/*
* Copyright (c) 1998-2000 Apple Computer, Inc. All rights reserved.
*
- * @APPLE_LICENSE_HEADER_START@
- *
- * The contents of this file constitute Original Code as defined in and
- * are subject to the Apple Public Source License Version 1.1 (the
- * "License"). You may not use this file except in compliance with the
- * License. Please obtain a copy of the License at
- * http://www.apple.com/publicsource and read it before using this file.
- *
- * This Original Code and all software distributed under the License are
- * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
+ *
+ * This file contains Original Code and/or Modifications of Original Code
+ * as defined in and that are subject to the Apple Public Source License
+ * Version 2.0 (the 'License'). You may not use this file except in
+ * compliance with the License. The rights granted to you under the License
+ * may not be used to create, or enable the creation or redistribution of,
+ * unlawful or unlicensed copies of an Apple operating system, or to
+ * circumvent, violate, or enable the circumvention or violation of, any
+ * terms of an Apple operating system software license agreement.
+ *
+ * Please obtain a copy of the License at
+ * http://www.opensource.apple.com/apsl/ and read it before using this file.
+ *
+ * The Original Code and all software distributed under the License are
+ * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
- * License for the specific language governing rights and limitations
- * under the License.
- *
- * @APPLE_LICENSE_HEADER_END@
+ * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
+ * Please see the License for the specific language governing rights and
+ * limitations under the License.
+ *
+ * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
*/
#include <IOKit/IOLib.h>
#define super IOMemoryDescriptor
OSDefineMetaClassAndStructors(IOMultiMemoryDescriptor, IOMemoryDescriptor)
-// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
-bool IOMultiMemoryDescriptor::initWithAddress(
- void * /* address */ ,
- IOByteCount /* withLength */ ,
- IODirection /* withDirection */ )
+IOMultiMemoryDescriptor * IOMultiMemoryDescriptor::withDescriptors(
+ IOMemoryDescriptor * *descriptors,
+ UInt32 withCount,
+ IODirection withDirection,
+ bool asReference )
{
- return false;
+ //
+ // Create a new IOMultiMemoryDescriptor. The "buffer" is made up of several
+ // memory descriptors, that are to be chained end-to-end to make up a single
+ // memory descriptor.
+ //
+ // Passing the ranges as a reference will avoid an extra allocation.
+ //
+
+ IOMultiMemoryDescriptor * me = new IOMultiMemoryDescriptor;
+
+ if (me && me->initWithDescriptors(
+ /* descriptors */ descriptors,
+ /* withCount */ withCount,
+ /* withDirection */ withDirection,
+ /* asReference */ asReference ) == false) {
+ me->release();
+ me = NULL;
+ }
+
+ return me;
}
-// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
-bool IOMultiMemoryDescriptor::initWithAddress(
- vm_address_t /* address */ ,
- IOByteCount /* withLength */ ,
- IODirection /* withDirection */ ,
- task_t /* withTask */ )
+bool
+IOMultiMemoryDescriptor::initWithDescriptors(
+ IOMemoryDescriptor ** descriptors,
+ UInt32 withCount,
+ IODirection withDirection,
+ bool asReference )
{
- return false;
+ unsigned index;
+ IOOptionBits copyFlags;
+ //
+ // Initialize an IOMultiMemoryDescriptor. The "buffer" is made up of several
+ // memory descriptors, that are to be chained end-to-end to make up a single
+ // memory descriptor.
+ //
+ // Passing the ranges as a reference will avoid an extra allocation.
+ //
+
+ assert(descriptors);
+
+ // Release existing descriptors, if any
+ if (_descriptors) {
+ for (unsigned index = 0; index < _descriptorsCount; index++) {
+ _descriptors[index]->release();
+ }
+
+ if (_descriptorsIsAllocated) {
+ IODelete(_descriptors, IOMemoryDescriptor *, _descriptorsCount);
+ }
+ } else {
+ // Ask our superclass' opinion.
+ if (super::init() == false) {
+ return false;
+ }
+ }
+
+ // Initialize our minimal state.
