2 * Copyright (c) 2000-2008 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 * Copyright (c) 1982, 1986, 1991, 1993, 1995
30 * The Regents of the University of California. All rights reserved.
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95
61 * $FreeBSD: src/sys/netinet/in_pcb.c,v 1.59.2.17 2001/08/13 16:26:17 ume Exp $
64 #include <sys/param.h>
65 #include <sys/systm.h>
66 #include <sys/malloc.h>
68 #include <sys/domain.h>
69 #include <sys/protosw.h>
70 #include <sys/socket.h>
71 #include <sys/socketvar.h>
76 #include <sys/kernel.h>
77 #include <sys/sysctl.h>
78 #include <libkern/OSAtomic.h>
80 #include <machine/limits.h>
83 #include <kern/zalloc.h>
87 #include <net/if_types.h>
88 #include <net/route.h>
90 #include <netinet/in.h>
91 #include <netinet/in_pcb.h>
92 #include <netinet/in_var.h>
93 #include <netinet/ip_var.h>
95 #include <netinet/ip6.h>
96 #include <netinet6/ip6_var.h>
102 #include <netinet6/ipsec.h>
103 #include <netkey/key.h>
106 #include <sys/kdebug.h>
107 #include <sys/random.h>
110 extern int ipsec_bypass
;
113 #define DBG_FNC_PCB_LOOKUP NETDBG_CODE(DBG_NETTCP, (6 << 8))
114 #define DBG_FNC_PCB_HLOOKUP NETDBG_CODE(DBG_NETTCP, ((6 << 8) | 1))
116 struct in_addr zeroin_addr
;
119 * These configure the range of local port addresses assigned to
120 * "unspecified" outgoing connections/packets/whatever.
122 int ipport_lowfirstauto
= IPPORT_RESERVED
- 1; /* 1023 */
123 int ipport_lowlastauto
= IPPORT_RESERVEDSTART
; /* 600 */
125 int ipport_firstauto
= IPPORT_RESERVED
; /* 1024 */
126 int ipport_lastauto
= IPPORT_USERRESERVED
; /* 5000 */
128 int ipport_firstauto
= IPPORT_HIFIRSTAUTO
; /* 49152 */
129 int ipport_lastauto
= IPPORT_HILASTAUTO
; /* 65535 */
131 int ipport_hifirstauto
= IPPORT_HIFIRSTAUTO
; /* 49152 */
132 int ipport_hilastauto
= IPPORT_HILASTAUTO
; /* 65535 */
134 #define RANGECHK(var, min, max) \
135 if ((var) < (min)) { (var) = (min); } \
136 else if ((var) > (max)) { (var) = (max); }
139 sysctl_net_ipport_check SYSCTL_HANDLER_ARGS
141 #pragma unused(arg1, arg2)
142 int error
= sysctl_handle_int(oidp
,
143 oidp
->oid_arg1
, oidp
->oid_arg2
, req
);
145 RANGECHK(ipport_lowfirstauto
, 1, IPPORT_RESERVED
- 1);
146 RANGECHK(ipport_lowlastauto
, 1, IPPORT_RESERVED
- 1);
147 RANGECHK(ipport_firstauto
, IPPORT_RESERVED
, USHRT_MAX
);
148 RANGECHK(ipport_lastauto
, IPPORT_RESERVED
, USHRT_MAX
);
149 RANGECHK(ipport_hifirstauto
, IPPORT_RESERVED
, USHRT_MAX
);
150 RANGECHK(ipport_hilastauto
, IPPORT_RESERVED
, USHRT_MAX
);
157 SYSCTL_NODE(_net_inet_ip
, IPPROTO_IP
, portrange
, CTLFLAG_RW
|CTLFLAG_LOCKED
, 0, "IP Ports");
159 SYSCTL_PROC(_net_inet_ip_portrange
, OID_AUTO
, lowfirst
, CTLTYPE_INT
|CTLFLAG_RW
,
160 &ipport_lowfirstauto
, 0, &sysctl_net_ipport_check
, "I", "");
161 SYSCTL_PROC(_net_inet_ip_portrange
, OID_AUTO
, lowlast
, CTLTYPE_INT
|CTLFLAG_RW
,
162 &ipport_lowlastauto
, 0, &sysctl_net_ipport_check
, "I", "");
163 SYSCTL_PROC(_net_inet_ip_portrange
, OID_AUTO
, first
, CTLTYPE_INT
|CTLFLAG_RW
,
164 &ipport_firstauto
, 0, &sysctl_net_ipport_check
, "I", "");
165 SYSCTL_PROC(_net_inet_ip_portrange
, OID_AUTO
, last
, CTLTYPE_INT
|CTLFLAG_RW
,
166 &ipport_lastauto
, 0, &sysctl_net_ipport_check
, "I", "");
167 SYSCTL_PROC(_net_inet_ip_portrange
, OID_AUTO
, hifirst
, CTLTYPE_INT
|CTLFLAG_RW
,
168 &ipport_hifirstauto
, 0, &sysctl_net_ipport_check
, "I", "");
169 SYSCTL_PROC(_net_inet_ip_portrange
, OID_AUTO
, hilast
, CTLTYPE_INT
|CTLFLAG_RW
,
170 &ipport_hilastauto
, 0, &sysctl_net_ipport_check
, "I", "");
172 extern int udp_use_randomport
;
173 extern int tcp_use_randomport
;
176 * in_pcb.c: manage the Protocol Control Blocks.
178 * NOTE: It is assumed that most of these functions will be called at
179 * splnet(). XXX - There are, unfortunately, a few exceptions to this
180 * rule that should be fixed.
184 * Allocate a PCB and associate it with the socket.
