2 * Copyright (c) 2000-2014 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
28 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
31 * The Regents of the University of California. All rights reserved.
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. All advertising materials mentioning features or use of this software
42 * must display the following acknowledgement:
43 * This product includes software developed by the University of
44 * California, Berkeley and its contributors.
45 * 4. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * @(#)vfs_cluster.c 8.10 (Berkeley) 3/28/95
64 #include <sys/param.h>
65 #include <sys/proc_internal.h>
66 #include <sys/buf_internal.h>
67 #include <sys/mount_internal.h>
68 #include <sys/vnode_internal.h>
69 #include <sys/trace.h>
70 #include <sys/malloc.h>
72 #include <sys/kernel.h>
73 #include <sys/resourcevar.h>
74 #include <miscfs/specfs/specdev.h>
75 #include <sys/uio_internal.h>
76 #include <libkern/libkern.h>
77 #include <machine/machine_routines.h>
79 #include <sys/ubc_internal.h>
80 #include <vm/vnode_pager.h>
82 #include <mach/mach_types.h>
83 #include <mach/memory_object_types.h>
84 #include <mach/vm_map.h>
86 #include <kern/task.h>
87 #include <kern/policy_internal.h>
89 #include <vm/vm_kern.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_fault.h>
94 #include <sys/kdebug.h>
95 #include <libkern/OSAtomic.h>
103 #define KERNEL_DEBUG KERNEL_DEBUG_CONSTANT
108 #define CL_WRITE 0x02
109 #define CL_ASYNC 0x04
110 #define CL_COMMIT 0x08
111 #define CL_PAGEOUT 0x10
113 #define CL_NOZERO 0x40
114 #define CL_PAGEIN 0x80
115 #define CL_DEV_MEMORY 0x100
116 #define CL_PRESERVE 0x200
117 #define CL_THROTTLE 0x400
118 #define CL_KEEPCACHED 0x800
119 #define CL_DIRECT_IO 0x1000
120 #define CL_PASSIVE 0x2000
121 #define CL_IOSTREAMING 0x4000
122 #define CL_CLOSE 0x8000
123 #define CL_ENCRYPTED 0x10000
124 #define CL_RAW_ENCRYPTED 0x20000
125 #define CL_NOCACHE 0x40000
127 #define MAX_VECTOR_UPL_ELEMENTS 8
128 #define MAX_VECTOR_UPL_SIZE (2 * MAX_UPL_SIZE_BYTES)
130 #define CLUSTER_IO_WAITING ((buf_t)1)
132 extern upl_t
vector_upl_create(vm_offset_t
);
133 extern boolean_t
vector_upl_is_valid(upl_t
);
134 extern boolean_t
vector_upl_set_subupl(upl_t
,upl_t
, u_int32_t
);
135 extern void vector_upl_set_pagelist(upl_t
);
136 extern void vector_upl_set_iostate(upl_t
, upl_t
, vm_offset_t
, u_int32_t
);
140 u_int io_completed
; /* amount of io that has currently completed */
141 u_int io_issued
; /* amount of io that was successfully issued */
142 int io_error
; /* error code of first error encountered */
143 int io_wanted
; /* someone is sleeping waiting for a change in state */
146 struct cl_direct_read_lock
{
147 LIST_ENTRY(cl_direct_read_lock
) chain
;
153 #define CL_DIRECT_READ_LOCK_BUCKETS 61
155 static LIST_HEAD(cl_direct_read_locks
, cl_direct_read_lock
)
156 cl_direct_read_locks
[CL_DIRECT_READ_LOCK_BUCKETS
];
158 static lck_spin_t cl_direct_read_spin_lock
;
160 static lck_grp_t
*cl_mtx_grp
;
161 static lck_attr_t
*cl_mtx_attr
;
162 static lck_grp_attr_t
*cl_mtx_grp_attr
;
163 static lck_mtx_t
*cl_transaction_mtxp
;
170 #define PUSH_DELAY 0x01
171 #define PUSH_ALL 0x02
172 #define PUSH_SYNC 0x04
175 static void cluster_EOT(buf_t cbp_head
, buf_t cbp_tail
, int zero_offset
);
176 static void cluster_wait_IO(buf_t cbp_head
, int async
);
177 static void cluster_complete_transaction(buf_t
*cbp_head
, void *callback_arg
, int *retval
, int flags
, int needwait
);
179 static int cluster_io_type(struct uio
*uio
, int *io_type
, u_int32_t
*io_length
, u_int32_t min_length
);
181 static int cluster_io(vnode_t vp
, upl_t upl
, vm_offset_t upl_offset
, off_t f_offset
, int non_rounded_size
,
182 int flags
, buf_t real_bp
, struct clios
*iostate
, int (*)(buf_t
, void *), void *callback_arg
);
183 static int cluster_iodone(buf_t bp
, void *callback_arg
);
184 static int cluster_ioerror(upl_t upl
, int upl_offset
, int abort_size
, int error
, int io_flags
, vnode_t vp
);
185 static int cluster_is_throttled(vnode_t vp
);
187 static void cluster_iostate_wait(struct clios
*iostate
, u_int target
, const char *wait_name
);
189 static void cluster_syncup(vnode_t vp
, off_t newEOF
, int (*)(buf_t
, void *), void *callback_arg
, int flags
);
191 static void cluster_read_upl_release(upl_t upl
, int start_pg
, int last_pg
, int take_reference
);
192 static int cluster_copy_ubc_data_internal(vnode_t vp
, struct uio
*uio
, int *io_resid
, int mark_dirty
, int take_reference
);
194 static int cluster_read_copy(vnode_t vp
, struct uio
*uio
, u_int32_t io_req_size
, off_t filesize
, int flags
,
195 int (*)(buf_t
, void *), void *callback_arg
);
196 static int cluster_read_direct(vnode_t vp
, struct uio
*uio
, off_t filesize
, int *read_type
, u_int32_t
*read_length
,
197 int flags
, int (*)(buf_t
, void *), void *callback_arg
);
198 static int cluster_read_contig(vnode_t vp
, struct uio
*uio
, off_t filesize
, int *read_type
, u_int32_t
*read_length
,
199 int (*)(buf_t
, void *), void *callback_arg
, int flags
);
201 static int cluster_write_copy(vnode_t vp
, struct uio
*uio
, u_int32_t io_req_size
, off_t oldEOF
, off_t newEOF
,
202 off_t headOff
, off_t tailOff
, int flags
, int (*)(buf_t
, void *), void *callback_arg
);
203 static int cluster_write_direct(vnode_t vp
, struct uio
*uio
, off_t oldEOF
, off_t newEOF
,
204 int *write_type
, u_int32_t
*write_length
, int flags
, int (*)(buf_t
, void *), void *callback_arg
);
205 static int cluster_write_contig(vnode_t vp
, struct uio
*uio
, off_t newEOF
,
206 int *write_type
, u_int32_t
*write_length
, int (*)(buf_t
, void *), void *callback_arg
, int bflag
);
208 static int cluster_align_phys_io(vnode_t vp
, struct uio
*uio
, addr64_t usr_paddr
, u_int32_t xsize
, int flags
, int (*)(buf_t
, void *), void *callback_arg
);
210 static int cluster_read_prefetch(vnode_t vp
, off_t f_offset
, u_int size
, off_t filesize
, int (*callback
)(buf_t
, void *), void *callback_arg
, int bflag
);
211 static void cluster_read_ahead(vnode_t vp
, struct cl_extent
*extent
, off_t filesize
, struct cl_readahead
*ra
, int (*callback
)(buf_t
, void *), void *callback_arg
, int bflag
);
213 static int cluster_push_now(vnode_t vp
, struct cl_extent
*, off_t EOF
, int flags
, int (*)(buf_t
, void *), void *callback_arg
);
215 static int cluster_try_push(struct cl_writebehind
*, vnode_t vp
, off_t EOF
, int push_flag
, int flags
, int (*)(buf_t
, void *), void *callback_arg
, int *err
);
217 static void sparse_cluster_switch(struct cl_writebehind
*, vnode_t vp
, off_t EOF
, int (*)(buf_t
, void *), void *callback_arg
);
218 static int sparse_cluster_push(void **cmapp
, vnode_t vp
, off_t EOF
, int push_flag
, int io_flags
, int (*)(buf_t
, void *), void *callback_arg
);
219 static void sparse_cluster_add(void **cmapp
, vnode_t vp
, struct cl_extent
*, off_t EOF
, int (*)(buf_t
, void *), void *callback_arg
);
221 static kern_return_t
vfs_drt_mark_pages(void **cmapp
, off_t offset
, u_int length
, u_int
*setcountp
);
222 static kern_return_t
vfs_drt_get_cluster(void **cmapp
, off_t
*offsetp
, u_int
*lengthp
);
223 static kern_return_t
vfs_drt_control(void **cmapp
, int op_type
);
227 * For throttled IO to check whether
228 * a block is cached by the boot cache
229 * and thus it can avoid delaying the IO.
231 * bootcache_contains_block is initially
232 * NULL. The BootCache will set it while
233 * the cache is active and clear it when
234 * the cache is jettisoned.
236 * Returns 0 if the block is not
237 * contained in the cache, 1 if it is
240 * The function pointer remains valid
241 * after the cache has been evicted even
242 * if bootcache_contains_block has been
245 * See rdar://9974130 The new throttling mechanism breaks the boot cache for throttled IOs
247 int (*bootcache_contains_block
)(dev_t device
, u_int64_t blkno
) = NULL
;
251 * limit the internal I/O size so that we
252 * can represent it in a 32 bit int
254 #define MAX_IO_REQUEST_SIZE (1024 * 1024 * 512)
255 #define MAX_IO_CONTIG_SIZE MAX_UPL_SIZE_BYTES
258 * The MIN_DIRECT_WRITE_SIZE governs how much I/O should be issued before we consider
259 * allowing the caller to bypass the buffer cache. For small I/Os (less than 16k),
260 * we have not historically allowed the write to bypass the UBC.
262 #define MIN_DIRECT_WRITE_SIZE (16384)
264 #define WRITE_THROTTLE 6
265 #define WRITE_THROTTLE_SSD 2
266 #define WRITE_BEHIND 1
267 #define WRITE_BEHIND_SSD 1
270 #define PREFETCH_SSD 2
271 uint32_t speculative_prefetch_max
= (MAX_UPL_SIZE_BYTES
* 3); /* maximum bytes in a specluative read-ahead */
272 uint32_t speculative_prefetch_max_iosize
= (512 * 1024); /* maximum I/O size to use in a specluative read-ahead on SSDs*/
275 #define IO_SCALE(vp, base) (vp->v_mount->mnt_ioscale * (base))
276 #define MAX_CLUSTER_SIZE(vp) (cluster_max_io_size(vp->v_mount, CL_WRITE))
277 #define MAX_PREFETCH(vp, size, is_ssd) (size * IO_SCALE(vp, ((is_ssd && !ignore_is_ssd) ? PREFETCH_SSD : PREFETCH)))
279 int ignore_is_ssd
= 0;
280 int speculative_reads_disabled
= 0;
283 * throttle the number of async writes that
284 * can be outstanding on a single vnode
285 * before we issue a synchronous write
287 #define THROTTLE_MAXCNT 0
289 uint32_t throttle_max_iosize
= (128 * 1024);
291 #define THROTTLE_MAX_IOSIZE (throttle_max_iosize)
293 SYSCTL_INT(_debug
, OID_AUTO
, lowpri_throttle_max_iosize
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &throttle_max_iosize
, 0, "");
299 * allocate lock group attribute and group
301 cl_mtx_grp_attr
= lck_grp_attr_alloc_init();
302 cl_mtx_grp
= lck_grp_alloc_init("cluster I/O", cl_mtx_grp_attr
);
305 * allocate the lock attribute
307 cl_mtx_attr
= lck_attr_alloc_init();
309 cl_transaction_mtxp
= lck_mtx_alloc_init(cl_mtx_grp
, cl_mtx_attr
);
311 if (cl_transaction_mtxp
== NULL
)
312 panic("cluster_init: failed to allocate cl_transaction_mtxp");
314 lck_spin_init(&cl_direct_read_spin_lock
, cl_mtx_grp
, cl_mtx_attr
);
316 for (int i
= 0; i
< CL_DIRECT_READ_LOCK_BUCKETS
; ++i
)
317 LIST_INIT(&cl_direct_read_locks
[i
]);
322 cluster_max_io_size(mount_t mp
, int type
)
324 uint32_t max_io_size
;
331 segcnt
= mp
->mnt_segreadcnt
;
332 maxcnt
= mp
->mnt_maxreadcnt
;
335 segcnt
= mp
->mnt_segwritecnt
;
336 maxcnt
= mp
->mnt_maxwritecnt
;
339 segcnt
= min(mp
->mnt_segreadcnt
, mp
->mnt_segwritecnt
);
340 maxcnt
= min(mp
->mnt_maxreadcnt
, mp
->mnt_maxwritecnt
);
343 if (segcnt
> (MAX_UPL_SIZE_BYTES
>> PAGE_SHIFT
)) {
345 * don't allow a size beyond the max UPL size we can create
347 segcnt
= MAX_UPL_SIZE_BYTES
>> PAGE_SHIFT
;
349 max_io_size
= min((segcnt
* PAGE_SIZE
), maxcnt
);
351 if (max_io_size
< MAX_UPL_TRANSFER_BYTES
) {
353 * don't allow a size smaller than the old fixed limit
355 max_io_size
= MAX_UPL_TRANSFER_BYTES
;
358 * make sure the size specified is a multiple of PAGE_SIZE
360 max_io_size
&= ~PAGE_MASK
;
362 return (max_io_size
);
368 #define CLW_ALLOCATE 0x01
369 #define CLW_RETURNLOCKED 0x02
370 #define CLW_IONOCACHE 0x04
371 #define CLW_IOPASSIVE 0x08
374 * if the read ahead context doesn't yet exist,
375 * allocate and initialize it...
