2 * Copyright (c) 2013 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 #include <mach/mach_types.h>
30 #include <mach/machine.h>
32 #include <machine/machine_routines.h>
33 #include <machine/sched_param.h>
34 #include <machine/machine_cpu.h>
36 #include <kern/kern_types.h>
37 #include <kern/debug.h>
38 #include <kern/mach_param.h>
39 #include <kern/machine.h>
40 #include <kern/misc_protos.h>
41 #include <kern/processor.h>
42 #include <kern/queue.h>
43 #include <kern/sched.h>
44 #include <kern/sched_prim.h>
45 #include <kern/task.h>
46 #include <kern/thread.h>
48 #include <sys/kdebug.h>
53 * How does the task scheduler work?
55 * It schedules threads across a few levels.
57 * RT threads are dealt with above us
58 * Bound threads go into the per-processor runq
59 * Non-bound threads are linked on their task's sched_group's runq
60 * sched_groups' sched_entries are linked on the pset's runq
62 * TODO: make this explicit - bound threads should have a different enqueue fxn
64 * When we choose a new thread, we will decide whether to look at the bound runqueue, the global runqueue
65 * or the current group's runqueue, then dequeue the next thread in that runqueue.
67 * We then manipulate the sched_entries to reflect the invariant that:
68 * Each non-empty priority level in a group's runq is represented by one sched_entry enqueued in the global
71 * A sched_entry represents a chance at running - for each priority in each task, there is one chance of getting
72 * to run. This reduces the excess contention bonus given to processes which have work spread among many threads
73 * as compared to processes which do the same amount of work under fewer threads.
75 * NOTE: Currently, the multiq scheduler only supports one pset.
77 * NOTE ABOUT thread->sched_pri:
79 * It can change after enqueue - it's changed without pset lock but with thread lock if thread->runq is 0.
80 * Therefore we can only depend on it not changing during the enqueue and remove path, not the dequeue.
82 * TODO: Future features:
84 * Decouple the task priority from the sched_entry priority, allowing for:
85 * fast task priority change without having to iterate and re-dispatch all threads in the task.
86 * i.e. task-wide priority, task-wide boosting
87 * fancier group decay features
89 * Group (or task) decay:
90 * Decay is used for a few different things:
91 * Prioritizing latency-needing threads over throughput-needing threads for time-to-running
92 * Balancing work between threads in a process
93 * Balancing work done at the same priority between different processes
94 * Recovering from priority inversions between two threads in the same process
95 * Recovering from priority inversions between two threads in different processes
96 * Simulating a proportional share scheduler by allowing lower priority threads
97 * to run for a certain percentage of the time
99 * Task decay lets us separately address the 'same process' and 'different process' needs,
100 * which will allow us to make smarter tradeoffs in different cases.
101 * For example, we could resolve priority inversion in the same process by reordering threads without dropping the
102 * process below low priority threads in other processes.
104 * One lock to rule them all (or at least all the runqueues) instead of the pset locks
106 * Shrink sched_entry size to the size of a queue_chain_t by inferring priority, group, and perhaps runq field.
107 * The entries array is 5K currently so it'd be really great to reduce.
108 * One way to get sched_group below 4K without a new runq structure would be to remove the extra queues above realtime.
110 * When preempting a processor, store a flag saying if the preemption
111 * was from a thread in the same group or different group,
112 * and tell choose_thread about it.
114 * When choosing a processor, bias towards those running in the same
115 * group as I am running (at the same priority, or within a certain band?).
117 * Decide if we need to support psets.
118 * Decide how to support psets - do we need duplicate entries for each pset,
119 * or can we get away with putting the entry in either one or the other pset?
121 * Consider the right way to handle runq count - I don't want to iterate groups.
122 * Perhaps keep a global counter. sched_run_count will not work.
123 * Alternate option - remove it from choose_processor. It doesn't add much value
124 * now that we have global runq.
126 * Need a better way of finding group to target instead of looking at current_task.
127 * Perhaps choose_thread could pass in the current thread?
129 * Consider unifying runq copy-pastes.
131 * Thoughts on having a group central quantum bucket:
133 * I see two algorithms to decide quanta:
134 * A) Hand off only when switching thread to thread in the same group
135 * B) Allocate and return quanta to the group's pool
138 * If a task blocks completely, should it come back with the leftover quanta
139 * or brand new quanta?
141 * Should I put a flag saying zero out a quanta you grab when youre dispatched'?
144 * Handing off quanta between threads will help with jumping around in the current task
145 * but will not help when a thread from a different task is involved.
146 * Need an algorithm that works with round robin-ing between threads in different tasks
148 * But wait - round robining can only be triggered by quantum expire or blocking.
149 * We need something that works with preemption or yielding - that's the more interesting idea.
151 * Existing algorithm - preemption doesn't re-set quantum, puts thread on head of runq.
152 * Blocking or quantum expiration does re-set quantum, puts thread on tail of runq.
155 * Hand off quanta when hopping between threads with same sched_group
156 * Even if thread was blocked it uses last thread remaining quanta when it starts.
158 * If we use the only cycle entry at quantum algorithm, then the quantum pool starts getting
161 * A thought - perhaps the handoff approach doesn't work so well in the presence of
162 * non-handoff wakeups i.e. wake other thread then wait then block - doesn't mean that
163 * woken thread will be what I switch to - other processor may have stolen it.