189 * ipsec_init_policy:??? [IPSEC]
192 in_pcballoc(struct socket
*so
, struct inpcbinfo
*pcbinfo
, __unused
struct proc
*p
)
205 if (so
->cached_in_sock_layer
== 0) {
207 printf("PCBALLOC calling zalloc for socket %x\n", so
);
209 inp
= (struct inpcb
*) zalloc(pcbinfo
->ipi_zone
);
212 bzero((caddr_t
)inp
, sizeof(*inp
));
216 printf("PCBALLOC reusing PCB for socket %x\n", so
);
218 inp
= (struct inpcb
*) so
->so_saved_pcb
;
219 temp
= inp
->inp_saved_ppcb
;
220 bzero((caddr_t
) inp
, sizeof(*inp
));
221 inp
->inp_saved_ppcb
= temp
;
224 inp
->inp_gencnt
= ++pcbinfo
->ipi_gencnt
;
225 inp
->inp_pcbinfo
= pcbinfo
;
226 inp
->inp_socket
= so
;
228 mac_error
= mac_inpcb_label_init(inp
, M_WAITOK
);
229 if (mac_error
!= 0) {
230 if (so
->cached_in_sock_layer
== 0)
231 zfree(pcbinfo
->ipi_zone
, inp
);
234 mac_inpcb_label_associate(so
, inp
);
236 so
->so_pcb
= (caddr_t
)inp
;
238 if (so
->so_proto
->pr_flags
& PR_PCBLOCK
) {
239 inp
->inpcb_mtx
= lck_mtx_alloc_init(pcbinfo
->mtx_grp
, pcbinfo
->mtx_attr
);
240 if (inp
->inpcb_mtx
== NULL
) {
241 printf("in_pcballoc: can't alloc mutex! so=%p\n", so
);
248 if (ipsec_bypass
== 0) {
249 error
= ipsec_init_policy(so
, &inp
->inp_sp
);
251 zfree(pcbinfo
->ipi_zone
, inp
);
258 if (INP_SOCKAF(so
) == AF_INET6
&& !ip6_mapped_addr_on
)
259 inp
->inp_flags
|= IN6P_IPV6_V6ONLY
;
263 if (ip6_auto_flowlabel
)
264 inp
->inp_flags
|= IN6P_AUTOFLOWLABEL
;
266 lck_rw_lock_exclusive(pcbinfo
->mtx
);
267 inp
->inp_gencnt
= ++pcbinfo
->ipi_gencnt
;
268 LIST_INSERT_HEAD(pcbinfo
->listhead
, inp
, inp_list
);
269 pcbinfo
->ipi_count
++;
270 lck_rw_done(pcbinfo
->mtx
);
276 in_pcblookup_local_and_cleanup does everything
277 in_pcblookup_local does but it checks for a socket
278 that's going away. Since we know that the lock is
279 held read+write when this funciton is called, we
280 can safely dispose of this socket like the slow
281 timer would usually do and return NULL. This is
285 in_pcblookup_local_and_cleanup(
286 struct inpcbinfo
*pcbinfo
,
287 struct in_addr laddr
,
293 /* Perform normal lookup */
294 inp
= in_pcblookup_local(pcbinfo
, laddr
, lport_arg
, wild_okay
);
296 /* Check if we found a match but it's waiting to be disposed */
297 if (inp
&& inp
->inp_wantcnt
== WNT_STOPUSING
) {
298 struct socket
*so
= inp
->inp_socket
;
300 lck_mtx_lock(inp
->inpcb_mtx
);
302 if (so
->so_usecount
== 0) {
303 if (inp
->inp_state
!= INPCB_STATE_DEAD
)
309 lck_mtx_unlock(inp
->inpcb_mtx
);
316 #ifdef __APPLE_API_PRIVATE
318 in_pcb_conflict_post_msg(u_int16_t port
)
321 * Radar 5523020 send a kernel event notification if a non-participating socket tries to bind
322 * the port a socket who has set SOF_NOTIFYCONFLICT owns.
324 struct kev_msg ev_msg
;
325 struct kev_in_portinuse in_portinuse
;
327 in_portinuse
.port
= ntohs(port
); /* port in host order */
328 in_portinuse
.req_pid
= proc_selfpid();
329 ev_msg
.vendor_code
= KEV_VENDOR_APPLE
;
330 ev_msg
.kev_class
= KEV_NETWORK_CLASS
;
331 ev_msg
.kev_subclass
= KEV_INET_SUBCLASS
;
332 ev_msg
.event_code
= KEV_INET_PORTINUSE
;
333 ev_msg
.dv
[0].data_ptr
= &in_portinuse
;
334 ev_msg
.dv
[0].data_length
= sizeof(struct kev_in_portinuse
);
335 ev_msg
.dv
[1].data_length
= 0;
336 kev_post_msg(&ev_msg
);
341 * EADDRNOTAVAIL Address not available.
342 * EINVAL Invalid argument
343 * EAFNOSUPPORT Address family not supported [notdef]
344 * EACCES Permission denied
345 * EADDRINUSE Address in use
346 * EAGAIN Resource unavailable, try again
347 * proc_suser:EPERM Operation not permitted
350 in_pcbbind(struct inpcb
*inp
, struct sockaddr
*nam
, struct proc
*p
)
352 struct socket
*so
= inp
->inp_socket
;
353 unsigned short *lastport
;
354 struct sockaddr_in
*sin
;
355 struct inpcbinfo
*pcbinfo
= inp
->inp_pcbinfo
;
356 u_short lport
= 0, rand_port
= 0;
357 int wild
= 0, reuseport
= (so
->so_options
& SO_REUSEPORT
);
358 int error
, randomport
, conflict
= 0;
360 if (TAILQ_EMPTY(&in_ifaddrhead
)) /* XXX broken! */
361 return (EADDRNOTAVAIL
);
362 if (inp
->inp_lport
|| inp
->inp_laddr
.s_addr
!= INADDR_ANY
)
364 if ((so
->so_options
& (SO_REUSEADDR
|SO_REUSEPORT
)) == 0)
366 socket_unlock(so
, 0); /* keep reference on socket */
367 lck_rw_lock_exclusive(pcbinfo
->mtx
);
369 sin
= (struct sockaddr_in
*)nam
;
370 if (nam
->sa_len
!= sizeof (*sin
)) {
371 lck_rw_done(pcbinfo
->mtx
);
377 * We should check the family, but old programs
378 * incorrectly fail to initialize it.
380 if (sin
->sin_family
!= AF_INET
) {
381 lck_rw_done(pcbinfo
->mtx
);
383 return (EAFNOSUPPORT
);
386 lport
= sin
->sin_port
;
387 if (IN_MULTICAST(ntohl(sin
->sin_addr
.s_addr
))) {
389 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
390 * allow complete duplication of binding if
391 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
392 * and a multicast address is bound on both
393 * new and duplicated sockets.
395 if (so
->so_options
& SO_REUSEADDR
)
396 reuseport
= SO_REUSEADDR
|SO_REUSEPORT
;
397 } else if (sin
->sin_addr
.s_addr
!= INADDR_ANY
) {
399 sin
->sin_port
= 0; /* yech... */
400 if ((ifa
= ifa_ifwithaddr((struct sockaddr
*)sin
)) == 0) {
401 lck_rw_done(pcbinfo
->mtx
);
403 return (EADDRNOTAVAIL
);
414 if (ntohs(lport
) < IPPORT_RESERVED
&& proc_suser(p
)) {
415 lck_rw_done(pcbinfo
->mtx
);
421 !IN_MULTICAST(ntohl(sin
->sin_addr
.s_addr
))) {
422 t
= in_pcblookup_local_and_cleanup(inp
->inp_pcbinfo
,
423 sin
->sin_addr
, lport
, INPLOOKUP_WILDCARD
);
425 (ntohl(sin
->sin_addr
.s_addr
) != INADDR_ANY
||
426 ntohl(t
->inp_laddr
.s_addr
) != INADDR_ANY
||
427 (t
->inp_socket
->so_options
&
428 SO_REUSEPORT
) == 0) &&
429 (so
->so_uid
!= t
->inp_socket
->so_uid
) &&
430 ((t
->inp_socket
->so_flags
& SOF_REUSESHAREUID
) == 0)) {
432 if (ntohl(sin
->sin_addr
.s_addr
) !=
434 ntohl(t
->inp_laddr
.s_addr
) !=
437 INP_SOCKAF(t
->inp_socket
))
440 #ifdef __APPLE_API_PRIVATE
442 if ((t
->inp_socket
->so_flags
& SOF_NOTIFYCONFLICT
) && ((so
->so_flags
& SOF_NOTIFYCONFLICT
) == 0))
445 lck_rw_done(pcbinfo
->mtx
);
448 in_pcb_conflict_post_msg(lport
);
450 lck_rw_done(pcbinfo
->mtx
);
451 #endif /* __APPLE_API_PRIVATE */
458 t
= in_pcblookup_local_and_cleanup(pcbinfo
, sin
->sin_addr
,
461 (reuseport
& t
->inp_socket
->so_options
) == 0) {
463 if (ip6_mapped_addr_on
== 0 ||
464 ntohl(sin
->sin_addr
.s_addr
) !=
466 ntohl(t
->inp_laddr
.s_addr
) !=
469 INP_SOCKAF(t
->inp_socket
))
472 #ifdef __APPLE_API_PRIVATE
474 if ((t
->inp_socket
->so_flags
& SOF_NOTIFYCONFLICT
) && ((so
->so_flags
& SOF_NOTIFYCONFLICT
) == 0))
477 lck_rw_done(pcbinfo
->mtx
);
480 in_pcb_conflict_post_msg(lport
);
482 lck_rw_done(pcbinfo
->mtx
);
483 #endif /* __APPLE_API_PRIVATE */
489 inp
->inp_laddr
= sin
->sin_addr
;
495 randomport
= (so
->so_flags
& SOF_BINDRANDOMPORT
) ||
496 (so
->so_type
== SOCK_STREAM
? tcp_use_randomport
: udp_use_randomport
);
498 inp
->inp_flags
|= INP_ANONPORT
;
500 if (inp
->inp_flags
& INP_HIGHPORT
) {
501 first
= ipport_hifirstauto
; /* sysctl */
502 last
= ipport_hilastauto
;
503 lastport
= &pcbinfo
->lasthi
;
504 } else if (inp
->inp_flags
& INP_LOWPORT
) {
505 if ((error
= proc_suser(p
)) != 0) {
506 lck_rw_done(pcbinfo
->mtx
);
510 first
= ipport_lowfirstauto
; /* 1023 */
511 last
= ipport_lowlastauto
; /* 600 */
512 lastport
= &pcbinfo
->lastlow
;
514 first
= ipport_firstauto
; /* sysctl */
515 last
= ipport_lastauto
;
516 lastport
= &pcbinfo
->lastport
;
518 /* No point in randomizing if only one port is available */
523 * Simple check to ensure all ports are not used up causing
526 * We split the two cases (up and down) so that the direction
527 * is not being tested on each round of the loop.
