/* * Copyright (c) 2011-2013 Apple Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ #include #include #include #include #include #include #include "assym.s" #if __ARM_KERNEL_PROTECT__ #include #endif /* * INIT_SAVED_STATE_FLAVORS * * Initializes the saved state flavors of a new saved state structure * arg0 - saved state pointer * arg1 - 32-bit scratch reg * arg2 - 32-bit scratch reg */ .macro INIT_SAVED_STATE_FLAVORS mov $1, ARM_SAVED_STATE64 // Set saved state to 64-bit flavor mov $2, ARM_SAVED_STATE64_COUNT stp $1, $2, [$0, SS_FLAVOR] mov $1, ARM_NEON_SAVED_STATE64 // Set neon state to 64-bit flavor str $1, [$0, NS_FLAVOR] mov $1, ARM_NEON_SAVED_STATE64_COUNT str $1, [$0, NS_COUNT] .endmacro /* * SPILL_REGISTERS * * Spills the current set of registers (excluding x0 and x1) to the specified * save area. * x0 - Address of the save area */ .macro SPILL_REGISTERS stp x2, x3, [x0, SS64_X2] // Save remaining GPRs stp x4, x5, [x0, SS64_X4] stp x6, x7, [x0, SS64_X6] stp x8, x9, [x0, SS64_X8] stp x10, x11, [x0, SS64_X10] stp x12, x13, [x0, SS64_X12] stp x14, x15, [x0, SS64_X14] stp x16, x17, [x0, SS64_X16] stp x18, x19, [x0, SS64_X18] stp x20, x21, [x0, SS64_X20] stp x22, x23, [x0, SS64_X22] stp x24, x25, [x0, SS64_X24] stp x26, x27, [x0, SS64_X26] str x28, [x0, SS64_X28] /* Save arm_neon_saved_state64 */ stp q0, q1, [x0, NS64_Q0] stp q2, q3, [x0, NS64_Q2] stp q4, q5, [x0, NS64_Q4] stp q6, q7, [x0, NS64_Q6] stp q8, q9, [x0, NS64_Q8] stp q10, q11, [x0, NS64_Q10] stp q12, q13, [x0, NS64_Q12] stp q14, q15, [x0, NS64_Q14] stp q16, q17, [x0, NS64_Q16] stp q18, q19, [x0, NS64_Q18] stp q20, q21, [x0, NS64_Q20] stp q22, q23, [x0, NS64_Q22] stp q24, q25, [x0, NS64_Q24] stp q26, q27, [x0, NS64_Q26] stp q28, q29, [x0, NS64_Q28] stp q30, q31, [x0, NS64_Q30] mrs lr, ELR_EL1 // Get exception link register mrs x23, SPSR_EL1 // Load CPSR into var reg x23 mrs x24, FPSR mrs x25, FPCR str lr, [x0, SS64_PC] // Save ELR to PCB str w23, [x0, SS64_CPSR] // Save CPSR to PCB str w24, [x0, NS64_FPSR] str w25, [x0, NS64_FPCR] mrs x20, FAR_EL1 mrs x21, ESR_EL1 str x20, [x0, SS64_FAR] str w21, [x0, SS64_ESR] .endmacro #define CBF_DISABLE 0 #define CBF_ENABLE 1 .macro COMPARE_BRANCH_FUSION #if defined(APPLE_ARM64_ARCH_FAMILY) mrs $1, ARM64_REG_HID1 .if $0 == CBF_DISABLE orr $1, $1, ARM64_REG_HID1_disCmpBrFusion .else mov $2, ARM64_REG_HID1_disCmpBrFusion bic $1, $1, $2 .endif msr ARM64_REG_HID1, $1 .if $0 == CBF_DISABLE isb sy .endif #endif .endmacro /* * MAP_KERNEL * * Restores the kernel EL1 mappings, if necessary. * * This may mutate x18. */ .macro MAP_KERNEL #if __ARM_KERNEL_PROTECT__ /* Switch to the kernel ASID (low bit set) for the task. */ mrs x18, TTBR0_EL1 orr x18, x18, #(1 << TTBR_ASID_SHIFT) msr TTBR0_EL1, x18 /* * We eschew some barriers on Apple CPUs, as relative ordering of writes * to the TTBRs and writes to the TCR should be ensured by the * microarchitecture. */ #if !defined(APPLE_ARM64_ARCH_FAMILY) isb sy #endif /* * Update the TCR to map the kernel now that we are using the kernel * ASID. */ MOV64 x18, TCR_EL1_BOOT msr TCR_EL1, x18 isb sy #endif /* __ARM_KERNEL_PROTECT__ */ .endmacro /* * BRANCH_TO_KVA_VECTOR * * Branches to the requested long exception vector in the kernelcache. * arg0 - The label to branch to * arg1 - The index of the label in exc_vectors_tables * * This may mutate x18. */ .macro BRANCH_TO_KVA_VECTOR #if __ARM_KERNEL_PROTECT__ /* * Find the kernelcache table for the exception vectors by accessing * the per-CPU data. */ mrs x18, TPIDR_EL1 ldr x18, [x18, ACT_CPUDATAP] ldr