/*
- * Copyright (c) 2000-2007 Apple Inc. All rights reserved.
+ * Copyright (c) 1998-2012 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
#include <sys/protosw.h>
#include <sys/domain.h>
#include <sys/queue.h>
+#include <sys/proc.h>
#include <kern/kern_types.h>
#include <kern/simple_lock.h>
#include <kern/queue.h>
#include <kern/sched_prim.h>
#include <kern/cpu_number.h>
+#include <kern/zalloc.h>
#include <libkern/OSAtomic.h>
#include <libkern/libkern.h>
* preserve the contents of the objects during its transactions.
*
* MC_BIGCL:
- * This is a cache of rudimentary objects of NBPG in size; each
+ * This is a cache of rudimentary objects of MBIGCLBYTES in size; each
* object represents a mbigcluster structure. This cache does not
* preserve the contents of the objects during its transaction.
*
* Debugging can be enabled by adding "mbuf_debug=0x3" to boot-args; this
* translates to the mcache flags (MCF_VERIFY | MCF_AUDIT). Additionally,
* the CPU layer cache can be disabled by setting the MCF_NOCPUCACHE flag,
- * i.e. modify the boot argument parameter to "mbuf_debug=0x13". Note
- * that debugging consumes more CPU and memory.
+ * i.e. modify the boot argument parameter to "mbuf_debug=0x13". Leak
+ * detection may also be disabled by setting the MCF_NOLEAKLOG flag, e.g.
+ * "mbuf_debug=0x113". Note that debugging consumes more CPU and memory.
*
* Each object is associated with exactly one mcache_audit_t structure that
* contains the information related to its last buffer transaction. Given
* | mbuf addr | | mclaudit[i] |
* +------------+ +=============+
* | | cl_audit[0] |
- * i = MTOCL(addr) +-------------+
+ * i = MTOBG(addr) +-------------+
* | +-----> | cl_audit[1] | -----> mcache_audit_t
- * b = CLTOM(i) | +-------------+
+ * b = BGTOM(i) | +-------------+
* | | | ... |
* x = MCLIDX(b, addr) | +-------------+
* | | | cl_audit[7] |
* (e.g. x == 1)
*
* The mclaudit[] array is allocated at initialization time, but its contents
- * get populated when the corresponding cluster is created. Because a cluster
- * can be turned into NMBPCL number of mbufs, we preserve enough space for the
- * mbufs so that there is a 1-to-1 mapping between them. A cluster that never
+ * get populated when the corresponding cluster is created. Because a page
+ * can be turned into NMBPBG number of mbufs, we preserve enough space for the
+ * mbufs so that there is a 1-to-1 mapping between them. A page that never
* gets (or has not yet) turned into mbufs will use only cl_audit[0] with the
- * remaining entries unused. For big clusters, only one entry is allocated
- * and used for the entire cluster pair.
+ * remaining entries unused. For 16KB cluster, only one entry from the first
+ * page is allocated and used for the entire object.
*/
/* TODO: should be in header file */
/* kernel translater */
-extern vm_offset_t kmem_mb_alloc(vm_map_t, int);
+extern vm_offset_t kmem_mb_alloc(vm_map_t, int, int);
extern ppnum_t pmap_find_phys(pmap_t pmap, addr64_t va);
extern vm_map_t mb_map; /* special map */
/* Global lock */
-static lck_mtx_t *mbuf_mlock;
+decl_lck_mtx_data(static, mbuf_mlock_data);
+static lck_mtx_t *mbuf_mlock = &mbuf_mlock_data;
static lck_attr_t *mbuf_mlock_attr;
static lck_grp_t *mbuf_mlock_grp;
static lck_grp_attr_t *mbuf_mlock_grp_attr;
static int mbuf_worker_ready; /* worker thread is runnable */
static int mbuf_expand_mcl; /* number of cluster creation requets */
static int mbuf_expand_big; /* number of big cluster creation requests */
-static int mbuf_expand_16k; /* number of 16K cluster creation requests */
+static int mbuf_expand_16k; /* number of 16KB cluster creation requests */
static int ncpu; /* number of CPUs */
-static int *mcl_paddr; /* Array of cluster physical addresses */
+static ppnum_t *mcl_paddr; /* Array of cluster physical addresses */
+static ppnum_t mcl_pages; /* Size of array (# physical pages) */
static ppnum_t mcl_paddr_base; /* Handle returned by IOMapper::iovmAlloc() */
static mcache_t *ref_cache; /* Cache of cluster reference & flags */
static mcache_t *mcl_audit_con_cache; /* Audit contents cache */
static unsigned int mbuf_debug; /* patchable mbuf mcache flags */
static unsigned int mb_normalized; /* number of packets "normalized" */
+#define MB_GROWTH_AGGRESSIVE 1 /* Threshold: 1/2 of total */
+#define MB_GROWTH_NORMAL 2 /* Threshold: 3/4 of total */
+
typedef enum {
MC_MBUF = 0, /* Regular mbuf */
MC_CL, /* Cluster */
- MC_BIGCL, /* Large (4K) cluster */
- MC_16KCL, /* Jumbo (16K) cluster */
+ MC_BIGCL, /* Large (4KB) cluster */
+ MC_16KCL, /* Jumbo (16KB) cluster */
MC_MBUF_CL, /* mbuf + cluster */
- MC_MBUF_BIGCL, /* mbuf + large (4K) cluster */
- MC_MBUF_16KCL /* mbuf + jumbo (16K) cluster */
+ MC_MBUF_BIGCL, /* mbuf + large (4KB) cluster */
+ MC_MBUF_16KCL /* mbuf + jumbo (16KB) cluster */
} mbuf_class_t;
#define MBUF_CLASS_MIN MC_MBUF
* a cluster's size. In this case, only the slab of the first cluster is
* used. The rest of the slabs are marked with SLF_PARTIAL to indicate
* that they are part of the larger slab.
+ *
+ * Each slab controls a page of memory.
*/
typedef struct mcl_slab {
struct mcl_slab *sl_next; /* neighboring slab */
* whenever a new piece of memory mapped in from the VM crosses the 1MB
* boundary.
*/
-#define MBSHIFT 20 /* 1MB */
-#define NSLABSPMB ((1 << MBSHIFT) >> MCLSHIFT) /* 512 slabs/grp */
+#define NSLABSPMB ((1 << MBSHIFT) >> PGSHIFT) /* 256 slabs/grp */
typedef struct mcl_slabg {
mcl_slab_t slg_slab[NSLABSPMB]; /* group of slabs */
} mcl_slabg_t;
+/*
+ * Number of slabs needed to control a 16KB cluster object.
+ */
+#define NSLABSP16KB (M16KCLBYTES >> PGSHIFT)
+
/*
* Per-cluster audit structure.
*/
typedef struct {
- mcache_audit_t *cl_audit[NMBPCL]; /* array of audits */
+ mcache_audit_t *cl_audit[NMBPBG]; /* array of audits */
} mcl_audit_t;
-#if CONFIG_MBUF_NOEXPAND
-static unsigned int maxmbufcl;
-#endif /* CONFIG_MBUF_NOEXPAND */
-
/*
* Size of data from the beginning of an mbuf that covers m_hdr, pkthdr
* and m_ext structures. If auditing is enabled, we allocate a shadow
* Note that we don't save the contents of clusters when they are freed;
* we simply pattern-fill them.
*/
-#if defined(__LP64__)
-#define AUDIT_CONTENTS_SIZE 160
-#else
-#define AUDIT_CONTENTS_SIZE 80
-#endif /* __LP64__ */
+#define AUDIT_CONTENTS_SIZE ((MSIZE - MHLEN) + sizeof (_m_ext_t))
/*
* mbuf specific mcache audit flags
* Each of the following two arrays hold up to nmbclusters elements.
*/
static mcl_audit_t *mclaudit; /* array of cluster audit information */
+static unsigned int maxclaudit; /* max # of entries in audit table */
static mcl_slabg_t **slabstbl; /* cluster slabs table */
static unsigned int maxslabgrp; /* max # of entries in slabs table */
static unsigned int slabgrp; /* # of entries in slabs table */
int nclusters; /* # of clusters for non-jumbo (legacy) sizes */
int njcl; /* # of clusters for jumbo sizes */
int njclbytes; /* size of a jumbo cluster */
-union mcluster *mbutl; /* first mapped cluster address */
-union mcluster *embutl; /* ending virtual address of mclusters */
-int max_linkhdr; /* largest link-level header */
-int max_protohdr; /* largest protocol header */
+union mbigcluster *mbutl; /* first mapped cluster address */
+union mbigcluster *embutl; /* ending virtual address of mclusters */
+int _max_linkhdr; /* largest link-level header */
+int _max_protohdr; /* largest protocol header */
int max_hdr; /* largest link+protocol header */
int max_datalen; /* MHLEN - max_hdr */
+static boolean_t mclverify; /* debug: pattern-checking */
+static boolean_t mcltrace; /* debug: stack tracing */
+static boolean_t mclfindleak; /* debug: leak detection */
+static boolean_t mclexpleak; /* debug: expose leak info to user space */
+
+/* mbuf leak detection variables */
+static struct mleak_table mleak_table;
+static mleak_stat_t *mleak_stat;
+
+#define MLEAK_STAT_SIZE(n) \
+ ((size_t)(&((mleak_stat_t *)0)->ml_trace[n]))
+
+struct mallocation {
+ mcache_obj_t *element; /* the alloc'ed element, NULL if unused */
+ u_int32_t trace_index; /* mtrace index for corresponding backtrace */
+ u_int32_t count; /* How many objects were requested */
+ u_int64_t hitcount; /* for determining hash effectiveness */
+};
+
+struct mtrace {
+ u_int64_t collisions;
+ u_int64_t hitcount;
+ u_int64_t allocs;
+ u_int64_t depth;
+ uintptr_t addr[MLEAK_STACK_DEPTH];
+};
+
+/* Size must be a power of two for the zhash to be able to just mask off bits */
+#define MLEAK_ALLOCATION_MAP_NUM 512
+#define MLEAK_TRACE_MAP_NUM 256
+
+/*
+ * Sample factor for how often to record a trace. This is overwritable
+ * by the boot-arg mleak_sample_factor.
+ */
+#define MLEAK_SAMPLE_FACTOR 500
+
+/*
+ * Number of top leakers recorded.
+ */
+#define MLEAK_NUM_TRACES 5
+
+#define MB_LEAK_SPACING_64 " "
+#define MB_LEAK_SPACING_32 " "
+
+
+#define MB_LEAK_HDR_32 "\n\
+ trace [1] trace [2] trace [3] trace [4] trace [5] \n\
+ ---------- ---------- ---------- ---------- ---------- \n\
+"
+
+#define MB_LEAK_HDR_64 "\n\
+ trace [1] trace [2] trace [3] \
+ trace [4] trace [5] \n\
+ ------------------ ------------------ ------------------ \
+ ------------------ ------------------ \n\
+"
+
+static uint32_t mleak_alloc_buckets = MLEAK_ALLOCATION_MAP_NUM;
+static uint32_t mleak_trace_buckets = MLEAK_TRACE_MAP_NUM;
+
+/* Hashmaps of allocations and their corresponding traces */
+static struct mallocation *mleak_allocations;
+static struct mtrace *mleak_traces;
+static struct mtrace *mleak_top_trace[MLEAK_NUM_TRACES];
+
+/* Lock to protect mleak tables from concurrent modification */
+decl_lck_mtx_data(static, mleak_lock_data);
+static lck_mtx_t *mleak_lock = &mleak_lock_data;
+static lck_attr_t *mleak_lock_attr;
+static lck_grp_t *mleak_lock_grp;
+static lck_grp_attr_t *mleak_lock_grp_attr;
+
+extern u_int32_t high_sb_max;
+
/* TODO: should be in header file */
int do_reclaim = 0;
#define MIN16KCL (MINCL >> 2)
/* Low watermarks (only map in pages once free counts go below) */
-#define MCL_LOWAT MINCL
#define MBIGCL_LOWAT MINBIGCL
#define M16KCL_LOWAT MIN16KCL
#define NELEM(a) (sizeof (a) / sizeof ((a)[0]))
static void *mb_waitchan = &mbuf_table; /* wait channel for all caches */
-static int mb_waiters; /* number of sleepers */
+static int mb_waiters; /* number of waiters */
+
+#define MB_WDT_MAXTIME 10 /* # of secs before watchdog panic */
+static struct timeval mb_wdtstart; /* watchdog start timestamp */
+static char *mbuf_dump_buf;
+
+#define MBUF_DUMP_BUF_SIZE 2048
+
+/*
+ * mbuf watchdog is enabled by default on embedded platforms. It is
+ * also toggeable via the kern.ipc.mb_watchdog sysctl.
+ */
+#if CONFIG_EMBEDDED
+static unsigned int mb_watchdog = 1;
+#else
+static unsigned int mb_watchdog = 0;
+#endif /* CONFIG_EMBEDDED */
/* The following are used to serialize m_clalloc() */
static boolean_t mb_clalloc_busy;
static void *mb_clalloc_waitchan = &mb_clalloc_busy;
static int mb_clalloc_waiters;
+static void mbuf_mtypes_sync(boolean_t);
static int mbstat_sysctl SYSCTL_HANDLER_ARGS;
+static void mbuf_stat_sync(void);
static int mb_stat_sysctl SYSCTL_HANDLER_ARGS;
+static int mleak_top_trace_sysctl SYSCTL_HANDLER_ARGS;
+static int mleak_table_sysctl SYSCTL_HANDLER_ARGS;
+static char *mbuf_dump(void);
static void mbuf_table_init(void);
static inline void m_incref(struct mbuf *);
static inline u_int32_t m_decref(struct mbuf *);
static void mbuf_cslab_free(void *, mcache_obj_t *, int);
static void mbuf_cslab_audit(void *, mcache_obj_t *, boolean_t);
static int freelist_populate(mbuf_class_t, unsigned int, int);
+static void freelist_init(mbuf_class_t);
static boolean_t mbuf_cached_above(mbuf_class_t, int);
static boolean_t mbuf_steal(mbuf_class_t, unsigned int);
static void m_reclaim(mbuf_class_t, unsigned int, boolean_t);
static int m_howmany(int, size_t);
static void mbuf_worker_thread(void);
+static void mbuf_watchdog(void);
static boolean_t mbuf_sleep(mbuf_class_t, unsigned int, int);
static void mcl_audit_init(void *, mcache_audit_t **, mcache_obj_t **,
static void mcl_audit_mcheck_panic(struct mbuf *);
static void mcl_audit_verify_nextptr(void *, mcache_audit_t *);
+static void mleak_activate(void);
+static void mleak_logger(u_int32_t, mcache_obj_t *, boolean_t);
+static boolean_t mleak_log(uintptr_t *, mcache_obj_t *, uint32_t, int);
+static void mleak_free(mcache_obj_t *);
+static void mleak_sort_traces(void);
+static void mleak_update_stats(void);
+
static mcl_slab_t *slab_get(void *);
static void slab_init(mcl_slab_t *, mbuf_class_t, u_int32_t,
void *, void *, unsigned int, int, int);
static void slab_detach(mcl_slab_t *);
static boolean_t slab_is_detached(mcl_slab_t *);
+static int m_copyback0(struct mbuf **, int, int, const void *, int, int);
+static struct mbuf *m_split0(struct mbuf *, int, int, int);
+
+/* flags for m_copyback0 */
+#define M_COPYBACK0_COPYBACK 0x0001 /* copyback from cp */
+#define M_COPYBACK0_PRESERVE 0x0002 /* preserve original data */
+#define M_COPYBACK0_COW 0x0004 /* do copy-on-write */
+#define M_COPYBACK0_EXTEND 0x0008 /* extend chain */
+
/*
* This flag is set for all mbufs that come out of and into the composite
* mbuf + cluster caches, i.e. MC_MBUF_CL and MC_MBUF_BIGCL. mbufs that
*/
#define EXTF_COMPOSITE 0x1
+/*
+ * This flag indicates that the external cluster is read-only, i.e. it is
+ * or was referred to by more than one mbufs. Once set, this flag is never
+ * cleared.
+ */
+#define EXTF_READONLY 0x2
+#define EXTF_MASK (EXTF_COMPOSITE | EXTF_READONLY)
+
#define MEXT_RFA(m) ((m)->m_ext.ext_refflags)
#define MEXT_REF(m) (MEXT_RFA(m)->refcnt)
#define MEXT_FLAGS(m) (MEXT_RFA(m)->flags)
#define MBUF_IS_COMPOSITE(m) \
- (MEXT_REF(m) == 0 && (MEXT_FLAGS(m) & EXTF_COMPOSITE))
+ (MEXT_REF(m) == 0 && (MEXT_FLAGS(m) & EXTF_MASK) == EXTF_COMPOSITE)
/*
* Macros used to verify the integrity of the mbuf.
#define MTOD(m, t) ((t)((m)->m_data))
/*
- * Macros to obtain cluster index and base cluster address.
+ * Macros to obtain (4KB) cluster index and base cluster address.
+ */
+
+#define MTOBG(x) (((char *)(x) - (char *)mbutl) >> MBIGCLSHIFT)
+#define BGTOM(x) ((union mbigcluster *)(mbutl + (x)))
+
+/*
+ * Macro to find the mbuf index relative to a base.
*/
-#define MTOCL(x) (((char *)(x) - (char *)mbutl) >> MCLSHIFT)
-#define CLTOM(x) ((union mcluster *)(mbutl + (x)))
+#define MCLIDX(c, m) (((char *)(m) - (char *)(c)) >> MSIZESHIFT)
/*
- * Macro to find the mbuf index relative to the cluster base.
+ * Same thing for 2KB cluster index.
*/
-#define MCLIDX(c, m) (((char *)(m) - (char *)(c)) >> 8)
+#define CLBGIDX(c, m) (((char *)(m) - (char *)(c)) >> MCLSHIFT)
/*
* Macros used during mbuf and cluster initialization.
(m)->m_pkthdr.header = NULL; \
(m)->m_pkthdr.csum_flags = 0; \
(m)->m_pkthdr.csum_data = 0; \
- (m)->m_pkthdr.reserved0 = NULL; \
+ (m)->m_pkthdr.tso_segsz = 0; \
(m)->m_pkthdr.vlan_tag = 0; \
(m)->m_pkthdr.socket_id = 0; \
+ (m)->m_pkthdr.vt_nrecs = 0; \
+ (m)->m_pkthdr.aux_flags = 0; \
m_tag_init(m); \
+ m_service_class_init(m); \
} \
}
* that allows for a more accurate view of the state of the allocator.
*/
struct mb_stat *mb_stat;
+struct omb_stat *omb_stat; /* For backwards compatibility */
#define MB_STAT_SIZE(n) \
((size_t)(&((mb_stat_t *)0)->mbs_class[n]))
+#define OMB_STAT_SIZE(n) \
+ ((size_t)(&((struct omb_stat *)0)->mbs_class[n]))
/*
* The legacy structure holding all of the mbuf allocation statistics.
