]> git.saurik.com Git - apple/xnu.git/blob - osfmk/i386/fpu.c
xnu-2050.18.24.tar.gz
[apple/xnu.git] / osfmk / i386 / fpu.c
1 /*
2 * Copyright (c) 2000-2010 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31 /*
32 * Mach Operating System
33 * Copyright (c) 1992-1990 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56 /*
57 */
58
59 #include <platforms.h>
60
61 #include <mach/exception_types.h>
62 #include <mach/i386/thread_status.h>
63 #include <mach/i386/fp_reg.h>
64 #include <mach/branch_predicates.h>
65
66 #include <kern/mach_param.h>
67 #include <kern/processor.h>
68 #include <kern/thread.h>
69 #include <kern/zalloc.h>
70 #include <kern/misc_protos.h>
71 #include <kern/spl.h>
72 #include <kern/assert.h>
73
74 #include <libkern/OSAtomic.h>
75
76 #include <architecture/i386/pio.h>
77 #include <i386/cpuid.h>
78 #include <i386/fpu.h>
79 #include <i386/proc_reg.h>
80 #include <i386/misc_protos.h>
81 #include <i386/thread.h>
82 #include <i386/trap.h>
83
84 int fp_kind = FP_NO; /* not inited */
85 zone_t ifps_zone; /* zone for FPU save area */
86
87 #define ALIGNED(addr,size) (((uintptr_t)(addr)&((size)-1))==0)
88
89 /* Forward */
90
91 extern void fpinit(void);
92 extern void fp_save(
93 thread_t thr_act);
94 extern void fp_load(
95 thread_t thr_act);
96
97 static void configure_mxcsr_capability_mask(struct x86_avx_thread_state *fps);
98
99 struct x86_avx_thread_state initial_fp_state __attribute((aligned(64)));
100
101
102 /* Global MXCSR capability bitmask */
103 static unsigned int mxcsr_capability_mask;
104
105 #define fninit() \
106 __asm__ volatile("fninit")
107
108 #define fnstcw(control) \
109 __asm__("fnstcw %0" : "=m" (*(unsigned short *)(control)))
110
111 #define fldcw(control) \
112 __asm__ volatile("fldcw %0" : : "m" (*(unsigned short *) &(control)) )
113
114 #define fnclex() \
115 __asm__ volatile("fnclex")
116
117 #define fnsave(state) \
118 __asm__ volatile("fnsave %0" : "=m" (*state))
119
120 #define frstor(state) \
121 __asm__ volatile("frstor %0" : : "m" (state))
122
123 #define fwait() \
124 __asm__("fwait");
125
126 #define fxrstor(addr) __asm__ __volatile__("fxrstor %0" : : "m" (*(addr)))
127 #define fxsave(addr) __asm__ __volatile__("fxsave %0" : "=m" (*(addr)))
128
129 static uint32_t fp_register_state_size = 0;
130 static uint32_t fpu_YMM_present = FALSE;
131 static uint32_t cpuid_reevaluated = 0;
132
133 static void fpu_store_registers(void *, boolean_t);
134 static void fpu_load_registers(void *);
135
136 extern void xsave64o(void);
137 extern void xrstor64o(void);
138
139 #define XMASK ((uint32_t) (XFEM_X87 | XFEM_SSE | XFEM_YMM))
140
141 /* DRK: TODO replace opcodes with mnemonics when assembler support available */
142
143 static inline void xsetbv(uint32_t mask_hi, uint32_t mask_lo) {
144 __asm__ __volatile__(".short 0x010F\n\t.byte 0xD1" :: "a"(mask_lo), "d"(mask_hi), "c" (XCR0));
145 }
146
147 static inline void xsave(void *a) {
148 /* MOD 0x4, operand ECX 0x1 */
149 __asm__ __volatile__(".short 0xAE0F\n\t.byte 0x21" :: "a"(XMASK), "d"(0), "c" (a));
150 }
151
152 static inline void xrstor(void *a) {
153 /* MOD 0x5, operand ECX 0x1 */
154 __asm__ __volatile__(".short 0xAE0F\n\t.byte 0x29" :: "a"(XMASK), "d"(0), "c" (a));
155 }
156
157 static inline void xsave64(void *a) {
158 /* Out of line call that executes in 64-bit mode on K32 */
159 __asm__ __volatile__("call _xsave64o" :: "a"(XMASK), "d"(0), "c" (a));
160 }
161
162 static inline void xrstor64(void *a) {
163 /* Out of line call that executes in 64-bit mode on K32 */
164 __asm__ __volatile__("call _xrstor64o" :: "a"(XMASK), "d"(0), "c" (a));
165 }
166
167 static inline unsigned short
168 fnstsw(void)
169 {
170 unsigned short status;
171 __asm__ volatile("fnstsw %0" : "=ma" (status));
172 return(status);
173 }
174
175 /*
176 * Configure the initial FPU state presented to new threads.
