT_READ, FALSE,
+ FALSE, /* page not looked up */
+ &src_prot,
+ &result_page, &src_top_page,
+ (int *)0, &error, FALSE,
+ FALSE, &fault_info_src);
+
+ switch (result) {
case VM_FAULT_SUCCESS:
break;
case VM_FAULT_RETRY:
case VM_FAULT_INTERRUPTED:
vm_fault_copy_dst_cleanup(dst_page);
RETURN(MACH_SEND_INTERRUPTED);
+ case VM_FAULT_SUCCESS_NO_VM_PAGE:
+ /* success but no VM page: fail */
+ vm_object_paging_end(src_object);
+ vm_object_unlock(src_object);
+ /*FALLTHROUGH*/
case VM_FAULT_MEMORY_ERROR:
vm_fault_copy_dst_cleanup(dst_page);
if (error)
return (error);
else
return(KERN_MEMORY_ERROR);
+ default:
+ panic("vm_fault_copy(2): unexpected "
+ "error 0x%x from "
+ "vm_fault_page()\n", result);
}
-
+ result_page_object = VM_PAGE_OBJECT(result_page);
assert((src_top_page == VM_PAGE_NULL) ==
- (result_page->object == src_object));
+ (result_page_object == src_object));
}
assert ((src_prot & VM_PROT_READ) != VM_PROT_NONE);
- vm_object_unlock(result_page->object);
+ vm_object_unlock(result_page_object);
}
if (!vm_map_verify(dst_map, dst_version)) {
vm_fault_copy_dst_cleanup(dst_page);
break;
}
+ assert(dst_object == VM_PAGE_OBJECT(dst_page));
- vm_object_lock(dst_page->object);
+ vm_object_lock(dst_object);
- if (dst_page->object->copy != old_copy_object) {
- vm_object_unlock(dst_page->object);
+ if (dst_object->copy != old_copy_object) {
+ vm_object_unlock(dst_object);
vm_map_verify_done(dst_map, dst_version);
if (result_page != VM_PAGE_NULL && src_page != dst_page)
vm_fault_copy_cleanup(result_page, src_top_page);
vm_fault_copy_dst_cleanup(dst_page);
break;
}
- vm_object_unlock(dst_page->object);
+ vm_object_unlock(dst_object);
/*
* Copy the page, and note that it is dirty
}
if (result_page == VM_PAGE_NULL) {
+ assert((vm_offset_t) dst_po == dst_po);
+ assert((vm_size_t) part_size == part_size);
vm_page_part_zero_fill(dst_page,
- dst_po, part_size);
+ (vm_offset_t) dst_po,
+ (vm_size_t) part_size);
} else {
- vm_page_part_copy(result_page, src_po,
- dst_page, dst_po, part_size);
+ assert((vm_offset_t) src_po == src_po);
+ assert((vm_offset_t) dst_po == dst_po);
+ assert((vm_size_t) part_size == part_size);
+ vm_page_part_copy(result_page,
+ (vm_offset_t) src_po,
+ dst_page,
+ (vm_offset_t) dst_po,
+ (vm_size_t)part_size);
if(!dst_page->dirty){
vm_object_lock(dst_object);
- dst_page->dirty = TRUE;
- vm_object_unlock(dst_page->object);
+ SET_PAGE_DIRTY(dst_page, TRUE);
+ vm_object_unlock(dst_object);
}
}
if (result_page == VM_PAGE_NULL)
vm_page_zero_fill(dst_page);
else{
+ vm_object_lock(result_page_object);
vm_page_copy(result_page, dst_page);
+ vm_object_unlock(result_page_object);
+
if(!dst_page->dirty){
vm_object_lock(dst_object);
- dst_page->dirty = TRUE;
- vm_object_unlock(dst_page->object);
+ SET_PAGE_DIRTY(dst_page, TRUE);
+ vm_object_unlock(dst_object);
}
}
break;
}
- offset += object->shadow_offset;
+ offset += object->vo_shadow_offset;
object = object->shadow;
level++;
continue;
}
#endif /* VM_FAULT_CLASSIFY */
+vm_offset_t
+kdp_lightweight_fault(vm_map_t map, vm_offset_t cur_target_addr)
