2 * Copyright (c) 2003-2008 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
30 * Here's what to do if you want to add a new routine to the comm page:
32 * 1. Add a definition for it's address in osfmk/i386/cpu_capabilities.h,
33 * being careful to reserve room for future expansion.
35 * 2. Write one or more versions of the routine, each with it's own
36 * commpage_descriptor. The tricky part is getting the "special",
37 * "musthave", and "canthave" fields right, so that exactly one
38 * version of the routine is selected for every machine.
39 * The source files should be in osfmk/i386/commpage/.
41 * 3. Add a ptr to your new commpage_descriptor(s) in the "routines"
42 * array in osfmk/i386/commpage/commpage_asm.s. There are two
43 * arrays, one for the 32-bit and one for the 64-bit commpage.
45 * 4. Write the code in Libc to use the new routine.
48 #include <mach/mach_types.h>
49 #include <mach/machine.h>
50 #include <mach/vm_map.h>
51 #include <mach/mach_vm.h>
53 #include <i386/rtclock.h>
54 #include <i386/cpu_data.h>
55 #include <i386/machine_routines.h>
56 #include <i386/misc_protos.h>
57 #include <machine/cpu_capabilities.h>
58 #include <machine/commpage.h>
59 #include <machine/pmap.h>
60 #include <vm/vm_kern.h>
61 #include <vm/vm_map.h>
63 #include <ipc/ipc_port.h>
65 #include <kern/page_decrypt.h>
67 /* the lists of commpage routines are in commpage_asm.s */
68 extern commpage_descriptor
* commpage_32_routines
[];
69 extern commpage_descriptor
* commpage_64_routines
[];
71 /* translated commpage descriptors from commpage_sigs.c */
72 extern commpage_descriptor sigdata_descriptor
;
73 extern commpage_descriptor
*ba_descriptors
[];
75 extern vm_map_t commpage32_map
; // the shared submap, set up in vm init
76 extern vm_map_t commpage64_map
; // the shared submap, set up in vm init
78 char *commPagePtr32
= NULL
; // virtual addr in kernel map of 32-bit commpage
79 char *commPagePtr64
= NULL
; // ...and of 64-bit commpage
80 int _cpu_capabilities
= 0; // define the capability vector
82 int noVMX
= 0; /* if true, do not set kHasAltivec in ppc _cpu_capabilities */
84 typedef uint32_t commpage_address_t
;
86 static commpage_address_t next
; // next available address in comm page
87 static commpage_address_t cur_routine
; // comm page address of "current" routine
88 static boolean_t matched
; // true if we've found a match for "current" routine
90 static char *commPagePtr
; // virtual addr in kernel map of commpage we are working on
91 static commpage_address_t commPageBaseOffset
; // subtract from 32-bit runtime address to get offset in virtual commpage in kernel map
93 static commpage_time_data
*time_data32
= NULL
;
94 static commpage_time_data
*time_data64
= NULL
;
96 /* Allocate the commpage and add to the shared submap created by vm:
97 * 1. allocate a page in the kernel map (RW)
99 * 3. make a memory entry out of it
100 * 4. map that entry into the shared comm region map (R-only)
105 vm_map_t submap
, // commpage32_map or commpage_map64
106 size_t area_used
) // _COMM_PAGE32_AREA_USED or _COMM_PAGE64_AREA_USED
108 vm_offset_t kernel_addr
= 0; // address of commpage in kernel map
109 vm_offset_t zero
= 0;
110 vm_size_t size
= area_used
; // size actually populated
111 vm_map_entry_t entry
;
115 panic("commpage submap is null");
117 if (vm_map(kernel_map
,&kernel_addr
,area_used
,0,VM_FLAGS_ANYWHERE
,NULL
,0,FALSE
,VM_PROT_ALL
,VM_PROT_ALL
,VM_INHERIT_NONE
))
118 panic("cannot allocate commpage");
120 if (vm_map_wire(kernel_map
,kernel_addr
,kernel_addr
+area_used
,VM_PROT_DEFAULT
,FALSE
))
121 panic("cannot wire commpage");
124 * Now that the object is created and wired into the kernel map, mark it so that no delay
125 * copy-on-write will ever be performed on it as a result of mapping it into user-space.
126 * If such a delayed copy ever occurred, we could remove the kernel's wired mapping - and
127 * that would be a real disaster.
129 * JMM - What we really need is a way to create it like this in the first place.
131 if (!vm_map_lookup_entry( kernel_map
, vm_map_trunc_page(kernel_addr
), &entry
) || entry
->is_sub_map
)
132 panic("cannot find commpage entry");
133 entry
->object
.vm_object
->copy_strategy
= MEMORY_OBJECT_COPY_NONE
;
135 if (mach_make_memory_entry( kernel_map
, // target map
137 kernel_addr
, // offset (address in kernel map)
138 VM_PROT_ALL
, // map it RWX
139 &handle
, // this is the object handle we get
140 NULL
)) // parent_entry (what is this?)
