#include <mach_debug/zone_info.h>
#include <mach/vm_map.h>
+#include <kern/bits.h>
#include <kern/kern_types.h>
#include <kern/assert.h>
#include <kern/backtrace.h>
#include <libkern/OSAtomic.h>
#include <sys/kdebug.h>
+#include <san/kasan.h>
+
/*
* ZONE_ALIAS_ADDR (deprecated)
*/
uintptr_t zp_poisoned_cookie = 0;
uintptr_t zp_nopoison_cookie = 0;
+#if VM_MAX_TAG_ZONES
+boolean_t zone_tagging_on;
+#endif /* VM_MAX_TAG_ZONES */
/*
* initialize zone poisoning
/*
* These macros are used to keep track of the number
* of pages being used by the zone currently. The
- * z->page_count is protected by the zone lock.
+ * z->page_count is not protected by the zone lock.
*/
#define ZONE_PAGE_COUNT_INCR(z, count) \
{ \
};
/*
- * Protects num_zones and zone_array
+ * Protects zone_array, num_zones, num_zones_in_use, and zone_empty_bitmap
*/
decl_simple_lock_data(, all_zones_lock)
+unsigned int num_zones_in_use;
unsigned int num_zones;
-#define MAX_ZONES 256
+#define MAX_ZONES 288
struct zone zone_array[MAX_ZONES];
-#define MULTIPAGE_METADATA_MAGIC (0xff)
+/* Used to keep track of empty slots in the zone_array */
+bitmap_t zone_empty_bitmap[BITMAP_LEN(MAX_ZONES)];
+
+#if DEBUG || DEVELOPMENT
+/*
+ * Used for sysctl kern.run_zone_test which is not thread-safe. Ensure only one thread goes through at a time.
+ * Or we can end up with multiple test zones (if a second zinit() comes through before zdestroy()), which could lead us to
+ * run out of zones.
+ */
+decl_simple_lock_data(, zone_test_lock)
+static boolean_t zone_test_running = FALSE;
+static zone_t test_zone_ptr = NULL;
+#endif /* DEBUG || DEVELOPMENT */
#define PAGE_METADATA_GET_ZINDEX(page_meta) \
(page_meta->zindex)
/*
* For the first page in the allocation chunk, this represents the total number of free elements in
* the chunk.
- * For all other pages, it represents the number of free elements on that page (used
- * for garbage collection of zones with large multipage allocation size)
*/
uint16_t free_count;
- uint8_t zindex; /* Zone index within the zone_array */
- uint8_t page_count; /* Count of pages within the allocation chunk */
+ unsigned zindex : ZINDEX_BITS; /* Zone index within the zone_array */
+ unsigned page_count : PAGECOUNT_BITS; /* Count of pages within the allocation chunk */
};
/* Macro to get page index (within zone_map) of page containing element */
/* Magic value to indicate empty element free list */
#define PAGE_METADATA_EMPTY_FREELIST ((uint32_t)(~0))
+boolean_t is_zone_map_nearing_exhaustion(void);
+extern void vm_pageout_garbage_collect(int collect);
+
static inline void *
page_metadata_get_freelist(struct zone_page_metadata *page_meta)
{
/* All updates to the zone_metadata_region are done under the zone_metadata_region_lck */
lck_mtx_lock(&zone_metadata_region_lck);
if (0 == pmap_find_phys(kernel_pmap, (vm_map_address_t)page_metadata_begin)) {
- kernel_memory_populate(zone_map,
+ kern_return_t __unused ret = kernel_memory_populate(zone_map,
page_metadata_begin,
PAGE_SIZE,
KMA_KOBJECT,
VM_KERN_MEMORY_OSFMK);
+
+ /* should not fail with the given arguments */
+ assert(ret == KERN_SUCCESS);
}
lck_mtx_unlock(&zone_metadata_region_lck);
}
page_meta = (struct zone_page_metadata *)(trunc_page((vm_offset_t)element));
}
if (init)
- bzero((char *)page_meta, sizeof(struct zone_page_metadata));
+ __nosan_bzero((char *)page_meta, sizeof(struct zone_page_metadata));
return ((PAGE_METADATA_GET_ZINDEX(page_meta) != MULTIPAGE_METADATA_MAGIC) ? page_meta : page_metadata_get_realmeta(page_meta));
}
return (vm_offset_t)(trunc_page(page_meta));
}
+/*
+ * ZTAGS
+ */
+
+#if VM_MAX_TAG_ZONES
+
+// for zones with tagging enabled:
+
+// calculate a pointer to the tag base entry,
+// holding either a uint32_t the first tag offset for a page in the zone map,
+// or two uint16_t tags if the page can only hold one or two elements
+
+#define ZTAGBASE(zone, element) \
+ (&((uint32_t *)zone_tagbase_min)[atop((element) - zone_map_min_address)])
+
+// pointer to the tag for an element
+#define ZTAG(zone, element) \
+ ({ \
+ vm_tag_t * result; \
+ if ((zone)->tags_inline) { \
+ result = (vm_tag_t *) ZTAGBASE((zone), (element)); \
+ if ((page_mask & element) >= (zone)->elem_size) result++; \
+ } else { \
+ result = &((vm_tag_t *)zone_tags_min)[ZTAGBASE((zone), (element))[0] + ((element) & page_mask) / (zone)->elem_size]; \
+ } \
+ result; \
+ })
+
+
+static vm_offset_t zone_tagbase_min;
+static vm_offset_t zone_tagbase_max;
+static vm_offset_t zone_tagbase_map_size;
+static vm_map_t zone_tagbase_map;
+
+static vm_offset_t zone_tags_min;
+static vm_offset_t zone_tags_max;
+static vm_offset_t zone_tags_map_size;
+static vm_map_t zone_tags_map;
+
+// simple heap allocator for allocating the tags for new memory
+
+decl_lck_mtx_data(,ztLock) /* heap lock */
+enum
+{
+ ztFreeIndexCount = 8,
+ ztFreeIndexMax = (ztFreeIndexCount - 1),
+ ztTagsPerBlock = 4
+};
+
+struct ztBlock
+{
+#if __LITTLE_ENDIAN__
+ uint64_t free:1,
+ next:21,
+ prev:21,
+ size:21;
+#else
+// ztBlock needs free bit least significant
+#error !__LITTLE_ENDIAN__
+#endif
+};
+typedef struct ztBlock ztBlock;
+
+static ztBlock * ztBlocks;
+static uint32_t ztBlocksCount;
+static uint32_t ztBlocksFree;
+
+static uint32_t
+ztLog2up(uint32_t size)
+{
+ if (1 == size) size = 0;
+ else size = 32 - __builtin_clz(size - 1);
+ return (size);
+}
+
+static uint32_t
+ztLog2down(uint32_t size)
+{
+ size = 31 - __builtin_clz(size);
+ return (size);
+}
+
+static void
+ztFault(vm_map_t map, const void * address, size_t size, uint32_t flags)
+{
+ vm_map_offset_t addr = (vm_map_offset_t) address;
+ vm_map_offset_t page, end;
+
+ page = trunc_page(addr);
+ end = round_page(addr + size);
+
+ for (; page < end; page += page_size)
+ {
+ if (!pmap_find_phys(kernel_pmap, page))
+ {
+ kern_return_t __unused
+ ret = kernel_memory_populate(map, page, PAGE_SIZE,
+ KMA_KOBJECT | flags, VM_KERN_MEMORY_DIAG);
+ assert(ret == KERN_SUCCESS);
+ }
+ }
+}
+
+static boolean_t
+ztPresent(const void * address, size_t size)
+{
+ vm_map_offset_t addr = (vm_map_offset_t) address;
+ vm_map_offset_t page, end;
+ boolean_t result;
+
+ page = trunc_page(addr);
+ end = round_page(addr + size);
+ for (result = TRUE; (page < end); page += page_size)
+ {
+ result = pmap_find_phys(kernel_pmap, page);
+ if (!result) break;
+ }
+ return (result);
+}
+
+
+void __unused
+ztDump(boolean_t sanity);
+void __unused
+ztDump(boolean_t sanity)
+{
+ uint32_t q, cq, p;
+
+ for (q = 0; q <= ztFreeIndexMax; q++)
+ {
+ p = q;
+ do
+ {
+ if (sanity)
+ {
+ cq = ztLog2down(ztBlocks[p].size);
+ if (cq > ztFreeIndexMax) cq = ztFreeIndexMax;
+ if (!ztBlocks[p].free
+ || ((p != q) && (q != cq))
+ || (ztBlocks[ztBlocks[p].next].prev != p)
+ || (ztBlocks[ztBlocks[p].prev].next != p))
+ {
+ kprintf("zterror at %d", p);
+ ztDump(FALSE);
+ kprintf("zterror at %d", p);
+ assert(FALSE);
+ }
+ continue;
+ }
+ kprintf("zt[%03d]%c %d, %d, %d\n",
+ p, ztBlocks[p].free ? 'F' : 'A',
+ ztBlocks[p].next, ztBlocks[p].prev,
+ ztBlocks[p].size);
+ p = ztBlocks[p].next;
+ if (p == q) break;
+ }
+ while (p != q);
+ if (!sanity) printf("\n");
+ }
+ if (!sanity) printf("-----------------------\n");
+}
+
+
+
+#define ZTBDEQ(idx) \
+ ztBlocks[ztBlocks[(idx)].prev].next = ztBlocks[(idx)].next; \
+ ztBlocks[ztBlocks[(idx)].next].prev = ztBlocks[(idx)].prev;
+
+static void
