]> git.saurik.com Git - apple/xnu.git/blob - bsd/hfs/hfs_cnode.c
xnu-2782.40.9.tar.gz
[apple/xnu.git] / bsd / hfs / hfs_cnode.c
1 /*
2 * Copyright (c) 2002-2014 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 #include <sys/param.h>
29 #include <sys/systm.h>
30 #include <sys/proc.h>
31 #include <sys/vnode.h>
32 #include <sys/mount.h>
33 #include <sys/kernel.h>
34 #include <sys/malloc.h>
35 #include <sys/time.h>
36 #include <sys/ubc.h>
37 #include <sys/quota.h>
38 #include <sys/kdebug.h>
39 #include <libkern/OSByteOrder.h>
40 #include <sys/buf_internal.h>
41
42 #include <kern/locks.h>
43
44 #include <miscfs/specfs/specdev.h>
45 #include <miscfs/fifofs/fifo.h>
46
47 #include <hfs/hfs.h>
48 #include <hfs/hfs_catalog.h>
49 #include <hfs/hfs_cnode.h>
50 #include <hfs/hfs_quota.h>
51 #include <hfs/hfs_format.h>
52 #include <hfs/hfs_kdebug.h>
53
54 extern int prtactive;
55
56 extern lck_attr_t * hfs_lock_attr;
57 extern lck_grp_t * hfs_mutex_group;
58 extern lck_grp_t * hfs_rwlock_group;
59
60 static void hfs_reclaim_cnode(struct cnode *);
61 static int hfs_cnode_teardown (struct vnode *vp, vfs_context_t ctx, int reclaim);
62 static int hfs_isordered(struct cnode *, struct cnode *);
63
64 extern int hfs_removefile_callback(struct buf *bp, void *hfsmp);
65
66
67 __inline__ int hfs_checkdeleted (struct cnode *cp) {
68 return ((cp->c_flag & (C_DELETED | C_NOEXISTS)) ? ENOENT : 0);
69 }
70
71 /*
72 * Function used by a special fcntl() that decorates a cnode/vnode that
73 * indicates it is backing another filesystem, like a disk image.
74 *
75 * the argument 'val' indicates whether or not to set the bit in the cnode flags
76 *
77 * Returns non-zero on failure. 0 on success
78 */
79 int hfs_set_backingstore (struct vnode *vp, int val) {
80 struct cnode *cp = NULL;
81 int err = 0;
82
83 cp = VTOC(vp);
84 if (!vnode_isreg(vp) && !vnode_isdir(vp)) {
85 return EINVAL;
86 }
87
88 /* lock the cnode */
89 err = hfs_lock (cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
90 if (err) {
91 return err;
92 }
93
94 if (val) {
95 cp->c_flag |= C_BACKINGSTORE;
96 }
97 else {
98 cp->c_flag &= ~C_BACKINGSTORE;
99 }
100
101 /* unlock everything */
102 hfs_unlock (cp);
103
104 return err;
105 }
106
107 /*
108 * Function used by a special fcntl() that check to see if a cnode/vnode
109 * indicates it is backing another filesystem, like a disk image.
110 *
111 * the argument 'val' is an output argument for whether or not the bit is set
112 *
113 * Returns non-zero on failure. 0 on success
114 */
115
116 int hfs_is_backingstore (struct vnode *vp, int *val) {
117 struct cnode *cp = NULL;
118 int err = 0;
119
120 if (!vnode_isreg(vp) && !vnode_isdir(vp)) {
121 *val = 0;
122 return 0;
123 }
124
125 cp = VTOC(vp);
126
127 /* lock the cnode */
128 err = hfs_lock (cp, HFS_SHARED_LOCK, HFS_LOCK_DEFAULT);
129 if (err) {
130 return err;
131 }
132
133 if (cp->c_flag & C_BACKINGSTORE) {
134 *val = 1;
135 }
136 else {
137 *val = 0;
138 }
139
140 /* unlock everything */
141 hfs_unlock (cp);
142
143 return err;
144 }
145
146
147 /*
148 * hfs_cnode_teardown
149 *
150 * This is an internal function that is invoked from both hfs_vnop_inactive
151 * and hfs_vnop_reclaim. As VNOP_INACTIVE is not necessarily called from vnodes
152 * being recycled and reclaimed, it is important that we do any post-processing
153 * necessary for the cnode in both places. Important tasks include things such as
154 * releasing the blocks from an open-unlinked file when all references to it have dropped,
155 * and handling resource forks separately from data forks.
156 *
157 * Note that we take only the vnode as an argument here (rather than the cnode).
158 * Recall that each cnode supports two forks (rsrc/data), and we can always get the right
159 * cnode from either of the vnodes, but the reverse is not true -- we can't determine which
160 * vnode we need to reclaim if only the cnode is supplied.
161 *
162 * This function is idempotent and safe to call from both hfs_vnop_inactive and hfs_vnop_reclaim
163 * if both are invoked right after the other. In the second call, most of this function's if()
164 * conditions will fail, since they apply generally to cnodes still marked with C_DELETED.
165 * As a quick check to see if this function is necessary, determine if the cnode is already
166 * marked C_NOEXISTS. If it is, then it is safe to skip this function. The only tasks that
167 * remain for cnodes marked in such a fashion is to teardown their fork references and
168 * release all directory hints and hardlink origins. However, both of those are done
169 * in hfs_vnop_reclaim. hfs_update, by definition, is not necessary if the cnode's catalog
170 * entry is no longer there.
171 *
172 * 'reclaim' argument specifies whether or not we were called from hfs_vnop_reclaim. If we are
173 * invoked from hfs_vnop_reclaim, we can not call functions that cluster_push since the UBC info
174 * is totally gone by that point.
175 *
176 * Assumes that both truncate and cnode locks for 'cp' are held.
177 */
178 static
179 int hfs_cnode_teardown (struct vnode *vp, vfs_context_t ctx, int reclaim)
180 {
181 int forkcount = 0;
182 enum vtype v_type;
183 struct cnode *cp;
184 int error = 0;
185 int started_tr = 0;
186 struct hfsmount *hfsmp = VTOHFS(vp);
187 struct proc *p = vfs_context_proc(ctx);
188 int truncated = 0;
189 cat_cookie_t cookie;
190 int cat_reserve = 0;
191 int lockflags;
192 int ea_error = 0;
193
194 v_type = vnode_vtype(vp);
195 cp = VTOC(vp);
196
197 if (cp->c_datafork) {
198 ++forkcount;
199 }
200 if (cp->c_rsrcfork) {
201 ++forkcount;
202 }
203
204
205 /*
206 * Skip the call to ubc_setsize if we're being invoked on behalf of reclaim.
207 * The dirty regions would have already been synced to disk, so informing UBC
208 * that they can toss the pages doesn't help anyone at this point.
209 *
210 * Note that this is a performance problem if the vnode goes straight to reclaim
211 * (and skips inactive), since there would be no way for anyone to notify the UBC
212 * that all pages in this file are basically useless.
213 */
214 if (reclaim == 0) {
215 /*
216 * Check whether we are tearing down a cnode with only one remaining fork.
217 * If there are blocks in its filefork, then we need to unlock the cnode
218 * before calling ubc_setsize. The cluster layer may re-enter the filesystem
219 * (i.e. VNOP_BLOCKMAP), and if we retain the cnode lock, we could double-lock
220 * panic.
221 */
222
223 if ((v_type == VREG || v_type == VLNK) &&
224 (cp->c_flag & C_DELETED) &&
225 (VTOF(vp)->ff_blocks != 0) && (forkcount == 1)) {
226 hfs_unlock(cp);
227 /* ubc_setsize just fails if we were to call this from VNOP_RECLAIM */
228 ubc_setsize(vp, 0);
229 (void) hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS);
230 }
231 }
232
233 /*
234 * Push file data out for normal files that haven't been evicted from
235 * the namespace. We only do this if this function was not called from reclaim,
236 * because by that point the UBC information has been totally torn down.
237 *
238 * There should also be no way that a normal file that has NOT been deleted from
239 * the namespace to skip INACTIVE and go straight to RECLAIM. That race only happens
240 * when the file becomes open-unlinked.
241 */
242 if ((v_type == VREG) &&
243 (!ISSET(cp->c_flag, C_DELETED)) &&
244 (!ISSET(cp->c_flag, C_NOEXISTS)) &&
245 (VTOF(vp)->ff_blocks) &&
246 (reclaim == 0)) {
247 /*
248 * Note that if content protection is enabled, then this is where we will
249 * attempt to issue IOs for all dirty regions of this file.
250 *
251 * If we're called from hfs_vnop_inactive, all this means is at the time
252 * the logic for deciding to call this function, there were not any lingering
253 * mmap/fd references for this file. However, there is nothing preventing the system
254 * from creating a new reference in between the time that logic was checked
255 * and we entered hfs_vnop_inactive. As a result, the only time we can guarantee
256 * that there aren't any references is during vnop_reclaim.
257 */
258 hfs_filedone(vp, ctx, 0);
259 }
260
261 /*
262 * We're holding the cnode lock now. Stall behind any shadow BPs that may
263 * be involved with this vnode if it is a symlink. We don't want to allow
264 * the blocks that we're about to release to be put back into the pool if there
265 * is pending I/O to them.
266 */
267 if (v_type == VLNK) {
268 /*
269 * This will block if the asynchronous journal flush is in progress.
270 * If this symlink is not being renamed over and doesn't have any open FDs,
271 * then we'll remove it from the journal's bufs below in kill_block.
272 */
273 buf_wait_for_shadow_io (vp, 0);
274 }
275
276 /*
277 * Remove any directory hints or cached origins
278 */
279 if (v_type == VDIR) {
280 hfs_reldirhints(cp, 0);
281 }
282 if (cp->c_flag & C_HARDLINK) {
283 hfs_relorigins(cp);
284 }
285
286 /*
287 * This check is slightly complicated. We should only truncate data
288 * in very specific cases for open-unlinked files. This is because
289 * we want to ensure that the resource fork continues to be available
290 * if the caller has the data fork open. However, this is not symmetric;
291 * someone who has the resource fork open need not be able to access the data
292 * fork once the data fork has gone inactive.
293 *
294 * If we're the last fork, then we have cleaning up to do.
295 *
296 * A) last fork, and vp == c_vp
297 * Truncate away own fork data. If rsrc fork is not in core, truncate it too.
298 *
299 * B) last fork, and vp == c_rsrc_vp
300 * Truncate ourselves, assume data fork has been cleaned due to C).
301 *
302 * If we're not the last fork, then things are a little different:
303 *
304 * C) not the last fork, vp == c_vp
305 * Truncate ourselves. Once the file has gone out of the namespace,
306 * it cannot be further opened. Further access to the rsrc fork may
307 * continue, however.
308 *
309 * D) not the last fork, vp == c_rsrc_vp
310 * Don't enter the block below, just clean up vnode and push it out of core.
311 */
312
313 if ((v_type == VREG || v_type == VLNK) &&
314 (cp->c_flag & C_DELETED) &&
315 ((forkcount == 1) || (!VNODE_IS_RSRC(vp)))) {
316
317 /* Truncate away our own fork data. (Case A, B, C above) */
318 if (VTOF(vp)->ff_blocks != 0) {
319
320 /*
321 * SYMLINKS only:
322 *
323 * Encapsulate the entire change (including truncating the link) in
324 * nested transactions if we are modifying a symlink, because we know that its
325 * file length will be at most 4k, and we can fit both the truncation and
326 * any relevant bitmap changes into a single journal transaction. We also want
327 * the kill_block code to execute in the same transaction so that any dirty symlink
328 * blocks will not be written. Otherwise, rely on
329 * hfs_truncate doing its own transactions to ensure that we don't blow up
330 * the journal.
331 */
332 if ((started_tr == 0) && (v_type == VLNK)) {
333 if (hfs_start_transaction(hfsmp) != 0) {
334 error = EINVAL;
335 goto out;
336 }
337 else {
338 started_tr = 1;
339 }
340 }
341
342 /*
343 * At this point, we have decided that this cnode is
344 * suitable for full removal. We are about to deallocate
345 * its blocks and remove its entry from the catalog.
346 * If it was a symlink, then it's possible that the operation
347 * which created it is still in the current transaction group
348 * due to coalescing. Take action here to kill the data blocks
349 * of the symlink out of the journal before moving to
350 * deallocate the blocks. We need to be in the middle of
351 * a transaction before calling buf_iterate like this.