x18, [x18, CPU_EXC_VECTORS] /* * Get the handler for this exception and jump to it. */ ldr x18, [x18, #($1 << 3)] br x18 #else b $0 #endif /* __ARM_KERNEL_PROTECT__ */ .endmacro #if __ARM_KERNEL_PROTECT__ .text .align 3 .globl EXT(exc_vectors_table) LEXT(exc_vectors_table) /* Table of exception handlers. */ .quad Lel1_sp0_synchronous_vector_long .quad Lel1_sp0_irq_vector_long .quad Lel1_sp0_fiq_vector_long .quad Lel1_sp0_serror_vector_long .quad Lel1_sp1_synchronous_vector_long .quad Lel1_sp1_irq_vector_long .quad Lel1_sp1_fiq_vector_long .quad Lel1_sp1_serror_vector_long .quad Lel0_synchronous_vector_64_long .quad Lel0_irq_vector_64_long .quad Lel0_fiq_vector_64_long .quad Lel0_serror_vector_64_long #endif /* __ARM_KERNEL_PROTECT__ */ .text #if __ARM_KERNEL_PROTECT__ /* * We need this to be on a page boundary so that we may avoiding mapping * other text along with it. As this must be on the VM page boundary * (due to how the coredumping code currently works), this will be a * 16KB page boundary. */ .align 14 #else .align 12 #endif /* __ARM_KERNEL_PROTECT__ */ .globl EXT(ExceptionVectorsBase) LEXT(ExceptionVectorsBase) Lel1_sp0_synchronous_vector: BRANCH_TO_KVA_VECTOR Lel1_sp0_synchronous_vector_long, 0 .text .align 7 Lel1_sp0_irq_vector: BRANCH_TO_KVA_VECTOR Lel1_sp0_irq_vector_long, 1 .text .align 7 Lel1_sp0_fiq_vector: BRANCH_TO_KVA_VECTOR Lel1_sp0_fiq_vector_long, 2 .text .align 7 Lel1_sp0_serror_vector: BRANCH_TO_KVA_VECTOR Lel1_sp0_serror_vector_long, 3 .text .align 7 Lel1_sp1_synchronous_vector: BRANCH_TO_KVA_VECTOR Lel1_sp1_synchronous_vector_long, 4 .text .align 7 Lel1_sp1_irq_vector: BRANCH_TO_KVA_VECTOR Lel1_sp1_irq_vector_long, 5 .text .align 7 Lel1_sp1_fiq_vector: BRANCH_TO_KVA_VECTOR Lel1_sp1_fiq_vector_long, 6 .text .align 7 Lel1_sp1_serror_vector: BRANCH_TO_KVA_VECTOR Lel1_sp1_serror_vector, 7 .text .align 7 Lel0_synchronous_vector_64: MAP_KERNEL BRANCH_TO_KVA_VECTOR Lel0_synchronous_vector_64_long, 8 .text .align 7 Lel0_irq_vector_64: MAP_KERNEL BRANCH_TO_KVA_VECTOR Lel0_irq_vector_64_long, 9 .text .align 7 Lel0_fiq_vector_64: MAP_KERNEL BRANCH_TO_KVA_VECTOR Lel0_fiq_vector_64_long, 10 .text .align 7 Lel0_serror_vector_64: MAP_KERNEL BRANCH_TO_KVA_VECTOR Lel0_serror_vector_64_long, 11 /* Fill out the rest of the page */ .align 12 /********************************* * END OF EXCEPTION VECTORS PAGE * *********************************/ .macro EL1_SP0_VECTOR msr SPSel, #0 // Switch to SP0 sub sp, sp, ARM_CONTEXT_SIZE // Create exception frame stp x0, x1, [sp, SS64_X0] // Save x0, x1 to exception frame add x0, sp, ARM_CONTEXT_SIZE // Calculate the original stack pointer str x0, [sp, SS64_SP] // Save stack pointer to exception frame stp fp, lr, [sp, SS64_FP] // Save fp and lr to exception frame INIT_SAVED_STATE_FLAVORS sp, w0, w1 mov x0, sp // Copy saved state pointer to x0 .endmacro Lel1_sp0_synchronous_vector_long: sub sp, sp, ARM_CONTEXT_SIZE // Make space on the exception stack stp x0, x1, [sp, SS64_X0] // Save x0, x1 to the stack mrs x1, ESR_EL1 // Get the exception syndrome /* If the stack pointer is corrupt, it will manifest either as a data abort * (syndrome 0x25) or a misaligned pointer (syndrome 0x26). We can check * these quickly by testing bit 5 of the exception class. */ tbz x1, #(5 + ESR_EC_SHIFT), Lkernel_stack_valid mrs x0, SP_EL0 // Get SP_EL0 stp fp, lr, [sp, SS64_FP] // Save fp, lr to the stack str x0, [sp, SS64_SP] // Save sp to the stack bl check_kernel_stack ldp fp, lr, [sp, SS64_FP] // Restore fp, lr Lkernel_stack_valid: ldp x0, x1, [sp, SS64_X0] // Restore