+{
+ vm_map_entry_t entry;
+ vm_object_t object;
+ vm_offset_t object_offset;
+ vm_page_t m;
+ int compressor_external_state, compressed_count_delta;
+ int compressor_flags = (C_DONT_BLOCK | C_KEEP | C_KDP);
+ int my_fault_type = VM_PROT_READ;
+ kern_return_t kr;
+
+ if (not_in_kdp) {
+ panic("kdp_lightweight_fault called from outside of debugger context");
+ }
+
+ assert(map != VM_MAP_NULL);
+
+ assert((cur_target_addr & PAGE_MASK) == 0);
+ if ((cur_target_addr & PAGE_MASK) != 0) {
+ return 0;
+ }
+
+ if (kdp_lck_rw_lock_is_acquired_exclusive(&map->lock)) {
+ return 0;
+ }
+
+ if (!vm_map_lookup_entry(map, cur_target_addr, &entry)) {
+ return 0;
+ }
+
+ if (entry->is_sub_map) {
+ return 0;
+ }
+
+ object = VME_OBJECT(entry);
+ if (object == VM_OBJECT_NULL) {
+ return 0;
+ }
+
+ object_offset = cur_target_addr - entry->vme_start + VME_OFFSET(entry);
+
+ while (TRUE) {
+ if (kdp_lck_rw_lock_is_acquired_exclusive(&object->Lock)) {
+ return 0;
+ }
+
+ if (object->pager_created && (object->paging_in_progress ||
+ object->activity_in_progress)) {
+ return 0;
+ }
+
+ m = kdp_vm_page_lookup(object, object_offset);
+
+ if (m != VM_PAGE_NULL) {
+
+ if ((object->wimg_bits & VM_WIMG_MASK) != VM_WIMG_DEFAULT) {
+ return 0;
+ }
+
+ if (m->laundry || m->busy || m->free_when_done || m->absent || m->error || m->cleaning ||
+ m->overwriting || m->restart || m->unusual) {
+ return 0;
+ }
+
+ assert(!m->private);
+ if (m->private) {
+ return 0;
+ }
+
+ assert(!m->fictitious);
+ if (m->fictitious) {
+ return 0;
+ }
+
+ assert(!m->encrypted);
+ if (m->encrypted) {
+ return 0;
+ }
+
+ assert(!m->encrypted_cleaning);
+ if (m->encrypted_cleaning) {
+ return 0;
+ }
+
+ assert(m->vm_page_q_state != VM_PAGE_USED_BY_COMPRESSOR);
+ if (m->vm_page_q_state == VM_PAGE_USED_BY_COMPRESSOR) {
+ return 0;
+ }
+
+ return ptoa(VM_PAGE_GET_PHYS_PAGE(m));
+ }
+
+ compressor_external_state = VM_EXTERNAL_STATE_UNKNOWN;
+
+ if (object->pager_created && MUST_ASK_PAGER(object, object_offset, compressor_external_state)) {
+ if (compressor_external_state == VM_EXTERNAL_STATE_EXISTS) {
+ kr = vm_compressor_pager_get(object->pager, (object_offset + object->paging_offset),
+ kdp_compressor_decompressed_page_ppnum, &my_fault_type,
+ compressor_flags, &compressed_count_delta);
+ if (kr == KERN_SUCCESS) {
+ return kdp_compressor_decompressed_page_paddr;
+ } else {
+ return 0;
+ }
+ }
+ }
+
+ if (object->shadow == VM_OBJECT_NULL) {
+ return 0;
+ }
+
+ object_offset += object->vo_shadow_offset;
+ object = object->shadow;
+ }
+
+}
+
+void
+vm_page_validate_cs_mapped(
+ vm_page_t page,
+ const void *kaddr)
+{
+ vm_object_t object;
+ vm_object_offset_t offset;
+ memory_object_t pager;
+ struct vnode *vnode;
+ boolean_t validated;
+ unsigned tainted;
+
+ assert(page->busy);
+ object = VM_PAGE_OBJECT(page);
+ vm_object_lock_assert_exclusive(object);
+
+ if (page->wpmapped && !page->cs_tainted) {
+ /*
+ * This page was mapped for "write" access sometime in the
+ * past and could still be modifiable in the future.