352 *
353 * Note: we have to kill any potential symlink buffers out of
354 * the journal prior to deallocating their blocks. This is so
355 * that we don't race with another thread that may be doing an
356 * an allocation concurrently and pick up these blocks. It could
357 * generate I/O against them which could go out ahead of our journal
358 * transaction.
359 */
360
361 if (hfsmp->jnl && vnode_islnk(vp)) {
362 buf_iterate(vp, hfs_removefile_callback, BUF_SKIP_NONLOCKED, (void *)hfsmp);
363 }
364
365
366 /*
367 * This truncate call (and the one below) is fine from VNOP_RECLAIM's
368 * context because we're only removing blocks, not zero-filling new
369 * ones. The C_DELETED check above makes things much simpler.
370 */
371 error = hfs_truncate(vp, (off_t)0, IO_NDELAY, 0, ctx);
372 if (error) {
373 goto out;
374 }
375 truncated = 1;
376
377 /* (SYMLINKS ONLY): Close/End our transaction after truncating the file record */
378 if (started_tr) {
379 hfs_end_transaction(hfsmp);
380 started_tr = 0;
381 }
382
383 }
384
385 /*
386 * Truncate away the resource fork, if we represent the data fork and
387 * it is the last fork. That means, by definition, the rsrc fork is not in
388 * core. To avoid bringing a vnode into core for the sole purpose of deleting the
389 * data in the resource fork, we call cat_lookup directly, then hfs_release_storage
390 * to get rid of the resource fork's data. Note that because we are holding the
391 * cnode lock, it is impossible for a competing thread to create the resource fork
392 * vnode from underneath us while we do this.
393 *
394 * This is invoked via case A above only.
395 */
396 if ((cp->c_blocks > 0) && (forkcount == 1) && (vp != cp->c_rsrc_vp)) {
397 struct cat_lookup_buffer *lookup_rsrc = NULL;
398 struct cat_desc *desc_ptr = NULL;
399 lockflags = 0;
400
401 MALLOC(lookup_rsrc, struct cat_lookup_buffer*, sizeof (struct cat_lookup_buffer), M_TEMP, M_WAITOK);
402 if (lookup_rsrc == NULL) {
403 printf("hfs_cnode_teardown: ENOMEM from MALLOC\n");
404 error = ENOMEM;
405 goto out;
406 }
407 else {
408 bzero (lookup_rsrc, sizeof (struct cat_lookup_buffer));
409 }
410
411 if (cp->c_desc.cd_namelen == 0) {
412 /* Initialize the rsrc descriptor for lookup if necessary*/
413 MAKE_DELETED_NAME (lookup_rsrc->lookup_name, HFS_TEMPLOOKUP_NAMELEN, cp->c_fileid);
414
415 lookup_rsrc->lookup_desc.cd_nameptr = (const uint8_t*) lookup_rsrc->lookup_name;
416 lookup_rsrc->lookup_desc.cd_namelen = strlen (lookup_rsrc->lookup_name);
417 lookup_rsrc->lookup_desc.cd_parentcnid = hfsmp->hfs_private_desc[FILE_HARDLINKS].cd_cnid;
418 lookup_rsrc->lookup_desc.cd_cnid = cp->c_cnid;
419
420 desc_ptr = &lookup_rsrc->lookup_desc;
421 }
422 else {
423 desc_ptr = &cp->c_desc;
424 }
425
426 lockflags = hfs_systemfile_lock (hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
427
428 error = cat_lookup (hfsmp, desc_ptr, 1, 0, (struct cat_desc *) NULL,
429 (struct cat_attr*) NULL, &lookup_rsrc->lookup_fork.ff_data, NULL);
430
431 hfs_systemfile_unlock (hfsmp, lockflags);
432
433 if (error) {
434 FREE (lookup_rsrc, M_TEMP);
435 goto out;
436 }
437
438 /*
439 * Make the filefork in our temporary struct look like a real
440 * filefork. Fill in the cp, sysfileinfo and rangelist fields..
441 */
442 rl_init (&lookup_rsrc->lookup_fork.ff_invalidranges);
443 lookup_rsrc->lookup_fork.ff_cp = cp;
444
445 /*
446 * If there were no errors, then we have the catalog's fork information
447 * for the resource fork in question. Go ahead and delete the data in it now.
448 */
449
450 error = hfs_release_storage (hfsmp, NULL, &lookup_rsrc->lookup_fork, cp->c_fileid);
451 FREE(lookup_rsrc, M_TEMP);
452
453 if (error) {
454 goto out;
455 }
456
457 /*
458 * This fileid's resource fork extents have now been fully deleted on-disk
459 * and this CNID is no longer valid. At this point, we should be able to
460 * zero out cp->c_blocks to indicate there is no data left in this file.
461 */
462 cp->c_blocks = 0;
463 }
464 }
465
466 /*
467 * If we represent the last fork (or none in the case of a dir),
468 * and the cnode has become open-unlinked,
469 * AND it has EA's, then we need to get rid of them.
470 *
471 * Note that this must happen outside of any other transactions
472 * because it starts/ends its own transactions and grabs its
473 * own locks. This is to prevent a file with a lot of attributes
474 * from creating a transaction that is too large (which panics).
475 */
476 if ((cp->c_attr.ca_recflags & kHFSHasAttributesMask) != 0 &&
477 (cp->c_flag & C_DELETED) &&
478 (forkcount <= 1)) {
479
480 ea_error = hfs_removeallattr(hfsmp, cp->c_fileid);
481 }
482
483
484 /*
485 * If the cnode represented an open-unlinked file, then now
486 * actually remove the cnode's catalog entry and release all blocks
487 * it may have been using.
488 */
489 if ((cp->c_flag & C_DELETED) && (forkcount <= 1)) {
490 /*
491 * Mark cnode in transit so that no one can get this
492 * cnode from cnode hash.
493 */
494 // hfs_chash_mark_in_transit(hfsmp, cp);
495 // XXXdbg - remove the cnode from the hash table since it's deleted
496 // otherwise someone could go to sleep on the cnode and not
497 // be woken up until this vnode gets recycled which could be
498 // a very long time...
499 hfs_chashremove(hfsmp, cp);
500
501 cp->c_flag |= C_NOEXISTS; // XXXdbg
502 cp->c_rdev = 0;
503
504 if (started_tr == 0) {
505 if (hfs_start_transaction(hfsmp) != 0) {
506 error = EINVAL;
507 goto out;
508 }
509 started_tr = 1;
510 }
511
512 /*
513 * Reserve some space in the Catalog file.
514 */
515 if ((error = cat_preflight(hfsmp, CAT_DELETE, &cookie, p))) {
516 goto out;
517 }
518 cat_reserve = 1;
519
520 lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG | SFL_ATTRIBUTE, HFS_EXCLUSIVE_LOCK);
521
522 if (cp->c_blocks > 0) {
523 printf("hfs_inactive: deleting non-empty%sfile %d, "
524 "blks %d\n", VNODE_IS_RSRC(vp) ? " rsrc " : " ",
525 (int)cp->c_fileid, (int)cp->c_blocks);
526 }
527
528 //
529 // release the name pointer in the descriptor so that
530 // cat_delete() will use the file-id to do the deletion.
531 // in the case of hard links this is imperative (in the
532 // case of regular files the fileid and cnid are the
533 // same so it doesn't matter).
534 //
535 cat_releasedesc(&cp->c_desc);
536
537 /*
538 * The descriptor name may be zero,
539 * in which case the fileid is used.
540 */
541 error = cat_delete(hfsmp, &cp->c_desc, &cp->c_attr);
542
543 if (error && truncated && (error != ENXIO)) {
544 printf("hfs_inactive: couldn't delete a truncated file!");
545 }
546
547 /* Update HFS Private Data dir */
548 if (error == 0) {
549 hfsmp->hfs_private_attr[FILE_HARDLINKS].ca_entries--;
550 if (vnode_isdir(vp)) {
551 DEC_FOLDERCOUNT(hfsmp, hfsmp->hfs_private_attr[FILE_HARDLINKS]);
552 }
553 (void)cat_update(hfsmp, &hfsmp->hfs_private_desc[FILE_HARDLINKS],
554 &hfsmp->hfs_private_attr[FILE_HARDLINKS], NULL, NULL);
555 }
556
557 hfs_systemfile_unlock(hfsmp, lockflags);
558
559 if (error) {
560 goto out;
561 }
562
563 #if QUOTA
564 if (hfsmp->hfs_flags & HFS_QUOTAS)
565 (void)hfs_chkiq(cp, -1, NOCRED, 0);
566 #endif /* QUOTA */
567
568 /* Already set C_NOEXISTS at the beginning of this block */
569 cp->c_flag &= ~C_DELETED;
570 cp->c_touch_chgtime = TRUE;
571 cp->c_touch_modtime = TRUE;
572
573 if (error == 0)
574 hfs_volupdate(hfsmp, (v_type == VDIR) ? VOL_RMDIR : VOL_RMFILE, 0);
575 }
576
577 /*
578 * A file may have had delayed allocations, in which case hfs_update
579 * would not have updated the catalog record (cat_update). We need
580 * to do that now, before we lose our fork data. We also need to
581 * force the update, or hfs_update will again skip the cat_update.
582 *
583 * If the file has C_NOEXISTS set, then we can skip the hfs_update call
584 * because the catalog entry has already been removed. There would be no point
585 * to looking up the entry in the catalog to modify it when we already know it's gone
586 */
587 if ((!ISSET(cp->c_flag, C_NOEXISTS)) &&
588 ((cp->c_flag & C_MODIFIED) || cp->c_touch_acctime ||
589 cp->c_touch_chgtime || cp->c_touch_modtime)) {
590
591 if ((cp->c_flag & C_MODIFIED) || cp->c_touch_modtime){
592 cp->c_flag |= C_FORCEUPDATE;
593 }
594 hfs_update(vp, 0);
595 }
596
597 /*
598 * Since we are about to finish what might be an inactive call, propagate
599 * any remaining modified or touch bits from the cnode to the vnode. This
600 * serves as a hint to vnode recycling that we shouldn't recycle this vnode
601 * synchronously.
602 */
603 if (ISSET(cp->c_flag, C_MODIFIED) || ISSET(cp->c_flag, C_FORCEUPDATE) ||
604 cp->c_touch_acctime || cp->c_touch_chgtime ||
605 cp->c_touch_modtime || ISSET(cp->c_flag, C_NEEDS_DATEADDED) ||
606 ISSET(cp->c_flag, C_DELETED)) {
607 vnode_setdirty(vp);
608 } else {
609 vnode_cleardirty(vp);
610 }
611
612 out:
613 if (cat_reserve)
614 cat_postflight(hfsmp, &cookie, p);
615
616 // XXXdbg - have to do this because a goto could have come here
617 if (started_tr) {
618 hfs_end_transaction(hfsmp);
619 started_tr = 0;
620 }
621
622 #if 0
623 #if CONFIG_PROTECT
624 /*
625 * cnode truncate lock and cnode lock are both held exclusive here.
626 *
627 * Go ahead and flush the keys out if this cnode is the last fork
628 * and it is not class F. Class F keys should not be purged because they only
629 * exist in memory and have no persistent keys. Only do this
630 * if we haven't already done it yet (maybe a vnode skipped inactive
631 * and went straight to reclaim). This function gets called from both reclaim and
632 * inactive, so it will happen first in inactive if possible.
633 *
634 * We need to be mindful that all pending IO for this file has already been
635 * issued and completed before we bzero out the key. This is because
636 * if it isn't, tossing the key here could result in garbage IO being
637 * written (by using the bzero'd key) if the writes are happening asynchronously.
638 *
639 * In addition, class A files may have already been purged due to the
640 * lock event occurring.
641 */
642 if (forkcount == 1) {
643 struct cprotect *entry = cp->c_cpentry;
644 if ((entry) && ( CP_CLASS(entry->cp_pclass) != PROTECTION_CLASS_F)) {
645 if ((cp->c_cpentry->cp_flags & CP_KEY_FLUSHED) == 0) {
646 cp->c_cpentry->cp_flags |= CP_KEY_FLUSHED;
647 bzero (cp->c_cpentry->cp_cache_key, cp->c_cpentry->cp_cache_key_len);
648 bzero (cp->c_cpentry->cp_cache_iv_ctx, sizeof(aes_encrypt_ctx));
649 }
650 }
651 }
652 #endif
653 #endif
654
655 return error;
656 }
657
658
659 /*
660 * hfs_vnop_inactive
661 *
662 * The last usecount on the vnode has gone away, so we need to tear down
663 * any remaining data still residing in the cnode. If necessary, write out
664 * remaining blocks or delete the cnode's entry in the catalog.