534 read_random(&rand_port
, sizeof(rand_port
));
535 *lastport
= first
- (rand_port
% (first
- last
));
537 count
= first
- last
;
540 if (count
-- < 0) { /* completely used? */
541 lck_rw_done(pcbinfo
->mtx
);
543 inp
->inp_laddr
.s_addr
= INADDR_ANY
;
544 return (EADDRNOTAVAIL
);
547 if (*lastport
> first
|| *lastport
< last
)
549 lport
= htons(*lastport
);
550 } while (in_pcblookup_local_and_cleanup(pcbinfo
,
551 inp
->inp_laddr
, lport
, wild
));
557 read_random(&rand_port
, sizeof(rand_port
));
558 *lastport
= first
+ (rand_port
% (first
- last
));
560 count
= last
- first
;
563 if (count
-- < 0) { /* completely used? */
564 lck_rw_done(pcbinfo
->mtx
);
566 inp
->inp_laddr
.s_addr
= INADDR_ANY
;
567 return (EADDRNOTAVAIL
);
570 if (*lastport
< first
|| *lastport
> last
)
572 lport
= htons(*lastport
);
573 } while (in_pcblookup_local_and_cleanup(pcbinfo
,
574 inp
->inp_laddr
, lport
, wild
));
578 inp
->inp_lport
= lport
;
579 if (in_pcbinshash(inp
, 1) != 0) {
580 inp
->inp_laddr
.s_addr
= INADDR_ANY
;
582 lck_rw_done(pcbinfo
->mtx
);
585 lck_rw_done(pcbinfo
->mtx
);
586 sflt_notify(so
, sock_evt_bound
, NULL
);
591 * Transform old in_pcbconnect() into an inner subroutine for new
592 * in_pcbconnect(): Do some validity-checking on the remote
593 * address (in mbuf 'nam') and then determine local host address
594 * (i.e., which interface) to use to access that remote host.
596 * This preserves definition of in_pcbconnect(), while supporting a
597 * slightly different version for T/TCP. (This is more than
598 * a bit of a kludge, but cleaning up the internal interfaces would
599 * have forced minor changes in every protocol).
602 * EINVAL Invalid argument
603 * EAFNOSUPPORT Address family not supported
604 * EADDRNOTAVAIL Address not available
607 in_pcbladdr(struct inpcb
*inp
, struct sockaddr
*nam
,
608 struct sockaddr_in
**plocal_sin
)
610 struct in_ifaddr
*ia
;
611 struct sockaddr_in
*sin
= (struct sockaddr_in
*)nam
;
613 if (nam
->sa_len
!= sizeof (*sin
))
615 if (sin
->sin_family
!= AF_INET
)
616 return (EAFNOSUPPORT
);
617 if (sin
->sin_port
== 0)
618 return (EADDRNOTAVAIL
);
620 lck_rw_lock_shared(in_ifaddr_rwlock
);
621 if (!TAILQ_EMPTY(&in_ifaddrhead
)) {
623 * If the destination address is INADDR_ANY,
624 * use the primary local address.
625 * If the supplied address is INADDR_BROADCAST,
626 * and the primary interface supports broadcast,
627 * choose the broadcast address for that interface.
629 #define satosin(sa) ((struct sockaddr_in *)(sa))
630 #define sintosa(sin) ((struct sockaddr *)(sin))
631 #define ifatoia(ifa) ((struct in_ifaddr *)(ifa))
632 if (sin
->sin_addr
.s_addr
== INADDR_ANY
)
633 sin
->sin_addr
= IA_SIN(TAILQ_FIRST(&in_ifaddrhead
))->sin_addr
;
634 else if (sin
->sin_addr
.s_addr
== (u_int32_t
)INADDR_BROADCAST
&&
635 (TAILQ_FIRST(&in_ifaddrhead
)->ia_ifp
->if_flags
& IFF_BROADCAST
))
636 sin
->sin_addr
= satosin(&TAILQ_FIRST(&in_ifaddrhead
)->ia_broadaddr
)->sin_addr
;
638 lck_rw_done(in_ifaddr_rwlock
);
640 if (inp
->inp_laddr
.s_addr
== INADDR_ANY
) {
642 unsigned int ifscope
;
644 ia
= (struct in_ifaddr
*)0;
645 ifscope
= (inp
->inp_flags
& INP_BOUND_IF
) ?
646 inp
->inp_boundif
: IFSCOPE_NONE
;
648 * If route is known or can be allocated now,
649 * our src addr is taken from the i/f, else punt.
650 * Note that we should check the address family of the cached
651 * destination, in case of sharing the cache with IPv6.
653 ro
= &inp
->inp_route
;
654 if (ro
->ro_rt
!= NULL
)
655 RT_LOCK_SPIN(ro
->ro_rt
);
656 if (ro
->ro_rt
&& (ro
->ro_dst
.sa_family
!= AF_INET
||
657 satosin(&ro
->ro_dst
)->sin_addr
.s_addr
!=
658 sin
->sin_addr
.s_addr
||
659 inp
->inp_socket
->so_options
& SO_DONTROUTE
||
660 ro
->ro_rt
->generation_id
!= route_generation
)) {
661 RT_UNLOCK(ro
->ro_rt
);
665 if ((inp
->inp_socket
->so_options
& SO_DONTROUTE
) == 0 && /*XXX*/
666 (ro
->ro_rt
== NULL
|| ro
->ro_rt
->rt_ifp
== NULL
)) {
667 if (ro
->ro_rt
!= NULL
)
668 RT_UNLOCK(ro
->ro_rt
);
669 /* No route yet, so try to acquire one */
670 bzero(&ro
->ro_dst
, sizeof(struct sockaddr_in
));
671 ro
->ro_dst
.sa_family
= AF_INET
;
672 ro
->ro_dst
.sa_len
= sizeof(struct sockaddr_in
);
673 ((struct sockaddr_in
*) &ro
->ro_dst
)->sin_addr
=
675 rtalloc_scoped_ign(ro
, 0, ifscope
);
676 if (ro
->ro_rt
!= NULL
)
677 RT_LOCK_SPIN(ro
->ro_rt
);
680 * If we found a route, use the address
681 * corresponding to the outgoing interface
682 * unless it is the loopback (in case a route
683 * to our address on another net goes to loopback).