+ztFree(zone_t zone __unused, uint32_t index, uint32_t count)
+{
+ uint32_t q, w, p, size, merge;
+
+ assert(count);
+ ztBlocksFree += count;
+
+ // merge with preceding
+ merge = (index + count);
+ if ((merge < ztBlocksCount)
+ && ztPresent(&ztBlocks[merge], sizeof(ztBlocks[merge]))
+ && ztBlocks[merge].free)
+ {
+ ZTBDEQ(merge);
+ count += ztBlocks[merge].size;
+ }
+
+ // merge with following
+ merge = (index - 1);
+ if ((merge > ztFreeIndexMax)
+ && ztPresent(&ztBlocks[merge], sizeof(ztBlocks[merge]))
+ && ztBlocks[merge].free)
+ {
+ size = ztBlocks[merge].size;
+ count += size;
+ index -= size;
+ ZTBDEQ(index);
+ }
+
+ q = ztLog2down(count);
+ if (q > ztFreeIndexMax) q = ztFreeIndexMax;
+ w = q;
+ // queue in order of size
+ while (TRUE)
+ {
+ p = ztBlocks[w].next;
+ if (p == q) break;
+ if (ztBlocks[p].size >= count) break;
+ w = p;
+ }
+ ztBlocks[p].prev = index;
+ ztBlocks[w].next = index;
+
+ // fault in first
+ ztFault(zone_tags_map, &ztBlocks[index], sizeof(ztBlocks[index]), 0);
+
+ // mark first & last with free flag and size
+ ztBlocks[index].free = TRUE;
+ ztBlocks[index].size = count;
+ ztBlocks[index].prev = w;
+ ztBlocks[index].next = p;
+ if (count > 1)
+ {
+ index += (count - 1);
+ // fault in last
+ ztFault(zone_tags_map, &ztBlocks[index], sizeof(ztBlocks[index]), 0);
+ ztBlocks[index].free = TRUE;
+ ztBlocks[index].size = count;
+ }
+}
+
+static uint32_t
+ztAlloc(zone_t zone, uint32_t count)
+{
+ uint32_t q, w, p, leftover;
+
+ assert(count);
+
+ q = ztLog2up(count);
+ if (q > ztFreeIndexMax) q = ztFreeIndexMax;
+ do
+ {
+ w = q;
+ while (TRUE)
+ {
+ p = ztBlocks[w].next;
+ if (p == q) break;
+ if (ztBlocks[p].size >= count)
+ {
+ // dequeue, mark both ends allocated
+ ztBlocks[w].next = ztBlocks[p].next;
+ ztBlocks[ztBlocks[p].next].prev = w;
+ ztBlocks[p].free = FALSE;
+ ztBlocksFree -= ztBlocks[p].size;
+ if (ztBlocks[p].size > 1) ztBlocks[p + ztBlocks[p].size - 1].free = FALSE;
+
+ // fault all the allocation
+ ztFault(zone_tags_map, &ztBlocks[p], count * sizeof(ztBlocks[p]), 0);
+ // mark last as allocated
+ if (count > 1) ztBlocks[p + count - 1].free = FALSE;
+ // free remainder
+ leftover = ztBlocks[p].size - count;
+ if (leftover) ztFree(zone, p + ztBlocks[p].size - leftover, leftover);
+
+ return (p);
+ }
+ w = p;
+ }
+ q++;
+ }
+ while (q <= ztFreeIndexMax);
+
+ return (-1U);
+}
+
+static void
+ztInit(vm_size_t max_zonemap_size, lck_grp_t * group)
+{
+ kern_return_t ret;
+ vm_map_kernel_flags_t vmk_flags;
+ uint32_t idx;
+
+ lck_mtx_init(&ztLock, group, LCK_ATTR_NULL);
+
+ // allocate submaps VM_KERN_MEMORY_DIAG
+
+ zone_tagbase_map_size = atop(max_zonemap_size) * sizeof(uint32_t);
+ vmk_flags = VM_MAP_KERNEL_FLAGS_NONE;
+ vmk_flags.vmkf_permanent = TRUE;
+ ret = kmem_suballoc(kernel_map, &zone_tagbase_min, zone_tagbase_map_size,
+ FALSE, VM_FLAGS_ANYWHERE, vmk_flags, VM_KERN_MEMORY_DIAG,
+ &zone_tagbase_map);
+
+ if (ret != KERN_SUCCESS) panic("zone_init: kmem_suballoc failed");
+ zone_tagbase_max = zone_tagbase_min + round_page(zone_tagbase_map_size);
+
+ zone_tags_map_size = 2048*1024 * sizeof(vm_tag_t);
+ vmk_flags = VM_MAP_KERNEL_FLAGS_NONE;
+ vmk_flags.vmkf_permanent = TRUE;
+ ret = kmem_suballoc(kernel_map, &zone_tags_min, zone_tags_map_size,
+ FALSE, VM_FLAGS_ANYWHERE, vmk_flags, VM_KERN_MEMORY_DIAG,
+ &zone_tags_map);
+
+ if (ret != KERN_SUCCESS) panic("zone_init: kmem_suballoc failed");
+ zone_tags_max = zone_tags_min + round_page(zone_tags_map_size);
+
+ ztBlocks = (ztBlock *) zone_tags_min;
+ ztBlocksCount = (uint32_t)(zone_tags_map_size / sizeof(ztBlock));
+
+ // initialize the qheads
+ lck_mtx_lock(&ztLock);
+
+ ztFault(zone_tags_map, &ztBlocks[0], sizeof(ztBlocks[0]), 0);
+ for (idx = 0; idx < ztFreeIndexCount; idx++)
+ {
+ ztBlocks[idx].free = TRUE;
+ ztBlocks[idx].next = idx;
+ ztBlocks[idx].prev = idx;
+ ztBlocks[idx].size = 0;
+ }
+ // free remaining space
+ ztFree(NULL, ztFreeIndexCount, ztBlocksCount - ztFreeIndexCount);
+
+ lck_mtx_unlock(&ztLock);
+}
+
+static void
+ztMemoryAdd(zone_t zone, vm_offset_t mem, vm_size_t size)
+{
+ uint32_t * tagbase;
+ uint32_t count, block, blocks, idx;
+ size_t pages;
+
+ pages = atop(size);
+ tagbase = ZTAGBASE(zone, mem);
+
+ lck_mtx_lock(&ztLock);
+
+ // fault tagbase
+ ztFault(zone_tagbase_map, tagbase, pages * sizeof(uint32_t), 0);
+
+ if (!zone->tags_inline)
+ {
+ // allocate tags
+ count = (uint32_t)(size / zone->elem_size);
+ blocks = ((count + ztTagsPerBlock - 1) / ztTagsPerBlock);
+ block = ztAlloc(zone, blocks);
+ if (-1U == block) ztDump(false);
+ assert(-1U != block);
+ }
+
+ lck_mtx_unlock(&ztLock);
+
+ if (!zone->tags_inline)
+ {
+ // set tag base for each page
+ block *= ztTagsPerBlock;
+ for (idx = 0; idx < pages; idx++)
+ {
+ tagbase[idx] = block + (uint32_t)((ptoa(idx) + (zone->elem_size - 1)) / zone->elem_size);
+ }
+ }
+}
+
+static void
+ztMemoryRemove(zone_t zone, vm_offset_t mem, vm_size_t size)
+{
+ uint32_t * tagbase;
+ uint32_t count, block, blocks, idx;
+ size_t pages;
+
+ // set tag base for each page
+ pages = atop(size);
+ tagbase = ZTAGBASE(zone, mem);
+ block = tagbase[0];
+ for (idx = 0; idx < pages; idx++)
+ {
+ tagbase[idx] = 0xFFFFFFFF;
+ }
+
+ lck_mtx_lock(&ztLock);
+ if (!zone->tags_inline)
+ {
+ count = (uint32_t)(size / zone->elem_size);
+ blocks = ((count + ztTagsPerBlock - 1) / ztTagsPerBlock);
+ assert(block != 0xFFFFFFFF);
+ block /= ztTagsPerBlock;
+ ztFree(NULL /* zone is unlocked */, block, blocks);
+ }
+
+ lck_mtx_unlock(&ztLock);
+}
+
+uint32_t
+zone_index_from_tag_index(uint32_t tag_zone_index, vm_size_t * elem_size)
+{
+ zone_t z;
+ uint32_t idx;
+
+ simple_lock(&all_zones_lock);
+
+ for (idx = 0; idx < num_zones; idx++)
+ {
+ z = &(zone_array[idx]);
+ if (!z->tags) continue;
+ if (tag_zone_index != z->tag_zone_index) continue;
+ *elem_size = z->elem_size;
+ break;
+ }
+
+ simple_unlock(&all_zones_lock);
+
+ if (idx == num_zones) idx = -1U;
+
+ return (idx);
+}
+
+#endif /* VM_MAX_TAG_ZONES */
+
/* Routine to get the size of a zone allocated address. If the address doesnt belong to the
* zone_map, returns 0.
*/
}
}
+#if DEBUG || DEVELOPMENT
+
+vm_size_t
+zone_element_info(void *addr, vm_tag_t * ptag)
+{
+ vm_size_t size = 0;
+ vm_tag_t tag = VM_KERN_MEMORY_NONE;
+ struct zone * src_zone;
+
+ if (from_zone_map(addr, sizeof(void *))) {
+ struct zone_page_metadata *page_meta = get_zone_page_metadata((struct zone_free_element *)addr, FALSE);
+ src_zone = PAGE_METADATA_GET_ZONE(page_meta);
+#if VM_MAX_TAG_ZONES
+ if (__improbable(src_zone->tags)) {
+ tag = (ZTAG(src_zone, (vm_offset_t) addr)[0] >> 1);
+ }
+#endif /* VM_MAX_TAG_ZONES */
+ size = src_zone->elem_size;
+ } else {
+#if CONFIG_GZALLOC
+ gzalloc_element_size(addr, NULL, &size);
+#endif /* CONFIG_GZALLOC */
+ }
+ *ptag = tag;
+ return size;
+}
+
+#endif /* DEBUG || DEVELOPMENT */
+
/*
* Zone checking helper function.
* A pointer that satisfies these conditions is OK to be a freelist next pointer
/* The backup is definitely the corrupted one */
if (sane_primary && !sane_backup)
zone_element_was_modified_panic(zone, element, backup,
- (primary ^ (element_was_poisoned ? zp_poisoned_cookie : zp_nopoison_cookie)),
+ (likely_primary ^ (element_was_poisoned ? zp_poisoned_cookie : zp_nopoison_cookie)),
zone->elem_size - sizeof(vm_offset_t));
/*
* primary pointer has been overwritten with a sane but incorrect address.