665 */
666 int
667 hfs_vnop_inactive(struct vnop_inactive_args *ap)
668 {
669 struct vnode *vp = ap->a_vp;
670 struct cnode *cp;
671 struct hfsmount *hfsmp = VTOHFS(vp);
672 struct proc *p = vfs_context_proc(ap->a_context);
673 int error = 0;
674 int took_trunc_lock = 0;
675 enum vtype v_type;
676
677 v_type = vnode_vtype(vp);
678 cp = VTOC(vp);
679
680 if ((hfsmp->hfs_flags & HFS_READ_ONLY) || vnode_issystem(vp) ||
681 (hfsmp->hfs_freezing_proc == p)) {
682 error = 0;
683 goto inactive_done;
684 }
685
686 /*
687 * For safety, do NOT call vnode_recycle from inside this function. This can cause
688 * problems in the following scenario:
689 *
690 * vnode_create -> vnode_reclaim_internal -> vclean -> VNOP_INACTIVE
691 *
692 * If we're being invoked as a result of a reclaim that was already in-flight, then we
693 * cannot call vnode_recycle again. Being in reclaim means that there are no usecounts or
694 * iocounts by definition. As a result, if we were to call vnode_recycle, it would immediately
695 * try to re-enter reclaim again and panic.
696 *
697 * Currently, there are three things that can cause us (VNOP_INACTIVE) to get called.
698 * 1) last usecount goes away on the vnode (vnode_rele)
699 * 2) last iocount goes away on a vnode that previously had usecounts but didn't have
700 * vnode_recycle called (vnode_put)
701 * 3) vclean by way of reclaim
702 *
703 * In this function we would generally want to call vnode_recycle to speed things
704 * along to ensure that we don't leak blocks due to open-unlinked files. However, by
705 * virtue of being in this function already, we can call hfs_cnode_teardown, which
706 * will release blocks held by open-unlinked files, and mark them C_NOEXISTS so that
707 * there's no entry in the catalog and no backing store anymore. If that's the case,
708 * then we really don't care all that much when the vnode actually goes through reclaim.
709 * Further, the HFS VNOPs that manipulated the namespace in order to create the open-
710 * unlinked file in the first place should have already called vnode_recycle on the vnode
711 * to guarantee that it would go through reclaim in a speedy way.
712 */
713
714 if (cp->c_flag & C_NOEXISTS) {
715 /*
716 * If the cnode has already had its cat entry removed, then
717 * just skip to the end. We don't need to do anything here.
718 */
719 error = 0;
720 goto inactive_done;
721 }
722
723 if ((v_type == VREG || v_type == VLNK)) {
724 hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
725 took_trunc_lock = 1;
726 }
727
728 (void) hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS);
729
730 /*
731 * Call cnode_teardown to push out dirty blocks to disk, release open-unlinked
732 * files' blocks from being in use, and move the cnode from C_DELETED to C_NOEXISTS.
733 */
734 error = hfs_cnode_teardown (vp, ap->a_context, 0);
735
736 /*
737 * Drop the truncate lock before unlocking the cnode
738 * (which can potentially perform a vnode_put and
739 * recycle the vnode which in turn might require the
740 * truncate lock)
741 */
742 if (took_trunc_lock) {
743 hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT);
744 }
745
746 hfs_unlock(cp);
747
748 inactive_done:
749
750 return error;
751 }
752
753
754 /*
755 * File clean-up (zero fill and shrink peof).
756 */
757
758 int
759 hfs_filedone(struct vnode *vp, vfs_context_t context,
760 hfs_file_done_opts_t opts)
761 {
762 struct cnode *cp;
763 struct filefork *fp;
764 struct hfsmount *hfsmp;
765 struct rl_entry *invalid_range;
766 off_t leof;
767 u_int32_t blks, blocksize;
768 /* flags for zero-filling sparse ranges */
769 int cluster_flags = IO_CLOSE;
770 int cluster_zero_flags = IO_HEADZEROFILL | IO_NOZERODIRTY | IO_NOCACHE;
771
772 cp = VTOC(vp);
773 fp = VTOF(vp);
774 hfsmp = VTOHFS(vp);
775 leof = fp->ff_size;
776
777 if ((hfsmp->hfs_flags & HFS_READ_ONLY) || (fp->ff_blocks == 0))
778 return (0);
779
780 if (!ISSET(opts, HFS_FILE_DONE_NO_SYNC)) {
781 #if CONFIG_PROTECT
782 /*
783 * Figure out if we need to do synchronous IO.
784 *
785 * If the file represents a content-protected file, we may need
786 * to issue synchronous IO when we dispatch to the cluster layer.
787 * If we didn't, then the IO would go out to the disk asynchronously.
788 * If the vnode hits the end of inactive before getting reclaimed, the
789 * content protection keys would be wiped/bzeroed out, and we'd end up
790 * trying to issue the IO with an invalid key. This will lead to file
791 * corruption. IO_SYNC will force the cluster_push to wait until all IOs
792 * have completed (though they may be in the track cache).
793 */
794 if (cp_fs_protected(VTOVFS(vp))) {
795 cluster_flags |= IO_SYNC;
796 cluster_zero_flags |= IO_SYNC;
797 }
798 #endif
799
800 hfs_unlock(cp);
801 (void) cluster_push(vp, cluster_flags);
802 hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS);
803 }
804
805 /*
806 * Explicitly zero out the areas of file
807 * that are currently marked invalid.
808 */
809 while ((invalid_range = TAILQ_FIRST(&fp->ff_invalidranges))) {
810 off_t start = invalid_range->rl_start;
811 off_t end = invalid_range->rl_end;
812
813 /* The range about to be written must be validated
814 * first, so that VNOP_BLOCKMAP() will return the
815 * appropriate mapping for the cluster code:
816 */
817 rl_remove(start, end, &fp->ff_invalidranges);
818
819 hfs_unlock(cp);
820 (void) cluster_write(vp, (struct uio *) 0,
821 leof, end + 1, start, (off_t)0, cluster_zero_flags);
822 hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS);
823 cp->c_flag |= C_MODIFIED;
824 }
825 cp->c_flag &= ~C_ZFWANTSYNC;
826 cp->c_zftimeout = 0;
827 blocksize = VTOVCB(vp)->blockSize;
828 blks = leof / blocksize;
829 if (((off_t)blks * (off_t)blocksize) != leof)
830 blks++;
831 /*
832 * Shrink the peof to the smallest size neccessary to contain the leof.
833 */
834 if (blks < fp->ff_blocks) {
835 (void) hfs_truncate(vp, leof, IO_NDELAY, HFS_TRUNCATE_SKIPTIMES, context);
836 }
837
838 if (!ISSET(opts, HFS_FILE_DONE_NO_SYNC)) {
839 hfs_unlock(cp);
840 (void) cluster_push(vp, cluster_flags);
841 hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS);
842
843 /*
844 * If the hfs_truncate didn't happen to flush the vnode's
845 * information out to disk, force it to be updated now that
846 * all invalid ranges have been zero-filled and validated:
847 */
848 if (cp->c_flag & C_MODIFIED) {
849 hfs_update(vp, 0);
850 }
851 }
852
853 return (0);
854 }
855
856
857 /*
858 * Reclaim a cnode so that it can be used for other purposes.
859 */
860 int
861 hfs_vnop_reclaim(struct vnop_reclaim_args *ap)
862 {
863 struct vnode *vp = ap->a_vp;
864 struct cnode *cp;
865 struct filefork *fp = NULL;
866 struct filefork *altfp = NULL;
867 struct hfsmount *hfsmp = VTOHFS(vp);
868 vfs_context_t ctx = ap->a_context;
869 int reclaim_cnode = 0;
870 int err = 0;
871 enum vtype v_type;
872
873 v_type = vnode_vtype(vp);
874 cp = VTOC(vp);
875
876 /*
877 * We don't take the truncate lock since by the time reclaim comes along,
878 * all dirty pages have been synced and nobody should be competing
879 * with us for this thread.
880 */
881 (void) hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS);
882
883 /*
884 * Sync to disk any remaining data in the cnode/vnode. This includes
885 * a call to hfs_update if the cnode has outbound data.
886 *
887 * If C_NOEXISTS is set on the cnode, then there's nothing teardown needs to do
888 * because the catalog entry for this cnode is already gone.
889 */
890 if (!ISSET(cp->c_flag, C_NOEXISTS)) {
891 err = hfs_cnode_teardown(vp, ctx, 1);
892 }
893
894 /*
895 * Keep track of an inactive hot file.
896 */
897 if (!vnode_isdir(vp) &&
898 !vnode_issystem(vp) &&
899 !(cp->c_flag & (C_DELETED | C_NOEXISTS)) ) {
900 (void) hfs_addhotfile(vp);
901 }
902 vnode_removefsref(vp);
903
904 /*
905 * Find file fork for this vnode (if any)
906 * Also check if another fork is active
907 */
908 if (cp->c_vp == vp) {
909 fp = cp->c_datafork;
910 altfp = cp->c_rsrcfork;
911
912 cp->c_datafork = NULL;
913 cp->c_vp = NULL;
914 } else if (cp->c_rsrc_vp == vp) {
915 fp = cp->c_rsrcfork;
916 altfp = cp->c_datafork;
917
918 cp->c_rsrcfork = NULL;
919 cp->c_rsrc_vp = NULL;
920 } else {
921 panic("hfs_vnop_reclaim: vp points to wrong cnode (vp=%p cp->c_vp=%p cp->c_rsrc_vp=%p)\n", vp, cp->c_vp, cp->c_rsrc_vp);
922 }
923 /*
924 * On the last fork, remove the cnode from its hash chain.
925 */
926 if (altfp == NULL) {
927 /* If we can't remove it then the cnode must persist! */
928 if (hfs_chashremove(hfsmp, cp) == 0)
929 reclaim_cnode = 1;
930 /*
931 * Remove any directory hints
932 */
933 if (vnode_isdir(vp)) {
934 hfs_reldirhints(cp, 0);
935 }
936
937 if(cp->c_flag & C_HARDLINK) {
938 hfs_relorigins(cp);
939 }
940 }
941 /* Release the file fork and related data */
942 if (fp) {
943 /* Dump cached symlink data */
944 if (vnode_islnk(vp) && (fp->ff_symlinkptr != NULL)) {
945 FREE(fp->ff_symlinkptr, M_TEMP);
946 }
947 FREE_ZONE(fp, sizeof(struct filefork), M_HFSFORK);
948 }
949
950 /*
951 * If there was only one active fork then we can release the cnode.
952 */
953 if (reclaim_cnode) {
954 hfs_chashwakeup(hfsmp, cp, H_ALLOC | H_TRANSIT);
955 hfs_unlock(cp);
956 hfs_reclaim_cnode(cp);
957 }
958 else {
959 /*
960 * cnode in use. If it is a directory, it could have
961 * no live forks. Just release the lock.
962 */
963 hfs_unlock(cp);
964 }
965
966 vnode_clearfsnode(vp);
967 return (0);
968 }
969
970
971 extern int (**hfs_vnodeop_p) (void *);
972 extern int (**hfs_specop_p) (void *);
973 #if FIFO
974 extern int (**hfs_fifoop_p) (void *);
975 #endif
976
977 #if CONFIG_HFS_STD
978 extern int (**hfs_std_vnodeop_p) (void *);
979 #endif
980
981 /*
982 * hfs_getnewvnode - get new default vnode
983 *
984 * The vnode is returned with an iocount and the cnode locked
985 */
986 int
987 hfs_getnewvnode(
988 struct hfsmount *hfsmp,
989 struct vnode *dvp,
990 struct componentname *cnp,
991 struct cat_desc *descp,
992 int flags,
993 struct cat_attr *attrp,
994 struct cat_fork *forkp,
995 struct vnode **vpp,
996 int *out_flags)
997 {
998 struct mount *mp = HFSTOVFS(hfsmp);
999 struct vnode *vp = NULL;
1000 struct vnode **cvpp;
1001 struct vnode *tvp = NULLVP;
1002 struct cnode *cp = NULL;
1003 struct filefork *fp = NULL;
1004 int hfs_standard = 0;
1005 int retval;
1006 int issystemfile;
1007 int wantrsrc;
1008 int hflags = 0;
1009 struct vnode_fsparam vfsp;
1010 enum vtype vtype;
1011 #if QUOTA
1012 int i;
1013 #endif /* QUOTA */
1014
1015 hfs_standard = (hfsmp->hfs_flags & HFS_STANDARD);
1016
1017 if (attrp->ca_fileid == 0) {
1018 *vpp = NULL;
1019 return (ENOENT);
1020 }
1021
1022 #if !FIFO
1023 if (IFTOVT(attrp->ca_mode) == VFIFO) {
1024 *vpp = NULL;
1025 return (ENOTSUP);
1026 }
1027 #endif /* !FIFO */
1028 vtype = IFTOVT(attrp->ca_mode);
1029 issystemfile = (descp->cd_flags & CD_ISMETA) && (vtype == VREG);
1030 wantrsrc = flags & GNV_WANTRSRC;
1031
1032 /* Sanity check the vtype and mode */
1033 if (vtype == VBAD) {
1034 /* Mark the FS as corrupt and bail out */
1035 hfs_mark_inconsistent(hfsmp, HFS_INCONSISTENCY_DETECTED);
1036 return EINVAL;
1037 }
1038
1039 /* Zero out the out_flags */
1040 *out_flags = 0;
1041
1042 #ifdef HFS_CHECK_LOCK_ORDER
1043 /*
1044 * The only case were its permissible to hold the parent cnode
1045 * lock is during a create operation (hfs_makenode) or when
1046 * we don't need the cnode lock (GNV_SKIPLOCK).