685 if (ro
->ro_rt
!= NULL
) {
686 RT_LOCK_ASSERT_HELD(ro
->ro_rt
);
687 if (!(ro
->ro_rt
->rt_ifp
->if_flags
& IFF_LOOPBACK
)) {
688 ia
= ifatoia(ro
->ro_rt
->rt_ifa
);
692 RT_UNLOCK(ro
->ro_rt
);
695 u_short fport
= sin
->sin_port
;
698 ia
= ifatoia(ifa_ifwithdstaddr(sintosa(sin
)));
700 ia
= ifatoia(ifa_ifwithnet_scoped(sintosa(sin
),
703 sin
->sin_port
= fport
;
705 lck_rw_lock_shared(in_ifaddr_rwlock
);
706 ia
= TAILQ_FIRST(&in_ifaddrhead
);
709 lck_rw_done(in_ifaddr_rwlock
);
712 return (EADDRNOTAVAIL
);
715 * If the destination address is multicast and an outgoing
716 * interface has been set as a multicast option, use the
717 * address of that interface as our source address.
719 if (IN_MULTICAST(ntohl(sin
->sin_addr
.s_addr
)) &&
720 inp
->inp_moptions
!= NULL
) {
721 struct ip_moptions
*imo
;
724 imo
= inp
->inp_moptions
;
725 if (imo
->imo_multicast_ifp
!= NULL
&& (ia
== NULL
||
726 ia
->ia_ifp
!= imo
->imo_multicast_ifp
)) {
727 ifp
= imo
->imo_multicast_ifp
;
729 ifafree(&ia
->ia_ifa
);
730 lck_rw_lock_shared(in_ifaddr_rwlock
);
731 TAILQ_FOREACH(ia
, &in_ifaddrhead
, ia_link
) {
732 if (ia
->ia_ifp
== ifp
)
737 lck_rw_done(in_ifaddr_rwlock
);
739 return (EADDRNOTAVAIL
);
743 * Don't do pcblookup call here; return interface in plocal_sin
744 * and exit to caller, that will do the lookup.
746 *plocal_sin
= &ia
->ia_addr
;
747 ifafree(&ia
->ia_ifa
);
754 * Connect from a socket to a specified address.
755 * Both address and port must be specified in argument sin.
756 * If don't have a local address for this socket yet,
760 in_pcbconnect(struct inpcb
*inp
, struct sockaddr
*nam
, struct proc
*p
)
762 struct sockaddr_in
*ifaddr
;
763 struct sockaddr_in
*sin
= (struct sockaddr_in
*)nam
;
768 * Call inner routine, to assign local interface address.
770 if ((error
= in_pcbladdr(inp
, nam
, &ifaddr
)) != 0)
773 socket_unlock(inp
->inp_socket
, 0);
774 pcb
= in_pcblookup_hash(inp
->inp_pcbinfo
, sin
->sin_addr
, sin
->sin_port
,
775 inp
->inp_laddr
.s_addr
? inp
->inp_laddr
: ifaddr
->sin_addr
,
776 inp
->inp_lport
, 0, NULL
);
777 socket_lock(inp
->inp_socket
, 0);
779 in_pcb_checkstate(pcb
, WNT_RELEASE
, pcb
== inp
? 1 : 0);
782 if (inp
->inp_laddr
.s_addr
== INADDR_ANY
) {
783 if (inp
->inp_lport
== 0) {
784 error
= in_pcbbind(inp
, (struct sockaddr
*)0, p
);
788 if (!lck_rw_try_lock_exclusive(inp
->inp_pcbinfo
->mtx
)) {
789 /*lock inversion issue, mostly with udp multicast packets */
790 socket_unlock(inp
->inp_socket
, 0);
791 lck_rw_lock_exclusive(inp
->inp_pcbinfo
->mtx
);
792 socket_lock(inp
->inp_socket
, 0);
794 inp
->inp_laddr
= ifaddr
->sin_addr
;
795 inp
->inp_flags
|= INP_INADDR_ANY
;
798 if (!lck_rw_try_lock_exclusive(inp
->inp_pcbinfo
->mtx
)) {
799 /*lock inversion issue, mostly with udp multicast packets */
800 socket_unlock(inp
->inp_socket
, 0);
801 lck_rw_lock_exclusive(inp
->inp_pcbinfo
->mtx
);
802 socket_lock(inp
->inp_socket
, 0);
805 inp
->inp_faddr
= sin
->sin_addr
;
806 inp
->inp_fport
= sin
->sin_port
;
808 lck_rw_done(inp
->inp_pcbinfo
->mtx
);
813 in_pcbdisconnect(struct inpcb
*inp
)
816 inp
->inp_faddr
.s_addr
= INADDR_ANY
;
819 if (!lck_rw_try_lock_exclusive(inp
->inp_pcbinfo
->mtx
)) {
820 /*lock inversion issue, mostly with udp multicast packets */
821 socket_unlock(inp
->inp_socket
, 0);
822 lck_rw_lock_exclusive(inp
->inp_pcbinfo
->mtx
);
823 socket_lock(inp
->inp_socket
, 0);
827 lck_rw_done(inp
->inp_pcbinfo
->mtx
);
829 if (inp
->inp_socket
->so_state
& SS_NOFDREF
)
834 in_pcbdetach(struct inpcb
*inp
)
836 struct socket
*so
= inp
->inp_socket
;
838 if (so
->so_pcb
== 0) { /* we've been called twice */
839 panic("in_pcbdetach: inp=%p so=%p proto=%d so_pcb is null!\n",
840 inp
, so
, so
->so_proto
->pr_protocol
);
844 if (ipsec_bypass
== 0) {
845 ipsec4_delete_pcbpolicy(inp
);
849 /* mark socket state as dead */
850 if (in_pcb_checkstate(inp
, WNT_STOPUSING
, 1) != WNT_STOPUSING
)
851 panic("in_pcbdetach so=%p prot=%x couldn't set to STOPUSING\n", so
, so
->so_proto
->pr_protocol
);
854 if (so
->cached_in_sock_layer
)
855 printf("in_pcbdetach for cached socket %x flags=%x\n", so
, so
->so_flags
);
857 printf("in_pcbdetach for allocated socket %x flags=%x\n", so
, so
->so_flags
);
859 if ((so
->so_flags
& SOF_PCBCLEARING
) == 0) {
863 if (inp
->inp_options
)
864 (void)m_free(inp
->inp_options
);
865 if ((rt
= inp
->inp_route
.ro_rt
) != NULL
) {
866 inp
->inp_route
.ro_rt
= NULL
;
869 ip_freemoptions(inp
->inp_moptions
);
870 inp
->inp_moptions
= NULL
;
871 sofreelastref(so
, 0);
872 inp
->inp_state
= INPCB_STATE_DEAD
;
873 so
->so_flags
|= SOF_PCBCLEARING
; /* makes sure we're not called twice from so_close */
879 in_pcbdispose(struct inpcb
*inp
)
881 struct socket
*so
= inp
->inp_socket
;
882 struct inpcbinfo
*ipi
= inp
->inp_pcbinfo
;
885 if (inp
->inp_state
!= INPCB_STATE_DEAD
) {
886 printf("in_pcbdispose: not dead yet? so=%p\n", so
);