141 panic("cannot make entry for commpage");
143 if (vm_map_64( submap
, // target map (shared submap)
144 &zero
, // address (map into 1st page in submap)
147 VM_FLAGS_FIXED
, // flags (it must be 1st page in submap)
148 handle
, // port is the memory entry we just made
149 0, // offset (map 1st page in memory entry)
151 VM_PROT_READ
|VM_PROT_EXECUTE
, // cur_protection (R-only in user map)
152 VM_PROT_READ
|VM_PROT_EXECUTE
, // max_protection
153 VM_INHERIT_SHARE
)) // inheritance
154 panic("cannot map commpage");
156 ipc_port_release(handle
);
158 return (void*)(intptr_t)kernel_addr
; // return address in kernel map
161 /* Get address (in kernel map) of a commpage field. */
165 commpage_address_t addr_at_runtime
)
167 return (void*) ((uintptr_t)commPagePtr
+ (addr_at_runtime
- commPageBaseOffset
));
170 /* Determine number of CPUs on this system. We cannot rely on
171 * machine_info.max_cpus this early in the boot.
174 commpage_cpus( void )
178 cpus
= ml_get_max_cpus(); // NB: this call can block
181 panic("commpage cpus==0");
188 /* Initialize kernel version of _cpu_capabilities vector (used by KEXTs.) */
191 commpage_init_cpu_capabilities( void )
195 ml_cpu_info_t cpu_info
;
198 ml_cpu_get_info(&cpu_info
);
200 switch (cpu_info
.vector_unit
) {
208 bits
|= kHasSupplementalSSE3
;
224 switch (cpu_info
.cache_line_size
) {
237 cpus
= commpage_cpus(); // how many CPUs do we have
242 bits
|= (cpus
<< kNumCPUsShift
);
244 bits
|= kFastThreadLocalStorage
; // we use %gs for TLS
246 if (cpu_mode_is64bit()) // k64Bit means processor is 64-bit capable
249 if (tscFreq
<= SLOW_TSC_THRESHOLD
) /* is TSC too slow for _commpage_nanotime? */
252 _cpu_capabilities
= bits
; // set kernel version for use by drivers etc
256 _get_cpu_capabilities(void)
258 return _cpu_capabilities
;
261 /* Copy data into commpage. */
265 commpage_address_t address
,
269 void *dest
= commpage_addr_of(address
);
272 panic("commpage overlap at address 0x%p, 0x%x < 0x%x", dest
, address
, next
);
274 bcopy(source
,dest
,length
);
276 next
= address
+ length
;
281 commpage_address_t address
,
287 void *dest
= commpage_addr_of(address
);
288 dest
= (void *)((uintptr_t) dest
+ _COMM_PAGE_SIGS_OFFSET
);
291 OSWriteSwapInt16(dest
, 0, *(uint16_t *)source
);
294 OSWriteSwapInt32(dest
, 0, *(uint32_t *)source
);
297 OSWriteSwapInt64(dest
, 0, *(uint64_t *)source
);
305 commpage_address_t address
,
310 commpage_stuff_swap(address
, source
, length
, legacy
);
311 commpage_stuff(address
, source
, length
);
314 /* Copy a routine into comm page if it matches running machine.
317 commpage_stuff_routine(
318 commpage_descriptor
*rd
)
322 if (rd
->commpage_address
!= cur_routine
) {
323 if ((cur_routine
!=0) && (matched
==0))
324 panic("commpage no match for last, next address %08x", rd
->commpage_address
);
325 cur_routine
= rd
->commpage_address
;
329 must
= _cpu_capabilities
& rd
->musthave
;
330 cant
= _cpu_capabilities
& rd
->canthave
;
332 if ((must
== rd
->musthave
) && (cant
== 0)) {
334 panic("commpage multiple matches for address %08x", rd
->commpage_address
);
337 commpage_stuff(rd
->commpage_address
,rd
->code_address
,rd
->code_length
);
341 /* Fill in the 32- or 64-bit commpage. Called once for each.
342 * The 32-bit ("legacy") commpage has a bunch of stuff added to it
343 * for translated processes, some of which is byte-swapped.