+
+ _descriptors = NULL;
+ _descriptorsCount = withCount;
+ _descriptorsIsAllocated = asReference ? false : true;
+ _flags = withDirection;
+#ifndef __LP64__
+ _direction = (IODirection) (_flags & kIOMemoryDirectionMask);
+#endif /* !__LP64__ */
+ _length = 0;
+ _mappings = NULL;
+ _tag = 0;
+
+ if (asReference) {
+ _descriptors = descriptors;
+ } else {
+ _descriptors = IONew(IOMemoryDescriptor *, withCount);
+ if (_descriptors == NULL) {
+ return false;
+ }
+
+ bcopy( /* from */ descriptors,
+ /* to */ _descriptors,
+ /* bytes */ withCount * sizeof(IOMemoryDescriptor *));
+ }
+
+ for (index = 0; index < withCount; index++) {
+ descriptors[index]->retain();
+ _length += descriptors[index]->getLength();
+ if (_tag == 0) {
+ _tag = descriptors[index]->getTag();
+ }
+ assert(descriptors[index]->getDirection() ==
+ (withDirection & kIOMemoryDirectionMask));
+ }
+
+ enum { kCopyFlags = kIOMemoryBufferPageable };
+ copyFlags = 0;
+ for (index = 0; index < withCount; index++) {
+ if (!index) {
+ copyFlags = (kCopyFlags & descriptors[index]->_flags);
+ } else if (copyFlags != (kCopyFlags & descriptors[index]->_flags)) {
+ break;
+ }
+ }
+ if (index < withCount) {
+ return false;
+ }
+ _flags |= copyFlags;
+
+ return true;
}
-// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
-bool IOMultiMemoryDescriptor::initWithPhysicalAddress(
- IOPhysicalAddress /* address */ ,
- IOByteCount /* withLength */ ,
- IODirection /* withDirection */ )
+void
+IOMultiMemoryDescriptor::free()
{
- return false;
-}
+ //
+ // Free all of this object's outstanding resources.
+ //
+ if (_descriptors) {
+ for (unsigned index = 0; index < _descriptorsCount; index++) {
+ _descriptors[index]->release();
+ }
-// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ if (_descriptorsIsAllocated) {
+ IODelete(_descriptors, IOMemoryDescriptor *, _descriptorsCount);
+ }
+ }
-bool IOMultiMemoryDescriptor::initWithPhysicalRanges(
- IOPhysicalRange * /* ranges */ ,
- UInt32 /* withCount */ ,
- IODirection /* withDirection */ ,
- bool /* asReference */ )
-{
- return false;
+ super::free();
}
-// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
-bool IOMultiMemoryDescriptor::initWithRanges(
- IOVirtualRange * /* ranges */ ,
- UInt32 /* withCount */ ,
- IODirection /* withDirection */ ,
- task_t /* withTask */ ,
- bool /* asReference */ )
+IOReturn
+IOMultiMemoryDescriptor::prepare(IODirection forDirection)
{
- return false;
+ //
+ // Prepare the memory for an I/O transfer.
+ //
+ // This involves paging in the memory and wiring it down for the duration
+ // of the transfer. The complete() method finishes the processing of the
+ // memory after the I/O transfer finishes.
+ //
+
+ unsigned index;
+ IOReturn status = kIOReturnInternalError;
+ IOReturn statusUndo;
+
+ if (forDirection == kIODirectionNone) {
+ forDirection = getDirection();
+ }
+
+ for (index = 0; index < _descriptorsCount; index++) {
+ status = _descriptors[index]->prepare(forDirection);
+ if (status != kIOReturnSuccess) {
+ break;
+ }
+ }
+
+ if (status != kIOReturnSuccess) {
+ for (unsigned indexUndo = 0; indexUndo < index; indexUndo++) {
+ statusUndo = _descriptors[indexUndo]->complete(forDirection);
+ assert(statusUndo == kIOReturnSuccess);
+ }
+ }
+
+ return status;
}
-// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
-IOMultiMemoryDescriptor * IOMultiMemoryDescriptor::withDescriptors(
- IOMemoryDescriptor ** descriptors,
- UInt32 withCount,
- IODirection withDirection,
- bool asReference = false )
+IOReturn
+IOMultiMemoryDescriptor::complete(IODirection forDirection)
{
- //
- // Create a new IOMultiMemoryDescriptor. The "buffer" is made up of several
- // memory descriptors, that are to be chained end-to-end to make up a single
- // memory descriptor.
