/*
- * Copyright (c) 2000-2013 Apple Inc. All rights reserved.
+ * Copyright (c) 2000-2020 Apple Inc. All rights reserved.
*
* @APPLE_OSREFERENCE_LICENSE_HEADER_START@
*
#include <kern/thread_group.h>
#include <san/kasan.h>
-#if !CONFIG_EMBEDDED
+#if defined(__x86_64__)
#include <i386/misc_protos.h>
#endif
+#if defined(__arm64__)
+#include <arm/machine_routines.h>
+#endif
#include <IOKit/IOHibernatePrivate.h>
extern boolean_t vm_darkwake_mode;
+extern zone_t vm_page_zone;
+
+#if DEVELOPMENT || DEBUG
+/* sysctl defined in bsd/dev/arm64/sysctl.c */
+int do_cseg_wedge_thread(void);
+int do_cseg_unwedge_thread(void);
+static event_t debug_cseg_wait_event = NULL;
+#endif /* DEVELOPMENT || DEBUG */
+
+#if CONFIG_FREEZE
+bool freezer_incore_cseg_acct = TRUE; /* Only count incore compressed memory for jetsams. */
+void task_disown_frozen_csegs(task_t owner_task);
+#endif /* CONFIG_FREEZE */
#if POPCOUNT_THE_COMPRESSED_DATA
boolean_t popcount_c_segs = TRUE;
#if CONFIG_EMBEDDED
#if CONFIG_FREEZE
-int vm_compressor_mode = VM_PAGER_FREEZER_DEFAULT;
-
-void *freezer_chead; /* The chead used to track c_segs allocated for the exclusive use of holding just one task's compressed memory.*/
-char *freezer_compressor_scratch_buf = NULL;
-
-extern int c_freezer_swapout_page_count; /* This count keeps track of the # of compressed pages holding just one task's compressed memory on the swapout queue. This count is used during each freeze i.e. on a per-task basis.*/
-
+int vm_compressor_mode = VM_PAGER_FREEZER_DEFAULT;
+struct freezer_context freezer_context_global;
#else /* CONFIG_FREEZE */
-int vm_compressor_mode = VM_PAGER_NOT_CONFIGURED;
+int vm_compressor_mode = VM_PAGER_NOT_CONFIGURED;
#endif /* CONFIG_FREEZE */
-int vm_scale = 1;
-
#else /* CONFIG_EMBEDDED */
int vm_compressor_mode = VM_PAGER_COMPRESSOR_WITH_SWAP;
-int vm_scale = 16;
#endif /* CONFIG_EMBEDDED */
+TUNABLE(uint32_t, vm_compression_limit, "vm_compression_limit", 0);
int vm_compressor_is_active = 0;
-int vm_compression_limit = 0;
int vm_compressor_available = 0;
+extern uint64_t vm_swap_get_max_configured_space(void);
extern void vm_pageout_io_throttle(void);
#if CHECKSUM_THE_DATA || CHECKSUM_THE_SWAP || CHECKSUM_THE_COMPRESSED_DATA
uintptr_t c_segno;
};
+#define C_SLOT_ASSERT_PACKABLE(ptr) \
+ VM_ASSERT_POINTER_PACKABLE((vm_offset_t)(ptr), C_SLOT_PACKED_PTR);
+#define C_SLOT_PACK_PTR(ptr) \
+ VM_PACK_POINTER((vm_offset_t)(ptr), C_SLOT_PACKED_PTR)
-#define C_SLOT_PACK_PTR(ptr) (((uintptr_t)ptr - (uintptr_t) KERNEL_PMAP_HEAP_RANGE_START) >> 2)
-#define C_SLOT_UNPACK_PTR(cslot) ((uintptr_t)(cslot->c_packed_ptr << 2) + (uintptr_t) KERNEL_PMAP_HEAP_RANGE_START)
+#define C_SLOT_UNPACK_PTR(cslot) \
+ (c_slot_mapping_t)VM_UNPACK_POINTER((cslot)->c_packed_ptr, C_SLOT_PACKED_PTR)
+/* for debugging purposes */
+SECURITY_READ_ONLY_EARLY(vm_packing_params_t) c_slot_packing_params =
+ VM_PACKING_PARAMS(C_SLOT_PACKED_PTR);
uint32_t c_segment_count = 0;
uint32_t c_segment_count_max = 0;
uint32_t c_segment_noncompressible_pages;
-uint32_t c_segment_pages_compressed;
+uint32_t c_segment_pages_compressed = 0; /* Tracks # of uncompressed pages fed into the compressor */
+#if CONFIG_FREEZE
+int32_t c_segment_pages_compressed_incore = 0; /* Tracks # of uncompressed pages fed into the compressor that are in memory */
+uint32_t c_segments_incore_limit = 0; /* Tracks # of segments allowed to be in-core. Based on compressor pool size */
+#endif /* CONFIG_FREEZE */
+
uint32_t c_segment_pages_compressed_limit;
uint32_t c_segment_pages_compressed_nearing_limit;
uint32_t c_free_segno_head = (uint32_t)-1;
#define C_SEGMENTS_PER_PAGE (PAGE_SIZE / sizeof(union c_segu))
+LCK_GRP_DECLARE(vm_compressor_lck_grp, "vm_compressor");
+LCK_RW_DECLARE(c_master_lock, &vm_compressor_lck_grp);
+LCK_MTX_DECLARE(c_list_lock_storage, &vm_compressor_lck_grp);
-lck_grp_attr_t vm_compressor_lck_grp_attr;
-lck_attr_t vm_compressor_lck_attr;
-lck_grp_t vm_compressor_lck_grp;
-lck_mtx_t *c_list_lock;
-lck_rw_t c_master_lock;
boolean_t decompressions_blocked = FALSE;
zone_t compressor_segment_zone;
boolean_t
vm_compressor_low_on_space(void)
{
+#if CONFIG_FREEZE
+ uint64_t incore_seg_count;
+ uint32_t incore_compressed_pages;
+ if (freezer_incore_cseg_acct) {
+ incore_seg_count = c_segment_count - c_swappedout_count - c_swappedout_sparse_count;
+ incore_compressed_pages = c_segment_pages_compressed_incore;
+ } else {
+ incore_seg_count = c_segment_count;
+ incore_compressed_pages = c_segment_pages_compressed;
+ }
+
+ if ((incore_compressed_pages > c_segment_pages_compressed_nearing_limit) ||
+ (incore_seg_count > c_segments_nearing_limit)) {
+ return TRUE;
+ }
+#else /* CONFIG_FREEZE */
if ((c_segment_pages_compressed > c_segment_pages_compressed_nearing_limit) ||
(c_segment_count > c_segments_nearing_limit)) {
return TRUE;
}
-
+#endif /* CONFIG_FREEZE */
return FALSE;
}
boolean_t
vm_compressor_out_of_space(void)
{
+#if CONFIG_FREEZE
+ uint64_t incore_seg_count;
+ uint32_t incore_compressed_pages;
+ if (freezer_incore_cseg_acct) {
+ incore_seg_count = c_segment_count - c_swappedout_count - c_swappedout_sparse_count;
+ incore_compressed_pages = c_segment_pages_compressed_incore;
+ } else {
+ incore_seg_count = c_segment_count;
+ incore_compressed_pages = c_segment_pages_compressed;
+ }
+
+ if ((incore_compressed_pages >= c_segment_pages_compressed_limit) ||
+ (incore_seg_count > c_segments_incore_limit)) {
+ return TRUE;
+ }
+#else /* CONFIG_FREEZE */
if ((c_segment_pages_compressed >= c_segment_pages_compressed_limit) ||
(c_segment_count >= c_segments_limit)) {
return TRUE;
}
-
+#endif /* CONFIG_FREEZE */
return FALSE;
}
#if DEVELOPMENT || DEBUG
-boolean_t kill_on_no_paging_space = FALSE; /* On compressor/swap exhaustion, kill the largest process regardless of
- * its chosen process policy. Controlled by a boot-arg of the same name. */
+/*
+ * On compressor/swap exhaustion, kill the largest process regardless of
+ * its chosen process policy.