177 * Determine the MXCSR capability mask, which allows us to mask off any
178 * potentially unsafe "reserved" bits before restoring the FPU context.
179 * *Not* per-cpu, assumes symmetry.
180 */
181
182 static void
183 configure_mxcsr_capability_mask(struct x86_avx_thread_state *fps)
184 {
185 /* XSAVE requires a 64 byte aligned store */
186 assert(ALIGNED(fps, 64));
187 /* Clear, to prepare for the diagnostic FXSAVE */
188 bzero(fps, sizeof(*fps));
189
190 fpinit();
191 fpu_store_registers(fps, FALSE);
192
193 mxcsr_capability_mask = fps->fx_MXCSR_MASK;
194
195 /* Set default mask value if necessary */
196 if (mxcsr_capability_mask == 0)
197 mxcsr_capability_mask = 0xffbf;
198
199 /* Clear vector register store */
200 bzero(&fps->fx_XMM_reg[0][0], sizeof(fps->fx_XMM_reg));
201 bzero(&fps->x_YMMH_reg[0][0], sizeof(fps->x_YMMH_reg));
202
203 fps->fp_valid = TRUE;
204 fps->fp_save_layout = fpu_YMM_present ? XSAVE32: FXSAVE32;
205 fpu_load_registers(fps);
206
207 /* Poison values to trap unsafe usage */
208 fps->fp_valid = 0xFFFFFFFF;
209 fps->fp_save_layout = FP_UNUSED;
210
211 /* Re-enable FPU/SSE DNA exceptions */
212 set_ts();
213 }
214
215
216 /*
217 * Look for FPU and initialize it.
218 * Called on each CPU.
219 */
220 void
221 init_fpu(void)
222 {
223 #if DEBUG
224 unsigned short status;
225 unsigned short control;
226 #endif
227 /*
228 * Check for FPU by initializing it,
229 * then trying to read the correct bit patterns from
230 * the control and status registers.
231 */
232 set_cr0((get_cr0() & ~(CR0_EM|CR0_TS)) | CR0_NE); /* allow use of FPU */
233 fninit();
234 #if DEBUG
235 status = fnstsw();
236 fnstcw(&control);
237
238 assert(((status & 0xff) == 0) && ((control & 0x103f) == 0x3f));
239 #endif
240 /* Advertise SSE support */
241 if (cpuid_features() & CPUID_FEATURE_FXSR) {
242 fp_kind = FP_FXSR;
243 set_cr4(get_cr4() | CR4_OSFXS);
244 /* And allow SIMD exceptions if present */
245 if (cpuid_features() & CPUID_FEATURE_SSE) {
246 set_cr4(get_cr4() | CR4_OSXMM);
247 }
248 fp_register_state_size = sizeof(struct x86_fx_thread_state);
249
250 } else
251 panic("fpu is not FP_FXSR");
252
253 /* Configure the XSAVE context mechanism if the processor supports
254 * AVX/YMM registers
255 */
256 if (cpuid_features() & CPUID_FEATURE_XSAVE) {
257 cpuid_xsave_leaf_t *xsp = &cpuid_info()->cpuid_xsave_leaf;
258 if (xsp->extended_state[0] & (uint32_t)XFEM_YMM) {
259 assert(xsp->extended_state[0] & (uint32_t) XFEM_SSE);
260 /* XSAVE container size for all features */
261 assert(xsp->extended_state[2] == sizeof(struct x86_avx_thread_state));
262 fp_register_state_size = sizeof(struct x86_avx_thread_state);
263 fpu_YMM_present = TRUE;
264 set_cr4(get_cr4() | CR4_OSXSAVE);
265 xsetbv(0, XMASK);
266 /* Re-evaluate CPUID, once, to reflect OSXSAVE */
267 if (OSCompareAndSwap(0, 1, &cpuid_reevaluated))
268 cpuid_set_info();
269 /* DRK: consider verifying AVX offset with cpuid(d, ECX:2) */
270 }
271 }
272 else
273 fpu_YMM_present = FALSE;
274
275 fpinit();
276
277 /*
278 * Trap wait instructions. Turn off FPU for now.