1047 */
1048 if ((dvp != NULL) &&
1049 (flags & (GNV_CREATE | GNV_SKIPLOCK)) == 0 &&
1050 VTOC(dvp)->c_lockowner == current_thread()) {
1051 panic("hfs_getnewvnode: unexpected hold of parent cnode %p", VTOC(dvp));
1052 }
1053 #endif /* HFS_CHECK_LOCK_ORDER */
1054
1055 /*
1056 * Get a cnode (new or existing)
1057 */
1058 cp = hfs_chash_getcnode(hfsmp, attrp->ca_fileid, vpp, wantrsrc,
1059 (flags & GNV_SKIPLOCK), out_flags, &hflags);
1060
1061 /*
1062 * If the id is no longer valid for lookups we'll get back a NULL cp.
1063 */
1064 if (cp == NULL) {
1065 return (ENOENT);
1066 }
1067
1068 /*
1069 * If we get a cnode/vnode pair out of hfs_chash_getcnode, then update the
1070 * descriptor in the cnode as needed if the cnode represents a hardlink.
1071 * We want the caller to get the most up-to-date copy of the descriptor
1072 * as possible. However, we only do anything here if there was a valid vnode.
1073 * If there isn't a vnode, then the cnode is brand new and needs to be initialized
1074 * as it doesn't have a descriptor or cat_attr yet.
1075 *
1076 * If we are about to replace the descriptor with the user-supplied one, then validate
1077 * that the descriptor correctly acknowledges this item is a hardlink. We could be
1078 * subject to a race where the calling thread invoked cat_lookup, got a valid lookup
1079 * result but the file was not yet a hardlink. With sufficient delay between there
1080 * and here, we might accidentally copy in the raw inode ID into the descriptor in the
1081 * call below. If the descriptor's CNID is the same as the fileID then it must
1082 * not yet have been a hardlink when the lookup occurred.
1083 */
1084
1085 if (!(hfs_checkdeleted(cp))) {
1086 if ((cp->c_flag & C_HARDLINK) && descp->cd_nameptr && descp->cd_namelen > 0) {
1087 /* If cnode is uninitialized, its c_attr will be zeroed out; cnids wont match. */
1088 if ((descp->cd_cnid == cp->c_attr.ca_fileid) &&
1089 (attrp->ca_linkcount != cp->c_attr.ca_linkcount)){
1090 if ((flags & GNV_SKIPLOCK) == 0) {
1091 /*
1092 * Then we took the lock. Drop it before calling
1093 * vnode_put, which may invoke hfs_vnop_inactive and need to take
1094 * the cnode lock again.
1095 */
1096 hfs_unlock(cp);
1097 }
1098
1099 /*
1100 * Emit ERECYCLE and GNV_CAT_ATTRCHANGED to
1101 * force a re-drive in the lookup routine.
1102 * Drop the iocount on the vnode obtained from
1103 * chash_getcnode if needed.
1104 */
1105 if (*vpp != NULL) {
1106 vnode_put (*vpp);
1107 *vpp = NULL;
1108 }
1109
1110 /*
1111 * If we raced with VNOP_RECLAIM for this vnode, the hash code could
1112 * have observed it after the c_vp or c_rsrc_vp fields had been torn down;
1113 * the hash code peeks at those fields without holding the cnode lock because
1114 * it needs to be fast. As a result, we may have set H_ATTACH in the chash
1115 * call above. Since we're bailing out, unset whatever flags we just set, and
1116 * wake up all waiters for this cnode.
1117 */
1118 if (hflags) {
1119 hfs_chashwakeup(hfsmp, cp, hflags);
1120 }
1121
1122 *out_flags = GNV_CAT_ATTRCHANGED;
1123 return ERECYCLE;
1124 }
1125 else {
1126 /*
1127 * Otherwise, CNID != fileid. Go ahead and copy in the new descriptor.
1128 *
1129 * Replacing the descriptor here is fine because we looked up the item without
1130 * a vnode in hand before. If a vnode existed, its identity must be attached to this
1131 * item. We are not susceptible to the lookup fastpath issue at this point.
1132 */
1133 replace_desc(cp, descp);
1134
1135 /*
1136 * This item was a hardlink, and its name needed to be updated. By replacing the
1137 * descriptor above, we've now updated the cnode's internal representation of
1138 * its link ID/CNID, parent ID, and its name. However, VFS must now be alerted
1139 * to the fact that this vnode now has a new parent, since we cannot guarantee
1140 * that the new link lived in the same directory as the alternative name for
1141 * this item.
1142 */
1143 if ((*vpp != NULL) && (cnp)) {
1144 /* we could be requesting the rsrc of a hardlink file... */
1145 vnode_update_identity (*vpp, dvp, cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_hash,
1146 (VNODE_UPDATE_PARENT | VNODE_UPDATE_NAME));
1147 }
1148 }
1149 }
1150 }
1151
1152 /* Check if we found a matching vnode */
1153 if (*vpp != NULL) {
1154 return (0);
1155 }
1156
1157 /*
1158 * If this is a new cnode then initialize it.
1159 */
1160 if (ISSET(cp->c_hflag, H_ALLOC)) {
1161 lck_rw_init(&cp->c_truncatelock, hfs_rwlock_group, hfs_lock_attr);
1162 #if HFS_COMPRESSION
1163 cp->c_decmp = NULL;
1164 #endif
1165
1166 /* Make sure its still valid (ie exists on disk). */
1167 if (!(flags & GNV_CREATE)) {
1168 int error = 0;
1169 if (!hfs_valid_cnode (hfsmp, dvp, (wantrsrc ? NULL : cnp), cp->c_fileid, attrp, &error)) {
1170 hfs_chash_abort(hfsmp, cp);
1171 if ((flags & GNV_SKIPLOCK) == 0) {
1172 hfs_unlock(cp);
1173 }
1174 hfs_reclaim_cnode(cp);
1175 *vpp = NULL;
1176 /*
1177 * If we hit this case, that means that the entry was there in the catalog when
1178 * we did a cat_lookup earlier. Think hfs_lookup. However, in between the time
1179 * that we checked the catalog and the time we went to get a vnode/cnode for it,
1180 * it had been removed from the namespace and the vnode totally reclaimed. As a result,
1181 * it's not there in the catalog during the check in hfs_valid_cnode and we bubble out
1182 * an ENOENT. To indicate to the caller that they should really double-check the
1183 * entry (it could have been renamed over and gotten a new fileid), we mark a bit
1184 * in the output flags.
1185 */
1186 if (error == ENOENT) {
1187 *out_flags = GNV_CAT_DELETED;
1188 return ENOENT;
1189 }
1190
1191 /*
1192 * Also, we need to protect the cat_attr acquired during hfs_lookup and passed into
1193 * this function as an argument because the catalog may have changed w.r.t hardlink
1194 * link counts and the firstlink field. If that validation check fails, then let
1195 * lookup re-drive itself to get valid/consistent data with the same failure condition below.
1196 */
1197 if (error == ERECYCLE) {
1198 *out_flags = GNV_CAT_ATTRCHANGED;
1199 return (ERECYCLE);
1200 }
1201 }
1202 }
1203 bcopy(attrp, &cp->c_attr, sizeof(struct cat_attr));
1204 bcopy(descp, &cp->c_desc, sizeof(struct cat_desc));
1205
1206 /* The name was inherited so clear descriptor state... */
1207 descp->cd_namelen = 0;
1208 descp->cd_nameptr = NULL;
1209 descp->cd_flags &= ~CD_HASBUF;
1210
1211 /* Tag hardlinks */
1212 if ((vtype == VREG || vtype == VDIR) &&
1213 ((descp->cd_cnid != attrp->ca_fileid) ||
1214 (attrp->ca_recflags & kHFSHasLinkChainMask))) {
1215 cp->c_flag |= C_HARDLINK;
1216 }
1217 /*
1218 * Fix-up dir link counts.
1219 *
1220 * Earlier versions of Leopard used ca_linkcount for posix
1221 * nlink support (effectively the sub-directory count + 2).
1222 * That is now accomplished using the ca_dircount field with
1223 * the corresponding kHFSHasFolderCountMask flag.
1224 *
1225 * For directories the ca_linkcount is the true link count,
1226 * tracking the number of actual hardlinks to a directory.
1227 *
1228 * We only do this if the mount has HFS_FOLDERCOUNT set;
1229 * at the moment, we only set that for HFSX volumes.
1230 */
1231 if ((hfsmp->hfs_flags & HFS_FOLDERCOUNT) &&
1232 (vtype == VDIR) &&
1233 !(attrp->ca_recflags & kHFSHasFolderCountMask) &&
1234 (cp->c_attr.ca_linkcount > 1)) {
1235 if (cp->c_attr.ca_entries == 0)
1236 cp->c_attr.ca_dircount = 0;
1237 else
1238 cp->c_attr.ca_dircount = cp->c_attr.ca_linkcount - 2;
1239
1240 cp->c_attr.ca_linkcount = 1;
1241 cp->c_attr.ca_recflags |= kHFSHasFolderCountMask;
1242 if ( !(hfsmp->hfs_flags & HFS_READ_ONLY) )
1243 cp->c_flag |= C_MODIFIED;
1244 }
1245 #if QUOTA
1246 if (hfsmp->hfs_flags & HFS_QUOTAS) {
1247 for (i = 0; i < MAXQUOTAS; i++)
1248 cp->c_dquot[i] = NODQUOT;
1249 }
1250 #endif /* QUOTA */
1251 /* Mark the output flag that we're vending a new cnode */
1252 *out_flags |= GNV_NEW_CNODE;
1253 }
1254
1255 if (vtype == VDIR) {
1256 if (cp->c_vp != NULL)
1257 panic("hfs_getnewvnode: orphaned vnode (data)");
1258 cvpp = &cp->c_vp;
1259 } else {
1260 if (forkp && attrp->ca_blocks < forkp->cf_blocks)
1261 panic("hfs_getnewvnode: bad ca_blocks (too small)");
1262 /*
1263 * Allocate and initialize a file fork...
