]> git.saurik.com Git - apple/xnu.git/blob - osfmk/vm/vm_kern.c
56143f42c118253865b73c84cf504a7f32937832
[apple/xnu.git] / osfmk / vm / vm_kern.c
1 /*
2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * The contents of this file constitute Original Code as defined in and
7 * are subject to the Apple Public Source License Version 1.1 (the
8 * "License"). You may not use this file except in compliance with the
9 * License. Please obtain a copy of the License at
10 * http://www.apple.com/publicsource and read it before using this file.
11 *
12 * This Original Code and all software distributed under the License are
13 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
14 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
17 * License for the specific language governing rights and limitations
18 * under the License.
19 *
20 * @APPLE_LICENSE_HEADER_END@
21 */
22 /*
23 * @OSF_COPYRIGHT@
24 */
25 /*
26 * Mach Operating System
27 * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
28 * All Rights Reserved.
29 *
30 * Permission to use, copy, modify and distribute this software and its
31 * documentation is hereby granted, provided that both the copyright
32 * notice and this permission notice appear in all copies of the
33 * software, derivative works or modified versions, and any portions
34 * thereof, and that both notices appear in supporting documentation.
35 *
36 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
37 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
38 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
39 *
40 * Carnegie Mellon requests users of this software to return to
41 *
42 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
43 * School of Computer Science
44 * Carnegie Mellon University
45 * Pittsburgh PA 15213-3890
46 *
47 * any improvements or extensions that they make and grant Carnegie Mellon
48 * the rights to redistribute these changes.
49 */
50 /*
51 */
52 /*
53 * File: vm/vm_kern.c
54 * Author: Avadis Tevanian, Jr., Michael Wayne Young
55 * Date: 1985
56 *
57 * Kernel memory management.
58 */
59
60 #include <cpus.h>
61 #include <mach/kern_return.h>
62 #include <mach/vm_param.h>
63 #include <kern/assert.h>
64 #include <kern/lock.h>
65 #include <kern/thread.h>
66 #include <vm/vm_kern.h>
67 #include <vm/vm_map.h>
68 #include <vm/vm_object.h>
69 #include <vm/vm_page.h>
70 #include <vm/vm_pageout.h>
71 #include <kern/misc_protos.h>
72 #include <vm/cpm.h>
73
74 #include <string.h>
75 /*
76 * Variables exported by this module.
77 */
78
79 vm_map_t kernel_map;
80 vm_map_t kernel_pageable_map;
81
82 /*
83 * Forward declarations for internal functions.
84 */
85 extern kern_return_t kmem_alloc_pages(
86 register vm_object_t object,
87 register vm_object_offset_t offset,
88 register vm_offset_t start,
89 register vm_offset_t end,
90 vm_prot_t protection);
91
92 extern void kmem_remap_pages(
93 register vm_object_t object,
94 register vm_object_offset_t offset,
95 register vm_offset_t start,
96 register vm_offset_t end,
97 vm_prot_t protection);
98
99 kern_return_t
100 kmem_alloc_contig(
101 vm_map_t map,
102 vm_offset_t *addrp,
103 vm_size_t size,
104 vm_offset_t mask,
105 int flags)
106 {
107 vm_object_t object;
108 vm_page_t m, pages;
109 kern_return_t kr;
110 vm_offset_t addr, i;
111 vm_object_offset_t offset;
112 vm_map_entry_t entry;
113
114 if (map == VM_MAP_NULL || (flags && (flags ^ KMA_KOBJECT)))
115 return KERN_INVALID_ARGUMENT;
116
117 if (size == 0) {
118 *addrp = 0;
119 return KERN_INVALID_ARGUMENT;
120 }
121
122 size = round_page(size);
123 if ((flags & KMA_KOBJECT) == 0) {