+ */
+TUNABLE(bool, kill_on_no_paging_space, "-kill_on_no_paging_space", false);
#endif /* DEVELOPMENT || DEBUG */
#if !CONFIG_EMBEDDED
if (OSCompareAndSwap(0, 1, (UInt32 *)&no_paging_space_action_in_progress)) {
if (no_paging_space_action()) {
#if DEVELOPMENT || DEBUG
- if (kill_on_no_paging_space == TRUE) {
+ if (kill_on_no_paging_space) {
/*
* Since we are choosing to always kill a process, we don't need the
* "out of application memory" dialog box in this mode. And, hence we won't
#endif /* !CONFIG_EMBEDDED */
-void
-vm_compressor_init_locks(void)
-{
- lck_grp_attr_setdefault(&vm_compressor_lck_grp_attr);
- lck_grp_init(&vm_compressor_lck_grp, "vm_compressor", &vm_compressor_lck_grp_attr);
- lck_attr_setdefault(&vm_compressor_lck_attr);
-
- lck_rw_init(&c_master_lock, &vm_compressor_lck_grp, &vm_compressor_lck_attr);
-}
-
-
void
vm_decompressor_lock(void)
{
#if defined(__arm__) || defined(__arm64__)
cdst->c_codec = csrc->c_codec;
#endif
+#if __ARM_WKDM_POPCNT__
+ cdst->c_inline_popcount = csrc->c_inline_popcount;
+#endif
}
vm_map_t compressor_map;
vm_compressor_init(void)
{
thread_t thread;
- struct c_slot cs_dummy;
- c_slot_t cs = &cs_dummy;
- int c_segment_min_size;
- int c_segment_padded_size;
int attempts = 1;
kern_return_t retval = KERN_SUCCESS;
vm_offset_t start_addr = 0;
vm_size_t c_compressed_record_sbuf_size = 0;
#endif /* RECORD_THE_COMPRESSED_DATA */
-#if DEVELOPMENT || DEBUG
+#if DEVELOPMENT || DEBUG || CONFIG_FREEZE
char bootarg_name[32];
- if (PE_parse_boot_argn("-kill_on_no_paging_space", bootarg_name, sizeof(bootarg_name))) {
- kill_on_no_paging_space = TRUE;
- }
+#endif /* DEVELOPMENT || DEBUG || CONFIG_FREEZE */
+
+#if DEVELOPMENT || DEBUG
if (PE_parse_boot_argn("-disable_cseg_write_protection", bootarg_name, sizeof(bootarg_name))) {
write_protect_c_segs = FALSE;
}
}
#endif /* DEVELOPMENT || DEBUG */
- /*
- * ensure that any pointer that gets created from
- * the vm_page zone can be packed properly
- */
- cs->c_packed_ptr = C_SLOT_PACK_PTR(zone_map_min_address);
-
- if (C_SLOT_UNPACK_PTR(cs) != (uintptr_t)zone_map_min_address) {
- panic("C_SLOT_UNPACK_PTR failed on zone_map_min_address - %p", (void *)zone_map_min_address);
- }
-
- cs->c_packed_ptr = C_SLOT_PACK_PTR(zone_map_max_address);
-
- if (C_SLOT_UNPACK_PTR(cs) != (uintptr_t)zone_map_max_address) {
- panic("C_SLOT_UNPACK_PTR failed on zone_map_max_address - %p", (void *)zone_map_max_address);
+#if CONFIG_FREEZE
+ if (PE_parse_boot_argn("-disable_freezer_cseg_acct", bootarg_name, sizeof(bootarg_name))) {
+ freezer_incore_cseg_acct = FALSE;
}
-
+#endif /* CONFIG_FREEZE */
assert((C_SEGMENTS_PER_PAGE * sizeof(union c_segu)) == PAGE_SIZE);
- PE_parse_boot_argn("vm_compression_limit", &vm_compression_limit, sizeof(vm_compression_limit));
-
#ifdef CONFIG_EMBEDDED
vm_compressor_minorcompact_threshold_divisor = 20;
vm_compressor_majorcompact_threshold_divisor = 30;
vm_compressor_catchup_threshold_divisor = 50;
}
#endif
- /*
- * vm_page_init_lck_grp is now responsible for calling vm_compressor_init_locks
- * c_master_lock needs to be available early so that "vm_page_find_contiguous" can
- * use PAGE_REPLACEMENT_ALLOWED to coordinate with the compressor.
- */
-
- c_list_lock = lck_mtx_alloc_init(&vm_compressor_lck_grp, &vm_compressor_lck_attr);
queue_init(&c_bad_list_head);
queue_init(&c_age_list_head);
c_segments_available = 0;
if (vm_compression_limit) {
- compressor_pool_size = (uint64_t)vm_compression_limit * PAGE_SIZE_64;
+ compressor_pool_size = ptoa_64(vm_compression_limit);
}
compressor_pool_max_size = C_SEG_MAX_LIMIT;
compressor_pool_max_size *= C_SEG_BUFSIZE;
-#if defined(__x86_64__)
+#if !CONFIG_EMBEDDED
if (vm_compression_limit == 0) {
if (max_mem <= (4ULL * 1024ULL * 1024ULL * 1024ULL)) {
compressor_pool_size = ((kernel_map->max_offset - kernel_map->min_offset) - kernel_map->size) - VM_RESERVE_SIZE;
}
compressor_pool_multiplier = 1;
+
+#elif defined(__arm64__) && defined(XNU_TARGET_OS_WATCH)
+
+ /*
+ * On M9 watches the compressor can become big and can lead to
+ * churn in workingset resulting in audio drops. Setting a cap
+ * on the compressor size favors reclaiming unused memory
+ * sitting in idle band via jetsams
+ */
+
+#define COMPRESSOR_CAP_PERCENTAGE 37ULL
+
+ if (compressor_pool_max_size > max_mem) {
+ compressor_pool_max_size = max_mem;
+ }
+
+ if (vm_compression_limit == 0) {
+ compressor_pool_size = (max_mem * COMPRESSOR_CAP_PERCENTAGE) / 100ULL;
+ }
+ compressor_pool_multiplier = 1;
+
#else
+
if (compressor_pool_max_size > max_mem) {
compressor_pool_max_size = max_mem;
}
c_segment_pages_compressed_limit = (c_segments_limit * (C_SEG_BUFSIZE / PAGE_SIZE) * compressor_pool_multiplier);
if (c_segment_pages_compressed_limit < (uint32_t)(max_mem / PAGE_SIZE)) {
- c_segment_pages_compressed_limit = (uint32_t)(max_mem / PAGE_SIZE);
+ if (!vm_compression_limit) {
+ c_segment_pages_compressed_limit = (uint32_t)(max_mem / PAGE_SIZE);
+ }
}
c_segment_pages_compressed_nearing_limit = (uint32_t)(((uint64_t)c_segment_pages_compressed_limit * 98ULL) / 100ULL);
+#if CONFIG_FREEZE
+ /*
+ * Our in-core limits are based on the size of the compressor pool.
+ * The c_segments_nearing_limit is also based on the compressor pool
+ * size and calculated above.
+ */
+ c_segments_incore_limit = c_segments_limit;
+
+ if (freezer_incore_cseg_acct) {
+ /*
+ * Add enough segments to track all frozen c_segs that can be stored in swap.
+ */
+ c_segments_limit += (uint32_t)(vm_swap_get_max_configured_space() / (vm_size_t)(C_SEG_ALLOCSIZE));
+ }
+#endif
/*
* Submap needs space for:
* - c_segments
kprintf("retrying creation of the compressor submap at 0x%llx bytes\n", compressor_pool_size);
goto try_again;
}
- if (kernel_memory_allocate(compressor_map, (vm_offset_t *)(&c_segments), (sizeof(union c_segu) * c_segments_limit), 0, KMA_KOBJECT | KMA_VAONLY | KMA_PERMANENT, VM_KERN_MEMORY_COMPRESSOR) != KERN_SUCCESS) {
+ if (kernel_memory_allocate(compressor_map, (vm_offset_t *)(&c_segments),
+ (sizeof(union c_segu) * c_segments_limit), 0,
+ KMA_KOBJECT | KMA_VAONLY | KMA_PERMANENT, VM_KERN_MEMORY_COMPRESSOR) != KERN_SUCCESS) {
panic("vm_compressor_init: kernel_memory_allocate failed - c_segments\n");
}
- if (kernel_memory_allocate(compressor_map, &c_buffers, c_buffers_size, 0, KMA_COMPRESSOR | KMA_VAONLY | KMA_PERMANENT, VM_KERN_MEMORY_COMPRESSOR) != KERN_SUCCESS) {
+ if (kernel_memory_allocate(compressor_map, &c_buffers, c_buffers_size, 0,
+ KMA_COMPRESSOR | KMA_VAONLY | KMA_PERMANENT, VM_KERN_MEMORY_COMPRESSOR) != KERN_SUCCESS) {
panic("vm_compressor_init: kernel_memory_allocate failed - c_buffers\n");
}
- c_segment_min_size = sizeof(struct c_segment) + (C_SEG_SLOT_VAR_ARRAY_MIN_LEN * sizeof(struct c_slot));
+ /*
+ * Pick a good size that will minimize fragmentation in zalloc
+ * by minimizing the fragmentation in a 16k run.
+ *
+ * C_SEG_SLOT_VAR_ARRAY_MIN_LEN is larger on 4k systems than 16k ones,
+ * making the fragmentation in a 4k page terrible. Using 16k for all
+ * systems matches zalloc() and will minimize fragmentation.
+ */
+ uint32_t c_segment_size = sizeof(struct c_segment) + (C_SEG_SLOT_VAR_ARRAY_MIN_LEN * sizeof(struct c_slot));
+ uint32_t cnt = (16 << 10) / c_segment_size;
+ uint32_t frag = (16 << 10) % c_segment_size;
- for (c_segment_padded_size = 128; c_segment_padded_size < c_segment_min_size; c_segment_padded_size = c_segment_padded_size << 1) {
- ;
- }
+ c_seg_fixed_array_len = C_SEG_SLOT_VAR_ARRAY_MIN_LEN;
- compressor_segment_zone = zinit(c_segment_padded_size, c_segments_limit * c_segment_padded_size, PAGE_SIZE, "compressor_segment");
- zone_change(compressor_segment_zone, Z_CALLERACCT, FALSE);
- zone_change(compressor_segment_zone, Z_NOENCRYPT, TRUE);
+ while (cnt * sizeof(struct c_slot) < frag) {
+ c_segment_size += sizeof(struct c_slot);
+ c_seg_fixed_array_len++;
+ frag -= cnt * sizeof(struct c_slot);
+ }
- c_seg_fixed_array_len = (c_segment_padded_size - sizeof(struct c_segment)) / sizeof(struct c_slot);
+ compressor_segment_zone = zone_create("compressor_segment",
+ c_segment_size, ZC_NOENCRYPT | ZC_ZFREE_CLEARMEM);
c_segments_busy = FALSE;
{
host_basic_info_data_t hinfo;
mach_msg_type_number_t count = HOST_BASIC_INFO_COUNT;
+ size_t bufsize;
+ char *buf;
#define BSD_HOST 1
host_info((host_t)BSD_HOST, HOST_BASIC_INFO, (host_info_t)&hinfo, &count);
compressor_cpus = hinfo.max_cpus;
- compressor_scratch_bufs = kalloc_tag(compressor_cpus * vm_compressor_get_decode_scratch_size(), VM_KERN_MEMORY_COMPRESSOR);
- kdp_compressor_scratch_buf = kalloc_tag(vm_compressor_get_decode_scratch_size(), VM_KERN_MEMORY_COMPRESSOR);
+ bufsize = PAGE_SIZE;
+ bufsize += compressor_cpus * vm_compressor_get_decode_scratch_size();
+ bufsize += vm_compressor_get_decode_scratch_size();
+#if CONFIG_FREEZE
+ bufsize += vm_compressor_get_encode_scratch_size();
+#endif
+#if RECORD_THE_COMPRESSED_DATA
+ bufsize += c_compressed_record_sbuf_size;
+#endif
+
+ if (kernel_memory_allocate(kernel_map, (vm_offset_t *)&buf, bufsize,
+ PAGE_MASK, KMA_KOBJECT | KMA_PERMANENT, VM_KERN_MEMORY_COMPRESSOR)) {
+ panic("vm_compressor_init: Unable to allocate %zd bytes", bufsize);
+ }
/*
* kdp_compressor_decompressed_page must be page aligned because we access
- * it through the physical apperture by page number. kalloc() does not
- * guarantee alignment.