((size_t)(&((mbuf_mtypes_t *)0)->mbs_cpu[n]))
#define MTYPES_CPU(p) \
- ((mtypes_cpu_t *)((char *)(p) + MBUF_MTYPES_SIZE(cpu_number())))
-
-/* This should be in a header file */
-#define atomic_add_32(a, n) ((void) OSAddAtomic(n, (volatile SInt32 *)a))
+ ((mtypes_cpu_t *)(void *)((char *)(p) + MBUF_MTYPES_SIZE(cpu_number())))
#define mtype_stat_add(type, n) { \
if ((unsigned)(type) < MT_MAX) { \
mtypes_cpu_t *mbs = MTYPES_CPU(mbuf_mtypes); \
atomic_add_32(&mbs->cpu_mtypes[type], n); \
- } else if ((unsigned)(type) < MBSTAT_MTYPES_MAX) { \
- atomic_add_32(&mbstat.m_mtypes[type], n); \
+ } else if ((unsigned)(type) < (unsigned)MBSTAT_MTYPES_MAX) { \
+ atomic_add_16((int16_t *)&mbstat.m_mtypes[type], n); \
} \
}
#define mtype_stat_inc(t) mtype_stat_add(t, 1)
#define mtype_stat_dec(t) mtype_stat_sub(t, 1)
-static int
-mbstat_sysctl SYSCTL_HANDLER_ARGS
+static void
+mbuf_mtypes_sync(boolean_t locked)
{
-#pragma unused(oidp, arg1, arg2)
int m, n;
mtypes_cpu_t mtc;
+ if (locked)
+ lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
+
bzero(&mtc, sizeof (mtc));
for (m = 0; m < ncpu; m++) {
mtypes_cpu_t *scp = &mbuf_mtypes->mbs_cpu[m];
for (n = 0; n < MT_MAX; n++)
mtc.cpu_mtypes[n] += temp.cpu_mtypes[n];
}
- lck_mtx_lock(mbuf_mlock);
+ if (!locked)
+ lck_mtx_lock(mbuf_mlock);
for (n = 0; n < MT_MAX; n++)
mbstat.m_mtypes[n] = mtc.cpu_mtypes[n];
- lck_mtx_unlock(mbuf_mlock);
-
- return (SYSCTL_OUT(req, &mbstat, sizeof (mbstat)));
+ if (!locked)
+ lck_mtx_unlock(mbuf_mlock);
}
static int
-mb_stat_sysctl SYSCTL_HANDLER_ARGS
+mbstat_sysctl SYSCTL_HANDLER_ARGS
{
#pragma unused(oidp, arg1, arg2)
- mcache_t *cp;
- mcache_cpu_t *ccp;
+ mbuf_mtypes_sync(FALSE);
+
+ return (SYSCTL_OUT(req, &mbstat, sizeof (mbstat)));
+}
+
+static void
+mbuf_stat_sync(void)
+{
mb_class_stat_t *sp;
+ mcache_cpu_t *ccp;
+ mcache_t *cp;
int k, m, bktsize;
- lck_mtx_lock(mbuf_mlock);
+ lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
+
for (k = 0; k < NELEM(mbuf_table); k++) {
cp = m_cache(k);
ccp = &cp->mc_cpu[0];
break;
case MC_CL:
- /* Deduct clusters used in composite cache and mbufs */
- sp->mbcl_ctotal -= (m_total(MC_MBUF_CL) +
- (P2ROUNDUP(m_total(MC_MBUF), NMBPCL)/NMBPCL));
+ /* Deduct clusters used in composite cache */
+ sp->mbcl_ctotal -= m_total(MC_MBUF_CL);
break;
case MC_BIGCL:
break;
}
}
+}
+
+static int
+mb_stat_sysctl SYSCTL_HANDLER_ARGS
+{
+#pragma unused(oidp, arg1, arg2)
+ void *statp;
+ int k, statsz, proc64 = proc_is64bit(req->p);
+
+ lck_mtx_lock(mbuf_mlock);
+ mbuf_stat_sync();
+
+ if (!proc64) {
+ struct omb_class_stat *oc;
+ struct mb_class_stat *c;
+
+ omb_stat->mbs_cnt = mb_stat->mbs_cnt;
+ oc = &omb_stat->mbs_class[0];
+ c = &mb_stat->mbs_class[0];
+ for (k = 0; k < omb_stat->mbs_cnt; k++, oc++, c++) {
+ (void) snprintf(oc->mbcl_cname, sizeof (oc->mbcl_cname),
+ "%s", c->mbcl_cname);
+ oc->mbcl_size = c->mbcl_size;
+ oc->mbcl_total = c->mbcl_total;
+ oc->mbcl_active = c->mbcl_active;
+ oc->mbcl_infree = c->mbcl_infree;
+ oc->mbcl_slab_cnt = c->mbcl_slab_cnt;
+ oc->mbcl_alloc_cnt = c->mbcl_alloc_cnt;
+ oc->mbcl_free_cnt = c->mbcl_free_cnt;
+ oc->mbcl_notified = c->mbcl_notified;
+ oc->mbcl_purge_cnt = c->mbcl_purge_cnt;
+ oc->mbcl_fail_cnt = c->mbcl_fail_cnt;
+ oc->mbcl_ctotal = c->mbcl_ctotal;
+ oc->mbcl_mc_state = c->mbcl_mc_state;
+ oc->mbcl_mc_cached = c->mbcl_mc_cached;
+ oc->mbcl_mc_waiter_cnt = c->mbcl_mc_waiter_cnt;
+ oc->mbcl_mc_wretry_cnt = c->mbcl_mc_wretry_cnt;
+ oc->mbcl_mc_nwretry_cnt = c->mbcl_mc_nwretry_cnt;
+ }
+ statp = omb_stat;
+ statsz = OMB_STAT_SIZE(NELEM(mbuf_table));
+ } else {
+ statp = mb_stat;
+ statsz = MB_STAT_SIZE(NELEM(mbuf_table));
+ }
+
lck_mtx_unlock(mbuf_mlock);
- return (SYSCTL_OUT(req, mb_stat, MB_STAT_SIZE(NELEM(mbuf_table))));
+ return (SYSCTL_OUT(req, statp, statsz));
+}
+
+static int
+mleak_top_trace_sysctl SYSCTL_HANDLER_ARGS
+{
+#pragma unused(oidp, arg1, arg2)
+ int i;
+
+ /* Ensure leak tracing turned on */
+ if (!mclfindleak || !mclexpleak)
+ return (ENXIO);
+
+ lck_mtx_lock(mleak_lock);
+ mleak_update_stats();
+ i = SYSCTL_OUT(req, mleak_stat, MLEAK_STAT_SIZE(MLEAK_NUM_TRACES));
+ lck_mtx_unlock(mleak_lock);
+
+ return (i);
+}
+
+static int
+mleak_table_sysctl SYSCTL_HANDLER_ARGS
+{
+#pragma unused(oidp, arg1, arg2)
+ int i = 0;
+
+ /* Ensure leak tracing turned on */
+ if (!mclfindleak || !mclexpleak)
+ return (ENXIO);
+
+ lck_mtx_lock(mleak_lock);
+ i = SYSCTL_OUT(req, &mleak_table, sizeof (mleak_table));
+ lck_mtx_unlock(mleak_lock);
+
+ return (i);
}
static inline void
new = old + 1;
ASSERT(new != 0);
} while (!OSCompareAndSwap(old, new, addr));
+
+ /*
+ * If cluster is shared, mark it with (sticky) EXTF_READONLY;
+ * we don't clear the flag when the refcount goes back to 1
+ * to simplify code calling m_mclhasreference().
+ */
+ if (new > 1 && !(MEXT_FLAGS(m) & EXTF_READONLY))
+ (void) OSBitOrAtomic(EXTF_READONLY, &MEXT_FLAGS(m));
}
static inline u_int32_t
static void
mbuf_table_init(void)
{
+ unsigned int b, c, s;
int m;
+ MALLOC(omb_stat, struct omb_stat *, OMB_STAT_SIZE(NELEM(mbuf_table)),
+ M_TEMP, M_WAITOK | M_ZERO);
+ VERIFY(omb_stat != NULL);
+
MALLOC(mb_stat, mb_stat_t *, MB_STAT_SIZE(NELEM(mbuf_table)),
M_TEMP, M_WAITOK | M_ZERO);
VERIFY(mb_stat != NULL);
#endif /* CONFIG_MBUF_JUMBO */
/*
- * nclusters is going to be split in 2 to hold both the 2K
- * and the 4K pools, so make sure each half is even.
+ * nclusters holds both the 2KB and 4KB pools, so ensure it's
+ * a multiple of 4KB clusters.
*/
- nclusters = P2ROUNDDOWN(nmbclusters - njcl, 4);
+ nclusters = P2ROUNDDOWN(nmbclusters - njcl, NCLPBG);
if (njcl > 0) {
/*
- * Each jumbo cluster takes 8 2K clusters, so make
- * sure that the pool size is evenly divisible by 8.
+ * Each jumbo cluster takes 8 2KB clusters, so make
+ * sure that the pool size is evenly divisible by 8;
+ * njcl is in 2KB unit, hence treated as such.
*/
njcl = P2ROUNDDOWN(nmbclusters - nclusters, 8);
- }
-#if CONFIG_MBUF_NOEXPAND
- /* Only use 4k clusters if we're setting aside more than 256k */
- if (nmbclusters <= 128) {
- maxmbufcl = nmbclusters / 4;
- } else {
- /* Half to big clusters, half to small */
- maxmbufcl = (nmbclusters / 4) * 3;
+ /* Update nclusters with rounded down value of njcl */
+ nclusters = P2ROUNDDOWN(nmbclusters - njcl, NCLPBG);
}
-#endif /* CONFIG_MBUF_NOEXPAND */
/*
- * 1/2 of the map is reserved for 2K clusters. Out of this, 1/16th
- * of the total number of 2K clusters allocated is reserved and cannot
- * be turned into mbufs. It can only be used for pure cluster objects.
+ * njcl is valid only on platforms with 16KB jumbo clusters, where
+ * it is configured to 1/3 of the pool size. On these platforms,
+ * the remaining is used for 2KB and 4KB clusters. On platforms
+ * without 16KB jumbo clusters, the entire pool is used for both
+ * 2KB and 4KB clusters. A 4KB cluster can either be splitted into
+ * 16 mbufs, or into 2 2KB clusters.
+ *
+ * +---+---+------------ ... -----------+------- ... -------+
+ * | c | b | s | njcl |
+ * +---+---+------------ ... -----------+------- ... -------+
+ *
+ * 1/32th of the shared region is reserved for pure 2KB and 4KB
+ * clusters (1/64th each.)
+ */
+ c = P2ROUNDDOWN((nclusters >> 6), 2); /* in 2KB unit */
+ b = P2ROUNDDOWN((nclusters >> (6 + NCLPBGSHIFT)), 2); /* in 4KB unit */
+ s = nclusters - (c + (b << NCLPBGSHIFT)); /* in 2KB unit */
+
+ /*
+ * 1/64th (c) is reserved for 2KB clusters.
*/
- m_minlimit(MC_CL) = (nclusters >> 5);
- m_maxlimit(MC_CL) = (nclusters >> 1);
+ m_minlimit(MC_CL) = c;
+ m_maxlimit(MC_CL) = s + c; /* in 2KB unit */
m_maxsize(MC_CL) = m_size(MC_CL) = MCLBYTES;
(void) snprintf(m_cname(MC_CL), MAX_MBUF_CNAME, "cl");
/*
- * The remaining (15/16th) can be turned into mbufs.
+ * Another 1/64th (b) of the map is reserved for 4KB clusters.
+ * It cannot be turned into 2KB clusters or mbufs.
*/
- m_minlimit(MC_MBUF) = 0;
- m_maxlimit(MC_MBUF) = (m_maxlimit(MC_CL) - m_minlimit(MC_CL)) * NMBPCL;
- m_maxsize(MC_MBUF) = m_size(MC_MBUF) = MSIZE;
- (void) snprintf(m_cname(MC_MBUF), MAX_MBUF_CNAME, "mbuf");
+ m_minlimit(MC_BIGCL) = b;
+ m_maxlimit(MC_BIGCL) = (s >> NCLPBGSHIFT) + b; /* in 4KB unit */
+ m_maxsize(MC_BIGCL) = m_size(MC_BIGCL) = MBIGCLBYTES;
+ (void) snprintf(m_cname(MC_BIGCL), MAX_MBUF_CNAME, "bigcl");
/*
- * The other 1/2 of the map is reserved for 4K clusters.
+ * The remaining 31/32ths (s) are all-purpose (mbufs, 2KB, or 4KB)
*/
- m_minlimit(MC_BIGCL) = 0;
- m_maxlimit(MC_BIGCL) = m_maxlimit(MC_CL) >> 1;
- m_maxsize(MC_BIGCL) = m_size(MC_BIGCL) = NBPG;
- (void) snprintf(m_cname(MC_BIGCL), MAX_MBUF_CNAME, "bigcl");
+ m_minlimit(MC_MBUF) = 0;
+ m_maxlimit(MC_MBUF) = (s << NMBPCLSHIFT); /* in mbuf unit */
+ m_maxsize(MC_MBUF) = m_size(MC_MBUF) = MSIZE;
+ (void) snprintf(m_cname(MC_MBUF), MAX_MBUF_CNAME, "mbuf");
/*
* Set limits for the composite classes.
*/
m_minlimit(MC_MBUF_CL) = 0;
- m_maxlimit(MC_MBUF_CL) = m_maxlimit(MC_CL) - m_minlimit(MC_CL);
+ m_maxlimit(MC_MBUF_CL) = m_maxlimit(MC_CL);
m_maxsize(MC_MBUF_CL) = MCLBYTES;
m_size(MC_MBUF_CL) = m_size(MC_MBUF) + m_size(MC_CL);
(void) snprintf(m_cname(MC_MBUF_CL), MAX_MBUF_CNAME, "mbuf_cl");
m_minlimit(MC_MBUF_BIGCL) = 0;
m_maxlimit(MC_MBUF_BIGCL) = m_maxlimit(MC_BIGCL);
- m_maxsize(MC_MBUF_BIGCL) = NBPG;
+ m_maxsize(MC_MBUF_BIGCL) = MBIGCLBYTES;
m_size(MC_MBUF_BIGCL) = m_size(MC_MBUF) + m_size(MC_BIGCL);
(void) snprintf(m_cname(MC_MBUF_BIGCL), MAX_MBUF_CNAME, "mbuf_bigcl");
* And for jumbo classes.
*/
m_minlimit(MC_16KCL) = 0;
- m_maxlimit(MC_16KCL) = (njcl >> 3);
+ m_maxlimit(MC_16KCL) = (njcl >> NCLPJCLSHIFT); /* in 16KB unit */
m_maxsize(MC_16KCL) = m_size(MC_16KCL) = M16KCLBYTES;
(void) snprintf(m_cname(MC_16KCL), MAX_MBUF_CNAME, "16kcl");
mbstat.m_bigmclbytes = m_maxsize(MC_BIGCL);
}
+#if defined(__LP64__)
+typedef struct ncl_tbl {
+ uint64_t nt_maxmem; /* memory (sane) size */
+ uint32_t nt_mbpool; /* mbuf pool size */
+} ncl_tbl_t;
+
+/* Non-server */
+static ncl_tbl_t ncl_table[] = {
+ { (1ULL << GBSHIFT) /* 1 GB */, (64 << MBSHIFT) /* 64 MB */ },
+ { (1ULL << (GBSHIFT + 3)) /* 8 GB */, (96 << MBSHIFT) /* 96 MB */ },
+ { (1ULL << (GBSHIFT + 4)) /* 16 GB */, (128 << MBSHIFT) /* 128 MB */ },
+ { 0, 0 }
+};
+
+/* Server */
+static ncl_tbl_t ncl_table_srv[] = {
+ { (1ULL << GBSHIFT) /* 1 GB */, (96 << MBSHIFT) /* 96 MB */ },
+ { (1ULL << (GBSHIFT + 2)) /* 4 GB */, (128 << MBSHIFT) /* 128 MB */ },
+ { (1ULL << (GBSHIFT + 3)) /* 8 GB */, (160 << MBSHIFT) /* 160 MB */ },
+ { (1ULL << (GBSHIFT + 4)) /* 16 GB */, (192 << MBSHIFT) /* 192 MB */ },
+ { (1ULL << (GBSHIFT + 5)) /* 32 GB */, (256 << MBSHIFT) /* 256 MB */ },
+ { (1ULL << (GBSHIFT + 6)) /* 64 GB */, (384 << MBSHIFT) /* 384 MB */ },
+ { 0, 0 }
+};
+#endif /* __LP64__ */
+
+__private_extern__ unsigned int
+mbuf_default_ncl(int server, uint64_t mem)
+{
+#if !defined(__LP64__)
+#pragma unused(server)
+ unsigned int n;
+ /*
+ * 32-bit kernel (default to 64MB of mbuf pool for >= 1GB RAM).
+ */
+ if ((n = ((mem / 16) / MCLBYTES)) > 32768)
+ n = 32768;
+#else
+ unsigned int n, i;
+ ncl_tbl_t *tbl = (server ? ncl_table_srv : ncl_table);
+ /*
+ * 64-bit kernel (mbuf pool size based on table).
+ */
+ n = tbl[0].nt_mbpool;
+ for (i = 0; tbl[i].nt_mbpool != 0; i++) {
+ if (mem < tbl[i].nt_maxmem)
+ break;
+ n = tbl[i].nt_mbpool;
+ }
+ n >>= MCLSHIFT;
+#endif /* !__LP64__ */
+ return (n);
+}
+
__private_extern__ void
mbinit(void)
{
unsigned int m;
- int initmcl = MINCL;
- int mcl_pages;
+ unsigned int initmcl = 0;
void *buf;
+ thread_t thread = THREAD_NULL;
+
+ /*
+ * These MBUF_ values must be equal to their private counterparts.
+ */
+ _CASSERT(MBUF_EXT == M_EXT);
+ _CASSERT(MBUF_PKTHDR == M_PKTHDR);
+ _CASSERT(MBUF_EOR == M_EOR);
+ _CASSERT(MBUF_LOOP == M_LOOP);
+ _CASSERT(MBUF_BCAST == M_BCAST);
+ _CASSERT(MBUF_MCAST == M_MCAST);
+ _CASSERT(MBUF_FRAG == M_FRAG);
+ _CASSERT(MBUF_FIRSTFRAG == M_FIRSTFRAG);
+ _CASSERT(MBUF_LASTFRAG == M_LASTFRAG);
+ _CASSERT(MBUF_PROMISC == M_PROMISC);
+ _CASSERT(MBUF_HASFCS == M_HASFCS);
+
+ _CASSERT(MBUF_TYPE_FREE == MT_FREE);
+ _CASSERT(MBUF_TYPE_DATA == MT_DATA);
+ _CASSERT(MBUF_TYPE_HEADER == MT_HEADER);
+ _CASSERT(MBUF_TYPE_SOCKET == MT_SOCKET);
+ _CASSERT(MBUF_TYPE_PCB == MT_PCB);
+ _CASSERT(MBUF_TYPE_RTABLE == MT_RTABLE);
+ _CASSERT(MBUF_TYPE_HTABLE == MT_HTABLE);
+ _CASSERT(MBUF_TYPE_ATABLE == MT_ATABLE);
+ _CASSERT(MBUF_TYPE_SONAME == MT_SONAME);
+ _CASSERT(MBUF_TYPE_SOOPTS == MT_SOOPTS);
+ _CASSERT(MBUF_TYPE_FTABLE == MT_FTABLE);
+ _CASSERT(MBUF_TYPE_RIGHTS == MT_RIGHTS);
+ _CASSERT(MBUF_TYPE_IFADDR == MT_IFADDR);
+ _CASSERT(MBUF_TYPE_CONTROL == MT_CONTROL);
+ _CASSERT(MBUF_TYPE_OOBDATA == MT_OOBDATA);
+
+ _CASSERT(MBUF_TSO_IPV4 == CSUM_TSO_IPV4);
+ _CASSERT(MBUF_TSO_IPV6 == CSUM_TSO_IPV6);
+ _CASSERT(MBUF_CSUM_REQ_SUM16 == CSUM_TCP_SUM16);
+ _CASSERT(MBUF_CSUM_TCP_SUM16 == MBUF_CSUM_REQ_SUM16);
+ _CASSERT(MBUF_CSUM_REQ_IP == CSUM_IP);
+ _CASSERT(MBUF_CSUM_REQ_TCP == CSUM_TCP);
+ _CASSERT(MBUF_CSUM_REQ_UDP == CSUM_UDP);
+ _CASSERT(MBUF_CSUM_REQ_TCPIPV6 == CSUM_TCPIPV6);
+ _CASSERT(MBUF_CSUM_REQ_UDPIPV6 == CSUM_UDPIPV6);
+ _CASSERT(MBUF_CSUM_DID_IP == CSUM_IP_CHECKED);
+ _CASSERT(MBUF_CSUM_IP_GOOD == CSUM_IP_VALID);
+ _CASSERT(MBUF_CSUM_DID_DATA == CSUM_DATA_VALID);
+ _CASSERT(MBUF_CSUM_PSEUDO_HDR == CSUM_PSEUDO_HDR);
+
+ _CASSERT(MBUF_WAITOK == M_WAIT);
+ _CASSERT(MBUF_DONTWAIT == M_DONTWAIT);
+ _CASSERT(MBUF_COPYALL == M_COPYALL);
+
+ _CASSERT(MBUF_PKTAUXF_INET_RESOLVE_RTR == MAUXF_INET_RESOLVE_RTR);
+ _CASSERT(MBUF_PKTAUXF_INET6_RESOLVE_RTR == MAUXF_INET6_RESOLVE_RTR);
+
+ _CASSERT(MBUF_SC2TC(MBUF_SC_BK_SYS) == MBUF_TC_BK);
+ _CASSERT(MBUF_SC2TC(MBUF_SC_BK) == MBUF_TC_BK);
+ _CASSERT(MBUF_SC2TC(MBUF_SC_BE) == MBUF_TC_BE);
+ _CASSERT(MBUF_SC2TC(MBUF_SC_RD) == MBUF_TC_BE);
+ _CASSERT(MBUF_SC2TC(MBUF_SC_OAM) == MBUF_TC_BE);
+ _CASSERT(MBUF_SC2TC(MBUF_SC_AV) == MBUF_TC_VI);
+ _CASSERT(MBUF_SC2TC(MBUF_SC_RV) == MBUF_TC_VI);
+ _CASSERT(MBUF_SC2TC(MBUF_SC_VI) == MBUF_TC_VI);
+ _CASSERT(MBUF_SC2TC(MBUF_SC_VO) == MBUF_TC_VO);
+ _CASSERT(MBUF_SC2TC(MBUF_SC_CTL) == MBUF_TC_VO);
+
+ _CASSERT(MBUF_TC2SCVAL(MBUF_TC_BK) == SCVAL_BK);
+ _CASSERT(MBUF_TC2SCVAL(MBUF_TC_BE) == SCVAL_BE);
+ _CASSERT(MBUF_TC2SCVAL(MBUF_TC_VI) == SCVAL_VI);
+ _CASSERT(MBUF_TC2SCVAL(MBUF_TC_VO) == SCVAL_VO);
if (nmbclusters == 0)
nmbclusters = NMBCLUSTERS;
+ /* This should be a sane (at least even) value by now */
+ VERIFY(nmbclusters != 0 && !(nmbclusters & 0x1));
+
/* Setup the mbuf table */
mbuf_table_init();
mbuf_mlock_grp_attr = lck_grp_attr_alloc_init();
mbuf_mlock_grp = lck_grp_alloc_init("mbuf", mbuf_mlock_grp_attr);
mbuf_mlock_attr = lck_attr_alloc_init();
- mbuf_mlock = lck_mtx_alloc_init(mbuf_mlock_grp, mbuf_mlock_attr);
+ lck_mtx_init(mbuf_mlock, mbuf_mlock_grp, mbuf_mlock_attr);
- /* Allocate cluster slabs table */
- maxslabgrp = P2ROUNDUP(nmbclusters, NSLABSPMB) / NSLABSPMB;
+ /*
+ * Allocate cluster slabs table:
+ *
+ * maxslabgrp = (N * 2048) / (1024 * 1024)
+ *
+ * Where N is nmbclusters rounded up to the nearest 512. This yields
+ * mcl_slab_g_t units, each one representing a MB of memory.