164 * What do we do there?
167 * We currently don't know of a scenario where quantum buckets on the task is beneficial.
168 * We will instead handoff quantum between threads in the task, and keep quantum
169 * on the preempted thread if it's preempted by something outside the task.
173 #if DEBUG || DEVELOPMENT
174 #define MULTIQ_SANITY_CHECK
177 typedef struct sched_entry
{
179 int16_t sched_pri
; /* scheduled (current) priority */
184 typedef run_queue_t entry_queue_t
; /* A run queue that holds sched_entries instead of threads */
185 typedef run_queue_t group_runq_t
; /* A run queue that is part of a sched_group */
187 #define SCHED_ENTRY_NULL ((sched_entry_t) 0)
188 #define MULTIQ_ERUNQ (-4) /* Indicates entry is on the main runq */
190 /* Each level in the run queue corresponds to one entry in the entries array */
192 struct sched_entry entries
[NRQS
];
193 struct run_queue runq
;
194 queue_chain_t sched_groups
;
198 * Keep entry on the head of the runqueue while dequeueing threads.
199 * Only cycle it to the end of the runqueue when a thread in the task
202 static boolean_t deep_drain
= FALSE
;
204 /* Verify the consistency of the runq before touching it */
205 static boolean_t multiq_sanity_check
= FALSE
;
208 * Draining threads from the current task is preferred
209 * when they're less than X steps below the current
210 * global highest priority
212 #define DEFAULT_DRAIN_BAND_LIMIT MAXPRI
213 static integer_t drain_band_limit
;
216 * Don't go below this priority level if there is something above it in another task
218 #define DEFAULT_DRAIN_DEPTH_LIMIT MAXPRI_THROTTLE
219 static integer_t drain_depth_limit
;
222 * Don't favor the task when there's something above this priority in another task.
224 #define DEFAULT_DRAIN_CEILING BASEPRI_FOREGROUND
225 static integer_t drain_ceiling
;
227 static struct zone
*sched_group_zone
;
229 static uint64_t num_sched_groups
= 0;
230 static queue_head_t sched_groups
;
232 static lck_attr_t sched_groups_lock_attr
;
233 static lck_grp_t sched_groups_lock_grp
;
234 static lck_grp_attr_t sched_groups_lock_grp_attr
;
236 static lck_mtx_t sched_groups_lock
;
240 sched_multiq_init(void);
243 sched_multiq_steal_thread(processor_set_t pset
);
246 sched_multiq_thread_update_scan(sched_update_scan_context_t scan_context
);
249 sched_multiq_processor_enqueue(processor_t processor
, thread_t thread
, integer_t options
);
252 sched_multiq_processor_queue_remove(processor_t processor
, thread_t thread
);
255 sched_multiq_quantum_expire(thread_t thread
);
258 sched_multiq_processor_csw_check(processor_t processor
);
261 sched_multiq_processor_queue_has_priority(processor_t processor
, int priority
, boolean_t gte
);
264 sched_multiq_runq_count(processor_t processor
);
267 sched_multiq_processor_queue_empty(processor_t processor
);
270 sched_multiq_runq_stats_count_sum(processor_t processor
);
273 sched_multiq_processor_bound_count(processor_t processor
);
276 sched_multiq_pset_init(processor_set_t pset
);
279 sched_multiq_processor_init(processor_t processor
);
282 sched_multiq_choose_thread(processor_t processor
, int priority
, ast_t reason
);
285 sched_multiq_processor_queue_shutdown(processor_t processor
);
288 sched_multiq_initial_thread_sched_mode(task_t parent_task
);
290 const struct sched_dispatch_table sched_multiq_dispatch
= {
291 .sched_name
= "multiq",
292 .init
= sched_multiq_init
,
293 .timebase_init
= sched_timeshare_timebase_init
,
294 .processor_init
= sched_multiq_processor_init
,
295 .pset_init
= sched_multiq_pset_init
,
296 .maintenance_continuation
= sched_timeshare_maintenance_continue
,
297 .choose_thread
= sched_multiq_choose_thread
,
298 .steal_thread_enabled
= FALSE
,
299 .steal_thread
= sched_multiq_steal_thread
,
300 .compute_timeshare_priority
= sched_compute_timeshare_priority
,
301 .choose_processor
= choose_processor
,
302 .processor_enqueue
= sched_multiq_processor_enqueue
,
303 .processor_queue_shutdown
= sched_multiq_processor_queue_shutdown
,
304 .processor_queue_remove
= sched_multiq_processor_queue_remove
,
305 .processor_queue_empty