890 if (so
&& so
->so_usecount
!= 0)
891 panic("in_pcbdispose: use count=%x so=%p\n", so
->so_usecount
, so
);
893 lck_rw_assert(ipi
->mtx
, LCK_RW_ASSERT_EXCLUSIVE
);
895 inp
->inp_gencnt
= ++ipi
->ipi_gencnt
;
896 /*### access ipi in in_pcbremlists */
900 if (so
->so_proto
->pr_flags
& PR_PCBLOCK
) {
901 sofreelastref(so
, 0);
902 if (so
->so_rcv
.sb_cc
|| so
->so_snd
.sb_cc
) {
904 printf("in_pcbdispose sb not cleaned up so=%p rc_cci=%x snd_cc=%x\n",
905 so
, so
->so_rcv
.sb_cc
, so
->so_snd
.sb_cc
);
907 sbrelease(&so
->so_rcv
);
908 sbrelease(&so
->so_snd
);
910 if (so
->so_head
!= NULL
)
911 panic("in_pcbdispose, so=%p head still exist\n", so
);
912 lck_mtx_unlock(inp
->inpcb_mtx
);
913 lck_mtx_free(inp
->inpcb_mtx
, ipi
->mtx_grp
);
915 so
->so_flags
|= SOF_PCBCLEARING
; /* makes sure we're not called twice from so_close */
916 so
->so_saved_pcb
= (caddr_t
) inp
;
920 mac_inpcb_label_destroy(inp
);
923 * In case there a route cached after a detach (possible
924 * in the tcp case), make sure that it is freed before
925 * we deallocate the structure.
927 if (inp
->inp_route
.ro_rt
!= NULL
) {
928 rtfree(inp
->inp_route
.ro_rt
);
929 inp
->inp_route
.ro_rt
= NULL
;
931 if (so
->cached_in_sock_layer
== 0) {
932 zfree(ipi
->ipi_zone
, inp
);
938 printf("in_pcbdispose: no socket for inp=%p\n", inp
);
943 * The calling convention of in_setsockaddr() and in_setpeeraddr() was
944 * modified to match the pru_sockaddr() and pru_peeraddr() entry points
945 * in struct pr_usrreqs, so that protocols can just reference then directly
946 * without the need for a wrapper function. The socket must have a valid
947 * (i.e., non-nil) PCB, but it should be impossible to get an invalid one
948 * except through a kernel programming error, so it is acceptable to panic
949 * (or in this case trap) if the PCB is invalid. (Actually, we don't trap
950 * because there actually /is/ a programming error somewhere... XXX)
953 * ENOBUFS No buffer space available
954 * ECONNRESET Connection reset
957 in_setsockaddr(struct socket
*so
, struct sockaddr
**nam
)
960 struct sockaddr_in
*sin
;
963 * Do the malloc first in case it blocks.
965 MALLOC(sin
, struct sockaddr_in
*, sizeof *sin
, M_SONAME
, M_WAITOK
);
968 bzero(sin
, sizeof *sin
);
969 sin
->sin_family
= AF_INET
;
970 sin
->sin_len
= sizeof(*sin
);
977 sin
->sin_port
= inp
->inp_lport
;
978 sin
->sin_addr
= inp
->inp_laddr
;
980 *nam
= (struct sockaddr
*)sin
;
985 in_setpeeraddr(struct socket
*so
, struct sockaddr
**nam
)
988 struct sockaddr_in
*sin
;
991 * Do the malloc first in case it blocks.
993 MALLOC(sin
, struct sockaddr_in
*, sizeof *sin
, M_SONAME
, M_WAITOK
);
996 bzero((caddr_t
)sin
, sizeof (*sin
));
997 sin
->sin_family
= AF_INET
;
998 sin
->sin_len
= sizeof(*sin
);
1000 inp
= sotoinpcb(so
);
1002 FREE(sin
, M_SONAME
);
1005 sin
->sin_port
= inp
->inp_fport
;
1006 sin
->sin_addr
= inp
->inp_faddr
;
1008 *nam
= (struct sockaddr
*)sin
;
1013 in_pcbnotifyall(struct inpcbinfo
*pcbinfo
, struct in_addr faddr
,
1014 int errno
, void (*notify
)(struct inpcb
*, int))
1018 lck_rw_lock_shared(pcbinfo
->mtx
);
1020 LIST_FOREACH(inp
, pcbinfo
->listhead
, inp_list
) {
1022 if ((inp
->inp_vflag
& INP_IPV4
) == 0)
1025 if (inp
->inp_faddr
.s_addr
!= faddr
.s_addr
||
1026 inp
->inp_socket
== NULL
)
1028 if (in_pcb_checkstate(inp
, WNT_ACQUIRE
, 0) == WNT_STOPUSING
)
1030 socket_lock(inp
->inp_socket
, 1);
1031 (*notify
)(inp
, errno
);
1032 (void)in_pcb_checkstate(inp
, WNT_RELEASE
, 1);
1033 socket_unlock(inp
->inp_socket
, 1);
1035 lck_rw_done(pcbinfo
->mtx
);
1039 * Check for alternatives when higher level complains
1040 * about service problems. For now, invalidate cached
1041 * routing information. If the route was created dynamically
1042 * (by a redirect), time to try a default gateway again.
1045 in_losing(struct inpcb
*inp
)
1048 struct rt_addrinfo info
;
1050 if ((rt
= inp
->inp_route
.ro_rt
) != NULL
) {
1051 struct in_ifaddr
*ia
;
1053 bzero((caddr_t
)&info
, sizeof(info
));
1055 info
.rti_info
[RTAX_DST
] =
1056 (struct sockaddr
*)&inp
->inp_route
.ro_dst
;
1057 info
.rti_info
[RTAX_GATEWAY
] = rt
->rt_gateway
;
1058 info
.rti_info
[RTAX_NETMASK
] = rt_mask(rt
);
1059 rt_missmsg(RTM_LOSING
, &info
, rt
->rt_flags
, 0);
1060 if (rt
->rt_flags
& RTF_DYNAMIC
) {
1062 * Prevent another thread from modifying rt_key,
1063 * rt_gateway via rt_setgate() after rt_lock is
1064 * dropped by marking the route as defunct.
1066 rt
->rt_flags
|= RTF_CONDEMNED
;
1068 (void) rtrequest(RTM_DELETE
, rt_key(rt
),
1069 rt
->rt_gateway
, rt_mask(rt
), rt
->rt_flags
,
1070 (struct rtentry
**)0);
1074 /* if the address is gone keep the old route in the pcb */
1075 if ((ia
= ifa_foraddr(inp
->inp_laddr
.s_addr
)) != NULL
) {
1076 inp
->inp_route
.ro_rt
= NULL
;
1078 ifafree(&ia
->ia_ifa
);
1081 * A new route can be allocated
1082 * the next time output is attempted.