376 * the vnode lock serializes multiple callers
377 * during the actual assignment... first one
378 * to grab the lock wins... the other callers
379 * will release the now unnecessary storage
381 * once the context is present, try to grab (but don't block on)
382 * the lock associated with it... if someone
383 * else currently owns it, than the read
384 * will run without read-ahead. this allows
385 * multiple readers to run in parallel and
386 * since there's only 1 read ahead context,
387 * there's no real loss in only allowing 1
388 * reader to have read-ahead enabled.
390 static struct cl_readahead
*
391 cluster_get_rap(vnode_t vp
)
393 struct ubc_info
*ubc
;
394 struct cl_readahead
*rap
;
398 if ((rap
= ubc
->cl_rahead
) == NULL
) {
399 MALLOC_ZONE(rap
, struct cl_readahead
*, sizeof *rap
, M_CLRDAHEAD
, M_WAITOK
);
401 bzero(rap
, sizeof *rap
);
403 lck_mtx_init(&rap
->cl_lockr
, cl_mtx_grp
, cl_mtx_attr
);
407 if (ubc
->cl_rahead
== NULL
)
408 ubc
->cl_rahead
= rap
;
410 lck_mtx_destroy(&rap
->cl_lockr
, cl_mtx_grp
);
411 FREE_ZONE((void *)rap
, sizeof *rap
, M_CLRDAHEAD
);
412 rap
= ubc
->cl_rahead
;
416 if (lck_mtx_try_lock(&rap
->cl_lockr
) == TRUE
)
419 return ((struct cl_readahead
*)NULL
);
424 * if the write behind context doesn't yet exist,
425 * and CLW_ALLOCATE is specified, allocate and initialize it...
426 * the vnode lock serializes multiple callers
427 * during the actual assignment... first one
428 * to grab the lock wins... the other callers
429 * will release the now unnecessary storage
431 * if CLW_RETURNLOCKED is set, grab (blocking if necessary)
432 * the lock associated with the write behind context before
436 static struct cl_writebehind
*
437 cluster_get_wbp(vnode_t vp
, int flags
)
439 struct ubc_info
*ubc
;
440 struct cl_writebehind
*wbp
;
444 if ((wbp
= ubc
->cl_wbehind
) == NULL
) {
446 if ( !(flags
& CLW_ALLOCATE
))
447 return ((struct cl_writebehind
*)NULL
);
449 MALLOC_ZONE(wbp
, struct cl_writebehind
*, sizeof *wbp
, M_CLWRBEHIND
, M_WAITOK
);
451 bzero(wbp
, sizeof *wbp
);
452 lck_mtx_init(&wbp
->cl_lockw
, cl_mtx_grp
, cl_mtx_attr
);
456 if (ubc
->cl_wbehind
== NULL
)
457 ubc
->cl_wbehind
= wbp
;
459 lck_mtx_destroy(&wbp
->cl_lockw
, cl_mtx_grp
);
460 FREE_ZONE((void *)wbp
, sizeof *wbp
, M_CLWRBEHIND
);
461 wbp
= ubc
->cl_wbehind
;
465 if (flags
& CLW_RETURNLOCKED
)
466 lck_mtx_lock(&wbp
->cl_lockw
);
473 cluster_syncup(vnode_t vp
, off_t newEOF
, int (*callback
)(buf_t
, void *), void *callback_arg
, int flags
)
475 struct cl_writebehind
*wbp
;
477 if ((wbp
= cluster_get_wbp(vp
, 0)) != NULL
) {
479 if (wbp
->cl_number
) {
480 lck_mtx_lock(&wbp
->cl_lockw
);
482 cluster_try_push(wbp
, vp
, newEOF
, PUSH_ALL
| flags
, 0, callback
, callback_arg
, NULL
);
484 lck_mtx_unlock(&wbp
->cl_lockw
);
491 cluster_io_present_in_BC(vnode_t vp
, off_t f_offset
)
495 int (*bootcache_check_fn
)(dev_t device
, u_int64_t blkno
) = bootcache_contains_block
;
497 if (bootcache_check_fn
) {
498 if (VNOP_BLOCKMAP(vp
, f_offset
, PAGE_SIZE
, &blkno
, &io_size
, NULL
, VNODE_READ
, NULL
))
504 if (bootcache_check_fn(vp
->v_mount
->mnt_devvp
->v_rdev
, blkno
))
512 cluster_is_throttled(vnode_t vp
)
514 return (throttle_io_will_be_throttled(-1, vp
->v_mount
));
519 cluster_iostate_wait(struct clios
*iostate
, u_int target
, const char *wait_name
)
522 lck_mtx_lock(&iostate
->io_mtxp
);
524 while ((iostate
->io_issued
- iostate
->io_completed
) > target
) {
526 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 95)) | DBG_FUNC_START
,
527 iostate
->io_issued
, iostate
->io_completed
, target
, 0, 0);
529 iostate
->io_wanted
= 1;
530 msleep((caddr_t
)&iostate
->io_wanted
, &iostate
->io_mtxp
, PRIBIO
+ 1, wait_name
, NULL
);
532 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 95)) | DBG_FUNC_END
,
533 iostate
->io_issued
, iostate
->io_completed
, target
, 0, 0);
535 lck_mtx_unlock(&iostate
->io_mtxp
);
538 static void cluster_handle_associated_upl(struct clios
*iostate
, upl_t upl
,
539 upl_offset_t upl_offset
, upl_size_t size
)
544 upl_t associated_upl
= upl_associated_upl(upl
);
550 printf("1: %d %d\n", upl_offset
, upl_offset
+ size
);
554 * The associated UPL is page aligned to file offsets whereas the
555 * UPL it's attached to has different alignment requirements. The
556 * upl_offset that we have refers to @upl. The code that follows
557 * has to deal with the first and last pages in this transaction
558 * which might straddle pages in the associated UPL. To keep
559 * track of these pages, we use the mark bits: if the mark bit is
560 * set, we know another transaction has completed its part of that
561 * page and so we can unlock that page here.
563 * The following illustrates what we have to deal with:
565 * MEM u <------------ 1 PAGE ------------> e
566 * +-------------+----------------------+-----------------
567 * | |######################|#################
568 * +-------------+----------------------+-----------------
569 * FILE | <--- a ---> o <------------ 1 PAGE ------------>
571 * So here we show a write to offset @o. The data that is to be
572 * written is in a buffer that is not page aligned; it has offset
573 * @a in the page. The upl that carries the data starts in memory
574 * at @u. The associated upl starts in the file at offset @o. A
575 * transaction will always end on a page boundary (like @e above)
576 * except for the very last transaction in the group. We cannot
577 * unlock the page at @o in the associated upl until both the
578 * transaction ending at @e and the following transaction (that
579 * starts at @e) has completed.
583 * We record whether or not the two UPLs are aligned as the mark
584 * bit in the first page of @upl.
586 upl_page_info_t
*pl
= UPL_GET_INTERNAL_PAGE_LIST(upl
);
587 bool is_unaligned
= upl_page_get_mark(pl
, 0);
590 upl_page_info_t
*assoc_pl
= UPL_GET_INTERNAL_PAGE_LIST(associated_upl
);
592 upl_offset_t upl_end
= upl_offset
+ size
;
593 assert(upl_end
>= PAGE_SIZE
);
595 upl_size_t assoc_upl_size
= upl_get_size(associated_upl
);
598 * In the very first transaction in the group, upl_offset will
599 * not be page aligned, but after that it will be and in that
600 * case we want the preceding page in the associated UPL hence
605 upl_offset
= trunc_page_32(upl_offset
- 1);
607 lck_mtx_lock_spin(&iostate
->io_mtxp
);
609 // Look at the first page...
611 && !upl_page_get_mark(assoc_pl
, upl_offset
>> PAGE_SHIFT
)) {
613 * The first page isn't marked so let another transaction
614 * completion handle it.
616 upl_page_set_mark(assoc_pl
, upl_offset
>> PAGE_SHIFT
, true);
617 upl_offset
+= PAGE_SIZE
;
620 // And now the last page...
623 * This needs to be > rather than >= because if it's equal, it
624 * means there's another transaction that is sharing the last
627 if (upl_end
> assoc_upl_size
)
628 upl_end
= assoc_upl_size
;
630 upl_end
= trunc_page_32(upl_end
);
631 const int last_pg
= (upl_end
>> PAGE_SHIFT
) - 1;
633 if (!upl_page_get_mark(assoc_pl
, last_pg
)) {
635 * The last page isn't marked so mark the page and let another
636 * transaction completion handle it.
638 upl_page_set_mark(assoc_pl
, last_pg
, true);
639 upl_end
-= PAGE_SIZE
;
643 lck_mtx_unlock(&iostate
->io_mtxp
);
646 printf("2: %d %d\n", upl_offset
, upl_end
);
649 if (upl_end
<= upl_offset
)
652 size
= upl_end
- upl_offset
;
654 assert(!(upl_offset
& PAGE_MASK
));
655 assert(!(size
& PAGE_MASK
));
661 * We can unlock these pages now and as this is for a
662 * direct/uncached write, we want to dump the pages too.