+ * it through the physical apperture by page number.
*/
- vm_offset_t addr;
- if (kernel_memory_allocate(kernel_map, &addr, PAGE_SIZE, 0, KMA_KOBJECT, VM_KERN_MEMORY_COMPRESSOR) != KERN_SUCCESS) {
- panic("vm_compressor_init: kernel_memory_allocate failed - kdp_compressor_decompressed_page\n");
- }
- assert((addr & PAGE_MASK) == 0);
- kdp_compressor_decompressed_page = (void *)addr;
+ kdp_compressor_decompressed_page = buf;
kdp_compressor_decompressed_page_paddr = kvtophys((vm_offset_t)kdp_compressor_decompressed_page);
kdp_compressor_decompressed_page_ppnum = (ppnum_t) atop(kdp_compressor_decompressed_page_paddr);
- }
+ buf += PAGE_SIZE;
+ bufsize -= PAGE_SIZE;
+
+ compressor_scratch_bufs = buf;
+ buf += compressor_cpus * vm_compressor_get_decode_scratch_size();
+ bufsize -= compressor_cpus * vm_compressor_get_decode_scratch_size();
+
+ kdp_compressor_scratch_buf = buf;
+ buf += vm_compressor_get_decode_scratch_size();
+ bufsize -= vm_compressor_get_decode_scratch_size();
+
#if CONFIG_FREEZE
- freezer_compressor_scratch_buf = kalloc_tag(vm_compressor_get_encode_scratch_size(), VM_KERN_MEMORY_COMPRESSOR);
+ freezer_context_global.freezer_ctx_compressor_scratch_buf = buf;
+ buf += vm_compressor_get_encode_scratch_size();
+ bufsize -= vm_compressor_get_encode_scratch_size();
#endif
#if RECORD_THE_COMPRESSED_DATA
- if (kernel_memory_allocate(compressor_map, (vm_offset_t *)&c_compressed_record_sbuf, c_compressed_record_sbuf_size, 0, KMA_KOBJECT, VM_KERN_MEMORY_COMPRESSOR) != KERN_SUCCESS) {
- panic("vm_compressor_init: kernel_memory_allocate failed - c_compressed_record_sbuf\n");
- }
-
- c_compressed_record_cptr = c_compressed_record_sbuf;
- c_compressed_record_ebuf = c_compressed_record_sbuf + c_compressed_record_sbuf_size;
+ c_compressed_record_sbuf = buf;
+ c_compressed_record_cptr = buf;
+ c_compressed_record_ebuf = c_compressed_record_sbuf + c_compressed_record_sbuf_size;
+ buf += c_compressed_record_sbuf_size;
+ bufsize -= c_compressed_record_sbuf_size;
#endif
+ assert(bufsize == 0);
+ }
if (kernel_thread_start_priority((thread_continue_t)vm_compressor_swap_trigger_thread, NULL,
BASEPRI_VM, &thread) != KERN_SUCCESS) {
static void
c_seg_validate(c_segment_t c_seg, boolean_t must_be_compact)
{
- int c_indx;
+ uint16_t c_indx;
int32_t bytes_used;
uint32_t c_rounded_size;
uint32_t c_size;
if (c_size) {
uintptr_t csvaddr = (uintptr_t) &c_seg->c_store.c_buffer[cs->c_offset];
if (cs->c_pop_cdata != (csvpop = vmc_pop(csvaddr, c_size))) {
- panic("Compressed data popcount doesn't match original, bit distance: %d %p (phys: %p) %p %p 0x%llx 0x%x 0x%x 0x%x", (csvpop - cs->c_pop_cdata), (void *)csvaddr, (void *) kvtophys(csvaddr), c_seg, cs, cs->c_offset, c_size, csvpop, cs->c_pop_cdata);
+ panic("Compressed data popcount doesn't match original, bit distance: %d %p (phys: %p) %p %p 0x%llx 0x%x 0x%x 0x%x", (csvpop - cs->c_pop_cdata), (void *)csvaddr, (void *) kvtophys(csvaddr), c_seg, cs, (uint64_t)cs->c_offset, c_size, csvpop, cs->c_pop_cdata);
}
}
#endif
return c_seg_freed;
}
+void
+kdp_compressor_busy_find_owner(event64_t wait_event, thread_waitinfo_t *waitinfo)
+{
+ c_segment_t c_seg = (c_segment_t) wait_event;
+
+ waitinfo->owner = thread_tid(c_seg->c_busy_for_thread);
+ waitinfo->context = VM_KERNEL_UNSLIDE_OR_PERM(c_seg);
+}
+
+#if DEVELOPMENT || DEBUG
+int
+do_cseg_wedge_thread(void)
+{
+ struct c_segment c_seg;
+ c_seg.c_busy_for_thread = current_thread();
+
+ debug_cseg_wait_event = (event_t) &c_seg;
+
+ thread_set_pending_block_hint(current_thread(), kThreadWaitCompressor);
+ assert_wait((event_t) (&c_seg), THREAD_INTERRUPTIBLE);
+
+ thread_block(THREAD_CONTINUE_NULL);
+
+ return 0;
+}
+
+int
+do_cseg_unwedge_thread(void)
+{
+ thread_wakeup(debug_cseg_wait_event);
+ debug_cseg_wait_event = NULL;
+
+ return 0;
+}
+#endif /* DEVELOPMENT || DEBUG */
void
c_seg_wait_on_busy(c_segment_t c_seg)
{
c_seg->c_wanted = 1;
+
+ thread_set_pending_block_hint(current_thread(), kThreadWaitCompressor);
assert_wait((event_t) (c_seg), THREAD_UNINT);
lck_mtx_unlock_always(&c_seg->c_lock);
thread_block(THREAD_CONTINUE_NULL);
}
+#if CONFIG_FREEZE
+/*
+ * We don't have the task lock held while updating the task's
+ * c_seg queues. We can do that because of the following restrictions:
+ *
+ * - SINGLE FREEZER CONTEXT:
+ * We 'insert' c_segs into the task list on the task_freeze path.
+ * There can only be one such freeze in progress and the task
+ * isn't disappearing because we have the VM map lock held throughout
+ * and we have a reference on the proc too.
+ *
+ * - SINGLE TASK DISOWN CONTEXT:
+ * We 'disown' c_segs of a task ONLY from the task_terminate context. So
+ * we don't need the task lock but we need the c_list_lock and the
+ * compressor master lock (shared). We also hold the individual
+ * c_seg locks (exclusive).
+ *
+ * If we either:
+ * - can't get the c_seg lock on a try, then we start again because maybe
+ * the c_seg is part of a compaction and might get freed. So we can't trust
+ * that linkage and need to restart our queue traversal.
+ * - OR, we run into a busy c_seg (say being swapped in or free-ing) we
+ * drop all locks again and wait and restart our queue traversal.
+ *
+ * - The new_owner_task below is currently only the kernel or NULL.
+ *
+ */
+void
+c_seg_update_task_owner(c_segment_t c_seg, task_t new_owner_task)
+{
+ task_t owner_task = c_seg->c_task_owner;
+ uint64_t uncompressed_bytes = ((c_seg->c_slots_used) * PAGE_SIZE_64);
+
+ LCK_MTX_ASSERT(c_list_lock, LCK_MTX_ASSERT_OWNED);
+ LCK_MTX_ASSERT(&c_seg->c_lock, LCK_MTX_ASSERT_OWNED);
+
+ if (owner_task) {
+ task_update_frozen_to_swap_acct(owner_task, uncompressed_bytes, DEBIT_FROM_SWAP);
+ queue_remove(&owner_task->task_frozen_cseg_q, c_seg,
+ c_segment_t, c_task_list_next_cseg);
+ }
+
+ if (new_owner_task) {
+ queue_enter(&new_owner_task->task_frozen_cseg_q, c_seg,
+ c_segment_t, c_task_list_next_cseg);
+ task_update_frozen_to_swap_acct(new_owner_task, uncompressed_bytes, CREDIT_TO_SWAP);
+ }
+
+ c_seg->c_task_owner = new_owner_task;
+}
+
+void
+task_disown_frozen_csegs(task_t owner_task)
+{
+ c_segment_t c_seg = NULL, next_cseg = NULL;
+
+again:
+ PAGE_REPLACEMENT_DISALLOWED(TRUE);
+ lck_mtx_lock_spin_always(c_list_lock);
+
+ for (c_seg = (c_segment_t) queue_first(&owner_task->task_frozen_cseg_q);
+ !queue_end(&owner_task->task_frozen_cseg_q, (queue_entry_t) c_seg);
+ c_seg = next_cseg) {
+ next_cseg = (c_segment_t) queue_next(&c_seg->c_task_list_next_cseg);;
+
+ if (!lck_mtx_try_lock_spin_always(&c_seg->c_lock)) {
+ lck_mtx_unlock(c_list_lock);
+ PAGE_REPLACEMENT_DISALLOWED(FALSE);
+ goto again;
+ }
+
+ if (c_seg->c_busy) {
+ lck_mtx_unlock(c_list_lock);
+ PAGE_REPLACEMENT_DISALLOWED(FALSE);
+
+ c_seg_wait_on_busy(c_seg);
+
+ goto again;
+ }
+ assert(c_seg->c_task_owner == owner_task);
+ c_seg_update_task_owner(c_seg, kernel_task);
+ lck_mtx_unlock_always(&c_seg->c_lock);
+ }
+
+ lck_mtx_unlock(c_list_lock);
+ PAGE_REPLACEMENT_DISALLOWED(FALSE);
+}
+#endif /* CONFIG_FREEZE */
void
c_seg_switch_state(c_segment_t c_seg, int new_state, boolean_t insert_head)
{
int old_state = c_seg->c_state;
-#if __i386__ || __x86_64__
+#if !CONFIG_EMBEDDED
+#if DEVELOPMENT || DEBUG