124 object = vm_object_allocate(size);
125 kr = vm_map_find_space(map, &addr, size, mask, &entry);
126 }
127 else {
128 object = kernel_object;
129 kr = vm_map_find_space(map, &addr, size, mask, &entry);
130 }
131
132 if ((flags & KMA_KOBJECT) == 0) {
133 entry->object.vm_object = object;
134 entry->offset = offset = 0;
135 } else {
136 offset = addr - VM_MIN_KERNEL_ADDRESS;
137
138 if (entry->object.vm_object == VM_OBJECT_NULL) {
139 vm_object_reference(object);
140 entry->object.vm_object = object;
141 entry->offset = offset;
142 }
143 }
144
145 if (kr != KERN_SUCCESS) {
146 if ((flags & KMA_KOBJECT) == 0)
147 vm_object_deallocate(object);
148 return kr;
149 }
150
151 vm_map_unlock(map);
152
153 kr = cpm_allocate(size, &pages, FALSE);
154
155 if (kr != KERN_SUCCESS) {
156 vm_map_remove(map, addr, addr + size, 0);
157 *addrp = 0;
158 return kr;
159 }
160
161 vm_object_lock(object);
162 for (i = 0; i < size; i += PAGE_SIZE) {
163 m = pages;
164 pages = NEXT_PAGE(m);
165 m->busy = FALSE;
166 vm_page_insert(m, object, offset + i);
167 }
168 vm_object_unlock(object);
169
170 if ((kr = vm_map_wire(map, addr, addr + size, VM_PROT_DEFAULT, FALSE))
171 != KERN_SUCCESS) {
172 if (object == kernel_object) {
173 vm_object_lock(object);
174 vm_object_page_remove(object, offset, offset + size);
175 vm_object_unlock(object);
176 }
177 vm_map_remove(map, addr, addr + size, 0);
178 return kr;
179 }
180 if (object == kernel_object)
181 vm_map_simplify(map, addr);
182
183 *addrp = addr;
184 return KERN_SUCCESS;
185 }
186
187 /*
188 * Master entry point for allocating kernel memory.
189 * NOTE: this routine is _never_ interrupt safe.
190 *
191 * map : map to allocate into
192 * addrp : pointer to start address of new memory
193 * size : size of memory requested
194 * flags : options
195 * KMA_HERE *addrp is base address, else "anywhere"
196 * KMA_NOPAGEWAIT don't wait for pages if unavailable
197 * KMA_KOBJECT use kernel_object
198 */
199
200 kern_return_t
201 kernel_memory_allocate(
202 register vm_map_t map,
203 register vm_offset_t *addrp,
204 register vm_size_t size,
205 register vm_offset_t mask,
206 int flags)
207 {
208 vm_object_t object = VM_OBJECT_NULL;
209 vm_map_entry_t entry;
210 vm_object_offset_t offset;
211 vm_offset_t addr;
212 vm_offset_t i;
213 kern_return_t kr;
214
215 size = round_page(size);
216 if ((flags & KMA_KOBJECT) == 0) {
217 /*
218 * Allocate a new object. We must do this before locking
219 * the map, or risk deadlock with the default pager:
220 * device_read_alloc uses kmem_alloc,
221 * which tries to allocate an object,
222 * which uses kmem_alloc_wired to get memory,
223 * which blocks for pages.
224 * then the default pager needs to read a block
225 * to process a memory_object_data_write,
226 * and device_read_alloc calls kmem_alloc
227 * and deadlocks on the map lock.
228 */
229 object = vm_object_allocate(size);
230 kr = vm_map_find_space(map, &addr, size, mask, &entry);
231 }
232 else {
233 object = kernel_object;
234 kr = vm_map_find_space(map, &addr, size, mask, &entry);
235 }
236 if (kr != KERN_SUCCESS) {
237 if ((flags & KMA_KOBJECT) == 0)
238 vm_object_deallocate(object);
239 return kr;
240 }
241
242 if ((flags & KMA_KOBJECT) == 0) {
243 entry->object.vm_object = object;
244 entry->offset = offset = 0;
245 } else {
246 offset = addr - VM_MIN_KERNEL_ADDRESS;
247
248 if (entry->object.vm_object == VM_OBJECT_NULL) {
249 vm_object_reference(object);
250 entry->object.vm_object = object;
251 entry->offset = offset;
252 }
253 }
254
255 /*
256 * Since we have not given out this address yet,
257 * it is safe to unlock the map.