347 commpage_populate_one(
348 vm_map_t submap
, // commpage32_map or compage64_map
349 char ** kernAddressPtr
, // &commPagePtr32 or &commPagePtr64
350 size_t area_used
, // _COMM_PAGE32_AREA_USED or _COMM_PAGE64_AREA_USED
351 commpage_address_t base_offset
, // will become commPageBaseOffset
352 commpage_descriptor
** commpage_routines
, // list of routine ptrs for this commpage
353 boolean_t legacy
, // true if 32-bit commpage
354 commpage_time_data
** time_data
, // &time_data32 or &time_data64
355 const char* signature
) // "commpage 32-bit" or "commpage 64-bit"
359 static double two52
= 1048576.0 * 1048576.0 * 4096.0; // 2**52
360 static double ten6
= 1000000.0; // 10**6
361 commpage_descriptor
**rd
;
362 short version
= _COMM_PAGE_THIS_VERSION
;
367 commPagePtr
= (char *)commpage_allocate( submap
, (vm_size_t
) area_used
);
368 *kernAddressPtr
= commPagePtr
; // save address either in commPagePtr32 or 64
369 commPageBaseOffset
= base_offset
;
371 *time_data
= commpage_addr_of( _COMM_PAGE_TIME_DATA_START
);
373 /* Stuff in the constants. We move things into the comm page in strictly
374 * ascending order, so we can check for overlap and panic if so.
376 commpage_stuff(_COMM_PAGE_SIGNATURE
,signature
,(int)strlen(signature
));
377 commpage_stuff2(_COMM_PAGE_VERSION
,&version
,sizeof(short),legacy
);
378 commpage_stuff(_COMM_PAGE_CPU_CAPABILITIES
,&_cpu_capabilities
,sizeof(int));
380 /* excuse our magic constants, we cannot include ppc/cpu_capabilities.h */
381 /* always set kCache32 and kDcbaAvailable */
383 if ( _cpu_capabilities
& kUP
)
384 swapcaps
|= (kUP
+ (1 << kNumCPUsShift
));
386 swapcaps
|= 2 << kNumCPUsShift
; /* limit #cpus to 2 */
387 if ( ! noVMX
) /* if rosetta will be emulating altivec... */
388 swapcaps
|= 0x101; /* ...then set kHasAltivec and kDataStreamsAvailable too */
389 commpage_stuff_swap(_COMM_PAGE_CPU_CAPABILITIES
, &swapcaps
, sizeof(int), legacy
);
391 commpage_stuff_swap(_COMM_PAGE_CACHE_LINESIZE
,&c2
,2,legacy
);
393 if (_cpu_capabilities
& kCache32
)
395 else if (_cpu_capabilities
& kCache64
)
397 else if (_cpu_capabilities
& kCache128
)
399 commpage_stuff(_COMM_PAGE_CACHE_LINESIZE
,&c2
,2);
402 commpage_stuff(_COMM_PAGE_SPIN_COUNT
,&c4
,4);
405 commpage_stuff2(_COMM_PAGE_2_TO_52
,&two52
,8,legacy
);
406 commpage_stuff2(_COMM_PAGE_10_TO_6
,&ten6
,8,legacy
);
409 for( rd
= commpage_routines
; *rd
!= NULL
; rd
++ )
410 commpage_stuff_routine(*rd
);
413 panic("commpage no match on last routine");
415 if (next
> _COMM_PAGE_END
)
416 panic("commpage overflow: next = 0x%08x, commPagePtr = 0x%p", next
, commPagePtr
);
420 for( rd
= ba_descriptors
; *rd
!= NULL
; rd
++ )
421 commpage_stuff_routine(*rd
);
424 commpage_stuff_routine(&sigdata_descriptor
);
429 /* Fill in commpages: called once, during kernel initialization, from the
430 * startup thread before user-mode code is running.
432 * See the top of this file for a list of what you have to do to add
433 * a new routine to the commpage.
437 commpage_populate( void )
439 commpage_init_cpu_capabilities();
441 commpage_populate_one( commpage32_map
,
443 _COMM_PAGE32_AREA_USED
,
444 _COMM_PAGE32_BASE_ADDRESS
,
445 commpage_32_routines
,
446 TRUE
, /* legacy (32-bit) commpage */
450 pmap_commpage32_init((vm_offset_t
) commPagePtr32
, _COMM_PAGE32_BASE_ADDRESS
,
451 _COMM_PAGE32_AREA_USED
/INTEL_PGBYTES
);
453 time_data64
= time_data32
; /* if no 64-bit commpage, point to 32-bit */
455 if (_cpu_capabilities
& k64Bit
) {
456 commpage_populate_one( commpage64_map
,
458 _COMM_PAGE64_AREA_USED
,
459 _COMM_PAGE32_START_ADDRESS
, /* commpage address are relative to 32-bit commpage placement */
460 commpage_64_routines
,
461 FALSE
, /* not a legacy commpage */
465 pmap_commpage64_init((vm_offset_t
) commPagePtr64
, _COMM_PAGE64_BASE_ADDRESS
,
466 _COMM_PAGE64_AREA_USED
/INTEL_PGBYTES
);
470 rtc_nanotime_init_commpage();
474 /* Update commpage nanotime information. Note that we interleave
475 * setting the 32- and 64-bit commpages, in order to keep nanotime more
476 * nearly in sync between the two environments.