*/
if (sane_primary && sane_backup)
- zone_element_was_modified_panic(zone, element, primary, likely_backup, 0);
+ zone_element_was_modified_panic(zone, element, primary, (likely_backup ^ zp_nopoison_cookie), 0);
/* Neither are sane, so just guess. */
- zone_element_was_modified_panic(zone, element, primary, likely_backup, 0);
+ zone_element_was_modified_panic(zone, element, primary, (likely_backup ^ zp_nopoison_cookie), 0);
}
/*
}
zone->count--;
zone->countfree++;
+
+#if KASAN_ZALLOC
+ kasan_poison_range(element, zone->elem_size, ASAN_HEAP_FREED);
+#endif
}
*/
static inline vm_offset_t
try_alloc_from_zone(zone_t zone,
+ vm_tag_t tag __unused,
boolean_t* check_poison)
{
vm_offset_t element;
zone->count++;
zone->sum_count++;
+#if VM_MAX_TAG_ZONES
+ if (__improbable(zone->tags)) {
+ // set the tag with b0 clear so the block remains inuse
+ ZTAG(zone, element)[0] = (tag << 1);
+ }
+#endif /* VM_MAX_TAG_ZONES */
+
+
+#if KASAN_ZALLOC
+ kasan_poison_range(element, zone->elem_size, ASAN_VALID);
+#endif
+
return element;
}
*/
#define ZINFO_SLOTS MAX_ZONES /* for now */
-void zone_display_zprint(void);
-
zone_t zone_find_largest(void);
/*
#define zone_wakeup(zone) thread_wakeup((event_t)(zone))
#define zone_sleep(zone) \
- (void) lck_mtx_sleep(&(zone)->lock, LCK_SLEEP_SPIN, (event_t)(zone), THREAD_UNINT);
+ (void) lck_mtx_sleep(&(zone)->lock, LCK_SLEEP_SPIN_ALWAYS, (event_t)(zone), THREAD_UNINT);
/*
* The zone_locks_grp allows for collecting lock statistics.
boolean_t zone_gc_allowed = TRUE;
boolean_t panic_include_zprint = FALSE;
-vm_offset_t panic_kext_memory_info = 0;
+mach_memory_info_t *panic_kext_memory_info = NULL;
vm_size_t panic_kext_memory_size = 0;
#define ZALLOC_DEBUG_ZONEGC 0x00000001
static boolean_t log_records_init = FALSE;
static int log_records; /* size of the log, expressed in number of records */
-#define MAX_NUM_ZONES_ALLOWED_LOGGING 5 /* Maximum 5 zones can be logged at once */
+#define MAX_NUM_ZONES_ALLOWED_LOGGING 10 /* Maximum 10 zones can be logged at once */
static int max_num_zones_to_log = MAX_NUM_ZONES_ALLOWED_LOGGING;
static int num_zones_logged = 0;
-#define MAX_ZONE_NAME 32 /* max length of a zone name we can take from the boot-args */
-
static char zone_name_to_log[MAX_ZONE_NAME] = ""; /* the zone name we're logging, if any */
/* Log allocations and frees to help debug a zone element corruption */
* match a space in the zone name.
*/
-static int
-log_this_zone(const char *zonename, const char *logname)
+int
+track_this_zone(const char *zonename, const char *logname)
{
int len;
const char *zc = zonename;
zleak_global_tracking_threshold = max_zonemap_size / 2;
zleak_per_zone_tracking_threshold = zleak_global_tracking_threshold / 8;
+#if CONFIG_EMBEDDED
+ if (PE_parse_boot_argn("-zleakon", scratch_buf, sizeof(scratch_buf))) {
+ zleak_enable_flag = TRUE;
+ printf("zone leak detection enabled\n");
+ } else {
+ zleak_enable_flag = FALSE;
+ printf("zone leak detection disabled\n");
+ }
+#else /* CONFIG_EMBEDDED */
/* -zleakoff (flag to disable zone leak monitor) */
if (PE_parse_boot_argn("-zleakoff", scratch_buf, sizeof(scratch_buf))) {
zleak_enable_flag = FALSE;
zleak_enable_flag = TRUE;
printf("zone leak detection enabled\n");
}
+#endif /* CONFIG_EMBEDDED */
/* zfactor=XXXX (override how often to sample the zone allocator) */
if (PE_parse_boot_argn("zfactor", &zleak_sample_factor, sizeof(zleak_sample_factor))) {
#define ZONE_MAX_ALLOC_SIZE (32 * 1024)
#define ZONE_ALLOC_FRAG_PERCENT(alloc_size, ele_size) (((alloc_size % ele_size) * 100) / alloc_size)
+/* Used to manage copying in of new zone names */
+static vm_offset_t zone_names_start;
+static vm_offset_t zone_names_next;
+
+static vm_size_t
+compute_element_size(vm_size_t requested_size)
+{
+ vm_size_t element_size = requested_size;
+
+ /* Zone elements must fit both a next pointer and a backup pointer */
+ vm_size_t minimum_element_size = sizeof(vm_offset_t) * 2;
+ if (element_size < minimum_element_size)
+ element_size = minimum_element_size;
+
+ /*
+ * Round element size to a multiple of sizeof(pointer)
+ * This also enforces that allocations will be aligned on pointer boundaries
+ */
+ element_size = ((element_size-1) + sizeof(vm_offset_t)) -
+ ((element_size-1) % sizeof(vm_offset_t));
+
+ return element_size;
+}
+
/*
* zinit initializes a new zone. The zone data structures themselves
* are stored in a zone, which is initially a static structure that
* is initialized by zone_init.
*/
+
zone_t
zinit(
vm_size_t size, /* the size of an element */
vm_size_t alloc, /* allocation size */
const char *name) /* a name for the zone */
{
- zone_t z;
+ zone_t z;
+
+ size = compute_element_size(size);
simple_lock(&all_zones_lock);
+
assert(num_zones < MAX_ZONES);
+ assert(num_zones_in_use <= num_zones);
+
+ /* If possible, find a previously zdestroy'ed zone in the zone_array that we can reuse instead of initializing a new zone. */
+ for (int index = bitmap_first(zone_empty_bitmap, MAX_ZONES);
+ index >= 0 && index < (int)num_zones;
+ index = bitmap_next(zone_empty_bitmap, index)) {
+ z = &(zone_array[index]);
+
+ /*
+ * If the zone name and the element size are the same, we can just reuse the old zone struct.
+ * Otherwise hand out a new zone from the zone_array.
+ */
+ if (!strcmp(z->zone_name, name)) {
+ vm_size_t old_size = z->elem_size;
+#if KASAN_ZALLOC
+ old_size -= z->kasan_redzone * 2;
+#endif
+ if (old_size == size) {
+ /* Clear the empty bit for this zone, increment num_zones_in_use, and mark the zone as valid again. */
+ bitmap_clear(zone_empty_bitmap, index);
+ num_zones_in_use++;
+ z->zone_valid = TRUE;
+
+ /* All other state is already set up since the zone was previously in use. Return early. */
+ simple_unlock(&all_zones_lock);
+ return (z);
+ }
+ }
+ }
+
+ /* If we're here, it means we didn't find a zone above that we could simply reuse. Set up a new zone. */
+
+ /* Clear the empty bit for the new zone */
+ bitmap_clear(zone_empty_bitmap, num_zones);
+
z = &(zone_array[num_zones]);
z->index = num_zones;
- num_zones++;
- simple_unlock(&all_zones_lock);
- /* Zone elements must fit both a next pointer and a backup pointer */
- vm_size_t minimum_element_size = sizeof(vm_offset_t) * 2;
- if (size < minimum_element_size)
- size = minimum_element_size;
+ num_zones++;
+ num_zones_in_use++;
/*
- * Round element size to a multiple of sizeof(pointer)
- * This also enforces that allocations will be aligned on pointer boundaries
+ * Initialize the zone lock here before dropping the all_zones_lock. Otherwise we could race with
+ * zalloc_async() and try to grab the zone lock before it has been initialized, causing a panic.
*/
- size = ((size-1) + sizeof(vm_offset_t)) -
- ((size-1) % sizeof(vm_offset_t));
+ lock_zone_init(z);
+
+ simple_unlock(&all_zones_lock);
- if (alloc == 0)
- alloc = PAGE_SIZE;
+#if KASAN_ZALLOC
+ /* Expand the zone allocation size to include the redzones. For page-multiple
+ * zones add a full guard page because they likely require alignment. kalloc
+ * and fakestack handles its own KASan state, so ignore those zones. */
+ /* XXX: remove this when zinit_with_options() is a thing */
+ const char *kalloc_name = "kalloc.";
+ const char *fakestack_name = "fakestack.";
+ if (strncmp(name, kalloc_name, strlen(kalloc_name)) == 0) {
+ z->kasan_redzone = 0;
+ } else if (strncmp(name, fakestack_name, strlen(fakestack_name)) == 0) {
+ z->kasan_redzone = 0;
+ } else {
+ if ((size % PAGE_SIZE) != 0) {
+ z->kasan_redzone = KASAN_GUARD_SIZE;
+ } else {
+ z->kasan_redzone = PAGE_SIZE;
+ }
+ max = (max / size) * (size + z->kasan_redzone * 2);
+ size += z->kasan_redzone * 2;
+ }
+#endif
- alloc = round_page(alloc);
- max = round_page(max);
+ max = round_page(max);
vm_size_t best_alloc = PAGE_SIZE;
- vm_size_t alloc_size;
- for (alloc_size = (2 * PAGE_SIZE); alloc_size <= ZONE_MAX_ALLOC_SIZE; alloc_size += PAGE_SIZE) {
- if (ZONE_ALLOC_FRAG_PERCENT(alloc_size, size) < ZONE_ALLOC_FRAG_PERCENT(best_alloc, size)) {
- best_alloc = alloc_size;
+
+ if ((size % PAGE_SIZE) == 0) {
+ /* zero fragmentation by definition */
+ best_alloc = size;
+ } else {
+ vm_size_t alloc_size;
+ for (alloc_size = (2 * PAGE_SIZE); alloc_size <= ZONE_MAX_ALLOC_SIZE; alloc_size += PAGE_SIZE) {
+ if (ZONE_ALLOC_FRAG_PERCENT(alloc_size, size) < ZONE_ALLOC_FRAG_PERCENT(best_alloc, size)) {
+ best_alloc = alloc_size;
+ }
}
}
+
alloc = best_alloc;
if (max && (max < alloc))
max = alloc;
z->max_size = max;
z->elem_size = size;
z->alloc_size = alloc;
- z->zone_name = name;
z->count = 0;
z->countfree = 0;
z->count_all_free_pages = 0;
z->prio_refill_watermark = 0;
z->zone_replenish_thread = NULL;
z->zp_count = 0;
+ z->kasan_quarantine = TRUE;
+ z->zone_valid = TRUE;
#if CONFIG_ZLEAKS
z->zleak_capture = 0;
z->zleak_on = FALSE;
#endif /* CONFIG_ZLEAKS */
- lock_zone_init(z);
+ /*
+ * If the VM is ready to handle kmem_alloc requests, copy the zone name passed in.
+ *
+ * Else simply maintain a pointer to the name string. The only zones we'll actually have
+ * to do this for would be the VM-related zones that are created very early on before any
+ * kexts can be loaded (unloaded). So we should be fine with just a pointer in this case.