1264 */
1265 MALLOC_ZONE(fp, struct filefork *, sizeof(struct filefork),
1266 M_HFSFORK, M_WAITOK);
1267 fp->ff_cp = cp;
1268 if (forkp)
1269 bcopy(forkp, &fp->ff_data, sizeof(struct cat_fork));
1270 else
1271 bzero(&fp->ff_data, sizeof(struct cat_fork));
1272 rl_init(&fp->ff_invalidranges);
1273 fp->ff_sysfileinfo = 0;
1274
1275 if (wantrsrc) {
1276 if (cp->c_rsrcfork != NULL)
1277 panic("hfs_getnewvnode: orphaned rsrc fork");
1278 if (cp->c_rsrc_vp != NULL)
1279 panic("hfs_getnewvnode: orphaned vnode (rsrc)");
1280 cp->c_rsrcfork = fp;
1281 cvpp = &cp->c_rsrc_vp;
1282 if ( (tvp = cp->c_vp) != NULLVP )
1283 cp->c_flag |= C_NEED_DVNODE_PUT;
1284 } else {
1285 if (cp->c_datafork != NULL)
1286 panic("hfs_getnewvnode: orphaned data fork");
1287 if (cp->c_vp != NULL)
1288 panic("hfs_getnewvnode: orphaned vnode (data)");
1289 cp->c_datafork = fp;
1290 cvpp = &cp->c_vp;
1291 if ( (tvp = cp->c_rsrc_vp) != NULLVP)
1292 cp->c_flag |= C_NEED_RVNODE_PUT;
1293 }
1294 }
1295 if (tvp != NULLVP) {
1296 /*
1297 * grab an iocount on the vnode we weren't
1298 * interested in (i.e. we want the resource fork
1299 * but the cnode already has the data fork)
1300 * to prevent it from being
1301 * recycled by us when we call vnode_create
1302 * which will result in a deadlock when we
1303 * try to take the cnode lock in hfs_vnop_fsync or
1304 * hfs_vnop_reclaim... vnode_get can be called here
1305 * because we already hold the cnode lock which will
1306 * prevent the vnode from changing identity until
1307 * we drop it.. vnode_get will not block waiting for
1308 * a change of state... however, it will return an
1309 * error if the current iocount == 0 and we've already
1310 * started to terminate the vnode... we don't need/want to
1311 * grab an iocount in the case since we can't cause
1312 * the fileystem to be re-entered on this thread for this vp
1313 *
1314 * the matching vnode_put will happen in hfs_unlock
1315 * after we've dropped the cnode lock
1316 */
1317 if ( vnode_get(tvp) != 0)
1318 cp->c_flag &= ~(C_NEED_RVNODE_PUT | C_NEED_DVNODE_PUT);
1319 }
1320 vfsp.vnfs_mp = mp;
1321 vfsp.vnfs_vtype = vtype;
1322 vfsp.vnfs_str = "hfs";
1323 if ((cp->c_flag & C_HARDLINK) && (vtype == VDIR)) {
1324 vfsp.vnfs_dvp = NULL; /* no parent for me! */
1325 vfsp.vnfs_cnp = NULL; /* no name for me! */
1326 } else {
1327 vfsp.vnfs_dvp = dvp;
1328 vfsp.vnfs_cnp = cnp;
1329 }
1330 vfsp.vnfs_fsnode = cp;
1331
1332 /*
1333 * Special Case HFS Standard VNOPs from HFS+, since
1334 * HFS standard is readonly/deprecated as of 10.6
1335 */
1336
1337 #if FIFO
1338 if (vtype == VFIFO )
1339 vfsp.vnfs_vops = hfs_fifoop_p;
1340 else
1341 #endif
1342 if (vtype == VBLK || vtype == VCHR)
1343 vfsp.vnfs_vops = hfs_specop_p;
1344 #if CONFIG_HFS_STD
1345 else if (hfs_standard)
1346 vfsp.vnfs_vops = hfs_std_vnodeop_p;
1347 #endif
1348 else
1349 vfsp.vnfs_vops = hfs_vnodeop_p;
1350
1351 if (vtype == VBLK || vtype == VCHR)
1352 vfsp.vnfs_rdev = attrp->ca_rdev;
1353 else
1354 vfsp.vnfs_rdev = 0;
1355
1356 if (forkp)
1357 vfsp.vnfs_filesize = forkp->cf_size;
1358 else
1359 vfsp.vnfs_filesize = 0;
1360
1361 vfsp.vnfs_flags = VNFS_ADDFSREF;
1362 if (dvp == NULLVP || cnp == NULL || !(cnp->cn_flags & MAKEENTRY) || (flags & GNV_NOCACHE))
1363 vfsp.vnfs_flags |= VNFS_NOCACHE;
1364
1365 /* Tag system files */
1366 vfsp.vnfs_marksystem = issystemfile;
1367
1368 /* Tag root directory */
1369 if (descp->cd_cnid == kHFSRootFolderID)
1370 vfsp.vnfs_markroot = 1;
1371 else
1372 vfsp.vnfs_markroot = 0;
1373
1374 if ((retval = vnode_create(VNCREATE_FLAVOR, VCREATESIZE, &vfsp, cvpp))) {
1375 if (fp) {
1376 if (fp == cp->c_datafork)
1377 cp->c_datafork = NULL;
1378 else
1379 cp->c_rsrcfork = NULL;
1380
1381 FREE_ZONE(fp, sizeof(struct filefork), M_HFSFORK);
1382 }
1383 /*
1384 * If this is a newly created cnode or a vnode reclaim
1385 * occurred during the attachment, then cleanup the cnode.
1386 */
1387 if ((cp->c_vp == NULL) && (cp->c_rsrc_vp == NULL)) {
1388 hfs_chash_abort(hfsmp, cp);
1389 hfs_reclaim_cnode(cp);
1390 }
1391 else {
1392 hfs_chashwakeup(hfsmp, cp, H_ALLOC | H_ATTACH);
1393 if ((flags & GNV_SKIPLOCK) == 0){
1394 hfs_unlock(cp);
1395 }
1396 }
1397 *vpp = NULL;
1398 return (retval);
1399 }
1400 vp = *cvpp;
1401 vnode_settag(vp, VT_HFS);
1402 if (cp->c_flag & C_HARDLINK) {
1403 vnode_setmultipath(vp);
1404 }
1405 /*
1406 * Tag resource fork vnodes as needing an VNOP_INACTIVE
1407 * so that any deferred removes (open unlinked files)
1408 * have the chance to process the resource fork.
1409 */
1410 if (VNODE_IS_RSRC(vp)) {
1411 int err;
1412
1413 KERNEL_DEBUG_CONSTANT(HFSDBG_GETNEWVNODE, VM_KERNEL_ADDRPERM(cp->c_vp), VM_KERNEL_ADDRPERM(cp->c_rsrc_vp), 0, 0, 0);
1414
1415 /* Force VL_NEEDINACTIVE on this vnode */
1416 err = vnode_ref(vp);
1417 if (err == 0) {
1418 vnode_rele(vp);
1419 }
1420 }
1421 hfs_chashwakeup(hfsmp, cp, H_ALLOC | H_ATTACH);
1422
1423 /*
1424 * Stop tracking an active hot file.
1425 */
1426 if (!(flags & GNV_CREATE) && (vtype != VDIR) && !issystemfile) {
1427 (void) hfs_removehotfile(vp);
1428 }
1429
1430 #if CONFIG_PROTECT
1431 /* Initialize the cp data structures. The key should be in place now. */
1432 if (!issystemfile && (*out_flags & GNV_NEW_CNODE)) {
1433 cp_entry_init(cp, mp);
1434 }
1435 #endif
1436
1437 *vpp = vp;
1438 return (0);
1439 }
1440
1441
1442 static void
1443 hfs_reclaim_cnode(struct cnode *cp)
1444 {
1445 #if QUOTA
1446 int i;
1447
1448 for (i = 0; i < MAXQUOTAS; i++) {
1449 if (cp->c_dquot[i] != NODQUOT) {
1450 dqreclaim(cp->c_dquot[i]);
1451 cp->c_dquot[i] = NODQUOT;
1452 }
1453 }
1454 #endif /* QUOTA */
1455
1456 /*
1457 * If the descriptor has a name then release it
1458 */
1459 if ((cp->c_desc.cd_flags & CD_HASBUF) && (cp->c_desc.cd_nameptr != 0)) {
1460 const char *nameptr;
1461
1462 nameptr = (const char *) cp->c_desc.cd_nameptr;
1463 cp->c_desc.cd_nameptr = 0;
1464 cp->c_desc.cd_flags &= ~CD_HASBUF;
1465 cp->c_desc.cd_namelen = 0;
1466 vfs_removename(nameptr);
1467 }
1468
1469 /*
1470 * We only call this function if we are in hfs_vnop_reclaim and
1471 * attempting to reclaim a cnode with only one live fork. Because the vnode
1472 * went through reclaim, any future attempts to use this item will have to
1473 * go through lookup again, which will need to create a new vnode. Thus,
1474 * destroying the locks below is safe.
1475 */
1476
1477 lck_rw_destroy(&cp->c_rwlock, hfs_rwlock_group);
1478 lck_rw_destroy(&cp->c_truncatelock, hfs_rwlock_group);
1479 #if HFS_COMPRESSION
1480 if (cp->c_decmp) {
1481 decmpfs_cnode_destroy(cp->c_decmp);
1482 FREE_ZONE(cp->c_decmp, sizeof(*(cp->c_decmp)), M_DECMPFS_CNODE);
1483 }
1484 #endif
1485 #if CONFIG_PROTECT
1486 cp_entry_destroy(cp->c_cpentry);
1487 cp->c_cpentry = NULL;
1488 #endif
1489
1490
1491 bzero(cp, sizeof(struct cnode));
1492 FREE_ZONE(cp, sizeof(struct cnode), M_HFSNODE);
1493 }
1494
1495
1496 /*
1497 * hfs_valid_cnode
1498 *
1499 * This function is used to validate data that is stored in-core against what is contained
1500 * in the catalog. Common uses include validating that the parent-child relationship still exist
1501 * for a specific directory entry (guaranteeing it has not been renamed into a different spot) at
1502 * the point of the check.
1503 */
1504 int
1505 hfs_valid_cnode(struct hfsmount *hfsmp, struct vnode *dvp, struct componentname *cnp,
1506 cnid_t cnid, struct cat_attr *cattr, int *error)
1507 {
1508 struct cat_attr attr;
1509 struct cat_desc cndesc;
1510 int stillvalid = 0;
1511 int lockflags;
1512
1513 /* System files are always valid */
1514 if (cnid < kHFSFirstUserCatalogNodeID) {
1515 *error = 0;
1516 return (1);
1517 }
1518
1519 /* XXX optimization: check write count in dvp */
1520
1521 lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
1522
1523 if (dvp && cnp) {
1524 int lookup = 0;
1525 struct cat_fork fork;
1526 bzero(&cndesc, sizeof(cndesc));
1527 cndesc.cd_nameptr = (const u_int8_t *)cnp->cn_nameptr;
1528 cndesc.cd_namelen = cnp->cn_namelen;
1529 cndesc.cd_parentcnid = VTOC(dvp)->c_fileid;
1530 cndesc.cd_hint = VTOC(dvp)->c_childhint;
1531
1532 /*
1533 * We have to be careful when calling cat_lookup. The result argument
1534 * 'attr' may get different results based on whether or not you ask
1535 * for the filefork to be supplied as output. This is because cat_lookupbykey
1536 * will attempt to do basic validation/smoke tests against the resident
1537 * extents if there are no overflow extent records, but it needs someplace
1538 * in memory to store the on-disk fork structures.
1539 *
1540 * Since hfs_lookup calls cat_lookup with a filefork argument, we should
1541 * do the same here, to verify that block count differences are not
1542 * due to calling the function with different styles. cat_lookupbykey
1543 * will request the volume be fsck'd if there is true on-disk corruption
1544 * where the number of blocks does not match the number generated by
1545 * summing the number of blocks in the resident extents.
1546 */
1547
1548 lookup = cat_lookup (hfsmp, &cndesc, 0, 0, NULL, &attr, &fork, NULL);
1549
1550 if ((lookup == 0) && (cnid == attr.ca_fileid)) {
1551 stillvalid = 1;
1552 *error = 0;
1553 }
1554 else {
1555 *error = ENOENT;
1556 }
1557
1558 /*
1559 * In hfs_getnewvnode, we may encounter a time-of-check vs. time-of-vnode creation
1560 * race. Specifically, if there is no vnode/cnode pair for the directory entry
1561 * being looked up, we have to go to the catalog. But since we don't hold any locks (aside
1562 * from the dvp in 'shared' mode) there is nothing to protect us against the catalog record
1563 * changing in between the time we do the cat_lookup there and the time we re-grab the
1564 * catalog lock above to do another cat_lookup.
1565 *
1566 * However, we need to check more than just the CNID and parent-child name relationships above.
1567 * Hardlinks can suffer the same race in the following scenario: Suppose we do a
1568 * cat_lookup, and find a leaf record and a raw inode for a hardlink. Now, we have
1569 * the cat_attr in hand (passed in above). But in between then and now, the vnode was
1570 * created by a competing hfs_getnewvnode call, and is manipulated and reclaimed before we get
1571 * a chance to do anything. This is possible if there are a lot of threads thrashing around
1572 * with the cnode hash. In this case, if we don't check/validate the cat_attr in-hand, we will
1573 * blindly stuff it into the cnode, which will make the in-core data inconsistent with what is
1574 * on disk. So validate the cat_attr below, if required. This race cannot happen if the cnode/vnode
1575 * already exists, as it does in the case of rename and delete.