x0, x1 add sp, sp, ARM_CONTEXT_SIZE // Restore SP1 EL1_SP0_VECTOR adrp x1, fleh_synchronous@page // Load address for fleh add x1, x1, fleh_synchronous@pageoff b fleh_dispatch64 Lel1_sp0_irq_vector_long: EL1_SP0_VECTOR mrs x1, TPIDR_EL1 ldr x1, [x1, ACT_CPUDATAP] ldr x1, [x1, CPU_ISTACKPTR] mov sp, x1 adrp x1, fleh_irq@page // Load address for fleh add x1, x1, fleh_irq@pageoff b fleh_dispatch64 Lel1_sp0_fiq_vector_long: // ARM64_TODO write optimized decrementer EL1_SP0_VECTOR mrs x1, TPIDR_EL1 ldr x1, [x1, ACT_CPUDATAP] ldr x1, [x1, CPU_ISTACKPTR] mov sp, x1 adrp x1, fleh_fiq@page // Load address for fleh add x1, x1, fleh_fiq@pageoff b fleh_dispatch64 Lel1_sp0_serror_vector_long: EL1_SP0_VECTOR adrp x1, fleh_serror@page // Load address for fleh add x1, x1, fleh_serror@pageoff b fleh_dispatch64 .macro EL1_SP1_VECTOR sub sp, sp, ARM_CONTEXT_SIZE // Create exception frame stp x0, x1, [sp, SS64_X0] // Save x0, x1 to exception frame add x0, sp, ARM_CONTEXT_SIZE // Calculate the original stack pointer str x0, [sp, SS64_SP] // Save stack pointer to exception frame INIT_SAVED_STATE_FLAVORS sp, w0, w1 stp fp, lr, [sp, SS64_FP] // Save fp and lr to exception frame mov x0, sp // Copy saved state pointer to x0 .endmacro Lel1_sp1_synchronous_vector_long: b check_exception_stack Lel1_sp1_synchronous_valid_stack: #if defined(KERNEL_INTEGRITY_KTRR) b check_ktrr_sctlr_trap Lel1_sp1_synchronous_vector_continue: #endif EL1_SP1_VECTOR adrp x1, fleh_synchronous_sp1@page add x1, x1, fleh_synchronous_sp1@pageoff b fleh_dispatch64 Lel1_sp1_irq_vector_long: EL1_SP1_VECTOR adrp x1, fleh_irq_sp1@page add x1, x1, fleh_irq_sp1@pageoff b fleh_dispatch64 Lel1_sp1_fiq_vector_long: EL1_SP1_VECTOR adrp x1, fleh_fiq_sp1@page add x1, x1, fleh_fiq_sp1@pageoff b fleh_dispatch64 Lel1_sp1_serror_vector_long: EL1_SP1_VECTOR adrp x1, fleh_serror_sp1@page add x1, x1, fleh_serror_sp1@pageoff b fleh_dispatch64 .macro EL0_64_VECTOR mov x18, #0 // Zero x18 to avoid leaking data to user SS stp x0, x1, [sp, #-16]! // Save x0 and x1 to the exception stack mrs x0, TPIDR_EL1 // Load the thread register mrs x1, SP_EL0 // Load the user stack pointer add x0, x0, ACT_CONTEXT // Calculate where we store the user context pointer ldr x0, [x0] // Load the user context pointer str x1, [x0, SS64_SP] // Store the user stack pointer in the user PCB msr SP_EL0, x0 // Copy the user PCB pointer to SP0 ldp x0, x1, [sp], #16 // Restore x0 and x1 from the exception stack msr SPSel, #0 // Switch to SP0 stp x0, x1, [sp, SS64_X0] // Save x0, x1 to the user PCB stp fp, lr, [sp, SS64_FP] // Save fp and lr to the user PCB mov fp, #0 // Clear the fp and lr for the mov lr, #0 // debugger stack frame mov x0, sp // Copy the user PCB pointer to x0 .endmacro Lel0_synchronous_vector_64_long: EL0_64_VECTOR mrs x1, TPIDR_EL1 // Load the thread register ldr x1, [x1, TH_KSTACKPTR] // Load the top of the kernel stack to x1 mov sp, x1 // Set the stack pointer to the kernel stack adrp x1, fleh_synchronous@page // Load address for fleh add x1, x1, fleh_synchronous@pageoff b fleh_dispatch64 Lel0_irq_vector_64_long: EL0_64_VECTOR mrs x1, TPIDR_EL1 ldr x1, [x1, ACT_CPUDATAP] ldr x1, [x1, CPU_ISTACKPTR] mov sp, x1 // Set the stack pointer to the kernel stack adrp x1, fleh_irq@page // load address for fleh add x1, x1, fleh_irq@pageoff b fleh_dispatch64 Lel0_fiq_vector_64_long: EL0_64_VECTOR mrs x1, TPIDR_EL1 ldr x1, [x1, ACT_CPUDATAP] ldr x1, [x1, CPU_ISTACKPTR] mov sp, x1 // Set the stack pointer to the kernel stack adrp x1, fleh_fiq@page // load address for fleh add