- //
- // Passing the ranges as a reference will avoid an extra allocation.
- //
-
- IOMultiMemoryDescriptor * me = new IOMultiMemoryDescriptor;
-
- if ( me && me->initWithDescriptors(
- /* descriptors */ descriptors,
- /* withCount */ withCount,
- /* withDirection */ withDirection,
- /* asReference */ asReference ) == false )
- {
- me->release();
- me = 0;
- }
-
- return me;
+ //
+ // Complete processing of the memory after an I/O transfer finishes.
+ //
+ // This method shouldn't be called unless a prepare() was previously issued;
+ // the prepare() and complete() must occur in pairs, before and after an I/O
+ // transfer.
+ //
+
+ IOReturn status;
+ IOReturn statusFinal = kIOReturnSuccess;
+
+ if (forDirection == kIODirectionNone) {
+ forDirection = getDirection();
+ }
+
+ for (unsigned index = 0; index < _descriptorsCount; index++) {
+ status = _descriptors[index]->complete(forDirection);
+ if (status != kIOReturnSuccess) {
+ statusFinal = status;
+ }
+ assert(status == kIOReturnSuccess);
+ }
+
+ return statusFinal;
}
-// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
-bool IOMultiMemoryDescriptor::initWithDescriptors(
- IOMemoryDescriptor ** descriptors,
- UInt32 withCount,
- IODirection withDirection,
- bool asReference = false )
+addr64_t
+IOMultiMemoryDescriptor::getPhysicalSegment(IOByteCount offset,
+ IOByteCount * length,
+ IOOptionBits options)
{
- //
- // Initialize an IOMultiMemoryDescriptor. The "buffer" is made up of several
- // memory descriptors, that are to be chained end-to-end to make up a single
- // memory descriptor.
- //
- // Passing the ranges as a reference will avoid an extra allocation.
- //
-
- assert(descriptors);
- assert(withCount);
-
- // Ask our superclass' opinion.
-
- if ( super::init() == false ) return false;
-
- // Initialize our minimal state.
-
- _descriptors = 0;
- _descriptorsCount = withCount;
- _descriptorsIsAllocated = asReference ? false : true;
- _direction = withDirection;
- _length = 0;
- _mappings = 0;
- _tag = 0;
-
- if ( asReference )
- {
- _descriptors = descriptors;
- }
- else
- {
- _descriptors = IONew(IOMemoryDescriptor *, withCount);
- if ( _descriptors == 0 ) return false;
-
- bcopy( /* from */ descriptors,
- /* to */ _descriptors,
- /* bytes */ withCount * sizeof(IOMemoryDescriptor *) );
- }
-
- for ( unsigned index = 0; index < withCount; index++ )
- {
- descriptors[index]->retain();
- _length += descriptors[index]->getLength();
- if ( _tag == 0 ) _tag = descriptors[index]->getTag();
- assert(descriptors[index]->getDirection() == withDirection);
- }
-
- return true;
+ //
+ // This method returns the physical address of the byte at the given offset
+ // into the memory, and optionally the length of the physically contiguous
+ // segment from that offset.
+ //
+
+ assert(offset <= _length);
+
+ for (unsigned index = 0; index < _descriptorsCount; index++) {
+ if (offset < _descriptors[index]->getLength()) {
+ return _descriptors[index]->getPhysicalSegment(offset, length, options);
+ }
+ offset -= _descriptors[index]->getLength();
+ }
+
+ if (length) {
+ *length = 0;
+ }
+
+ return 0;
}
-// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+#include "IOKitKernelInternal.h"
-void IOMultiMemoryDescriptor::free()
+IOReturn
+IOMultiMemoryDescriptor::doMap(vm_map_t __addressMap,
+ IOVirtualAddress * __address,
+ IOOptionBits options,
+ IOByteCount __offset,
+ IOByteCount __length)
{
- //
- // Free all of this object's outstanding resources.