= sched_multiq_processor_queue_empty
,
306 .priority_is_urgent
= priority_is_urgent
,
307 .processor_csw_check
= sched_multiq_processor_csw_check
,
308 .processor_queue_has_priority
= sched_multiq_processor_queue_has_priority
,
309 .initial_quantum_size
= sched_timeshare_initial_quantum_size
,
310 .initial_thread_sched_mode
= sched_multiq_initial_thread_sched_mode
,
311 .can_update_priority
= can_update_priority
,
312 .update_priority
= update_priority
,
313 .lightweight_update_priority
= lightweight_update_priority
,
314 .quantum_expire
= sched_multiq_quantum_expire
,
315 .processor_runq_count
= sched_multiq_runq_count
,
316 .processor_runq_stats_count_sum
= sched_multiq_runq_stats_count_sum
,
317 .processor_bound_count
= sched_multiq_processor_bound_count
,
318 .thread_update_scan
= sched_multiq_thread_update_scan
,
319 .direct_dispatch_to_idle_processors
= FALSE
,
320 .multiple_psets_enabled
= FALSE
,
321 .sched_groups_enabled
= TRUE
,
326 sched_multiq_init(void)
328 #if defined(MULTIQ_SANITY_CHECK)
329 PE_parse_boot_argn("-multiq-sanity-check", &multiq_sanity_check
, sizeof(multiq_sanity_check
));
332 PE_parse_boot_argn("-multiq-deep-drain", &deep_drain
, sizeof(deep_drain
));
334 if (!PE_parse_boot_argn("multiq_drain_ceiling", &drain_ceiling
, sizeof(drain_ceiling
))) {
335 drain_ceiling
= DEFAULT_DRAIN_CEILING
;
338 if (!PE_parse_boot_argn("multiq_drain_depth_limit", &drain_depth_limit
, sizeof(drain_depth_limit
))) {
339 drain_depth_limit
= DEFAULT_DRAIN_DEPTH_LIMIT
;
342 if (!PE_parse_boot_argn("multiq_drain_band_limit", &drain_band_limit
, sizeof(drain_band_limit
))) {
343 drain_band_limit
= DEFAULT_DRAIN_BAND_LIMIT
;
346 printf("multiq scheduler config: deep-drain %d, ceiling %d, depth limit %d, band limit %d, sanity check %d\n",
347 deep_drain
, drain_ceiling
, drain_depth_limit
, drain_band_limit
, multiq_sanity_check
);
349 sched_group_zone
= zinit(
350 sizeof(struct sched_group
),
351 task_max
* sizeof(struct sched_group
),
355 zone_change(sched_group_zone
, Z_NOENCRYPT
, TRUE
);
356 zone_change(sched_group_zone
, Z_NOCALLOUT
, TRUE
);
358 queue_init(&sched_groups
);
360 lck_grp_attr_setdefault(&sched_groups_lock_grp_attr
);
361 lck_grp_init(&sched_groups_lock_grp
, "sched_groups", &sched_groups_lock_grp_attr
);
362 lck_attr_setdefault(&sched_groups_lock_attr
);
363 lck_mtx_init(&sched_groups_lock
, &sched_groups_lock_grp
, &sched_groups_lock_attr
);
365 sched_timeshare_init();
369 sched_multiq_processor_init(processor_t processor
)
371 run_queue_init(&processor
->runq
);
375 sched_multiq_pset_init(processor_set_t pset
)
377 run_queue_init(&pset
->pset_runq
);
381 sched_multiq_initial_thread_sched_mode(task_t parent_task
)
383 if (parent_task
== kernel_task
)
384 return TH_MODE_FIXED
;
386 return TH_MODE_TIMESHARE
;
390 sched_group_create(void)
392 sched_group_t sched_group
;
394 if (!SCHED(sched_groups_enabled
))
395 return SCHED_GROUP_NULL
;
397 sched_group
= (sched_group_t
)zalloc(sched_group_zone
);
399 bzero(sched_group
, sizeof(struct sched_group
));
401 run_queue_init(&sched_group
->runq
);
403 for (int i
= 0; i
< NRQS
; i
++) {
404 sched_group
->entries
[i
].runq
= 0;
405 sched_group
->entries
[i
].sched_pri
= i
;
408 lck_mtx_lock(&sched_groups_lock
);
409 queue_enter(&sched_groups
, sched_group
, sched_group_t
, sched_groups
);
411 lck_mtx_unlock(&sched_groups_lock
);
413 return (sched_group
);
417 sched_group_destroy(sched_group_t sched_group
)
419 if (!SCHED(sched_groups_enabled
)) {
420 assert(sched_group
== SCHED_GROUP_NULL
);
424 assert(sched_group
!= SCHED_GROUP_NULL
);
425 assert(sched_group
->runq
.count
== 0);
427 for (int i
= 0; i
< NRQS
; i
++) {
428 assert(sched_group
->entries
[i
].runq
== 0);
429 assert(sched_group
->entries
[i
].sched_pri
== i
);
432 lck_mtx_lock(&sched_groups_lock
);
433 queue_remove(&sched_groups
, sched_group
, sched_group_t
, sched_groups
);
435 lck_mtx_unlock(&sched_groups_lock
);
437 zfree(sched_group_zone
, sched_group
);
440 __attribute__((always_inline
))
441 static inline entry_queue_t
442 multiq_main_entryq(processor_t processor
)