if (new_state != C_IS_FILLING) {
LCK_MTX_ASSERT(&c_seg->c_lock, LCK_MTX_ASSERT_OWNED);
}
LCK_MTX_ASSERT(c_list_lock, LCK_MTX_ASSERT_OWNED);
#endif
+#endif /* !CONFIG_EMBEDDED */
switch (old_state) {
case C_IS_EMPTY:
assert(new_state == C_IS_FILLING || new_state == C_IS_FREE);
case C_ON_SWAPOUT_Q:
assert(new_state == C_ON_AGE_Q || new_state == C_IS_FREE || new_state == C_IS_EMPTY || new_state == C_ON_SWAPIO_Q);
+#if CONFIG_FREEZE
+ if (c_seg->c_task_owner && (new_state != C_ON_SWAPIO_Q)) {
+ c_seg_update_task_owner(c_seg, NULL);
+ }
+#endif /* CONFIG_FREEZE */
+
queue_remove(&c_swapout_list_head, c_seg, c_segment_t, c_age_list);
thread_wakeup((event_t)&compaction_swapper_running);
c_swapout_count--;
c_seg_switch_state(c_seg, C_IS_FREE, FALSE);
- lck_mtx_unlock_always(c_list_lock);
-
if (c_buffer) {
pages_populated = (round_page_32(C_SEG_OFFSET_TO_BYTES(c_seg->c_populated_offset))) / PAGE_SIZE;
c_seg->c_store.c_buffer = NULL;
} else {
+#if CONFIG_FREEZE
+ c_seg_update_task_owner(c_seg, NULL);
+#endif /* CONFIG_FREEZE */
+
c_seg->c_store.c_swap_handle = (uint64_t)-1;
}
lck_mtx_unlock_always(&c_seg->c_lock);
+ lck_mtx_unlock_always(c_list_lock);
+
if (c_buffer) {
if (pages_populated) {
- kernel_memory_depopulate(compressor_map, (vm_offset_t) c_buffer, pages_populated * PAGE_SIZE, KMA_COMPRESSOR);
+ kernel_memory_depopulate(compressor_map, (vm_offset_t)c_buffer,
+ pages_populated * PAGE_SIZE, KMA_COMPRESSOR, VM_KERN_MEMORY_COMPRESSOR);
}
} else if (c_swap_handle) {
/*
lck_mtx_destroy(&c_seg->c_lock, &vm_compressor_lck_grp);
if (c_seg->c_slot_var_array_len) {
- kfree(c_seg->c_slot_var_array, sizeof(struct c_slot) * c_seg->c_slot_var_array_len);
+ kheap_free(KHEAP_DATA_BUFFERS, c_seg->c_slot_var_array,
+ sizeof(struct c_slot) * c_seg->c_slot_var_array_len);
}
zfree(compressor_segment_zone, c_seg);
uint32_t old_populated_offset;
uint32_t c_rounded_size;
uint32_t c_size;
- int c_indx = 0;
+ uint16_t c_indx = 0;
int i;
c_slot_t c_dst;
c_slot_t c_src;
cslot_copy(c_dst, c_src);
c_dst->c_offset = c_offset;
- slot_ptr = (c_slot_mapping_t)C_SLOT_UNPACK_PTR(c_dst);
+ slot_ptr = C_SLOT_UNPACK_PTR(c_dst);
slot_ptr->s_cindx = c_indx;
c_offset += C_SEG_BYTES_TO_OFFSET(c_rounded_size);
gc_size = C_SEG_OFFSET_TO_BYTES(old_populated_offset - c_seg->c_populated_offset);
gc_ptr = &c_seg->c_store.c_buffer[c_seg->c_populated_offset];
- kernel_memory_depopulate(compressor_map, (vm_offset_t)gc_ptr, gc_size, KMA_COMPRESSOR);
+ kernel_memory_depopulate(compressor_map, (vm_offset_t)gc_ptr, gc_size,
+ KMA_COMPRESSOR, VM_KERN_MEMORY_COMPRESSOR);
}
#if DEVELOPMENT || DEBUG
newlen = oldlen * 2;
}
- new_slot_array = (struct c_slot *)kalloc(sizeof(struct c_slot) * newlen);
+ new_slot_array = kheap_alloc(KHEAP_DATA_BUFFERS,
+ sizeof(struct c_slot) * newlen, Z_WAITOK);
lck_mtx_lock_spin_always(&c_seg->c_lock);
if (old_slot_array) {
- memcpy((char *)new_slot_array, (char *)old_slot_array, sizeof(struct c_slot) * oldlen);
+ memcpy(new_slot_array, old_slot_array,
+ sizeof(struct c_slot) * oldlen);
}
c_seg->c_slot_var_array_len = newlen;
lck_mtx_unlock_always(&c_seg->c_lock);
if (old_slot_array) {
- kfree(old_slot_array, sizeof(struct c_slot) * oldlen);
+ kheap_free(KHEAP_DATA_BUFFERS, old_slot_array,
+ sizeof(struct c_slot) * oldlen);
}
}
}
+#define C_SEG_MAJOR_COMPACT_STATS_MAX (30)
struct {
uint64_t asked_permission;
uint64_t wasted_space_in_swapouts;
uint64_t count_of_swapouts;
uint64_t count_of_freed_segs;
-} c_seg_major_compact_stats;
+ uint64_t bailed_compactions;
+ uint64_t bytes_freed_rate_us;
+} c_seg_major_compact_stats[C_SEG_MAJOR_COMPACT_STATS_MAX];
+
+int c_seg_major_compact_stats_now = 0;
#define C_MAJOR_COMPACTION_SIZE_APPROPRIATE ((C_SEG_BUFSIZE * 90) / 100)
c_segment_t c_seg_dst,
c_segment_t c_seg_src)
{
- c_seg_major_compact_stats.asked_permission++;
+ c_seg_major_compact_stats[c_seg_major_compact_stats_now].asked_permission++;
if (c_seg_src->c_bytes_used >= C_MAJOR_COMPACTION_SIZE_APPROPRIATE &&
c_seg_dst->c_bytes_used >= C_MAJOR_COMPACTION_SIZE_APPROPRIATE) {
c_seg_dst->c_was_major_compacted++;
c_seg_src->c_was_major_donor++;
#endif
- c_seg_major_compact_stats.compactions++;
+ c_seg_major_compact_stats[c_seg_major_compact_stats_now].compactions++;
dst_slot = c_seg_dst->c_nextslot;
c_rounded_size = (c_size + C_SEG_OFFSET_ALIGNMENT_MASK) & ~C_SEG_OFFSET_ALIGNMENT_MASK;
- c_seg_major_compact_stats.moved_slots++;
- c_seg_major_compact_stats.moved_bytes += c_size;
+ c_seg_major_compact_stats[c_seg_major_compact_stats_now].moved_slots++;
+ c_seg_major_compact_stats[c_seg_major_compact_stats_now].moved_bytes += c_size;
cslot_copy(c_dst, c_src);
c_dst->c_offset = c_seg_dst->c_nextoffset;
while (dst_slot < c_seg_dst->c_nextslot) {
c_dst = C_SEG_SLOT_FROM_INDEX(c_seg_dst, dst_slot);
- slot_ptr = (c_slot_mapping_t)C_SLOT_UNPACK_PTR(c_dst);
+ slot_ptr = C_SLOT_UNPACK_PTR(c_dst);
/* <csegno=0,indx=0> would mean "empty slot", so use csegno+1 */
slot_ptr->s_cseg = c_seg_dst->c_mysegno + 1;
slot_ptr->s_cindx = dst_slot++;
lck_mtx_unlock_always(c_list_lock);
if (age >= vm_ripe_target_age) {
- return TRUE;
+ should_swap = TRUE;
+ goto check_if_low_space;
}
}
if (VM_CONFIG_SWAP_IS_ACTIVE) {
if (COMPRESSOR_NEEDS_TO_SWAP()) {
- return TRUE;
+ should_swap = TRUE;
+ goto check_if_low_space;
}
if (VM_PAGE_Q_THROTTLED(&vm_pageout_queue_external) && vm_page_anonymous_count < (vm_page_inactive_count / 20)) {
- return TRUE;
+ should_swap = TRUE;
+ goto check_if_low_space;
}
if (vm_page_free_count < (vm_page_free_reserved - (COMPRESSOR_FREE_RESERVED_LIMIT * 2))) {
- return TRUE;
+ should_swap = TRUE;
+ goto check_if_low_space;
}
}
compute_swapout_target_age();
should_swap = TRUE;
}
+check_if_low_space:
+
#if CONFIG_JETSAM
if (should_swap || vm_compressor_low_on_space() == TRUE) {
if (vm_compressor_thrashing_detected == FALSE) {
vm_compressor_thrashing_detected = TRUE;
- if (swapout_target_age || vm_compressor_low_on_space() == TRUE) {
- if (swapout_target_age) {
- /* The compressor is thrashing. */
- memorystatus_kill_on_VM_compressor_thrashing(TRUE /* async */);
- } else {
- /* The compressor is running low on space. */
- memorystatus_kill_on_VM_compressor_space_shortage(TRUE /* async */);
- }
+ if (swapout_target_age) {
+ /* The compressor is thrashing. */
+ memorystatus_kill_on_VM_compressor_thrashing(TRUE /* async */);
+ compressor_thrashing_induced_jetsam++;
+ } else if (vm_compressor_low_on_space() == TRUE) {
+ /* The compressor is running low on space. */
+ memorystatus_kill_on_VM_compressor_space_shortage(TRUE /* async */);
compressor_thrashing_induced_jetsam++;
} else {
memorystatus_kill_on_FC_thrashing(TRUE /* async */);
should_swap = FALSE;
}
+#else /* CONFIG_JETSAM */
+ if (should_swap && vm_swap_low_on_space()) {
+ vm_compressor_take_paging_space_action();
+ }
#endif /* CONFIG_JETSAM */
if (should_swap == FALSE) {
boolean_t needs_to_swap = FALSE;
+ VM_DEBUG_CONSTANT_EVENT(vm_compressor_do_delayed_compactions, VM_COMPRESSOR_DO_DELAYED_COMPACTIONS, DBG_FUNC_START, c_minor_count, flush_all, 0, 0);
+
#if !CONFIG_EMBEDDED
LCK_MTX_ASSERT(c_list_lock, LCK_MTX_ASSERT_OWNED);
#endif /* !CONFIG_EMBEDDED */
}
lck_mtx_lock_spin_always(c_list_lock);
}
+