x1, x1, fleh_fiq@pageoff b fleh_dispatch64 Lel0_serror_vector_64_long: EL0_64_VECTOR mrs x1, TPIDR_EL1 // Load the thread register ldr x1, [x1, TH_KSTACKPTR] // Load the top of the kernel stack to x1 mov sp, x1 // Set the stack pointer to the kernel stack adrp x1, fleh_serror@page // load address for fleh add x1, x1, fleh_serror@pageoff b fleh_dispatch64 /* * check_exception_stack * * Verifies that stack pointer at SP1 is within exception stack * If not, will simply hang as we have no more stack to fall back on. */ .text .align 2 check_exception_stack: mrs x18, TPIDR_EL1 // Get thread pointer cbz x18, Lvalid_exception_stack // Thread context may not be set early in boot ldr x18, [x18, ACT_CPUDATAP] cbz x18, . // If thread context is set, cpu data should be too ldr x18, [x18, CPU_EXCEPSTACK_TOP] cmp sp, x18 b.gt . // Hang if above exception stack top sub x18, x18, EXCEPSTACK_SIZE_NUM // Find bottom of exception stack cmp sp, x18 b.lt . // Hang if below exception stack bottom Lvalid_exception_stack: mov x18, #0 b Lel1_sp1_synchronous_valid_stack /* * check_kernel_stack * * Verifies that the kernel stack is aligned and mapped within an expected * stack address range. Note: happens before saving registers (in case we can't * save to kernel stack). * * Expects: * {x0, x1, sp} - saved * x0 - SP_EL0 * x1 - Exception syndrome * sp - Saved state */ .text .align 2 check_kernel_stack: stp x2, x3, [sp, SS64_X2] // Save {x2-x3} and x1, x1, #ESR_EC_MASK // Mask the exception class mov x2, #(ESR_EC_SP_ALIGN << ESR_EC_SHIFT) cmp x1, x2 // If we have a stack alignment exception b.eq Lcorrupt_stack // ...the stack is definitely corrupted mov x2, #(ESR_EC_DABORT_EL1 << ESR_EC_SHIFT) cmp x1, x2 // If we have a data abort, we need to b.ne Lvalid_stack // ...validate the stack pointer mrs x1, TPIDR_EL1 // Get thread pointer Ltest_kstack: ldr x2, [x1, TH_KSTACKPTR] // Get top of kernel stack sub x3, x2, KERNEL_STACK_SIZE // Find bottom of kernel stack cmp x0, x2 // if (SP_EL0 >= kstack top) b.ge Ltest_istack // jump to istack test cmp x0, x3 // if (SP_EL0 > kstack bottom) b.gt Lvalid_stack // stack pointer valid Ltest_istack: ldr x1, [x1, ACT_CPUDATAP] // Load the cpu data ptr ldr x2, [x1, CPU_INTSTACK_TOP] // Get top of istack sub x3, x2, INTSTACK_SIZE_NUM // Find bottom of istack cmp x0, x2 // if (SP_EL0 >= istack top) b.ge Lcorrupt_stack // corrupt stack pointer cmp x0, x3 // if (SP_EL0 > istack bottom) b.gt Lvalid_stack // stack pointer valid Lcorrupt_stack: INIT_SAVED_STATE_FLAVORS sp, w0, w1 mov x0, sp // Copy exception frame pointer to x0 adrp x1, fleh_invalid_stack@page // Load address for fleh add x1, x1, fleh_invalid_stack@pageoff // fleh_dispatch64 will save register state before we get there ldp x2, x3, [sp, SS64_X2] // Restore {x2-x3} b fleh_dispatch64 Lvalid_stack: ldp x2, x3, [sp, SS64_X2] // Restore {x2-x3} ret #if defined(KERNEL_INTEGRITY_KTRR) .text .align 2 check_ktrr_sctlr_trap: /* We may abort on an instruction fetch on reset when enabling the MMU by * writing SCTLR_EL1 because the page containing the privileged instruction is * not executable at EL1 (due to KTRR). The abort happens only on SP1 which * would otherwise panic unconditionally. Check for the condition and return * safe execution to the caller on behalf of the faulting function. * * Expected register state: * x22 - Kernel virtual base * x23 - Kernel physical base */ sub sp, sp, ARM_CONTEXT_SIZE // Make some space on the stack stp x0, x1, [sp, SS64_X0] // Stash x0, x1 mrs x0, ESR_EL1 // Check ESR for instr. fetch abort