+ */
+ if (kmem_alloc_ready) {
+ size_t len = MIN(strlen(name)+1, MACH_ZONE_NAME_MAX_LEN);
+
+ if (zone_names_start == 0 || ((zone_names_next - zone_names_start) + len) > PAGE_SIZE) {
+ printf("zalloc: allocating memory for zone names buffer\n");
+ kern_return_t retval = kmem_alloc_kobject(kernel_map, &zone_names_start,
+ PAGE_SIZE, VM_KERN_MEMORY_OSFMK);
+ if (retval != KERN_SUCCESS) {
+ panic("zalloc: zone_names memory allocation failed");
+ }
+ bzero((char *)zone_names_start, PAGE_SIZE);
+ zone_names_next = zone_names_start;
+ }
+
+ strlcpy((char *)zone_names_next, name, len);
+ z->zone_name = (char *)zone_names_next;
+ zone_names_next += len;
+ } else {
+ z->zone_name = name;
+ }
/*
* Check for and set up zone leak detection if requested via boot-args. We recognized two
snprintf(zlog_name, MAX_ZONE_NAME, "zlog%d", i);
if (PE_parse_boot_argn(zlog_name, zone_name_to_log, sizeof(zone_name_to_log)) == TRUE) {
- if (log_this_zone(z->zone_name, zone_name_to_log)) {
- z->zone_logging = TRUE;
- zone_logging_enabled = TRUE;
- num_zones_logged++;
- break;
+ if (track_this_zone(z->zone_name, zone_name_to_log)) {
+ if (z->zone_valid) {
+ z->zone_logging = TRUE;
+ zone_logging_enabled = TRUE;
+ num_zones_logged++;
+ break;
+ }
}
}
i++;
* boot-args.
*/
if (PE_parse_boot_argn("zlog", zone_name_to_log, sizeof(zone_name_to_log)) == TRUE) {
- if (log_this_zone(z->zone_name, zone_name_to_log)) {
+ if (track_this_zone(z->zone_name, zone_name_to_log)) {
+ if (z->zone_valid) {
z->zone_logging = TRUE;
zone_logging_enabled = TRUE;
num_zones_logged++;
+ }
}
}
}
curr_zone = &(zone_array[zone_idx]);
+ if (!curr_zone->zone_valid) {
+ continue;
+ }
+
/*
* We work with the zone unlocked here because we could end up needing the zone lock to
* enable logging for this zone e.g. need a VM object to allocate memory to enable logging for the
#if CONFIG_GZALLOC
gzalloc_zone_init(z);
#endif
+
return(z);
}
unsigned zone_replenish_loops, zone_replenish_wakeups, zone_replenish_wakeups_initiated, zone_replenish_throttle_count;
for (;;) {
lock_zone(z);
+ assert(z->zone_valid);
z->zone_replenishing = TRUE;
assert(z->prio_refill_watermark != 0);
while ((free_size = (z->cur_size - (z->count * z->elem_size))) < (z->prio_refill_watermark * z->elem_size)) {
if (z->noencrypt)
zflags |= KMA_NOENCRYPT;
+ /* Trigger jetsams via the vm_pageout_garbage_collect thread if we're running out of zone memory */
+ if (is_zone_map_nearing_exhaustion()) {
+ thread_wakeup((event_t) &vm_pageout_garbage_collect);
+ }
+
kr = kernel_memory_allocate(zone_map, &space, alloc_size, 0, zflags, VM_KERN_MEMORY_ZONE);
if (kr == KERN_SUCCESS) {
}
lock_zone(z);
+ assert(z->zone_valid);
zone_replenish_loops++;
}
thread_deallocate(z->zone_replenish_thread);
}
-/* Initialize the metadata for an allocation chunk */
-static inline void
-zcram_metadata_init(vm_offset_t newmem, vm_size_t size, struct zone_page_metadata *chunk_metadata)
+void
+zdestroy(zone_t z)
{
- struct zone_page_metadata *page_metadata;
+ unsigned int zindex;
- /* The first page is the real metadata for this allocation chunk. We mark the others as fake metadata */
- size -= PAGE_SIZE;
- newmem += PAGE_SIZE;
+ assert(z != NULL);
- for (; size > 0; newmem += PAGE_SIZE, size -= PAGE_SIZE) {
- page_metadata = get_zone_page_metadata((struct zone_free_element *)newmem, TRUE);
+ lock_zone(z);
+ assert(z->zone_valid);
+
+ /* Assert that the zone does not have any allocations in flight */
+ assert(z->doing_alloc_without_vm_priv == FALSE);
+ assert(z->doing_alloc_with_vm_priv == FALSE);
+ assert(z->async_pending == FALSE);
+ assert(z->waiting == FALSE);
+ assert(z->async_prio_refill == FALSE);
+
+#if !KASAN_ZALLOC
+ /*
+ * Unset the valid bit. We'll hit an assert failure on further operations on this zone, until zinit() is called again.
+ * Leave the zone valid for KASan as we will see zfree's on quarantined free elements even after the zone is destroyed.
+ */
+ z->zone_valid = FALSE;
+#endif
+ unlock_zone(z);
+
+ /* Dump all the free elements */
+ drop_free_elements(z);
+
+#if CONFIG_GZALLOC
+ /* If the zone is gzalloc managed dump all the elements in the free cache */
+ gzalloc_empty_free_cache(z);
+#endif
+
+ lock_zone(z);
+
+#if !KASAN_ZALLOC
+ /* Assert that all counts are zero */
+ assert(z->count == 0);
+ assert(z->countfree == 0);
+ assert(z->cur_size == 0);
+ assert(z->page_count == 0);
+ assert(z->count_all_free_pages == 0);
+
+ /* Assert that all queues except the foreign queue are empty. The zone allocator doesn't know how to free up foreign memory. */
+ assert(queue_empty(&z->pages.all_used));
+ assert(queue_empty(&z->pages.intermediate));
+ assert(queue_empty(&z->pages.all_free));
+#endif
+
+ zindex = z->index;
+
+ unlock_zone(z);
+
+ simple_lock(&all_zones_lock);
+
+ assert(!bitmap_test(zone_empty_bitmap, zindex));
+ /* Mark the zone as empty in the bitmap */
+ bitmap_set(zone_empty_bitmap, zindex);
+ num_zones_in_use--;
+ assert(num_zones_in_use > 0);
+
+ simple_unlock(&all_zones_lock);
+}
+
+/* Initialize the metadata for an allocation chunk */
+static inline void
+zcram_metadata_init(vm_offset_t newmem, vm_size_t size, struct zone_page_metadata *chunk_metadata)
+{
+ struct zone_page_metadata *page_metadata;
+
+ /* The first page is the real metadata for this allocation chunk. We mark the others as fake metadata */
+ size -= PAGE_SIZE;
+ newmem += PAGE_SIZE;
+
+ for (; size > 0; newmem += PAGE_SIZE, size -= PAGE_SIZE) {
+ page_metadata = get_zone_page_metadata((struct zone_free_element *)newmem, TRUE);
assert(page_metadata != chunk_metadata);
PAGE_METADATA_SET_ZINDEX(page_metadata, MULTIPAGE_METADATA_MAGIC);
page_metadata_set_realmeta(page_metadata, chunk_metadata);
vm_size_t elem_size;
int index;
+ assert(element_count <= ZONE_CHUNK_MAXELEMENTS);
elem_size = zone->elem_size;
last_element_offset = first_element_offset + ((element_count * elem_size) - elem_size);
for (index = 0; index < element_count; index++) {
assert(first_element_offset <= last_element_offset);
if (
#if DEBUG || DEVELOPMENT
- leak_scan_debug_flag ||
+ leak_scan_debug_flag || __improbable(zone->tags) ||
#endif /* DEBUG || DEVELOPMENT */
random_bool_gen(entropy_buffer, index, MAX_ENTROPY_PER_ZCRAM)) {
element_addr = newmem + first_element_offset;
elem_size = zone->elem_size;
- KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_ZALLOC, ZALLOC_ZCRAM) | DBG_FUNC_START, VM_KERNEL_ADDRPERM(zone), size, 0, 0, 0);
+ KDBG(MACHDBG_CODE(DBG_MACH_ZALLOC, ZALLOC_ZCRAM) | DBG_FUNC_START, zone->index, size);
if (from_zone_map(newmem, size))
from_zm = TRUE;
page_metadata_set_freelist(chunk_metadata, 0);
PAGE_METADATA_SET_ZINDEX(chunk_metadata, zone->index);
chunk_metadata->free_count = 0;
- chunk_metadata->page_count = (size / PAGE_SIZE);
+ assert((size / PAGE_SIZE) <= ZONE_CHUNK_MAXPAGES);
+ chunk_metadata->page_count = (unsigned)(size / PAGE_SIZE);
zcram_metadata_init(newmem, size, chunk_metadata);
+#if VM_MAX_TAG_ZONES
+ if (__improbable(zone->tags)) {
+ assert(from_zm);
+ ztMemoryAdd(zone, newmem, size);
+ }
+#endif /* VM_MAX_TAG_ZONES */
+
lock_zone(zone);
+ assert(zone->zone_valid);
enqueue_tail(&zone->pages.all_used, &(chunk_metadata->pages));
if (!from_zm) {
}
unlock_zone(zone);
- KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_ZALLOC, ZALLOC_ZCRAM) | DBG_FUNC_END, VM_KERNEL_ADDRPERM(zone), 0, 0, 0, 0);
+ KDBG(MACHDBG_CODE(DBG_MACH_ZALLOC, ZALLOC_ZCRAM) | DBG_FUNC_END, zone->index);
}
/*
* Fill a zone with enough memory to contain at least nelem elements.
- * Memory is obtained with kmem_alloc_kobject from the kernel_map.
* Return the number of elements actually put into the zone, which may
* be more than the caller asked for since the memory allocation is
- * rounded up to a full page.
+ * rounded up to the next zone allocation size.