258 */
259 vm_map_unlock(map);
260
261 vm_object_lock(object);
262 for (i = 0; i < size; i += PAGE_SIZE) {
263 vm_page_t mem;
264
265 while ((mem = vm_page_alloc(object,
266 offset + (vm_object_offset_t)i))
267 == VM_PAGE_NULL) {
268 if (flags & KMA_NOPAGEWAIT) {
269 if (object == kernel_object)
270 vm_object_page_remove(object, offset,
271 offset + (vm_object_offset_t)i);
272 vm_object_unlock(object);
273 vm_map_remove(map, addr, addr + size, 0);
274 return KERN_RESOURCE_SHORTAGE;
275 }
276 vm_object_unlock(object);
277 VM_PAGE_WAIT();
278 vm_object_lock(object);
279 }
280 mem->busy = FALSE;
281 }
282 vm_object_unlock(object);
283
284 if ((kr = vm_map_wire(map, addr, addr + size, VM_PROT_DEFAULT, FALSE))
285 != KERN_SUCCESS) {
286 if (object == kernel_object) {
287 vm_object_lock(object);
288 vm_object_page_remove(object, offset, offset + size);
289 vm_object_unlock(object);
290 }
291 vm_map_remove(map, addr, addr + size, 0);
292 return (kr);
293 }
294 if (object == kernel_object)
295 vm_map_simplify(map, addr);
296
297 /*
298 * Return the memory, not zeroed.
299 */
300 #if (NCPUS > 1) && i860
301 bzero( addr, size );
302 #endif /* #if (NCPUS > 1) && i860 */
303 *addrp = addr;
304 return KERN_SUCCESS;
305 }
306
307 /*
308 * kmem_alloc:
309 *
310 * Allocate wired-down memory in the kernel's address map
311 * or a submap. The memory is not zero-filled.
312 */
313
314 kern_return_t
315 kmem_alloc(
316 vm_map_t map,
317 vm_offset_t *addrp,
318 vm_size_t size)
319 {
320 return kernel_memory_allocate(map, addrp, size, 0, 0);
321 }
322
323 /*
324 * kmem_realloc:
325 *
326 * Reallocate wired-down memory in the kernel's address map
327 * or a submap. Newly allocated pages are not zeroed.
328 * This can only be used on regions allocated with kmem_alloc.
329 *
330 * If successful, the pages in the old region are mapped twice.
331 * The old region is unchanged. Use kmem_free to get rid of it.
332 */
333 kern_return_t
334 kmem_realloc(
335 vm_map_t map,
336 vm_offset_t oldaddr,
337 vm_size_t oldsize,
338 vm_offset_t *newaddrp,
339 vm_size_t newsize)
340 {
341 vm_offset_t oldmin, oldmax;
342 vm_offset_t newaddr;
343 vm_object_t object;
344 vm_map_entry_t oldentry, newentry;
345 kern_return_t kr;
346
347 oldmin = trunc_page(oldaddr);
348 oldmax = round_page(oldaddr + oldsize);
349 oldsize = oldmax - oldmin;
350 newsize = round_page(newsize);
351
352 /*
353 * Find space for the new region.
354 */
355
356 kr = vm_map_find_space(map, &newaddr, newsize, (vm_offset_t) 0,
357 &newentry);
358 if (kr != KERN_SUCCESS) {
359 return kr;
360 }
361
362 /*
363 * Find the VM object backing the old region.
364 */
365
366 if (!vm_map_lookup_entry(map, oldmin, &oldentry))
367 panic("kmem_realloc");
368 object = oldentry->object.vm_object;
369
370 /*
371 * Increase the size of the object and
372 * fill in the new region.
373 */
374
375 vm_object_reference(object);
376 vm_object_lock(object);
377 if (object->size != oldsize)
378 panic("kmem_realloc");
379 object->size = newsize;
380 vm_object_unlock(object);
381
382 newentry->object.vm_object = object;
383 newentry->offset = 0;
384 assert (newentry->wired_count == 0);
385 newentry->wired_count = 1;
386
387 /*
388 * Since we have not given out this address yet,
389 * it is safe to unlock the map. We are trusting
390 * that nobody will play with either region.
391 */
392
393 vm_map_unlock(map);
394
395 /*
396 * Remap the pages in the old region and
397 * allocate more pages for the new region.
398 */
399
400 kmem_remap_pages(object, 0,
401 newaddr, newaddr + oldsize,
402 VM_PROT_DEFAULT);
403 kmem_alloc_pages(object, oldsize,
404 newaddr + oldsize, newaddr + newsize,
405 VM_PROT_DEFAULT);
406
407 *newaddrp = newaddr;
408 return KERN_SUCCESS;
409 }
410
411 /*
412 * kmem_alloc_wired:
413 *
414 * Allocate wired-down memory in the kernel's address map
415 * or a submap. The memory is not zero-filled.
416 *
417 * The memory is allocated in the kernel_object.