+ VM_DEBUG_CONSTANT_EVENT(vm_compressor_do_delayed_compactions, VM_COMPRESSOR_DO_DELAYED_COMPACTIONS, DBG_FUNC_END, c_minor_count, number_compacted, needs_to_swap, 0);
}
* the tuneables until we are awakened via vm_pageout_scan
* so that we are at a point where the vm_swapfile_open will
* be operating on the correct directory (in case the default
- * of /var/vm/ is overridden by the dymanic_pager
+ * of using the VM volume is overridden by the dynamic_pager)
*/
if (compaction_swapper_init_now) {
vm_compaction_swapper_do_init();
if (vm_pageout_state.vm_restricted_to_single_processor == TRUE) {
thread_vm_bind_group_add();
}
+#if CONFIG_THREAD_GROUPS
+ thread_group_vm_add();
+#endif
thread_set_thread_name(current_thread(), "VM_cswap_trigger");
compaction_swapper_init_now = 0;
}
}
}
+int min_csegs_per_major_compaction = DELAYED_COMPACTIONS_PER_PASS;
+extern bool vm_swapout_thread_running;
+extern boolean_t compressor_store_stop_compaction;
void
vm_compressor_compact_and_swap(boolean_t flush_all)
{
c_segment_t c_seg, c_seg_next;
- boolean_t keep_compacting;
+ boolean_t keep_compacting, switch_state;
clock_sec_t now;
clock_nsec_t nsec;
+ mach_timespec_t start_ts, end_ts;
+ unsigned int number_considered, wanted_cseg_found, yield_after_considered_per_pass, number_yields;
+ uint64_t bytes_to_free, bytes_freed, delta_usec;
+ VM_DEBUG_CONSTANT_EVENT(vm_compressor_compact_and_swap, VM_COMPRESSOR_COMPACT_AND_SWAP, DBG_FUNC_START, c_age_count, c_minor_count, c_major_count, vm_page_free_count);
if (fastwake_warmup == TRUE) {
uint64_t starting_warmup_count;
*/
clock_get_system_nanotime(&now, &nsec);
- while (!queue_empty(&c_age_list_head) && compaction_swapper_abort == 0) {
+ start_ts.tv_sec = (int) now;
+ start_ts.tv_nsec = nsec;
+ delta_usec = 0;
+ number_considered = 0;
+ wanted_cseg_found = 0;
+ number_yields = 0;
+ bytes_to_free = 0;
+ bytes_freed = 0;
+ yield_after_considered_per_pass = MAX(min_csegs_per_major_compaction, DELAYED_COMPACTIONS_PER_PASS);
+
+ while (!queue_empty(&c_age_list_head) && !compaction_swapper_abort && !compressor_store_stop_compaction) {
if (hibernate_flushing == TRUE) {
clock_sec_t sec;
break;
}
}
- if (c_swapout_count >= C_SWAPOUT_LIMIT) {
+ if (!vm_swap_out_of_space() && c_swapout_count >= C_SWAPOUT_LIMIT) {
assert_wait_timeout((event_t) &compaction_swapper_running, THREAD_INTERRUPTIBLE, 100, 1000 * NSEC_PER_USEC);
+ if (!vm_swapout_thread_running) {
+ thread_wakeup((event_t)&c_swapout_list_head);
+ }
+
lck_mtx_unlock_always(c_list_lock);
+ VM_DEBUG_CONSTANT_EVENT(vm_compressor_compact_and_swap, VM_COMPRESSOR_COMPACT_AND_SWAP, DBG_FUNC_NONE, 1, c_swapout_count, 0, 0);
+
thread_block(THREAD_CONTINUE_NULL);
lck_mtx_lock_spin_always(c_list_lock);
vm_compressor_age_swapped_in_segments(flush_all);
- if (c_swapout_count >= C_SWAPOUT_LIMIT) {
+ if (!vm_swap_out_of_space() && c_swapout_count >= C_SWAPOUT_LIMIT) {
/*
* we timed out on the above thread_block
* let's loop around and try again
* to do minor compactions to make
* more memory available
*/
+ VM_DEBUG_CONSTANT_EVENT(vm_compressor_compact_and_swap, VM_COMPRESSOR_COMPACT_AND_SWAP, DBG_FUNC_NONE, 2, c_swapout_count, 0, 0);
+
continue;
}
needs_to_swap = compressor_needs_to_swap();
-#if !CONFIG_EMBEDDED
- if (needs_to_swap == TRUE && vm_swap_low_on_space()) {
- vm_compressor_take_paging_space_action();
- }
-#endif /* !CONFIG_EMBEDDED */
-
lck_mtx_lock_spin_always(c_list_lock);
+ VM_DEBUG_CONSTANT_EVENT(vm_compressor_compact_and_swap, VM_COMPRESSOR_COMPACT_AND_SWAP, DBG_FUNC_NONE, 3, needs_to_swap, 0, 0);
+
if (needs_to_swap == FALSE) {
break;
}
}
if (queue_empty(&c_age_list_head)) {
+ VM_DEBUG_CONSTANT_EVENT(vm_compressor_compact_and_swap, VM_COMPRESSOR_COMPACT_AND_SWAP, DBG_FUNC_NONE, 4, c_age_count, 0, 0);
break;
}
c_seg = (c_segment_t) queue_first(&c_age_list_head);
assert(c_seg->c_state == C_ON_AGE_Q);
if (flush_all == TRUE && c_seg->c_generation_id > c_generation_id_flush_barrier) {
+ VM_DEBUG_CONSTANT_EVENT(vm_compressor_compact_and_swap, VM_COMPRESSOR_COMPACT_AND_SWAP, DBG_FUNC_NONE, 5, 0, 0, 0);
break;
}
lck_mtx_lock_spin_always(&c_seg->c_lock);
if (c_seg->c_busy) {
+ VM_DEBUG_CONSTANT_EVENT(vm_compressor_compact_and_swap, VM_COMPRESSOR_COMPACT_AND_SWAP, DBG_FUNC_NONE, 6, (void*) VM_KERNEL_ADDRPERM(c_seg), 0, 0);
+
lck_mtx_unlock_always(c_list_lock);
c_seg_wait_on_busy(c_seg);
lck_mtx_lock_spin_always(c_list_lock);
* found an empty c_segment and freed it
* so go grab the next guy in the queue
*/
- c_seg_major_compact_stats.count_of_freed_segs++;
+ VM_DEBUG_CONSTANT_EVENT(vm_compressor_compact_and_swap, VM_COMPRESSOR_COMPACT_AND_SWAP, DBG_FUNC_NONE, 7, 0, 0, 0);
+ c_seg_major_compact_stats[c_seg_major_compact_stats_now].count_of_freed_segs++;
continue;
}
/*
* Major compaction
*/
keep_compacting = TRUE;
+ switch_state = TRUE;
while (keep_compacting == TRUE) {
assert(c_seg->c_busy);
assert(c_seg_next->c_state == C_ON_AGE_Q);
+ number_considered++;
+
if (c_seg_major_compact_ok(c_seg, c_seg_next) == FALSE) {
break;
}
lck_mtx_lock_spin_always(&c_seg_next->c_lock);
if (c_seg_next->c_busy) {
+ /*
+ * We are going to block for our neighbor.
+ * If our c_seg is wanted, we should unbusy
+ * it because we don't know how long we might
+ * have to block here.
+ */
+ if (c_seg->c_wanted) {
+ lck_mtx_unlock_always(&c_seg_next->c_lock);
+ switch_state = FALSE;
+ c_seg_major_compact_stats[c_seg_major_compact_stats_now].bailed_compactions++;
+ wanted_cseg_found++;
+ break;
+ }
+
lck_mtx_unlock_always(c_list_lock);
+
+ VM_DEBUG_CONSTANT_EVENT(vm_compressor_compact_and_swap, VM_COMPRESSOR_COMPACT_AND_SWAP, DBG_FUNC_NONE, 8, (void*) VM_KERNEL_ADDRPERM(c_seg_next), 0, 0);
+
c_seg_wait_on_busy(c_seg_next);
lck_mtx_lock_spin_always(c_list_lock);
/* grab that segment */
C_SEG_BUSY(c_seg_next);
+ bytes_to_free = C_SEG_OFFSET_TO_BYTES(c_seg_next->c_populated_offset);
if (c_seg_do_minor_compaction_and_unlock(c_seg_next, FALSE, TRUE, TRUE)) {
/*
* found an empty c_segment and freed it
* so we can't continue to use c_seg_next
*/
- c_seg_major_compact_stats.count_of_freed_segs++;
+ bytes_freed += bytes_to_free;
+ c_seg_major_compact_stats[c_seg_major_compact_stats_now].count_of_freed_segs++;
continue;
}
keep_compacting = c_seg_major_compact(c_seg, c_seg_next);
+ VM_DEBUG_CONSTANT_EVENT(vm_compressor_compact_and_swap, VM_COMPRESSOR_COMPACT_AND_SWAP, DBG_FUNC_NONE, 9, keep_compacting, 0, 0);
+
PAGE_REPLACEMENT_DISALLOWED(TRUE);
lck_mtx_lock_spin_always(&c_seg_next->c_lock);
* by passing TRUE, we ask for c_busy to be cleared
* and c_wanted to be taken care of
*/
+ bytes_to_free = C_SEG_OFFSET_TO_BYTES(c_seg_next->c_populated_offset);
if (c_seg_minor_compaction_and_unlock(c_seg_next, TRUE)) {
- c_seg_major_compact_stats.count_of_freed_segs++;
+ bytes_freed += bytes_to_free;
+ c_seg_major_compact_stats[c_seg_major_compact_stats_now].count_of_freed_segs++;
+ } else {
+ bytes_to_free -= C_SEG_OFFSET_TO_BYTES(c_seg_next->c_populated_offset);
+ bytes_freed += bytes_to_free;
}
PAGE_REPLACEMENT_DISALLOWED(FALSE);
/* relock the list */
lck_mtx_lock_spin_always(c_list_lock);
+
+ if (c_seg->c_wanted) {
+ /*
+ * Our c_seg is in demand. Let's
+ * unbusy it and wakeup the waiters
+ * instead of continuing the compaction
+ * because we could be in this loop
+ * for a while.