+ */
+ maxslabgrp =
+ (P2ROUNDUP(nmbclusters, (MBSIZE >> 11)) << MCLSHIFT) >> MBSHIFT;
MALLOC(slabstbl, mcl_slabg_t **, maxslabgrp * sizeof (mcl_slabg_t *),
M_TEMP, M_WAITOK | M_ZERO);
VERIFY(slabstbl != NULL);
- /* Allocate audit structures if needed */
- PE_parse_boot_arg("mbuf_debug", &mbuf_debug);
+ /*
+ * Allocate audit structures, if needed:
+ *
+ * maxclaudit = (maxslabgrp * 1024 * 1024) / 4096
+ *
+ * This yields mcl_audit_t units, each one representing a page.
+ */
+ PE_parse_boot_argn("mbuf_debug", &mbuf_debug, sizeof (mbuf_debug));
mbuf_debug |= mcache_getflags();
- if (mbuf_debug & MCF_AUDIT) {
- MALLOC(mclaudit, mcl_audit_t *,
- nmbclusters * sizeof (*mclaudit), M_TEMP,
- M_WAITOK | M_ZERO);
+ if (mbuf_debug & MCF_DEBUG) {
+ maxclaudit = ((maxslabgrp << MBSHIFT) >> PGSHIFT);
+ MALLOC(mclaudit, mcl_audit_t *, maxclaudit * sizeof (*mclaudit),
+ M_TEMP, M_WAITOK | M_ZERO);
VERIFY(mclaudit != NULL);
mcl_audit_con_cache = mcache_create("mcl_audit_contents",
AUDIT_CONTENTS_SIZE, 0, 0, MCR_SLEEP);
VERIFY(mcl_audit_con_cache != NULL);
}
+ mclverify = (mbuf_debug & MCF_VERIFY);
+ mcltrace = (mbuf_debug & MCF_TRACE);
+ mclfindleak = !(mbuf_debug & MCF_NOLEAKLOG);
+ mclexpleak = mclfindleak && (mbuf_debug & MCF_EXPLEAKLOG);
+
+ /* Enable mbuf leak logging, with a lock to protect the tables */
+
+ mleak_lock_grp_attr = lck_grp_attr_alloc_init();
+ mleak_lock_grp = lck_grp_alloc_init("mleak_lock", mleak_lock_grp_attr);
+ mleak_lock_attr = lck_attr_alloc_init();
+ lck_mtx_init(mleak_lock, mleak_lock_grp, mleak_lock_attr);
+
+ mleak_activate();
/* Calculate the number of pages assigned to the cluster pool */
- mcl_pages = nmbclusters/(NBPG/CLBYTES);
- MALLOC(mcl_paddr, int *, mcl_pages * sizeof (int), M_TEMP, M_WAITOK);
+ mcl_pages = (nmbclusters * MCLBYTES) / CLBYTES;
+ MALLOC(mcl_paddr, ppnum_t *, mcl_pages * sizeof (ppnum_t),
+ M_TEMP, M_WAITOK);
VERIFY(mcl_paddr != NULL);
/* Register with the I/O Bus mapper */
mcl_paddr_base = IOMapperIOVMAlloc(mcl_pages);
- bzero((char *)mcl_paddr, mcl_pages * sizeof (int));
-
- embutl = (union mcluster *)
- ((unsigned char *)mbutl + (nmbclusters * MCLBYTES));
-
- PE_parse_boot_arg("initmcl", &initmcl);
+ bzero((char *)mcl_paddr, mcl_pages * sizeof (ppnum_t));
+
+ embutl = (union mbigcluster *)
+ ((void *)((unsigned char *)mbutl + (nmbclusters * MCLBYTES)));
+ VERIFY((((char *)embutl - (char *)mbutl) % MBIGCLBYTES) == 0);
+
+ /* Prime up the freelist */
+ PE_parse_boot_argn("initmcl", &initmcl, sizeof (initmcl));
+ if (initmcl != 0) {
+ initmcl >>= NCLPBGSHIFT; /* become a 4K unit */
+ if (initmcl > m_maxlimit(MC_BIGCL))
+ initmcl = m_maxlimit(MC_BIGCL);
+ }
+ if (initmcl < m_minlimit(MC_BIGCL))
+ initmcl = m_minlimit(MC_BIGCL);
lck_mtx_lock(mbuf_mlock);
- if (m_clalloc(MAX(NBPG/CLBYTES, 1) * initmcl, M_WAIT, MCLBYTES) == 0)
- panic("mbinit: m_clalloc failed\n");
+ /*
+ * For classes with non-zero minimum limits, populate their freelists
+ * so that m_total(class) is at least m_minlimit(class).
+ */
+ VERIFY(m_total(MC_BIGCL) == 0 && m_minlimit(MC_BIGCL) != 0);
+ freelist_populate(m_class(MC_BIGCL), initmcl, M_WAIT);
+ VERIFY(m_total(MC_BIGCL) >= m_minlimit(MC_BIGCL));
+ freelist_init(m_class(MC_CL));
+
+ for (m = 0; m < NELEM(mbuf_table); m++) {
+ /* Make sure we didn't miss any */
+ VERIFY(m_minlimit(m_class(m)) == 0 ||
+ m_total(m_class(m)) >= m_minlimit(m_class(m)));
+ }
lck_mtx_unlock(mbuf_mlock);
- (void) kernel_thread(kernel_task, mbuf_worker_thread_init);
+ (void) kernel_thread_start((thread_continue_t)mbuf_worker_thread_init,
+ NULL, &thread);
+ thread_deallocate(thread);
ref_cache = mcache_create("mext_ref", sizeof (struct ext_ref),
0, 0, MCR_SLEEP);
/* Create the cache for each class */
for (m = 0; m < NELEM(mbuf_table); m++) {
- void *allocfunc, *freefunc, *auditfunc;
+ void *allocfunc, *freefunc, *auditfunc, *logfunc;
u_int32_t flags;
flags = mbuf_debug;
allocfunc = mbuf_cslab_alloc;
freefunc = mbuf_cslab_free;
auditfunc = mbuf_cslab_audit;
+ logfunc = mleak_logger;
} else {
allocfunc = mbuf_slab_alloc;
freefunc = mbuf_slab_free;
auditfunc = mbuf_slab_audit;
+ logfunc = mleak_logger;
}
/*
njcl == 0)
flags |= MCF_NOCPUCACHE;
+ if (!mclfindleak)
+ flags |= MCF_NOLEAKLOG;
+
m_cache(m) = mcache_create_ext(m_cname(m), m_maxsize(m),
- allocfunc, freefunc, auditfunc, mbuf_slab_notify,
- (void *)m, flags, MCR_SLEEP);
+ allocfunc, freefunc, auditfunc, logfunc, mbuf_slab_notify,
+ (void *)(uintptr_t)m, flags, MCR_SLEEP);
}
/*
mbuf_mtypes = (mbuf_mtypes_t *)P2ROUNDUP((intptr_t)buf, CPU_CACHE_SIZE);
bzero(mbuf_mtypes, MBUF_MTYPES_SIZE(ncpu));
- printf("mbinit: done\n");
+ /*
+ * Set the max limit on sb_max to be 1/16 th of the size of
+ * memory allocated for mbuf clusters.
+ */
+ high_sb_max = (nmbclusters << (MCLSHIFT - 4));
+ if (high_sb_max < sb_max) {
+ /* sb_max is too large for this configuration, scale it down */
+ if (high_sb_max > (1 << MBSHIFT)) {
+ /* We have atleast 16 M of mbuf pool */
+ sb_max = high_sb_max;
+ } else if ((nmbclusters << MCLSHIFT) > (1 << MBSHIFT)) {
+ /*
+ * If we have more than 1M of mbufpool, cap the size of
+ * max sock buf at 1M
+ */
+ sb_max = high_sb_max = (1 << MBSHIFT);
+ } else {
+ sb_max = high_sb_max;
+ }
+ }
+
+ /* allocate space for mbuf_dump_buf */
+ MALLOC(mbuf_dump_buf, char *, MBUF_DUMP_BUF_SIZE, M_TEMP, M_WAITOK);
+ VERIFY(mbuf_dump_buf != NULL);
+
+ printf("mbinit: done [%d MB total pool size, (%d/%d) split]\n",
+ (nmbclusters << MCLSHIFT) >> MBSHIFT,
+ (nclusters << MCLSHIFT) >> MBSHIFT,
+ (njcl << MCLSHIFT) >> MBSHIFT);
}
/*
* more than one buffer chunks (e.g. mbuf slabs). For other
* slabs, this probably doesn't make much of a difference.
*/
- if (class == MC_MBUF && (wait & MCR_COMP))
+ if ((class == MC_MBUF || class == MC_CL) && (wait & MCR_COMP))
sp = (mcl_slab_t *)TAILQ_LAST(&m_slablist(class), mcl_slhead);
else
sp = (mcl_slab_t *)TAILQ_FIRST(&m_slablist(class));
if (class == MC_MBUF) {
sp->sl_head = buf->obj_next;
- VERIFY(sp->sl_head != NULL || sp->sl_refcnt == (NMBPCL - 1));
+ VERIFY(sp->sl_head != NULL || sp->sl_refcnt == (NMBPBG - 1));
+ } else if (class == MC_CL) {
+ sp->sl_head = buf->obj_next;
+ VERIFY(sp->sl_head != NULL || sp->sl_refcnt == (NCLPBG - 1));
} else {
sp->sl_head = NULL;
}
if (class == MC_CL) {
mbstat.m_clfree = (--m_infree(MC_CL)) + m_infree(MC_MBUF_CL);
/*
- * A 2K cluster slab can have at most 1 reference.
+ * A 2K cluster slab can have at most NCLPBG references.
*/
- VERIFY(sp->sl_refcnt == 1 && sp->sl_chunks == 1 &&
- sp->sl_len == m_maxsize(MC_CL) && sp->sl_head == NULL);
+ VERIFY(sp->sl_refcnt >= 1 && sp->sl_refcnt <= NCLPBG &&
+ sp->sl_chunks == NCLPBG &&
+ sp->sl_len == m_maxsize(MC_BIGCL));
+ VERIFY(sp->sl_refcnt < NCLPBG || sp->sl_head == NULL);
} else if (class == MC_BIGCL) {
- mcl_slab_t *nsp = sp->sl_next;
mbstat.m_bigclfree = (--m_infree(MC_BIGCL)) +
m_infree(MC_MBUF_BIGCL);
/*
- * Increment 2nd slab. A 4K big cluster takes
- * 2 slabs, each having at most 1 reference.
+ * A 4K cluster slab can have at most 1 reference.
*/
VERIFY(sp->sl_refcnt == 1 && sp->sl_chunks == 1 &&
- sp->sl_len == m_maxsize(MC_BIGCL) && sp->sl_head == NULL);
- /* Next slab must already be present */
- VERIFY(nsp != NULL);
- nsp->sl_refcnt++;
- VERIFY(!slab_is_detached(nsp));
- VERIFY(nsp->sl_class == MC_BIGCL &&
- nsp->sl_flags == (SLF_MAPPED | SLF_PARTIAL) &&
- nsp->sl_refcnt == 1 && nsp->sl_chunks == 0 &&
- nsp->sl_len == 0 && nsp->sl_base == sp->sl_base &&
- nsp->sl_head == NULL);
+ sp->sl_len == m_maxsize(class) && sp->sl_head == NULL);
} else if (class == MC_16KCL) {
mcl_slab_t *nsp;
int k;
--m_infree(MC_16KCL);
VERIFY(sp->sl_refcnt == 1 && sp->sl_chunks == 1 &&
- sp->sl_len == m_maxsize(MC_16KCL) && sp->sl_head == NULL);
+ sp->sl_len == m_maxsize(class) && sp->sl_head == NULL);
/*
- * Increment 2nd-8th slab. A 16K big cluster takes
- * 8 cluster slabs, each having at most 1 reference.
+ * Increment 2nd-Nth slab reference, where N is NSLABSP16KB.
+ * A 16KB big cluster takes NSLABSP16KB slabs, each having at
+ * most 1 reference.
*/
- for (nsp = sp, k = 1; k < (M16KCLBYTES / MCLBYTES); k++) {
+ for (nsp = sp, k = 1; k < NSLABSP16KB; k++) {
nsp = nsp->sl_next;
/* Next slab must already be present */
VERIFY(nsp != NULL);
nsp->sl_head == NULL);
}
} else {
- ASSERT(class == MC_MBUF);
+ VERIFY(class == MC_MBUF);
--m_infree(MC_MBUF);
/*
* If auditing is turned on, this check is
_MCHECK((struct mbuf *)buf);
/*
* Since we have incremented the reference count above,
- * an mbuf slab (formerly a 2K cluster slab that was cut
+ * an mbuf slab (formerly a 4KB cluster slab that was cut
* up into mbufs) must have a reference count between 1
- * and NMBPCL at this point.
+ * and NMBPBG at this point.
*/
- VERIFY(sp->sl_refcnt >= 1 &&
- (unsigned short)sp->sl_refcnt <= NMBPCL &&
- sp->sl_chunks == NMBPCL && sp->sl_len == m_maxsize(MC_CL));
- VERIFY((unsigned short)sp->sl_refcnt < NMBPCL ||
- sp->sl_head == NULL);
+ VERIFY(sp->sl_refcnt >= 1 && sp->sl_refcnt <= NMBPBG &&
+ sp->sl_chunks == NMBPBG &&
+ sp->sl_len == m_maxsize(MC_BIGCL));
+ VERIFY(sp->sl_refcnt < NMBPBG || sp->sl_head == NULL);
}
/* If empty, remove this slab from the class's freelist */
if (sp->sl_head == NULL) {
- VERIFY(class != MC_MBUF || sp->sl_refcnt == NMBPCL);
+ VERIFY(class != MC_MBUF || sp->sl_refcnt == NMBPBG);
+ VERIFY(class != MC_CL || sp->sl_refcnt == NCLPBG);
slab_remove(sp, class);
}
/* Decrement slab reference */
sp->sl_refcnt--;
- if (class == MC_CL || class == MC_BIGCL) {
+ if (class == MC_CL) {
+ VERIFY(IS_P2ALIGNED(buf, MCLBYTES));
+ /*
+ * A slab that has been splitted for 2KB clusters can have
+ * at most 1 outstanding reference at this point.
+ */
+ VERIFY(sp->sl_refcnt >= 0 && sp->sl_refcnt <= (NCLPBG - 1) &&
+ sp->sl_chunks == NCLPBG &&
+ sp->sl_len == m_maxsize(MC_BIGCL));
+ VERIFY(sp->sl_refcnt < (NCLPBG - 1) ||
+ (slab_is_detached(sp) && sp->sl_head == NULL));
+ } else if (class == MC_BIGCL) {
VERIFY(IS_P2ALIGNED(buf, MCLBYTES));
/*
- * A 2K cluster slab can have at most 1 reference
+ * A 4KB cluster slab can have at most 1 reference
* which must be 0 at this point.
*/
VERIFY(sp->sl_refcnt == 0 && sp->sl_chunks == 1 &&
sp->sl_len == m_maxsize(class) && sp->sl_head == NULL);
VERIFY(slab_is_detached(sp));
- if (class == MC_BIGCL) {
- mcl_slab_t *nsp = sp->sl_next;
- VERIFY(IS_P2ALIGNED(buf, NBPG));
- /* Next slab must already be present */
- VERIFY(nsp != NULL);
- /* Decrement 2nd slab reference */
- nsp->sl_refcnt--;
- /*
- * A 4K big cluster takes 2 slabs, both
- * must now have 0 reference.
- */
- VERIFY(slab_is_detached(nsp));
- VERIFY(nsp->sl_class == MC_BIGCL &&
- (nsp->sl_flags & (SLF_MAPPED | SLF_PARTIAL)) &&
- nsp->sl_refcnt == 0 && nsp->sl_chunks == 0 &&
- nsp->sl_len == 0 && nsp->sl_base == sp->sl_base &&
- nsp->sl_head == NULL);
- }
} else if (class == MC_16KCL) {
mcl_slab_t *nsp;
int k;
/*
- * A 16K cluster takes 8 cluster slabs, all must
+ * A 16KB cluster takes NSLABSP16KB slabs, all must
* now have 0 reference.
*/
- VERIFY(IS_P2ALIGNED(buf, NBPG));
+ VERIFY(IS_P2ALIGNED(buf, MBIGCLBYTES));
VERIFY(sp->sl_refcnt == 0 && sp->sl_chunks == 1 &&
- sp->sl_len == m_maxsize(MC_16KCL) && sp->sl_head == NULL);
+ sp->sl_len == m_maxsize(class) && sp->sl_head == NULL);
VERIFY(slab_is_detached(sp));
- for (nsp = sp, k = 1; k < (M16KCLBYTES / MCLBYTES); k++) {
+ for (nsp = sp, k = 1; k < NSLABSP16KB; k++) {
nsp = nsp->sl_next;
/* Next slab must already be present */
VERIFY(nsp != NULL);
}
} else {
/*
- * An mbuf slab has a total of NMBPL reference counts.