*/
int
zfill(
zone_t zone,
int nelem)
{
- kern_return_t kr;
- vm_size_t size;
+ kern_return_t kr;
vm_offset_t memory;
- int nalloc;
- assert(nelem > 0);
- if (nelem <= 0)
- return 0;
- size = nelem * zone->elem_size;
- size = round_page(size);
- kr = kmem_alloc_kobject(kernel_map, &memory, size, VM_KERN_MEMORY_ZONE);
- if (kr != KERN_SUCCESS)
+ vm_size_t alloc_size = zone->alloc_size;
+ vm_size_t elem_per_alloc = alloc_size / zone->elem_size;
+ vm_size_t nalloc = (nelem + elem_per_alloc - 1) / elem_per_alloc;
+
+ /* Don't mix-and-match zfill with foreign memory */
+ assert(!zone->allows_foreign);
+
+ /* Trigger jetsams via the vm_pageout_garbage_collect thread if we're running out of zone memory */
+ if (is_zone_map_nearing_exhaustion()) {
+ thread_wakeup((event_t) &vm_pageout_garbage_collect);
+ }
+
+ kr = kernel_memory_allocate(zone_map, &memory, nalloc * alloc_size, 0, KMA_KOBJECT, VM_KERN_MEMORY_ZONE);
+ if (kr != KERN_SUCCESS) {
+ printf("%s: kernel_memory_allocate() of %lu bytes failed\n",
+ __func__, (unsigned long)(nalloc * alloc_size));
return 0;
+ }
- zone_change(zone, Z_FOREIGN, TRUE);
- zcram(zone, memory, size);
- nalloc = (int)(size / zone->elem_size);
- assert(nalloc >= nelem);
+ for (vm_size_t i = 0; i < nalloc; i++) {
+ zcram(zone, memory + i * alloc_size, alloc_size);
+ }
- return nalloc;
+ return (int)(nalloc * elem_per_alloc);
}
/*
}
#if DEBUG || DEVELOPMENT
+#if VM_MAX_TAG_ZONES
+ /* enable tags for zones that ask for */
+ if (PE_parse_boot_argn("-zt", temp_buf, sizeof(temp_buf))) {
+ zone_tagging_on = TRUE;
+ }
+#endif /* VM_MAX_TAG_ZONES */
/* disable element location randomization in a page */
if (PE_parse_boot_argn("-zl", temp_buf, sizeof(temp_buf))) {
leak_scan_debug_flag = TRUE;
simple_lock_init(&all_zones_lock, 0);
+ num_zones_in_use = 0;
num_zones = 0;
+ /* Mark all zones as empty */
+ bitmap_full(zone_empty_bitmap, BITMAP_LEN(MAX_ZONES));
+ zone_names_next = zone_names_start = 0;
+
+#if DEBUG || DEVELOPMENT
+ simple_lock_init(&zone_test_lock, 0);
+#endif /* DEBUG || DEVELOPMENT */
+
thread_call_setup(&call_async_alloc, zalloc_async, NULL);
/* initializing global lock group for zones */
lck_mtx_init_ext(&zone_metadata_region_lck, &zone_metadata_region_lck_ext, &zone_locks_grp, &zone_metadata_lock_attr);
}
+/*
+ * We're being very conservative here and picking a value of 95%. We might need to lower this if
+ * we find that we're not catching the problem and are still hitting zone map exhaustion panics.
+ */
+#define ZONE_MAP_JETSAM_LIMIT_DEFAULT 95
+
+/*
+ * Trigger zone-map-exhaustion jetsams if the zone map is X% full, where X=zone_map_jetsam_limit.
+ * Can be set via boot-arg "zone_map_jetsam_limit". Set to 95% by default.
+ */
+unsigned int zone_map_jetsam_limit = ZONE_MAP_JETSAM_LIMIT_DEFAULT;
+
+/*
+ * Returns pid of the task with the largest number of VM map entries.
+ */
+extern pid_t find_largest_process_vm_map_entries(void);
+
+/*
+ * Callout to jetsam. If pid is -1, we wake up the memorystatus thread to do asynchronous kills.
+ * For any other pid we try to kill that process synchronously.
+ */
+boolean_t memorystatus_kill_on_zone_map_exhaustion(pid_t pid);
+
+void get_zone_map_size(uint64_t *current_size, uint64_t *capacity)
+{
+ *current_size = zone_map->size;
+ *capacity = vm_map_max(zone_map) - vm_map_min(zone_map);
+}
+
+void get_largest_zone_info(char *zone_name, size_t zone_name_len, uint64_t *zone_size)
+{
+ zone_t largest_zone = zone_find_largest();
+ strlcpy(zone_name, largest_zone->zone_name, zone_name_len);
+ *zone_size = largest_zone->cur_size;
+}
+
+boolean_t is_zone_map_nearing_exhaustion(void)
+{
+ uint64_t size = zone_map->size;
+ uint64_t capacity = vm_map_max(zone_map) - vm_map_min(zone_map);
+ if (size > ((capacity * zone_map_jetsam_limit) / 100)) {
+ return TRUE;
+ }
+ return FALSE;
+}
+
+extern zone_t vm_map_entry_zone;
+extern zone_t vm_object_zone;
+
+#define VMENTRY_TO_VMOBJECT_COMPARISON_RATIO 98
+
+/*
+ * Tries to kill a single process if it can attribute one to the largest zone. If not, wakes up the memorystatus thread
+ * to walk through the jetsam priority bands and kill processes.
+ */
+static void kill_process_in_largest_zone(void)
+{
+ pid_t pid = -1;
+ zone_t largest_zone = zone_find_largest();
+
+ printf("zone_map_exhaustion: Zone map size %lld, capacity %lld [jetsam limit %d%%]\n", (uint64_t)zone_map->size,
+ (uint64_t)(vm_map_max(zone_map) - vm_map_min(zone_map)), zone_map_jetsam_limit);
+ printf("zone_map_exhaustion: Largest zone %s, size %lu\n", largest_zone->zone_name, (uintptr_t)largest_zone->cur_size);
+
+ /*
+ * We want to make sure we don't call this function from userspace. Or we could end up trying to synchronously kill the process
+ * whose context we're in, causing the system to hang.
+ */
+ assert(current_task() == kernel_task);
+
+ /*
+ * If vm_object_zone is the largest, check to see if the number of elements in vm_map_entry_zone is comparable. If so, consider
+ * vm_map_entry_zone as the largest. This lets us target a specific process to jetsam to quickly recover from the zone map bloat.
+ */
+ if (largest_zone == vm_object_zone) {
+ int vm_object_zone_count = vm_object_zone->count;
+ int vm_map_entry_zone_count = vm_map_entry_zone->count;
+ /* Is the VM map entries zone count >= 98% of the VM objects zone count? */
+ if (vm_map_entry_zone_count >= ((vm_object_zone_count * VMENTRY_TO_VMOBJECT_COMPARISON_RATIO) / 100)) {
+ largest_zone = vm_map_entry_zone;
+ printf("zone_map_exhaustion: Picking VM map entries as the zone to target, size %lu\n", (uintptr_t)largest_zone->cur_size);
+ }
+ }
+
+ /* TODO: Extend this to check for the largest process in other zones as well. */
+ if (largest_zone == vm_map_entry_zone) {
+ pid = find_largest_process_vm_map_entries();
+ } else {
+ printf("zone_map_exhaustion: Nothing to do for the largest zone [%s]. Waking up memorystatus thread.\n", largest_zone->zone_name);
+ }
+ if (!memorystatus_kill_on_zone_map_exhaustion(pid)) {
+ printf("zone_map_exhaustion: Call to memorystatus failed, victim pid: %d\n", pid);
+ }
+}
+
/* Global initialization of Zone Allocator.
* Runs after zone_bootstrap.
*/
vm_offset_t zone_max;
vm_offset_t zone_metadata_space;
unsigned int zone_pages;
+ vm_map_kernel_flags_t vmk_flags;
+
+#if VM_MAX_TAG_ZONES
+ if (zone_tagging_on) ztInit(max_zonemap_size, &zone_locks_grp);
+#endif
+ vmk_flags = VM_MAP_KERNEL_FLAGS_NONE;
+ vmk_flags.vmkf_permanent = TRUE;
retval = kmem_suballoc(kernel_map, &zone_min, max_zonemap_size,
- FALSE, VM_FLAGS_ANYWHERE | VM_FLAGS_PERMANENT | VM_MAKE_TAG(VM_KERN_MEMORY_ZONE),
+ FALSE, VM_FLAGS_ANYWHERE, vmk_flags, VM_KERN_MEMORY_ZONE,
&zone_map);
if (retval != KERN_SUCCESS)
*/
zleak_init(max_zonemap_size);
#endif /* CONFIG_ZLEAKS */
+
+#if VM_MAX_TAG_ZONES
+ if (zone_tagging_on) vm_allocation_zones_init();
+#endif
+
+ int jetsam_limit_temp = 0;
+ if (PE_parse_boot_argn("zone_map_jetsam_limit", &jetsam_limit_temp, sizeof (jetsam_limit_temp)) &&
+ jetsam_limit_temp > 0 && jetsam_limit_temp <= 100)
+ zone_map_jetsam_limit = jetsam_limit_temp;
}
extern volatile SInt32 kfree_nop_count;
#pragma mark -
#pragma mark zalloc_canblock
+extern boolean_t early_boot_complete;
+
/*
* zalloc returns an element from the specified zone.
*/
zalloc_internal(
zone_t zone,
boolean_t canblock,
- boolean_t nopagewait)
+ boolean_t nopagewait,
+ vm_size_t
+#if !VM_MAX_TAG_ZONES
+ __unused
+#endif
+ reqsize,
+ vm_tag_t tag)
{
vm_offset_t addr = 0;
kern_return_t retval;
uintptr_t zbt[MAX_ZTRACE_DEPTH]; /* used in zone leak logging and zone leak detection */
int numsaved = 0;
boolean_t zone_replenish_wakeup = FALSE, zone_alloc_throttle = FALSE;
-#if CONFIG_GZALLOC
- boolean_t did_gzalloc = FALSE;
-#endif
thread_t thr = current_thread();
boolean_t check_poison = FALSE;
boolean_t set_doing_alloc_with_vm_priv = FALSE;
uint32_t zleak_tracedepth = 0; /* log this allocation if nonzero */
#endif /* CONFIG_ZLEAKS */
+#if KASAN
+ /*
+ * KASan uses zalloc() for fakestack, which can be called anywhere. However,
+ * we make sure these calls can never block.
+ */
+ boolean_t irq_safe = FALSE;
+ const char *fakestack_name = "fakestack.";
+ if (strncmp(zone->zone_name, fakestack_name, strlen(fakestack_name)) == 0) {
+ irq_safe = TRUE;
+ }
+#elif MACH_ASSERT
+ /* In every other case, zalloc() from interrupt context is unsafe. */
+ const boolean_t irq_safe = FALSE;
+#endif
+
assert(zone != ZONE_NULL);
+ assert(irq_safe || ml_get_interrupts_enabled() || ml_is_quiescing() || debug_mode_active() || !early_boot_complete);
#if CONFIG_GZALLOC
addr = gzalloc_alloc(zone, canblock);
- did_gzalloc = (addr != 0);
#endif
-
/*
* If zone logging is turned on and this is the zone we're tracking, grab a backtrace.
*/
}
#endif /* CONFIG_ZLEAKS */
+#if VM_MAX_TAG_ZONES
+ if (__improbable(zone->tags)) vm_tag_will_update_zone(tag, zone->tag_zone_index);
+#endif /* VM_MAX_TAG_ZONES */
+
lock_zone(zone);
+ assert(zone->zone_valid);
if (zone->async_prio_refill && zone->zone_replenish_thread) {
- do {
- vm_size_t zfreec = (zone->cur_size - (zone->count * zone->elem_size));
- vm_size_t zrefillwm = zone->prio_refill_watermark * zone->elem_size;
- zone_replenish_wakeup = (zfreec < zrefillwm);
- zone_alloc_throttle = (zfreec < (zrefillwm / 2)) && ((thr->options & TH_OPT_VMPRIV) == 0);
+ vm_size_t zfreec = (zone->cur_size - (zone->count * zone->elem_size));
+ vm_size_t zrefillwm = zone->prio_refill_watermark * zone->elem_size;
+ zone_replenish_wakeup = (zfreec < zrefillwm);
+ zone_alloc_throttle = (((zfreec < (zrefillwm / 2)) && ((thr->options & TH_OPT_VMPRIV) == 0)) || (zfreec == 0));
+ do {
if (zone_replenish_wakeup) {
zone_replenish_wakeups_initiated++;
/* Signal the potentially waiting
* refill thread.