279 */
280 set_cr0(get_cr0() | CR0_TS | CR0_MP);
281 }
282
283 /*
284 * Allocate and initialize FP state for current thread.
285 * Don't load state.
286 */
287 static void *
288 fp_state_alloc(void)
289 {
290 void *ifps = zalloc(ifps_zone);
291
292 #if DEBUG
293 if (!(ALIGNED(ifps,64))) {
294 panic("fp_state_alloc: %p, %u, %p, %u", ifps, (unsigned) ifps_zone->elem_size, (void *) ifps_zone->free_elements, (unsigned) ifps_zone->alloc_size);
295 }
296 #endif
297 return ifps;
298 }
299
300 static inline void
301 fp_state_free(void *ifps)
302 {
303 zfree(ifps_zone, ifps);
304 }
305
306 void clear_fpu(void)
307 {
308 set_ts();
309 }
310
311
312 static void fpu_load_registers(void *fstate) {
313 struct x86_fx_thread_state *ifps = fstate;
314 fp_save_layout_t layout = ifps->fp_save_layout;
315
316 assert(layout == FXSAVE32 || layout == FXSAVE64 || layout == XSAVE32 || layout == XSAVE64);
317 assert(ALIGNED(ifps, 64));
318 assert(ml_get_interrupts_enabled() == FALSE);
319
320 #if DEBUG
321 if (layout == XSAVE32 || layout == XSAVE64) {
322 struct x86_avx_thread_state *iavx = fstate;
323 unsigned i;
324 /* Verify reserved bits in the XSAVE header*/
325 if (iavx->_xh.xsbv & ~7)
326 panic("iavx->_xh.xsbv: 0x%llx", iavx->_xh.xsbv);
327 for (i = 0; i < sizeof(iavx->_xh.xhrsvd); i++)
328 if (iavx->_xh.xhrsvd[i])
329 panic("Reserved bit set");
330 }
331 if (fpu_YMM_present) {
332 if (layout != XSAVE32 && layout != XSAVE64)
333 panic("Inappropriate layout: %u\n", layout);
334 }
335 #endif /* DEBUG */
336
337 #if defined(__i386__)
338 if (layout == FXSAVE32) {
339 /* Restore the compatibility/legacy mode XMM+x87 state */
340 fxrstor(ifps);
341 }
342 else if (layout == FXSAVE64) {
343 fxrstor64(ifps);
344 }
345 else if (layout == XSAVE32) {
346 xrstor(ifps);
347 }
348 else if (layout == XSAVE64) {
349 xrstor64(ifps);
350 }
351 #elif defined(__x86_64__)
352 if ((layout == XSAVE64) || (layout == XSAVE32))
353 xrstor(ifps);
354 else
355 fxrstor(ifps);
356 #endif
357 }
358
359 static void fpu_store_registers(void *fstate, boolean_t is64) {
360 struct x86_fx_thread_state *ifps = fstate;
361 assert(ALIGNED(ifps, 64));
362 #if defined(__i386__)
363 if (!is64) {
364 if (fpu_YMM_present) {
365 xsave(ifps);
366 ifps->fp_save_layout = XSAVE32;
367 }
368 else {
369 /* save the compatibility/legacy mode XMM+x87 state */
370 fxsave(ifps);
371 ifps->fp_save_layout = FXSAVE32;
372 }
373 }
374 else {
375 if (fpu_YMM_present) {
376 xsave64(ifps);
377 ifps->fp_save_layout = XSAVE64;
378 }
379 else {
380 fxsave64(ifps);
381 ifps->fp_save_layout = FXSAVE64;
382 }
383 }
384 #elif defined(__x86_64__)
385 if (fpu_YMM_present) {
386 xsave(ifps);
387 ifps->fp_save_layout = is64 ? XSAVE64 : XSAVE32;
388 }
389 else {
390 fxsave(ifps);
391 ifps->fp_save_layout = is64 ? FXSAVE64 : FXSAVE32;
392 }
393 #endif
394 }
395
396 /*
397 * Initialize FP handling.