- //
-
- if ( _descriptors )
- {
- for ( unsigned index = 0; index < _descriptorsCount; index++ )
- _descriptors[index]->release();
-
- if ( _descriptorsIsAllocated )
- IODelete(_descriptors, IOMemoryDescriptor *, _descriptorsCount);
- }
-
- super::free();
+ IOMemoryMap * mapping = (IOMemoryMap *) *__address;
+ vm_map_t map = mapping->fAddressMap;
+ mach_vm_size_t offset = mapping->fOffset;
+ mach_vm_size_t length = mapping->fLength;
+ mach_vm_address_t address = mapping->fAddress;
+
+ kern_return_t err;
+ IOOptionBits subOptions;
+ mach_vm_size_t mapOffset;
+ mach_vm_size_t bytesRemaining, chunk;
+ mach_vm_address_t nextAddress;
+ IOMemoryDescriptorMapAllocRef ref;
+ vm_prot_t prot;
+
+ do{
+ prot = VM_PROT_READ;
+ if (!(kIOMapReadOnly & options)) {
+ prot |= VM_PROT_WRITE;
+ }
+
+ if (kIOMapOverwrite & options) {
+ if ((map == kernel_map) && (kIOMemoryBufferPageable & _flags)) {
+ map = IOPageableMapForAddress(address);
+ }
+ err = KERN_SUCCESS;
+ } else {
+ ref.map = map;
+ ref.tag = IOMemoryTag(map);
+ ref.options = options;
+ ref.size = length;
+ ref.prot = prot;
+ if (options & kIOMapAnywhere) {
+ // vm_map looks for addresses above here, even when VM_FLAGS_ANYWHERE
+ ref.mapped = 0;
+ } else {
+ ref.mapped = mapping->fAddress;
+ }
+
+ if ((ref.map == kernel_map) && (kIOMemoryBufferPageable & _flags)) {
+ err = IOIteratePageableMaps(ref.size, &IOMemoryDescriptorMapAlloc, &ref);
+ } else {
+ err = IOMemoryDescriptorMapAlloc(ref.map, &ref);
+ }
+
+ if (KERN_SUCCESS != err) {
+ break;
+ }
+
+ address = ref.mapped;
+ mapping->fAddress = address;
+ }
+
+ mapOffset = offset;
+ bytesRemaining = length;
+ nextAddress = address;
+ assert(mapOffset <= _length);
+ subOptions = (options & ~kIOMapAnywhere) | kIOMapOverwrite;
+
+ for (unsigned index = 0; bytesRemaining && (index < _descriptorsCount); index++) {
+ chunk = _descriptors[index]->getLength();
+ if (mapOffset >= chunk) {
+ mapOffset -= chunk;
+ continue;
+ }
+ chunk -= mapOffset;
+ if (chunk > bytesRemaining) {
+ chunk = bytesRemaining;
+ }
+ IOMemoryMap * subMap;
+ subMap = _descriptors[index]->createMappingInTask(mapping->fAddressTask, nextAddress, subOptions, mapOffset, chunk );
+ if (!subMap) {
+ break;
+ }
+ subMap->release(); // kIOMapOverwrite means it will not deallocate
+
+ bytesRemaining -= chunk;
+ nextAddress += chunk;
+ mapOffset = 0;
+ }
+ if (bytesRemaining) {
+ err = kIOReturnUnderrun;
+ }
+ }while (false);
+
+ if (kIOReturnSuccess == err) {
+#if IOTRACKING
+ IOTrackingAddUser(gIOMapTracking, &mapping->fTracking, mapping->fLength);
+#endif
+ }
+
+ return err;
}
-// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
-IOReturn IOMultiMemoryDescriptor::prepare(IODirection forDirection)
+IOReturn
+IOMultiMemoryDescriptor::setPurgeable( IOOptionBits newState,
+ IOOptionBits * oldState )
{
- //
- // Prepare the memory for an I/O transfer.
- //
- // This involves paging in the memory and wiring it down for the duration
- // of the transfer. The complete() method finishes the processing of the
- // memory after the I/O transfer finishes.