664 kern_return_t kr
= upl_abort_range(associated_upl
, upl_offset
, size
,
665 UPL_ABORT_DUMP_PAGES
, &empty
);
670 upl_set_associated_upl(upl
, NULL
);
671 upl_deallocate(associated_upl
);
676 cluster_ioerror(upl_t upl
, int upl_offset
, int abort_size
, int error
, int io_flags
, vnode_t vp
)
678 int upl_abort_code
= 0;
682 if ((io_flags
& (B_PHYS
| B_CACHE
)) == (B_PHYS
| B_CACHE
))
684 * direct write of any flavor, or a direct read that wasn't aligned
686 ubc_upl_commit_range(upl
, upl_offset
, abort_size
, UPL_COMMIT_FREE_ON_EMPTY
);
688 if (io_flags
& B_PAGEIO
) {
689 if (io_flags
& B_READ
)
694 if (io_flags
& B_CACHE
)
696 * leave pages in the cache unchanged on error
698 upl_abort_code
= UPL_ABORT_FREE_ON_EMPTY
;
699 else if (page_out
&& ((error
!= ENXIO
) || vnode_isswap(vp
)))
701 * transient error... leave pages unchanged
703 upl_abort_code
= UPL_ABORT_FREE_ON_EMPTY
;
705 upl_abort_code
= UPL_ABORT_FREE_ON_EMPTY
| UPL_ABORT_ERROR
;
707 upl_abort_code
= UPL_ABORT_FREE_ON_EMPTY
| UPL_ABORT_DUMP_PAGES
;
709 ubc_upl_abort_range(upl
, upl_offset
, abort_size
, upl_abort_code
);
711 return (upl_abort_code
);
716 cluster_iodone(buf_t bp
, void *callback_arg
)
727 int transaction_size
= 0;
734 struct clios
*iostate
;
735 boolean_t transaction_complete
= FALSE
;
737 __IGNORE_WCASTALIGN(cbp_head
= (buf_t
)(bp
->b_trans_head
));
739 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 20)) | DBG_FUNC_START
,
740 cbp_head
, bp
->b_lblkno
, bp
->b_bcount
, bp
->b_flags
, 0);
742 if (cbp_head
->b_trans_next
|| !(cbp_head
->b_flags
& B_EOT
)) {
743 lck_mtx_lock_spin(cl_transaction_mtxp
);
745 bp
->b_flags
|= B_TDONE
;
747 for (cbp
= cbp_head
; cbp
; cbp
= cbp
->b_trans_next
) {
749 * all I/O requests that are part of this transaction
750 * have to complete before we can process it
752 if ( !(cbp
->b_flags
& B_TDONE
)) {
754 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 20)) | DBG_FUNC_END
,
755 cbp_head
, cbp
, cbp
->b_bcount
, cbp
->b_flags
, 0);
757 lck_mtx_unlock(cl_transaction_mtxp
);
762 if (cbp
->b_trans_next
== CLUSTER_IO_WAITING
) {
763 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 20)) | DBG_FUNC_END
,
764 cbp_head
, cbp
, cbp
->b_bcount
, cbp
->b_flags
, 0);
766 lck_mtx_unlock(cl_transaction_mtxp
);
772 if (cbp
->b_flags
& B_EOT
)
773 transaction_complete
= TRUE
;
775 lck_mtx_unlock(cl_transaction_mtxp
);
777 if (transaction_complete
== FALSE
) {
778 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 20)) | DBG_FUNC_END
,
779 cbp_head
, 0, 0, 0, 0);
789 upl_offset
= cbp
->b_uploffset
;
791 b_flags
= cbp
->b_flags
;
792 real_bp
= cbp
->b_real_bp
;
793 zero_offset
= cbp
->b_validend
;
794 iostate
= (struct clios
*)cbp
->b_iostate
;
797 real_bp
->b_dev
= cbp
->b_dev
;
800 if ((cbp
->b_flags
& B_ERROR
) && error
== 0)
801 error
= cbp
->b_error
;
803 total_resid
+= cbp
->b_resid
;
804 total_size
+= cbp
->b_bcount
;
806 cbp_next
= cbp
->b_trans_next
;
808 if (cbp_next
== NULL
)
810 * compute the overall size of the transaction
811 * in case we created one that has 'holes' in it
812 * 'total_size' represents the amount of I/O we
813 * did, not the span of the transaction w/r to the UPL
815 transaction_size
= cbp
->b_uploffset
+ cbp
->b_bcount
- upl_offset
;
823 if (ISSET(b_flags
, B_COMMIT_UPL
)) {
824 cluster_handle_associated_upl(iostate
,
830 if (error
== 0 && total_resid
)
834 int (*cliodone_func
)(buf_t
, void *) = (int (*)(buf_t
, void *))(cbp_head
->b_cliodone
);
836 if (cliodone_func
!= NULL
) {
837 cbp_head
->b_bcount
= transaction_size
;
839 error
= (*cliodone_func
)(cbp_head
, callback_arg
);
843 cluster_zero(upl
, zero_offset
, PAGE_SIZE
- (zero_offset
& PAGE_MASK
), real_bp
);
845 free_io_buf(cbp_head
);
851 * someone has issued multiple I/Os asynchrounsly
852 * and is waiting for them to complete (streaming)
854 lck_mtx_lock_spin(&iostate
->io_mtxp
);
856 if (error
&& iostate
->io_error
== 0)
857 iostate
->io_error
= error
;
859 iostate
->io_completed
+= total_size
;
861 if (iostate
->io_wanted
) {
863 * someone is waiting for the state of
864 * this io stream to change
866 iostate
->io_wanted
= 0;
869 lck_mtx_unlock(&iostate
->io_mtxp
);
872 wakeup((caddr_t
)&iostate
->io_wanted
);
875 if (b_flags
& B_COMMIT_UPL
) {
876 pg_offset
= upl_offset
& PAGE_MASK
;
877 commit_size
= (pg_offset
+ transaction_size
+ (PAGE_SIZE
- 1)) & ~PAGE_MASK
;
880 upl_flags
= cluster_ioerror(upl
, upl_offset
- pg_offset
, commit_size
, error
, b_flags
, vp
);
882 upl_flags
= UPL_COMMIT_FREE_ON_EMPTY
;
884 if ((b_flags
& B_PHYS
) && (b_flags
& B_READ
))
885 upl_flags
|= UPL_COMMIT_SET_DIRTY
;
888 upl_flags
|= UPL_COMMIT_INACTIVATE
;
890 ubc_upl_commit_range(upl
, upl_offset
- pg_offset
, commit_size
, upl_flags
);
895 real_bp
->b_flags
|= B_ERROR
;
896 real_bp
->b_error
= error
;
898 real_bp
->b_resid
= total_resid
;
900 buf_biodone(real_bp
);
902 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 20)) | DBG_FUNC_END
,
903 upl
, upl_offset
- pg_offset
, commit_size
, (error
<< 24) | upl_flags
, 0);
910 cluster_throttle_io_limit(vnode_t vp
, uint32_t *limit
)
912 if (cluster_is_throttled(vp
)) {
913 *limit
= THROTTLE_MAX_IOSIZE
;
921 cluster_zero(upl_t upl
, upl_offset_t upl_offset
, int size
, buf_t bp
)
924 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 23)) | DBG_FUNC_START
,
925 upl_offset
, size
, bp
, 0, 0);
927 if (bp
== NULL
|| bp
->b_datap
== 0) {
931 pl
= ubc_upl_pageinfo(upl
);
933 if (upl_device_page(pl
) == TRUE
) {
934 zero_addr
= ((addr64_t
)upl_phys_page(pl
, 0) << PAGE_SHIFT
) + upl_offset
;
936 bzero_phys_nc(zero_addr
, size
);
943 page_index
= upl_offset
/ PAGE_SIZE
;
944 page_offset
= upl_offset
& PAGE_MASK
;
946 zero_addr
= ((addr64_t
)upl_phys_page(pl
, page_index
) << PAGE_SHIFT
) + page_offset
;
947 zero_cnt
= min(PAGE_SIZE
- page_offset
, size
);
949 bzero_phys(zero_addr
, zero_cnt
);
952 upl_offset
+= zero_cnt
;
956 bzero((caddr_t
)((vm_offset_t
)bp
->b_datap
+ upl_offset
), size
);
958 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 23)) | DBG_FUNC_END
,
959 upl_offset
, size
, 0, 0, 0);
964 cluster_EOT(buf_t cbp_head
, buf_t cbp_tail
, int zero_offset
)
966 cbp_head
->b_validend
= zero_offset
;
967 cbp_tail
->b_flags
|= B_EOT
;
971 cluster_wait_IO(buf_t cbp_head
, int async
)
977 * Async callback completion will not normally generate a
978 * wakeup upon I/O completion. To get woken up, we set
979 * b_trans_next (which is safe for us to modify) on the last
980 * buffer to CLUSTER_IO_WAITING so that cluster_iodone knows
981 * to wake us up when all buffers as part of this transaction
982 * are completed. This is done under the umbrella of
983 * cl_transaction_mtxp which is also taken in cluster_iodone.
988 lck_mtx_lock_spin(cl_transaction_mtxp
);
990 for (cbp
= cbp_head
; cbp
; last
= cbp
, cbp
= cbp
->b_trans_next
) {
991 if (!ISSET(cbp
->b_flags
, B_TDONE
))
996 last
->b_trans_next
= CLUSTER_IO_WAITING
;
998 DTRACE_IO1(wait__start
, buf_t
, last
);
1000 msleep(last
, cl_transaction_mtxp
, PSPIN
| (PRIBIO
+1), "cluster_wait_IO", NULL
);
1003 * We should only have been woken up if all the
1004 * buffers are completed, but just in case...
1007 for (cbp
= cbp_head
; cbp
!= CLUSTER_IO_WAITING
; cbp
= cbp
->b_trans_next
) {
1008 if (!ISSET(cbp
->b_flags
, B_TDONE
)) {
1014 DTRACE_IO1(wait__done
, buf_t
, last
);
1016 last
->b_trans_next
= NULL
;
1019 lck_mtx_unlock(cl_transaction_mtxp
);
1021 for (cbp
= cbp_head
; cbp
; cbp
= cbp
->b_trans_next
)
1027 cluster_complete_transaction(buf_t
*cbp_head
, void *callback_arg
, int *retval
, int flags
, int needwait
)
1031 boolean_t isswapout
= FALSE
;
1034 * cluster_complete_transaction will
1035 * only be called if we've issued a complete chain in synchronous mode
1036 * or, we've already done a cluster_wait_IO on an incomplete chain
1039 for (cbp
= *cbp_head
; cbp
; cbp
= cbp
->b_trans_next
)
1043 * we've already waited on all of the I/Os in this transaction,
1044 * so mark all of the buf_t's in this transaction as B_TDONE
1045 * so that cluster_iodone sees the transaction as completed
1047 for (cbp
= *cbp_head
; cbp
; cbp
= cbp
->b_trans_next
)
1048 cbp
->b_flags
|= B_TDONE
;
1051 if ((flags
& (CL_ASYNC
| CL_PAGEOUT
)) == CL_PAGEOUT
&& vnode_isswap(cbp
->b_vp
))
1054 error
= cluster_iodone(cbp
, callback_arg
);
1056 if ( !(flags
& CL_ASYNC
) && error
&& *retval
== 0) {
1057 if (((flags
& (CL_PAGEOUT
| CL_KEEPCACHED
)) != CL_PAGEOUT
) || (error
!= ENXIO
))
1059 else if (isswapout
== TRUE
)
1062 *cbp_head
= (buf_t
)NULL
;
1067 cluster_io(vnode_t vp
, upl_t upl
, vm_offset_t upl_offset
, off_t f_offset
, int non_rounded_size
,
1068 int flags
, buf_t real_bp
, struct clios
*iostate
, int (*callback
)(buf_t
, void *), void *callback_arg
)
1077 buf_t cbp_head
= NULL
;
1078 buf_t cbp_tail
= NULL
;
1079 int trans_count
= 0;
1080 int max_trans_count
;
1086 int zero_offset
= 0;
1087 int async_throttle
= 0;
1089 vm_offset_t upl_end_offset
;
1090 boolean_t need_EOT
= FALSE
;
1093 * we currently don't support buffers larger than a page
1095 if (real_bp
&& non_rounded_size
> PAGE_SIZE
)
1096 panic("%s(): Called with real buffer of size %d bytes which "
1097 "is greater than the maximum allowed size of "
1098 "%d bytes (the system PAGE_SIZE).\n",
1099 __FUNCTION__
, non_rounded_size
, PAGE_SIZE
);
1104 * we don't want to do any funny rounding of the size for IO requests
1105 * coming through the DIRECT or CONTIGUOUS paths... those pages don't
1106 * belong to us... we can't extend (nor do we need to) the I/O to fill
1109 if (mp
->mnt_devblocksize
> 1 && !(flags
& (CL_DEV_MEMORY
| CL_DIRECT_IO
))) {
1111 * round the requested size up so that this I/O ends on a
1112 * page boundary in case this is a 'write'... if the filesystem
1113 * has blocks allocated to back the page beyond the EOF, we want to
1114 * make sure to write out the zero's that are sitting beyond the EOF
1115 * so that in case the filesystem doesn't explicitly zero this area
1116 * if a hole is created via a lseek/write beyond the current EOF,
1117 * it will return zeros when it's read back from the disk. If the
1118 * physical allocation doesn't extend for the whole page, we'll
1119 * only write/read from the disk up to the end of this allocation
1120 * via the extent info returned from the VNOP_BLOCKMAP call.
1122 pg_offset
= upl_offset
& PAGE_MASK
;
1124 size
= (((non_rounded_size
+ pg_offset
) + (PAGE_SIZE
- 1)) & ~PAGE_MASK
) - pg_offset
;
1127 * anyone advertising a blocksize of 1 byte probably
1128 * can't deal with us rounding up the request size
1129 * AFP is one such filesystem/device
1131 size
= non_rounded_size
;
1133 upl_end_offset
= upl_offset
+ size
;
1135 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 22)) | DBG_FUNC_START
, (int)f_offset
, size
, upl_offset
, flags
, 0);
1138 * Set the maximum transaction size to the maximum desired number of
1141 max_trans_count
= 8;
1142 if (flags
& CL_DEV_MEMORY
)
1143 max_trans_count
= 16;
1145 if (flags
& CL_READ
) {
1147 bmap_flags
= VNODE_READ
;
1149 max_iosize
= mp
->mnt_maxreadcnt
;
1150 max_vectors
= mp
->mnt_segreadcnt
;
1153 bmap_flags
= VNODE_WRITE
;
1155 max_iosize
= mp
->mnt_maxwritecnt
;
1156 max_vectors
= mp
->mnt_segwritecnt
;
1158 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 22)) | DBG_FUNC_NONE
, max_iosize
, max_vectors
, mp
->mnt_devblocksize
, 0, 0);
1161 * make sure the maximum iosize is a
1162 * multiple of the page size
1164 max_iosize
&= ~PAGE_MASK
;
1167 * Ensure the maximum iosize is sensible.
1170 max_iosize
= PAGE_SIZE
;
1172 if (flags
& CL_THROTTLE
) {
1173 if ( !(flags
& CL_PAGEOUT
) && cluster_is_throttled(vp
)) {
1174 if (max_iosize
> THROTTLE_MAX_IOSIZE
)
1175 max_iosize
= THROTTLE_MAX_IOSIZE
;
1176 async_throttle
= THROTTLE_MAXCNT
;
1178 if ( (flags
& CL_DEV_MEMORY
) )
1179 async_throttle
= IO_SCALE(vp
, VNODE_ASYNC_THROTTLE
);
1182 u_int max_cluster_size
;
1185 if (vp
->v_mount
->mnt_minsaturationbytecount
) {
1186 max_cluster_size
= vp
->v_mount
->mnt_minsaturationbytecount
;
1190 max_cluster_size
= MAX_CLUSTER_SIZE(vp
);
1192 if ((vp
->v_mount
->mnt_kern_flag
& MNTK_SSD
) && !ignore_is_ssd
)
1193 scale
= WRITE_THROTTLE_SSD
;
1195 scale
= WRITE_THROTTLE
;
1197 if (max_iosize
> max_cluster_size
)
1198 max_cluster
= max_cluster_size
;
1200 max_cluster
= max_iosize
;
1202 if (size
< max_cluster
)
1205 if (flags
& CL_CLOSE
)
1206 scale
+= MAX_CLUSTERS
;
1208 async_throttle
= min(IO_SCALE(vp
, VNODE_ASYNC_THROTTLE
), ((scale
* max_cluster_size
) / max_cluster
) - 1);
1214 if (flags
& (CL_PAGEIN
| CL_PAGEOUT
))
1215 io_flags
|= B_PAGEIO
;
1216 if (flags
& (CL_IOSTREAMING
))
1217 io_flags
|= B_IOSTREAMING
;
1218 if (flags
& CL_COMMIT
)
1219 io_flags
|= B_COMMIT_UPL
;
1220 if (flags
& CL_DIRECT_IO
)
1222 if (flags
& (CL_PRESERVE
| CL_KEEPCACHED
))
1223 io_flags
|= B_CACHE
;
1224 if (flags
& CL_PASSIVE
)
1225 io_flags
|= B_PASSIVE
;
1226 if (flags
& CL_ENCRYPTED
)
1227 io_flags
|= B_ENCRYPTED_IO
;
1229 if (vp
->v_flag
& VSYSTEM
)
1232 if ((flags
& CL_READ
) && ((upl_offset
+ non_rounded_size
) & PAGE_MASK
) && (!(flags
& CL_NOZERO
))) {
1234 * then we are going to end up
1235 * with a page that we can't complete (the file size wasn't a multiple
1236 * of PAGE_SIZE and we're trying to read to the end of the file
1237 * so we'll go ahead and zero out the portion of the page we can't
1238 * read in from the file
1240 zero_offset
= upl_offset
+ non_rounded_size
;
1241 } else if (!ISSET(flags
, CL_READ
) && ISSET(flags
, CL_DIRECT_IO
)) {
1242 assert(ISSET(flags
, CL_COMMIT
));
1244 // For a direct/uncached write, we need to lock pages...