+ * Consider it tainted.
+ * [ If the page was already found to be "tainted", no
+ * need to re-validate. ]
+ */
+ page->cs_validated = TRUE;
+ page->cs_tainted = TRUE;
+ if (cs_debug) {
+ printf("CODESIGNING: vm_page_validate_cs: "
+ "page %p obj %p off 0x%llx "
+ "was modified\n",
+ page, object, page->offset);
+ }
+ vm_cs_validated_dirtied++;
+ }
+
+ if (page->cs_validated || page->cs_tainted) {
+ return;
+ }
+
+ vm_cs_validates++;
+
+ assert(object->code_signed);
+ offset = page->offset;
+
+ if (!object->alive || object->terminating || object->pager == NULL) {
+ /*
+ * The object is terminating and we don't have its pager
+ * so we can't validate the data...
+ */
+ return;
+ }
+ /*
+ * Since we get here to validate a page that was brought in by
+ * the pager, we know that this pager is all setup and ready
+ * by now.
+ */
+ assert(!object->internal);
+ assert(object->pager != NULL);
+ assert(object->pager_ready);
+
+ pager = object->pager;
+ assert(object->paging_in_progress);
+ vnode = vnode_pager_lookup_vnode(pager);
+
+ /* verify the SHA1 hash for this page */
+ tainted = 0;
+ validated = cs_validate_range(vnode,
+ pager,
+ (object->paging_offset +
+ offset),
+ (const void *)((const char *)kaddr),
+ PAGE_SIZE_64,
+ &tainted);
+
+ if (tainted & CS_VALIDATE_TAINTED) {
+ page->cs_tainted = TRUE;
+ }
+ if (tainted & CS_VALIDATE_NX) {
+ page->cs_nx = TRUE;
+ }
-extern int cs_validation;
+ if (validated) {
+ page->cs_validated = TRUE;
+ }
+}
void
vm_page_validate_cs(
vm_map_size_t ksize;
vm_offset_t kaddr;
kern_return_t kr;
- memory_object_t pager;
- void *blobs;
- boolean_t validated, tainted;
boolean_t busy_page;
+ boolean_t need_unmap;
+
+ object = VM_PAGE_OBJECT(page);
+ vm_object_lock_assert_held(object);
+
+ if (page->wpmapped && !page->cs_tainted) {
+ vm_object_lock_assert_exclusive(object);
+
+ /*
+ * This page was mapped for "write" access sometime in the
+ * past and could still be modifiable in the future.
+ * Consider it tainted.
+ * [ If the page was already found to be "tainted", no
+ * need to re-validate. ]
+ */
+ page->cs_validated = TRUE;
+ page->cs_tainted = TRUE;
+ if (cs_debug) {
+ printf("CODESIGNING: vm_page_validate_cs: "
+ "page %p obj %p off 0x%llx "
+ "was modified\n",
+ page, object, page->offset);
+ }
+ vm_cs_validated_dirtied++;
+ }
- vm_object_lock_assert_exclusive(page->object);
- assert(!page->cs_validated);
+ if (page->cs_validated || page->cs_tainted) {
+ return;
+ }
+
+ if (page->slid) {
+ panic("vm_page_validate_cs(%p): page is slid\n", page);
+ }
+ assert(!page->slid);
- if (!cs_validation) {
+#if CHECK_CS_VALIDATION_BITMAP
+ if ( vnode_pager_cs_check_validation_bitmap( object->pager, trunc_page(page->offset + object->paging_offset), CS_BITMAP_CHECK ) == KERN_SUCCESS) {
+ page->cs_validated = TRUE;
+ page->cs_tainted = FALSE;
+ vm_cs_bitmap_validated++;
return;
}
+#endif
+ vm_object_lock_assert_exclusive(object);
- object = page->object;
assert(object->code_signed);
offset = page->offset;
vm_object_paging_begin(object);
/* map the page in the kernel address space */
- koffset = 0;
ksize = PAGE_SIZE_64;
- kr = vm_paging_map_object(&koffset,
- page,
+ koffset = 0;
+ need_unmap = FALSE;
+ kr = vm_paging_map_object(page,
object,
offset,
+ VM_PROT_READ,
+ FALSE, /* can't unlock object ! */
&ksize,
- FALSE); /* can't unlock object ! */
+ &koffset,
+ &need_unmap);
if (kr != KERN_SUCCESS) {
panic("vm_page_validate_cs: could not map page: 0x%x\n", kr);
}
kaddr = CAST_DOWN(vm_offset_t, koffset);
- /*
- * Since we get here to validate a page that was brought in by
- * the pager, we know that this pager is all setup and ready
- * by now.