444 return (entry_queue_t
)&processor
->processor_set
->pset_runq
;
447 __attribute__((always_inline
))
448 static inline run_queue_t
449 multiq_bound_runq(processor_t processor
)
451 return &processor
->runq
;
454 __attribute__((always_inline
))
455 static inline sched_entry_t
456 group_entry_for_pri(sched_group_t group
, integer_t pri
)
458 return &group
->entries
[pri
];
461 __attribute__((always_inline
))
462 static inline sched_group_t
463 group_for_entry(sched_entry_t entry
)
465 sched_group_t group
= (sched_group_t
)(entry
- entry
->sched_pri
);
469 /* Peek at the head of the runqueue */
471 entry_queue_first_entry(entry_queue_t rq
)
473 assert(rq
->count
!= 0);
475 queue_t queue
= rq
->queues
+ rq
->highq
;
477 sched_entry_t entry
= (sched_entry_t
)queue_first(queue
);
479 assert(entry
->sched_pri
== rq
->highq
);
484 #if defined(MULTIQ_SANITY_CHECK)
487 __attribute__((always_inline
))
488 static inline boolean_t
489 queue_chain_linked(queue_chain_t
* chain
)
491 if (chain
->next
!= NULL
) {
492 assert(chain
->prev
!= NULL
);
495 assert(chain
->prev
== NULL
);
499 #endif /* MACH_ASSERT */
502 group_first_thread(sched_group_t group
)
504 group_runq_t rq
= &group
->runq
;
506 assert(rq
->count
!= 0);
508 queue_t queue
= rq
->queues
+ rq
->highq
;
510 thread_t thread
= (thread_t
)(void*)queue_first(queue
);
512 assert(thread
!= THREAD_NULL
);
514 assert(thread
->sched_group
== group
);
516 /* TODO: May not be safe */
517 assert(thread
->sched_pri
== rq
->highq
);
522 /* Asserts if entry is not in entry runq at pri */
524 entry_queue_check_entry(entry_queue_t runq
, sched_entry_t entry
, int expected_pri
)
529 assert(queue_chain_linked(&entry
->links
));
530 assert(entry
->runq
== MULTIQ_ERUNQ
);
532 q
= &runq
->queues
[expected_pri
];
534 queue_iterate(q
, elem
, sched_entry_t
, links
) {
539 panic("runq %p doesn't contain entry %p at pri %d", runq
, entry
, expected_pri
);
542 /* Asserts if thread is not in group at its priority */
544 sched_group_check_thread(sched_group_t group
, thread_t thread
)
548 int pri
= thread
->sched_pri
;
550 assert(thread
->runq
!= PROCESSOR_NULL
);
552 q
= &group
->runq
.queues
[pri
];
554 queue_iterate(q
, elem
, thread_t
, links
) {
559 panic("group %p doesn't contain thread %p at pri %d", group
, thread
, pri
);
563 global_check_entry_queue(entry_queue_t main_entryq
)
565 if (main_entryq
->count
== 0)
568 sched_entry_t entry
= entry_queue_first_entry(main_entryq
);
570 assert(entry
->runq
== MULTIQ_ERUNQ
);
572 sched_group_t group
= group_for_entry(entry
);
574 thread_t thread
= group_first_thread(group
);
576 __assert_only sched_entry_t thread_entry
= group_entry_for_pri(thread
->sched_group
, thread
->sched_pri
);
578 assert(entry
->sched_pri
== group
->runq
.highq
);
580 assert(entry
== thread_entry
);
581 assert(thread
->runq
!= PROCESSOR_NULL
);
585 group_check_run_queue(entry_queue_t main_entryq
, sched_group_t group
)
587 if (group
->runq
.count
== 0)
590 thread_t thread
= group_first_thread(group
);
592 assert(thread
->runq
!= PROCESSOR_NULL
);
594 sched_entry_t sched_entry
= group_entry_for_pri(thread
->sched_group
, thread
->sched_pri
);
596 entry_queue_check_entry(main_entryq
, sched_entry
, thread
->sched_pri
);
598 assert(sched_entry
->sched_pri
== thread
->sched_pri
);
599 assert(sched_entry
->runq
== MULTIQ_ERUNQ
);
602 #endif /* defined(MULTIQ_SANITY_CHECK) */
605 * The run queue must not be empty.
608 entry_queue_dequeue_entry(entry_queue_t rq
)
610 sched_entry_t sched_entry
;
611 queue_t queue
= rq
->queues
+ rq
->highq
;
613 assert(rq
->count
> 0);
614 assert(!queue_empty(queue
));
616 sched_entry
= (sched_entry_t
)dequeue_head(queue
);
618 SCHED_STATS_RUNQ_CHANGE(&rq
->runq_stats
, rq
->count
);
620 if (SCHED(priority_is_urgent
)(rq
->highq
)) {
621 rq
->urgency
--; assert(rq
->urgency
>= 0);
623 if (queue_empty(queue
)) {
624 if (rq
->highq
!= IDLEPRI
)
625 clrbit(MAXPRI
- rq
->highq
, rq
->bitmap
);
626 rq
->highq
= MAXPRI
- ffsbit(rq
->bitmap
);
629 sched_entry
->runq
= 0;
631 return (sched_entry
);
635 * The run queue must not be empty.