398 */
399
400 void
401 fpu_module_init(void)
402 {
403 if ((fp_register_state_size != sizeof(struct x86_fx_thread_state)) &&
404 (fp_register_state_size != sizeof(struct x86_avx_thread_state)))
405 panic("fpu_module_init: incorrect savearea size %u\n", fp_register_state_size);
406
407 assert(fpu_YMM_present != 0xFFFFFFFF);
408
409 /* We explicitly choose an allocation size of 64
410 * to eliminate waste for the 832 byte sized
411 * AVX XSAVE register save area.
412 */
413 ifps_zone = zinit(fp_register_state_size,
414 thread_max * fp_register_state_size,
415 64 * fp_register_state_size,
416 "x86 fpsave state");
417
418 /* To maintain the required alignment, disable
419 * zone debugging for this zone as that appends
420 * 16 bytes to each element.
421 */
422 zone_change(ifps_zone, Z_ALIGNMENT_REQUIRED, TRUE);
423 /* Determine MXCSR reserved bits and configure initial FPU state*/
424 configure_mxcsr_capability_mask(&initial_fp_state);
425 }
426
427 /*
428 * Save thread`s FPU context.
429 */
430 void
431 fpu_save_context(thread_t thread)
432 {
433 struct x86_fx_thread_state *ifps;
434
435 assert(ml_get_interrupts_enabled() == FALSE);
436 ifps = (thread)->machine.ifps;
437 #if DEBUG
438 if (ifps && ((ifps->fp_valid != FALSE) && (ifps->fp_valid != TRUE))) {
439 panic("ifps->fp_valid: %u\n", ifps->fp_valid);
440 }
441 #endif
442 if (ifps != 0 && (ifps->fp_valid == FALSE)) {
443 /* Clear CR0.TS in preparation for the FP context save. In
444 * theory, this shouldn't be necessary since a live FPU should
445 * indicate that TS is clear. However, various routines
446 * (such as sendsig & sigreturn) manipulate TS directly.
447 */
448 clear_ts();
449 /* registers are in FPU - save to memory */
450 fpu_store_registers(ifps, (thread_is_64bit(thread) && is_saved_state64(thread->machine.iss)));
451 ifps->fp_valid = TRUE;
452 }
453 set_ts();
454 }
455
456
457 /*
458 * Free a FPU save area.
459 * Called only when thread terminating - no locking necessary.
460 */
461 void
462 fpu_free(void *fps)
463 {
464 fp_state_free(fps);
465 }
466
467 /*
468 * Set the floating-point state for a thread based
469 * on the FXSave formatted data. This is basically
470 * the same as fpu_set_state except it uses the
471 * expanded data structure.
472 * If the thread is not the current thread, it is
473 * not running (held). Locking needed against
474 * concurrent fpu_set_state or fpu_get_state.
475 */
476 kern_return_t
477 fpu_set_fxstate(
478 thread_t thr_act,
479 thread_state_t tstate,
480 thread_flavor_t f)
481 {
482 struct x86_fx_thread_state *ifps;
483 struct x86_fx_thread_state *new_ifps;
484 x86_float_state64_t *state;
485 pcb_t pcb;
486 size_t state_size = sizeof(struct x86_fx_thread_state);
487 boolean_t old_valid;
488 if (fp_kind == FP_NO)
489 return KERN_FAILURE;
490
491 state = (x86_float_state64_t *)tstate;
492
493 assert(thr_act != THREAD_NULL);
494 pcb = THREAD_TO_PCB(thr_act);
495
496 if (state == NULL) {
497 /*
498 * new FPU state is 'invalid'.