418 * It may not be copied with vm_map_copy, and
419 * it may not be reallocated with kmem_realloc.
420 */
421
422 kern_return_t
423 kmem_alloc_wired(
424 vm_map_t map,
425 vm_offset_t *addrp,
426 vm_size_t size)
427 {
428 return kernel_memory_allocate(map, addrp, size, 0, KMA_KOBJECT);
429 }
430
431 /*
432 * kmem_alloc_aligned:
433 *
434 * Like kmem_alloc_wired, except that the memory is aligned.
435 * The size should be a power-of-2.
436 */
437
438 kern_return_t
439 kmem_alloc_aligned(
440 vm_map_t map,
441 vm_offset_t *addrp,
442 vm_size_t size)
443 {
444 if ((size & (size - 1)) != 0)
445 panic("kmem_alloc_aligned: size not aligned");
446 return kernel_memory_allocate(map, addrp, size, size - 1, KMA_KOBJECT);
447 }
448
449 /*
450 * kmem_alloc_pageable:
451 *
452 * Allocate pageable memory in the kernel's address map.
453 */
454
455 kern_return_t
456 kmem_alloc_pageable(
457 vm_map_t map,
458 vm_offset_t *addrp,
459 vm_size_t size)
460 {
461 vm_offset_t addr;
462 kern_return_t kr;
463
464 #ifndef normal
465 addr = (vm_map_min(map)) + 0x1000;
466 #else
467 addr = vm_map_min(map);
468 #endif
469 kr = vm_map_enter(map, &addr, round_page(size),
470 (vm_offset_t) 0, TRUE,
471 VM_OBJECT_NULL, (vm_object_offset_t) 0, FALSE,
472 VM_PROT_DEFAULT, VM_PROT_ALL, VM_INHERIT_DEFAULT);
473 if (kr != KERN_SUCCESS)
474 return kr;
475
476 *addrp = addr;
477 return KERN_SUCCESS;
478 }
479
480 /*
481 * kmem_free:
482 *
483 * Release a region of kernel virtual memory allocated
484 * with kmem_alloc, kmem_alloc_wired, or kmem_alloc_pageable,
485 * and return the physical pages associated with that region.
486 */
487
488 void
489 kmem_free(
490 vm_map_t map,
491 vm_offset_t addr,
492 vm_size_t size)
493 {
494 kern_return_t kr;
495
496 kr = vm_map_remove(map, trunc_page(addr),
497 round_page(addr + size), VM_MAP_REMOVE_KUNWIRE);
498 if (kr != KERN_SUCCESS)
499 panic("kmem_free");
500 }
501
502 /*
503 * Allocate new wired pages in an object.
504 * The object is assumed to be mapped into the kernel map or
505 * a submap.
506 */
507
508 kern_return_t
509 kmem_alloc_pages(
510 register vm_object_t object,
511 register vm_object_offset_t offset,
512 register vm_offset_t start,
513 register vm_offset_t end,
514 vm_prot_t protection)
515 {
516 /*
517 * Mark the pmap region as not pageable.
518 */
519 pmap_pageable(kernel_pmap, start, end, FALSE);
520
521 while (start < end) {
522 register vm_page_t mem;
523
524 vm_object_lock(object);
525
526 /*
527 * Allocate a page
528 */
529 while ((mem = vm_page_alloc(object, offset))
530 == VM_PAGE_NULL) {
531 vm_object_unlock(object);
532 VM_PAGE_WAIT();
533 vm_object_lock(object);
534 }
535
536 /*
537 * Wire it down
538 */
539 vm_page_lock_queues();
540 vm_page_wire(mem);
541 vm_page_unlock_queues();
542 vm_object_unlock(object);
543
544 /*
545 * Enter it in the kernel pmap
546 */
547 PMAP_ENTER(kernel_pmap, start, mem,
548 protection, TRUE);
549
550 vm_object_lock(object);
551 PAGE_WAKEUP_DONE(mem);
552 vm_object_unlock(object);
553
554 start += PAGE_SIZE;
555 offset += PAGE_SIZE_64;
556 }
557 return KERN_SUCCESS;
558 }
559
560 /*
561 * Remap wired pages in an object into a new region.
562 * The object is assumed to be mapped into the kernel map or
563 * a submap.