- * Since we have decremented the reference above, it
- * must now be between 0 and NMBPCL-1.
+ * A slab that has been splitted for mbufs has at most NMBPBG
+ * reference counts. Since we have decremented one reference
+ * above, it must now be between 0 and NMBPBG-1.
*/
- VERIFY(sp->sl_refcnt >= 0 &&
- (unsigned short)sp->sl_refcnt <= (NMBPCL - 1) &&
- sp->sl_chunks == NMBPCL && sp->sl_len == m_maxsize(MC_CL));
- VERIFY(sp->sl_refcnt < (NMBPCL - 1) ||
+ VERIFY(class == MC_MBUF);
+ VERIFY(sp->sl_refcnt >= 0 && sp->sl_refcnt <= (NMBPBG - 1) &&
+ sp->sl_chunks == NMBPBG &&
+ sp->sl_len == m_maxsize(MC_BIGCL));
+ VERIFY(sp->sl_refcnt < (NMBPBG - 1) ||
(slab_is_detached(sp) && sp->sl_head == NULL));
}
*/
if (mclaudit != NULL) {
mcache_audit_t *mca = mcl_audit_buf2mca(class, buf);
- mcache_audit_free_verify(mca, buf, 0, m_maxsize(class));
+ if (mclverify) {
+ mcache_audit_free_verify(mca, buf, 0, m_maxsize(class));
+ }
mca->mca_uflags &= ~MB_SCVALID;
}
if (class == MC_CL) {
mbstat.m_clfree = (++m_infree(MC_CL)) + m_infree(MC_MBUF_CL);
+ buf->obj_next = sp->sl_head;
} else if (class == MC_BIGCL) {
mbstat.m_bigclfree = (++m_infree(MC_BIGCL)) +
m_infree(MC_MBUF_BIGCL);
}
sp->sl_head = buf;
- /* All mbufs are freed; return the cluster that we stole earlier */
- if (sp->sl_refcnt == 0 && class == MC_MBUF) {
- int i = NMBPCL;
-
- m_total(MC_MBUF) -= NMBPCL;
+ /*
+ * If a slab has been splitted to either one which holds 2KB clusters,
+ * or one which holds mbufs, turn it back to one which holds a 4KB
+ * cluster.
+ */
+ if (class == MC_MBUF && sp->sl_refcnt == 0 &&
+ m_total(class) > m_minlimit(class) &&
+ m_total(MC_BIGCL) < m_maxlimit(MC_BIGCL)) {
+ int i = NMBPBG;
+
+ m_total(MC_BIGCL)++;
+ mbstat.m_bigclusters = m_total(MC_BIGCL);
+ m_total(MC_MBUF) -= NMBPBG;
mbstat.m_mbufs = m_total(MC_MBUF);
- m_infree(MC_MBUF) -= NMBPCL;
- mtype_stat_add(MT_FREE, -NMBPCL);
+ m_infree(MC_MBUF) -= NMBPBG;
+ mtype_stat_add(MT_FREE, -((unsigned)NMBPBG));
+
+ VERIFY(m_total(MC_BIGCL) <= m_maxlimit(MC_BIGCL));
+ VERIFY(m_total(MC_MBUF) >= m_minlimit(MC_MBUF));
while (i--) {
struct mbuf *m = sp->sl_head;
/* Remove the slab from the mbuf class's slab list */
slab_remove(sp, class);
- /* Reinitialize it as a 2K cluster slab */
- slab_init(sp, MC_CL, sp->sl_flags, sp->sl_base, sp->sl_base,
+ /* Reinitialize it as a 4KB cluster slab */
+ slab_init(sp, MC_BIGCL, sp->sl_flags, sp->sl_base, sp->sl_base,
sp->sl_len, 0, 1);
- if (mclaudit != NULL)
+ if (mclverify) {
mcache_set_pattern(MCACHE_FREE_PATTERN,
- (caddr_t)sp->sl_head, m_maxsize(MC_CL));
+ (caddr_t)sp->sl_head, m_maxsize(MC_BIGCL));
+ }
+ mbstat.m_bigclfree = (++m_infree(MC_BIGCL)) +
+ m_infree(MC_MBUF_BIGCL);
- mbstat.m_clfree = (++m_infree(MC_CL)) + m_infree(MC_MBUF_CL);
+ VERIFY(slab_is_detached(sp));
+ /* And finally switch class */
+ class = MC_BIGCL;
+ } else if (class == MC_CL && sp->sl_refcnt == 0 &&
+ m_total(class) > m_minlimit(class) &&
+ m_total(MC_BIGCL) < m_maxlimit(MC_BIGCL)) {
+ int i = NCLPBG;
+
+ m_total(MC_BIGCL)++;
+ mbstat.m_bigclusters = m_total(MC_BIGCL);
+ m_total(MC_CL) -= NCLPBG;
+ mbstat.m_clusters = m_total(MC_CL);
+ m_infree(MC_CL) -= NCLPBG;
+ VERIFY(m_total(MC_BIGCL) <= m_maxlimit(MC_BIGCL));
+ VERIFY(m_total(MC_CL) >= m_minlimit(MC_CL));
+
+ while (i--) {
+ union mcluster *c = sp->sl_head;
+ VERIFY(c != NULL);
+ sp->sl_head = c->mcl_next;
+ c->mcl_next = NULL;
+ }
+ VERIFY(sp->sl_head == NULL);
+
+ /* Remove the slab from the 2KB cluster class's slab list */
+ slab_remove(sp, class);
+
+ /* Reinitialize it as a 4KB cluster slab */
+ slab_init(sp, MC_BIGCL, sp->sl_flags, sp->sl_base, sp->sl_base,
+ sp->sl_len, 0, 1);
+
+ if (mclverify) {
+ mcache_set_pattern(MCACHE_FREE_PATTERN,
+ (caddr_t)sp->sl_head, m_maxsize(MC_BIGCL));
+ }
+ mbstat.m_bigclfree = (++m_infree(MC_BIGCL)) +
+ m_infree(MC_MBUF_BIGCL);
VERIFY(slab_is_detached(sp));
/* And finally switch class */
- class = MC_CL;
+ class = MC_BIGCL;
}
/* Reinsert the slab to the class's slab list */
if (mbuf_cached_above(class, wait))
break;
+ /* watchdog checkpoint */
+ mbuf_watchdog();
+
/* We have nothing and cannot block; give up */
if (wait & MCR_NOSLEEP) {
if (!(wait & MCR_TRYHARD)) {
ASSERT(!(mca->mca_uflags & MB_SCVALID));
}
/* Record this transaction */
- mcache_buffer_log(mca, list, m_cache(class));
+ if (mcltrace)
+ mcache_buffer_log(mca, list, m_cache(class));
+
if (alloc)
mca->mca_uflags |= MB_INUSE;
else
clsp = slab_get(cl);
VERIFY(m->m_flags == M_EXT && cl != NULL);
VERIFY(MEXT_RFA(m) != NULL && MBUF_IS_COMPOSITE(m));
- VERIFY(clsp->sl_refcnt == 1);
- if (class == MC_MBUF_BIGCL) {
- nsp = clsp->sl_next;
- /* Next slab must already be present */
- VERIFY(nsp != NULL);
- VERIFY(nsp->sl_refcnt == 1);
- } else if (class == MC_MBUF_16KCL) {
+
+ if (class == MC_MBUF_CL) {
+ VERIFY(clsp->sl_refcnt >= 1 &&
+ clsp->sl_refcnt <= NCLPBG);
+ } else {
+ VERIFY(clsp->sl_refcnt == 1);
+ }
+
+ if (class == MC_MBUF_16KCL) {
int k;
- for (nsp = clsp, k = 1;
- k < (M16KCLBYTES / MCLBYTES); k++) {
+ for (nsp = clsp, k = 1; k < NSLABSP16KB; k++) {
nsp = nsp->sl_next;
/* Next slab must already be present */
VERIFY(nsp != NULL);
mcache_obj_t *ref_list = NULL;
mcl_slab_t *clsp, *nsp;
void *cl;
+ mbuf_class_t cl_class;
ASSERT(MBUF_CLASS_VALID(class) && MBUF_CLASS_COMPOSITE(class));
VERIFY(class != MC_MBUF_16KCL || njcl > 0);
lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
+ if (class == MC_MBUF_CL) {
+ cl_class = MC_CL;
+ } else if (class == MC_MBUF_BIGCL) {
+ cl_class = MC_BIGCL;
+ } else {
+ VERIFY(class == MC_MBUF_16KCL);
+ cl_class = MC_16KCL;
+ }
+
o = tail = list;
while ((m = ms = (struct mbuf *)o) != NULL) {
/* Do the mbuf sanity checks */
if (mclaudit != NULL) {
mca = mcl_audit_buf2mca(MC_MBUF, (mcache_obj_t *)m);
- mcache_audit_free_verify(mca, m, 0, m_maxsize(MC_MBUF));
+ if (mclverify) {
+ mcache_audit_free_verify(mca, m, 0,
+ m_maxsize(MC_MBUF));
+ }
ms = (struct mbuf *)mca->mca_contents;
}
/* Do the cluster sanity checks */
cl = ms->m_ext.ext_buf;
clsp = slab_get(cl);
- if (mclaudit != NULL) {
- size_t size;
- if (class == MC_MBUF_CL)
- size = m_maxsize(MC_CL);
- else if (class == MC_MBUF_BIGCL)
- size = m_maxsize(MC_BIGCL);
- else
- size = m_maxsize(MC_16KCL);
- mcache_audit_free_verify(mcl_audit_buf2mca(MC_CL,
+ if (mclverify) {
+ size_t size = m_maxsize(cl_class);
+ mcache_audit_free_verify(mcl_audit_buf2mca(cl_class,
(mcache_obj_t *)cl), cl, 0, size);
}
VERIFY(ms->m_type == MT_FREE);
VERIFY(ms->m_flags == M_EXT);
VERIFY(MEXT_RFA(ms) != NULL && MBUF_IS_COMPOSITE(ms));
- VERIFY(clsp->sl_refcnt == 1);
- if (class == MC_MBUF_BIGCL) {
- nsp = clsp->sl_next;
- /* Next slab must already be present */
- VERIFY(nsp != NULL);
- VERIFY(nsp->sl_refcnt == 1);
- } else if (class == MC_MBUF_16KCL) {
+ if (cl_class == MC_CL) {
+ VERIFY(clsp->sl_refcnt >= 1 &&
+ clsp->sl_refcnt <= NCLPBG);
+ } else {
+ VERIFY(clsp->sl_refcnt == 1);
+ }
+ if (cl_class == MC_16KCL) {
int k;
- for (nsp = clsp, k = 1;
- k < (M16KCLBYTES / MCLBYTES); k++) {
+ for (nsp = clsp, k = 1; k < NSLABSP16KB; k++) {
nsp = nsp->sl_next;
/* Next slab must already be present */
VERIFY(nsp != NULL);
MEXT_REF(m) = 0;
MEXT_FLAGS(m) = 0;
- rfa = (mcache_obj_t *)MEXT_RFA(m);
+ rfa = (mcache_obj_t *)(void *)MEXT_RFA(m);
rfa->obj_next = ref_list;
ref_list = rfa;
MEXT_RFA(m) = NULL;
int wait)
{
mbuf_class_t class = (mbuf_class_t)arg;
- mcache_t *cp = NULL;
+ mbuf_class_t cl_class = 0;
unsigned int num = 0, cnum = 0, want = needed;
mcache_obj_t *ref_list = NULL;
mcache_obj_t *mp_list = NULL;
if (!(wait & MCR_NOSLEEP))
wait |= MCR_FAILOK;
+ /* allocate mbufs */
needed = mcache_alloc_ext(m_cache(MC_MBUF), &mp_list, needed, wait);
if (needed == 0) {
ASSERT(mp_list == NULL);
goto fail;
}
- if (class == MC_MBUF_CL)
- cp = m_cache(MC_CL);
- else if (class == MC_MBUF_BIGCL)
- cp = m_cache(MC_BIGCL);
- else
- cp = m_cache(MC_16KCL);
- needed = mcache_alloc_ext(cp, &clp_list, needed, wait);
+
+ /* allocate clusters */
+ if (class == MC_MBUF_CL) {
+ cl_class = MC_CL;
+ } else if (class == MC_MBUF_BIGCL) {
+ cl_class = MC_BIGCL;
+ } else {
+ VERIFY(class == MC_MBUF_16KCL);
+ cl_class = MC_16KCL;
+ }
+ needed = mcache_alloc_ext(m_cache(cl_class), &clp_list, needed, wait);
if (needed == 0) {
ASSERT(clp_list == NULL);
goto fail;
}
+
needed = mcache_alloc_ext(ref_cache, &ref_list, needed, wait);
if (needed == 0) {
ASSERT(ref_list == NULL);
rfa = (struct ext_ref *)ref_list;
ref_list = ref_list->obj_next;
- ((mcache_obj_t *)rfa)->obj_next = NULL;
+ ((mcache_obj_t *)(void *)rfa)->obj_next = NULL;
/*
* If auditing is enabled, construct the shadow mbuf
*/
if (mclaudit != NULL) {
mcache_audit_t *mca, *cl_mca;
- size_t size;
lck_mtx_lock(mbuf_mlock);
mca = mcl_audit_buf2mca(MC_MBUF, (mcache_obj_t *)m);
lck_mtx_unlock(mbuf_mlock);
/* Technically, they are in the freelist */
- mcache_set_pattern(MCACHE_FREE_PATTERN, m,
- m_maxsize(MC_MBUF));
- if (class == MC_MBUF_CL)
- size = m_maxsize(MC_CL);
- else if (class == MC_MBUF_BIGCL)
- size = m_maxsize(MC_BIGCL);
- else
- size = m_maxsize(MC_16KCL);
- mcache_set_pattern(MCACHE_FREE_PATTERN, cl, size);
+ if (mclverify) {
+ size_t size;
+
+ mcache_set_pattern(MCACHE_FREE_PATTERN, m,
+ m_maxsize(MC_MBUF));
+
+ if (class == MC_MBUF_CL)
+ size = m_maxsize(MC_CL);
+ else if (class == MC_MBUF_BIGCL)
+ size = m_maxsize(MC_BIGCL);
+ else
+ size = m_maxsize(MC_16KCL);
+
+ mcache_set_pattern(MCACHE_FREE_PATTERN, cl,
+ size);
+ }
}
MBUF_INIT(ms, 0, MT_FREE);
if (mp_list != NULL)
mcache_free_ext(m_cache(MC_MBUF), mp_list);
if (clp_list != NULL)
- mcache_free_ext(cp, clp_list);
+ mcache_free_ext(m_cache(cl_class), clp_list);
if (ref_list != NULL)
mcache_free_ext(ref_cache, ref_list);
/* Do the mbuf sanity checks and record its transaction */
mca = mcl_audit_buf2mca(MC_MBUF, (mcache_obj_t *)m);
mcl_audit_mbuf(mca, m, TRUE, alloc);
- mcache_buffer_log(mca, m, m_cache(class));
+ if (mcltrace)
+ mcache_buffer_log(mca, m, m_cache(class));
+
if (alloc)
mca->mca_uflags |= MB_COMP_INUSE;
else
* freeing, since the contents of the actual mbuf has been
* pattern-filled by the above call to mcl_audit_mbuf().
*/
- if (!alloc)
+ if (!alloc && mclverify)
ms = (struct mbuf *)mca->mca_contents;
/* Do the cluster sanity checks and record its transaction */
clsp = slab_get(cl);
VERIFY(ms->m_flags == M_EXT && cl != NULL);
VERIFY(MEXT_RFA(ms) != NULL && MBUF_IS_COMPOSITE(ms));
- VERIFY(clsp->sl_refcnt == 1);
- if (class == MC_MBUF_BIGCL) {
- nsp = clsp->sl_next;
- /* Next slab must already be present */
- VERIFY(nsp != NULL);
- VERIFY(nsp->sl_refcnt == 1);
- } else if (class == MC_MBUF_16KCL) {
+ if (class == MC_MBUF_CL)
+ VERIFY(clsp->sl_refcnt >= 1 &&
+ clsp->sl_refcnt <= NCLPBG);
+ else
+ VERIFY(clsp->sl_refcnt == 1);
+
+ if (class == MC_MBUF_16KCL) {
int k;
- for (nsp = clsp, k = 1;
- k < (M16KCLBYTES / MCLBYTES); k++) {
+ for (nsp = clsp, k = 1; k < NSLABSP16KB; k++) {
nsp = nsp->sl_next;
/* Next slab must already be present */
VERIFY(nsp != NULL);
else
size = m_maxsize(MC_16KCL);
mcl_audit_cluster(mca, cl, size, alloc, FALSE);
- mcache_buffer_log(mca, cl, m_cache(class));
+ if (mcltrace)
+ mcache_buffer_log(mca, cl, m_cache(class));
+
if (alloc)
mca->mca_uflags |= MB_COMP_INUSE;
else
{
int i;
vm_size_t size = 0;
- int numpages = 0;
+ int numpages = 0, large_buffer = (bufsize == m_maxsize(MC_16KCL));
vm_offset_t page = 0;
mcache_audit_t *mca_list = NULL;
mcache_obj_t *con_list = NULL;
mcl_slab_t *sp;
- VERIFY(bufsize == m_maxsize(MC_CL) ||
- bufsize == m_maxsize(MC_BIGCL) || bufsize == m_maxsize(MC_16KCL));
+ VERIFY(bufsize == m_maxsize(MC_BIGCL) ||
+ bufsize == m_maxsize(MC_16KCL));
lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
lck_mtx_unlock(mbuf_mlock);
- size = round_page_32(i * bufsize);
- page = kmem_mb_alloc(mb_map, size);
+ size = round_page(i * bufsize);
+ page = kmem_mb_alloc(mb_map, size, large_buffer);
+
+ /*
+ * If we did ask for "n" 16KB physically contiguous chunks
+ * and didn't get them, then please try again without this
+ * restriction.
+ */
+ if (large_buffer && page == 0)
+ page = kmem_mb_alloc(mb_map, size, 0);
if (page == 0) {
- if (bufsize <= m_maxsize(MC_BIGCL)) {
- /* Try for 1 page if failed, only for 2KB/4KB request */
+ if (bufsize == m_maxsize(MC_BIGCL)) {
+ /* Try for 1 page if failed, only 4KB request */
size = NBPG;
- page = kmem_mb_alloc(mb_map, size);
+ page = kmem_mb_alloc(mb_map, size, 0);
}
if (page == 0) {
/*
* Yes, I realize this is a waste of memory for clusters
* that never get transformed into mbufs, as we may end
- * up with NMBPCL-1 unused audit structures per cluster.
+ * up with NMBPBG-1 unused audit structures per cluster.
* But doing so tremendously simplifies the allocation
* strategy, since at this point we are not holding the
- * mbuf lock and the caller is okay to be blocked. For
- * the case of big clusters, we allocate one structure
- * for each as we never turn them into mbufs.
+ * mbuf lock and the caller is okay to be blocked.
*/
- if (bufsize == m_maxsize(MC_CL)) {
- needed = numpages * 2 * NMBPCL;
+ if (bufsize == m_maxsize(MC_BIGCL)) {
+ needed = numpages * NMBPBG;
i = mcache_alloc_ext(mcl_audit_con_cache,
&con_list, needed, MCR_SLEEP);
VERIFY(con_list != NULL && i == needed);
- } else if (bufsize == m_maxsize(MC_BIGCL)) {
- needed = numpages;
} else {
- needed = numpages / (M16KCLBYTES / NBPG);
+ needed = numpages / NSLABSP16KB;
}
i = mcache_alloc_ext(mcache_audit_cache,
for (i = 0; i < numpages; i++, page += NBPG) {
ppnum_t offset = ((char *)page - (char *)mbutl) / NBPG;
- ppnum_t new_page = pmap_find_phys(kernel_pmap,
- (vm_address_t)page);
+ ppnum_t new_page = pmap_find_phys(kernel_pmap, page);
/*
* In the case of no mapper being available the following
* code noops and returns the input page; if there is a
* mapper the appropriate I/O page is returned.