1249 * Create a UPL to lock the pages in the cache whilst the
1250 * write is in progress.
1252 ubc_create_upl(vp
, f_offset
, non_rounded_size
, &cached_upl
,
1253 NULL
, UPL_SET_LITE
);
1256 * Attach this UPL to the other UPL so that we can find it
1259 upl_set_associated_upl(upl
, cached_upl
);
1261 if (upl_offset
& PAGE_MASK
) {
1263 * The two UPLs are not aligned, so mark the first page in
1264 * @upl so that cluster_handle_associated_upl can handle
1267 upl_page_info_t
*pl
= UPL_GET_INTERNAL_PAGE_LIST(upl
);
1268 upl_page_set_mark(pl
, 0, true);
1275 u_int io_size_wanted
;
1278 if (size
> max_iosize
)
1279 io_size
= max_iosize
;
1283 io_size_wanted
= io_size
;
1284 io_size_tmp
= (size_t)io_size
;
1286 if ((error
= VNOP_BLOCKMAP(vp
, f_offset
, io_size
, &blkno
, &io_size_tmp
, NULL
, bmap_flags
, NULL
)))
1289 if (io_size_tmp
> io_size_wanted
)
1290 io_size
= io_size_wanted
;
1292 io_size
= (u_int
)io_size_tmp
;
1294 if (real_bp
&& (real_bp
->b_blkno
== real_bp
->b_lblkno
))
1295 real_bp
->b_blkno
= blkno
;
1297 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 24)) | DBG_FUNC_NONE
,
1298 (int)f_offset
, (int)(blkno
>>32), (int)blkno
, io_size
, 0);
1302 * vnop_blockmap didn't return an error... however, it did
1303 * return an extent size of 0 which means we can't
1304 * make forward progress on this I/O... a hole in the
1305 * file would be returned as a blkno of -1 with a non-zero io_size
1306 * a real extent is returned with a blkno != -1 and a non-zero io_size
1311 if ( !(flags
& CL_READ
) && blkno
== -1) {
1315 if (upl_get_internal_vectorupl(upl
))
1316 panic("Vector UPLs should not take this code-path\n");
1318 * we're writing into a 'hole'
1320 if (flags
& CL_PAGEOUT
) {
1322 * if we got here via cluster_pageout
1323 * then just error the request and return
1324 * the 'hole' should already have been covered
1330 * we can get here if the cluster code happens to
1331 * pick up a page that was dirtied via mmap vs
1332 * a 'write' and the page targets a 'hole'...
1333 * i.e. the writes to the cluster were sparse
1334 * and the file was being written for the first time
1336 * we can also get here if the filesystem supports
1337 * 'holes' that are less than PAGE_SIZE.... because
1338 * we can't know if the range in the page that covers
1339 * the 'hole' has been dirtied via an mmap or not,
1340 * we have to assume the worst and try to push the
1341 * entire page to storage.
1343 * Try paging out the page individually before
1344 * giving up entirely and dumping it (the pageout
1345 * path will insure that the zero extent accounting
1346 * has been taken care of before we get back into cluster_io)
1348 * go direct to vnode_pageout so that we don't have to
1349 * unbusy the page from the UPL... we used to do this
1350 * so that we could call ubc_msync, but that results
1351 * in a potential deadlock if someone else races us to acquire
1352 * that page and wins and in addition needs one of the pages
1353 * we're continuing to hold in the UPL
1355 pageout_flags
= UPL_MSYNC
| UPL_VNODE_PAGER
| UPL_NESTED_PAGEOUT
;
1357 if ( !(flags
& CL_ASYNC
))
1358 pageout_flags
|= UPL_IOSYNC
;
1359 if ( !(flags
& CL_COMMIT
))
1360 pageout_flags
|= UPL_NOCOMMIT
;
1364 int bytes_in_last_page
;
1367 * first we have to wait for the the current outstanding I/Os
1368 * to complete... EOT hasn't been set yet on this transaction
1369 * so the pages won't be released
1371 cluster_wait_IO(cbp_head
, (flags
& CL_ASYNC
));
1373 bytes_in_last_page
= cbp_head
->b_uploffset
& PAGE_MASK
;
1374 for (cbp
= cbp_head
; cbp
; cbp
= cbp
->b_trans_next
)
1375 bytes_in_last_page
+= cbp
->b_bcount
;
1376 bytes_in_last_page
&= PAGE_MASK
;
1378 while (bytes_in_last_page
) {
1380 * we've got a transcation that
1381 * includes the page we're about to push out through vnode_pageout...
1382 * find the bp's in the list which intersect this page and either
1383 * remove them entirely from the transaction (there could be multiple bp's), or
1384 * round it's iosize down to the page boundary (there can only be one)...
1386 * find the last bp in the list and act on it
1388 for (prev_cbp
= cbp
= cbp_head
; cbp
->b_trans_next
; cbp
= cbp
->b_trans_next
)
1391 if (bytes_in_last_page
>= cbp
->b_bcount
) {
1393 * this buf no longer has any I/O associated with it
1395 bytes_in_last_page
-= cbp
->b_bcount
;
1400 if (cbp
== cbp_head
) {
1401 assert(bytes_in_last_page
== 0);
1403 * the buf we just freed was the only buf in
1404 * this transaction... so there's no I/O to do
1410 * remove the buf we just freed from
1411 * the transaction list
1413 prev_cbp
->b_trans_next
= NULL
;
1414 cbp_tail
= prev_cbp
;
1418 * this is the last bp that has I/O
1419 * intersecting the page of interest
1420 * only some of the I/O is in the intersection
1421 * so clip the size but keep it in the transaction list
1423 cbp
->b_bcount
-= bytes_in_last_page
;
1425 bytes_in_last_page
= 0;
1430 * there was more to the current transaction
1431 * than just the page we are pushing out via vnode_pageout...
1432 * mark it as finished and complete it... we've already
1433 * waited for the I/Os to complete above in the call to cluster_wait_IO
1435 cluster_EOT(cbp_head
, cbp_tail
, 0);
1437 cluster_complete_transaction(&cbp_head
, callback_arg
, &retval
, flags
, 0);
1442 if (vnode_pageout(vp
, upl
, trunc_page(upl_offset
), trunc_page_64(f_offset
), PAGE_SIZE
, pageout_flags
, NULL
) != PAGER_SUCCESS
) {
1445 e_offset
= round_page_64(f_offset
+ 1);
1446 io_size
= e_offset
- f_offset
;
1448 f_offset
+= io_size
;
1449 upl_offset
+= io_size
;
1451 if (size
>= io_size
)
1456 * keep track of how much of the original request
1457 * that we've actually completed... non_rounded_size
1458 * may go negative due to us rounding the request
1459 * to a page size multiple (i.e. size > non_rounded_size)
1461 non_rounded_size
-= io_size
;
1463 if (non_rounded_size
<= 0) {
1465 * we've transferred all of the data in the original
1466 * request, but we were unable to complete the tail
1467 * of the last page because the file didn't have
1468 * an allocation to back that portion... this is ok.
1474 flags
&= ~CL_COMMIT
;
1479 lblkno
= (daddr64_t
)(f_offset
/ 0x1000);
1481 * we have now figured out how much I/O we can do - this is in 'io_size'
1482 * pg_offset is the starting point in the first page for the I/O
1483 * pg_count is the number of full and partial pages that 'io_size' encompasses
1485 pg_offset
= upl_offset
& PAGE_MASK
;
1487 if (flags
& CL_DEV_MEMORY
) {
1489 * treat physical requests as one 'giant' page
1493 pg_count
= (io_size
+ pg_offset
+ (PAGE_SIZE
- 1)) / PAGE_SIZE
;
1495 if ((flags
& CL_READ
) && blkno
== -1) {
1496 vm_offset_t commit_offset
;
1498 int complete_transaction_now
= 0;
1501 * if we're reading and blkno == -1, then we've got a
1502 * 'hole' in the file that we need to deal with by zeroing
1503 * out the affected area in the upl
1505 if (io_size
>= (u_int
)non_rounded_size
) {
1507 * if this upl contains the EOF and it is not a multiple of PAGE_SIZE
1508 * than 'zero_offset' will be non-zero
1509 * if the 'hole' returned by vnop_blockmap extends all the way to the eof
1510 * (indicated by the io_size finishing off the I/O request for this UPL)
1511 * than we're not going to issue an I/O for the
1512 * last page in this upl... we need to zero both the hole and the tail
1513 * of the page beyond the EOF, since the delayed zero-fill won't kick in
1515 bytes_to_zero
= non_rounded_size
;
1516 if (!(flags
& CL_NOZERO
))
1517 bytes_to_zero
= (((upl_offset
+ io_size
) + (PAGE_SIZE
- 1)) & ~PAGE_MASK
) - upl_offset
;
1521 bytes_to_zero
= io_size
;
1525 cluster_zero(upl
, upl_offset
, bytes_to_zero
, real_bp
);
1531 * if there is a current I/O chain pending
1532 * then the first page of the group we just zero'd
1533 * will be handled by the I/O completion if the zero
1534 * fill started in the middle of the page
1536 commit_offset
= (upl_offset
+ (PAGE_SIZE
- 1)) & ~PAGE_MASK
;
1538 pg_resid
= commit_offset
- upl_offset
;
1540 if (bytes_to_zero
>= pg_resid
) {
1542 * the last page of the current I/O
1543 * has been completed...
1544 * compute the number of fully zero'd
1545 * pages that are beyond it
1546 * plus the last page if its partial
1547 * and we have no more I/O to issue...
1548 * otherwise a partial page is left
1549 * to begin the next I/O
1551 if ((int)io_size
>= non_rounded_size
)
1552 pg_count
= (bytes_to_zero
- pg_resid
+ (PAGE_SIZE
- 1)) / PAGE_SIZE
;
1554 pg_count
= (bytes_to_zero
- pg_resid
) / PAGE_SIZE
;
1556 complete_transaction_now
= 1;
1560 * no pending I/O to deal with
1561 * so, commit all of the fully zero'd pages
1562 * plus the last page if its partial
1563 * and we have no more I/O to issue...
1564 * otherwise a partial page is left
1565 * to begin the next I/O
1567 if ((int)io_size
>= non_rounded_size
)
1568 pg_count
= (pg_offset
+ bytes_to_zero
+ (PAGE_SIZE
- 1)) / PAGE_SIZE
;
1570 pg_count
= (pg_offset
+ bytes_to_zero
) / PAGE_SIZE
;
1572 commit_offset
= upl_offset
& ~PAGE_MASK
;
1575 // Associated UPL is currently only used in the direct write path
1576 assert(!upl_associated_upl(upl
));
1578 if ( (flags
& CL_COMMIT
) && pg_count
) {
1579 ubc_upl_commit_range(upl
, commit_offset
, pg_count
* PAGE_SIZE
,
1580 UPL_COMMIT_CLEAR_DIRTY
| UPL_COMMIT_FREE_ON_EMPTY
);
1582 upl_offset
+= io_size
;
1583 f_offset
+= io_size
;
1587 * keep track of how much of the original request
1588 * that we've actually completed... non_rounded_size
1589 * may go negative due to us rounding the request
1590 * to a page size multiple (i.e. size > non_rounded_size)
1592 non_rounded_size
-= io_size
;
1594 if (non_rounded_size
<= 0) {
1596 * we've transferred all of the data in the original
1597 * request, but we were unable to complete the tail
1598 * of the last page because the file didn't have
1599 * an allocation to back that portion... this is ok.
1603 if (cbp_head
&& (complete_transaction_now
|| size
== 0)) {
1604 cluster_wait_IO(cbp_head
, (flags
& CL_ASYNC
));
1606 cluster_EOT(cbp_head
, cbp_tail
, size
== 0 ? zero_offset
: 0);
1608 cluster_complete_transaction(&cbp_head
, callback_arg
, &retval
, flags
, 0);
1614 if (pg_count
> max_vectors
) {
1615 if (((pg_count
- max_vectors
) * PAGE_SIZE
) > io_size
) {
1616 io_size
= PAGE_SIZE
- pg_offset
;
1619 io_size
-= (pg_count
- max_vectors
) * PAGE_SIZE
;
1620 pg_count
= max_vectors
;
1624 * If the transaction is going to reach the maximum number of
1625 * desired elements, truncate the i/o to the nearest page so
1626 * that the actual i/o is initiated after this buffer is
1627 * created and added to the i/o chain.