*/
thread_wakeup(&zone->zone_replenish_thread);
+
+ /* We don't want to wait around for zone_replenish_thread to bump up the free count
+ * if we're in zone_gc(). This keeps us from deadlocking with zone_replenish_thread.
+ */
+ if (thr->options & TH_OPT_ZONE_GC)
+ break;
+
unlock_zone(zone);
/* Scheduling latencies etc. may prevent
* the refill thread from keeping up
thread_block(THREAD_CONTINUE_NULL);
}
lock_zone(zone);
+ assert(zone->zone_valid);
}
+
+ zfreec = (zone->cur_size - (zone->count * zone->elem_size));
+ zrefillwm = zone->prio_refill_watermark * zone->elem_size;
+ zone_replenish_wakeup = (zfreec < zrefillwm);
+ zone_alloc_throttle = (((zfreec < (zrefillwm / 2)) && ((thr->options & TH_OPT_VMPRIV) == 0)) || (zfreec == 0));
+
} while (zone_alloc_throttle == TRUE);
}
if (__probable(addr == 0))
- addr = try_alloc_from_zone(zone, &check_poison);
+ addr = try_alloc_from_zone(zone, tag, &check_poison);
+ /* If we're here because of zone_gc(), we didn't wait for zone_replenish_thread to finish.
+ * So we need to ensure that we did successfully grab an element. And we only need to assert
+ * this for zones that have a replenish thread configured (in this case, the Reserved VM map
+ * entries zone).
+ */
+ if (thr->options & TH_OPT_ZONE_GC && zone->async_prio_refill)
+ assert(addr != 0);
while ((addr == 0) && canblock) {
/*
if (zone->noencrypt)
zflags |= KMA_NOENCRYPT;
+ /* Trigger jetsams via the vm_pageout_garbage_collect thread if we're running out of zone memory */
+ if (is_zone_map_nearing_exhaustion()) {
+ thread_wakeup((event_t) &vm_pageout_garbage_collect);
+ }
+
retval = kernel_memory_allocate(zone_map, &space, alloc_size, 0, zflags, VM_KERN_MEMORY_ZONE);
if (retval == KERN_SUCCESS) {
#if CONFIG_ZLEAKS
} else if (retval != KERN_RESOURCE_SHORTAGE) {
retry++;
- if (retry == 2) {
- zone_gc();
- printf("zalloc did gc\n");
- zone_display_zprint();
- }
if (retry == 3) {
panic_include_zprint = TRUE;
#if CONFIG_ZLEAKS
}
}
lock_zone(zone);
+ assert(zone->zone_valid);
if (set_doing_alloc_with_vm_priv == TRUE)
zone->doing_alloc_with_vm_priv = FALSE;
}
clear_thread_rwlock_boost();
- addr = try_alloc_from_zone(zone, &check_poison);
+ addr = try_alloc_from_zone(zone, tag, &check_poison);
if (addr == 0 &&
retval == KERN_RESOURCE_SHORTAGE) {
if (nopagewait == TRUE)
VM_PAGE_WAIT();
lock_zone(zone);
+ assert(zone->zone_valid);
}
}
if (addr == 0)
- addr = try_alloc_from_zone(zone, &check_poison);
+ addr = try_alloc_from_zone(zone, tag, &check_poison);
}
#if CONFIG_ZLEAKS
unlock_zone(zone);
thread_call_enter(&call_async_alloc);
lock_zone(zone);
- addr = try_alloc_from_zone(zone, &check_poison);
+ assert(zone->zone_valid);
+ addr = try_alloc_from_zone(zone, tag, &check_poison);
}
- vm_offset_t inner_size = zone->elem_size;
+#if VM_MAX_TAG_ZONES
+ if (__improbable(zone->tags) && addr) {
+ if (reqsize) reqsize = zone->elem_size - reqsize;
+ vm_tag_update_zone_size(tag, zone->tag_zone_index, zone->elem_size, reqsize);
+ }
+#endif /* VM_MAX_TAG_ZONES */
unlock_zone(zone);
+ vm_offset_t inner_size = zone->elem_size;
+
if (__improbable(DO_LOGGING(zone) && addr)) {
btlog_add_entry(zone->zlog_btlog, (void *)addr, ZOP_ALLOC, (void **)zbt, numsaved);
}
}
TRACE_MACHLEAKS(ZALLOC_CODE, ZALLOC_CODE_2, zone->elem_size, addr);
+
+#if KASAN_ZALLOC
+ /* Fixup the return address to skip the redzone */
+ if (zone->kasan_redzone) {
+ addr = kasan_alloc(addr, zone->elem_size,
+ zone->elem_size - 2 * zone->kasan_redzone, zone->kasan_redzone);
+ }
+#endif
+
return((void *)addr);
}
-
void *
zalloc(zone_t zone)
{
- return (zalloc_internal(zone, TRUE, FALSE));
+ return (zalloc_internal(zone, TRUE, FALSE, 0, VM_KERN_MEMORY_NONE));
}
void *
zalloc_noblock(zone_t zone)
{
- return (zalloc_internal(zone, FALSE, FALSE));
+ return (zalloc_internal(zone, FALSE, FALSE, 0, VM_KERN_MEMORY_NONE));
}
void *
zalloc_nopagewait(zone_t zone)
{
- return (zalloc_internal(zone, TRUE, TRUE));
+ return (zalloc_internal(zone, TRUE, TRUE, 0, VM_KERN_MEMORY_NONE));
+}
+
+void *
+zalloc_canblock_tag(zone_t zone, boolean_t canblock, vm_size_t reqsize, vm_tag_t tag)
+{
+ return (zalloc_internal(zone, canblock, FALSE, reqsize, tag));
}
void *
zalloc_canblock(zone_t zone, boolean_t canblock)
{
- return (zalloc_internal(zone, canblock, FALSE));
+ return (zalloc_internal(zone, canblock, FALSE, 0, VM_KERN_MEMORY_NONE));
}
simple_unlock(&all_zones_lock);
for (i = 0; i < max_zones; i++) {
current_z = &(zone_array[i]);
+
+ if (current_z->no_callout == TRUE) {
+ /* async_pending will never be set */
+ continue;
+ }
+
lock_zone(current_z);
- if (current_z->async_pending == TRUE) {
+ if (current_z->zone_valid && current_z->async_pending == TRUE) {
current_z->async_pending = FALSE;
pending = TRUE;
}
unlock_zone(current_z);
if (pending == TRUE) {
- elt = zalloc_canblock(current_z, TRUE);
+ elt = zalloc_canblock_tag(current_z, TRUE, 0, VM_KERN_MEMORY_OSFMK);
zfree(current_z, elt);
pending = FALSE;
}
zget(
zone_t zone)
{
- return zalloc_internal(zone, FALSE, TRUE);
+ return zalloc_internal(zone, FALSE, TRUE, 0, VM_KERN_MEMORY_NONE);
}
/* Keep this FALSE by default. Large memory machine run orders of magnitude
int numsaved = 0;
boolean_t gzfreed = FALSE;
boolean_t poison = FALSE;
+#if VM_MAX_TAG_ZONES
+ vm_tag_t tag;
+#endif /* VM_MAX_TAG_ZONES */
assert(zone != ZONE_NULL);
+#if KASAN_ZALLOC
+ /*
+ * Resize back to the real allocation size and hand off to the KASan
+ * quarantine. `addr` may then point to a different allocation.
+ */
+ vm_size_t usersz = zone->elem_size - 2 * zone->kasan_redzone;
+ vm_size_t sz = usersz;
+ if (addr && zone->kasan_redzone) {
+ kasan_check_free((vm_address_t)addr, usersz, KASAN_HEAP_ZALLOC);
+ addr = (void *)kasan_dealloc((vm_address_t)addr, &sz);
+ assert(sz == zone->elem_size);
+ }
+ if (addr && zone->kasan_quarantine) {
+ kasan_free(&addr, &sz, KASAN_HEAP_ZALLOC, &zone, usersz, true);
+ if (!addr) {
+ return;
+ }
+ }
+ elem = (vm_offset_t)addr;
+#endif
+
/*
* If zone logging is turned on and this is the zone we're tracking, grab a backtrace.
*/
}
lock_zone(zone);
+ assert(zone->zone_valid);
if (zone_check) {
zone_check_freelist(zone, elem);
}
- if (__probable(!gzfreed))
+ if (__probable(!gzfreed)) {
+#if VM_MAX_TAG_ZONES
+ if (__improbable(zone->tags)) {
+ tag = (ZTAG(zone, elem)[0] >> 1);
+ // set the tag with b0 clear so the block remains inuse
+ ZTAG(zone, elem)[0] = 0xFFFE;
+ }
+#endif /* VM_MAX_TAG_ZONES */
free_to_zone(zone, elem, poison);
+ }
#if MACH_ASSERT
if (zone->count < 0)
}
#endif /* CONFIG_ZLEAKS */
+#if VM_MAX_TAG_ZONES
+ if (__improbable(zone->tags) && __probable(!gzfreed)) {
+ vm_tag_update_zone_size(tag, zone->tag_zone_index, -((int64_t)zone->elem_size), 0);
+ }
+#endif /* VM_MAX_TAG_ZONES */
+
unlock_zone(zone);
}
-
/* Change a zone's flags.
* This routine must be called immediately after zinit.
*/
case Z_NOCALLOUT:
zone->no_callout = value;
break;
+ case Z_TAGS_ENABLED:
+#if VM_MAX_TAG_ZONES
+ {
+ static int tag_zone_index;
+ zone->tags = TRUE;
+ zone->tags_inline = (((page_size + zone->elem_size - 1) / zone->elem_size) <= (sizeof(uint32_t) / sizeof(uint16_t)));
+ zone->tag_zone_index = OSAddAtomic(1, &tag_zone_index);
+ }
+#endif /* VM_MAX_TAG_ZONES */
+ break;
case Z_GZALLOC_EXEMPT:
zone->gzalloc_exempt = value;
#if CONFIG_GZALLOC
break;
case Z_ALIGNMENT_REQUIRED:
zone->alignment_required = value;
+#if KASAN_ZALLOC
+ if (zone->kasan_redzone == KASAN_GUARD_SIZE) {
+ /* Don't disturb alignment with the redzone for zones with
+ * specific alignment requirements. */
+ zone->elem_size -= zone->kasan_redzone * 2;
+ zone->kasan_redzone = 0;
+ }
+#endif
#if CONFIG_GZALLOC
gzalloc_reconfigure(zone);
#endif
break;
+ case Z_KASAN_QUARANTINE:
+ zone->kasan_quarantine = value;
+ break;
default:
panic("Zone_change: Wrong Item Type!");
/* break; */
return(free_count);
}
+/* Drops the elements in the free queue of a zone. Called by zone_gc() on each zone, and when a zone is zdestroy'ed. */
+void
+drop_free_elements(zone_t z)
+{
+ vm_size_t elt_size, size_freed;
+ int total_freed_pages = 0;
+ uint64_t old_all_free_count;
+ struct zone_page_metadata *page_meta;
+ queue_head_t page_meta_head;
+
+ lock_zone(z);
+ if (queue_empty(&z->pages.all_free)) {
+ unlock_zone(z);
+ return;
+ }
+
+ /*
+ * Snatch all of the free elements away from the zone.