638 entry_queue_enqueue_entry(
643 int sched_pri
= entry
->sched_pri
;
644 queue_t queue
= rq
->queues
+ sched_pri
;
645 boolean_t result
= FALSE
;
647 assert(entry
->runq
== 0);
649 if (queue_empty(queue
)) {
650 enqueue_tail(queue
, (queue_entry_t
)entry
);
652 setbit(MAXPRI
- sched_pri
, rq
->bitmap
);
653 if (sched_pri
> rq
->highq
) {
654 rq
->highq
= sched_pri
;
658 if (options
& SCHED_TAILQ
)
659 enqueue_tail(queue
, (queue_entry_t
)entry
);
661 enqueue_head(queue
, (queue_entry_t
)entry
);
663 if (SCHED(priority_is_urgent
)(sched_pri
))
665 SCHED_STATS_RUNQ_CHANGE(&rq
->runq_stats
, rq
->count
);
668 entry
->runq
= MULTIQ_ERUNQ
;
674 * The entry must be in this runqueue.
677 entry_queue_remove_entry(
681 int sched_pri
= entry
->sched_pri
;
683 #if defined(MULTIQ_SANITY_CHECK)
684 if (multiq_sanity_check
) {
685 entry_queue_check_entry(rq
, entry
, sched_pri
);
689 remqueue((queue_entry_t
)entry
);
691 SCHED_STATS_RUNQ_CHANGE(&rq
->runq_stats
, rq
->count
);
693 if (SCHED(priority_is_urgent
)(sched_pri
)) {
694 rq
->urgency
--; assert(rq
->urgency
>= 0);
697 if (queue_empty(rq
->queues
+ sched_pri
)) {
698 /* update run queue status */
699 if (sched_pri
!= IDLEPRI
)
700 clrbit(MAXPRI
- sched_pri
, rq
->bitmap
);
701 rq
->highq
= MAXPRI
- ffsbit(rq
->bitmap
);
708 entry_queue_change_entry(
713 int sched_pri
= entry
->sched_pri
;
714 queue_t queue
= rq
->queues
+ sched_pri
;
716 #if defined(MULTIQ_SANITY_CHECK)
717 if (multiq_sanity_check
) {
718 entry_queue_check_entry(rq
, entry
, sched_pri
);
721 remqueue((queue_entry_t
)entry
);
723 if (options
& SCHED_TAILQ
)
724 enqueue_tail(queue
, (queue_entry_t
)entry
);
726 enqueue_head(queue
, (queue_entry_t
)entry
);
729 * The run queue must not be empty.
731 * sets queue_empty to TRUE if queue is now empty at thread_pri
734 group_run_queue_dequeue_thread(
736 integer_t
*thread_pri
,
737 boolean_t
*queue_empty
)
740 queue_t queue
= rq
->queues
+ rq
->highq
;
742 assert(rq
->count
> 0);
743 assert(!queue_empty(queue
));
745 *thread_pri
= rq
->highq
;
747 thread
= (thread_t
)(void*)dequeue_head(queue
);
749 SCHED_STATS_RUNQ_CHANGE(&rq
->runq_stats
, rq
->count
);
751 if (SCHED(priority_is_urgent
)(rq
->highq
)) {
752 rq
->urgency
--; assert(rq
->urgency
>= 0);
754 if (queue_empty(queue
)) {
755 if (rq
->highq
!= IDLEPRI
)
756 clrbit(MAXPRI
- rq
->highq
, rq
->bitmap
);
757 rq
->highq
= MAXPRI
- ffsbit(rq
->bitmap
);
760 *queue_empty
= FALSE
;
767 * The run queue must not be empty.
768 * returns TRUE if queue was empty at thread_pri
771 group_run_queue_enqueue_thread(
774 integer_t thread_pri
,
777 queue_t queue
= rq
->queues
+ thread_pri
;
778 boolean_t result
= FALSE
;
780 assert(thread
->runq
== PROCESSOR_NULL
);
782 if (queue_empty(queue
)) {
783 enqueue_tail(queue
, (queue_entry_t
)thread
);
785 setbit(MAXPRI
- thread_pri
, rq
->bitmap
);
786 if (thread_pri
> rq
->highq
) {
787 rq
->highq
= thread_pri
;
791 if (options
& SCHED_TAILQ
)
792 enqueue_tail(queue
, (queue_entry_t
)thread
);
794 enqueue_head(queue
, (queue_entry_t
)thread
);
796 if (SCHED(priority_is_urgent
)(thread_pri
))
798 SCHED_STATS_RUNQ_CHANGE(&rq
->runq_stats
, rq
->count
);
805 * The thread must be in this runqueue.
806 * returns TRUE if queue is now empty at thread_pri
809 group_run_queue_remove_thread(
812 integer_t thread_pri
)
814 boolean_t result
= FALSE
;
816 assert(thread
->runq
!= PROCESSOR_NULL
);
818 remqueue((queue_entry_t
)thread
);
820 SCHED_STATS_RUNQ_CHANGE(&rq
->runq_stats
, rq
->count
);
822 if (SCHED(priority_is_urgent
)(thread_pri
)) {
823 rq
->urgency
--; assert(rq
->urgency
>= 0);
826 if (queue_empty(rq
->queues
+ thread_pri
)) {
827 /* update run queue status */
828 if (thread_pri
!= IDLEPRI
)
829 clrbit(MAXPRI
- thread_pri
, rq
->bitmap
);
830 rq
->highq
= MAXPRI
- ffsbit(rq
->bitmap
);
834 thread
->runq
= PROCESSOR_NULL
;
840 * A thread's sched pri may change out from under us because
841 * we're clearing thread->runq here without the thread locked.