1576 */
1577 if (stillvalid && cattr != NULL) {
1578 if (cattr->ca_linkcount != attr.ca_linkcount) {
1579 stillvalid = 0;
1580 *error = ERECYCLE;
1581 goto notvalid;
1582 }
1583
1584 if (cattr->ca_union1.cau_linkref != attr.ca_union1.cau_linkref) {
1585 stillvalid = 0;
1586 *error = ERECYCLE;
1587 goto notvalid;
1588 }
1589
1590 if (cattr->ca_union3.cau_firstlink != attr.ca_union3.cau_firstlink) {
1591 stillvalid = 0;
1592 *error = ERECYCLE;
1593 goto notvalid;
1594 }
1595
1596 if (cattr->ca_union2.cau_blocks != attr.ca_union2.cau_blocks) {
1597 stillvalid = 0;
1598 *error = ERECYCLE;
1599 goto notvalid;
1600 }
1601 }
1602 } else {
1603 if (cat_idlookup(hfsmp, cnid, 0, 0, NULL, NULL, NULL) == 0) {
1604 stillvalid = 1;
1605 *error = 0;
1606 }
1607 else {
1608 *error = ENOENT;
1609 }
1610 }
1611 notvalid:
1612 hfs_systemfile_unlock(hfsmp, lockflags);
1613
1614 return (stillvalid);
1615 }
1616
1617
1618 /*
1619 * Per HI and Finder requirements, HFS should add in the
1620 * date/time that a particular directory entry was added
1621 * to the containing directory.
1622 * This is stored in the extended Finder Info for the
1623 * item in question.
1624 *
1625 * Note that this field is also set explicitly in the hfs_vnop_setxattr code.
1626 * We must ignore user attempts to set this part of the finderinfo, and
1627 * so we need to save a local copy of the date added, write in the user
1628 * finderinfo, then stuff the value back in.
1629 */
1630 void hfs_write_dateadded (struct cat_attr *attrp, u_int32_t dateadded) {
1631 u_int8_t *finfo = NULL;
1632
1633 /* overlay the FinderInfo to the correct pointer, and advance */
1634 finfo = (u_int8_t*)attrp->ca_finderinfo;
1635 finfo = finfo + 16;
1636
1637 /*
1638 * Make sure to write it out as big endian, since that's how
1639 * finder info is defined.
1640 *
1641 * NOTE: This is a Unix-epoch timestamp, not a HFS/Traditional Mac timestamp.
1642 */
1643 if (S_ISREG(attrp->ca_mode)) {
1644 struct FndrExtendedFileInfo *extinfo = (struct FndrExtendedFileInfo *)finfo;
1645 extinfo->date_added = OSSwapHostToBigInt32(dateadded);
1646 attrp->ca_recflags |= kHFSHasDateAddedMask;
1647 }
1648 else if (S_ISDIR(attrp->ca_mode)) {
1649 struct FndrExtendedDirInfo *extinfo = (struct FndrExtendedDirInfo *)finfo;
1650 extinfo->date_added = OSSwapHostToBigInt32(dateadded);
1651 attrp->ca_recflags |= kHFSHasDateAddedMask;
1652 }
1653 /* If it were neither directory/file, then we'd bail out */
1654 return;
1655 }
1656
1657 static u_int32_t
1658 hfs_get_dateadded_internal(const uint8_t *finderinfo, mode_t mode)
1659 {
1660 u_int8_t *finfo = NULL;
1661 u_int32_t dateadded = 0;
1662
1663
1664
1665 /* overlay the FinderInfo to the correct pointer, and advance */
1666 finfo = (u_int8_t*)finderinfo + 16;
1667
1668 /*
1669 * FinderInfo is written out in big endian... make sure to convert it to host
1670 * native before we use it.
1671 */
1672 if (S_ISREG(mode)) {
1673 struct FndrExtendedFileInfo *extinfo = (struct FndrExtendedFileInfo *)finfo;
1674 dateadded = OSSwapBigToHostInt32 (extinfo->date_added);
1675 }
1676 else if (S_ISDIR(mode)) {
1677 struct FndrExtendedDirInfo *extinfo = (struct FndrExtendedDirInfo *)finfo;
1678 dateadded = OSSwapBigToHostInt32 (extinfo->date_added);
1679 }
1680
1681 return dateadded;
1682 }
1683
1684 u_int32_t
1685 hfs_get_dateadded(struct cnode *cp)
1686 {
1687 if ((cp->c_attr.ca_recflags & kHFSHasDateAddedMask) == 0) {
1688 /* Date added was never set. Return 0. */
1689 return (0);
1690 }
1691
1692 return (hfs_get_dateadded_internal((u_int8_t*)cp->c_finderinfo,
1693 cp->c_attr.ca_mode));
1694 }
1695
1696 u_int32_t
1697 hfs_get_dateadded_from_blob(const uint8_t *finderinfo, mode_t mode)
1698 {
1699 return (hfs_get_dateadded_internal(finderinfo, mode));
1700 }
1701
1702 /*
1703 * Per HI and Finder requirements, HFS maintains a "write/generation
1704 * count" for each file that is incremented on any write & pageout.
1705 * It should start at 1 to reserve "0" as a special value. If it
1706 * should ever wrap around, it will skip using 0.
1707 *
1708 * Note that finderinfo is manipulated in hfs_vnop_setxattr and care
1709 * is and should be taken to ignore user attempts to set the part of
1710 * the finderinfo that records the generation counter.
1711 *
1712 * Any change to the generation counter *must* not be visible before
1713 * the change that caused it (for obvious reasons), and given the
1714 * limitations of our current architecture, the change to the
1715 * generation counter may occur some time afterwards (particularly in
1716 * the case where a file is mapped writable---more on that below).
1717 *
1718 * We make no guarantees about the consistency of a file. In other
1719 * words, a reader that is operating concurrently with a writer might
1720 * see some, but not all of writer's changes, and the generation
1721 * counter will *not* necessarily tell you this has happened. To
1722 * enforce consistency, clients must make their own arrangements
1723 * e.g. use file locking.
1724 *
1725 * We treat files that are mapped writable as a special case: when
1726 * that happens, clients requesting the generation count will be told
1727 * it has a generation count of zero and they use that knowledge as a
1728 * hint that the file is changing and it therefore might be prudent to
1729 * wait until it is no longer mapped writable. Clients should *not*
1730 * rely on this behaviour however; we might decide that it's better
1731 * for us to publish the fact that a file is mapped writable via
1732 * alternate means and return the generation counter when it is mapped
1733 * writable as it still has some, albeit limited, use. We reserve the
1734 * right to make this change.
1735 *
1736 * Lastly, it's important to realise that because data and metadata
1737 * take different paths through the system, it's possible upon crash
1738 * or sudden power loss and after a restart, that a change may be
1739 * visible to the rest of the system without a corresponding change to
1740 * the generation counter. The reverse may also be true, but for all
1741 * practical applications this shouldn't be an issue.
1742 */
1743 void hfs_write_gencount (struct cat_attr *attrp, uint32_t gencount) {
1744 u_int8_t *finfo = NULL;
1745
1746 /* overlay the FinderInfo to the correct pointer, and advance */
1747 finfo = (u_int8_t*)attrp->ca_finderinfo;
1748 finfo = finfo + 16;
1749
1750 /*
1751 * Make sure to write it out as big endian, since that's how
1752 * finder info is defined.
1753 *
1754 * Generation count is only supported for files.
1755 */
1756 if (S_ISREG(attrp->ca_mode)) {
1757 struct FndrExtendedFileInfo *extinfo = (struct FndrExtendedFileInfo *)finfo;
1758 extinfo->write_gen_counter = OSSwapHostToBigInt32(gencount);
1759 }
1760
1761 /* If it were neither directory/file, then we'd bail out */
1762 return;
1763 }
1764
1765 /*
1766 * Increase the gen count by 1; if it wraps around to 0, increment by
1767 * two. The cnode *must* be locked exclusively by the caller.
1768 *
1769 * You may think holding the lock is unnecessary because we only need
1770 * to change the counter, but consider this sequence of events: thread
1771 * A calls hfs_incr_gencount and the generation counter is 2 upon
1772 * entry. A context switch occurs and thread B increments the counter
1773 * to 3, thread C now gets the generation counter (for whatever
1774 * purpose), and then another thread makes another change and the
1775 * generation counter is incremented again---it's now 4. Now thread A
1776 * continues and it sets the generation counter back to 3. So you can
1777 * see, thread C would miss the change that caused the generation
1778 * counter to increment to 4 and for this reason the cnode *must*
1779 * always be locked exclusively.
1780 */
1781 uint32_t hfs_incr_gencount (struct cnode *cp) {
1782 u_int8_t *finfo = NULL;
1783 u_int32_t gcount = 0;
1784
1785 /* overlay the FinderInfo to the correct pointer, and advance */
1786 finfo = (u_int8_t*)cp->c_finderinfo;
1787 finfo = finfo + 16;
1788
1789 /*
1790 * FinderInfo is written out in big endian... make sure to convert it to host
1791 * native before we use it.
1792 *
1793 * NOTE: the write_gen_counter is stored in the same location in both the
1794 * FndrExtendedFileInfo and FndrExtendedDirInfo structs (it's the
1795 * last 32-bit word) so it is safe to have one code path here.
1796 */
1797 if (S_ISDIR(cp->c_attr.ca_mode) || S_ISREG(cp->c_attr.ca_mode)) {
1798 struct FndrExtendedFileInfo *extinfo = (struct FndrExtendedFileInfo *)finfo;
1799 gcount = OSSwapBigToHostInt32 (extinfo->write_gen_counter);
1800
1801 /* Was it zero to begin with (file originated in 10.8 or earlier?) */
1802 if (gcount == 0) {
1803 gcount++;
1804 }
1805
1806 /* now bump it */
1807 gcount++;
1808
1809 /* Did it wrap around ? */
1810 if (gcount == 0) {
1811 gcount++;
1812 }
1813 extinfo->write_gen_counter = OSSwapHostToBigInt32 (gcount);
1814
1815 SET(cp->c_flag, C_MODIFIED);
1816 }
1817 else {
1818 gcount = 0;
1819 }
1820
1821 return gcount;
1822 }
1823
1824 /*
1825 * There is no need for any locks here (other than an iocount on an
1826 * associated vnode) because reading and writing an aligned 32 bit
1827 * integer should be atomic on all platforms we support.
1828 */
1829 static u_int32_t
1830 hfs_get_gencount_internal(const uint8_t *finderinfo, mode_t mode)
1831 {
1832 u_int8_t *finfo = NULL;
1833 u_int32_t gcount = 0;
1834
1835 /* overlay the FinderInfo to the correct pointer, and advance */
1836 finfo = (u_int8_t*)finderinfo;
1837 finfo = finfo + 16;
1838
1839 /*
1840 * FinderInfo is written out in big endian... make sure to convert it to host
1841 * native before we use it.
1842 *
1843 * NOTE: the write_gen_counter is stored in the same location in both the
1844 * FndrExtendedFileInfo and FndrExtendedDirInfo structs (it's the
1845 * last 32-bit word) so it is safe to have one code path here.
1846 */
1847 if (S_ISDIR(mode) || S_ISREG(mode)) {
1848 struct FndrExtendedFileInfo *extinfo = (struct FndrExtendedFileInfo *)finfo;
1849 gcount = OSSwapBigToHostInt32 (extinfo->write_gen_counter);
1850
1851 /*
1852 * Is it zero? File might originate in 10.8 or earlier. We lie and bump it to 1,
1853 * since the incrementer code is able to handle this case and will double-increment
1854 * for us.
1855 */
1856 if (gcount == 0) {
1857 gcount++;
1858 }
1859 }
1860
1861 return gcount;
1862 }
1863
1864 /* Getter for the gen count */
1865 u_int32_t hfs_get_gencount (struct cnode *cp) {
1866 return hfs_get_gencount_internal(cp->c_finderinfo, cp->c_attr.ca_mode);
1867 }
1868
1869 /* Getter for the gen count from a buffer (currently pointer to finderinfo)*/
1870 u_int32_t hfs_get_gencount_from_blob (const uint8_t *finfoblob, mode_t mode) {
1871 return hfs_get_gencount_internal(finfoblob, mode);
1872 }
1873
1874 void hfs_clear_might_be_dirty_flag(cnode_t *cp)
1875 {
1876 /*
1877 * If we're about to touch both mtime and ctime, we can clear the
1878 * C_MIGHT_BE_DIRTY_FROM_MAPPING since we can guarantee that
1879 * subsequent page-outs can only be for data made dirty before
1880 * now.