1629 * I/O directed to physically contiguous memory
1630 * doesn't have a requirement to make sure we 'fill' a page
1632 if ( !(flags
& CL_DEV_MEMORY
) && trans_count
>= max_trans_count
&&
1633 ((upl_offset
+ io_size
) & PAGE_MASK
)) {
1634 vm_offset_t aligned_ofs
;
1636 aligned_ofs
= (upl_offset
+ io_size
) & ~PAGE_MASK
;
1638 * If the io_size does not actually finish off even a
1639 * single page we have to keep adding buffers to the
1640 * transaction despite having reached the desired limit.
1642 * Eventually we get here with the page being finished
1643 * off (and exceeded) and then we truncate the size of
1644 * this i/o request so that it is page aligned so that
1645 * we can finally issue the i/o on the transaction.
1647 if (aligned_ofs
> upl_offset
) {
1648 io_size
= aligned_ofs
- upl_offset
;
1653 if ( !(mp
->mnt_kern_flag
& MNTK_VIRTUALDEV
))
1655 * if we're not targeting a virtual device i.e. a disk image
1656 * it's safe to dip into the reserve pool since real devices
1657 * can complete this I/O request without requiring additional
1658 * bufs from the alloc_io_buf pool
1661 else if ((flags
& CL_ASYNC
) && !(flags
& CL_PAGEOUT
))
1663 * Throttle the speculative IO
1669 cbp
= alloc_io_buf(vp
, priv
);
1671 if (flags
& CL_PAGEOUT
) {
1675 * since blocks are in offsets of 0x1000, scale
1676 * iteration to (PAGE_SIZE * pg_count) of blks.
1678 for (i
= 0; i
< (PAGE_SIZE
* pg_count
)/0x1000; i
++) {
1679 if (buf_invalblkno(vp
, lblkno
+ i
, 0) == EBUSY
)
1680 panic("BUSY bp found in cluster_io");
1683 if (flags
& CL_ASYNC
) {
1684 if (buf_setcallback(cbp
, (void *)cluster_iodone
, callback_arg
))
1685 panic("buf_setcallback failed\n");
1687 cbp
->b_cliodone
= (void *)callback
;
1688 cbp
->b_flags
|= io_flags
;
1689 if (flags
& CL_NOCACHE
)
1690 cbp
->b_attr
.ba_flags
|= BA_NOCACHE
;
1692 cbp
->b_lblkno
= lblkno
;
1693 cbp
->b_blkno
= blkno
;
1694 cbp
->b_bcount
= io_size
;
1696 if (buf_setupl(cbp
, upl
, upl_offset
))
1697 panic("buf_setupl failed\n");
1699 upl_set_blkno(upl
, upl_offset
, io_size
, blkno
);
1701 cbp
->b_trans_next
= (buf_t
)NULL
;
1703 if ((cbp
->b_iostate
= (void *)iostate
))
1705 * caller wants to track the state of this
1706 * io... bump the amount issued against this stream
1708 iostate
->io_issued
+= io_size
;
1710 if (flags
& CL_READ
) {
1711 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 26)) | DBG_FUNC_NONE
,
1712 (int)cbp
->b_lblkno
, (int)cbp
->b_blkno
, upl_offset
, io_size
, 0);
1715 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 27)) | DBG_FUNC_NONE
,
1716 (int)cbp
->b_lblkno
, (int)cbp
->b_blkno
, upl_offset
, io_size
, 0);
1720 cbp_tail
->b_trans_next
= cbp
;
1726 if ( (cbp_head
->b_real_bp
= real_bp
) )
1727 real_bp
= (buf_t
)NULL
;
1729 *(buf_t
*)(&cbp
->b_trans_head
) = cbp_head
;
1733 upl_offset
+= io_size
;
1734 f_offset
+= io_size
;
1737 * keep track of how much of the original request
1738 * that we've actually completed... non_rounded_size
1739 * may go negative due to us rounding the request
1740 * to a page size multiple (i.e. size > non_rounded_size)
1742 non_rounded_size
-= io_size
;
1744 if (non_rounded_size
<= 0) {
1746 * we've transferred all of the data in the original
1747 * request, but we were unable to complete the tail
1748 * of the last page because the file didn't have
1749 * an allocation to back that portion... this is ok.
1755 * we have no more I/O to issue, so go
1756 * finish the final transaction
1759 } else if ( ((flags
& CL_DEV_MEMORY
) || (upl_offset
& PAGE_MASK
) == 0) &&
1760 ((flags
& CL_ASYNC
) || trans_count
> max_trans_count
) ) {
1762 * I/O directed to physically contiguous memory...
1763 * which doesn't have a requirement to make sure we 'fill' a page
1765 * the current I/O we've prepared fully
1766 * completes the last page in this request
1768 * it's either an ASYNC request or
1769 * we've already accumulated more than 8 I/O's into
1770 * this transaction so mark it as complete so that
1771 * it can finish asynchronously or via the cluster_complete_transaction
1772 * below if the request is synchronous
1776 if (need_EOT
== TRUE
)
1777 cluster_EOT(cbp_head
, cbp_tail
, size
== 0 ? zero_offset
: 0);
1779 if (flags
& CL_THROTTLE
)
1780 (void)vnode_waitforwrites(vp
, async_throttle
, 0, 0, "cluster_io");
1782 if ( !(io_flags
& B_READ
))
1783 vnode_startwrite(vp
);
1785 if (flags
& CL_RAW_ENCRYPTED
) {
1787 * User requested raw encrypted bytes.
1788 * Twiddle the bit in the ba_flags for the buffer
1790 cbp
->b_attr
.ba_flags
|= BA_RAW_ENCRYPTED_IO
;
1793 (void) VNOP_STRATEGY(cbp
);
1795 if (need_EOT
== TRUE
) {
1796 if ( !(flags
& CL_ASYNC
))
1797 cluster_complete_transaction(&cbp_head
, callback_arg
, &retval
, flags
, 1);
1811 * Wait until all of the outstanding I/O
1812 * for this partial transaction has completed
1814 cluster_wait_IO(cbp_head
, (flags
& CL_ASYNC
));
1817 * Rewind the upl offset to the beginning of the
1820 upl_offset
= cbp_head
->b_uploffset
;
1823 if (ISSET(flags
, CL_COMMIT
)) {
1824 cluster_handle_associated_upl(iostate
, upl
, upl_offset
,
1825 upl_end_offset
- upl_offset
);
1828 // Free all the IO buffers in this transaction
1829 for (cbp
= cbp_head
; cbp
;) {
1832 size
+= cbp
->b_bcount
;
1833 io_size
+= cbp
->b_bcount
;
1835 cbp_next
= cbp
->b_trans_next
;
1841 int need_wakeup
= 0;
1844 * update the error condition for this stream
1845 * since we never really issued the io
1846 * just go ahead and adjust it back
1848 lck_mtx_lock_spin(&iostate
->io_mtxp
);
1850 if (iostate
->io_error
== 0)
1851 iostate
->io_error
= error
;
1852 iostate
->io_issued
-= io_size
;
1854 if (iostate
->io_wanted
) {
1856 * someone is waiting for the state of
1857 * this io stream to change
1859 iostate
->io_wanted
= 0;
1862 lck_mtx_unlock(&iostate
->io_mtxp
);
1865 wakeup((caddr_t
)&iostate
->io_wanted
);
1868 if (flags
& CL_COMMIT
) {
1871 pg_offset
= upl_offset
& PAGE_MASK
;
1872 abort_size
= (upl_end_offset
- upl_offset
+ PAGE_MASK
) & ~PAGE_MASK
;
1874 upl_flags
= cluster_ioerror(upl
, upl_offset
- pg_offset
, abort_size
, error
, io_flags
, vp
);
1876 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 28)) | DBG_FUNC_NONE
,
1877 upl
, upl_offset
- pg_offset
, abort_size
, (error
<< 24) | upl_flags
, 0);
1881 } else if (cbp_head
)
1882 panic("%s(): cbp_head is not NULL.\n", __FUNCTION__
);
1886 * can get here if we either encountered an error
1887 * or we completely zero-filled the request and
1891 real_bp
->b_flags
|= B_ERROR
;
1892 real_bp
->b_error
= error
;
1894 buf_biodone(real_bp
);
1896 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 22)) | DBG_FUNC_END
, (int)f_offset
, size
, upl_offset
, retval
, 0);
1901 #define reset_vector_run_state() \
1902 issueVectorUPL = vector_upl_offset = vector_upl_index = vector_upl_iosize = vector_upl_size = 0;
1905 vector_cluster_io(vnode_t vp
, upl_t vector_upl
, vm_offset_t vector_upl_offset
, off_t v_upl_uio_offset
, int vector_upl_iosize
,
1906 int io_flag
, buf_t real_bp
, struct clios
*iostate
, int (*callback
)(buf_t
, void *), void *callback_arg
)
1908 vector_upl_set_pagelist(vector_upl
);
1910 if(io_flag
& CL_READ
) {
1911 if(vector_upl_offset
== 0 && ((vector_upl_iosize
& PAGE_MASK
)==0))
1912 io_flag
&= ~CL_PRESERVE
; /*don't zero fill*/
1914 io_flag
|= CL_PRESERVE
; /*zero fill*/
1916 return (cluster_io(vp
, vector_upl
, vector_upl_offset
, v_upl_uio_offset
, vector_upl_iosize
, io_flag
, real_bp
, iostate
, callback
, callback_arg
));
1921 cluster_read_prefetch(vnode_t vp
, off_t f_offset
, u_int size
, off_t filesize
, int (*callback
)(buf_t
, void *), void *callback_arg
, int bflag
)
1923 int pages_in_prefetch
;
1925 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 49)) | DBG_FUNC_START
,
1926 (int)f_offset
, size
, (int)filesize
, 0, 0);
1928 if (f_offset
>= filesize
) {
1929 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 49)) | DBG_FUNC_END
,
1930 (int)f_offset
, 0, 0, 0, 0);
1933 if ((off_t
)size
> (filesize
- f_offset
))
1934 size
= filesize
- f_offset
;
1935 pages_in_prefetch
= (size
+ (PAGE_SIZE
- 1)) / PAGE_SIZE
;
1937 advisory_read_ext(vp
, filesize
, f_offset
, size
, callback
, callback_arg
, bflag
);
1939 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 49)) | DBG_FUNC_END
,
1940 (int)f_offset
+ size
, pages_in_prefetch
, 0, 1, 0);
1942 return (pages_in_prefetch
);
1948 cluster_read_ahead(vnode_t vp
, struct cl_extent
*extent
, off_t filesize
, struct cl_readahead
*rap
, int (*callback
)(buf_t
, void *), void *callback_arg
,
1953 int size_of_prefetch
;
1957 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 48)) | DBG_FUNC_START
,
1958 (int)extent
->b_addr
, (int)extent
->e_addr
, (int)rap
->cl_lastr
, 0, 0);
1960 if (extent
->b_addr
== rap
->cl_lastr
&& extent
->b_addr
== extent
->e_addr
) {
1961 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 48)) | DBG_FUNC_END
,
1962 rap
->cl_ralen
, (int)rap
->cl_maxra
, (int)rap
->cl_lastr
, 0, 0);
1965 if (rap
->cl_lastr
== -1 || (extent
->b_addr
!= rap
->cl_lastr
&& extent
->b_addr
!= (rap
->cl_lastr
+ 1))) {
1969 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 48)) | DBG_FUNC_END
,
1970 rap
->cl_ralen
, (int)rap
->cl_maxra
, (int)rap
->cl_lastr
, 1, 0);
1974 max_prefetch
= MAX_PREFETCH(vp
, cluster_max_io_size(vp
->v_mount
, CL_READ
), (vp
->v_mount
->mnt_kern_flag
& MNTK_SSD
));
1976 if (max_prefetch
> speculative_prefetch_max
)
1977 max_prefetch
= speculative_prefetch_max
;
1979 if (max_prefetch
<= PAGE_SIZE
) {
1980 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 48)) | DBG_FUNC_END
,
1981 rap
->cl_ralen
, (int)rap
->cl_maxra
, (int)rap
->cl_lastr
, 6, 0);
1984 if (extent
->e_addr
< rap
->cl_maxra
&& rap
->cl_ralen
>= 4) {
1985 if ((rap
->cl_maxra
- extent
->e_addr
) > (rap
->cl_ralen
/ 4)) {
1987 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 48)) | DBG_FUNC_END
,
1988 rap
->cl_ralen
, (int)rap
->cl_maxra
, (int)rap
->cl_lastr
, 2, 0);
1992 r_addr
= max(extent
->e_addr
, rap
->cl_maxra
) + 1;
1993 f_offset
= (off_t
)(r_addr
* PAGE_SIZE_64
);
1995 size_of_prefetch
= 0;
1997 ubc_range_op(vp
, f_offset
, f_offset
+ PAGE_SIZE_64
, UPL_ROP_PRESENT
, &size_of_prefetch
);
1999 if (size_of_prefetch
) {
2000 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 48)) | DBG_FUNC_END
,
2001 rap
->cl_ralen
, (int)rap
->cl_maxra
, (int)rap
->cl_lastr
, 3, 0);
2004 if (f_offset
< filesize
) {
2005 daddr64_t read_size
;
2007 rap
->cl_ralen
= rap
->cl_ralen
? min(max_prefetch
/ PAGE_SIZE
, rap
->cl_ralen
<< 1) : 1;
2009 read_size
= (extent
->e_addr
+ 1) - extent
->b_addr
;
2011 if (read_size
> rap
->cl_ralen
) {
2012 if (read_size
> max_prefetch
/ PAGE_SIZE
)
2013 rap
->cl_ralen
= max_prefetch
/ PAGE_SIZE
;
2015 rap
->cl_ralen
= read_size
;
2017 size_of_prefetch
= cluster_read_prefetch(vp
, f_offset
, rap
->cl_ralen
* PAGE_SIZE
, filesize
, callback
, callback_arg
, bflag
);
2019 if (size_of_prefetch
)
2020 rap
->cl_maxra
= (r_addr
+ size_of_prefetch
) - 1;
2022 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 48)) | DBG_FUNC_END
,
2023 rap
->cl_ralen
, (int)rap
->cl_maxra
, (int)rap
->cl_lastr
, 4, 0);
2028 cluster_pageout(vnode_t vp
, upl_t upl
, upl_offset_t upl_offset
, off_t f_offset
,
2029 int size
, off_t filesize
, int flags
)
2031 return cluster_pageout_ext(vp
, upl
, upl_offset
, f_offset
, size
, filesize
, flags
, NULL
, NULL
);
2037 cluster_pageout_ext(vnode_t vp
, upl_t upl
, upl_offset_t upl_offset
, off_t f_offset
,
2038 int size
, off_t filesize
, int flags
, int (*callback
)(buf_t
, void *), void *callback_arg
)
2045 local_flags
= CL_PAGEOUT
| CL_THROTTLE
;
2047 if ((flags
& UPL_IOSYNC
) == 0)
2048 local_flags
|= CL_ASYNC
;
2049 if ((flags
& UPL_NOCOMMIT
) == 0)
2050 local_flags
|= CL_COMMIT
;
2051 if ((flags
& UPL_KEEPCACHED
))
2052 local_flags
|= CL_KEEPCACHED
;
2053 if (flags
& UPL_PAGING_ENCRYPTED
)
2054 local_flags
|= CL_ENCRYPTED
;
2057 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 52)) | DBG_FUNC_NONE
,
2058 (int)f_offset
, size
, (int)filesize
, local_flags
, 0);
2061 * If they didn't specify any I/O, then we are done...