842 * Do not rely on it to be the same as when we enqueued.
845 sched_global_dequeue_thread(entry_queue_t main_entryq
)
847 boolean_t pri_level_empty
= FALSE
;
849 group_runq_t group_runq
;
851 integer_t thread_pri
;
854 assert(main_entryq
->count
> 0);
856 entry
= entry_queue_dequeue_entry(main_entryq
);
858 group
= group_for_entry(entry
);
859 group_runq
= &group
->runq
;
861 thread
= group_run_queue_dequeue_thread(group_runq
, &thread_pri
, &pri_level_empty
);
863 thread
->runq
= PROCESSOR_NULL
;
865 if (!pri_level_empty
) {
866 entry_queue_enqueue_entry(main_entryq
, entry
, SCHED_TAILQ
);
872 /* Dequeue a thread from the global runq without moving the entry */
874 sched_global_deep_drain_dequeue_thread(entry_queue_t main_entryq
)
876 boolean_t pri_level_empty
= FALSE
;
878 group_runq_t group_runq
;
880 integer_t thread_pri
;
883 assert(main_entryq
->count
> 0);
885 entry
= entry_queue_first_entry(main_entryq
);
887 group
= group_for_entry(entry
);
888 group_runq
= &group
->runq
;
890 thread
= group_run_queue_dequeue_thread(group_runq
, &thread_pri
, &pri_level_empty
);
892 thread
->runq
= PROCESSOR_NULL
;
894 if (pri_level_empty
) {
895 entry_queue_remove_entry(main_entryq
, entry
);
903 sched_group_dequeue_thread(
904 entry_queue_t main_entryq
,
907 group_runq_t group_runq
= &group
->runq
;
908 boolean_t pri_level_empty
= FALSE
;
910 integer_t thread_pri
;
912 thread
= group_run_queue_dequeue_thread(group_runq
, &thread_pri
, &pri_level_empty
);
914 thread
->runq
= PROCESSOR_NULL
;
916 if (pri_level_empty
) {
917 entry_queue_remove_entry(main_entryq
, group_entry_for_pri(group
, thread_pri
));
924 sched_group_remove_thread(
925 entry_queue_t main_entryq
,
929 integer_t thread_pri
= thread
->sched_pri
;
930 sched_entry_t sched_entry
= group_entry_for_pri(group
, thread_pri
);
932 #if defined(MULTIQ_SANITY_CHECK)
933 if (multiq_sanity_check
) {
934 global_check_entry_queue(main_entryq
);
935 group_check_run_queue(main_entryq
, group
);
937 sched_group_check_thread(group
, thread
);
938 entry_queue_check_entry(main_entryq
, sched_entry
, thread_pri
);
942 boolean_t pri_level_empty
= group_run_queue_remove_thread(&group
->runq
, thread
, thread_pri
);
944 if (pri_level_empty
) {
945 entry_queue_remove_entry(main_entryq
, sched_entry
);
948 #if defined(MULTIQ_SANITY_CHECK)
949 if (multiq_sanity_check
) {
950 global_check_entry_queue(main_entryq
);
951 group_check_run_queue(main_entryq
, group
);
957 sched_group_enqueue_thread(
958 entry_queue_t main_entryq
,
963 #if defined(MULTIQ_SANITY_CHECK)
964 if (multiq_sanity_check
) {
965 global_check_entry_queue(main_entryq
);
966 group_check_run_queue(main_entryq
, group
);
970 int sched_pri
= thread
->sched_pri
;
972 boolean_t pri_level_was_empty
= group_run_queue_enqueue_thread(&group
->runq
, thread
, sched_pri
, options
);
974 if (pri_level_was_empty
) {
976 * TODO: Need to figure out if passing options here is a good idea or not
977 * What effects would it have?
979 entry_queue_enqueue_entry(main_entryq
, &group
->entries
[sched_pri
], options
);
980 } else if (options
& SCHED_HEADQ
) {
981 /* The thread should be at the head of the line - move its entry to the front */
982 entry_queue_change_entry(main_entryq
, &group
->entries
[sched_pri
], options
);
987 * Locate a thread to execute from the run queue and return it.
988 * Only choose a thread with greater or equal priority.
990 * pset is locked, thread is not locked.
992 * Returns THREAD_NULL if it cannot find a valid thread.
994 * Note: we cannot rely on the value of thread->sched_pri in this path because
995 * we don't have the thread locked.