+ */
+ switch_state = FALSE;
+ wanted_cseg_found++;
+ c_seg_major_compact_stats[c_seg_major_compact_stats_now].bailed_compactions++;
+ break;
+ }
} /* major compaction */
+ VM_DEBUG_CONSTANT_EVENT(vm_compressor_compact_and_swap, VM_COMPRESSOR_COMPACT_AND_SWAP, DBG_FUNC_NONE, 10, number_considered, wanted_cseg_found, 0);
+
lck_mtx_lock_spin_always(&c_seg->c_lock);
assert(c_seg->c_busy);
assert(!c_seg->c_on_minorcompact_q);
- if (VM_CONFIG_SWAP_IS_ACTIVE) {
- /*
- * This mode of putting a generic c_seg on the swapout list is
- * only supported when we have general swapping enabled
- */
- c_seg_switch_state(c_seg, C_ON_SWAPOUT_Q, FALSE);
- } else {
- if ((vm_swapout_ripe_segments == TRUE && c_overage_swapped_count < c_overage_swapped_limit)) {
- assert(VM_CONFIG_SWAP_IS_PRESENT);
+ if (switch_state) {
+ if (VM_CONFIG_SWAP_IS_ACTIVE) {
/*
- * we are running compressor sweeps with swap-behind
- * make sure the c_seg has aged enough before swapping it
- * out...
+ * This mode of putting a generic c_seg on the swapout list is
+ * only supported when we have general swapping enabled
*/
- if ((now - c_seg->c_creation_ts) >= vm_ripe_target_age) {
- c_seg->c_overage_swap = TRUE;
- c_overage_swapped_count++;
- c_seg_switch_state(c_seg, C_ON_SWAPOUT_Q, FALSE);
+ c_seg_switch_state(c_seg, C_ON_SWAPOUT_Q, FALSE);
+ } else {
+ if ((vm_swapout_ripe_segments == TRUE && c_overage_swapped_count < c_overage_swapped_limit)) {
+ assert(VM_CONFIG_SWAP_IS_PRESENT);
+ /*
+ * we are running compressor sweeps with swap-behind
+ * make sure the c_seg has aged enough before swapping it
+ * out...
+ */
+ if ((now - c_seg->c_creation_ts) >= vm_ripe_target_age) {
+ c_seg->c_overage_swap = TRUE;
+ c_overage_swapped_count++;
+ c_seg_switch_state(c_seg, C_ON_SWAPOUT_Q, FALSE);
+ }
}
}
+ if (c_seg->c_state == C_ON_AGE_Q) {
+ /*
+ * this c_seg didn't get moved to the swapout queue
+ * so we need to move it out of the way...
+ * we just did a major compaction on it so put it
+ * on that queue
+ */
+ c_seg_switch_state(c_seg, C_ON_MAJORCOMPACT_Q, FALSE);
+ } else {
+ c_seg_major_compact_stats[c_seg_major_compact_stats_now].wasted_space_in_swapouts += C_SEG_BUFSIZE - c_seg->c_bytes_used;
+ c_seg_major_compact_stats[c_seg_major_compact_stats_now].count_of_swapouts++;
+ }
}
- if (c_seg->c_state == C_ON_AGE_Q) {
- /*
- * this c_seg didn't get moved to the swapout queue
- * so we need to move it out of the way...
- * we just did a major compaction on it so put it
- * on that queue
- */
- c_seg_switch_state(c_seg, C_ON_MAJORCOMPACT_Q, FALSE);
- } else {
- c_seg_major_compact_stats.wasted_space_in_swapouts += C_SEG_BUFSIZE - c_seg->c_bytes_used;
- c_seg_major_compact_stats.count_of_swapouts++;
- }
+
C_SEG_WAKEUP_DONE(c_seg);
lck_mtx_unlock_always(&c_seg->c_lock);
if (c_swapout_count) {
- lck_mtx_unlock_always(c_list_lock);
+ /*
+ * We don't pause/yield here because we will either
+ * yield below or at the top of the loop with the
+ * assert_wait_timeout.
+ */
+ if (!vm_swapout_thread_running) {
+ thread_wakeup((event_t)&c_swapout_list_head);
+ }
+ }
- thread_wakeup((event_t)&c_swapout_list_head);
+ if (number_considered >= yield_after_considered_per_pass) {
+ if (wanted_cseg_found) {
+ /*
+ * We stopped major compactions on a c_seg
+ * that is wanted. We don't know the priority
+ * of the waiter unfortunately but we are at
+ * a very high priority and so, just in case
+ * the waiter is a critical system daemon or
+ * UI thread, let's give up the CPU in case
+ * the system is running a few CPU intensive
+ * tasks.
+ */
+ lck_mtx_unlock_always(c_list_lock);
- lck_mtx_lock_spin_always(c_list_lock);
+ mutex_pause(2); /* 100us yield */
+
+ number_yields++;
+
+ VM_DEBUG_CONSTANT_EVENT(vm_compressor_compact_and_swap, VM_COMPRESSOR_COMPACT_AND_SWAP, DBG_FUNC_NONE, 11, number_considered, number_yields, 0);
+
+ lck_mtx_lock_spin_always(c_list_lock);
+ }
+
+ number_considered = 0;
+ wanted_cseg_found = 0;
}
}
+ clock_get_system_nanotime(&now, &nsec);
+ end_ts.tv_sec = (int) now;
+ end_ts.tv_nsec = nsec;
+
+ SUB_MACH_TIMESPEC(&end_ts, &start_ts);
+
+ delta_usec = (end_ts.tv_sec * USEC_PER_SEC) + (end_ts.tv_nsec / NSEC_PER_USEC) - (number_yields * 100);
+
+ delta_usec = MAX(1, delta_usec); /* we could have 0 usec run if conditions weren't right */
+
+ c_seg_major_compact_stats[c_seg_major_compact_stats_now].bytes_freed_rate_us = (bytes_freed / delta_usec);
+
+ if ((c_seg_major_compact_stats_now + 1) == C_SEG_MAJOR_COMPACT_STATS_MAX) {
+ c_seg_major_compact_stats_now = 0;
+ } else {
+ c_seg_major_compact_stats_now++;
+ }
+
+ assert(c_seg_major_compact_stats_now < C_SEG_MAJOR_COMPACT_STATS_MAX);
+
+ VM_DEBUG_CONSTANT_EVENT(vm_compressor_compact_and_swap, VM_COMPRESSOR_COMPACT_AND_SWAP, DBG_FUNC_END, c_age_count, c_minor_count, c_major_count, vm_page_free_count);
}
}
if (c_free_segno_head == (uint32_t)-1) {
uint32_t c_segments_available_new;
+ uint32_t compressed_pages;
- if (c_segments_available >= c_segments_limit || c_segment_pages_compressed >= c_segment_pages_compressed_limit) {
+#if CONFIG_FREEZE
+ if (freezer_incore_cseg_acct) {
+ compressed_pages = c_segment_pages_compressed_incore;
+ } else {
+ compressed_pages = c_segment_pages_compressed;
+ }
+#else
+ compressed_pages = c_segment_pages_compressed;
+#endif /* CONFIG_FREEZE */
+
+ if (c_segments_available >= c_segments_limit || compressed_pages >= c_segment_pages_compressed_limit) {
lck_mtx_unlock_always(c_list_lock);
return NULL;
lck_mtx_unlock_always(c_list_lock);
- c_seg = (c_segment_t)zalloc(compressor_segment_zone);
- bzero((char *)c_seg, sizeof(struct c_segment));
+ c_seg = zalloc_flags(compressor_segment_zone, Z_WAITOK | Z_ZERO);
c_seg->c_store.c_buffer = (int32_t *)C_SEG_BUFFER_ADDRESS(c_segno);
- lck_mtx_init(&c_seg->c_lock, &vm_compressor_lck_grp, &vm_compressor_lck_attr);
+ lck_mtx_init(&c_seg->c_lock, &vm_compressor_lck_grp, LCK_ATTR_NULL);
c_seg->c_state = C_IS_EMPTY;
c_seg->c_firstemptyslot = C_SLOT_MAX_INDEX;
unused_bytes = trunc_page_32(C_SEG_OFFSET_TO_BYTES(c_seg->c_populated_offset - c_seg->c_nextoffset));
-#ifndef _OPEN_SOURCE
- /* TODO: The HW codec can generate, lazily, a '2nd page not mapped'
- * exception. So on such a platform, or platforms where we're confident
- * the codec does not require a buffer page to absorb trailing writes,
- * we can create an unmapped hole at the tail of the segment, rather
- * than a populated mapping. This will also guarantee that the codec
- * does not overwrite valid data past the edge of the segment and
- * thus eliminate the depopulation overhead.
- */
-#endif
if (unused_bytes) {
offset_to_depopulate = C_SEG_BYTES_TO_OFFSET(round_page_32(C_SEG_OFFSET_TO_BYTES(c_seg->c_nextoffset)));
compressor_map,
(vm_offset_t) &c_seg->c_store.c_buffer[offset_to_depopulate],
unused_bytes,
- KMA_COMPRESSOR);
+ KMA_COMPRESSOR,
+ VM_KERN_MEMORY_COMPRESSOR);
lck_mtx_lock_spin_always(&c_seg->c_lock);
#endif
#if CONFIG_FREEZE
- if (current_chead == (c_segment_t*)&freezer_chead &&
+ if (current_chead == (c_segment_t*) &(freezer_context_global.freezer_ctx_chead) &&
VM_CONFIG_SWAP_IS_PRESENT &&
VM_CONFIG_FREEZER_SWAP_IS_ACTIVE
#if DEVELOPMENT || DEBUG
* We'll need to fix this accounting as a start.