499 * Deallocate the fp state if it exists.
500 */
501 simple_lock(&pcb->lock);
502
503 ifps = pcb->ifps;
504 pcb->ifps = 0;
505
506 simple_unlock(&pcb->lock);
507
508 if (ifps != 0)
509 fp_state_free(ifps);
510 } else {
511 /*
512 * Valid state. Allocate the fp state if there is none.
513 */
514 new_ifps = 0;
515 Retry:
516 simple_lock(&pcb->lock);
517
518 ifps = pcb->ifps;
519 if (ifps == 0) {
520 if (new_ifps == 0) {
521 simple_unlock(&pcb->lock);
522 new_ifps = fp_state_alloc();
523 goto Retry;
524 }
525 ifps = new_ifps;
526 new_ifps = 0;
527 pcb->ifps = ifps;
528 }
529 /*
530 * now copy over the new data.
531 */
532 old_valid = ifps->fp_valid;
533
534 #if DEBUG
535 if ((old_valid == FALSE) && (thr_act != current_thread())) {
536 panic("fpu_set_fxstate inconsistency, thread: %p not stopped", thr_act);
537 }
538 #endif
539 /*
540 * Clear any reserved bits in the MXCSR to prevent a GPF
541 * when issuing an FXRSTOR.
542 */
543
544 state->fpu_mxcsr &= mxcsr_capability_mask;
545
546 bcopy((char *)&state->fpu_fcw, (char *)ifps, state_size);
547
548 if (fpu_YMM_present) {
549 struct x86_avx_thread_state *iavx = (void *) ifps;
550 uint32_t fpu_nyreg = 0;
551
552 if (f == x86_AVX_STATE32)
553 fpu_nyreg = 8;
554 else if (f == x86_AVX_STATE64)
555 fpu_nyreg = 16;
556
557 if (fpu_nyreg) {
558 x86_avx_state64_t *ystate = (x86_avx_state64_t *) state;
559 bcopy(&ystate->__fpu_ymmh0, &iavx->x_YMMH_reg[0][0], fpu_nyreg * sizeof(_STRUCT_XMM_REG));
560 }
561
562 iavx->fp_save_layout = thread_is_64bit(thr_act) ? XSAVE64 : XSAVE32;
563 /* Sanitize XSAVE header */
564 bzero(&iavx->_xh.xhrsvd[0], sizeof(iavx->_xh.xhrsvd));
565 if (state_size == sizeof(struct x86_avx_thread_state))
566 iavx->_xh.xsbv = (XFEM_YMM | XFEM_SSE | XFEM_X87);
567 else
568 iavx->_xh.xsbv = (XFEM_SSE | XFEM_X87);
569 }
570 else
571 ifps->fp_save_layout = thread_is_64bit(thr_act) ? FXSAVE64 : FXSAVE32;
572 ifps->fp_valid = old_valid;
573
574 if (old_valid == FALSE) {
575 boolean_t istate = ml_set_interrupts_enabled(FALSE);
576 ifps->fp_valid = TRUE;
577 set_ts();
578 ml_set_interrupts_enabled(istate);
579 }
580
581 simple_unlock(&pcb->lock);
582
583 if (new_ifps != 0)
584 fp_state_free(new_ifps);
585 }
586 return KERN_SUCCESS;
587 }
588
589 /*
590 * Get the floating-point state for a thread.
591 * If the thread is not the current thread, it is
592 * not running (held). Locking needed against
593 * concurrent fpu_set_state or fpu_get_state.
594 */
595 kern_return_t
596 fpu_get_fxstate(
597 thread_t thr_act,
598 thread_state_t tstate,
599 thread_flavor_t f)
600 {
601 struct x86_fx_thread_state *ifps;
602 x86_float_state64_t *state;
603 kern_return_t ret = KERN_FAILURE;
604 pcb_t pcb;
605 size_t state_size = sizeof(struct x86_fx_thread_state);
606
607 if (fp_kind == FP_NO)
608 return KERN_FAILURE;
609
610 state = (x86_float_state64_t *)tstate;
611
612 assert(thr_act != THREAD_NULL);
613 pcb = THREAD_TO_PCB(thr_act);
614
615 simple_lock(&pcb->lock);
616
617 ifps = pcb->ifps;
618 if (ifps == 0) {
619 /*
620 * No valid floating-point state.