1881 */
1882 CLR(cp->c_flag, C_MIGHT_BE_DIRTY_FROM_MAPPING);
1883 }
1884
1885 /*
1886 * Touch cnode times based on c_touch_xxx flags
1887 *
1888 * cnode must be locked exclusive
1889 *
1890 * This will also update the volume modify time
1891 */
1892 void
1893 hfs_touchtimes(struct hfsmount *hfsmp, struct cnode* cp)
1894 {
1895 vfs_context_t ctx;
1896 /* don't modify times if volume is read-only */
1897 if (hfsmp->hfs_flags & HFS_READ_ONLY) {
1898 cp->c_touch_acctime = FALSE;
1899 cp->c_touch_chgtime = FALSE;
1900 cp->c_touch_modtime = FALSE;
1901 return;
1902 }
1903 #if CONFIG_HFS_STD
1904 else if (hfsmp->hfs_flags & HFS_STANDARD) {
1905 /* HFS Standard doesn't support access times */
1906 cp->c_touch_acctime = FALSE;
1907 }
1908 #endif
1909
1910 ctx = vfs_context_current();
1911 /*
1912 * Skip access time updates if:
1913 * . MNT_NOATIME is set
1914 * . a file system freeze is in progress
1915 * . a file system resize is in progress
1916 * . the vnode associated with this cnode is marked for rapid aging
1917 */
1918 if (cp->c_touch_acctime) {
1919 if ((vfs_flags(hfsmp->hfs_mp) & MNT_NOATIME) ||
1920 hfsmp->hfs_freeze_state != HFS_THAWED ||
1921 (hfsmp->hfs_flags & HFS_RESIZE_IN_PROGRESS) ||
1922 (cp->c_vp && ((vnode_israge(cp->c_vp) || (vfs_ctx_skipatime(ctx)))))) {
1923
1924 cp->c_touch_acctime = FALSE;
1925 }
1926 }
1927 if (cp->c_touch_acctime || cp->c_touch_chgtime ||
1928 cp->c_touch_modtime || (cp->c_flag & C_NEEDS_DATEADDED)) {
1929 struct timeval tv;
1930 int touchvol = 0;
1931
1932 if (cp->c_touch_modtime && cp->c_touch_chgtime)
1933 hfs_clear_might_be_dirty_flag(cp);
1934
1935 microtime(&tv);
1936
1937 if (cp->c_touch_acctime) {
1938 cp->c_atime = tv.tv_sec;
1939 /*
1940 * When the access time is the only thing changing
1941 * then make sure its sufficiently newer before
1942 * committing it to disk.
1943 */
1944 if ((((u_int32_t)cp->c_atime - (u_int32_t)(cp)->c_attr.ca_atimeondisk) >
1945 ATIME_ONDISK_ACCURACY)) {
1946 cp->c_flag |= C_MODIFIED;
1947 }
1948 cp->c_touch_acctime = FALSE;
1949 }
1950 if (cp->c_touch_modtime) {
1951 cp->c_mtime = tv.tv_sec;
1952 cp->c_touch_modtime = FALSE;
1953 cp->c_flag |= C_MODIFIED;
1954 touchvol = 1;
1955 #if CONFIG_HFS_STD
1956 /*
1957 * HFS dates that WE set must be adjusted for DST
1958 */
1959 if ((hfsmp->hfs_flags & HFS_STANDARD) && gTimeZone.tz_dsttime) {
1960 cp->c_mtime += 3600;
1961 }
1962 #endif
1963 }
1964 if (cp->c_touch_chgtime) {
1965 cp->c_ctime = tv.tv_sec;
1966 cp->c_touch_chgtime = FALSE;
1967 cp->c_flag |= C_MODIFIED;
1968 touchvol = 1;
1969 }
1970
1971 if (cp->c_flag & C_NEEDS_DATEADDED) {
1972 hfs_write_dateadded (&(cp->c_attr), tv.tv_sec);
1973 cp->c_flag |= C_MODIFIED;
1974 /* untwiddle the bit */
1975 cp->c_flag &= ~C_NEEDS_DATEADDED;
1976 touchvol = 1;
1977 }
1978
1979 /* Touch the volume modtime if needed */
1980 if (touchvol) {
1981 MarkVCBDirty(hfsmp);
1982 HFSTOVCB(hfsmp)->vcbLsMod = tv.tv_sec;
1983 }
1984 }
1985 }
1986
1987 // Use this if you don't want to check the return code
1988 void hfs_lock_always(cnode_t *cp, enum hfs_locktype locktype)
1989 {
1990 hfs_lock(cp, locktype, HFS_LOCK_ALWAYS);
1991 }
1992
1993 /*
1994 * Lock a cnode.
1995 * N.B. If you add any failure cases, *make* sure hfs_lock_always works
1996 */
1997 int
1998 hfs_lock(struct cnode *cp, enum hfs_locktype locktype, enum hfs_lockflags flags)
1999 {
2000 thread_t thread = current_thread();
2001
2002 if (cp->c_lockowner == thread) {
2003 /* Only the extents and bitmap files support lock recursion. */
2004 if ((cp->c_fileid == kHFSExtentsFileID) ||
2005 (cp->c_fileid == kHFSAllocationFileID)) {
2006 cp->c_syslockcount++;
2007 } else {
2008 panic("hfs_lock: locking against myself!");
2009 }
2010 } else if (locktype == HFS_SHARED_LOCK) {
2011 lck_rw_lock_shared(&cp->c_rwlock);
2012 cp->c_lockowner = HFS_SHARED_OWNER;
2013
2014 } else { /* HFS_EXCLUSIVE_LOCK */
2015 lck_rw_lock_exclusive(&cp->c_rwlock);
2016 cp->c_lockowner = thread;
2017
2018 /* Only the extents and bitmap files support lock recursion. */
2019 if ((cp->c_fileid == kHFSExtentsFileID) ||
2020 (cp->c_fileid == kHFSAllocationFileID)) {
2021 cp->c_syslockcount = 1;
2022 }
2023 }
2024
2025 #ifdef HFS_CHECK_LOCK_ORDER
2026 /*
2027 * Regular cnodes (non-system files) cannot be locked
2028 * while holding the journal lock or a system file lock.
2029 */
2030 if (!(cp->c_desc.cd_flags & CD_ISMETA) &&
2031 ((cp->c_fileid > kHFSFirstUserCatalogNodeID) || (cp->c_fileid == kHFSRootFolderID))) {
2032 vnode_t vp = NULLVP;
2033
2034 /* Find corresponding vnode. */
2035 if (cp->c_vp != NULLVP && VTOC(cp->c_vp) == cp) {
2036 vp = cp->c_vp;
2037 } else if (cp->c_rsrc_vp != NULLVP && VTOC(cp->c_rsrc_vp) == cp) {
2038 vp = cp->c_rsrc_vp;
2039 }
2040 if (vp != NULLVP) {
2041 struct hfsmount *hfsmp = VTOHFS(vp);
2042
2043 if (hfsmp->jnl && (journal_owner(hfsmp->jnl) == thread)) {
2044 /* This will eventually be a panic here. */
2045 printf("hfs_lock: bad lock order (cnode after journal)\n");
2046 }
2047 if (hfsmp->hfs_catalog_cp && hfsmp->hfs_catalog_cp->c_lockowner == thread) {
2048 panic("hfs_lock: bad lock order (cnode after catalog)");
2049 }
2050 if (hfsmp->hfs_attribute_cp && hfsmp->hfs_attribute_cp->c_lockowner == thread) {
2051 panic("hfs_lock: bad lock order (cnode after attribute)");
2052 }
2053 if (hfsmp->hfs_extents_cp && hfsmp->hfs_extents_cp->c_lockowner == thread) {
2054 panic("hfs_lock: bad lock order (cnode after extents)");
2055 }
2056 }
2057 }
2058 #endif /* HFS_CHECK_LOCK_ORDER */
2059
2060 /*
2061 * Skip cnodes for regular files that no longer exist
2062 * (marked deleted, catalog entry gone).
2063 */
2064 if (((flags & HFS_LOCK_ALLOW_NOEXISTS) == 0) &&
2065 ((cp->c_desc.cd_flags & CD_ISMETA) == 0) &&
2066 (cp->c_flag & C_NOEXISTS)) {
2067 hfs_unlock(cp);
2068 return (ENOENT);
2069 }
2070 return (0);
2071 }
2072
2073 /*
2074 * Lock a pair of cnodes.
2075 */
2076 int
2077 hfs_lockpair(struct cnode *cp1, struct cnode *cp2, enum hfs_locktype locktype)
2078 {
2079 struct cnode *first, *last;
2080 int error;
2081
2082 /*
2083 * If cnodes match then just lock one.
2084 */
2085 if (cp1 == cp2) {
2086 return hfs_lock(cp1, locktype, HFS_LOCK_DEFAULT);
2087 }
2088
2089 /*
2090 * Lock in cnode address order.
2091 */
2092 if (cp1 < cp2) {
2093 first = cp1;
2094 last = cp2;
2095 } else {
2096 first = cp2;
2097 last = cp1;
2098 }
2099
2100 if ( (error = hfs_lock(first, locktype, HFS_LOCK_DEFAULT))) {
2101 return (error);
2102 }
2103 if ( (error = hfs_lock(last, locktype, HFS_LOCK_DEFAULT))) {
2104 hfs_unlock(first);
2105 return (error);
2106 }
2107 return (0);
2108 }
2109
2110 /*
2111 * Check ordering of two cnodes. Return true if they are are in-order.
2112 */
2113 static int
2114 hfs_isordered(struct cnode *cp1, struct cnode *cp2)
2115 {
2116 if (cp1 == cp2)
2117 return (0);
2118 if (cp1 == NULL || cp2 == (struct cnode *)0xffffffff)
2119 return (1);
2120 if (cp2 == NULL || cp1 == (struct cnode *)0xffffffff)
2121 return (0);
2122 /*
2123 * Locking order is cnode address order.
2124 */
2125 return (cp1 < cp2);
2126 }
2127
2128 /*
2129 * Acquire 4 cnode locks.
2130 * - locked in cnode address order (lesser address first).
2131 * - all or none of the locks are taken
2132 * - only one lock taken per cnode (dup cnodes are skipped)
2133 * - some of the cnode pointers may be null
2134 */
2135 int
2136 hfs_lockfour(struct cnode *cp1, struct cnode *cp2, struct cnode *cp3,
2137 struct cnode *cp4, enum hfs_locktype locktype, struct cnode **error_cnode)
2138 {
2139 struct cnode * a[3];
2140 struct cnode * b[3];
2141 struct cnode * list[4];
2142 struct cnode * tmp;
2143 int i, j, k;
2144 int error;
2145 if (error_cnode) {
2146 *error_cnode = NULL;
2147 }
2148
2149 if (hfs_isordered(cp1, cp2)) {
2150 a[0] = cp1; a[1] = cp2;
2151 } else {
2152 a[0] = cp2; a[1] = cp1;
2153 }
2154 if (hfs_isordered(cp3, cp4)) {
2155 b[0] = cp3; b[1] = cp4;
2156 } else {
2157 b[0] = cp4; b[1] = cp3;
2158 }
2159 a[2] = (struct cnode *)0xffffffff; /* sentinel value */
2160 b[2] = (struct cnode *)0xffffffff; /* sentinel value */
2161
2162 /*
2163 * Build the lock list, skipping over duplicates
2164 */
2165 for (i = 0, j = 0, k = 0; (i < 2 || j < 2); ) {
2166 tmp = hfs_isordered(a[i], b[j]) ? a[i++] : b[j++];
2167 if (k == 0 || tmp != list[k-1])
2168 list[k++] = tmp;
2169 }
2170
2171 /*
2172 * Now we can lock using list[0 - k].
2173 * Skip over NULL entries.
2174 */
2175 for (i = 0; i < k; ++i) {
2176 if (list[i])
2177 if ((error = hfs_lock(list[i], locktype, HFS_LOCK_DEFAULT))) {
2178 /* Only stuff error_cnode if requested */
2179 if (error_cnode) {
2180 *error_cnode = list[i];
2181 }
2182 /* Drop any locks we acquired. */
2183 while (--i >= 0) {
2184 if (list[i])
2185 hfs_unlock(list[i]);
2186 }
2187 return (error);
2188 }
2189 }
2190 return (0);
2191 }
2192
2193
2194 /*
2195 * Unlock a cnode.