*/
- new_page = IOMapperInsertPage(mcl_paddr_base, offset, new_page);
+ VERIFY(offset < mcl_pages);
+ if (mcl_paddr_base) {
+ bzero((void *)(uintptr_t) page, page_size);
+ new_page = IOMapperInsertPage(mcl_paddr_base, offset, new_page);
+ }
mcl_paddr[offset] = new_page << PGSHIFT;
/* Pattern-fill this fresh page */
- if (mclaudit != NULL)
+ if (mclverify) {
mcache_set_pattern(MCACHE_FREE_PATTERN,
(caddr_t)page, NBPG);
-
- if (bufsize == m_maxsize(MC_CL)) {
- union mcluster *mcl = (union mcluster *)page;
-
- /* 1st cluster in the page */
- sp = slab_get(mcl);
- if (mclaudit != NULL)
- mcl_audit_init(mcl, &mca_list, &con_list,
- AUDIT_CONTENTS_SIZE, NMBPCL);
-
- VERIFY(sp->sl_refcnt == 0 && sp->sl_flags == 0);
- slab_init(sp, MC_CL, SLF_MAPPED,
- mcl, mcl, bufsize, 0, 1);
-
- /* Insert this slab */
- slab_insert(sp, MC_CL);
-
- /* Update stats now since slab_get() drops the lock */
- mbstat.m_clfree = ++m_infree(MC_CL) +
- m_infree(MC_MBUF_CL);
- mbstat.m_clusters = ++m_total(MC_CL);
- VERIFY(m_total(MC_CL) <= m_maxlimit(MC_CL));
-
- /* 2nd cluster in the page */
- sp = slab_get(++mcl);
- if (mclaudit != NULL)
- mcl_audit_init(mcl, &mca_list, &con_list,
- AUDIT_CONTENTS_SIZE, NMBPCL);
-
- VERIFY(sp->sl_refcnt == 0 && sp->sl_flags == 0);
- slab_init(sp, MC_CL, SLF_MAPPED,
- mcl, mcl, bufsize, 0, 1);
-
- /* Insert this slab */
- slab_insert(sp, MC_CL);
-
- /* Update stats now since slab_get() drops the lock */
- mbstat.m_clfree = ++m_infree(MC_CL) +
- m_infree(MC_MBUF_CL);
- mbstat.m_clusters = ++m_total(MC_CL);
- VERIFY(m_total(MC_CL) <= m_maxlimit(MC_CL));
- } else if (bufsize == m_maxsize(MC_BIGCL)) {
+ }
+ if (bufsize == m_maxsize(MC_BIGCL)) {
union mbigcluster *mbc = (union mbigcluster *)page;
- mcl_slab_t *nsp;
/* One for the entire page */
sp = slab_get(mbc);
- if (mclaudit != NULL)
- mcl_audit_init(mbc, &mca_list, NULL, 0, 1);
-
+ if (mclaudit != NULL) {
+ mcl_audit_init(mbc, &mca_list, &con_list,
+ AUDIT_CONTENTS_SIZE, NMBPBG);
+ }
VERIFY(sp->sl_refcnt == 0 && sp->sl_flags == 0);
slab_init(sp, MC_BIGCL, SLF_MAPPED,
mbc, mbc, bufsize, 0, 1);
- /* 2nd cluster's slab is part of the previous one */
- nsp = slab_get(((union mcluster *)page) + 1);
- slab_init(nsp, MC_BIGCL, SLF_MAPPED | SLF_PARTIAL,
- mbc, NULL, 0, 0, 0);
-
/* Insert this slab */
slab_insert(sp, MC_BIGCL);
m_infree(MC_MBUF_BIGCL);
mbstat.m_bigclusters = ++m_total(MC_BIGCL);
VERIFY(m_total(MC_BIGCL) <= m_maxlimit(MC_BIGCL));
- } else if ((i % (M16KCLBYTES / NBPG)) == 0) {
+ } else if ((i % NSLABSP16KB) == 0) {
union m16kcluster *m16kcl = (union m16kcluster *)page;
mcl_slab_t *nsp;
int k;
slab_init(sp, MC_16KCL, SLF_MAPPED,
m16kcl, m16kcl, bufsize, 0, 1);
- /* 2nd-8th cluster's slab is part of the first one */
- for (k = 1; k < (M16KCLBYTES / MCLBYTES); k++) {
- nsp = slab_get(((union mcluster *)page) + k);
+ /*
+ * 2nd-Nth page's slab is part of the first one,
+ * where N is NSLABSP16KB.
+ */
+ for (k = 1; k < NSLABSP16KB; k++) {
+ nsp = slab_get(((union mbigcluster *)page) + k);
VERIFY(nsp->sl_refcnt == 0 &&
nsp->sl_flags == 0);
slab_init(nsp, MC_16KCL,
wakeup(mb_clalloc_waitchan);
}
- if (bufsize == m_maxsize(MC_CL))
- return (numpages << 1);
- else if (bufsize == m_maxsize(MC_BIGCL))
+ if (bufsize == m_maxsize(MC_BIGCL))
return (numpages);
VERIFY(bufsize == m_maxsize(MC_16KCL));
- return (numpages / (M16KCLBYTES / NBPG));
+ return (numpages / NSLABSP16KB);
out:
lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
* When non-blocking we kick a thread if we have to grow the
* pool or if the number of free clusters is less than requested.
*/
- if (bufsize == m_maxsize(MC_CL)) {
- if (i > 0) {
- /*
- * Remember total number of clusters needed
- * at this time.
- */
- i += m_total(MC_CL);
- if (i > mbuf_expand_mcl) {
- mbuf_expand_mcl = i;
- if (mbuf_worker_ready)
- wakeup((caddr_t)&mbuf_worker_run);
- }
- }
-
- if (m_infree(MC_CL) >= num)
- return (1);
- } else if (bufsize == m_maxsize(MC_BIGCL)) {
+ if (bufsize == m_maxsize(MC_BIGCL)) {
if (i > 0) {
/*
* Remember total number of 4KB clusters needed
freelist_populate(mbuf_class_t class, unsigned int num, int wait)
{
mcache_obj_t *o = NULL;
- int i;
+ int i, numpages = 0, count;
VERIFY(class == MC_MBUF || class == MC_CL || class == MC_BIGCL ||
class == MC_16KCL);
-#if CONFIG_MBUF_NOEXPAND
- if ((mbstat.m_mbufs / NMBPCL) >= maxmbufcl) {
-#if DEBUG
- static int printonce = 1;
- if (printonce == 1) {
- printonce = 0;
- printf("m_expand failed, allocated %ld out of %d "
- "clusters\n", mbstat.m_mbufs / NMBPCL,
- nmbclusters);
- }
-#endif /* DEBUG */
- return (0);
- }
-#endif /* CONFIG_MBUF_NOEXPAND */
-
lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
switch (class) {
case MC_MBUF:
case MC_CL:
- i = m_clalloc(num, wait, m_maxsize(MC_CL));
+ case MC_BIGCL:
+ numpages = (num * m_size(class) + NBPG - 1) / NBPG;
+ i = m_clalloc(numpages, wait, m_maxsize(MC_BIGCL));
- /* Respect the 2K clusters minimum limit */
- if (m_total(MC_CL) == m_maxlimit(MC_CL) &&
- m_infree(MC_CL) <= m_minlimit(MC_CL)) {
- if (class != MC_CL || (wait & MCR_COMP))
+ /* Respect the 4KB clusters minimum limit */
+ if (m_total(MC_BIGCL) == m_maxlimit(MC_BIGCL) &&
+ m_infree(MC_BIGCL) <= m_minlimit(MC_BIGCL)) {
+ if (class != MC_BIGCL || (wait & MCR_COMP))
return (0);
}
- if (class == MC_CL)
+ if (class == MC_BIGCL)
return (i != 0);
break;
- case MC_BIGCL:
case MC_16KCL:
return (m_clalloc(num, wait, m_maxsize(class)) != 0);
/* NOTREACHED */
/* NOTREACHED */
}
- /* Steal a cluster and cut it up to create NMBPCL mbufs */
- if ((o = slab_alloc(MC_CL, wait)) != NULL) {
+ VERIFY(class == MC_MBUF || class == MC_CL);
+
+ /* how many objects will we cut the page into? */
+ int numobj = (class == MC_MBUF ? NMBPBG : NCLPBG);
+
+ for (count = 0; count < numpages; count++) {
+
+ /* respect totals, minlimit, maxlimit */
+ if (m_total(MC_BIGCL) <= m_minlimit(MC_BIGCL) ||
+ m_total(class) >= m_maxlimit(class))
+ break;
+
+ if ((o = slab_alloc(MC_BIGCL, wait)) == NULL)
+ break;
+
struct mbuf *m = (struct mbuf *)o;
- mcache_audit_t *mca = NULL;
+ union mcluster *c = (union mcluster *)o;
mcl_slab_t *sp = slab_get(o);
+ mcache_audit_t *mca = NULL;
VERIFY(slab_is_detached(sp) &&
(sp->sl_flags & (SLF_MAPPED | SLF_PARTIAL)) == SLF_MAPPED);
- /* Make sure that the cluster is unmolested while in freelist */
- if (mclaudit != NULL) {
- mca = mcl_audit_buf2mca(MC_CL, o);
- mcache_audit_free_verify(mca, o, 0, m_maxsize(MC_CL));
+ /*
+ * Make sure that the cluster is unmolested
+ * while in freelist
+ */
+ if (mclverify) {
+ mca = mcl_audit_buf2mca(MC_BIGCL, o);
+ mcache_audit_free_verify(mca, o, 0,
+ m_maxsize(MC_BIGCL));
}
- /* Reinitialize it as an mbuf slab */
- slab_init(sp, MC_MBUF, sp->sl_flags, sp->sl_base, NULL,
- sp->sl_len, 0, NMBPCL);
+ /* Reinitialize it as an mbuf or 2K slab */
+ slab_init(sp, class, sp->sl_flags,
+ sp->sl_base, NULL, sp->sl_len, 0, numobj);
- VERIFY(m == (struct mbuf *)sp->sl_base);
+ VERIFY(o == (mcache_obj_t *)sp->sl_base);
VERIFY(sp->sl_head == NULL);
- m_total(MC_MBUF) += NMBPCL;
- mbstat.m_mbufs = m_total(MC_MBUF);
- m_infree(MC_MBUF) += NMBPCL;
- mtype_stat_add(MT_FREE, NMBPCL);
+ VERIFY(m_total(MC_BIGCL) > 0);
+ m_total(MC_BIGCL)--;
+ mbstat.m_bigclusters = m_total(MC_BIGCL);
- i = NMBPCL;
- while (i--) {
- /*
- * If auditing is enabled, construct the shadow mbuf
- * in the audit structure instead of the actual one.
- * mbuf_slab_audit() will take care of restoring the
- * contents after the integrity check.
- */
- if (mclaudit != NULL) {
- struct mbuf *ms;
- mca = mcl_audit_buf2mca(MC_MBUF,
- (mcache_obj_t *)m);
- ms = ((struct mbuf *)mca->mca_contents);
- ms->m_type = MT_FREE;
- } else {
- m->m_type = MT_FREE;
+ m_total(class) += numobj;
+ m_infree(class) += numobj;
+
+ VERIFY(m_total(MC_BIGCL) >= m_minlimit(MC_BIGCL));
+ VERIFY(m_total(class) <= m_maxlimit(class));
+
+ i = numobj;
+ if (class == MC_MBUF) {
+ mbstat.m_mbufs = m_total(MC_MBUF);
+ mtype_stat_add(MT_FREE, NMBPBG);
+ while (i--) {
+ /*
+ * If auditing is enabled, construct the
+ * shadow mbuf in the audit structure
+ * instead of the actual one.
+ * mbuf_slab_audit() will take care of
+ * restoring the contents after the
+ * integrity check.
+ */
+ if (mclaudit != NULL) {
+ struct mbuf *ms;
+ mca = mcl_audit_buf2mca(MC_MBUF,
+ (mcache_obj_t *)m);
+ ms = ((struct mbuf *)
+ mca->mca_contents);
+ ms->m_type = MT_FREE;
+ } else {
+ m->m_type = MT_FREE;
+ }
+ m->m_next = sp->sl_head;
+ sp->sl_head = (void *)m++;
+ }
+ } else { /* MC_CL */
+ mbstat.m_clfree =
+ m_infree(MC_CL) + m_infree(MC_MBUF_CL);
+ mbstat.m_clusters = m_total(MC_CL);
+ while (i--) {
+ c->mcl_next = sp->sl_head;
+ sp->sl_head = (void *)c++;
}
- m->m_next = sp->sl_head;
- sp->sl_head = (void *)m++;
}
- /* Insert it into the mbuf class's slab list */
- slab_insert(sp, MC_MBUF);
+ /* Insert into the mbuf or 2k slab list */
+ slab_insert(sp, class);
if ((i = mb_waiters) > 0)
mb_waiters = 0;
if (i != 0)
wakeup(mb_waitchan);
-
- return (1);
}
+ return (count != 0);
+}
- return (0);
+/*
+ * For each class, initialize the freelist to hold m_minlimit() objects.
+ */
+static void
+freelist_init(mbuf_class_t class)
+{
+ lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
+
+ VERIFY(class == MC_CL || class == MC_BIGCL);
+ VERIFY(m_total(class) == 0);
+ VERIFY(m_minlimit(class) > 0);
+
+ while (m_total(class) < m_minlimit(class))
+ (void) freelist_populate(class, m_minlimit(class), M_WAIT);
+
+ VERIFY(m_total(class) >= m_minlimit(class));
}
/*
switch (class) {
case MC_MBUF:
m_wantpurge(MC_CL)++;
+ m_wantpurge(MC_BIGCL)++;
m_wantpurge(MC_MBUF_CL)++;
m_wantpurge(MC_MBUF_BIGCL)++;
break;
case MC_CL:
m_wantpurge(MC_MBUF)++;
+ m_wantpurge(MC_BIGCL)++;
+ m_wantpurge(MC_MBUF_BIGCL)++;
if (!comp)
m_wantpurge(MC_MBUF_CL)++;
break;
case MC_BIGCL:
+ m_wantpurge(MC_MBUF)++;
+ m_wantpurge(MC_CL)++;
+ m_wantpurge(MC_MBUF_CL)++;
if (!comp)
m_wantpurge(MC_MBUF_BIGCL)++;
break;
if (m->m_flags & M_EXT) {
u_int32_t refcnt;
- u_int32_t flags;
+ u_int32_t composite;
refcnt = m_decref(m);
- flags = MEXT_FLAGS(m);
- if (refcnt == 0 && flags == 0) {
+ composite = (MEXT_FLAGS(m) & EXTF_COMPOSITE);
+ if (refcnt == 0 && !composite) {
if (m->m_ext.ext_free == NULL) {
mcache_free(m_cache(MC_CL), m->m_ext.ext_buf);
} else if (m->m_ext.ext_free == m_bigfree) {
}
mcache_free(ref_cache, MEXT_RFA(m));
MEXT_RFA(m) = NULL;
- } else if (refcnt == 0 && (flags & EXTF_COMPOSITE)) {
+ } else if (refcnt == 0 && composite) {
VERIFY(m->m_type != MT_FREE);
mtype_stat_dec(m->m_type);
m->m_len = 0;
m->m_next = m->m_nextpkt = NULL;
+ MEXT_FLAGS(m) &= ~EXTF_READONLY;
+
/* "Free" into the intermediate cache */
if (m->m_ext.ext_free == NULL) {
mcache_free(m_cache(MC_MBUF_CL), m);
if (m->m_flags & M_EXT) {
u_int32_t refcnt;
- u_int32_t flags;
+ u_int32_t composite;
refcnt = m_decref(m);
- flags = MEXT_FLAGS(m);
- if (refcnt == 0 && flags == 0) {
+ composite = (MEXT_FLAGS(m) & EXTF_COMPOSITE);
+ if (refcnt == 0 && !composite) {
if (m->m_ext.ext_free == NULL) {
mcache_free(m_cache(MC_CL), m->m_ext.ext_buf);
} else if (m->m_ext.ext_free == m_bigfree) {
}
/* Re-use the reference structure */
rfa = MEXT_RFA(m);
- } else if (refcnt == 0 && (flags & EXTF_COMPOSITE)) {
+ } else if (refcnt == 0 && composite) {
VERIFY(m->m_type != MT_FREE);
mtype_stat_dec(m->m_type);
m->m_flags = M_EXT;
m->m_len = 0;
m->m_next = m->m_nextpkt = NULL;
+
+ MEXT_FLAGS(m) &= ~EXTF_READONLY;
+
/* "Free" into the intermediate cache */
if (m->m_ext.ext_free == NULL) {
mcache_free(m_cache(MC_MBUF_CL), m);
return (m);
}
+/*
+ * Perform `fast' allocation mbuf clusters from a cache of recently-freed
+ * clusters. (If the cache is empty, new clusters are allocated en-masse.)
+ */
+struct mbuf *
+m_getcl(int wait, int type, int flags)
+{
+ struct mbuf *m;
+ int mcflags = MSLEEPF(wait);
+ int hdr = (flags & M_PKTHDR);
+
+ /* Is this due to a non-blocking retry? If so, then try harder */
+ if (mcflags & MCR_NOSLEEP)
+ mcflags |= MCR_TRYHARD;
+
+ m = mcache_alloc(m_cache(MC_MBUF_CL), mcflags);
+ if (m != NULL) {
+ u_int32_t flag;
+ struct ext_ref *rfa;
+ void *cl;
+
+ VERIFY(m->m_type == MT_FREE && m->m_flags == M_EXT);
+ cl = m->m_ext.ext_buf;
+ rfa = MEXT_RFA(m);
+
+ ASSERT(cl != NULL && rfa != NULL);
+ VERIFY(MBUF_IS_COMPOSITE(m) && m->m_ext.ext_free == NULL);
+
+ flag = MEXT_FLAGS(m);
+
+ MBUF_INIT(m, hdr, type);
+ MBUF_CL_INIT(m, cl, rfa, 1, flag);
+
+ mtype_stat_inc(type);
+ mtype_stat_dec(MT_FREE);
+#if CONFIG_MACF_NET
+ if (hdr && mac_init_mbuf(m, wait) != 0) {
+ m_freem(m);
+ return (NULL);
+ }
+#endif /* MAC_NET */
+ }
+ return (m);
+}
+
/* m_mclget() add an mbuf cluster to a normal mbuf */
struct mbuf *
m_mclget(struct mbuf *m, int wait)
/*
* mcl_hasreference() checks if a cluster of an mbuf is referenced by
- * another mbuf
+ * another mbuf; see comments in m_incref() regarding EXTF_READONLY.
*/
int
m_mclhasreference(struct mbuf *m)
ASSERT(MEXT_RFA(m) != NULL);
- return (MEXT_REF(m) > 1);
+ return ((MEXT_FLAGS(m) & EXTF_READONLY) ? 1 : 0);
}
__private_extern__ caddr_t
return (m);
}
-/* */
+/*
+ * "Move" mbuf pkthdr from "from" to "to".
+ * "from" must have M_PKTHDR set, and "to" must be empty.