*/
assert(vm_darkwake_mode == FALSE);
- c_freezer_swapout_page_count += (C_SEG_OFFSET_TO_BYTES(c_seg->c_populated_offset)) / PAGE_SIZE_64;
+ c_seg_update_task_owner(c_seg, freezer_context_global.freezer_ctx_task);
+ freezer_context_global.freezer_ctx_swapped_bytes += c_seg->c_bytes_used;
}
#endif /* CONFIG_FREEZE */
if (c_seg->c_state == C_ON_AGE_Q && C_SEG_UNUSED_BYTES(c_seg) >= PAGE_SIZE) {
+#if CONFIG_FREEZE
+ assert(c_seg->c_task_owner == NULL);
+#endif /* CONFIG_FREEZE */
c_seg_need_delayed_compaction(c_seg, TRUE);
}
lck_mtx_unlock_always(c_list_lock);
if (c_seg->c_state == C_ON_SWAPOUT_Q) {
+ /*
+ * Darkwake and Freeze configs always
+ * wake up the swapout thread because
+ * the compactor thread that normally handles
+ * it may not be running as much in these
+ * configs.
+ */
thread_wakeup((event_t)&c_swapout_list_head);
}
if (vm_swap_get(c_seg, f_offset, io_size) != KERN_SUCCESS) {
PAGE_REPLACEMENT_DISALLOWED(TRUE);
- kernel_memory_depopulate(compressor_map, addr, io_size, KMA_COMPRESSOR);
+ kernel_memory_depopulate(compressor_map, addr, io_size, KMA_COMPRESSOR, VM_KERN_MEMORY_COMPRESSOR);
c_seg_swapin_requeue(c_seg, FALSE, TRUE, age_on_swapin_q);
} else {
c_seg_swapin_requeue(c_seg, TRUE, force_minor_compaction == TRUE ? FALSE : TRUE, age_on_swapin_q);
+#if CONFIG_FREEZE
+ /*
+ * c_seg_swapin_requeue() returns with the c_seg lock held.
+ */
+ if (!lck_mtx_try_lock_spin_always(c_list_lock)) {
+ assert(c_seg->c_busy);
+
+ lck_mtx_unlock_always(&c_seg->c_lock);
+ lck_mtx_lock_spin_always(c_list_lock);
+ lck_mtx_lock_spin_always(&c_seg->c_lock);
+ }
+
+ if (c_seg->c_task_owner) {
+ c_seg_update_task_owner(c_seg, NULL);
+ }
+
+ lck_mtx_unlock_always(c_list_lock);
+
+ OSAddAtomic(c_seg->c_slots_used, &c_segment_pages_compressed_incore);
+#endif /* CONFIG_FREEZE */
+
OSAddAtomic64(c_seg->c_bytes_used, &compressor_bytes_used);
if (force_minor_compaction == TRUE) {
cs = C_SEG_SLOT_FROM_INDEX(c_seg, c_seg->c_nextslot);
+ C_SLOT_ASSERT_PACKABLE(slot_ptr);
cs->c_packed_ptr = C_SLOT_PACK_PTR(slot_ptr);
- assert(slot_ptr == (c_slot_mapping_t)C_SLOT_UNPACK_PTR(cs));
cs->c_offset = c_seg->c_nextoffset;
if (vm_compressor_algorithm() != VM_COMPRESSOR_DEFAULT_CODEC) {
#if defined(__arm__) || defined(__arm64__)
uint16_t ccodec = CINVALID;
-
+ uint32_t inline_popcount;
if (max_csize >= C_SEG_OFFSET_ALIGNMENT_BOUNDARY) {
c_size = metacompressor((const uint8_t *) src,
(uint8_t *) &c_seg->c_store.c_buffer[cs->c_offset],
max_csize_adj, &ccodec,
- scratch_buf, &incomp_copy);
+ scratch_buf, &incomp_copy, &inline_popcount);
+#if __ARM_WKDM_POPCNT__
+ cs->c_inline_popcount = inline_popcount;
+#else
+ assert(inline_popcount == C_SLOT_NO_POPCOUNT);
+#endif
+
#if C_SEG_OFFSET_ALIGNMENT_BOUNDARY > 4
if (c_size > max_csize_adj) {
c_size = -1;
OSAddAtomic64(PAGE_SIZE, &c_segment_input_bytes);
OSAddAtomic(1, &c_segment_pages_compressed);
+#if CONFIG_FREEZE
+ OSAddAtomic(1, &c_segment_pages_compressed_incore);
+#endif /* CONFIG_FREEZE */
OSAddAtomic(1, &sample_period_compression_count);
KERNEL_DEBUG(0xe0400000 | DBG_FUNC_END, *current_chead, c_size, c_segment_input_bytes, c_segment_compressed_bytes, 0);
static inline void
sv_decompress(int32_t *ddst, int32_t pattern)
{
-#if __x86_64__
+// assert(__builtin_constant_p(PAGE_SIZE) != 0);
+#if defined(__x86_64__)
memset_word(ddst, pattern, PAGE_SIZE / sizeof(int32_t));
+#elif defined(__arm64__)
+ assert((PAGE_SIZE % 128) == 0);
+ if (pattern == 0) {
+ fill32_dczva((addr64_t)ddst, PAGE_SIZE);
+ } else {
+ fill32_nt((addr64_t)ddst, PAGE_SIZE, pattern);
+ }
#else
size_t i;
* compiler to emit NEON stores, cf.
* <rdar://problem/25839866> Loop autovectorization
* anomalies.
- * We use separate loops for each PAGE_SIZE
+ */
+ /* * We use separate loops for each PAGE_SIZE
* to allow the autovectorizer to engage, as PAGE_SIZE
- * is currently not a constant.
+ * may not be a constant.
*/
__unreachable_ok_push
c_slot_t cs;
c_segment_t c_seg;
uint32_t c_segno;
- int c_indx;
+ uint16_t c_indx;
int c_rounded_size;
uint32_t c_size;
int retval = 0;
clock_nsec_t cur_ts_nsec;
if (C_SEG_IS_ONDISK(c_seg)) {
+#if CONFIG_FREEZE
+ if (freezer_incore_cseg_acct) {
+ if ((c_seg->c_slots_used + c_segment_pages_compressed_incore) >= c_segment_pages_compressed_nearing_limit) {
+ PAGE_REPLACEMENT_DISALLOWED(FALSE);
+ lck_mtx_unlock_always(&c_seg->c_lock);
+
+ memorystatus_kill_on_VM_compressor_space_shortage(FALSE /* async */);
+
+ goto ReTry;
+ }
+
+ uint32_t incore_seg_count = c_segment_count - c_swappedout_count - c_swappedout_sparse_count;
+ if ((incore_seg_count + 1) >= c_segments_nearing_limit) {
+ PAGE_REPLACEMENT_DISALLOWED(FALSE);
+ lck_mtx_unlock_always(&c_seg->c_lock);
+
+ memorystatus_kill_on_VM_compressor_space_shortage(FALSE /* async */);
+
+ goto ReTry;
+ }
+ }
+#endif /* CONFIG_FREEZE */
assert(kdp_mode == FALSE);
retval = c_seg_swapin(c_seg, FALSE, TRUE);
assert(retval == 0);
unsigned csvpop;
uintptr_t csvaddr = (uintptr_t) &c_seg->c_store.c_buffer[cs->c_offset];
if (cs->c_pop_cdata != (csvpop = vmc_pop(csvaddr, c_size))) {
- panic("Compressed data popcount doesn't match original, bit distance: %d %p (phys: %p) %p %p 0x%llx 0x%x 0x%x 0x%x", (csvpop - cs->c_pop_cdata), (void *)csvaddr, (void *) kvtophys(csvaddr), c_seg, cs, cs->c_offset, c_size, csvpop, cs->c_pop_cdata);
+ panic("Compressed data popcount doesn't match original, bit distance: %d %p (phys: %p) %p %p 0x%x 0x%x 0x%x 0x%x", (csvpop - cs->c_pop_cdata), (void *)csvaddr, (void *) kvtophys(csvaddr), c_seg, cs, cs->c_offset, c_size, csvpop, cs->c_pop_cdata);
}
#endif
if (vm_compressor_algorithm() != VM_COMPRESSOR_DEFAULT_CODEC) {
#if defined(__arm__) || defined(__arm64__)
uint16_t c_codec = cs->c_codec;
- metadecompressor((const uint8_t *) &c_seg->c_store.c_buffer[cs->c_offset],
- (uint8_t *)dst, c_size, c_codec, (void *)scratch_buf);
+ uint32_t inline_popcount;
+ if (!metadecompressor((const uint8_t *) &c_seg->c_store.c_buffer[cs->c_offset],
+ (uint8_t *)dst, c_size, c_codec, (void *)scratch_buf, &inline_popcount)) {
+ retval = -1;
+ } else {
+#if __ARM_WKDM_POPCNT__
+ if (inline_popcount != cs->c_inline_popcount) {
+ /*
+ * The codec choice in compression and
+ * decompression must agree, so there
+ * should never be a disagreement in
+ * whether an inline population count
+ * was performed.
+ */
+ assert(inline_popcount != C_SLOT_NO_POPCOUNT);
+ assert(cs->c_inline_popcount != C_SLOT_NO_POPCOUNT);
+ printf("decompression failure from physical region %llx+%05x: popcount mismatch (%d != %d)\n",
+ (unsigned long long)kvtophys((uintptr_t)&c_seg->c_store.c_buffer[cs->c_offset]), c_size,
+ inline_popcount,
+ cs->c_inline_popcount);
+ retval = -1;
+ }
+#else
+ assert(inline_popcount == C_SLOT_NO_POPCOUNT);
+#endif /* __ARM_WKDM_POPCNT__ */
+ }
#endif
} else {
#if defined(__arm64__)
OSAddAtomic(1, &sample_period_decompression_count);
}
}
+#if CONFIG_FREEZE
+ else {
+ /*
+ * We are freeing an uncompressed page from this c_seg and so balance the ledgers.
+ */
+ if (C_SEG_IS_ONDISK(c_seg)) {
+ /*
+ * The compression sweep feature will push out anonymous pages to disk
+ * without going through the freezer path and so those c_segs, while
+ * swapped out, won't have an owner.
+ */
+ if (c_seg->c_task_owner) {
+ task_update_frozen_to_swap_acct(c_seg->c_task_owner, PAGE_SIZE_64, DEBIT_FROM_SWAP);
+ }
+
+ /*
+ * We are freeing a page in swap without swapping it in. We bump the in-core
+ * count here to simulate a swapin of a page so that we can accurately
+ * decrement it below.