997 * TODO: Remove tracepoints
1000 sched_multiq_choose_thread(
1001 processor_t processor
,
1005 entry_queue_t main_entryq
= multiq_main_entryq(processor
);
1006 run_queue_t bound_runq
= multiq_bound_runq(processor
);
1008 boolean_t choose_bound_runq
= FALSE
;
1010 if (bound_runq
->highq
< priority
&&
1011 main_entryq
->highq
< priority
)
1014 if (bound_runq
->count
&& main_entryq
->count
) {
1015 if (bound_runq
->highq
>= main_entryq
->highq
) {
1016 choose_bound_runq
= TRUE
;
1020 } else if (bound_runq
->count
) {
1021 choose_bound_runq
= TRUE
;
1022 } else if (main_entryq
->count
) {
1025 return (THREAD_NULL
);
1028 if (choose_bound_runq
) {
1029 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
1030 MACHDBG_CODE(DBG_MACH_SCHED
, MACH_MULTIQ_DEQUEUE
) | DBG_FUNC_NONE
,
1031 MACH_MULTIQ_BOUND
, main_entryq
->highq
, bound_runq
->highq
, 0, 0);
1033 return run_queue_dequeue(bound_runq
, SCHED_HEADQ
);
1036 sched_group_t group
= current_thread()->sched_group
;
1038 #if defined(MULTIQ_SANITY_CHECK)
1039 if (multiq_sanity_check
) {
1040 global_check_entry_queue(main_entryq
);
1041 group_check_run_queue(main_entryq
, group
);
1046 * Determine if we should look at the group or the global queue
1049 * Perhaps pass reason as a 'should look inside' argument to choose_thread
1050 * Should YIELD AST override drain limit?
1052 if (group
->runq
.count
!= 0 && (reason
& AST_PREEMPTION
) == 0) {
1053 boolean_t favor_group
= TRUE
;
1055 integer_t global_pri
= main_entryq
->highq
;
1056 integer_t group_pri
= group
->runq
.highq
;
1059 * Favor the current group if the group is still the globally highest.
1061 * Otherwise, consider choosing a thread from the current group
1062 * even if it's lower priority than the global highest priority.
1064 if (global_pri
> group_pri
) {
1066 * If there's something elsewhere above the depth limit,
1067 * don't pick a thread below the limit.
1069 if (global_pri
> drain_depth_limit
&& group_pri
<= drain_depth_limit
)
1070 favor_group
= FALSE
;
1073 * If there's something at or above the ceiling,
1074 * don't favor the group.
1076 if (global_pri
>= drain_ceiling
)
1077 favor_group
= FALSE
;
1080 * Don't go more than X steps below the global highest
1082 if ((global_pri
- group_pri
) >= drain_band_limit
)
1083 favor_group
= FALSE
;
1087 /* Pull from local runq */
1088 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
1089 MACHDBG_CODE(DBG_MACH_SCHED
, MACH_MULTIQ_DEQUEUE
) | DBG_FUNC_NONE
,
1090 MACH_MULTIQ_GROUP
, global_pri
, group_pri
, 0, 0);
1092 return sched_group_dequeue_thread(main_entryq
, group
);
1096 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
1097 MACHDBG_CODE(DBG_MACH_SCHED
, MACH_MULTIQ_DEQUEUE
) | DBG_FUNC_NONE
,
1098 MACH_MULTIQ_GLOBAL
, main_entryq
->highq
, group
->runq
.highq
, 0, 0);
1100 /* Couldn't pull from local runq, pull from global runq instead */
1102 return sched_global_deep_drain_dequeue_thread(main_entryq
);
1104 return sched_global_dequeue_thread(main_entryq
);
1110 * Thread must be locked, and not already be on a run queue.
1114 sched_multiq_processor_enqueue(
1115 processor_t processor
,
1121 assert(processor
== thread
->chosen_processor
);
1123 if (thread
->bound_processor
!= PROCESSOR_NULL
) {
1124 assert(thread
->bound_processor
== processor
);
1126 result
= run_queue_enqueue(multiq_bound_runq(processor
), thread
, options
);
1127 thread
->runq
= processor
;
1132 sched_group_enqueue_thread(multiq_main_entryq(processor
),
1133 thread
->sched_group
,
1136 thread
->runq
= processor
;
1142 * Called in the context of thread with thread and pset unlocked,
1143 * after updating thread priority but before propagating that priority
1147 sched_multiq_quantum_expire(thread_t thread
)
1151 * Move the entry at this priority to the end of the queue,
1152 * to allow the next task a shot at running.
1155 processor_t processor
= thread
->last_processor
;
1156 processor_set_t pset
= processor
->processor_set
;
1157 entry_queue_t entryq
= multiq_main_entryq(processor
);
1161 sched_entry_t entry
= group_entry_for_pri(thread
->sched_group
, processor
->current_pri
);
1163 if (entry
->runq
== MULTIQ_ERUNQ
) {
1164 entry_queue_change_entry(entryq
, entry
, SCHED_TAILQ
);
1172 sched_multiq_processor_queue_empty(processor_t processor
)
1174 return multiq_main_entryq(processor
)->count
== 0 &&
1175 multiq_bound_runq(processor
)->count
== 0;
1179 sched_multiq_processor_csw_check(processor_t processor
)
1181 boolean_t has_higher
;
1184 entry_queue_t main_entryq
= multiq_main_entryq(processor
);
1185 run_queue_t bound_runq
= multiq_bound_runq(processor
);
1187 assert(processor
->active_thread
!= NULL
);
1189 pri
= MAX(main_entryq
->highq
, bound_runq
->highq
);
1191 if (processor
->first_timeslice
) {
1192 has_higher
= (pri
> processor
->current_pri
);
1194 has_higher
= (pri
>= processor
->current_pri
);
1198 if (main_entryq
->urgency
> 0)
1199 return (AST_PREEMPT
| AST_URGENT
);
1201 if (bound_runq
->urgency
> 0)
1202 return (AST_PREEMPT
| AST_URGENT
);
1211 sched_multiq_processor_queue_has_priority(
1212 processor_t processor
,
1216 int qpri
= MAX(multiq_main_entryq(processor
)->highq
, multiq_bound_runq(processor
)->highq
);
1219 return qpri
>= priority
;
1221 return qpri
> priority
;
1225 sched_multiq_runq_count(processor_t processor
)
1228 * TODO: Decide whether to keep a count of runnable threads in the pset
1229 * or just return something less than the true count.