+ */
void
m_copy_pkthdr(struct mbuf *to, struct mbuf *from)
{
-#if CONFIG_MACF_NET
/* We will be taking over the tags of 'to' */
if (to->m_flags & M_PKTHDR)
m_tag_delete_chain(to, NULL);
-#endif /* MAC_NET */
to->m_pkthdr = from->m_pkthdr; /* especially tags */
m_tag_init(from); /* purge tags from src */
- to->m_flags = from->m_flags & M_COPYFLAGS;
- to->m_data = (to)->m_pktdat;
+ m_service_class_init(from); /* reset svc class from src */
+ from->m_pkthdr.aux_flags = 0; /* clear aux flags from src */
+ to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
+ if ((to->m_flags & M_EXT) == 0)
+ to->m_data = to->m_pktdat;
}
/*
static int
m_dup_pkthdr(struct mbuf *to, struct mbuf *from, int how)
{
-#if CONFIG_MACF_NET
if (to->m_flags & M_PKTHDR)
m_tag_delete_chain(to, NULL);
-#endif /* MAC_NET */
to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
if ((to->m_flags & M_EXT) == 0)
to->m_data = to->m_pktdat;
return (m_tag_copy_chain(to, from, how));
}
+void
+m_copy_pftag(struct mbuf *to, struct mbuf *from)
+{
+ to->m_pkthdr.pf_mtag = from->m_pkthdr.pf_mtag;
+ to->m_pkthdr.pf_mtag.pftag_hdr = NULL;
+ to->m_pkthdr.pf_mtag.pftag_flags &= ~(PF_TAG_HDR_INET|PF_TAG_HDR_INET6);
+}
+
/*
* Return a list of mbuf hdrs that point to clusters. Try for num_needed;
* if wantall is not set, return whatever number were available. Set up the
--num_with_pkthdrs;
#if CONFIG_MACF_NET
if (mac_mbuf_label_init(m, wait) != 0) {
- m_free(m);
+ m_freem(m);
break;
}
#endif /* MAC_NET */
return (NULL);
}
+ if (pnum > *num_needed) {
+ printf("%s: File a radar related to <rdar://10146739>. \
+ needed = %u, pnum = %u, num_needed = %u \n",
+ __func__, needed, pnum, *num_needed);
+ }
+
*num_needed = pnum;
return (top);
}
#if CONFIG_MACF_NET
if (pkthdr && mac_init_mbuf(m, wait) != 0) {
--num;
- m_free(m);
+ m_freem(m);
break;
}
#endif /* MAC_NET */
while (m != NULL) {
struct mbuf *next = m->m_next;
mcache_obj_t *o, *rfa;
- u_int32_t refcnt, flags;
+ u_int32_t refcnt, composite;
if (m->m_type == MT_FREE)
panic("m_free: freeing an already freed mbuf");
if (!(m->m_flags & M_EXT))
goto simple_free;
- o = (mcache_obj_t *)m->m_ext.ext_buf;
+ o = (mcache_obj_t *)(void *)m->m_ext.ext_buf;
refcnt = m_decref(m);
- flags = MEXT_FLAGS(m);
- if (refcnt == 0 && flags == 0) {
+ composite = (MEXT_FLAGS(m) & EXTF_COMPOSITE);
+ if (refcnt == 0 && !composite) {
if (m->m_ext.ext_free == NULL) {
o->obj_next = mcl_list;
mcl_list = o;
m->m_ext.ext_size,
m->m_ext.ext_arg);
}
- rfa = (mcache_obj_t *)MEXT_RFA(m);
+ rfa = (mcache_obj_t *)(void *)MEXT_RFA(m);
rfa->obj_next = ref_list;
ref_list = rfa;
MEXT_RFA(m) = NULL;
- } else if (refcnt == 0 && (flags & EXTF_COMPOSITE)) {
+ } else if (refcnt == 0 && composite) {
VERIFY(m->m_type != MT_FREE);
/*
* Amortize the costs of atomic operations
m->m_len = 0;
m->m_next = m->m_nextpkt = NULL;
+ MEXT_FLAGS(m) &= ~EXTF_READONLY;
+
/* "Free" into the intermediate cache */
o = (mcache_obj_t *)m;
if (m->m_ext.ext_free == NULL) {
}
if (len == M_COPYALL) {
if (MIN(len, (m->m_len - off)) == len) {
- printf("m->m_len %ld - off %d = %ld, %ld\n",
+ printf("m->m_len %d - off %d = %d, %d\n",
m->m_len, off, m->m_len - off,
MIN(len, (m->m_len - off)));
}
*/
struct mbuf *
m_copym_with_hdrs(struct mbuf *m, int off0, int len0, int wait,
- struct mbuf **m_last, int *m_off)
+ struct mbuf **m_lastm, int *m_off)
{
struct mbuf *n, **np = NULL;
int off = off0, len = len0;
if (off == 0 && (m->m_flags & M_PKTHDR))
copyhdr = 1;
- if (*m_last != NULL) {
- m = *m_last;
+ if (*m_lastm != NULL) {
+ m = *m_lastm;
off = *m_off;
} else {
while (off >= m->m_len) {
if (len == 0) {
if ((off + n->m_len) == m->m_len) {
- *m_last = m->m_next;
+ *m_lastm = m->m_next;
*m_off = 0;
} else {
- *m_last = m;
+ *m_lastm = m;
*m_off = off + n->m_len;
}
break;
* continuing for "len" bytes, into the indicated buffer.
*/
void
-m_copydata(struct mbuf *m, int off, int len, caddr_t cp)
+m_copydata(struct mbuf *m, int off, int len, void *vp)
{
unsigned count;
+ char *cp = vp;
if (off < 0 || len < 0)
panic("m_copydata: invalid offset %d or len %d", off, len);
return (0);
}
+/*
+ * Like m_pullup(), except a new mbuf is always allocated, and we allow
+ * the amount of empty space before the data in the new mbuf to be specified
+ * (in the event that the caller expects to prepend later).
+ */
+__private_extern__ int MSFail = 0;
+
+__private_extern__ struct mbuf *
+m_copyup(struct mbuf *n, int len, int dstoff)
+{
+ struct mbuf *m;
+ int count, space;
+
+ if (len > (MHLEN - dstoff))
+ goto bad;
+ MGET(m, M_DONTWAIT, n->m_type);
+ if (m == NULL)
+ goto bad;
+ m->m_len = 0;
+ if (n->m_flags & M_PKTHDR) {
+ m_copy_pkthdr(m, n);
+ n->m_flags &= ~M_PKTHDR;
+ }
+ m->m_data += dstoff;
+ space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
+ do {
+ count = min(min(max(len, max_protohdr), space), n->m_len);
+ memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t),
+ (unsigned)count);
+ len -= count;
+ m->m_len += count;
+ n->m_len -= count;
+ space -= count;
+ if (n->m_len)
+ n->m_data += count;
+ else
+ n = m_free(n);
+ } while (len > 0 && n);
+ if (len > 0) {
+ (void) m_free(m);
+ goto bad;
+ }
+ m->m_next = n;
+ return (m);
+bad:
+ m_freem(n);
+ MSFail++;
+ return (NULL);
+}
+
/*
* Partition an mbuf chain in two pieces, returning the tail --
* all but the first len0 bytes. In case of failure, it returns NULL and
*/
struct mbuf *
m_split(struct mbuf *m0, int len0, int wait)
+{
+ return (m_split0(m0, len0, wait, 1));
+}
+
+static struct mbuf *
+m_split0(struct mbuf *m0, int len0, int wait, int copyhdr)
{
struct mbuf *m, *n;
unsigned len = len0, remain;
if (m == NULL)
return (NULL);
remain = m->m_len - len;
- if (m0->m_flags & M_PKTHDR) {
+ if (copyhdr && (m0->m_flags & M_PKTHDR)) {
_MGETHDR(n, wait, m0->m_type);
if (n == NULL)
return (NULL);
return (top);
}
+#ifndef MBUF_GROWTH_NORMAL_THRESH
+#define MBUF_GROWTH_NORMAL_THRESH 25
+#endif
+
/*
* Cluster freelist allocation check.
*/
m_howmany(int num, size_t bufsize)
{
int i = 0, j = 0;
- u_int32_t m_clusters, m_bigclusters, m_16kclusters;
- u_int32_t m_clfree, m_bigclfree, m_16kclfree;
+ u_int32_t m_mbclusters, m_clusters, m_bigclusters, m_16kclusters;
+ u_int32_t m_mbfree, m_clfree, m_bigclfree, m_16kclfree;
+ u_int32_t sumclusters, freeclusters;
+ u_int32_t percent_pool, percent_kmem;
+ u_int32_t mb_growth, mb_growth_thresh;
+
+ VERIFY(bufsize == m_maxsize(MC_BIGCL) ||
+ bufsize == m_maxsize(MC_16KCL));
lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
+ /* Numbers in 2K cluster units */
+ m_mbclusters = m_total(MC_MBUF) >> NMBPCLSHIFT;
m_clusters = m_total(MC_CL);
- m_bigclusters = m_total(MC_BIGCL);
+ m_bigclusters = m_total(MC_BIGCL) << NCLPBGSHIFT;
m_16kclusters = m_total(MC_16KCL);
+ sumclusters = m_mbclusters + m_clusters + m_bigclusters;
+
+ m_mbfree = m_infree(MC_MBUF) >> NMBPCLSHIFT;
m_clfree = m_infree(MC_CL);
- m_bigclfree = m_infree(MC_BIGCL);
+ m_bigclfree = m_infree(MC_BIGCL) << NCLPBGSHIFT;
m_16kclfree = m_infree(MC_16KCL);
+ freeclusters = m_mbfree + m_clfree + m_bigclfree;
/* Bail if we've maxed out the mbuf memory map */
- if ((bufsize != m_maxsize(MC_16KCL) &&
- (m_clusters + (m_bigclusters << 1) >= nclusters)) ||
+ if ((bufsize == m_maxsize(MC_BIGCL) && sumclusters >= nclusters) ||
(njcl > 0 && bufsize == m_maxsize(MC_16KCL) &&
- (m_16kclusters << 3) >= njcl)) {
-#if DEBUG
- if (bufsize == MCLBYTES && num > m_clfree) {
- printf("m_howmany - out of small clusters, "
- "%d short\n", num - mbstat.m_clfree);
- }
-#endif /* DEBUG */
+ (m_16kclusters << NCLPJCLSHIFT) >= njcl)) {
return (0);
}
- if (bufsize == m_maxsize(MC_CL)) {
+ if (bufsize == m_maxsize(MC_BIGCL)) {
/* Under minimum */
- if (m_clusters < MINCL)
- return (MINCL - m_clusters);
- /* Too few (free < 1/16 total) and not over maximum */
- if (m_clusters < m_maxlimit(MC_CL)) {
- if (m_clfree >= MCL_LOWAT)
+ if (m_bigclusters < m_minlimit(MC_BIGCL))
+ return (m_minlimit(MC_BIGCL) - m_bigclusters);
+
+ percent_pool =
+ ((sumclusters - freeclusters) * 100) / sumclusters;
+ percent_kmem = (sumclusters * 100) / nclusters;
+
+ /*
+ * If a light/normal user, grow conservatively (75%)
+ * If a heavy user, grow aggressively (50%)
+ */
+ if (percent_kmem < MBUF_GROWTH_NORMAL_THRESH)
+ mb_growth = MB_GROWTH_NORMAL;
+ else
+ mb_growth = MB_GROWTH_AGGRESSIVE;
+
+ if (percent_kmem < 5) {
+ /* For initial allocations */
+ i = num;
+ } else {
+ /* Return if >= MBIGCL_LOWAT clusters available */
+ if (m_infree(MC_BIGCL) >= MBIGCL_LOWAT &&
+ m_total(MC_BIGCL) >=
+ MBIGCL_LOWAT + m_minlimit(MC_BIGCL))
return (0);
- if (num >= m_clfree)
- i = num - m_clfree;
- if (((m_clusters + num) >> 4) > m_clfree)
- j = ((m_clusters + num) >> 4) - m_clfree;
+
+ /* Ensure at least num clusters are accessible */
+ if (num >= m_infree(MC_BIGCL))
+ i = num - m_infree(MC_BIGCL);
+ if (num > m_total(MC_BIGCL) - m_minlimit(MC_BIGCL))
+ j = num - (m_total(MC_BIGCL) -
+ m_minlimit(MC_BIGCL));
+
i = MAX(i, j);
- if (i + m_clusters >= m_maxlimit(MC_CL))
- i = m_maxlimit(MC_CL) - m_clusters;
- }
- VERIFY((m_total(MC_CL) + i) <= m_maxlimit(MC_CL));
- } else if (bufsize == m_maxsize(MC_BIGCL)) {
- /* Under minimum */
- if (m_bigclusters < MINBIGCL)
- return (MINBIGCL - m_bigclusters);
- /* Too few (free < 1/16 total) and not over maximum */
- if (m_bigclusters < m_maxlimit(MC_BIGCL)) {
- if (m_bigclfree >= MBIGCL_LOWAT)
- return (0);
- if (num >= m_bigclfree)
- i = num - m_bigclfree;
- if (((m_bigclusters + num) >> 4) > m_bigclfree)
- j = ((m_bigclusters + num) >> 4) - m_bigclfree;
+
+ /*
+ * Grow pool if percent_pool > 75 (normal growth)
+ * or percent_pool > 50 (aggressive growth).
+ */
+ mb_growth_thresh = 100 - (100 / (1 << mb_growth));
+ if (percent_pool > mb_growth_thresh)
+ j = ((sumclusters + num) >> mb_growth) -
+ freeclusters;
i = MAX(i, j);
- if (i + m_bigclusters >= m_maxlimit(MC_BIGCL))
- i = m_maxlimit(MC_BIGCL) - m_bigclusters;
}
+
+ /* Check to ensure we didn't go over limits */
+ if (i + m_bigclusters >= m_maxlimit(MC_BIGCL))
+ i = m_maxlimit(MC_BIGCL) - m_bigclusters;
+ if ((i << 1) + sumclusters >= nclusters)
+ i = (nclusters - sumclusters) >> 1;
VERIFY((m_total(MC_BIGCL) + i) <= m_maxlimit(MC_BIGCL));
- } else {
+ VERIFY(sumclusters + (i << 1) <= nclusters);
+
+ } else { /* 16K CL */
VERIFY(njcl > 0);
/* Under minimum */
if (m_16kclusters < MIN16KCL)
return (MIN16KCL - m_16kclusters);
- /* Too few (free < 1/16 total) and not over maximum */
- if (m_16kclusters < m_maxlimit(MC_16KCL)) {
- if (m_16kclfree >= M16KCL_LOWAT)
- return (0);
- if (num >= m_16kclfree)
- i = num - m_16kclfree;
- if (((m_16kclusters + num) >> 4) > m_16kclfree)
- j = ((m_16kclusters + num) >> 4) - m_16kclfree;
- i = MAX(i, j);
- if (i + m_16kclusters >= m_maxlimit(MC_16KCL))
- i = m_maxlimit(MC_16KCL) - m_16kclusters;
- }
+ if (m_16kclfree >= M16KCL_LOWAT)
+ return (0);
+
+ /* Ensure at least num clusters are available */
+ if (num >= m_16kclfree)
+ i = num - m_16kclfree;
+
+ /* Always grow 16KCL pool aggressively */
+ if (((m_16kclusters + num) >> 1) > m_16kclfree)
+ j = ((m_16kclusters + num) >> 1) - m_16kclfree;
+ i = MAX(i, j);
+
+ /* Check to ensure we don't go over limit */
+ if (i + m_16kclusters >= m_maxlimit(MC_16KCL))
+ i = m_maxlimit(MC_16KCL) - m_16kclusters;
VERIFY((m_total(MC_16KCL) + i) <= m_maxlimit(MC_16KCL));
}
-
return (i);
}
+/*
+ * Return the number of bytes in the mbuf chain, m.
+ */
+unsigned int
+m_length(struct mbuf *m)
+{
+ struct mbuf *m0;
+ unsigned int pktlen;
+
+ if (m->m_flags & M_PKTHDR)
+ return (m->m_pkthdr.len);
+
+ pktlen = 0;
+ for (m0 = m; m0 != NULL; m0 = m0->m_next)
+ pktlen += m0->m_len;
+ return (pktlen);
+}
/*
* Copy data from a buffer back into the indicated mbuf chain,
* chain if necessary.
*/
void
-m_copyback(struct mbuf *m0, int off, int len, caddr_t cp)
+m_copyback(struct mbuf *m0, int off, int len, const void *cp)
{
- int mlen;
- struct mbuf *m = m0, *n;
- int totlen = 0;
+#if DEBUG
+ struct mbuf *origm = m0;
+ int error;
+#endif /* DEBUG */
if (m0 == NULL)
return;
+
+#if DEBUG
+ error =
+#endif /* DEBUG */
+ m_copyback0(&m0, off, len, cp,
+ M_COPYBACK0_COPYBACK | M_COPYBACK0_EXTEND, M_DONTWAIT);
+
+#if DEBUG
+ if (error != 0 || (m0 != NULL && origm != m0))
+ panic("m_copyback");
+#endif /* DEBUG */
+}
+
+struct mbuf *
+m_copyback_cow(struct mbuf *m0, int off, int len, const void *cp, int how)
+{
+ int error;
+
+ /* don't support chain expansion */
+ VERIFY(off + len <= m_length(m0));
+
+ error = m_copyback0(&m0, off, len, cp,
+ M_COPYBACK0_COPYBACK | M_COPYBACK0_COW, how);
+ if (error) {
+ /*
+ * no way to recover from partial success.
+ * just free the chain.
+ */
+ m_freem(m0);
+ return (NULL);
+ }
+ return (m0);
+}
+
+/*
+ * m_makewritable: ensure the specified range writable.
+ */
+int
+m_makewritable(struct mbuf **mp, int off, int len, int how)
+{
+ int error;
+#if DEBUG
+ struct mbuf *n;
+ int origlen, reslen;
+
+ origlen = m_length(*mp);
+#endif /* DEBUG */
+
+#if 0 /* M_COPYALL is large enough */
+ if (len == M_COPYALL)
+ len = m_length(*mp) - off; /* XXX */
+#endif
+
+ error = m_copyback0(mp, off, len, NULL,
+ M_COPYBACK0_PRESERVE | M_COPYBACK0_COW, how);
+
+#if DEBUG
+ reslen = 0;
+ for (n = *mp; n; n = n->m_next)
+ reslen += n->m_len;
+ if (origlen != reslen)
+ panic("m_makewritable: length changed");
+ if (((*mp)->m_flags & M_PKTHDR) && reslen != (*mp)->m_pkthdr.len)
+ panic("m_makewritable: inconsist");
+#endif /* DEBUG */
+
+ return (error);
+}
+
+static int
+m_copyback0(struct mbuf **mp0, int off, int len, const void *vp, int flags,
+ int how)
+{
+ int mlen;
+ struct mbuf *m, *n;
+ struct mbuf **mp;
+ int totlen = 0;
+ const char *cp = vp;
+
+ VERIFY(mp0 != NULL);
+ VERIFY(*mp0 != NULL);
+ VERIFY((flags & M_COPYBACK0_PRESERVE) == 0 || cp == NULL);
+ VERIFY((flags & M_COPYBACK0_COPYBACK) == 0 || cp != NULL);
+
+ /*
+ * we don't bother to update "totlen" in the case of M_COPYBACK0_COW,
+ * assuming that M_COPYBACK0_EXTEND and M_COPYBACK0_COW are exclusive.
+ */
+
+ VERIFY((~flags & (M_COPYBACK0_EXTEND|M_COPYBACK0_COW)) != 0);
+
+ mp = mp0;
+ m = *mp;
while (off > (mlen = m->m_len)) {
off -= mlen;
totlen += mlen;
if (m->m_next == NULL) {
- n = m_getclr(M_DONTWAIT, m->m_type);
- if (n == NULL)
+ int tspace;
+extend:
+ if (!(flags & M_COPYBACK0_EXTEND))
+ goto out;
+
+ /*
+ * try to make some space at the end of "m".
+ */
+
+ mlen = m->m_len;
+ if (off + len >= MINCLSIZE &&
+ !(m->m_flags & M_EXT) && m->m_len == 0) {
+ MCLGET(m, how);
+ }
+ tspace = M_TRAILINGSPACE(m);
+ if (tspace > 0) {
+ tspace = MIN(tspace, off + len);
+ VERIFY(tspace > 0);
+ bzero(mtod(m, char *) + m->m_len,
+ MIN(off, tspace));
+ m->m_len += tspace;
+ off += mlen;
+ totlen -= mlen;
+ continue;
+ }
+
+ /*
+ * need to allocate an mbuf.