+ */
+ elt_size = z->elem_size;
+ old_all_free_count = z->count_all_free_pages;
+ queue_new_head(&z->pages.all_free, &page_meta_head, struct zone_page_metadata *, pages);
+ queue_init(&z->pages.all_free);
+ z->count_all_free_pages = 0;
+ unlock_zone(z);
+
+ /* Iterate through all elements to find out size and count of elements we snatched */
+ size_freed = 0;
+ queue_iterate(&page_meta_head, page_meta, struct zone_page_metadata *, pages) {
+ assert(from_zone_map((vm_address_t)page_meta, sizeof(*page_meta))); /* foreign elements should be in any_free_foreign */
+ size_freed += elt_size * page_meta->free_count;
+ }
+
+ /* Update the zone size and free element count */
+ lock_zone(z);
+ z->cur_size -= size_freed;
+ z->countfree -= size_freed/elt_size;
+ unlock_zone(z);
+
+ while ((page_meta = (struct zone_page_metadata *)dequeue_head(&page_meta_head)) != NULL) {
+ vm_address_t free_page_address;
+ /* Free the pages for metadata and account for them */
+ free_page_address = get_zone_page(page_meta);
+ ZONE_PAGE_COUNT_DECR(z, page_meta->page_count);
+ total_freed_pages += page_meta->page_count;
+ old_all_free_count -= page_meta->page_count;
+#if KASAN_ZALLOC
+ kasan_poison_range(free_page_address, page_meta->page_count * PAGE_SIZE, ASAN_VALID);
+#endif
+#if VM_MAX_TAG_ZONES
+ if (z->tags) ztMemoryRemove(z, free_page_address, (page_meta->page_count * PAGE_SIZE));
+#endif /* VM_MAX_TAG_ZONES */
+ kmem_free(zone_map, free_page_address, (page_meta->page_count * PAGE_SIZE));
+ if (current_thread()->options & TH_OPT_ZONE_GC) {
+ thread_yield_to_preemption();
+ }
+ }
+
+ /* We freed all the pages from the all_free list for this zone */
+ assert(old_all_free_count == 0);
+
+ if (zalloc_debug & ZALLOC_DEBUG_ZONEGC)
+ kprintf("zone_gc() of zone %s freed %lu elements, %d pages\n", z->zone_name, (unsigned long)size_freed/elt_size, total_freed_pages);
+}
+
/* Zone garbage collection
*
* zone_gc will walk through all the free elements in all the
* zones that are marked collectable looking for reclaimable
* pages. zone_gc is called by consider_zone_gc when the system
* begins to run out of memory.
+ *
+ * We should ensure that zone_gc never blocks.
*/
-extern zone_t vm_map_entry_reserved_zone;
-uint64_t zone_gc_bailed = 0;
-
void
-zone_gc(void)
+zone_gc(boolean_t consider_jetsams)
{
unsigned int max_zones;
zone_t z;
unsigned int i;
- zone_t zres = vm_map_entry_reserved_zone;
+
+ if (consider_jetsams) {
+ kill_process_in_largest_zone();
+ /*
+ * If we do end up jetsamming something, we need to do a zone_gc so that
+ * we can reclaim free zone elements and update the zone map size.
+ * Fall through.
+ */
+ }
lck_mtx_lock(&zone_gc_lock);
+ current_thread()->options |= TH_OPT_ZONE_GC;
+
simple_lock(&all_zones_lock);
max_zones = num_zones;
simple_unlock(&all_zones_lock);
for (i = 0; i < max_zones; i++) {
z = &(zone_array[i]);
- vm_size_t elt_size, size_freed;
- int total_freed_pages = 0;
- struct zone_page_metadata *page_meta;
- queue_head_t page_meta_head;
-
assert(z != ZONE_NULL);
- if (!z->collectable)
- continue;
-
- if (queue_empty(&z->pages.all_free)) {
+ if (!z->collectable) {
continue;
}
- /*
- * Since kmem_free() might use VM entries from the reserved VM entries zone, we should bail from zone_gc() if we
- * are below the critical threshold for that zone. Otherwise, there could be a deadlock between the zone_gc
- * thread and the zone_replenish thread for the VM entries zone on the zone_map lock.
- */
- if (zres->zone_replenishing) {
- zone_gc_bailed++;
- break;
- }
-
- lock_zone(z);
- elt_size = z->elem_size;
-
if (queue_empty(&z->pages.all_free)) {
- unlock_zone(z);
continue;
}
-
- /*
- * Snatch all of the free elements away from the zone.
- */
- uint64_t old_all_free_count = z->count_all_free_pages;
- queue_new_head(&z->pages.all_free, &page_meta_head, struct zone_page_metadata *, pages);
- queue_init(&z->pages.all_free);
- z->count_all_free_pages = 0;
- unlock_zone(z);
-
- /* Iterate through all elements to find out size and count of elements we snatched */
- size_freed = 0;
- queue_iterate(&page_meta_head, page_meta, struct zone_page_metadata *, pages) {
- assert(from_zone_map((vm_address_t)page_meta, sizeof(*page_meta))); /* foreign elements should be in any_free_foreign */
- size_freed += elt_size * page_meta->free_count;
- }
-
- /* Update the zone size and free element count */
- lock_zone(z);
- z->cur_size -= size_freed;
- z->countfree -= size_freed/elt_size;
- unlock_zone(z);
-
- while ((page_meta = (struct zone_page_metadata *)dequeue_head(&page_meta_head)) != NULL) {
- vm_address_t free_page_address;
- if (zres->zone_replenishing)
- break;
- /* Free the pages for metadata and account for them */
- free_page_address = get_zone_page(page_meta);
- ZONE_PAGE_COUNT_DECR(z, page_meta->page_count);
- total_freed_pages += page_meta->page_count;
- old_all_free_count -= page_meta->page_count;
- size_freed -= (elt_size * page_meta->free_count);
- kmem_free(zone_map, free_page_address, (page_meta->page_count * PAGE_SIZE));
- thread_yield_to_preemption();
- }
- if (page_meta != NULL) {
- /*
- * We bailed because the VM entry reserved zone is replenishing. Put the remaining
- * metadata objects back on the all_free list and bail.
- */
- queue_entry_t qe;
- enqueue_head(&page_meta_head, &(page_meta->pages));
- zone_gc_bailed++;
-
- lock_zone(z);
- qe_foreach_safe(qe, &page_meta_head) {
- re_queue_tail(&z->pages.all_free, qe);
- }
- z->count_all_free_pages += (int)old_all_free_count;
- z->cur_size += size_freed;
- z->countfree += size_freed/elt_size;
- unlock_zone(z);
- if (zalloc_debug & ZALLOC_DEBUG_ZONEGC)
- kprintf("zone_gc() bailed due to VM entry zone replenishing (zone_gc_bailed: %lld)\n", zone_gc_bailed);
- break;
- }
- /* We freed all the pages from the all_free list for this zone */
- assert(old_all_free_count == 0);
-
- if (zalloc_debug & ZALLOC_DEBUG_ZONEGC)
- kprintf("zone_gc() of zone %s freed %lu elements, %d pages\n", z->zone_name, (unsigned long)size_freed/elt_size, total_freed_pages);
+ drop_free_elements(z);
}
+ current_thread()->options &= ~TH_OPT_ZONE_GC;
+
lck_mtx_unlock(&zone_gc_lock);
}
*/
void
-consider_zone_gc(void)
+consider_zone_gc(boolean_t consider_jetsams)
{
if (kmapoff_kaddr != 0) {
/*
}
if (zone_gc_allowed)
- zone_gc();
+ zone_gc(consider_jetsams);
}
kern_return_t
}
-kern_return_t
-host_zone_info(
- host_priv_t host,
- zone_name_array_t *namesp,
- mach_msg_type_number_t *namesCntp,
- zone_info_array_t *infop,
- mach_msg_type_number_t *infoCntp)
-{
- return (mach_memory_info(host, (mach_zone_name_array_t *)namesp, namesCntp, (mach_zone_info_array_t *)infop, infoCntp, NULL, NULL));
-}
-
kern_return_t
mach_memory_info(
host_priv_t host,
vm_offset_t memory_info_addr;
vm_size_t memory_info_size;
vm_size_t memory_info_vmsize;
- unsigned int num_sites;
+ unsigned int num_info;
- unsigned int max_zones, i;
+ unsigned int max_zones, used_zones, i;
zone_t z;
mach_zone_name_t *zn;
mach_zone_info_t *zi;
zn = &names[0];
zi = &info[0];
+ used_zones = max_zones;
for (i = 0; i < max_zones; i++) {
struct zone zcopy;
z = &(zone_array[i]);
assert(z != ZONE_NULL);
lock_zone(z);
+ if (!z->zone_valid) {
+ unlock_zone(z);
+ used_zones--;
+ continue;
+ }
zcopy = *z;
unlock_zone(z);
/* assuming here the name data is static */
- (void) strncpy(zn->mzn_name, zcopy.zone_name,
+ (void) __nosan_strncpy(zn->mzn_name, zcopy.zone_name,
sizeof zn->mzn_name);
zn->mzn_name[sizeof zn->mzn_name - 1] = '\0';
zi++;
}
- used = max_zones * sizeof *names;
+ used = used_zones * sizeof *names;
if (used != names_size)
bzero((char *) (names_addr + used), names_size - used);
assert(kr == KERN_SUCCESS);
*namesp = (mach_zone_name_t *) copy;
- *namesCntp = max_zones;
+ *namesCntp = used_zones;
- used = max_zones * sizeof *info;
+ used = used_zones * sizeof *info;
if (used != info_size)
bzero((char *) (info_addr + used), info_size - used);
assert(kr == KERN_SUCCESS);
*infop = (mach_zone_info_t *) copy;