2062 * we can't issue an abort because we don't know how
2063 * big the upl really is
2068 if (vp
->v_mount
->mnt_flag
& MNT_RDONLY
) {
2069 if (local_flags
& CL_COMMIT
)
2070 ubc_upl_abort_range(upl
, upl_offset
, size
, UPL_ABORT_FREE_ON_EMPTY
);
2074 * can't page-in from a negative offset
2075 * or if we're starting beyond the EOF
2076 * or if the file offset isn't page aligned
2077 * or the size requested isn't a multiple of PAGE_SIZE
2079 if (f_offset
< 0 || f_offset
>= filesize
||
2080 (f_offset
& PAGE_MASK_64
) || (size
& PAGE_MASK
)) {
2081 if (local_flags
& CL_COMMIT
)
2082 ubc_upl_abort_range(upl
, upl_offset
, size
, UPL_ABORT_FREE_ON_EMPTY
);
2085 max_size
= filesize
- f_offset
;
2087 if (size
< max_size
)
2092 rounded_size
= (io_size
+ (PAGE_SIZE
- 1)) & ~PAGE_MASK
;
2094 if (size
> rounded_size
) {
2095 if (local_flags
& CL_COMMIT
)
2096 ubc_upl_abort_range(upl
, upl_offset
+ rounded_size
, size
- rounded_size
,
2097 UPL_ABORT_FREE_ON_EMPTY
);
2099 return (cluster_io(vp
, upl
, upl_offset
, f_offset
, io_size
,
2100 local_flags
, (buf_t
)NULL
, (struct clios
*)NULL
, callback
, callback_arg
));
2105 cluster_pagein(vnode_t vp
, upl_t upl
, upl_offset_t upl_offset
, off_t f_offset
,
2106 int size
, off_t filesize
, int flags
)
2108 return cluster_pagein_ext(vp
, upl
, upl_offset
, f_offset
, size
, filesize
, flags
, NULL
, NULL
);
2113 cluster_pagein_ext(vnode_t vp
, upl_t upl
, upl_offset_t upl_offset
, off_t f_offset
,
2114 int size
, off_t filesize
, int flags
, int (*callback
)(buf_t
, void *), void *callback_arg
)
2120 int local_flags
= 0;
2122 if (upl
== NULL
|| size
< 0)
2123 panic("cluster_pagein: NULL upl passed in");
2125 if ((flags
& UPL_IOSYNC
) == 0)
2126 local_flags
|= CL_ASYNC
;
2127 if ((flags
& UPL_NOCOMMIT
) == 0)
2128 local_flags
|= CL_COMMIT
;
2129 if (flags
& UPL_IOSTREAMING
)
2130 local_flags
|= CL_IOSTREAMING
;
2131 if (flags
& UPL_PAGING_ENCRYPTED
)
2132 local_flags
|= CL_ENCRYPTED
;
2135 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 56)) | DBG_FUNC_NONE
,
2136 (int)f_offset
, size
, (int)filesize
, local_flags
, 0);
2139 * can't page-in from a negative offset
2140 * or if we're starting beyond the EOF
2141 * or if the file offset isn't page aligned
2142 * or the size requested isn't a multiple of PAGE_SIZE
2144 if (f_offset
< 0 || f_offset
>= filesize
||
2145 (f_offset
& PAGE_MASK_64
) || (size
& PAGE_MASK
) || (upl_offset
& PAGE_MASK
)) {
2146 if (local_flags
& CL_COMMIT
)
2147 ubc_upl_abort_range(upl
, upl_offset
, size
, UPL_ABORT_FREE_ON_EMPTY
| UPL_ABORT_ERROR
);
2150 max_size
= filesize
- f_offset
;
2152 if (size
< max_size
)
2157 rounded_size
= (io_size
+ (PAGE_SIZE
- 1)) & ~PAGE_MASK
;
2159 if (size
> rounded_size
&& (local_flags
& CL_COMMIT
))
2160 ubc_upl_abort_range(upl
, upl_offset
+ rounded_size
,
2161 size
- rounded_size
, UPL_ABORT_FREE_ON_EMPTY
| UPL_ABORT_ERROR
);
2163 retval
= cluster_io(vp
, upl
, upl_offset
, f_offset
, io_size
,
2164 local_flags
| CL_READ
| CL_PAGEIN
, (buf_t
)NULL
, (struct clios
*)NULL
, callback
, callback_arg
);
2171 cluster_bp(buf_t bp
)
2173 return cluster_bp_ext(bp
, NULL
, NULL
);
2178 cluster_bp_ext(buf_t bp
, int (*callback
)(buf_t
, void *), void *callback_arg
)
2183 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 19)) | DBG_FUNC_START
,
2184 bp
, (int)bp
->b_lblkno
, bp
->b_bcount
, bp
->b_flags
, 0);
2186 if (bp
->b_flags
& B_READ
)
2187 flags
= CL_ASYNC
| CL_READ
;
2190 if (bp
->b_flags
& B_PASSIVE
)
2191 flags
|= CL_PASSIVE
;
2193 f_offset
= ubc_blktooff(bp
->b_vp
, bp
->b_lblkno
);
2195 return (cluster_io(bp
->b_vp
, bp
->b_upl
, 0, f_offset
, bp
->b_bcount
, flags
, bp
, (struct clios
*)NULL
, callback
, callback_arg
));
2201 cluster_write(vnode_t vp
, struct uio
*uio
, off_t oldEOF
, off_t newEOF
, off_t headOff
, off_t tailOff
, int xflags
)
2203 return cluster_write_ext(vp
, uio
, oldEOF
, newEOF
, headOff
, tailOff
, xflags
, NULL
, NULL
);
2208 cluster_write_ext(vnode_t vp
, struct uio
*uio
, off_t oldEOF
, off_t newEOF
, off_t headOff
, off_t tailOff
,
2209 int xflags
, int (*callback
)(buf_t
, void *), void *callback_arg
)
2211 user_ssize_t cur_resid
;
2216 int write_type
= IO_COPY
;
2217 u_int32_t write_length
;
2221 if (flags
& IO_PASSIVE
)
2226 if (vp
->v_flag
& VNOCACHE_DATA
){
2227 flags
|= IO_NOCACHE
;
2228 bflag
|= CL_NOCACHE
;
2233 * this call is being made to zero-fill some range in the file
2235 retval
= cluster_write_copy(vp
, NULL
, (u_int32_t
)0, oldEOF
, newEOF
, headOff
, tailOff
, flags
, callback
, callback_arg
);
2240 * do a write through the cache if one of the following is true....
2241 * NOCACHE is not true or NODIRECT is true
2242 * the uio request doesn't target USERSPACE
2243 * otherwise, find out if we want the direct or contig variant for
2244 * the first vector in the uio request
2246 if ( ((flags
& (IO_NOCACHE
| IO_NODIRECT
)) == IO_NOCACHE
) && UIO_SEG_IS_USER_SPACE(uio
->uio_segflg
) )
2247 retval
= cluster_io_type(uio
, &write_type
, &write_length
, MIN_DIRECT_WRITE_SIZE
);
2249 if ( (flags
& (IO_TAILZEROFILL
| IO_HEADZEROFILL
)) && write_type
== IO_DIRECT
)
2251 * must go through the cached variant in this case
2253 write_type
= IO_COPY
;
2255 while ((cur_resid
= uio_resid(uio
)) && uio
->uio_offset
< newEOF
&& retval
== 0) {
2257 switch (write_type
) {
2261 * make sure the uio_resid isn't too big...
2262 * internally, we want to handle all of the I/O in
2263 * chunk sizes that fit in a 32 bit int
2265 if (cur_resid
> (user_ssize_t
)(MAX_IO_REQUEST_SIZE
)) {
2267 * we're going to have to call cluster_write_copy
2270 * only want the last call to cluster_write_copy to
2271 * have the IO_TAILZEROFILL flag set and only the
2272 * first call should have IO_HEADZEROFILL
2274 zflags
= flags
& ~IO_TAILZEROFILL
;
2275 flags
&= ~IO_HEADZEROFILL
;
2277 write_length
= MAX_IO_REQUEST_SIZE
;
2280 * last call to cluster_write_copy
2284 write_length
= (u_int32_t
)cur_resid
;
2286 retval
= cluster_write_copy(vp
, uio
, write_length
, oldEOF
, newEOF
, headOff
, tailOff
, zflags
, callback
, callback_arg
);
2290 zflags
= flags
& ~(IO_TAILZEROFILL
| IO_HEADZEROFILL
);
2292 if (flags
& IO_HEADZEROFILL
) {
2294 * only do this once per request
2296 flags
&= ~IO_HEADZEROFILL
;
2298 retval
= cluster_write_copy(vp
, (struct uio
*)0, (u_int32_t
)0, (off_t
)0, uio
->uio_offset
,
2299 headOff
, (off_t
)0, zflags
| IO_HEADZEROFILL
| IO_SYNC
, callback
, callback_arg
);
2303 retval
= cluster_write_contig(vp
, uio
, newEOF
, &write_type
, &write_length
, callback
, callback_arg
, bflag
);
2305 if (retval
== 0 && (flags
& IO_TAILZEROFILL
) && uio_resid(uio
) == 0) {
2307 * we're done with the data from the user specified buffer(s)
2308 * and we've been requested to zero fill at the tail
2309 * treat this as an IO_HEADZEROFILL which doesn't require a uio
2310 * by rearranging the args and passing in IO_HEADZEROFILL
2312 retval
= cluster_write_copy(vp
, (struct uio
*)0, (u_int32_t
)0, (off_t
)0, tailOff
, uio
->uio_offset
,
2313 (off_t
)0, zflags
| IO_HEADZEROFILL
| IO_SYNC
, callback
, callback_arg
);
2319 * cluster_write_direct is never called with IO_TAILZEROFILL || IO_HEADZEROFILL
2321 retval
= cluster_write_direct(vp
, uio
, oldEOF
, newEOF
, &write_type
, &write_length
, flags
, callback
, callback_arg
);
2325 retval
= cluster_io_type(uio
, &write_type
, &write_length
, MIN_DIRECT_WRITE_SIZE
);
2329 * in case we end up calling cluster_write_copy (from cluster_write_direct)
2330 * multiple times to service a multi-vector request that is not aligned properly
2331 * we need to update the oldEOF so that we
2332 * don't zero-fill the head of a page if we've successfully written
2333 * data to that area... 'cluster_write_copy' will zero-fill the head of a
2334 * page that is beyond the oldEOF if the write is unaligned... we only
2335 * want that to happen for the very first page of the cluster_write,
2336 * NOT the first page of each vector making up a multi-vector write.