- //
-
- unsigned index;
- IOReturn status = kIOReturnInternalError;
- IOReturn statusUndo;
-
- if ( forDirection == kIODirectionNone )
- {
- forDirection = _direction;
- }
-
- for ( index = 0; index < _descriptorsCount; index++ )
- {
- status = _descriptors[index]->prepare(forDirection);
- if ( status != kIOReturnSuccess ) break;
- }
-
- if ( status != kIOReturnSuccess )
- {
- for ( unsigned indexUndo = 0; indexUndo <= index; indexUndo++ )
- {
- statusUndo = _descriptors[index]->complete(forDirection);
- assert(statusUndo == kIOReturnSuccess);
- }
- }
-
- return status;
+ IOReturn err;
+ IOOptionBits totalState, state;
+
+ totalState = kIOMemoryPurgeableNonVolatile;
+ err = kIOReturnSuccess;
+ for (unsigned index = 0; index < _descriptorsCount; index++) {
+ err = _descriptors[index]->setPurgeable(newState, &state);
+ if (kIOReturnSuccess != err) {
+ break;
+ }
+
+ if (kIOMemoryPurgeableEmpty == state) {
+ totalState = kIOMemoryPurgeableEmpty;
+ } else if (kIOMemoryPurgeableEmpty == totalState) {
+ continue;
+ } else if (kIOMemoryPurgeableVolatile == totalState) {
+ continue;
+ } else if (kIOMemoryPurgeableVolatile == state) {
+ totalState = kIOMemoryPurgeableVolatile;
+ } else {
+ totalState = kIOMemoryPurgeableNonVolatile;
+ }
+ }
+ if (oldState) {
+ *oldState = totalState;
+ }
+
+ return err;
}
-// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
-IOReturn IOMultiMemoryDescriptor::complete(IODirection forDirection)
+IOReturn
+IOMultiMemoryDescriptor::setOwnership( task_t newOwner,
+ int newLedgerTag,
+ IOOptionBits newLedgerOptions )
{
- //
- // Complete processing of the memory after an I/O transfer finishes.
- //
- // This method shouldn't be called unless a prepare() was previously issued;
- // the prepare() and complete() must occur in pairs, before and after an I/O
- // transfer.
- //
-
- IOReturn status;
- IOReturn statusFinal = kIOReturnSuccess;
-
- if ( forDirection == kIODirectionNone )
- {
- forDirection = _direction;
- }
-
- for ( unsigned index = 0; index < _descriptorsCount; index++ )
- {
- status = _descriptors[index]->complete(forDirection);
- if ( status != kIOReturnSuccess ) statusFinal = status;
- assert(status == kIOReturnSuccess);
- }
-
- return statusFinal;
-}
+ IOReturn err;
-// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ if (iokit_iomd_setownership_enabled == FALSE) {
+ return kIOReturnUnsupported;
+ }
-IOPhysicalAddress IOMultiMemoryDescriptor::getPhysicalSegment(
- IOByteCount offset,
- IOByteCount * length )
-{
- //
- // This method returns the physical address of the byte at the given offset
- // into the memory, and optionally the length of the physically contiguous
- // segment from that offset.
- //
-
- assert(offset <= _length);
-
- for ( unsigned index = 0; index < _descriptorsCount; index++ )
- {
- if ( offset < _descriptors[index]->getLength() )
- {
- return _descriptors[index]->getPhysicalSegment(offset, length);
- }
- offset -= _descriptors[index]->getLength();
- }
-
- if ( length ) *length = 0;
-
- return 0;
-}
+ err = kIOReturnSuccess;
+ for (unsigned index = 0; index < _descriptorsCount; index++) {
+ err = _descriptors[index]->setOwnership(newOwner, newLedgerTag, newLedgerOptions);
+ if (kIOReturnSuccess != err) {
+ break;
+ }
+ }
-// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ return err;
+}
-IOPhysicalAddress IOMultiMemoryDescriptor::getSourceSegment(
- IOByteCount offset,
- IOByteCount * length )
+IOReturn
+IOMultiMemoryDescriptor::getPageCounts(IOByteCount * pResidentPageCount,
+ IOByteCount * pDirtyPageCount)
{
- //
- // This method returns the physical address of the byte at the given offset
- // into the memory, and optionally the length of the physically contiguous
- // segment from that offset.