and x0, x0, #0xffffffffffffffc0 // Mask off ESR.ISS.IFSC movz w1, #0x8600, lsl #16 movk w1, #0x0000 cmp x0, x1 mrs x0, ELR_EL1 // Check for expected abort address adrp x1, _pinst_set_sctlr_trap_addr@page add x1, x1, _pinst_set_sctlr_trap_addr@pageoff sub x1, x1, x22 // Convert to physical address add x1, x1, x23 ccmp x0, x1, #0, eq ldp x0, x1, [sp, SS64_X0] // Restore x0, x1 add sp, sp, ARM_CONTEXT_SIZE // Clean up stack b.ne Lel1_sp1_synchronous_vector_continue msr ELR_EL1, lr // Return to caller eret #endif /* defined(KERNEL_INTEGRITY_KTRR)*/ /* 64-bit first level exception handler dispatcher. * Completes register context saving and branches to FLEH. * Expects: * {x0, x1, fp, lr, sp} - saved * x0 - arm_context_t * x1 - address of FLEH * fp - previous stack frame if EL1 * lr - unused * sp - kernel stack */ .text .align 2 fleh_dispatch64: /* Save arm_saved_state64 */ SPILL_REGISTERS /* If exception is from userspace, zero unused registers */ and x23, x23, #(PSR64_MODE_EL_MASK) cmp x23, #(PSR64_MODE_EL0) bne 1f mov x2, #0 mov x3, #0 mov x4, #0 mov x5, #0 mov x6, #0 mov x7, #0 mov x8, #0 mov x9, #0 mov x10, #0 mov x11, #0 mov x12, #0 mov x13, #0 mov x14, #0 mov x15, #0 mov x16, #0 mov x17, #0 mov x18, #0 mov x19, #0 mov x20, #0 /* x21, x22 cleared in common case below */ mov x23, #0 mov x24, #0 mov x25, #0 mov x26, #0 mov x27, #0 mov x28, #0 /* fp/lr already cleared by EL0_64_VECTOR */ 1: mov x21, x0 // Copy arm_context_t pointer to x21 mov x22, x1 // Copy handler routine to x22 #if !CONFIG_SKIP_PRECISE_USER_KERNEL_TIME tst x23, PSR64_MODE_EL_MASK // If any EL MODE bits are set, we're coming from b.ne 1f // kernel mode, so skip precise time update PUSH_FRAME bl EXT(timer_state_event_user_to_kernel) POP_FRAME mov x0, x21 // Reload arm_context_t pointer 1: #endif /* !CONFIG_SKIP_PRECISE_USER_KERNEL_TIME */ /* Dispatch to FLEH */ br x22 .text .align 2 fleh_synchronous: mrs x1, ESR_EL1 // Load exception syndrome mrs x2, FAR_EL1 // Load fault address /* At this point, the LR contains the value of ELR_EL1. In the case of an * instruction prefetch abort, this will be the faulting pc, which we know * to be invalid. This will prevent us from backtracing through the * exception if we put it in our stack frame, so we load the LR from the * exception saved state instead. */ and w3, w1, #(ESR_EC_MASK) lsr w3, w3, #(ESR_EC_SHIFT) mov w4, #(ESR_EC_IABORT_EL1) cmp w3, w4 b.eq Lfleh_sync_load_lr Lvalid_link_register: PUSH_FRAME bl EXT(sleh_synchronous) POP_FRAME b exception_return_dispatch Lfleh_sync_load_lr: ldr lr, [x0, SS64_LR] b Lvalid_link_register /* Shared prologue code for fleh_irq and fleh_fiq. * Does any interrupt booking we may want to do * before invoking the handler proper. * Expects: * x0 - arm_context_t * x23 - CPSR * fp - Undefined live value (we may push a frame) * lr - Undefined live value (we may push a frame) * sp - Interrupt stack for the current CPU */ .macro BEGIN_INTERRUPT_HANDLER mrs x22, TPIDR_EL1 ldr x23, [x22, ACT_CPUDATAP] // Get current cpu /* Update IRQ count */ ldr w1, [x23, CPU_STAT_IRQ] add w1, w1, #1 // Increment count str w1, [x23, CPU_STAT_IRQ] // Update IRQ count ldr w1, [x23, CPU_STAT_IRQ_WAKE] add w1, w1, #1 // Increment count str w1, [x23, CPU_STAT_IRQ_WAKE] // Update post-wake IRQ count /* Increment preempt count */ ldr w1, [x22, ACT_PREEMPT_CNT] add w1, w1, #1 str w1, [x22, ACT_PREEMPT_CNT] /* Store context in int state */ str x0, [x23, CPU_INT_STATE] // Saved context in cpu_int_state .endmacro /* Shared epilogue code for fleh_irq and fleh_fiq. * Cleans up