/* * Copyright (c) 2000-2005 Apple Computer, Inc. All rights reserved. * * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ * * This file contains Original Code and/or Modifications of Original Code * as defined in and that are subject to the Apple Public Source License * Version 2.0 (the 'License'). You may not use this file except in * compliance with the License. The rights granted to you under the License * may not be used to create, or enable the creation or redistribution of, * unlawful or unlicensed copies of an Apple operating system, or to * circumvent, violate, or enable the circumvention or violation of, any * terms of an Apple operating system software license agreement. * * Please obtain a copy of the License at * http://www.opensource.apple.com/apsl/ and read it before using this file. * * The Original Code and all software distributed under the License are * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. * Please see the License for the specific language governing rights and * limitations under the License. * * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ */ #include #include #include #include #include #include #define PA(addr) (addr) #define VA(addr) (addr) /* * GAS won't handle an intersegment jump with a relocatable offset. */ #define LJMP(segment,address) \ .byte 0xea ;\ .long address ;\ .word segment /* ** ml_get_timebase() ** ** Entry - %esp contains pointer to 64 bit structure. ** ** Exit - 64 bit structure filled in. ** */ ENTRY(ml_get_timebase) movl S_ARG0, %ecx rdtsc movl %edx, 0(%ecx) movl %eax, 4(%ecx) ret /* * Convert between various timer units * * uint64_t tmrCvt(uint64_t time, uint64_t *conversion) * * This code converts 64-bit time units to other units. * For example, the TSC is converted to HPET units. * * Time is a 64-bit integer that is some number of ticks. * Conversion is 64-bit fixed point number which is composed * of a 32 bit integer and a 32 bit fraction. * * The time ticks are multiplied by the conversion factor. The * calculations are done as a 128-bit value but both the high * and low words are dropped. The high word is overflow and the * low word is the fraction part of the result. * * We return a 64-bit value. * * Note that we can use this function to multiply 2 conversion factors. * We do this in order to calculate the multiplier used to convert * directly between any two units. * */ .globl EXT(tmrCvt) .align FALIGN LEXT(tmrCvt) pushl %ebp // Save a volatile movl %esp,%ebp // Get the parameters - 8 pushl %ebx // Save a volatile pushl %esi // Save a volatile pushl %edi // Save a volatile // %ebp + 8 - low-order ts // %ebp + 12 - high-order ts // %ebp + 16 - low-order cvt // %ebp + 20 - high-order cvt movl 8(%ebp),%eax // Get low-order ts mull 16(%ebp) // Multiply by low-order conversion movl %edx,%edi // Need to save only the high order part movl 12(%ebp),%eax // Get the high-order ts mull 16(%ebp) // Multiply by low-order conversion addl %eax,%edi // Add in the overflow from the low x low calculation adcl $0,%edx // Add in any overflow to high high part movl %edx,%esi // Save high high part // We now have the upper 64 bits of the 96 bit multiply of ts and the low half of cvt // in %esi:%edi movl 8(%ebp),%eax // Get low-order ts mull 20(%ebp) // Multiply by high-order conversion movl %eax,%ebx // Need to save the low order part movl %edx,%ecx // Need to save the high order part movl 12(%ebp),%eax // Get the high-order ts mull 20(%ebp) // Multiply by high-order conversion // Now have %ecx:%ebx as low part of high low and %edx:%eax as high part of high high // We don't care about the highest word since it is overflow addl %edi,%ebx // Add the low words adcl %ecx,%esi // Add in the high plus carry from low addl %eax,%esi // Add in the rest of the high movl %ebx,%eax // Pass back low word movl %esi,%edx // and the high word popl %edi // Restore a volatile popl %esi // Restore a volatile popl %ebx // Restore a volatile popl %ebp // Restore a volatile ret // Leave... .globl EXT(rtc_nanotime_store) .align FALIGN LEXT(rtc_nanotime_store) push %ebp mov %esp,%ebp mov 32(%ebp),%edx mov 8(%ebp),%eax mov %eax,RNT_TSC_BASE(%edx) mov 12(%ebp),%eax mov %eax,RNT_TSC_BASE+4(%edx) mov 24(%ebp),%eax mov %eax,RNT_SCALE(%edx) mov 28(%ebp),%eax mov %eax,RNT_SHIFT(%edx) mov 16(%ebp),%eax mov %eax,RNT_NS_BASE(%edx) mov 20(%ebp),%eax mov %eax,RNT_NS_BASE+4(%edx) pop %ebp ret .globl EXT(rtc_nanotime_load) .align FALIGN LEXT(rtc_nanotime_load) push %ebp mov %esp,%ebp mov 8(%ebp),%ecx mov 12(%ebp),%edx mov RNT_TSC_BASE(%ecx),%eax mov %eax,RNT_TSC_BASE(%edx) mov RNT_TSC_BASE+4(%ecx),%eax mov %eax,RNT_TSC_BASE+4(%edx) mov RNT_SCALE(%ecx),%eax mov %eax,RNT_SCALE(%edx) mov RNT_SHIFT(%ecx),%eax mov %eax,RNT_SHIFT(%edx) mov RNT_NS_BASE(%ecx),%eax mov %eax,RNT_NS_BASE(%edx) mov RNT_NS_BASE+4(%ecx),%eax mov %eax,RNT_NS_BASE+4(%edx) pop %ebp ret