- //
-
- assert(offset <= _length);
-
- for ( unsigned index = 0; index < _descriptorsCount; index++ )
- {
- if ( offset < _descriptors[index]->getLength() )
- {
- return _descriptors[index]->getSourceSegment(offset, length);
- }
- offset -= _descriptors[index]->getLength();
- }
-
- if ( length ) *length = 0;
-
- return 0;
+ IOReturn err;
+ IOByteCount totalResidentPageCount, totalDirtyPageCount;
+ IOByteCount residentPageCount, dirtyPageCount;
+
+ err = kIOReturnSuccess;
+ totalResidentPageCount = totalDirtyPageCount = 0;
+ for (unsigned index = 0; index < _descriptorsCount; index++) {
+ err = _descriptors[index]->getPageCounts(&residentPageCount, &dirtyPageCount);
+ if (kIOReturnSuccess != err) {
+ break;
+ }
+ totalResidentPageCount += residentPageCount;
+ totalDirtyPageCount += dirtyPageCount;
+ }
+
+ if (pResidentPageCount) {
+ *pResidentPageCount = totalResidentPageCount;
+ }
+ if (pDirtyPageCount) {
+ *pDirtyPageCount = totalDirtyPageCount;
+ }
+
+ return err;
}
-// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
-void * IOMultiMemoryDescriptor::getVirtualSegment( IOByteCount /* offset */ ,
- IOByteCount * /* length */ )
+uint64_t
+IOMultiMemoryDescriptor::getPreparationID( void )
{
- return 0;
-}
+ if (!super::getKernelReserved()) {
+ return kIOPreparationIDUnsupported;
+ }
-// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ for (unsigned index = 0; index < _descriptorsCount; index++) {
+ uint64_t preparationID = _descriptors[index]->getPreparationID();
-IOByteCount IOMultiMemoryDescriptor::readBytes( IOByteCount offset,
- void * bytes,
- IOByteCount withLength )
-{
- //
- // Copies data from the memory descriptor's buffer at the given offset, to
- // the specified buffer. Returns the number of bytes copied.
- //
-
- IOByteCount bytesCopied = 0;
- unsigned index;
-
- for ( index = 0; index < _descriptorsCount; index++ )
- {
- if ( offset < _descriptors[index]->getLength() ) break;
- offset -= _descriptors[index]->getLength();
- }
-
- for ( ; index < _descriptorsCount && withLength; index++)
- {
- IOByteCount copy = min(_descriptors[index]->getLength(), withLength);
- IOByteCount copied = _descriptors[index]->readBytes(offset,bytes,copy);
-
- bytesCopied += copied;
- if ( copied != copy ) break;
-
- bytes = ((UInt8 *) bytes) + copied;
- withLength -= copied;
- offset = 0;
- }
-
- return bytesCopied;
-}
+ if (preparationID == kIOPreparationIDUnsupported) {
+ return kIOPreparationIDUnsupported;
+ }
-// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ if (preparationID == kIOPreparationIDUnprepared) {
+ return kIOPreparationIDUnprepared;
+ }
+ }
-IOByteCount IOMultiMemoryDescriptor::writeBytes( IOByteCount offset,
- const void * bytes,
- IOByteCount withLength )
-{
- //
- // Copies data to the memory descriptor's buffer at the given offset, from
- // the specified buffer. Returns the number of bytes copied.
- //
-
- IOByteCount bytesCopied = 0;
- unsigned index;
-
- for ( index = 0; index < _descriptorsCount; index++ )
- {
- if ( offset < _descriptors[index]->getLength() ) break;
- offset -= _descriptors[index]->getLength();
- }
-
- for ( ; index < _descriptorsCount && withLength; index++)
- {
- IOByteCount copy = min(_descriptors[index]->getLength(), withLength);
- IOByteCount copied = _descriptors[index]->writeBytes(offset,bytes,copy);
-
- bytesCopied += copied;
- if ( copied != copy ) break;
-
- bytes = ((UInt8 *) bytes) + copied;
- withLength -= copied;
- offset = 0;
- }
-
- return bytesCopied;
+ super::setPreparationID();
+
+ return super::getPreparationID();
}