478 * This routine must be serialized by some external means, ie a lock.
482 commpage_set_nanotime(
488 commpage_time_data
*p32
= time_data32
;
489 commpage_time_data
*p64
= time_data64
;
490 static uint32_t generation
= 0;
493 if (p32
== NULL
) /* have commpages been allocated yet? */
496 if ( generation
!= p32
->nt_generation
)
497 panic("nanotime trouble 1"); /* possibly not serialized */
498 if ( ns_base
< p32
->nt_ns_base
)
499 panic("nanotime trouble 2");
500 if ((shift
!= 32) && ((_cpu_capabilities
& kSlow
)==0) )
501 panic("nanotime trouble 3");
503 next_gen
= ++generation
;
505 next_gen
= ++generation
;
507 p32
->nt_generation
= 0; /* mark invalid, so commpage won't try to use it */
508 p64
->nt_generation
= 0;
510 p32
->nt_tsc_base
= tsc_base
;
511 p64
->nt_tsc_base
= tsc_base
;
513 p32
->nt_ns_base
= ns_base
;
514 p64
->nt_ns_base
= ns_base
;
516 p32
->nt_scale
= scale
;
517 p64
->nt_scale
= scale
;
519 p32
->nt_shift
= shift
;
520 p64
->nt_shift
= shift
;
522 p32
->nt_generation
= next_gen
; /* mark data as valid */
523 p64
->nt_generation
= next_gen
;
527 /* Disable commpage gettimeofday(), forcing commpage to call through to the kernel. */
530 commpage_disable_timestamp( void )
532 time_data32
->gtod_generation
= 0;
533 time_data64
->gtod_generation
= 0;
537 /* Update commpage gettimeofday() information. As with nanotime(), we interleave
538 * updates to the 32- and 64-bit commpage, in order to keep time more nearly in sync
539 * between the two environments.
541 * This routine must be serializeed by some external means, ie a lock.
545 commpage_set_timestamp(
549 commpage_time_data
*p32
= time_data32
;
550 commpage_time_data
*p64
= time_data64
;
551 static uint32_t generation
= 0;
554 next_gen
= ++generation
;
556 next_gen
= ++generation
;
558 p32
->gtod_generation
= 0; /* mark invalid, so commpage won't try to use it */
559 p64
->gtod_generation
= 0;
561 p32
->gtod_ns_base
= abstime
;
562 p64
->gtod_ns_base
= abstime
;
564 p32
->gtod_sec_base
= secs
;
565 p64
->gtod_sec_base
= secs
;
567 p32
->gtod_generation
= next_gen
; /* mark data as valid */
568 p64
->gtod_generation
= next_gen
;
572 /* Update _COMM_PAGE_MEMORY_PRESSURE. Called periodically from vm's compute_memory_pressure() */
575 commpage_set_memory_pressure(
576 unsigned int pressure
)
583 cp
+= (_COMM_PAGE_MEMORY_PRESSURE
- _COMM_PAGE32_BASE_ADDRESS
);
585 *ip
= (uint32_t) pressure
;
590 cp
+= (_COMM_PAGE_MEMORY_PRESSURE
- _COMM_PAGE32_START_ADDRESS
);
592 *ip
= (uint32_t) pressure
;
598 /* Update _COMM_PAGE_SPIN_COUNT. We might want to reduce when running on a battery, etc. */
601 commpage_set_spin_count(
607 if (count
== 0) /* we test for 0 after decrement, not before */
612 cp
+= (_COMM_PAGE_SPIN_COUNT
- _COMM_PAGE32_BASE_ADDRESS
);
614 *ip
= (uint32_t) count
;
619 cp
+= (_COMM_PAGE_SPIN_COUNT
- _COMM_PAGE32_START_ADDRESS
);
621 *ip
= (uint32_t) count
;
627 /* Check to see if a given address is in the Preemption Free Zone (PFZ) */
630 commpage_is_in_pfz32(uint32_t addr32
)
632 if ( (addr32
>= _COMM_PAGE_PFZ_START
) && (addr32
< _COMM_PAGE_PFZ_END
)) {
640 commpage_is_in_pfz64(addr64_t addr64
)
642 if ( (addr64
>= _COMM_PAGE_32_TO_64(_COMM_PAGE_PFZ_START
))
643 && (addr64
< _COMM_PAGE_32_TO_64(_COMM_PAGE_PFZ_END
))) {