1088 * After a routing change, flush old routing
1089 * and allocate a (hopefully) better one.
1092 in_rtchange(struct inpcb
*inp
, __unused
int errno
)
1096 if ((rt
= inp
->inp_route
.ro_rt
) != NULL
) {
1097 struct in_ifaddr
*ia
;
1099 if ((ia
= ifa_foraddr(inp
->inp_laddr
.s_addr
)) == NULL
) {
1100 return; /* we can't remove the route now. not sure if still ok to use src */
1102 ifafree(&ia
->ia_ifa
);
1104 inp
->inp_route
.ro_rt
= NULL
;
1106 * A new route can be allocated the next time
1107 * output is attempted.
1113 * Lookup a PCB based on the local address and port.
1116 in_pcblookup_local(struct inpcbinfo
*pcbinfo
, struct in_addr laddr
,
1117 unsigned int lport_arg
, int wild_okay
)
1120 int matchwild
= 3, wildcard
;
1121 u_short lport
= lport_arg
;
1123 KERNEL_DEBUG(DBG_FNC_PCB_LOOKUP
| DBG_FUNC_START
, 0,0,0,0,0);
1126 struct inpcbhead
*head
;
1128 * Look for an unconnected (wildcard foreign addr) PCB that
1129 * matches the local address and port we're looking for.
1131 head
= &pcbinfo
->hashbase
[INP_PCBHASH(INADDR_ANY
, lport
, 0, pcbinfo
->hashmask
)];
1132 LIST_FOREACH(inp
, head
, inp_hash
) {
1134 if ((inp
->inp_vflag
& INP_IPV4
) == 0)
1137 if (inp
->inp_faddr
.s_addr
== INADDR_ANY
&&
1138 inp
->inp_laddr
.s_addr
== laddr
.s_addr
&&
1139 inp
->inp_lport
== lport
) {
1149 KERNEL_DEBUG(DBG_FNC_PCB_LOOKUP
| DBG_FUNC_END
, 0,0,0,0,0);
1152 struct inpcbporthead
*porthash
;
1153 struct inpcbport
*phd
;
1154 struct inpcb
*match
= NULL
;
1156 * Best fit PCB lookup.
1158 * First see if this local port is in use by looking on the
1161 porthash
= &pcbinfo
->porthashbase
[INP_PCBPORTHASH(lport
,
1162 pcbinfo
->porthashmask
)];
1163 LIST_FOREACH(phd
, porthash
, phd_hash
) {
1164 if (phd
->phd_port
== lport
)
1169 * Port is in use by one or more PCBs. Look for best
1172 LIST_FOREACH(inp
, &phd
->phd_pcblist
, inp_portlist
) {
1175 if ((inp
->inp_vflag
& INP_IPV4
) == 0)
1178 if (inp
->inp_faddr
.s_addr
!= INADDR_ANY
)
1180 if (inp
->inp_laddr
.s_addr
!= INADDR_ANY
) {
1181 if (laddr
.s_addr
== INADDR_ANY
)
1183 else if (inp
->inp_laddr
.s_addr
!= laddr
.s_addr
)
1186 if (laddr
.s_addr
!= INADDR_ANY
)
1189 if (wildcard
< matchwild
) {
1191 matchwild
= wildcard
;
1192 if (matchwild
== 0) {
1198 KERNEL_DEBUG(DBG_FNC_PCB_LOOKUP
| DBG_FUNC_END
, match
,0,0,0,0);
1204 * Lookup PCB in hash list.
1208 struct inpcbinfo
*pcbinfo
,
1209 struct in_addr faddr
,
1211 struct in_addr laddr
,
1214 __unused
struct ifnet
*ifp
)
1216 struct inpcbhead
*head
;
1218 u_short fport
= fport_arg
, lport
= lport_arg
;
1221 * We may have found the pcb in the last lookup - check this first.
1224 lck_rw_lock_shared(pcbinfo
->mtx
);
1227 * First look for an exact match.
1229 head
= &pcbinfo
->hashbase
[INP_PCBHASH(faddr
.s_addr
, lport
, fport
, pcbinfo
->hashmask
)];
1230 LIST_FOREACH(inp
, head
, inp_hash
) {
1232 if ((inp
->inp_vflag
& INP_IPV4
) == 0)
1235 if (inp
->inp_faddr
.s_addr
== faddr
.s_addr
&&
1236 inp
->inp_laddr
.s_addr
== laddr
.s_addr
&&
1237 inp
->inp_fport
== fport
&&
1238 inp
->inp_lport
== lport
) {
1242 if (in_pcb_checkstate(inp
, WNT_ACQUIRE
, 0) != WNT_STOPUSING
) {
1243 lck_rw_done(pcbinfo
->mtx
);
1246 else { /* it's there but dead, say it isn't found */
1247 lck_rw_done(pcbinfo
->mtx
);
1253 struct inpcb
*local_wild
= NULL
;
1255 struct inpcb
*local_wild_mapped
= NULL
;
1258 head
= &pcbinfo
->hashbase
[INP_PCBHASH(INADDR_ANY
, lport
, 0, pcbinfo
->hashmask
)];
1259 LIST_FOREACH(inp
, head
, inp_hash
) {
1261 if ((inp
->inp_vflag
& INP_IPV4
) == 0)
1264 if (inp
->inp_faddr
.s_addr
== INADDR_ANY
&&
1265 inp
->inp_lport
== lport
) {
1266 #if defined(NFAITH) && NFAITH > 0
1267 if (ifp
&& ifp
->if_type
== IFT_FAITH
&&
1268 (inp
->inp_flags
& INP_FAITH
) == 0)
1271 if (inp
->inp_laddr
.s_addr
== laddr
.s_addr
) {
1272 if (in_pcb_checkstate(inp
, WNT_ACQUIRE
, 0) != WNT_STOPUSING
) {
1273 lck_rw_done(pcbinfo
->mtx
);
1276 else { /* it's there but dead, say it isn't found */
1277 lck_rw_done(pcbinfo
->mtx
);
1281 else if (inp
->inp_laddr
.s_addr
== INADDR_ANY
) {
1283 if (INP_CHECK_SOCKAF(inp
->inp_socket
,
1285 local_wild_mapped
= inp
;
1292 if (local_wild
== NULL
) {
1294 if (local_wild_mapped
!= NULL
) {
1295 if (in_pcb_checkstate(local_wild_mapped
, WNT_ACQUIRE
, 0) != WNT_STOPUSING
) {
1296 lck_rw_done(pcbinfo
->mtx
);
1297 return (local_wild_mapped
);
1299 else { /* it's there but dead, say it isn't found */
1300 lck_rw_done(pcbinfo
->mtx
);
1305 lck_rw_done(pcbinfo
->mtx
);
1308 if (in_pcb_checkstate(local_wild
, WNT_ACQUIRE
, 0) != WNT_STOPUSING
) {
1309 lck_rw_done(pcbinfo
->mtx
);
1310 return (local_wild
);
1312 else { /* it's there but dead, say it isn't found */
1313 lck_rw_done(pcbinfo
->mtx
);
1321 lck_rw_done(pcbinfo
->mtx
);
1326 * Insert PCB onto various hash lists.