+ */
+ OSAddAtomic(1, &c_segment_pages_compressed_incore);
+ }
+ }
+#endif /* CONFIG_FREEZE */
+
if (flags & C_KEEP) {
*zeroslot = 0;
goto done;
}
OSAddAtomic(-1, &c_segment_pages_compressed);
+#if CONFIG_FREEZE
+ OSAddAtomic(-1, &c_segment_pages_compressed_incore);
+ assertf(c_segment_pages_compressed_incore >= 0, "-ve incore count %p 0x%x", c_seg, c_segment_pages_compressed_incore);
+#endif /* CONFIG_FREEZE */
if (c_seg->c_state != C_ON_BAD_Q && !(C_SEG_IS_ONDISK(c_seg))) {
/*
C_SEG_BUSY(c_seg);
lck_mtx_unlock_always(&c_seg->c_lock);
- kernel_memory_depopulate(compressor_map, (vm_offset_t) c_seg->c_store.c_buffer, pages_populated * PAGE_SIZE, KMA_COMPRESSOR);
+ kernel_memory_depopulate(compressor_map,
+ (vm_offset_t) c_seg->c_store.c_buffer,
+ pages_populated * PAGE_SIZE, KMA_COMPRESSOR, VM_KERN_MEMORY_COMPRESSOR);
lck_mtx_lock_spin_always(&c_seg->c_lock);
C_SEG_WAKEUP_DONE(c_seg);
*/
dptr = (int32_t *)(uintptr_t)dst;
data = c_segment_sv_hash_table[slot_ptr->s_cindx].he_data;
-#if __x86_64__
- memset_word(dptr, data, PAGE_SIZE / sizeof(int32_t));
-#else
- {
- int i;
-
- for (i = 0; i < (int)(PAGE_SIZE / sizeof(int32_t)); i++) {
- *dptr++ = data;
- }
- }
-#endif
+ sv_decompress(dptr, data);
if (!(flags & C_KEEP)) {
c_segment_sv_hash_drop_ref(slot_ptr->s_cindx);
OSAddAtomic(-1, &c_segment_pages_compressed);
+#if CONFIG_FREEZE
+ OSAddAtomic(-1, &c_segment_pages_compressed_incore);
+ assertf(c_segment_pages_compressed_incore >= 0, "-ve incore count 0x%x", c_segment_pages_compressed_incore);
+#endif /* CONFIG_FREEZE */
*slot = 0;
}
if (data) {
return retval;
}
+#if DEVELOPMENT || DEBUG
+
+void
+vm_compressor_inject_error(int *slot)
+{
+ c_slot_mapping_t slot_ptr = (c_slot_mapping_t)slot;
+
+ /* No error detection for single-value compression. */
+ if (slot_ptr->s_cseg == C_SV_CSEG_ID) {
+ printf("%s(): cannot inject errors in SV-compressed pages\n", __func__ );
+ return;
+ }
+
+ /* s_cseg is actually "segno+1" */
+ const uint32_t c_segno = slot_ptr->s_cseg - 1;
+
+ assert(c_segno < c_segments_available);
+ assert(c_segments[c_segno].c_segno >= c_segments_available);
+
+ const c_segment_t c_seg = c_segments[c_segno].c_seg;
+
+ PAGE_REPLACEMENT_DISALLOWED(TRUE);
+
+ lck_mtx_lock_spin_always(&c_seg->c_lock);
+ assert(c_seg->c_state != C_IS_EMPTY && c_seg->c_state != C_IS_FREE);
+
+ const uint16_t c_indx = slot_ptr->s_cindx;
+ assert(c_indx < c_seg->c_nextslot);
+
+ /*
+ * To safely make this segment temporarily writable, we need to mark
+ * the segment busy, which allows us to release the segment lock.
+ */
+ while (c_seg->c_busy) {
+ c_seg_wait_on_busy(c_seg);
+ lck_mtx_lock_spin_always(&c_seg->c_lock);
+ }
+ C_SEG_BUSY(c_seg);
+
+ bool already_writable = (c_seg->c_state == C_IS_FILLING);
+ if (!already_writable) {
+ /*
+ * Protection update must be performed preemptibly, so temporarily drop
+ * the lock. Having set c_busy will prevent most other concurrent
+ * operations.
+ */
+ lck_mtx_unlock_always(&c_seg->c_lock);
+ C_SEG_MAKE_WRITEABLE(c_seg);
+ lck_mtx_lock_spin_always(&c_seg->c_lock);
+ }
+
+ /*
+ * Once we've released the lock following our c_state == C_IS_FILLING check,
+ * c_current_seg_filled() can (re-)write-protect the segment. However, it
+ * will transition from C_IS_FILLING before releasing the c_seg lock, so we
+ * can detect this by re-checking after we've reobtained the lock.
+ */
+ if (already_writable && c_seg->c_state != C_IS_FILLING) {
+ lck_mtx_unlock_always(&c_seg->c_lock);
+ C_SEG_MAKE_WRITEABLE(c_seg);
+ lck_mtx_lock_spin_always(&c_seg->c_lock);
+ already_writable = false;
+ /* Segment can't be freed while c_busy is set. */
+ assert(c_seg->c_state != C_IS_FILLING);
+ }
+
+ c_slot_t cs = C_SEG_SLOT_FROM_INDEX(c_seg, c_indx);
+ int32_t *data = &c_seg->c_store.c_buffer[cs->c_offset];
+ /* assume that the compressed data holds at least one int32_t */
+ assert(UNPACK_C_SIZE(cs) > sizeof(*data));
+ /*
+ * This bit is known to be in the payload of a MISS packet resulting from
+ * the pattern used in the test pattern from decompression_failure.c.
+ * Flipping it should result in many corrupted bits in the test page.
+ */
+ data[0] ^= 0x00000100;
+ if (!already_writable) {
+ lck_mtx_unlock_always(&c_seg->c_lock);
+ C_SEG_WRITE_PROTECT(c_seg);
+ lck_mtx_lock_spin_always(&c_seg->c_lock);
+ }
+
+ C_SEG_WAKEUP_DONE(c_seg);
+ lck_mtx_unlock_always(&c_seg->c_lock);
+
+ PAGE_REPLACEMENT_DISALLOWED(FALSE);
+}
+
+#endif /* DEVELOPMENT || DEBUG */
int
vm_compressor_free(int *slot, int flags)
if (slot_ptr->s_cseg == C_SV_CSEG_ID) {
c_segment_sv_hash_drop_ref(slot_ptr->s_cindx);
OSAddAtomic(-1, &c_segment_pages_compressed);
+#if CONFIG_FREEZE
+ OSAddAtomic(-1, &c_segment_pages_compressed_incore);
+ assertf(c_segment_pages_compressed_incore >= 0, "-ve incore count 0x%x", c_segment_pages_compressed_incore);
+#endif /* CONFIG_FREEZE */
*slot = 0;
return 0;
{
c_slot_mapping_t dst_slot, src_slot;
c_segment_t c_seg;
- int c_indx;
+ uint16_t c_indx;
c_slot_t cs;
src_slot = (c_slot_mapping_t) src_slot_p;
c_indx = src_slot->s_cindx;
cs = C_SEG_SLOT_FROM_INDEX(c_seg, c_indx);
/* point the c_slot back to dst_slot instead of src_slot */
+ C_SLOT_ASSERT_PACKABLE(dst_slot);
cs->c_packed_ptr = C_SLOT_PACK_PTR(dst_slot);
/* transfer */
*dst_slot_p = *src_slot_p;
uint16_t dst_slot;
c_slot_t c_dst;
c_slot_t c_src;
- int c_indx;
+ uint16_t c_indx;
c_segment_t c_seg_dst = NULL;
c_segment_t c_seg_src = NULL;
kern_return_t kr = KERN_SUCCESS;
lck_mtx_lock_spin_always(&c_seg_src->c_lock);
- if (C_SEG_IS_ONDISK(c_seg_src)) {
+ if (C_SEG_IS_ON_DISK_OR_SOQ(c_seg_src) ||
+ c_seg_src->c_state == C_IS_FILLING) {
/*
- * A "thaw" can mark a process as eligible for
+ * Skip this page if :-
+ * a) the src c_seg is already on-disk (or on its way there)
+ * A "thaw" can mark a process as eligible for
* another freeze cycle without bringing any of
* its swapped out c_segs back from disk (because
* that is done on-demand).
+ * Or, this page may be mapped elsewhere in the task's map,
+ * and we may have marked it for swap already.
*
- * If the src c_seg we find for our pre-compressed
- * data is already on-disk, then we are dealing
- * with an app's data that is already packed and
- * swapped out. Don't do anything.
+ * b) Or, the src c_seg is being filled by the compressor
+ * thread. We don't want the added latency of waiting for
+ * this c_seg in the freeze path and so we skip it.
*/
PAGE_REPLACEMENT_DISALLOWED(FALSE);
c_dst = C_SEG_SLOT_FROM_INDEX(c_seg_dst, c_seg_dst->c_nextslot);
memcpy(&c_seg_dst->c_store.c_buffer[c_seg_dst->c_nextoffset], &c_seg_src->c_store.c_buffer[c_src->c_offset], c_size);
-//is platform alignment actually necessary since wkdm aligns its output?
+ /*
+ * Is platform alignment actually necessary since wkdm aligns its output?
+ */
c_rounded_size = (c_size + C_SEG_OFFSET_ALIGNMENT_MASK) & ~C_SEG_OFFSET_ALIGNMENT_MASK;
cslot_copy(c_dst, c_src);
c_dst = C_SEG_SLOT_FROM_INDEX(c_seg_dst, dst_slot);
PAGE_REPLACEMENT_ALLOWED(TRUE);
- slot_ptr = (c_slot_mapping_t)C_SLOT_UNPACK_PTR(c_dst);
+ slot_ptr = C_SLOT_UNPACK_PTR(c_dst);
/* <csegno=0,indx=0> would mean "empty slot", so use csegno+1 */
slot_ptr->s_cseg = c_seg_dst->c_mysegno + 1;
slot_ptr->s_cindx = dst_slot;