621 */
622
623 bcopy((char *)&initial_fp_state, (char *)&state->fpu_fcw,
624 state_size);
625
626 simple_unlock(&pcb->lock);
627
628 return KERN_SUCCESS;
629 }
630 /*
631 * Make sure we`ve got the latest fp state info
632 * If the live fpu state belongs to our target
633 */
634 if (thr_act == current_thread()) {
635 boolean_t intr;
636
637 intr = ml_set_interrupts_enabled(FALSE);
638
639 clear_ts();
640 fp_save(thr_act);
641 clear_fpu();
642
643 (void)ml_set_interrupts_enabled(intr);
644 }
645 if (ifps->fp_valid) {
646 bcopy((char *)ifps, (char *)&state->fpu_fcw, state_size);
647 if (fpu_YMM_present) {
648 struct x86_avx_thread_state *iavx = (void *) ifps;
649 uint32_t fpu_nyreg = 0;
650
651 if (f == x86_AVX_STATE32)
652 fpu_nyreg = 8;
653 else if (f == x86_AVX_STATE64)
654 fpu_nyreg = 16;
655
656 if (fpu_nyreg) {
657 x86_avx_state64_t *ystate = (x86_avx_state64_t *) state;
658 bcopy(&iavx->x_YMMH_reg[0][0], &ystate->__fpu_ymmh0, fpu_nyreg * sizeof(_STRUCT_XMM_REG));
659 }
660 }
661
662 ret = KERN_SUCCESS;
663 }
664 simple_unlock(&pcb->lock);
665
666 return ret;
667 }
668
669
670
671 /*
672 * the child thread is 'stopped' with the thread
673 * mutex held and is currently not known by anyone
674 * so no way for fpu state to get manipulated by an
675 * outside agency -> no need for pcb lock
676 */
677
678 void
679 fpu_dup_fxstate(
680 thread_t parent,
681 thread_t child)
682 {
683 struct x86_fx_thread_state *new_ifps = NULL;
684 boolean_t intr;
685 pcb_t ppcb;
686
687 ppcb = THREAD_TO_PCB(parent);
688
689 if (ppcb->ifps == NULL)
690 return;
691
692 if (child->machine.ifps)
693 panic("fpu_dup_fxstate: child's ifps non-null");
694
695 new_ifps = fp_state_alloc();
696
697 simple_lock(&ppcb->lock);
698
699 if (ppcb->ifps != NULL) {
700 struct x86_fx_thread_state *ifps = ppcb->ifps;
701 /*
702 * Make sure we`ve got the latest fp state info
703 */
704 intr = ml_set_interrupts_enabled(FALSE);
705 assert(current_thread() == parent);
706 clear_ts();
707 fp_save(parent);
708 clear_fpu();
709
710 (void)ml_set_interrupts_enabled(intr);
711
712 if (ifps->fp_valid) {
713 child->machine.ifps = new_ifps;
714 assert((fp_register_state_size == sizeof(struct x86_fx_thread_state)) ||
715 (fp_register_state_size == sizeof(struct x86_avx_thread_state)));
716 bcopy((char *)(ppcb->ifps),
717 (char *)(child->machine.ifps), fp_register_state_size);
718
719 /* Mark the new fp saved state as non-live. */
720 /* Temporarily disabled: radar 4647827
721 * new_ifps->fp_valid = TRUE;
722 */
723
724 /*
725 * Clear any reserved bits in the MXCSR to prevent a GPF
726 * when issuing an FXRSTOR.
727 */
728 new_ifps->fx_MXCSR &= mxcsr_capability_mask;
729 new_ifps = NULL;
730 }
731 }
732 simple_unlock(&ppcb->lock);
733
734 if (new_ifps != NULL)
735 fp_state_free(new_ifps);
736 }
737
738
739 /*
740 * Initialize FPU.