2196 */
2197 void
2198 hfs_unlock(struct cnode *cp)
2199 {
2200 vnode_t rvp = NULLVP;
2201 vnode_t vp = NULLVP;
2202 u_int32_t c_flag;
2203
2204 /*
2205 * Only the extents and bitmap file's support lock recursion.
2206 */
2207 if ((cp->c_fileid == kHFSExtentsFileID) ||
2208 (cp->c_fileid == kHFSAllocationFileID)) {
2209 if (--cp->c_syslockcount > 0) {
2210 return;
2211 }
2212 }
2213
2214 const thread_t thread = current_thread();
2215
2216 if (cp->c_lockowner == thread) {
2217 c_flag = cp->c_flag;
2218
2219 // If we have the truncate lock, we must defer the puts
2220 if (cp->c_truncatelockowner == thread) {
2221 if (ISSET(c_flag, C_NEED_DVNODE_PUT)
2222 && !cp->c_need_dvnode_put_after_truncate_unlock) {
2223 CLR(c_flag, C_NEED_DVNODE_PUT);
2224 cp->c_need_dvnode_put_after_truncate_unlock = true;
2225 }
2226 if (ISSET(c_flag, C_NEED_RVNODE_PUT)
2227 && !cp->c_need_rvnode_put_after_truncate_unlock) {
2228 CLR(c_flag, C_NEED_RVNODE_PUT);
2229 cp->c_need_rvnode_put_after_truncate_unlock = true;
2230 }
2231 }
2232
2233 CLR(cp->c_flag, (C_NEED_DATA_SETSIZE | C_NEED_RSRC_SETSIZE
2234 | C_NEED_DVNODE_PUT | C_NEED_RVNODE_PUT));
2235
2236 if (c_flag & (C_NEED_DVNODE_PUT | C_NEED_DATA_SETSIZE)) {
2237 vp = cp->c_vp;
2238 }
2239 if (c_flag & (C_NEED_RVNODE_PUT | C_NEED_RSRC_SETSIZE)) {
2240 rvp = cp->c_rsrc_vp;
2241 }
2242
2243 cp->c_lockowner = NULL;
2244 lck_rw_unlock_exclusive(&cp->c_rwlock);
2245 } else {
2246 lck_rw_unlock_shared(&cp->c_rwlock);
2247 }
2248
2249 /* Perform any vnode post processing after cnode lock is dropped. */
2250 if (vp) {
2251 if (c_flag & C_NEED_DATA_SETSIZE) {
2252 ubc_setsize(vp, VTOF(vp)->ff_size);
2253 #if HFS_COMPRESSION
2254 /*
2255 * If this is a compressed file, we need to reset the
2256 * compression state. We will have set the size to zero
2257 * above and it will get fixed up later (in exactly the
2258 * same way that new vnodes are fixed up). Note that we
2259 * should only be able to get here if the truncate lock is
2260 * held exclusively and so we do the reset when that's
2261 * unlocked.
2262 */
2263 decmpfs_cnode *dp = VTOCMP(vp);
2264 if (dp && decmpfs_cnode_get_vnode_state(dp) != FILE_TYPE_UNKNOWN)
2265 cp->c_need_decmpfs_reset = true;
2266 #endif
2267 }
2268 if (c_flag & C_NEED_DVNODE_PUT)
2269 vnode_put(vp);
2270 }
2271 if (rvp) {
2272 if (c_flag & C_NEED_RSRC_SETSIZE)
2273 ubc_setsize(rvp, VTOF(rvp)->ff_size);
2274 if (c_flag & C_NEED_RVNODE_PUT)
2275 vnode_put(rvp);
2276 }
2277 }
2278
2279 /*
2280 * Unlock a pair of cnodes.
2281 */
2282 void
2283 hfs_unlockpair(struct cnode *cp1, struct cnode *cp2)
2284 {
2285 hfs_unlock(cp1);
2286 if (cp2 != cp1)
2287 hfs_unlock(cp2);
2288 }
2289
2290 /*
2291 * Unlock a group of cnodes.
2292 */
2293 void
2294 hfs_unlockfour(struct cnode *cp1, struct cnode *cp2, struct cnode *cp3, struct cnode *cp4)
2295 {
2296 struct cnode * list[4];
2297 int i, k = 0;
2298
2299 if (cp1) {
2300 hfs_unlock(cp1);
2301 list[k++] = cp1;
2302 }
2303 if (cp2) {
2304 for (i = 0; i < k; ++i) {
2305 if (list[i] == cp2)
2306 goto skip1;
2307 }
2308 hfs_unlock(cp2);
2309 list[k++] = cp2;
2310 }
2311 skip1:
2312 if (cp3) {
2313 for (i = 0; i < k; ++i) {
2314 if (list[i] == cp3)
2315 goto skip2;
2316 }
2317 hfs_unlock(cp3);
2318 list[k++] = cp3;
2319 }
2320 skip2:
2321 if (cp4) {
2322 for (i = 0; i < k; ++i) {
2323 if (list[i] == cp4)
2324 return;
2325 }
2326 hfs_unlock(cp4);
2327 }
2328 }
2329
2330
2331 /*
2332 * Protect a cnode against a truncation.
2333 *
2334 * Used mainly by read/write since they don't hold the
2335 * cnode lock across calls to the cluster layer.
2336 *
2337 * The process doing a truncation must take the lock
2338 * exclusive. The read/write processes can take it
2339 * shared. The locktype argument is the same as supplied to
2340 * hfs_lock.
2341 */
2342 void
2343 hfs_lock_truncate(struct cnode *cp, enum hfs_locktype locktype, enum hfs_lockflags flags)
2344 {
2345 thread_t thread = current_thread();
2346
2347 if (cp->c_truncatelockowner == thread) {
2348 /*
2349 * Ignore grabbing the lock if it the current thread already
2350 * holds exclusive lock.
2351 *
2352 * This is needed on the hfs_vnop_pagein path where we need to ensure
2353 * the file does not change sizes while we are paging in. However,
2354 * we may already hold the lock exclusive due to another
2355 * VNOP from earlier in the call stack. So if we already hold
2356 * the truncate lock exclusive, allow it to proceed, but ONLY if
2357 * it's in the recursive case.
2358 */
2359 if ((flags & HFS_LOCK_SKIP_IF_EXCLUSIVE) == 0) {
2360 panic("hfs_lock_truncate: cnode %p locked!", cp);
2361 }
2362 } else if (locktype == HFS_SHARED_LOCK) {
2363 lck_rw_lock_shared(&cp->c_truncatelock);
2364 cp->c_truncatelockowner = HFS_SHARED_OWNER;
2365 } else { /* HFS_EXCLUSIVE_LOCK */
2366 lck_rw_lock_exclusive(&cp->c_truncatelock);
2367 cp->c_truncatelockowner = thread;
2368 }
2369 }
2370
2371
2372 /*
2373 * Attempt to get the truncate lock. If it cannot be acquired, error out.
2374 * This function is needed in the degenerate hfs_vnop_pagein during force unmount
2375 * case. To prevent deadlocks while a VM copy object is moving pages, HFS vnop pagein will
2376 * temporarily need to disable V2 semantics.
2377 */
2378 int hfs_try_trunclock (struct cnode *cp, enum hfs_locktype locktype, enum hfs_lockflags flags)
2379 {
2380 thread_t thread = current_thread();
2381 boolean_t didlock = false;
2382
2383 if (cp->c_truncatelockowner == thread) {
2384 /*
2385 * Ignore grabbing the lock if the current thread already
2386 * holds exclusive lock.
2387 *
2388 * This is needed on the hfs_vnop_pagein path where we need to ensure
2389 * the file does not change sizes while we are paging in. However,
2390 * we may already hold the lock exclusive due to another
2391 * VNOP from earlier in the call stack. So if we already hold
2392 * the truncate lock exclusive, allow it to proceed, but ONLY if
2393 * it's in the recursive case.
2394 */
2395 if ((flags & HFS_LOCK_SKIP_IF_EXCLUSIVE) == 0) {
2396 panic("hfs_lock_truncate: cnode %p locked!", cp);
2397 }
2398 } else if (locktype == HFS_SHARED_LOCK) {
2399 didlock = lck_rw_try_lock(&cp->c_truncatelock, LCK_RW_TYPE_SHARED);
2400 if (didlock) {
2401 cp->c_truncatelockowner = HFS_SHARED_OWNER;
2402 }
2403 } else { /* HFS_EXCLUSIVE_LOCK */
2404 didlock = lck_rw_try_lock (&cp->c_truncatelock, LCK_RW_TYPE_EXCLUSIVE);
2405 if (didlock) {
2406 cp->c_truncatelockowner = thread;
2407 }
2408 }
2409
2410 return didlock;
2411 }
2412
2413
2414 /*
2415 * Unlock the truncate lock, which protects against size changes.
2416 *
2417 * If HFS_LOCK_SKIP_IF_EXCLUSIVE flag was set, it means that a previous
2418 * hfs_lock_truncate() might have skipped grabbing a lock because
2419 * the current thread was already holding the lock exclusive and
2420 * we may need to return from this function without actually unlocking
2421 * the truncate lock.
2422 */
2423 void
2424 hfs_unlock_truncate(struct cnode *cp, enum hfs_lockflags flags)
2425 {
2426 thread_t thread = current_thread();
2427
2428 /*
2429 * If HFS_LOCK_SKIP_IF_EXCLUSIVE is set in the flags AND the current
2430 * lock owner of the truncate lock is our current thread, then
2431 * we must have skipped taking the lock earlier by in
2432 * hfs_lock_truncate() by setting HFS_LOCK_SKIP_IF_EXCLUSIVE in the
2433 * flags (as the current thread was current lock owner).
2434 *
2435 * If HFS_LOCK_SKIP_IF_EXCLUSIVE is not set (most of the time) then
2436 * we check the lockowner field to infer whether the lock was taken
2437 * exclusively or shared in order to know what underlying lock
2438 * routine to call.
2439 */
2440 if (flags & HFS_LOCK_SKIP_IF_EXCLUSIVE) {
2441 if (cp->c_truncatelockowner == thread) {
2442 return;
2443 }
2444 }
2445
2446 /* HFS_LOCK_EXCLUSIVE */
2447 if (thread == cp->c_truncatelockowner) {
2448 vnode_t vp = NULL, rvp = NULL;
2449
2450 /*
2451 * If there are pending set sizes, the cnode lock should be dropped
2452 * first.
2453 */
2454 #if DEBUG
2455 assert(!(cp->c_lockowner == thread
2456 && ISSET(cp->c_flag, C_NEED_DATA_SETSIZE | C_NEED_RSRC_SETSIZE)));
2457 #elif DEVELOPMENT
2458 if (cp->c_lockowner == thread
2459 && ISSET(cp->c_flag, C_NEED_DATA_SETSIZE | C_NEED_RSRC_SETSIZE)) {
2460 printf("hfs: hfs_unlock_truncate called with C_NEED_DATA/RSRC_SETSIZE set (caller: 0x%llx)\n",
2461 (uint64_t)VM_KERNEL_UNSLIDE(__builtin_return_address(0)));
2462 }
2463 #endif
2464
2465 if (cp->c_need_dvnode_put_after_truncate_unlock) {
2466 vp = cp->c_vp;
2467 cp->c_need_dvnode_put_after_truncate_unlock = false;
2468 }
2469 if (cp->c_need_rvnode_put_after_truncate_unlock) {
2470 rvp = cp->c_rsrc_vp;
2471 cp->c_need_rvnode_put_after_truncate_unlock = false;
2472 }
2473
2474 #if HFS_COMPRESSION
2475 bool reset_decmpfs = cp->c_need_decmpfs_reset;
2476 cp->c_need_decmpfs_reset = false;
2477 #endif
2478
2479 cp->c_truncatelockowner = NULL;
2480 lck_rw_unlock_exclusive(&cp->c_truncatelock);
2481
2482 #if HFS_COMPRESSION
2483 if (reset_decmpfs) {
2484 decmpfs_cnode *dp = cp->c_decmp;
2485 if (dp && decmpfs_cnode_get_vnode_state(dp) != FILE_TYPE_UNKNOWN)
2486 decmpfs_cnode_set_vnode_state(dp, FILE_TYPE_UNKNOWN, 0);
2487 }
2488 #endif
2489
2490 // Do the puts now
2491 if (vp)
2492 vnode_put(vp);
2493 if (rvp)
2494 vnode_put(rvp);
2495 } else { /* HFS_LOCK_SHARED */
2496 lck_rw_unlock_shared(&cp->c_truncatelock);
2497 }
2498 }