+ */
+
+ if (off + len >= MINCLSIZE) {
+ n = m_getcl(how, m->m_type, 0);
+ } else {
+ n = _M_GET(how, m->m_type);
+ }
+ if (n == NULL) {
goto out;
- n->m_len = MIN(MLEN, len + off);
+ }
+ n->m_len = 0;
+ n->m_len = MIN(M_TRAILINGSPACE(n), off + len);
+ bzero(mtod(n, char *), MIN(n->m_len, off));
m->m_next = n;
}
+ mp = &m->m_next;
m = m->m_next;
}
while (len > 0) {
- mlen = MIN(m->m_len - off, len);
- bcopy(cp, off + MTOD(m, caddr_t), (unsigned)mlen);
- cp += mlen;
+ mlen = m->m_len - off;
+ if (mlen != 0 && m_mclhasreference(m)) {
+ char *datap;
+ int eatlen;
+
+ /*
+ * this mbuf is read-only.
+ * allocate a new writable mbuf and try again.
+ */
+
+#if defined(DIAGNOSTIC)
+ if (!(flags & M_COPYBACK0_COW))
+ panic("m_copyback0: read-only");
+#endif /* defined(DIAGNOSTIC) */
+
+ /*
+ * if we're going to write into the middle of
+ * a mbuf, split it first.
+ */
+ if (off > 0 && len < mlen) {
+ n = m_split0(m, off, how, 0);
+ if (n == NULL)
+ goto enobufs;
+ m->m_next = n;
+ mp = &m->m_next;
+ m = n;
+ off = 0;
+ continue;
+ }
+
+ /*
+ * XXX TODO coalesce into the trailingspace of
+ * the previous mbuf when possible.
+ */
+
+ /*
+ * allocate a new mbuf. copy packet header if needed.
+ */
+ n = _M_GET(how, m->m_type);
+ if (n == NULL)
+ goto enobufs;
+ if (off == 0 && (m->m_flags & M_PKTHDR)) {
+ M_COPY_PKTHDR(n, m);
+ n->m_len = MHLEN;
+ } else {
+ if (len >= MINCLSIZE)
+ MCLGET(n, M_DONTWAIT);
+ n->m_len =
+ (n->m_flags & M_EXT) ? MCLBYTES : MLEN;
+ }
+ if (n->m_len > len)
+ n->m_len = len;
+
+ /*
+ * free the region which has been overwritten.
+ * copying data from old mbufs if requested.
+ */
+ if (flags & M_COPYBACK0_PRESERVE)
+ datap = mtod(n, char *);
+ else
+ datap = NULL;
+ eatlen = n->m_len;
+ VERIFY(off == 0 || eatlen >= mlen);
+ if (off > 0) {
+ VERIFY(len >= mlen);
+ m->m_len = off;
+ m->m_next = n;
+ if (datap) {
+ m_copydata(m, off, mlen, datap);
+ datap += mlen;
+ }
+ eatlen -= mlen;
+ mp = &m->m_next;
+ m = m->m_next;
+ }
+ while (m != NULL && m_mclhasreference(m) &&
+ n->m_type == m->m_type && eatlen > 0) {
+ mlen = MIN(eatlen, m->m_len);
+ if (datap) {
+ m_copydata(m, 0, mlen, datap);
+ datap += mlen;
+ }
+ m->m_data += mlen;
+ m->m_len -= mlen;
+ eatlen -= mlen;
+ if (m->m_len == 0)
+ *mp = m = m_free(m);
+ }
+ if (eatlen > 0)
+ n->m_len -= eatlen;
+ n->m_next = m;
+ *mp = m = n;
+ continue;
+ }
+ mlen = MIN(mlen, len);
+ if (flags & M_COPYBACK0_COPYBACK) {
+ bcopy(cp, mtod(m, caddr_t) + off, (unsigned)mlen);
+ cp += mlen;
+ }
len -= mlen;
mlen += off;
off = 0;
if (len == 0)
break;
if (m->m_next == NULL) {
- n = _M_GET(M_DONTWAIT, m->m_type);
- if (n == NULL)
- break;
- n->m_len = MIN(MLEN, len);
- m->m_next = n;
+ goto extend;
}
+ mp = &m->m_next;
m = m->m_next;
}
out:
- if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
+ if (((m = *mp0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen)) {
+ VERIFY(flags & M_COPYBACK0_EXTEND);
m->m_pkthdr.len = totlen;
+ }
+
+ return (0);
+
+enobufs:
+ return (ENOBUFS);
}
char *
mcl_to_paddr(char *addr)
{
- int base_phys;
+ vm_offset_t base_phys;
if (!MBUF_IN_MAP(addr))
return (NULL);
if (base_phys == 0)
return (NULL);
- return ((char *)((int)base_phys | ((int)addr & PGOFSET)));
+ return ((char *)((uintptr_t)base_phys | ((uintptr_t)addr & PGOFSET)));
}
/*
return (top);
}
+/*
+ * Append the specified data to the indicated mbuf chain,
+ * Extend the mbuf chain if the new data does not fit in
+ * existing space.
+ *
+ * Return 1 if able to complete the job; otherwise 0.
+ */
+int
+m_append(struct mbuf *m0, int len, caddr_t cp)
+{
+ struct mbuf *m, *n;
+ int remainder, space;
+
+ for (m = m0; m->m_next != NULL; m = m->m_next)
+ ;
+ remainder = len;
+ space = M_TRAILINGSPACE(m);
+ if (space > 0) {
+ /*
+ * Copy into available space.
+ */
+ if (space > remainder)
+ space = remainder;
+ bcopy(cp, mtod(m, caddr_t) + m->m_len, space);
+ m->m_len += space;
+ cp += space, remainder -= space;
+ }
+ while (remainder > 0) {
+ /*
+ * Allocate a new mbuf; could check space
+ * and allocate a cluster instead.
+ */
+ n = m_get(M_WAITOK, m->m_type);
+ if (n == NULL)
+ break;
+ n->m_len = min(MLEN, remainder);
+ bcopy(cp, mtod(n, caddr_t), n->m_len);
+ cp += n->m_len;
+ remainder -= n->m_len;
+ m->m_next = n;
+ m = n;
+ }
+ if (m0->m_flags & M_PKTHDR)
+ m0->m_pkthdr.len += len - remainder;
+ return (remainder == 0);
+}
+
+struct mbuf *
+m_last(struct mbuf *m)
+{
+ while (m->m_next != NULL)
+ m = m->m_next;
+ return (m);
+}
+
+unsigned int
+m_fixhdr(struct mbuf *m0)
+{
+ u_int len;
+
+ len = m_length2(m0, NULL);
+ m0->m_pkthdr.len = len;
+ return (len);
+}
+
+unsigned int
+m_length2(struct mbuf *m0, struct mbuf **last)
+{
+ struct mbuf *m;
+ u_int len;
+
+ len = 0;
+ for (m = m0; m != NULL; m = m->m_next) {
+ len += m->m_len;
+ if (m->m_next == NULL)
+ break;
+ }
+ if (last != NULL)
+ *last = m;
+ return (len);
+}
+
+/*
+ * Defragment a mbuf chain, returning the shortest possible chain of mbufs
+ * and clusters. If allocation fails and this cannot be completed, NULL will
+ * be returned, but the passed in chain will be unchanged. Upon success,
+ * the original chain will be freed, and the new chain will be returned.
+ *
+ * If a non-packet header is passed in, the original mbuf (chain?) will
+ * be returned unharmed.
+ *
+ * If offset is specfied, the first mbuf in the chain will have a leading
+ * space of the amount stated by the "off" parameter.
+ *
+ * This routine requires that the m_pkthdr.header field of the original
+ * mbuf chain is cleared by the caller.
+ */
+struct mbuf *
+m_defrag_offset(struct mbuf *m0, u_int32_t off, int how)
+{
+ struct mbuf *m_new = NULL, *m_final = NULL;
+ int progress = 0, length, pktlen;
+
+ if (!(m0->m_flags & M_PKTHDR))
+ return (m0);
+
+ VERIFY(off < MHLEN);
+ m_fixhdr(m0); /* Needed sanity check */
+
+ pktlen = m0->m_pkthdr.len + off;
+ if (pktlen > MHLEN)
+ m_final = m_getcl(how, MT_DATA, M_PKTHDR);
+ else
+ m_final = m_gethdr(how, MT_DATA);
+
+ if (m_final == NULL)
+ goto nospace;
+
+ if (off > 0) {
+ pktlen -= off;
+ m_final->m_len -= off;
+ m_final->m_data += off;
+ }
+
+ /*
+ * Caller must have handled the contents pointed to by this
+ * pointer before coming here, as otherwise it will point to
+ * the original mbuf which will get freed upon success.
+ */
+ VERIFY(m0->m_pkthdr.header == NULL);
+
+ if (m_dup_pkthdr(m_final, m0, how) == 0)
+ goto nospace;
+
+ m_new = m_final;
+
+ while (progress < pktlen) {
+ length = pktlen - progress;
+ if (length > MCLBYTES)
+ length = MCLBYTES;
+
+ if (m_new == NULL) {
+ if (length > MLEN)
+ m_new = m_getcl(how, MT_DATA, 0);
+ else
+ m_new = m_get(how, MT_DATA);
+ if (m_new == NULL)
+ goto nospace;
+ }
+
+ m_copydata(m0, progress, length, mtod(m_new, caddr_t));
+ progress += length;
+ m_new->m_len = length;
+ if (m_new != m_final)
+ m_cat(m_final, m_new);
+ m_new = NULL;
+ }
+ m_freem(m0);
+ m0 = m_final;
+ return (m0);
+nospace:
+ if (m_final)
+ m_freem(m_final);
+ return (NULL);
+}
+
+struct mbuf *
+m_defrag(struct mbuf *m0, int how)
+{
+ return (m_defrag_offset(m0, 0, how));
+}
+
void
m_mchtype(struct mbuf *m, int t)
{
struct mbuf *
m_dtom(void *x)
{
- return ((struct mbuf *)((u_long)(x) & ~(MSIZE-1)));
+ return ((struct mbuf *)((uintptr_t)(x) & ~(MSIZE-1)));
}
void
_MCHECK(m);
}
+/*
+ * Return a pointer to mbuf/offset of location in mbuf chain.
+ */
+struct mbuf *
+m_getptr(struct mbuf *m, int loc, int *off)
+{
+
+ while (loc >= 0) {
+ /* Normal end of search. */
+ if (m->m_len > loc) {
+ *off = loc;
+ return (m);
+ } else {
+ loc -= m->m_len;
+ if (m->m_next == NULL) {
+ if (loc == 0) {
+ /* Point at the end of valid data. */
+ *off = m->m_len;
+ return (m);
+ }
+ return (NULL);
+ }
+ m = m->m_next;
+ }
+ }
+ return (NULL);
+}
+
/*
* Inform the corresponding mcache(s) that there's a waiter below.
*/
}
}
+/*
+ * Called during slab (blocking and non-blocking) allocation. If there
+ * is at least one waiter, and the time since the first waiter is blocked
+ * is greater than the watchdog timeout, panic the system.
+ */
+static void
+mbuf_watchdog(void)
+{
+ struct timeval now;
+ unsigned int since;
+
+ if (mb_waiters == 0 || !mb_watchdog)
+ return;
+
+ microuptime(&now);
+ since = now.tv_sec - mb_wdtstart.tv_sec;
+ if (since >= MB_WDT_MAXTIME) {
+ panic_plain("%s: %d waiters stuck for %u secs\n%s", __func__,
+ mb_waiters, since, mbuf_dump());
+ /* NOTREACHED */
+ }
+}
+
/*
* Called during blocking allocation. Returns TRUE if one or more objects
* are available at the per-CPU caches layer and that allocation should be
mbuf_waiter_inc(class, (wait & MCR_COMP));
VERIFY(!(wait & MCR_NOSLEEP));
+
+ /*
+ * If this is the first waiter, arm the watchdog timer. Otherwise
+ * check if we need to panic the system due to watchdog timeout.
+ */
+ if (mb_waiters == 0)
+ microuptime(&mb_wdtstart);
+ else
+ mbuf_watchdog();
+
mb_waiters++;
(void) msleep(mb_waitchan, mbuf_mlock, (PZERO-1), m_cname(class), NULL);
}
}
- ix = MTOCL(buf) % NSLABSPMB;
+ ix = MTOBG(buf) % NSLABSPMB;
VERIFY(ix < NSLABSPMB);
return (&slg->slg_slab[ix]);
m_slab_cnt(class)++;
TAILQ_INSERT_TAIL(&m_slablist(class), sp, sl_link);
sp->sl_flags &= ~SLF_DETACHED;
- if (class == MC_BIGCL) {
- sp = sp->sl_next;
- /* Next slab must already be present */
- VERIFY(sp != NULL);
- VERIFY(slab_is_detached(sp));
- sp->sl_flags &= ~SLF_DETACHED;
- } else if (class == MC_16KCL) {
+ if (class == MC_16KCL) {
int k;
- for (k = 1; k < (M16KCLBYTES / MCLBYTES); k++) {
+ for (k = 1; k < NSLABSP16KB; k++) {
sp = sp->sl_next;
/* Next slab must already be present */
VERIFY(sp != NULL);
m_slab_cnt(class)--;
TAILQ_REMOVE(&m_slablist(class), sp, sl_link);
slab_detach(sp);
- if (class == MC_BIGCL) {
- sp = sp->sl_next;
- /* Next slab must already be present */
- VERIFY(sp != NULL);
- VERIFY(!slab_is_detached(sp));
- slab_detach(sp);
- } else if (class == MC_16KCL) {
+ if (class == MC_16KCL) {
int k;
- for (k = 1; k < (M16KCLBYTES / MCLBYTES); k++) {
+ for (k = 1; k < NSLABSP16KB; k++) {
sp = sp->sl_next;
/* Next slab must already be present */
VERIFY(sp != NULL);
(uintptr_t)buf < ((uintptr_t)sp->sl_base + sp->sl_len));
}
-#undef panic(...)
+#undef panic
static void
slab_nextptr_panic(mcl_slab_t *sp, void *addr)
void *next = ((mcache_obj_t *)buf)->obj_next;
if (next != addr)
continue;
- if (mclaudit == NULL) {
+ if (!mclverify) {
if (next != NULL && !MBUF_IN_MAP(next)) {
mcache_t *cp = m_cache(sp->sl_class);
panic("%s: %s buffer %p in slab %p modified "
boolean_t save_contents = (con_list != NULL);
unsigned int i, ix;
- ASSERT(num <= NMBPCL);
+ ASSERT(num <= NMBPBG);
ASSERT(con_list == NULL || con_size != 0);
- ix = MTOCL(buf);
+ ix = MTOBG(buf);
+ VERIFY(ix < maxclaudit);
+
/* Make sure we haven't been here before */
- for (i = 0; i < NMBPCL; i++)
+ for (i = 0; i < NMBPBG; i++)
VERIFY(mclaudit[ix].cl_audit[i] == NULL);
mca = mca_tail = *mca_list;
}
/*
- * Given an address of a buffer (mbuf/cluster/big cluster), return
+ * Given an address of a buffer (mbuf/2KB/4KB/16KB), return
* the corresponding audit structure for that buffer.
*/
static mcache_audit_t *
mcl_audit_buf2mca(mbuf_class_t class, mcache_obj_t *o)
{
mcache_audit_t *mca = NULL;
- int ix = MTOCL(o);
+ int ix = MTOBG(o);
+ VERIFY(ix < maxclaudit);
VERIFY(IS_P2ALIGNED(o, MIN(m_maxsize(class), NBPG)));
switch (class) {
case MC_MBUF:
/*
- * For the mbuf case, find the index of the cluster
+ * For the mbuf case, find the index of the page
* used by the mbuf and use that index to locate the
- * base address of the cluster. Then find out the
- * mbuf index relative to the cluster base and use
+ * base address of the page. Then find out the
+ * mbuf index relative to the page base and use
* it to locate the audit structure.
*/
- VERIFY(MCLIDX(CLTOM(ix), o) < (int)NMBPCL);
- mca = mclaudit[ix].cl_audit[MCLIDX(CLTOM(ix), o)];
+ VERIFY(MCLIDX(BGTOM(ix), o) < (int)NMBPBG);
+ mca = mclaudit[ix].cl_audit[MCLIDX(BGTOM(ix), o)];
break;
case MC_CL:
+ /*
+ * Same thing as above, but for 2KB clusters in a page.
+ */
+ VERIFY(CLBGIDX(BGTOM(ix), o) < (int)NCLPBG);
+ mca = mclaudit[ix].cl_audit[CLBGIDX(BGTOM(ix), o)];
+ break;
+
case MC_BIGCL:
case MC_16KCL:
/*
VERIFY(mca->mca_contents != NULL &&
mca->mca_contents_size == AUDIT_CONTENTS_SIZE);
- mcl_audit_verify_nextptr(next, mca);
+ if (mclverify)
+ mcl_audit_verify_nextptr(next, mca);
if (!alloc) {
/* Save constructed mbuf fields */
mcl_audit_save_mbuf(m, mca);
- mcache_set_pattern(MCACHE_FREE_PATTERN, m, m_maxsize(MC_MBUF));
+ if (mclverify) {
+ mcache_set_pattern(MCACHE_FREE_PATTERN, m,
+ m_maxsize(MC_MBUF));
+ }
((mcache_obj_t *)m)->obj_next = next;
return;
}
/* Check if the buffer has been corrupted while in freelist */
- mcache_audit_free_verify_set(mca, addr, 0, m_maxsize(MC_MBUF));
-
+ if (mclverify) {
+ mcache_audit_free_verify_set(mca, addr, 0, m_maxsize(MC_MBUF));
+ }
/* Restore constructed mbuf fields */
mcl_audit_restore_mbuf(m, mca, composite);
}
mcache_obj_t *next = ((mcache_obj_t *)addr)->obj_next;
if (!alloc) {
- mcache_set_pattern(MCACHE_FREE_PATTERN, addr, size);
+ if (mclverify) {
+ mcache_set_pattern(MCACHE_FREE_PATTERN, addr, size);
+ }
if (save_next) {
mcl_audit_verify_nextptr(next, mca);
((mcache_obj_t *)addr)->obj_next = next;
}
- } else {
+ } else if (mclverify) {
/* Check if the buffer has been corrupted while in freelist */
mcl_audit_verify_nextptr(next, mca);
mcache_audit_free_verify_set(mca, addr, 0, size);
static void
mcl_audit_verify_nextptr(void *next, mcache_audit_t *mca)
{
- if (next != NULL && next != (void *)MCACHE_FREE_PATTERN &&
- !MBUF_IN_MAP(next)) {
+ if (next != NULL && !MBUF_IN_MAP(next) &&
+ (next != (void *)MCACHE_FREE_PATTERN || !mclverify)) {
panic("mcl_audit: buffer %p modified after free at offset 0: "
"%p out of range [%p-%p)\n%s\n",
mca->mca_addr, next, mbutl, embutl, mcache_dump_mca(mca));
}
}
+/* This function turns on mbuf leak detection */
+static void
+mleak_activate(void)
+{
+ mleak_table.mleak_sample_factor = MLEAK_SAMPLE_FACTOR;
+ PE_parse_boot_argn("mleak_sample_factor",
+ &mleak_table.mleak_sample_factor,
+ sizeof (mleak_table.mleak_sample_factor));
+
+ if (mleak_table.mleak_sample_factor == 0)
+ mclfindleak = 0;
+
+ if (mclfindleak == 0)
+ return;
+
+ vm_size_t alloc_size =
+ mleak_alloc_buckets * sizeof (struct mallocation);
+ vm_size_t trace_size = mleak_trace_buckets * sizeof (struct mtrace);
+
+ MALLOC(mleak_allocations, struct mallocation *, alloc_size,
+ M_TEMP, M_WAITOK | M_ZERO);
+ VERIFY(mleak_allocations != NULL);
+
+ MALLOC(mleak_traces, struct mtrace *, trace_size,
+ M_TEMP, M_WAITOK | M_ZERO);
+ VERIFY(mleak_traces != NULL);
+
+ MALLOC(mleak_stat, mleak_stat_t *, MLEAK_STAT_SIZE(MLEAK_NUM_TRACES),
+ M_TEMP, M_WAITOK | M_ZERO);
+ VERIFY(mleak_stat != NULL);
+ mleak_stat->ml_cnt = MLEAK_NUM_TRACES;
+#ifdef __LP64__
+ mleak_stat->ml_isaddr64 = 1;
+#endif /* __LP64__ */
+}
+
+static void
+mleak_logger(u_int32_t num, mcache_obj_t *addr, boolean_t alloc)
+{
+ int temp;
+
+ if (mclfindleak == 0)
+ return;
+
+ if (!alloc)
+ return (mleak_free(addr));
+
+ temp = atomic_add_32_ov(&mleak_table.mleak_capture, 1);
+
+ if ((temp % mleak_table.mleak_sample_factor) == 0 && addr != NULL) {
+ uintptr_t bt[MLEAK_STACK_DEPTH];
+ int logged = fastbacktrace(bt, MLEAK_STACK_DEPTH);
+ mleak_log(bt, addr, logged, num);
+ }
+}
+
+/*
+ * This function records the allocation in the mleak_allocations table
+ * and the backtrace in the mleak_traces table; if allocation slot is in use,
+ * replace old allocation with new one if the trace slot is in use, return
+ * (or increment refcount if same trace).