after the prologue, and may do a bit more * bookkeeping (kdebug related). * Expects: * x22 - Live TPIDR_EL1 value (thread address) * x23 - Address of the current CPU data structure * w24 - 0 if kdebug is disbled, nonzero otherwise * fp - Undefined live value (we may push a frame) * lr - Undefined live value (we may push a frame) * sp - Interrupt stack for the current CPU */ .macro END_INTERRUPT_HANDLER /* Clear int context */ str xzr, [x23, CPU_INT_STATE] /* Decrement preempt count */ ldr w0, [x22, ACT_PREEMPT_CNT] cbnz w0, 1f // Detect underflow b preempt_underflow 1: sub w0, w0, #1 str w0, [x22, ACT_PREEMPT_CNT] /* Switch back to kernel stack */ ldr x0, [x22, TH_KSTACKPTR] mov sp, x0 .endmacro .text .align 2 fleh_irq: BEGIN_INTERRUPT_HANDLER PUSH_FRAME bl EXT(sleh_irq) POP_FRAME END_INTERRUPT_HANDLER b exception_return_dispatch .text .align 2 .global EXT(fleh_fiq_generic) LEXT(fleh_fiq_generic) PANIC_UNIMPLEMENTED .text .align 2 fleh_fiq: BEGIN_INTERRUPT_HANDLER PUSH_FRAME bl EXT(sleh_fiq) POP_FRAME END_INTERRUPT_HANDLER b exception_return_dispatch .text .align 2 fleh_serror: mrs x1, ESR_EL1 // Load exception syndrome mrs x2, FAR_EL1 // Load fault address PUSH_FRAME bl EXT(sleh_serror) POP_FRAME b exception_return_dispatch /* * Register state saved before we get here. */ .text .align 2 fleh_invalid_stack: mrs x1, ESR_EL1 // Load exception syndrome str x1, [x0, SS64_ESR] mrs x2, FAR_EL1 // Load fault address str x2, [x0, SS64_FAR] PUSH_FRAME bl EXT(sleh_invalid_stack) // Shouldn't return! b . .text .align 2 fleh_synchronous_sp1: mrs x1, ESR_EL1 // Load exception syndrome str x1, [x0, SS64_ESR] mrs x2, FAR_EL1 // Load fault address str x2, [x0, SS64_FAR] PUSH_FRAME bl EXT(sleh_synchronous_sp1) b . .text .align 2 fleh_irq_sp1: mov x1, x0 adr x0, Lsp1_irq_str b EXT(panic_with_thread_kernel_state) Lsp1_irq_str: .asciz "IRQ exception taken while SP1 selected" .text .align 2 fleh_fiq_sp1: mov x1, x0 adr x0, Lsp1_fiq_str b EXT(panic_with_thread_kernel_state) Lsp1_fiq_str: .asciz "FIQ exception taken while SP1 selected" .text .align 2 fleh_serror_sp1: mov x1, x0 adr x0, Lsp1_serror_str b EXT(panic_with_thread_kernel_state) Lsp1_serror_str: .asciz "Asynchronous exception taken while SP1 selected" .text .align 2 exception_return_dispatch: ldr w0, [x21, SS_FLAVOR] // x0 = (threadIs64Bit) ? ss_64.cpsr : ss_32.cpsr cmp x0, ARM_SAVED_STATE64 ldr w1, [x21, SS64_CPSR] ldr w2, [x21, SS32_CPSR] csel w0, w1, w2, eq tbnz w0, PSR64_MODE_EL_SHIFT, return_to_kernel // Test for low bit of EL, return to kernel if set b return_to_user .text .align 2 return_to_kernel: tbnz w0, #DAIF_IRQF_SHIFT, Lkernel_skip_ast_taken // Skip AST check if IRQ disabled msr DAIFSet, #(DAIFSC_IRQF | DAIFSC_FIQF) // Disable interrupts mrs x0, TPIDR_EL1 // Load thread pointer ldr w1, [x0, ACT_PREEMPT_CNT] // Load preemption count cbnz x1, Lkernel_skip_ast_taken // If preemption disabled, skip AST check ldr x1, [x0, ACT_CPUDATAP] // Get current CPU data pointer ldr x2, [x1, CPU_PENDING_AST] // Get ASTs tst x2, AST_URGENT // If no urgent ASTs, skip ast_taken b.eq Lkernel_skip_ast_taken mov sp, x21 // Switch to thread stack for preemption PUSH_FRAME bl EXT(ast_taken_kernel) // Handle AST_URGENT POP_FRAME Lkernel_skip_ast_taken: b exception_return .text .globl EXT(thread_bootstrap_return) LEXT(thread_bootstrap_return) #if CONFIG_DTRACE bl EXT(dtrace_thread_bootstrap) #endif b EXT(thread_exception_return) .text .globl EXT(thread_exception_return) LEXT(thread_exception_return) mrs x0, TPIDR_EL1 add x21, x0, ACT_CONTEXT ldr x21, [x21] // // Fall