1329 in_pcbinshash(struct inpcb
*inp
, int locked
)
1331 struct inpcbhead
*pcbhash
;
1332 struct inpcbporthead
*pcbporthash
;
1333 struct inpcbinfo
*pcbinfo
= inp
->inp_pcbinfo
;
1334 struct inpcbport
*phd
;
1335 u_int32_t hashkey_faddr
;
1338 if (!lck_rw_try_lock_exclusive(pcbinfo
->mtx
)) {
1339 /*lock inversion issue, mostly with udp multicast packets */
1340 socket_unlock(inp
->inp_socket
, 0);
1341 lck_rw_lock_exclusive(pcbinfo
->mtx
);
1342 socket_lock(inp
->inp_socket
, 0);
1347 if (inp
->inp_vflag
& INP_IPV6
)
1348 hashkey_faddr
= inp
->in6p_faddr
.s6_addr32
[3] /* XXX */;
1351 hashkey_faddr
= inp
->inp_faddr
.s_addr
;
1353 inp
->hash_element
= INP_PCBHASH(hashkey_faddr
, inp
->inp_lport
, inp
->inp_fport
, pcbinfo
->hashmask
);
1355 pcbhash
= &pcbinfo
->hashbase
[inp
->hash_element
];
1357 pcbporthash
= &pcbinfo
->porthashbase
[INP_PCBPORTHASH(inp
->inp_lport
,
1358 pcbinfo
->porthashmask
)];
1361 * Go through port list and look for a head for this lport.
1363 LIST_FOREACH(phd
, pcbporthash
, phd_hash
) {
1364 if (phd
->phd_port
== inp
->inp_lport
)
1368 * If none exists, malloc one and tack it on.
1371 MALLOC(phd
, struct inpcbport
*, sizeof(struct inpcbport
), M_PCB
, M_WAITOK
);
1374 lck_rw_done(pcbinfo
->mtx
);
1375 return (ENOBUFS
); /* XXX */
1377 phd
->phd_port
= inp
->inp_lport
;
1378 LIST_INIT(&phd
->phd_pcblist
);
1379 LIST_INSERT_HEAD(pcbporthash
, phd
, phd_hash
);
1382 LIST_INSERT_HEAD(&phd
->phd_pcblist
, inp
, inp_portlist
);
1383 LIST_INSERT_HEAD(pcbhash
, inp
, inp_hash
);
1385 lck_rw_done(pcbinfo
->mtx
);
1390 * Move PCB to the proper hash bucket when { faddr, fport } have been
1391 * changed. NOTE: This does not handle the case of the lport changing (the
1392 * hashed port list would have to be updated as well), so the lport must
1393 * not change after in_pcbinshash() has been called.
1396 in_pcbrehash(struct inpcb
*inp
)
1398 struct inpcbhead
*head
;
1399 u_int32_t hashkey_faddr
;
1402 if (inp
->inp_vflag
& INP_IPV6
)
1403 hashkey_faddr
= inp
->in6p_faddr
.s6_addr32
[3] /* XXX */;
1406 hashkey_faddr
= inp
->inp_faddr
.s_addr
;
1407 inp
->hash_element
= INP_PCBHASH(hashkey_faddr
, inp
->inp_lport
,
1408 inp
->inp_fport
, inp
->inp_pcbinfo
->hashmask
);
1409 head
= &inp
->inp_pcbinfo
->hashbase
[inp
->hash_element
];
1411 LIST_REMOVE(inp
, inp_hash
);
1412 LIST_INSERT_HEAD(head
, inp
, inp_hash
);
1416 * Remove PCB from various lists.
1418 //###LOCK must be called with list lock held
1420 in_pcbremlists(struct inpcb
*inp
)
1422 inp
->inp_gencnt
= ++inp
->inp_pcbinfo
->ipi_gencnt
;
1424 if (inp
->inp_lport
) {
1425 struct inpcbport
*phd
= inp
->inp_phd
;
1427 LIST_REMOVE(inp
, inp_hash
);
1428 LIST_REMOVE(inp
, inp_portlist
);
1429 if (phd
!= NULL
&& (LIST_FIRST(&phd
->phd_pcblist
) == NULL
)) {
1430 LIST_REMOVE(phd
, phd_hash
);
1434 LIST_REMOVE(inp
, inp_list
);
1435 inp
->inp_pcbinfo
->ipi_count
--;
1438 /* Mechanism used to defer the memory release of PCBs
1439 * The pcb list will contain the pcb until the ripper can clean it up if
1440 * the following conditions are met: 1) state "DEAD", 2) wantcnt is STOPUSING
1441 * 3) usecount is null
1442 * This function will be called to either mark the pcb as
1445 in_pcb_checkstate(struct inpcb
*pcb
, int mode
, int locked
)
1448 volatile UInt32
*wantcnt
= (volatile UInt32
*)&pcb
->inp_wantcnt
;
1454 case WNT_STOPUSING
: /* try to mark the pcb as ready for recycling */
1456 /* compareswap with STOPUSING, if success we're good, if it's in use, will be marked later */
1459 socket_lock(pcb
->inp_socket
, 1);
1460 pcb
->inp_state
= INPCB_STATE_DEAD
;
1462 if (pcb
->inp_socket
->so_usecount
< 0)
1463 panic("in_pcb_checkstate STOP pcb=%p so=%p usecount is negative\n", pcb
, pcb
->inp_socket
);
1465 socket_unlock(pcb
->inp_socket
, 1);
1467 origwant
= *wantcnt
;
1468 if ((UInt16
) origwant
== 0xffff ) /* should stop using */
1469 return (WNT_STOPUSING
);
1471 if ((UInt16
) origwant
== 0) {/* try to mark it as unsuable now */
1472 OSCompareAndSwap(origwant
, newwant
, wantcnt
) ;
1474 return (WNT_STOPUSING
);
1477 case WNT_ACQUIRE
: /* try to increase reference to pcb */
1478 /* if WNT_STOPUSING should bail out */
1480 * if socket state DEAD, try to set count to STOPUSING, return failed
1481 * otherwise increase cnt
1484 origwant
= *wantcnt
;
1485 if ((UInt16
) origwant
== 0xffff ) {/* should stop using */
1486 // printf("in_pcb_checkstate: ACQ PCB was STOPUSING while release. odd pcb=%p\n", pcb);
1487 return (WNT_STOPUSING
);
1489 newwant
= origwant
+ 1;
1490 } while (!OSCompareAndSwap(origwant
, newwant
, wantcnt
));
1491 return (WNT_ACQUIRE
);
1494 case WNT_RELEASE
: /* release reference. if result is null and pcb state is DEAD,
1495 set wanted bit to STOPUSING
1499 socket_lock(pcb
->inp_socket
, 1);
1502 origwant
= *wantcnt
;
1503 if ((UInt16
) origwant
== 0x0 )
1504 panic("in_pcb_checkstate pcb=%p release with zero count", pcb
);
1505 if ((UInt16
) origwant
== 0xffff ) {/* should stop using */
1507 printf("in_pcb_checkstate: REL PCB was STOPUSING while release. odd pcb=%p\n", pcb
);
1510 socket_unlock(pcb
->inp_socket
, 1);
1511 return (WNT_STOPUSING
);
1513 newwant
= origwant
- 1;
1514 } while (!OSCompareAndSwap(origwant
, newwant
, wantcnt
));
1516 if (pcb
->inp_state
== INPCB_STATE_DEAD
)
1518 if (pcb
->inp_socket
->so_usecount
< 0)
1519 panic("in_pcb_checkstate RELEASE pcb=%p so=%p usecount is negative\n", pcb
, pcb
->inp_socket
);
1522 socket_unlock(pcb
->inp_socket
, 1);
1523 return (WNT_RELEASE
);
1528 panic("in_pcb_checkstate: so=%p not a valid state =%x\n", pcb
->inp_socket
, mode
);
1536 * inpcb_to_compat copies specific bits of an inpcb to a inpcb_compat.