+ */
+static boolean_t
+mleak_log(uintptr_t *bt, mcache_obj_t *addr, uint32_t depth, int num)
+{
+ struct mallocation *allocation;
+ struct mtrace *trace;
+ uint32_t trace_index;
+
+ /* Quit if someone else modifying the tables */
+ if (!lck_mtx_try_lock_spin(mleak_lock)) {
+ mleak_table.total_conflicts++;
+ return (FALSE);
+ }
+
+ allocation = &mleak_allocations[hashaddr((uintptr_t)addr,
+ mleak_alloc_buckets)];
+ trace_index = hashbacktrace(bt, depth, mleak_trace_buckets);
+ trace = &mleak_traces[trace_index];
+
+ VERIFY(allocation <= &mleak_allocations[mleak_alloc_buckets - 1]);
+ VERIFY(trace <= &mleak_traces[mleak_trace_buckets - 1]);
+
+ allocation->hitcount++;
+ trace->hitcount++;
+
+ /*
+ * If the allocation bucket we want is occupied
+ * and the occupier has the same trace, just bail.
+ */
+ if (allocation->element != NULL &&
+ trace_index == allocation->trace_index) {
+ mleak_table.alloc_collisions++;
+ lck_mtx_unlock(mleak_lock);
+ return (TRUE);
+ }
+
+ /*
+ * Store the backtrace in the traces array;
+ * Size of zero = trace bucket is free.
+ */
+ if (trace->allocs > 0 &&
+ bcmp(trace->addr, bt, (depth * sizeof (uintptr_t))) != 0) {
+ /* Different, unique trace, but the same hash! Bail out. */
+ trace->collisions++;
+ mleak_table.trace_collisions++;
+ lck_mtx_unlock(mleak_lock);
+ return (TRUE);
+ } else if (trace->allocs > 0) {
+ /* Same trace, already added, so increment refcount */
+ trace->allocs++;
+ } else {
+ /* Found an unused trace bucket, so record the trace here */
+ if (trace->depth != 0) {
+ /* this slot previously used but not currently in use */
+ mleak_table.trace_overwrites++;
+ }
+ mleak_table.trace_recorded++;
+ trace->allocs = 1;
+ memcpy(trace->addr, bt, (depth * sizeof (uintptr_t)));
+ trace->depth = depth;
+ trace->collisions = 0;
+ }
+
+ /* Step 2: Store the allocation record in the allocations array */
+ if (allocation->element != NULL) {
+ /*
+ * Replace an existing allocation. No need to preserve
+ * because only a subset of the allocations are being
+ * recorded anyway.
+ */
+ mleak_table.alloc_collisions++;
+ } else if (allocation->trace_index != 0) {
+ mleak_table.alloc_overwrites++;
+ }
+ allocation->element = addr;
+ allocation->trace_index = trace_index;
+ allocation->count = num;
+ mleak_table.alloc_recorded++;
+ mleak_table.outstanding_allocs++;
+
+ lck_mtx_unlock(mleak_lock);
+ return (TRUE);
+}
+
+static void
+mleak_free(mcache_obj_t *addr)
+{
+ while (addr != NULL) {
+ struct mallocation *allocation = &mleak_allocations
+ [hashaddr((uintptr_t)addr, mleak_alloc_buckets)];
+
+ if (allocation->element == addr &&
+ allocation->trace_index < mleak_trace_buckets) {
+ lck_mtx_lock_spin(mleak_lock);
+ if (allocation->element == addr &&
+ allocation->trace_index < mleak_trace_buckets) {
+ struct mtrace *trace;
+ trace = &mleak_traces[allocation->trace_index];
+ /* allocs = 0 means trace bucket is unused */
+ if (trace->allocs > 0)
+ trace->allocs--;
+ if (trace->allocs == 0)
+ trace->depth = 0;
+ /* NULL element means alloc bucket is unused */
+ allocation->element = NULL;
+ mleak_table.outstanding_allocs--;
+ }
+ lck_mtx_unlock(mleak_lock);
+ }
+ addr = addr->obj_next;
+ }
+}
+
+static void
+mleak_sort_traces()
+{
+ int i, j, k;
+ struct mtrace *swap;
+
+ for(i = 0; i < MLEAK_NUM_TRACES; i++)
+ mleak_top_trace[i] = NULL;
+
+ for(i = 0, j = 0; j < MLEAK_NUM_TRACES && i < mleak_trace_buckets; i++)
+ {
+ if (mleak_traces[i].allocs <= 0)
+ continue;
+
+ mleak_top_trace[j] = &mleak_traces[i];
+ for (k = j; k > 0; k--) {
+ if (mleak_top_trace[k]->allocs <=
+ mleak_top_trace[k-1]->allocs)
+ break;
+
+ swap = mleak_top_trace[k-1];
+ mleak_top_trace[k-1] = mleak_top_trace[k];
+ mleak_top_trace[k] = swap;
+ }
+ j++;
+ }
+
+ j--;
+ for(; i < mleak_trace_buckets; i++) {
+ if (mleak_traces[i].allocs <= mleak_top_trace[j]->allocs)
+ continue;
+
+ mleak_top_trace[j] = &mleak_traces[i];
+
+ for (k = j; k > 0; k--) {
+ if (mleak_top_trace[k]->allocs <=
+ mleak_top_trace[k-1]->allocs)
+ break;
+
+ swap = mleak_top_trace[k-1];
+ mleak_top_trace[k-1] = mleak_top_trace[k];
+ mleak_top_trace[k] = swap;
+ }
+ }
+}
+
+static void
+mleak_update_stats()
+{
+ mleak_trace_stat_t *mltr;
+ int i;
+
+ VERIFY(mleak_stat != NULL);
+#ifdef __LP64__
+ VERIFY(mleak_stat->ml_isaddr64);
+#else
+ VERIFY(!mleak_stat->ml_isaddr64);
+#endif /* !__LP64__ */
+ VERIFY(mleak_stat->ml_cnt == MLEAK_NUM_TRACES);
+
+ mleak_sort_traces();
+
+ mltr = &mleak_stat->ml_trace[0];
+ bzero(mltr, sizeof (*mltr) * MLEAK_NUM_TRACES);
+ for (i = 0; i < MLEAK_NUM_TRACES; i++) {
+ int j;
+
+ if (mleak_top_trace[i] == NULL ||
+ mleak_top_trace[i]->allocs == 0)
+ continue;
+
+ mltr->mltr_collisions = mleak_top_trace[i]->collisions;
+ mltr->mltr_hitcount = mleak_top_trace[i]->hitcount;
+ mltr->mltr_allocs = mleak_top_trace[i]->allocs;
+ mltr->mltr_depth = mleak_top_trace[i]->depth;
+
+ VERIFY(mltr->mltr_depth <= MLEAK_STACK_DEPTH);
+ for (j = 0; j < mltr->mltr_depth; j++)
+ mltr->mltr_addr[j] = mleak_top_trace[i]->addr[j];
+
+ mltr++;
+ }
+}
+
+static struct mbtypes {
+ int mt_type;
+ const char *mt_name;
+} mbtypes[] = {
+ { MT_DATA, "data" },
+ { MT_OOBDATA, "oob data" },
+ { MT_CONTROL, "ancillary data" },
+ { MT_HEADER, "packet headers" },
+ { MT_SOCKET, "socket structures" },
+ { MT_PCB, "protocol control blocks" },
+ { MT_RTABLE, "routing table entries" },
+ { MT_HTABLE, "IMP host table entries" },
+ { MT_ATABLE, "address resolution tables" },
+ { MT_FTABLE, "fragment reassembly queue headers" },
+ { MT_SONAME, "socket names and addresses" },
+ { MT_SOOPTS, "socket options" },
+ { MT_RIGHTS, "access rights" },
+ { MT_IFADDR, "interface addresses" },
+ { MT_TAG, "packet tags" },
+ { 0, NULL }
+};
+
+#define MBUF_DUMP_BUF_CHK() { \
+ clen -= k; \
+ if (clen < 1) \
+ goto done; \
+ c += k; \
+}
+
+static char *
+mbuf_dump(void)
+{
+ unsigned long totmem = 0, totfree = 0, totmbufs, totused, totpct;
+ u_int32_t m_mbufs = 0, m_clfree = 0, m_bigclfree = 0;
+ u_int32_t m_mbufclfree = 0, m_mbufbigclfree = 0;
+ u_int32_t m_16kclusters = 0, m_16kclfree = 0, m_mbuf16kclfree = 0;
+ int nmbtypes = sizeof (mbstat.m_mtypes) / sizeof (short);
+ uint8_t seen[256];
+ struct mbtypes *mp;
+ mb_class_stat_t *sp;
+ mleak_trace_stat_t *mltr;
+ char *c = mbuf_dump_buf;
+ int i, k, clen = MBUF_DUMP_BUF_SIZE;
+
+ mbuf_dump_buf[0] = '\0';
+
+ /* synchronize all statistics in the mbuf table */
+ mbuf_stat_sync();
+ mbuf_mtypes_sync(TRUE);
+
+ sp = &mb_stat->mbs_class[0];
+ for (i = 0; i < mb_stat->mbs_cnt; i++, sp++) {
+ u_int32_t mem;
+
+ if (m_class(i) == MC_MBUF) {
+ m_mbufs = sp->mbcl_active;
+ } else if (m_class(i) == MC_CL) {
+ m_clfree = sp->mbcl_total - sp->mbcl_active;
+ } else if (m_class(i) == MC_BIGCL) {
+ m_bigclfree = sp->mbcl_total - sp->mbcl_active;
+ } else if (njcl > 0 && m_class(i) == MC_16KCL) {
+ m_16kclfree = sp->mbcl_total - sp->mbcl_active;
+ m_16kclusters = sp->mbcl_total;
+ } else if (m_class(i) == MC_MBUF_CL) {
+ m_mbufclfree = sp->mbcl_total - sp->mbcl_active;
+ } else if (m_class(i) == MC_MBUF_BIGCL) {
+ m_mbufbigclfree = sp->mbcl_total - sp->mbcl_active;
+ } else if (njcl > 0 && m_class(i) == MC_MBUF_16KCL) {
+ m_mbuf16kclfree = sp->mbcl_total - sp->mbcl_active;
+ }
+
+ mem = sp->mbcl_ctotal * sp->mbcl_size;
+ totmem += mem;
+ totfree += (sp->mbcl_mc_cached + sp->mbcl_infree) *
+ sp->mbcl_size;
+
+ }
+
+ /* adjust free counts to include composite caches */
+ m_clfree += m_mbufclfree;
+ m_bigclfree += m_mbufbigclfree;
+ m_16kclfree += m_mbuf16kclfree;
+
+ totmbufs = 0;
+ for (mp = mbtypes; mp->mt_name != NULL; mp++)
+ totmbufs += mbstat.m_mtypes[mp->mt_type];
+ if (totmbufs > m_mbufs)
+ totmbufs = m_mbufs;
+ k = snprintf(c, clen, "%lu/%u mbufs in use:\n", totmbufs, m_mbufs);
+ MBUF_DUMP_BUF_CHK();
+
+ bzero(&seen, sizeof (seen));
+ for (mp = mbtypes; mp->mt_name != NULL; mp++) {
+ if (mbstat.m_mtypes[mp->mt_type] != 0) {
+ seen[mp->mt_type] = 1;
+ k = snprintf(c, clen, "\t%u mbufs allocated to %s\n",
+ mbstat.m_mtypes[mp->mt_type], mp->mt_name);
+ MBUF_DUMP_BUF_CHK();
+ }
+ }
+ seen[MT_FREE] = 1;
+ for (i = 0; i < nmbtypes; i++)
+ if (!seen[i] && mbstat.m_mtypes[i] != 0) {
+ k = snprintf(c, clen, "\t%u mbufs allocated to "
+ "<mbuf type %d>\n", mbstat.m_mtypes[i], i);
+ MBUF_DUMP_BUF_CHK();
+ }
+ if ((m_mbufs - totmbufs) > 0) {
+ k = snprintf(c, clen, "\t%lu mbufs allocated to caches\n",
+ m_mbufs - totmbufs);
+ MBUF_DUMP_BUF_CHK();
+ }
+ k = snprintf(c, clen, "%u/%u mbuf 2KB clusters in use\n"
+ "%u/%u mbuf 4KB clusters in use\n",
+ (unsigned int)(mbstat.m_clusters - m_clfree),
+ (unsigned int)mbstat.m_clusters,
+ (unsigned int)(mbstat.m_bigclusters - m_bigclfree),
+ (unsigned int)mbstat.m_bigclusters);
+ MBUF_DUMP_BUF_CHK();
+
+ if (njcl > 0) {
+ k = snprintf(c, clen, "%u/%u mbuf %uKB clusters in use\n",
+ m_16kclusters - m_16kclfree, m_16kclusters,
+ njclbytes / 1024);
+ MBUF_DUMP_BUF_CHK();
+ }
+ totused = totmem - totfree;
+ if (totmem == 0) {
+ totpct = 0;
+ } else if (totused < (ULONG_MAX / 100)) {
+ totpct = (totused * 100) / totmem;
+ } else {
+ u_long totmem1 = totmem / 100;
+ u_long totused1 = totused / 100;
+ totpct = (totused1 * 100) / totmem1;
+ }
+ k = snprintf(c, clen, "%lu KB allocated to network (approx. %lu%% "
+ "in use)\n", totmem / 1024, totpct);
+ MBUF_DUMP_BUF_CHK();
+
+ /* mbuf leak detection statistics */
+ mleak_update_stats();
+
+ k = snprintf(c, clen, "\nmbuf leak detection table:\n");
+ MBUF_DUMP_BUF_CHK();
+ k = snprintf(c, clen, "\ttotal captured: %u (one per %u)\n",
+ mleak_table.mleak_capture / mleak_table.mleak_sample_factor,
+ mleak_table.mleak_sample_factor);
+ MBUF_DUMP_BUF_CHK();
+ k = snprintf(c, clen, "\ttotal allocs outstanding: %llu\n",
+ mleak_table.outstanding_allocs);
+ MBUF_DUMP_BUF_CHK();
+ k = snprintf(c, clen, "\tnew hash recorded: %llu allocs, %llu traces\n",
+ mleak_table.alloc_recorded, mleak_table.trace_recorded);
+ MBUF_DUMP_BUF_CHK();
+ k = snprintf(c, clen, "\thash collisions: %llu allocs, %llu traces\n",
+ mleak_table.alloc_collisions, mleak_table.trace_collisions);
+ MBUF_DUMP_BUF_CHK();
+ k = snprintf(c, clen, "\toverwrites: %llu allocs, %llu traces\n",
+ mleak_table.alloc_overwrites, mleak_table.trace_overwrites);
+ MBUF_DUMP_BUF_CHK();
+ k = snprintf(c, clen, "\tlock conflicts: %llu\n\n",
+ mleak_table.total_conflicts);
+ MBUF_DUMP_BUF_CHK();
+
+ k = snprintf(c, clen, "top %d outstanding traces:\n",
+ mleak_stat->ml_cnt);
+ MBUF_DUMP_BUF_CHK();
+ for (i = 0; i < mleak_stat->ml_cnt; i++) {
+ mltr = &mleak_stat->ml_trace[i];
+ k = snprintf(c, clen, "[%d] %llu outstanding alloc(s), "
+ "%llu hit(s), %llu collision(s)\n", (i + 1),
+ mltr->mltr_allocs, mltr->mltr_hitcount,
+ mltr->mltr_collisions);
+ MBUF_DUMP_BUF_CHK();
+ }
+
+ if (mleak_stat->ml_isaddr64)
+ k = snprintf(c, clen, MB_LEAK_HDR_64);
+ else
+ k = snprintf(c, clen, MB_LEAK_HDR_32);
+ MBUF_DUMP_BUF_CHK();
+
+ for (i = 0; i < MLEAK_STACK_DEPTH; i++) {
+ int j;
+ k = snprintf(c, clen, "%2d: ", (i + 1));
+ MBUF_DUMP_BUF_CHK();
+ for (j = 0; j < mleak_stat->ml_cnt; j++) {
+ mltr = &mleak_stat->ml_trace[j];
+ if (i < mltr->mltr_depth) {
+ if (mleak_stat->ml_isaddr64) {
+ k = snprintf(c, clen, "0x%0llx ",
+ mltr->mltr_addr[i]);
+ } else {
+ k = snprintf(c, clen,
+ "0x%08x ",
+ (u_int32_t)mltr->mltr_addr[i]);
+ }
+ } else {
+ if (mleak_stat->ml_isaddr64)
+ k = snprintf(c, clen,
+ MB_LEAK_SPACING_64);
+ else
+ k = snprintf(c, clen,
+ MB_LEAK_SPACING_32);
+ }
+ MBUF_DUMP_BUF_CHK();
+ }
+ k = snprintf(c, clen, "\n");
+ MBUF_DUMP_BUF_CHK();
+ }
+done:
+ return (mbuf_dump_buf);
+}
+
+#undef MBUF_DUMP_BUF_CHK
+
SYSCTL_DECL(_kern_ipc);
-SYSCTL_PROC(_kern_ipc, KIPC_MBSTAT, mbstat, CTLFLAG_RD | CTLFLAG_LOCKED,
+SYSCTL_PROC(_kern_ipc, KIPC_MBSTAT, mbstat,
+ CTLFLAG_RD | CTLFLAG_LOCKED,
0, 0, mbstat_sysctl, "S,mbstat", "");
-SYSCTL_PROC(_kern_ipc, OID_AUTO, mb_stat, CTLFLAG_RD | CTLFLAG_LOCKED,
+SYSCTL_PROC(_kern_ipc, OID_AUTO, mb_stat,
+ CTLFLAG_RD | CTLFLAG_LOCKED,
0, 0, mb_stat_sysctl, "S,mb_stat", "");
-SYSCTL_INT(_kern_ipc, OID_AUTO, mb_normalized, CTLFLAG_RD | CTLFLAG_LOCKED,
- &mb_normalized, 0, "");
+SYSCTL_PROC(_kern_ipc, OID_AUTO, mleak_top_trace,
+ CTLFLAG_RD | CTLFLAG_LOCKED,
+ 0, 0, mleak_top_trace_sysctl, "S,mb_top_trace", "");
+SYSCTL_PROC(_kern_ipc, OID_AUTO, mleak_table,
+ CTLFLAG_RD | CTLFLAG_LOCKED,
+ 0, 0, mleak_table_sysctl, "S,mleak_table", "");
+SYSCTL_INT(_kern_ipc, OID_AUTO, mleak_sample_factor,
+ CTLFLAG_RW | CTLFLAG_LOCKED, &mleak_table.mleak_sample_factor, 0, "");
+SYSCTL_INT(_kern_ipc, OID_AUTO, mb_normalized,
+ CTLFLAG_RD | CTLFLAG_LOCKED, &mb_normalized, 0, "");
+SYSCTL_INT(_kern_ipc, OID_AUTO, mb_watchdog,
+ CTLFLAG_RW | CTLFLAG_LOCKED, &mb_watchdog, 0, "");