564 */
565 void
566 kmem_remap_pages(
567 register vm_object_t object,
568 register vm_object_offset_t offset,
569 register vm_offset_t start,
570 register vm_offset_t end,
571 vm_prot_t protection)
572 {
573 /*
574 * Mark the pmap region as not pageable.
575 */
576 pmap_pageable(kernel_pmap, start, end, FALSE);
577
578 while (start < end) {
579 register vm_page_t mem;
580
581 vm_object_lock(object);
582
583 /*
584 * Find a page
585 */
586 if ((mem = vm_page_lookup(object, offset)) == VM_PAGE_NULL)
587 panic("kmem_remap_pages");
588
589 /*
590 * Wire it down (again)
591 */
592 vm_page_lock_queues();
593 vm_page_wire(mem);
594 vm_page_unlock_queues();
595 vm_object_unlock(object);
596
597 /*
598 * Enter it in the kernel pmap. The page isn't busy,
599 * but this shouldn't be a problem because it is wired.
600 */
601 PMAP_ENTER(kernel_pmap, start, mem,
602 protection, TRUE);
603
604 start += PAGE_SIZE;
605 offset += PAGE_SIZE;
606 }
607 }
608
609 /*
610 * kmem_suballoc:
611 *
612 * Allocates a map to manage a subrange
613 * of the kernel virtual address space.
614 *
615 * Arguments are as follows:
616 *
617 * parent Map to take range from
618 * addr Address of start of range (IN/OUT)
619 * size Size of range to find
620 * pageable Can region be paged
621 * anywhere Can region be located anywhere in map
622 * new_map Pointer to new submap
623 */
624 kern_return_t
625 kmem_suballoc(
626 vm_map_t parent,
627 vm_offset_t *addr,
628 vm_size_t size,
629 boolean_t pageable,
630 boolean_t anywhere,
631 vm_map_t *new_map)
632 {
633 vm_map_t map;
634 kern_return_t kr;
635
636 size = round_page(size);
637
638 /*
639 * Need reference on submap object because it is internal
640 * to the vm_system. vm_object_enter will never be called
641 * on it (usual source of reference for vm_map_enter).
642 */
643 vm_object_reference(vm_submap_object);
644
645 if (anywhere == TRUE)
646 *addr = (vm_offset_t)vm_map_min(parent);
647 kr = vm_map_enter(parent, addr, size,
648 (vm_offset_t) 0, anywhere,
649 vm_submap_object, (vm_object_offset_t) 0, FALSE,
650 VM_PROT_DEFAULT, VM_PROT_ALL, VM_INHERIT_DEFAULT);
651 if (kr != KERN_SUCCESS) {
652 vm_object_deallocate(vm_submap_object);
653 return (kr);
654 }
655
656 pmap_reference(vm_map_pmap(parent));
657 map = vm_map_create(vm_map_pmap(parent), *addr, *addr + size, pageable);
658 if (map == VM_MAP_NULL)
659 panic("kmem_suballoc: vm_map_create failed"); /* "can't happen" */
660
661 kr = vm_map_submap(parent, *addr, *addr + size, map, *addr, FALSE);
662 if (kr != KERN_SUCCESS) {
663 /*
664 * See comment preceding vm_map_submap().
665 */
666 vm_map_remove(parent, *addr, *addr + size, VM_MAP_NO_FLAGS);
667 vm_map_deallocate(map); /* also removes ref to pmap */
668 vm_object_deallocate(vm_submap_object);
669 return (kr);
670 }
671 *new_map = map;
672 return (KERN_SUCCESS);
673 }
674
675 /*
676 * kmem_init:
677 *
678 * Initialize the kernel's virtual memory map, taking
679 * into account all memory allocated up to this time.
680 */
681 void
682 kmem_init(
683 vm_offset_t start,
684 vm_offset_t end)
685 {
686 kernel_map = vm_map_create(pmap_kernel(),
687 VM_MIN_KERNEL_ADDRESS, end,
688 FALSE);
689
690 /*
691 * Reserve virtual memory allocated up to this time.
692 */
693
694 if (start != VM_MIN_KERNEL_ADDRESS) {
695 vm_offset_t addr = VM_MIN_KERNEL_ADDRESS;
696 (void) vm_map_enter(kernel_map,
697 &addr, start - VM_MIN_KERNEL_ADDRESS,
698 (vm_offset_t) 0, TRUE,
699 VM_OBJECT_NULL,
700 (vm_object_offset_t) 0, FALSE,
701 VM_PROT_DEFAULT, VM_PROT_ALL,
702 VM_INHERIT_DEFAULT);
703 }
704
705 /*
706 * Account for kernel memory (text, data, bss, vm shenanigans).