Through to return_to_user from thread_exception_return. // Note that if we move return_to_user or insert a new routine // below thread_exception_return, the latter will need to change. // .text return_to_user: check_user_asts: msr DAIFSet, #(DAIFSC_IRQF | DAIFSC_FIQF) // Disable interrupts mrs x3, TPIDR_EL1 // Load thread pointer movn w2, #0 str w2, [x3, TH_IOTIER_OVERRIDE] // Reset IO tier override to -1 before returning to user ldr w0, [x3, TH_RWLOCK_CNT] cbz w0, 1f // Detect unbalance RW lock/unlock b rwlock_count_notzero 1: ldr x4, [x3, ACT_CPUDATAP] // Get current CPU data pointer ldr x0, [x4, CPU_PENDING_AST] // Get ASTs cbnz x0, user_take_ast // If pending ASTs, go service them #if !CONFIG_SKIP_PRECISE_USER_KERNEL_TIME PUSH_FRAME bl EXT(timer_state_event_kernel_to_user) POP_FRAME mrs x3, TPIDR_EL1 // Reload thread pointer #endif /* !CONFIG_SKIP_PRECISE_USER_KERNEL_TIME */ #if (CONFIG_KERNEL_INTEGRITY && KERNEL_INTEGRITY_WT) /* Watchtower * * Here we attempt to enable NEON access for EL0. If the last entry into the * kernel from user-space was due to an IRQ, the monitor will have disabled * NEON for EL0 _and_ access to CPACR_EL1 from EL1 (1). This forces xnu to * check in with the monitor in order to reenable NEON for EL0 in exchange * for routing IRQs through the monitor (2). This way the monitor will * always 'own' either IRQs or EL0 NEON. * * If Watchtower is disabled or we did not enter the kernel through an IRQ * (e.g. FIQ or syscall) this is a no-op, otherwise we will trap to EL3 * here. * * EL0 user ________ IRQ ______ * EL1 xnu \ ______________________ CPACR_EL1 __/ * EL3 monitor \_/ \___/ * * (1) (2) */ mov x0, #(CPACR_FPEN_ENABLE) msr CPACR_EL1, x0 #endif /* Establish this thread's debug state as the live state on the selected CPU. */ ldr x4, [x3, ACT_CPUDATAP] // Get current CPU data pointer ldr x1, [x4, CPU_USER_DEBUG] // Get Debug context ldr x0, [x3, ACT_DEBUGDATA] orr x1, x1, x0 // Thread debug state and live debug state both NULL? cbnz x1, user_set_debug_state_and_return // If one or the other non-null, go set debug state // // Fall through from return_to_user to exception_return. // Note that if we move exception_return or add a new routine below // return_to_user, the latter will have to change. // exception_return: msr DAIFSet, #DAIFSC_ALL // Disable exceptions mrs x3, TPIDR_EL1 // Load thread pointer mov sp, x21 // Reload the pcb pointer /* ARM64_TODO Reserve x18 until we decide what to do with it */ ldr x0, [x3, TH_CTH_DATA] // Load cthread data pointer str x0, [sp, SS64_X18] // and use it to trash x18 #if __ARM_KERNEL_PROTECT__ /* * If we are going to eret to userspace, we must return through the EL0 * eret mapping. */ ldr w1, [sp, SS64_CPSR] // Load CPSR tbnz w1, PSR64_MODE_EL_SHIFT, Lskip_el0_eret_mapping // Skip if returning to EL1 /* We need to switch to the EL0 mapping of this code to eret to EL0. */ adrp x0, EXT(ExceptionVectorsBase)@page // Load vector base adrp x1, Lexception_return_restore_registers@page // Load target PC add x1, x1, Lexception_return_restore_registers@pageoff MOV64 x2, ARM_KERNEL_PROTECT_EXCEPTION_START // Load EL0 vector address sub x1, x1, x0 // Calculate delta add x0, x2, x1 // Convert KVA to EL0 vector address br x0 Lskip_el0_eret_mapping: #endif /* __ARM_KERNEL_PROTECT__ */ Lexception_return_restore_registers: /* Restore special register state */ ldr x0, [sp, SS64_PC] // Get the return address ldr w1, [sp, SS64_CPSR] // Get the return CPSR ldr w2, [sp, NS64_FPSR] ldr w3, [sp, NS64_FPCR] msr ELR_EL1, x0 // Load