- *infoCntp = max_zones;
+ *infoCntp = used_zones;
- num_sites = 0;
+ num_info = 0;
memory_info_addr = 0;
if (memoryInfop && memoryInfoCntp)
{
- num_sites = VM_KERN_MEMORY_COUNT + VM_KERN_COUNTER_COUNT;
- memory_info_size = num_sites * sizeof(*info);
+ num_info = vm_page_diagnose_estimate();
+ memory_info_size = num_info * sizeof(*memory_info);
memory_info_vmsize = round_page(memory_info_size);
kr = kmem_alloc_pageable(ipc_kernel_map,
&memory_info_addr, memory_info_vmsize, VM_KERN_MEMORY_IPC);
return kr;
}
- kr = vm_map_wire(ipc_kernel_map, memory_info_addr, memory_info_addr + memory_info_vmsize,
- VM_PROT_READ|VM_PROT_WRITE|VM_PROT_MEMORY_TAG_MAKE(VM_KERN_MEMORY_IPC), FALSE);
+ kr = vm_map_wire_kernel(ipc_kernel_map, memory_info_addr, memory_info_addr + memory_info_vmsize,
+ VM_PROT_READ|VM_PROT_WRITE, VM_KERN_MEMORY_IPC, FALSE);
assert(kr == KERN_SUCCESS);
memory_info = (mach_memory_info_t *) memory_info_addr;
- vm_page_diagnose(memory_info, num_sites, zones_collectable_bytes);
+ vm_page_diagnose(memory_info, num_info, zones_collectable_bytes);
kr = vm_map_unwire(ipc_kernel_map, memory_info_addr, memory_info_addr + memory_info_vmsize, FALSE);
assert(kr == KERN_SUCCESS);
assert(kr == KERN_SUCCESS);
*memoryInfop = (mach_memory_info_t *) copy;
- *memoryInfoCntp = num_sites;
+ *memoryInfoCntp = num_info;
}
return KERN_SUCCESS;
}
+uint64_t
+get_zones_collectable_bytes(void)
+{
+ zone_t z;
+ unsigned int i, max_zones;
+ uint64_t zones_collectable_bytes = 0;
+
+ simple_lock(&all_zones_lock);
+ max_zones = (unsigned int)(num_zones);
+ simple_unlock(&all_zones_lock);
+
+ for (i = 0; i < max_zones; i++) {
+ z = &(zone_array[i]);
+ assert(z != ZONE_NULL);
+
+ lock_zone(z);
+ zones_collectable_bytes += ((uint64_t)z->count_all_free_pages * PAGE_SIZE);
+ unlock_zone(z);
+ }
+
+ return zones_collectable_bytes;
+}
+
+#if DEBUG || DEVELOPMENT
+
+kern_return_t
+mach_memory_info_check(void)
+{
+ mach_memory_info_t * memory_info;
+ mach_memory_info_t * info;
+ zone_t zone;
+ unsigned int idx, num_info, max_zones;
+ vm_offset_t memory_info_addr;
+ kern_return_t kr;
+ size_t memory_info_size, memory_info_vmsize;
+ uint64_t top_wired, zonestotal, total;
+
+ num_info = vm_page_diagnose_estimate();
+ memory_info_size = num_info * sizeof(*memory_info);
+ memory_info_vmsize = round_page(memory_info_size);
+ kr = kmem_alloc(kernel_map, &memory_info_addr, memory_info_vmsize, VM_KERN_MEMORY_DIAG);
+ assert (kr == KERN_SUCCESS);
+
+ memory_info = (mach_memory_info_t *) memory_info_addr;
+ vm_page_diagnose(memory_info, num_info, 0);
+
+ simple_lock(&all_zones_lock);
+ max_zones = num_zones;
+ simple_unlock(&all_zones_lock);
+
+ top_wired = total = zonestotal = 0;
+ for (idx = 0; idx < max_zones; idx++)
+ {
+ zone = &(zone_array[idx]);
+ assert(zone != ZONE_NULL);
+ lock_zone(zone);
+ zonestotal += ptoa_64(zone->page_count);
+ unlock_zone(zone);
+ }
+ for (idx = 0; idx < num_info; idx++)
+ {
+ info = &memory_info[idx];
+ if (!info->size) continue;
+ if (VM_KERN_COUNT_WIRED == info->site) top_wired = info->size;
+ if (VM_KERN_SITE_HIDE & info->flags) continue;
+ if (!(VM_KERN_SITE_WIRED & info->flags)) continue;
+ total += info->size;
+ }
+ total += zonestotal;
+
+ printf("vm_page_diagnose_check %qd of %qd, zones %qd, short 0x%qx\n", total, top_wired, zonestotal, top_wired - total);
+
+ kmem_free(kernel_map, memory_info_addr, memory_info_vmsize);
+
+ return (kr);
+}
+
+#endif /* DEBUG || DEVELOPMENT */
+
kern_return_t
mach_zone_force_gc(
host_t host)
{
-
if (host == HOST_NULL)
return KERN_INVALID_HOST;
- consider_zone_gc();
-
+#if DEBUG || DEVELOPMENT
+ consider_zone_gc(FALSE);
+#endif /* DEBUG || DEVELOPMENT */
return (KERN_SUCCESS);
}
extern long long alloc_ptepages_count;
#endif
-void zone_display_zprint()
-{
- unsigned int i;
- zone_t the_zone;
-
- for (i = 0; i < num_zones; i++) {
- the_zone = &(zone_array[i]);
- if(the_zone->cur_size > (1024*1024)) {
- printf("%.20s:\t%lu\n",the_zone->zone_name,(uintptr_t)the_zone->cur_size);
- }
- }
- printf("Kernel Stacks:\t%lu\n",(uintptr_t)(kernel_stack_size * stack_total));
-
-#if defined(__i386__) || defined (__x86_64__)
- printf("PageTables:\t%lu\n",(uintptr_t)(PAGE_SIZE * inuse_ptepages_count));
-#endif
-
- printf("Kalloc.Large:\t%lu\n",(uintptr_t)kalloc_large_total);
-}
-
zone_t
zone_find_largest(void)
{
uint32_t btidx, btcount, nobtcount, btfound;
uint32_t elemSize;
uint64_t maxElems;
- kern_return_t kr;
+ unsigned int max_zones;
+ kern_return_t kr;
- for (idx = 0; idx < num_zones; idx++)
+ simple_lock(&all_zones_lock);
+ max_zones = num_zones;
+ simple_unlock(&all_zones_lock);
+
+ for (idx = 0; idx < max_zones; idx++)
{
if (!strncmp(zoneName, zone_array[idx].zone_name, nameLen)) break;
}
- if (idx >= num_zones) return (KERN_INVALID_NAME);
+ if (idx >= max_zones) return (KERN_INVALID_NAME);
zone = &zone_array[idx];
elemSize = (uint32_t) zone->elem_size;
return (KERN_SUCCESS);
}
-void
-kern_wired_diagnose(void)
+boolean_t
+kdp_is_in_zone(void *addr, const char *zone_name)
{
- unsigned int count = VM_KERN_MEMORY_COUNT + VM_KERN_COUNTER_COUNT;
- mach_memory_info_t info[count];
- unsigned int idx;
- uint64_t total_zone, total_wired, top_wired, osfmk_wired;
+ zone_t z;
+ return (zone_element_size(addr, &z) && !strcmp(z->zone_name, zone_name));
+}
- if (KERN_SUCCESS != vm_page_diagnose(info, count, 0)) return;
+boolean_t
+run_zone_test(void)
+{
+ int i = 0, max_iter = 5;
+ void * test_ptr;
+ zone_t test_zone;
- total_zone = total_wired = top_wired = osfmk_wired = 0;
- for (idx = 0; idx < num_zones; idx++)
- {
- total_zone += ptoa_64(zone_array[idx].page_count);
- }
- total_wired = total_zone;
+ simple_lock(&zone_test_lock);
+ if (!zone_test_running) {
+ zone_test_running = TRUE;
+ } else {
+ simple_unlock(&zone_test_lock);
+ printf("run_zone_test: Test already running.\n");
+ return FALSE;
+ }
+ simple_unlock(&zone_test_lock);
- for (idx = 0; idx < count; idx++)
- {
- if (VM_KERN_COUNT_WIRED == info[idx].site) top_wired = info[idx].size;
- if (VM_KERN_MEMORY_OSFMK == info[idx].site) osfmk_wired = info[idx].size;
- if (VM_KERN_SITE_HIDE & info[idx].flags) continue;
- if (!(VM_KERN_SITE_WIRED & info[idx].flags)) continue;
- total_wired += info[idx].size;
- }
+ printf("run_zone_test: Testing zinit(), zalloc(), zfree() and zdestroy() on zone \"test_zone_sysctl\"\n");
- printf("top 0x%qx, total 0x%qx, zone 0x%qx, osfmk 0x%qx\n",
- top_wired, total_wired, total_zone, osfmk_wired);
-}
+ /* zinit() and zdestroy() a zone with the same name a bunch of times, verify that we get back the same zone each time */
+ do {
+ test_zone = zinit(sizeof(uint64_t), 100 * sizeof(uint64_t), sizeof(uint64_t), "test_zone_sysctl");
+ if (test_zone == NULL) {
+ printf("run_zone_test: zinit() failed\n");
+ return FALSE;
+ }
-boolean_t
-kdp_is_in_zone(void *addr, const char *zone_name)
-{
- zone_t z;
- return (zone_element_size(addr, &z) && !strcmp(z->zone_name, zone_name));
+#if KASAN_ZALLOC
+ if (test_zone_ptr == NULL && zone_free_count(test_zone) != 0) {
+#else
+ if (zone_free_count(test_zone) != 0) {
+#endif
+ printf("run_zone_test: free count is not zero\n");
+ return FALSE;
+ }
+
+ if (test_zone_ptr == NULL) {
+ /* Stash the zone pointer returned on the fist zinit */
+ printf("run_zone_test: zone created for the first time\n");
+ test_zone_ptr = test_zone;
+ } else if (test_zone != test_zone_ptr) {
+ printf("run_zone_test: old zone pointer and new zone pointer don't match\n");
+ return FALSE;
+ }
+
+ test_ptr = zalloc(test_zone);
+ if (test_ptr == NULL) {
+ printf("run_zone_test: zalloc() failed\n");
+ return FALSE;
+ }
+ zfree(test_zone, test_ptr);
+
+ zdestroy(test_zone);
+ i++;
+
+ printf("run_zone_test: Iteration %d successful\n", i);
+ } while (i < max_iter);
+
+ printf("run_zone_test: Test passed\n");
+
+ simple_lock(&zone_test_lock);
+ zone_test_running = FALSE;
+ simple_unlock(&zone_test_lock);
+
+ return TRUE;
}
#endif /* DEBUG || DEVELOPMENT */