741 *
742 */
743
744 void
745 fpinit(void)
746 {
747 unsigned short control;
748
749 clear_ts();
750 fninit();
751 fnstcw(&control);
752 control &= ~(FPC_PC|FPC_RC); /* Clear precision & rounding control */
753 control |= (FPC_PC_64 | /* Set precision */
754 FPC_RC_RN | /* round-to-nearest */
755 FPC_ZE | /* Suppress zero-divide */
756 FPC_OE | /* and overflow */
757 FPC_UE | /* underflow */
758 FPC_IE | /* Allow NaNQs and +-INF */
759 FPC_DE | /* Allow denorms as operands */
760 FPC_PE); /* No trap for precision loss */
761 fldcw(control);
762
763 /* Initialize SSE/SSE2 */
764 __builtin_ia32_ldmxcsr(0x1f80);
765 }
766
767 /*
768 * Coprocessor not present.
769 */
770
771 void
772 fpnoextflt(void)
773 {
774 boolean_t intr;
775 thread_t thr_act;
776 pcb_t pcb;
777 struct x86_fx_thread_state *ifps = 0;
778
779 thr_act = current_thread();
780 pcb = THREAD_TO_PCB(thr_act);
781
782 assert(fp_register_state_size != 0);
783
784 if (pcb->ifps == 0 && !get_interrupt_level()) {
785 ifps = fp_state_alloc();
786 bcopy((char *)&initial_fp_state, (char *)ifps,
787 fp_register_state_size);
788 if (!thread_is_64bit(thr_act)) {
789 ifps->fp_save_layout = fpu_YMM_present ? XSAVE32 : FXSAVE32;
790 }
791 else
792 ifps->fp_save_layout = fpu_YMM_present ? XSAVE64 : FXSAVE64;
793 ifps->fp_valid = TRUE;
794 }
795 intr = ml_set_interrupts_enabled(FALSE);
796
797 clear_ts(); /* Enable FPU use */
798
799 if (__improbable(get_interrupt_level())) {
800 /*
801 * Save current coprocessor context if valid
802 * Initialize coprocessor live context
803 */
804 fp_save(thr_act);
805 fpinit();
806 } else {
807 if (pcb->ifps == 0) {
808 pcb->ifps = ifps;
809 ifps = 0;
810 }
811 /*
812 * Load this thread`s state into coprocessor live context.
813 */
814 fp_load(thr_act);
815 }
816 (void)ml_set_interrupts_enabled(intr);
817
818 if (ifps)
819 fp_state_free(ifps);
820 }
821
822 /*
823 * FPU overran end of segment.
824 * Re-initialize FPU. Floating point state is not valid.
825 */
826
827 void
828 fpextovrflt(void)
829 {
830 thread_t thr_act = current_thread();
831 pcb_t pcb;
832 struct x86_fx_thread_state *ifps;
833 boolean_t intr;
834
835 intr = ml_set_interrupts_enabled(FALSE);
836
837 if (get_interrupt_level())
838 panic("FPU segment overrun exception at interrupt context\n");
839 if (current_task() == kernel_task)
840 panic("FPU segment overrun exception in kernel thread context\n");
841
842 /*
843 * This is a non-recoverable error.
844 * Invalidate the thread`s FPU state.
845 */
846 pcb = THREAD_TO_PCB(thr_act);
847 simple_lock(&pcb->lock);
848 ifps = pcb->ifps;
849 pcb->ifps = 0;
850 simple_unlock(&pcb->lock);
851
852 /*
853 * Re-initialize the FPU.
854 */
855 clear_ts();
856 fninit();
857
858 /*
859 * And disable access.
860 */
861 clear_fpu();
862
863 (void)ml_set_interrupts_enabled(intr);
864
865 if (ifps)
866 zfree(ifps_zone, ifps);
867
868 /*
869 * Raise exception.
870 */
871 i386_exception(EXC_BAD_ACCESS, VM_PROT_READ|VM_PROT_EXECUTE, 0);
872 /*NOTREACHED*/
873 }
874
875 /*
876 * FPU error. Called by AST.