the return address into ELR msr SPSR_EL1, x1 // Load the return CPSR into SPSR msr FPSR, x2 msr FPCR, x3 // Synchronized by ERET mov x0, sp // x0 = &pcb /* Restore arm_neon_saved_state64 */ ldp q0, q1, [x0, NS64_Q0] ldp q2, q3, [x0, NS64_Q2] ldp q4, q5, [x0, NS64_Q4] ldp q6, q7, [x0, NS64_Q6] ldp q8, q9, [x0, NS64_Q8] ldp q10, q11, [x0, NS64_Q10] ldp q12, q13, [x0, NS64_Q12] ldp q14, q15, [x0, NS64_Q14] ldp q16, q17, [x0, NS64_Q16] ldp q18, q19, [x0, NS64_Q18] ldp q20, q21, [x0, NS64_Q20] ldp q22, q23, [x0, NS64_Q22] ldp q24, q25, [x0, NS64_Q24] ldp q26, q27, [x0, NS64_Q26] ldp q28, q29, [x0, NS64_Q28] ldp q30, q31, [x0, NS64_Q30] /* Restore arm_saved_state64 */ // Skip x0, x1 - we're using them ldp x2, x3, [x0, SS64_X2] ldp x4, x5, [x0, SS64_X4] ldp x6, x7, [x0, SS64_X6] ldp x8, x9, [x0, SS64_X8] ldp x10, x11, [x0, SS64_X10] ldp x12, x13, [x0, SS64_X12] ldp x14, x15, [x0, SS64_X14] ldp x16, x17, [x0, SS64_X16] ldp x18, x19, [x0, SS64_X18] ldp x20, x21, [x0, SS64_X20] ldp x22, x23, [x0, SS64_X22] ldp x24, x25, [x0, SS64_X24] ldp x26, x27, [x0, SS64_X26] ldr x28, [x0, SS64_X28] ldp fp, lr, [x0, SS64_FP] // Restore stack pointer and our last two GPRs ldr x1, [x0, SS64_SP] mov sp, x1 #if __ARM_KERNEL_PROTECT__ ldr w18, [x0, SS64_CPSR] // Stash CPSR #endif /* __ARM_KERNEL_PROTECT__ */ ldp x0, x1, [x0, SS64_X0] // Restore the GPRs #if __ARM_KERNEL_PROTECT__ /* If we are going to eret to userspace, we must unmap the kernel. */ tbnz w18, PSR64_MODE_EL_SHIFT, Lskip_ttbr1_switch /* Update TCR to unmap the kernel. */ MOV64 x18, TCR_EL1_USER msr TCR_EL1, x18 /* * On Apple CPUs, TCR writes and TTBR writes should be ordered relative to * each other due to the microarchitecture. */ #if !defined(APPLE_ARM64_ARCH_FAMILY) isb sy #endif /* Switch to the user ASID (low bit clear) for the task. */ mrs x18, TTBR0_EL1 bic x18, x18, #(1 << TTBR_ASID_SHIFT) msr TTBR0_EL1, x18 mov x18, #0 /* We don't need an ISB here, as the eret is synchronizing. */ Lskip_ttbr1_switch: #endif /* __ARM_KERNEL_PROTECT__ */ eret user_take_ast: PUSH_FRAME bl EXT(ast_taken_user) // Handle all ASTs, may return via continuation POP_FRAME mrs x3, TPIDR_EL1 // Reload thread pointer b check_user_asts // Now try again user_set_debug_state_and_return: ldr x4, [x3, ACT_CPUDATAP] // Get current CPU data pointer isb // Synchronize context PUSH_FRAME bl EXT(arm_debug_set) // Establish thread debug state in live regs POP_FRAME isb mrs x3, TPIDR_EL1 // Reload thread pointer b exception_return // And continue .text .align 2 preempt_underflow: mrs x0, TPIDR_EL1 str x0, [sp, #-16]! // We'll print thread pointer adr x0, L_underflow_str // Format string CALL_EXTERN panic // Game over L_underflow_str: .asciz "Preemption count negative on thread %p" .align 2 .text .align 2 rwlock_count_notzero: mrs x0, TPIDR_EL1 str x0, [sp, #-16]! // We'll print thread pointer ldr w0, [x0, TH_RWLOCK_CNT] str w0, [sp, #8] adr x0, L_rwlock_count_notzero_str // Format string CALL_EXTERN panic // Game over L_rwlock_count_notzero_str: .asciz "RW lock count not 0 on thread %p (%u)" .align 2 #if __ARM_KERNEL_PROTECT__ /* * This symbol denotes the end of the exception vector/eret range; we page * align it so that we can avoid mapping other text in the EL0 exception * vector mapping. */ .text .align 14 .globl EXT(ExceptionVectorsEnd) LEXT(ExceptionVectorsEnd) #endif /* __ARM_KERNEL_PROTECT__ */ .text .align 2 .globl EXT(ml_panic_trap_to_debugger) LEXT(ml_panic_trap_to_debugger) ret /* ARM64_TODO Is globals_asm.h needed? */ //#include "globals_asm.h" /* vim: set ts=4: */