1537 * The inpcb_compat data structure is passed to user space and must
1538 * not change. We intentionally avoid copying pointers.
1543 struct inpcb_compat
*inp_compat
)
1545 bzero(inp_compat
, sizeof(*inp_compat
));
1546 inp_compat
->inp_fport
= inp
->inp_fport
;
1547 inp_compat
->inp_lport
= inp
->inp_lport
;
1548 inp_compat
->nat_owner
= inp
->nat_owner
;
1549 inp_compat
->nat_cookie
= inp
->nat_cookie
;
1550 inp_compat
->inp_gencnt
= inp
->inp_gencnt
;
1551 inp_compat
->inp_flags
= inp
->inp_flags
;
1552 inp_compat
->inp_flow
= inp
->inp_flow
;
1553 inp_compat
->inp_vflag
= inp
->inp_vflag
;
1554 inp_compat
->inp_ip_ttl
= inp
->inp_ip_ttl
;
1555 inp_compat
->inp_ip_p
= inp
->inp_ip_p
;
1556 inp_compat
->inp_dependfaddr
.inp6_foreign
= inp
->inp_dependfaddr
.inp6_foreign
;
1557 inp_compat
->inp_dependladdr
.inp6_local
= inp
->inp_dependladdr
.inp6_local
;
1558 inp_compat
->inp_depend4
.inp4_ip_tos
= inp
->inp_depend4
.inp4_ip_tos
;
1559 inp_compat
->inp_depend6
.inp6_hlim
= inp
->inp_depend6
.inp6_hlim
;
1560 inp_compat
->inp_depend6
.inp6_cksum
= inp
->inp_depend6
.inp6_cksum
;
1561 inp_compat
->inp_depend6
.inp6_ifindex
= inp
->inp_depend6
.inp6_ifindex
;
1562 inp_compat
->inp_depend6
.inp6_hops
= inp
->inp_depend6
.inp6_hops
;
1565 #if !CONFIG_EMBEDDED
1570 struct xinpcb64
*xinp
)
1572 xinp
->inp_fport
= inp
->inp_fport
;
1573 xinp
->inp_lport
= inp
->inp_lport
;
1574 xinp
->inp_gencnt
= inp
->inp_gencnt
;
1575 xinp
->inp_flags
= inp
->inp_flags
;
1576 xinp
->inp_flow
= inp
->inp_flow
;
1577 xinp
->inp_vflag
= inp
->inp_vflag
;
1578 xinp
->inp_ip_ttl
= inp
->inp_ip_ttl
;
1579 xinp
->inp_ip_p
= inp
->inp_ip_p
;
1580 xinp
->inp_dependfaddr
.inp6_foreign
= inp
->inp_dependfaddr
.inp6_foreign
;
1581 xinp
->inp_dependladdr
.inp6_local
= inp
->inp_dependladdr
.inp6_local
;
1582 xinp
->inp_depend4
.inp4_ip_tos
= inp
->inp_depend4
.inp4_ip_tos
;
1583 xinp
->inp_depend6
.inp6_hlim
= inp
->inp_depend6
.inp6_hlim
;
1584 xinp
->inp_depend6
.inp6_cksum
= inp
->inp_depend6
.inp6_cksum
;
1585 xinp
->inp_depend6
.inp6_ifindex
= inp
->inp_depend6
.inp6_ifindex
;
1586 xinp
->inp_depend6
.inp6_hops
= inp
->inp_depend6
.inp6_hops
;
1589 #endif /* !CONFIG_EMBEDDED */
1592 * The following routines implement this scheme:
1594 * Callers of ip_output() that intend to cache the route in the inpcb pass
1595 * a local copy of the struct route to ip_output(). Using a local copy of
1596 * the cached route significantly simplifies things as IP no longer has to
1597 * worry about having exclusive access to the passed in struct route, since
1598 * it's defined in the caller's stack; in essence, this allows for a lock-
1599 * less operation when updating the struct route at the IP level and below,
1600 * whenever necessary. The scheme works as follows:
1602 * Prior to dropping the socket's lock and calling ip_output(), the caller
1603 * copies the struct route from the inpcb into its stack, and adds a reference
1604 * to the cached route entry, if there was any. The socket's lock is then
1605 * dropped and ip_output() is called with a pointer to the copy of struct
1606 * route defined on the stack (not to the one in the inpcb.)
1608 * Upon returning from ip_output(), the caller then acquires the socket's
1609 * lock and synchronizes the cache; if there is no route cached in the inpcb,
1610 * it copies the local copy of struct route (which may or may not contain any
1611 * route) back into the cache; otherwise, if the inpcb has a route cached in
1612 * it, the one in the local copy will be freed, if there's any. Trashing the
1613 * cached route in the inpcb can be avoided because ip_output() is single-
1614 * threaded per-PCB (i.e. multiple transmits on a PCB are always serialized
1615 * by the socket/transport layer.)
1618 inp_route_copyout(struct inpcb
*inp
, struct route
*dst
)
1620 struct route
*src
= &inp
->inp_route
;
1622 lck_mtx_assert(inp
->inpcb_mtx
, LCK_MTX_ASSERT_OWNED
);
1625 * If the route in the PCB is not for IPv4, blow it away;
1626 * this is possible in the case of IPv4-mapped address case.
1628 if (src
->ro_rt
!= NULL
&& rt_key(src
->ro_rt
)->sa_family
!= AF_INET
) {
1633 /* Copy everything (rt, dst, flags) from PCB */
1634 bcopy(src
, dst
, sizeof (*dst
));
1636 /* Hold one reference for the local copy of struct route */
1637 if (dst
->ro_rt
!= NULL
)
1638 RT_ADDREF(dst
->ro_rt
);
1642 inp_route_copyin(struct inpcb
*inp
, struct route
*src
)
1644 struct route
*dst
= &inp
->inp_route
;
1646 lck_mtx_assert(inp
->inpcb_mtx
, LCK_MTX_ASSERT_OWNED
);
1648 /* Minor sanity check */
1649 if (src
->ro_rt
!= NULL
&& rt_key(src
->ro_rt
)->sa_family
!= AF_INET
)
1650 panic("%s: wrong or corrupted route: %p", __func__
, src
);
1652 /* No cached route in the PCB? */
1653 if (dst
->ro_rt
== NULL
) {
1655 * Copy everything (rt, dst, flags) from ip_output();
1656 * the reference to the route was held at the time
1657 * it was allocated and is kept intact.
1659 bcopy(src
, dst
, sizeof (*dst
));
1660 } else if (src
->ro_rt
!= NULL
) {
1662 * If the same, update just the ro_flags and ditch the one
1663 * in the local copy. Else ditch the one that is currently
1664 * cached, and cache what we got back from ip_output().
1666 if (dst
->ro_rt
== src
->ro_rt
) {
1667 dst
->ro_flags
= src
->ro_flags
;
1672 bcopy(src
, dst
, sizeof (*dst
));