2338 if (uio
->uio_offset
> oldEOF
)
2339 oldEOF
= uio
->uio_offset
;
2346 cluster_write_direct(vnode_t vp
, struct uio
*uio
, off_t oldEOF
, off_t newEOF
, int *write_type
, u_int32_t
*write_length
,
2347 int flags
, int (*callback
)(buf_t
, void *), void *callback_arg
)
2350 upl_page_info_t
*pl
;
2351 vm_offset_t upl_offset
;
2352 vm_offset_t vector_upl_offset
= 0;
2353 u_int32_t io_req_size
;
2354 u_int32_t offset_in_file
;
2355 u_int32_t offset_in_iovbase
;
2358 upl_size_t upl_size
, vector_upl_size
= 0;
2359 vm_size_t upl_needed_size
;
2360 mach_msg_type_number_t pages_in_pl
;
2361 upl_control_flags_t upl_flags
;
2363 mach_msg_type_number_t i
;
2364 int force_data_sync
;
2367 struct clios iostate
;
2368 user_addr_t iov_base
;
2369 u_int32_t mem_alignment_mask
;
2370 u_int32_t devblocksize
;
2371 u_int32_t max_io_size
;
2372 u_int32_t max_upl_size
;
2373 u_int32_t max_vector_size
;
2374 u_int32_t bytes_outstanding_limit
;
2375 boolean_t io_throttled
= FALSE
;
2377 u_int32_t vector_upl_iosize
= 0;
2378 int issueVectorUPL
= 0,useVectorUPL
= (uio
->uio_iovcnt
> 1);
2379 off_t v_upl_uio_offset
= 0;
2380 int vector_upl_index
=0;
2381 upl_t vector_upl
= NULL
;
2385 * When we enter this routine, we know
2386 * -- the resid will not exceed iov_len
2388 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 75)) | DBG_FUNC_START
,
2389 (int)uio
->uio_offset
, *write_length
, (int)newEOF
, 0, 0);
2391 max_upl_size
= cluster_max_io_size(vp
->v_mount
, CL_WRITE
);
2393 io_flag
= CL_ASYNC
| CL_PRESERVE
| CL_COMMIT
| CL_THROTTLE
| CL_DIRECT_IO
;
2395 if (flags
& IO_PASSIVE
)
2396 io_flag
|= CL_PASSIVE
;
2398 if (flags
& IO_NOCACHE
)
2399 io_flag
|= CL_NOCACHE
;
2401 if (flags
& IO_SKIP_ENCRYPTION
)
2402 io_flag
|= CL_ENCRYPTED
;
2404 iostate
.io_completed
= 0;
2405 iostate
.io_issued
= 0;
2406 iostate
.io_error
= 0;
2407 iostate
.io_wanted
= 0;
2409 lck_mtx_init(&iostate
.io_mtxp
, cl_mtx_grp
, cl_mtx_attr
);
2411 mem_alignment_mask
= (u_int32_t
)vp
->v_mount
->mnt_alignmentmask
;
2412 devblocksize
= (u_int32_t
)vp
->v_mount
->mnt_devblocksize
;
2414 if (devblocksize
== 1) {
2416 * the AFP client advertises a devblocksize of 1
2417 * however, its BLOCKMAP routine maps to physical
2418 * blocks that are PAGE_SIZE in size...
2419 * therefore we can't ask for I/Os that aren't page aligned
2420 * or aren't multiples of PAGE_SIZE in size
2421 * by setting devblocksize to PAGE_SIZE, we re-instate
2422 * the old behavior we had before the mem_alignment_mask
2423 * changes went in...
2425 devblocksize
= PAGE_SIZE
;
2429 io_req_size
= *write_length
;
2430 iov_base
= uio_curriovbase(uio
);
2432 offset_in_file
= (u_int32_t
)uio
->uio_offset
& PAGE_MASK
;
2433 offset_in_iovbase
= (u_int32_t
)iov_base
& mem_alignment_mask
;
2435 if (offset_in_file
|| offset_in_iovbase
) {
2437 * one of the 2 important offsets is misaligned
2438 * so fire an I/O through the cache for this entire vector
2440 goto wait_for_dwrites
;
2442 if (iov_base
& (devblocksize
- 1)) {
2444 * the offset in memory must be on a device block boundary
2445 * so that we can guarantee that we can generate an
2446 * I/O that ends on a page boundary in cluster_io
2448 goto wait_for_dwrites
;
2451 task_update_logical_writes(current_task(), (io_req_size
& ~PAGE_MASK
), TASK_WRITE_IMMEDIATE
, vp
);
2452 while (io_req_size
>= PAGE_SIZE
&& uio
->uio_offset
< newEOF
&& retval
== 0) {
2455 if ( (throttle_type
= cluster_is_throttled(vp
)) ) {
2457 * we're in the throttle window, at the very least
2458 * we want to limit the size of the I/O we're about
2461 if ( (flags
& IO_RETURN_ON_THROTTLE
) && throttle_type
== THROTTLE_NOW
) {
2463 * we're in the throttle window and at least 1 I/O
2464 * has already been issued by a throttleable thread
2465 * in this window, so return with EAGAIN to indicate
2466 * to the FS issuing the cluster_write call that it
2467 * should now throttle after dropping any locks
2469 throttle_info_update_by_mount(vp
->v_mount
);
2471 io_throttled
= TRUE
;
2472 goto wait_for_dwrites
;
2474 max_vector_size
= THROTTLE_MAX_IOSIZE
;
2475 max_io_size
= THROTTLE_MAX_IOSIZE
;
2477 max_vector_size
= MAX_VECTOR_UPL_SIZE
;
2478 max_io_size
= max_upl_size
;
2482 cluster_syncup(vp
, newEOF
, callback
, callback_arg
, callback
? PUSH_SYNC
: 0);
2485 io_size
= io_req_size
& ~PAGE_MASK
;
2486 iov_base
= uio_curriovbase(uio
);
2488 if (io_size
> max_io_size
)
2489 io_size
= max_io_size
;
2491 if(useVectorUPL
&& (iov_base
& PAGE_MASK
)) {
2493 * We have an iov_base that's not page-aligned.
2494 * Issue all I/O's that have been collected within
2495 * this Vectored UPL.
2497 if(vector_upl_index
) {
2498 retval
= vector_cluster_io(vp
, vector_upl
, vector_upl_offset
, v_upl_uio_offset
, vector_upl_iosize
, io_flag
, (buf_t
)NULL
, &iostate
, callback
, callback_arg
);
2499 reset_vector_run_state();
2503 * After this point, if we are using the Vector UPL path and the base is
2504 * not page-aligned then the UPL with that base will be the first in the vector UPL.
2508 upl_offset
= (vm_offset_t
)((u_int32_t
)iov_base
& PAGE_MASK
);
2509 upl_needed_size
= (upl_offset
+ io_size
+ (PAGE_SIZE
-1)) & ~PAGE_MASK
;
2511 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 76)) | DBG_FUNC_START
,
2512 (int)upl_offset
, upl_needed_size
, (int)iov_base
, io_size
, 0);
2514 vm_map_t map
= UIO_SEG_IS_USER_SPACE(uio
->uio_segflg
) ? current_map() : kernel_map
;
2515 for (force_data_sync
= 0; force_data_sync
< 3; force_data_sync
++) {
2517 upl_size
= upl_needed_size
;
2518 upl_flags
= UPL_FILE_IO
| UPL_COPYOUT_FROM
| UPL_NO_SYNC
|
2519 UPL_CLEAN_IN_PLACE
| UPL_SET_INTERNAL
| UPL_SET_LITE
| UPL_SET_IO_WIRE
2520 | UPL_MEMORY_TAG_MAKE(VM_KERN_MEMORY_FILE
);
2522 kret
= vm_map_get_upl(map
,
2523 (vm_map_offset_t
)(iov_base
& ~((user_addr_t
)PAGE_MASK
)),
2531 if (kret
!= KERN_SUCCESS
) {
2532 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 76)) | DBG_FUNC_END
,
2535 * failed to get pagelist
2537 * we may have already spun some portion of this request
2538 * off as async requests... we need to wait for the I/O
2539 * to complete before returning
2541 goto wait_for_dwrites
;
2543 pl
= UPL_GET_INTERNAL_PAGE_LIST(upl
);
2544 pages_in_pl
= upl_size
/ PAGE_SIZE
;
2546 for (i
= 0; i
< pages_in_pl
; i
++) {
2547 if (!upl_valid_page(pl
, i
))
2550 if (i
== pages_in_pl
)
2554 * didn't get all the pages back that we
2555 * needed... release this upl and try again
2557 ubc_upl_abort(upl
, 0);
2559 if (force_data_sync
>= 3) {
2560 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 76)) | DBG_FUNC_END
,
2561 i
, pages_in_pl
, upl_size
, kret
, 0);
2563 * for some reason, we couldn't acquire a hold on all
2564 * the pages needed in the user's address space
2566 * we may have already spun some portion of this request
2567 * off as async requests... we need to wait for the I/O
2568 * to complete before returning
2570 goto wait_for_dwrites
;
2574 * Consider the possibility that upl_size wasn't satisfied.
2576 if (upl_size
< upl_needed_size
) {
2577 if (upl_size
&& upl_offset
== 0)
2582 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 76)) | DBG_FUNC_END
,
2583 (int)upl_offset
, upl_size
, (int)iov_base
, io_size
, 0);
2586 ubc_upl_abort(upl
, 0);
2588 * we may have already spun some portion of this request
2589 * off as async requests... we need to wait for the I/O
2590 * to complete before returning
2592 goto wait_for_dwrites
;
2596 vm_offset_t end_off
= ((iov_base
+ io_size
) & PAGE_MASK
);
2600 * After this point, if we are using a vector UPL, then
2601 * either all the UPL elements end on a page boundary OR
2602 * this UPL is the last element because it does not end
2603 * on a page boundary.
2608 * we want push out these writes asynchronously so that we can overlap
2609 * the preparation of the next I/O
2610 * if there are already too many outstanding writes
2611 * wait until some complete before issuing the next
2613 if (vp
->v_mount
->mnt_minsaturationbytecount
)
2614 bytes_outstanding_limit
= vp
->v_mount
->mnt_minsaturationbytecount
;
2616 bytes_outstanding_limit
= max_upl_size
* IO_SCALE(vp
, 2);
2618 cluster_iostate_wait(&iostate
, bytes_outstanding_limit
, "cluster_write_direct");
2620 if (iostate
.io_error
) {
2622 * one of the earlier writes we issued ran into a hard error
2623 * don't issue any more writes, cleanup the UPL
2624 * that was just created but not used, then
2625 * go wait for all writes that are part of this stream
2626 * to complete before returning the error to the caller
2628 ubc_upl_abort(upl
, 0);
2630 goto wait_for_dwrites
;
2633 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 77)) | DBG_FUNC_START
,
2634 (int)upl_offset
, (int)uio
->uio_offset
, io_size
, io_flag
, 0);
2637 retval
= cluster_io(vp
, upl
, upl_offset
, uio
->uio_offset
,
2638 io_size
, io_flag
, (buf_t
)NULL
, &iostate
, callback
, callback_arg
);
2641 if(!vector_upl_index
) {
2642 vector_upl
= vector_upl_create(upl_offset
);
2643 v_upl_uio_offset
= uio
->uio_offset
;
2644 vector_upl_offset
= upl_offset
;
2647 vector_upl_set_subupl(vector_upl
,upl
,upl_size
);
2648 vector_upl_set_iostate(vector_upl
, upl
, vector_upl_size
, upl_size
);
2650 vector_upl_iosize
+= io_size
;
2651 vector_upl_size
+= upl_size
;
2653 if(issueVectorUPL
|| vector_upl_index
== MAX_VECTOR_UPL_ELEMENTS
|| vector_upl_size
>= max_vector_size
) {
2654 retval
= vector_cluster_io(vp
, vector_upl
, vector_upl_offset
, v_upl_uio_offset
, vector_upl_iosize
, io_flag
, (buf_t
)NULL
, &iostate
, callback
, callback_arg
);
2655 reset_vector_run_state();
2660 * update the uio structure to
2661 * reflect the I/O that we just issued
2663 uio_update(uio
, (user_size_t
)io_size
);
2666 * in case we end up calling through to cluster_write_copy to finish
2667 * the tail of this request, we need to update the oldEOF so that we
2668 * don't zero-fill the head of a page if we've successfully written
2669 * data to that area... 'cluster_write_copy' will zero-fill the head of a
2670 * page that is beyond the oldEOF if the write is unaligned... we only
2671 * want that to happen for the very first page of the cluster_write,
2672 * NOT the first page of each vector making up a multi-vector write.