- */
- assert(!object->internal);
- assert(object->pager != NULL);
- assert(object->pager_ready);
-
- if (!object->alive || object->terminating || object->pager == NULL) {
- /*
- * The object is terminating and we don't have its pager
- * so we can't validate the data...
- */
- goto out;
- }
-
- pager = object->pager;
- assert(pager != NULL);
+ /* validate the mapped page */
+ vm_page_validate_cs_mapped(page, (const void *) kaddr);
- kr = vnode_pager_get_object_cs_blobs(pager, &blobs);
- if (kr != KERN_SUCCESS) {
- blobs = NULL;
+#if CHECK_CS_VALIDATION_BITMAP
+ if ( page->cs_validated == TRUE && page->cs_tainted == FALSE ) {
+ vnode_pager_cs_check_validation_bitmap( object->pager, trunc_page( offset + object->paging_offset), CS_BITMAP_SET );
}
-
- /* verify the SHA1 hash for this page */
- validated = cs_validate_page(blobs,
- offset + object->paging_offset,
- (const void *)kaddr,
- &tainted);
-
+#endif
assert(page->busy);
- assert(object == page->object);
+ assert(object == VM_PAGE_OBJECT(page));
vm_object_lock_assert_exclusive(object);
- page->cs_validated = validated;
- if (validated) {
- page->cs_tainted = tainted;
- }
-
-out:
if (!busy_page) {
PAGE_WAKEUP_DONE(page);
}
- if (koffset != 0) {
+ if (need_unmap) {
/* unmap the map from the kernel address space */
vm_paging_unmap_object(object, koffset, koffset + ksize);
koffset = 0;
}
vm_object_paging_end(object);
}
+
+void
+vm_page_validate_cs_mapped_chunk(
+ vm_page_t page,
+ const void *kaddr,
+ vm_offset_t chunk_offset,
+ vm_size_t chunk_size,
+ boolean_t *validated_p,
+ unsigned *tainted_p)
+{
+ vm_object_t object;
+ vm_object_offset_t offset, offset_in_page;
+ memory_object_t pager;
+ struct vnode *vnode;
+ boolean_t validated;
+ unsigned tainted;
+
+ *validated_p = FALSE;
+ *tainted_p = 0;
+
+ assert(page->busy);
+ object = VM_PAGE_OBJECT(page);
+ vm_object_lock_assert_exclusive(object);
+
+ assert(object->code_signed);
+ offset = page->offset;
+
+ if (!object->alive || object->terminating || object->pager == NULL) {
+ /*
+ * The object is terminating and we don't have its pager
+ * so we can't validate the data...
+ */
+ return;
+ }
+ /*
+ * Since we get here to validate a page that was brought in by
+ * the pager, we know that this pager is all setup and ready
+ * by now.
+ */
+ assert(!object->internal);
+ assert(object->pager != NULL);
+ assert(object->pager_ready);
+
+ pager = object->pager;
+ assert(object->paging_in_progress);
+ vnode = vnode_pager_lookup_vnode(pager);
+
+ /* verify the signature for this chunk */
+ offset_in_page = chunk_offset;
+ assert(offset_in_page < PAGE_SIZE);
+
+ tainted = 0;
+ validated = cs_validate_range(vnode,
+ pager,
+ (object->paging_offset +
+ offset +
+ offset_in_page),
+ (const void *)((const char *)kaddr
+ + offset_in_page),
+ chunk_size,
+ &tainted);
+ if (validated) {
+ *validated_p = TRUE;
+ }
+ if (tainted) {
+ *tainted_p = tainted;
+ }
+}