1231 * This needs to be fast, so no iterating the whole runq.
1233 * Another possible decision is to remove this - with global runq
1234 * it doesn't make much sense.
1236 return multiq_main_entryq(processor
)->count
+ multiq_bound_runq(processor
)->count
;
1240 sched_multiq_runq_stats_count_sum(processor_t processor
)
1243 * TODO: This one does need to go through all the runqueues, but it's only needed for
1244 * the sched stats tool
1247 uint64_t bound_sum
= multiq_bound_runq(processor
)->runq_stats
.count_sum
;
1249 if (processor
->cpu_id
== processor
->processor_set
->cpu_set_low
)
1250 return bound_sum
+ multiq_main_entryq(processor
)->runq_stats
.count_sum
;
1256 sched_multiq_processor_bound_count(processor_t processor
)
1258 return multiq_bound_runq(processor
)->count
;
1262 sched_multiq_processor_queue_shutdown(processor_t processor
)
1264 processor_set_t pset
= processor
->processor_set
;
1265 entry_queue_t main_entryq
= multiq_main_entryq(processor
);
1267 queue_head_t tqueue
;
1269 /* We only need to migrate threads if this is the last active processor in the pset */
1270 if (pset
->online_processor_count
> 0) {
1275 queue_init(&tqueue
);
1277 /* Note that we do not remove bound threads from the queues here */
1279 while (main_entryq
->count
> 0) {
1280 thread
= sched_global_dequeue_thread(main_entryq
);
1281 enqueue_tail(&tqueue
, (queue_entry_t
)thread
);
1286 while ((thread
= (thread_t
)(void*)dequeue_head(&tqueue
)) != THREAD_NULL
) {
1287 thread_lock(thread
);
1289 thread_setrun(thread
, SCHED_TAILQ
);
1291 thread_unlock(thread
);
1298 * This is why we can never read sched_pri unless we have the thread locked.
1299 * Which we do in the enqueue and remove cases, but not the dequeue case.
1302 sched_multiq_processor_queue_remove(
1303 processor_t processor
,
1306 boolean_t removed
= FALSE
;
1307 processor_set_t pset
= processor
->processor_set
;
1311 if (thread
->runq
!= PROCESSOR_NULL
) {
1313 * Thread is on a run queue and we have a lock on
1317 assert(thread
->runq
== processor
);
1319 if (thread
->bound_processor
!= PROCESSOR_NULL
) {
1320 assert(processor
== thread
->bound_processor
);
1321 run_queue_remove(multiq_bound_runq(processor
), thread
);
1322 thread
->runq
= PROCESSOR_NULL
;
1324 sched_group_remove_thread(multiq_main_entryq(processor
),
1325 thread
->sched_group
,
1337 /* pset is locked, returned unlocked */
1339 sched_multiq_steal_thread(processor_set_t pset
)
1342 return (THREAD_NULL
);
1346 * Scan the global queue for candidate groups, and scan those groups for
1347 * candidate threads.
1349 * Returns TRUE if retry is needed.
1352 group_scan(entry_queue_t runq
, sched_update_scan_context_t scan_context
) {
1355 sched_group_t group
;
1356 sched_entry_t entry
;
1358 if ((count
= runq
->count
) > 0) {
1359 q
= runq
->queues
+ runq
->highq
;
1361 queue_iterate(q
, entry
, sched_entry_t
, links
) {
1362 group
= group_for_entry(entry
);
1363 if (group
->runq
.count
> 0) {
1364 if (runq_scan(&group
->runq
, scan_context
))
1377 sched_multiq_thread_update_scan(sched_update_scan_context_t scan_context
)
1379 boolean_t restart_needed
= FALSE
;
1380 processor_t processor
= processor_list
;
1381 processor_set_t pset
;
1386 * We update the threads associated with each processor (bound and idle threads)
1387 * and then update the threads in each pset runqueue.
1392 pset
= processor
->processor_set
;
1397 restart_needed
= runq_scan(multiq_bound_runq(processor
), scan_context
);
1405 thread
= processor
->idle_thread
;
1406 if (thread
!= THREAD_NULL
&& thread
->sched_stamp
!= sched_tick
) {
1407 if (thread_update_add_thread(thread
) == FALSE
) {
1408 restart_needed
= TRUE
;
1412 } while ((processor
= processor
->processor_list
) != NULL
);
1414 /* Ok, we now have a collection of candidates -- fix them. */
1415 thread_update_process_threads();
1417 } while (restart_needed
);
1426 restart_needed
= group_scan(&pset
->pset_runq
, scan_context
);
1433 } while ((pset
= pset
->pset_list
) != NULL
);
1435 /* Ok, we now have a collection of candidates -- fix them. */
1436 thread_update_process_threads();
1438 } while (restart_needed
);