707 * This may include inaccessible "holes" as determined by what
708 * the machine-dependent init code includes in mem_size.
709 */
710 vm_page_wire_count = (atop(mem_size) - (vm_page_free_count
711 + vm_page_active_count
712 + vm_page_inactive_count));
713 }
714
715
716 /*
717 * kmem_io_object_trunc:
718 *
719 * Truncate an object vm_map_copy_t.
720 * Called by the scatter/gather list network code to remove pages from
721 * the tail end of a packet. Also unwires the objects pages.
722 */
723
724 kern_return_t
725 kmem_io_object_trunc(copy, new_size)
726 vm_map_copy_t copy; /* IN/OUT copy object */
727 register vm_size_t new_size; /* IN new object size */
728 {
729 register vm_size_t offset, old_size;
730
731 assert(copy->type == VM_MAP_COPY_OBJECT);
732
733 old_size = (vm_size_t)round_page_64(copy->size);
734 copy->size = new_size;
735 new_size = round_page(new_size);
736
737 vm_object_lock(copy->cpy_object);
738 vm_object_page_remove(copy->cpy_object,
739 (vm_object_offset_t)new_size, (vm_object_offset_t)old_size);
740 for (offset = 0; offset < new_size; offset += PAGE_SIZE) {
741 register vm_page_t mem;
742
743 if ((mem = vm_page_lookup(copy->cpy_object,
744 (vm_object_offset_t)offset)) == VM_PAGE_NULL)
745 panic("kmem_io_object_trunc: unable to find object page");
746
747 /*
748 * Make sure these pages are marked dirty
749 */
750 mem->dirty = TRUE;
751 vm_page_lock_queues();
752 vm_page_unwire(mem);
753 vm_page_unlock_queues();
754 }
755 copy->cpy_object->size = new_size; /* adjust size of object */
756 vm_object_unlock(copy->cpy_object);
757 return(KERN_SUCCESS);
758 }
759
760 /*
761 * kmem_io_object_deallocate:
762 *
763 * Free an vm_map_copy_t.
764 * Called by the scatter/gather list network code to free a packet.
765 */
766
767 void
768 kmem_io_object_deallocate(
769 vm_map_copy_t copy) /* IN/OUT copy object */
770 {
771 kern_return_t ret;
772
773 /*
774 * Clear out all the object pages (this will leave an empty object).
775 */
776 ret = kmem_io_object_trunc(copy, 0);
777 if (ret != KERN_SUCCESS)
778 panic("kmem_io_object_deallocate: unable to truncate object");
779 /*
780 * ...and discard the copy object.
781 */
782 vm_map_copy_discard(copy);
783 }
784
785 /*
786 * Routine: copyinmap
787 * Purpose:
788 * Like copyin, except that fromaddr is an address
789 * in the specified VM map. This implementation
790 * is incomplete; it handles the current user map
791 * and the kernel map/submaps.
792 */
793 boolean_t
794 copyinmap(
795 vm_map_t map,
796 vm_offset_t fromaddr,
797 vm_offset_t toaddr,
798 vm_size_t length)
799 {
800 if (vm_map_pmap(map) == pmap_kernel()) {
801 /* assume a correct copy */
802 memcpy((void *)toaddr, (void *)fromaddr, length);
803 return FALSE;
804 }
805
806 if (current_map() == map)
807 return copyin((char *)fromaddr, (char *)toaddr, length);
808
809 return TRUE;
810 }
811
812 /*
813 * Routine: copyoutmap
814 * Purpose:
815 * Like copyout, except that toaddr is an address
816 * in the specified VM map. This implementation
817 * is incomplete; it handles the current user map
818 * and the kernel map/submaps.
819 */
820 boolean_t
821 copyoutmap(
822 vm_map_t map,
823 vm_offset_t fromaddr,
824 vm_offset_t toaddr,
825 vm_size_t length)
826 {
827 if (vm_map_pmap(map) == pmap_kernel()) {
828 /* assume a correct copy */
829 memcpy((void *)toaddr, (void *)fromaddr, length);
830 return FALSE;
831 }
832
833 if (current_map() == map)
834 return copyout((char *)fromaddr, (char *)toaddr, length);
835
836 return TRUE;
837 }