877 */
878
879 void
880 fpexterrflt(void)
881 {
882 thread_t thr_act = current_thread();
883 struct x86_fx_thread_state *ifps = thr_act->machine.ifps;
884 boolean_t intr;
885
886 intr = ml_set_interrupts_enabled(FALSE);
887
888 if (get_interrupt_level())
889 panic("FPU error exception at interrupt context\n");
890 if (current_task() == kernel_task)
891 panic("FPU error exception in kernel thread context\n");
892
893 /*
894 * Save the FPU state and turn off the FPU.
895 */
896 fp_save(thr_act);
897
898 (void)ml_set_interrupts_enabled(intr);
899
900 /*
901 * Raise FPU exception.
902 * Locking not needed on pcb->ifps,
903 * since thread is running.
904 */
905 i386_exception(EXC_ARITHMETIC,
906 EXC_I386_EXTERR,
907 ifps->fx_status);
908
909 /*NOTREACHED*/
910 }
911
912 /*
913 * Save FPU state.
914 *
915 * Locking not needed:
916 * . if called from fpu_get_state, pcb already locked.
917 * . if called from fpnoextflt or fp_intr, we are single-cpu
918 * . otherwise, thread is running.
919 * N.B.: Must be called with interrupts disabled
920 */
921
922 void
923 fp_save(
924 thread_t thr_act)
925 {
926 pcb_t pcb = THREAD_TO_PCB(thr_act);
927 struct x86_fx_thread_state *ifps = pcb->ifps;
928
929 assert(ifps != 0);
930 if (ifps != 0 && !ifps->fp_valid) {
931 assert((get_cr0() & CR0_TS) == 0);
932 /* registers are in FPU */
933 ifps->fp_valid = TRUE;
934 fpu_store_registers(ifps, thread_is_64bit(thr_act));
935 }
936 }
937
938 /*
939 * Restore FPU state from PCB.
940 *
941 * Locking not needed; always called on the current thread.
942 */
943
944 void
945 fp_load(
946 thread_t thr_act)
947 {
948 pcb_t pcb = THREAD_TO_PCB(thr_act);
949 struct x86_fx_thread_state *ifps = pcb->ifps;
950
951 assert(ifps);
952 assert(ifps->fp_valid == FALSE || ifps->fp_valid == TRUE);
953
954 if (ifps->fp_valid == FALSE) {
955 fpinit();
956 } else {
957 fpu_load_registers(ifps);
958 }
959 ifps->fp_valid = FALSE; /* in FPU */
960 }
961
962 /*
963 * SSE arithmetic exception handling code.
964 * Basically the same as the x87 exception handler with a different subtype
965 */
966
967 void
968 fpSSEexterrflt(void)
969 {
970 thread_t thr_act = current_thread();
971 struct x86_fx_thread_state *ifps = thr_act->machine.ifps;
972 boolean_t intr;
973
974 intr = ml_set_interrupts_enabled(FALSE);
975
976 if (get_interrupt_level())
977 panic("SSE exception at interrupt context\n");
978 if (current_task() == kernel_task)
979 panic("SSE exception in kernel thread context\n");
980
981 /*
982 * Save the FPU state and turn off the FPU.
983 */
984 fp_save(thr_act);
985
986 (void)ml_set_interrupts_enabled(intr);
987 /*
988 * Raise FPU exception.
989 * Locking not needed on pcb->ifps,
990 * since thread is running.
991 */
992 assert(ifps->fp_save_layout == FXSAVE32 || ifps->fp_save_layout == FXSAVE64);
993 i386_exception(EXC_ARITHMETIC,
994 EXC_I386_SSEEXTERR,
995 ifps->fx_MXCSR);
996 /*NOTREACHED*/
997 }
998
999 void
1000 fp_setvalid(boolean_t value) {
1001 thread_t thr_act = current_thread();
1002 struct x86_fx_thread_state *ifps = thr_act->machine.ifps;
1003
1004 if (ifps) {
1005 ifps->fp_valid = value;
1006
1007 if (value == TRUE) {
1008 boolean_t istate = ml_set_interrupts_enabled(FALSE);
1009 clear_fpu();
1010 ml_set_interrupts_enabled(istate);
1011 }
1012 }
1013 }
1014
1015 boolean_t
1016 ml_fpu_avx_enabled(void) {
1017 return (fpu_YMM_present == TRUE);
1018 }