2674 if (uio
->uio_offset
> oldEOF
)
2675 oldEOF
= uio
->uio_offset
;
2677 io_req_size
-= io_size
;
2679 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 77)) | DBG_FUNC_END
,
2680 (int)upl_offset
, (int)uio
->uio_offset
, io_req_size
, retval
, 0);
2684 if (retval
== 0 && iostate
.io_error
== 0 && io_req_size
== 0) {
2686 retval
= cluster_io_type(uio
, write_type
, write_length
, MIN_DIRECT_WRITE_SIZE
);
2688 if (retval
== 0 && *write_type
== IO_DIRECT
) {
2690 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 75)) | DBG_FUNC_NONE
,
2691 (int)uio
->uio_offset
, *write_length
, (int)newEOF
, 0, 0);
2699 if (retval
== 0 && iostate
.io_error
== 0 && useVectorUPL
&& vector_upl_index
) {
2700 retval
= vector_cluster_io(vp
, vector_upl
, vector_upl_offset
, v_upl_uio_offset
, vector_upl_iosize
, io_flag
, (buf_t
)NULL
, &iostate
, callback
, callback_arg
);
2701 reset_vector_run_state();
2704 * make sure all async writes issued as part of this stream
2705 * have completed before we return
2707 cluster_iostate_wait(&iostate
, 0, "cluster_write_direct");
2709 if (iostate
.io_error
)
2710 retval
= iostate
.io_error
;
2712 lck_mtx_destroy(&iostate
.io_mtxp
, cl_mtx_grp
);
2714 if (io_throttled
== TRUE
&& retval
== 0)
2717 if (io_req_size
&& retval
== 0) {
2719 * we couldn't handle the tail of this request in DIRECT mode
2720 * so fire it through the copy path
2722 * note that flags will never have IO_HEADZEROFILL or IO_TAILZEROFILL set
2723 * so we can just pass 0 in for the headOff and tailOff
2725 if (uio
->uio_offset
> oldEOF
)
2726 oldEOF
= uio
->uio_offset
;
2728 retval
= cluster_write_copy(vp
, uio
, io_req_size
, oldEOF
, newEOF
, (off_t
)0, (off_t
)0, flags
, callback
, callback_arg
);
2730 *write_type
= IO_UNKNOWN
;
2732 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 75)) | DBG_FUNC_END
,
2733 (int)uio
->uio_offset
, io_req_size
, retval
, 4, 0);
2740 cluster_write_contig(vnode_t vp
, struct uio
*uio
, off_t newEOF
, int *write_type
, u_int32_t
*write_length
,
2741 int (*callback
)(buf_t
, void *), void *callback_arg
, int bflag
)
2743 upl_page_info_t
*pl
;
2744 addr64_t src_paddr
= 0;
2745 upl_t upl
[MAX_VECTS
];
2746 vm_offset_t upl_offset
;
2747 u_int32_t tail_size
= 0;
2750 upl_size_t upl_size
;
2751 vm_size_t upl_needed_size
;
2752 mach_msg_type_number_t pages_in_pl
;
2753 upl_control_flags_t upl_flags
;
2755 struct clios iostate
;
2760 user_addr_t iov_base
;
2761 u_int32_t devblocksize
;
2762 u_int32_t mem_alignment_mask
;
2765 * When we enter this routine, we know
2766 * -- the io_req_size will not exceed iov_len
2767 * -- the target address is physically contiguous
2769 cluster_syncup(vp
, newEOF
, callback
, callback_arg
, callback
? PUSH_SYNC
: 0);
2771 devblocksize
= (u_int32_t
)vp
->v_mount
->mnt_devblocksize
;
2772 mem_alignment_mask
= (u_int32_t
)vp
->v_mount
->mnt_alignmentmask
;
2774 iostate
.io_completed
= 0;
2775 iostate
.io_issued
= 0;
2776 iostate
.io_error
= 0;
2777 iostate
.io_wanted
= 0;
2779 lck_mtx_init(&iostate
.io_mtxp
, cl_mtx_grp
, cl_mtx_attr
);
2782 io_size
= *write_length
;
2784 iov_base
= uio_curriovbase(uio
);
2786 upl_offset
= (vm_offset_t
)((u_int32_t
)iov_base
& PAGE_MASK
);
2787 upl_needed_size
= upl_offset
+ io_size
;
2790 upl_size
= upl_needed_size
;
2791 upl_flags
= UPL_FILE_IO
| UPL_COPYOUT_FROM
| UPL_NO_SYNC
|
2792 UPL_CLEAN_IN_PLACE
| UPL_SET_INTERNAL
| UPL_SET_LITE
| UPL_SET_IO_WIRE
2793 | UPL_MEMORY_TAG_MAKE(VM_KERN_MEMORY_FILE
);
2795 vm_map_t map
= UIO_SEG_IS_USER_SPACE(uio
->uio_segflg
) ? current_map() : kernel_map
;
2796 kret
= vm_map_get_upl(map
,
2797 (vm_map_offset_t
)(iov_base
& ~((user_addr_t
)PAGE_MASK
)),
2798 &upl_size
, &upl
[cur_upl
], NULL
, &pages_in_pl
, &upl_flags
, 0);
2800 if (kret
!= KERN_SUCCESS
) {
2802 * failed to get pagelist
2805 goto wait_for_cwrites
;
2810 * Consider the possibility that upl_size wasn't satisfied.
2812 if (upl_size
< upl_needed_size
) {
2814 * This is a failure in the physical memory case.
2817 goto wait_for_cwrites
;
2819 pl
= ubc_upl_pageinfo(upl
[cur_upl
]);
2821 src_paddr
= ((addr64_t
)upl_phys_page(pl
, 0) << PAGE_SHIFT
) + (addr64_t
)upl_offset
;
2823 while (((uio
->uio_offset
& (devblocksize
- 1)) || io_size
< devblocksize
) && io_size
) {
2824 u_int32_t head_size
;
2826 head_size
= devblocksize
- (u_int32_t
)(uio
->uio_offset
& (devblocksize
- 1));
2828 if (head_size
> io_size
)
2829 head_size
= io_size
;
2831 error
= cluster_align_phys_io(vp
, uio
, src_paddr
, head_size
, 0, callback
, callback_arg
);
2834 goto wait_for_cwrites
;
2836 upl_offset
+= head_size
;
2837 src_paddr
+= head_size
;
2838 io_size
-= head_size
;
2840 iov_base
+= head_size
;
2842 if ((u_int32_t
)iov_base
& mem_alignment_mask
) {
2844 * request doesn't set up on a memory boundary
2845 * the underlying DMA engine can handle...
2846 * return an error instead of going through
2847 * the slow copy path since the intent of this
2848 * path is direct I/O from device memory
2851 goto wait_for_cwrites
;
2854 tail_size
= io_size
& (devblocksize
- 1);
2855 io_size
-= tail_size
;
2857 while (io_size
&& error
== 0) {
2859 if (io_size
> MAX_IO_CONTIG_SIZE
)
2860 xsize
= MAX_IO_CONTIG_SIZE
;
2864 * request asynchronously so that we can overlap
2865 * the preparation of the next I/O... we'll do
2866 * the commit after all the I/O has completed
2867 * since its all issued against the same UPL
2868 * if there are already too many outstanding writes
2869 * wait until some have completed before issuing the next
2871 cluster_iostate_wait(&iostate
, MAX_IO_CONTIG_SIZE
* IO_SCALE(vp
, 2), "cluster_write_contig");
2873 if (iostate
.io_error
) {
2875 * one of the earlier writes we issued ran into a hard error
2876 * don't issue any more writes...
2877 * go wait for all writes that are part of this stream
2878 * to complete before returning the error to the caller
2880 goto wait_for_cwrites
;
2883 * issue an asynchronous write to cluster_io
2885 error
= cluster_io(vp
, upl
[cur_upl
], upl_offset
, uio
->uio_offset
,
2886 xsize
, CL_DEV_MEMORY
| CL_ASYNC
| bflag
, (buf_t
)NULL
, (struct clios
*)&iostate
, callback
, callback_arg
);
2890 * The cluster_io write completed successfully,
2891 * update the uio structure
2893 uio_update(uio
, (user_size_t
)xsize
);
2895 upl_offset
+= xsize
;
2900 if (error
== 0 && iostate
.io_error
== 0 && tail_size
== 0 && num_upl
< MAX_VECTS
) {
2902 error
= cluster_io_type(uio
, write_type
, write_length
, 0);
2904 if (error
== 0 && *write_type
== IO_CONTIG
) {
2909 *write_type
= IO_UNKNOWN
;
2913 * make sure all async writes that are part of this stream
2914 * have completed before we proceed
2916 cluster_iostate_wait(&iostate
, 0, "cluster_write_contig");
2918 if (iostate
.io_error
)
2919 error
= iostate
.io_error
;
2921 lck_mtx_destroy(&iostate
.io_mtxp
, cl_mtx_grp
);
2923 if (error
== 0 && tail_size
)
2924 error
= cluster_align_phys_io(vp
, uio
, src_paddr
, tail_size
, 0, callback
, callback_arg
);
2926 for (n
= 0; n
< num_upl
; n
++)
2928 * just release our hold on each physically contiguous
2929 * region without changing any state
2931 ubc_upl_abort(upl
[n
], 0);
2938 * need to avoid a race between an msync of a range of pages dirtied via mmap
2939 * vs a filesystem such as HFS deciding to write a 'hole' to disk via cluster_write's
2940 * zerofill mechanism before it has seen the VNOP_PAGEOUTs for the pages being msync'd
2942 * we should never force-zero-fill pages that are already valid in the cache...
2943 * the entire page contains valid data (either from disk, zero-filled or dirtied
2944 * via an mmap) so we can only do damage by trying to zero-fill
2948 cluster_zero_range(upl_t upl
, upl_page_info_t
*pl
, int flags
, int io_offset
, off_t zero_off
, off_t upl_f_offset
, int bytes_to_zero
)
2951 boolean_t need_cluster_zero
= TRUE
;
2953 if ((flags
& (IO_NOZEROVALID
| IO_NOZERODIRTY
))) {
2955 bytes_to_zero
= min(bytes_to_zero
, PAGE_SIZE
- (int)(zero_off
& PAGE_MASK_64
));
2956 zero_pg_index
= (int)((zero_off
- upl_f_offset
) / PAGE_SIZE_64
);
2958 if (upl_valid_page(pl
, zero_pg_index
)) {
2960 * never force zero valid pages - dirty or clean
2961 * we'll leave these in the UPL for cluster_write_copy to deal with
2963 need_cluster_zero
= FALSE
;
2966 if (need_cluster_zero
== TRUE
)
2967 cluster_zero(upl
, io_offset
, bytes_to_zero
, NULL
);
2969 return (bytes_to_zero
);
2974 cluster_write_copy(vnode_t vp
, struct uio
*uio
, u_int32_t io_req_size
, off_t oldEOF
, off_t newEOF
, off_t headOff
,
2975 off_t tailOff
, int flags
, int (*callback
)(buf_t
, void *), void *callback_arg
)
2977 upl_page_info_t
*pl
;
2979 vm_offset_t upl_offset
= 0;
2992 long long total_size
;
2995 long long zero_cnt1
;
2997 off_t write_off
= 0;
2999 boolean_t first_pass
= FALSE
;
3000 struct cl_extent cl
;
3001 struct cl_writebehind
*wbp
;
3003 u_int max_cluster_pgcount
;
3007 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 40)) | DBG_FUNC_START
,
3008 (int)uio
->uio_offset
, io_req_size
, (int)oldEOF
, (int)newEOF
, 0);
3010 io_resid
= io_req_size
;
3012 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 40)) | DBG_FUNC_START
,
3013 0, 0, (int)oldEOF
, (int)newEOF
, 0);
3017 if (flags
& IO_PASSIVE
)
3021 if (flags
& IO_NOCACHE
)
3022 bflag
|= CL_NOCACHE
;
3024 if (flags
& IO_SKIP_ENCRYPTION
)
3025 bflag
|= CL_ENCRYPTED
;
3032 max_cluster_pgcount
= MAX_CLUSTER_SIZE(vp
) / PAGE_SIZE
;
3033 max_io_size
= cluster_max_io_size(vp
->v_mount
, CL_WRITE
);
3035 if (flags
& IO_HEADZEROFILL
) {
3037 * some filesystems (HFS is one) don't support unallocated holes within a file...
3038 * so we zero fill the intervening space between the old EOF and the offset
3039 * where the next chunk of real data begins.... ftruncate will also use this
3040 * routine to zero fill to the new EOF when growing a file... in this case, the
3041 * uio structure will not be provided
3044 if (headOff
< uio
->uio_offset
) {
3045 zero_cnt
= uio
->uio_offset
- headOff
;
3048 } else if (headOff
< newEOF
) {
3049 zero_cnt
= newEOF
- headOff
;
3053 if (uio
&& uio
->uio_offset
> oldEOF
) {
3054 zero_off
= uio
->uio_offset
& ~PAGE_MASK_64
;
3056 if (zero_off
>= oldEOF
) {
3057 zero_cnt
= uio
->uio_offset
- zero_off
;
3059 flags
|= IO_HEADZEROFILL
;
3063 if (flags
& IO_TAILZEROFILL
) {
3065 zero_off1
= uio
->uio_offset
+ io_req_size
;
3067 if (zero_off1
< tailOff
)
3068 zero_cnt1
= tailOff
- zero_off1
;
3071 if (uio
&& newEOF
> oldEOF
) {
3072 zero_off1
= uio
->uio_offset
+ io_req_size
;
3074 if (zero_off1
== newEOF
&& (zero_off1
& PAGE_MASK_64
)) {
3075 zero_cnt1
= PAGE_SIZE_64
- (zero_off1
& PAGE_MASK_64
);
3077 flags
|= IO_TAILZEROFILL
;
3081 if (zero_cnt
== 0 && uio
== (struct uio
*) 0) {
3082 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 40)) | DBG_FUNC_END
,
3083 retval
, 0, 0, 0, 0);
3087 write_off
= uio
->uio_offset
;
3088 write_cnt
= uio_resid(uio
);
3090 * delay updating the sequential write info
3091 * in the control block until we've obtained
3096 while ((total_size
= (io_resid
+ zero_cnt
+ zero_cnt1
)) && retval
== 0) {
3098 * for this iteration of the loop, figure out where our starting point is
3101 start_offset
= (int)(zero_off
& PAGE_MASK_64
);
3102 upl_f_offset
= zero_off
- start_offset
;
3103 } else if (io_resid
) {
3104 start_offset
= (int)(uio
->uio_offset
& PAGE_MASK_64
);
3105 upl_f_offset
= uio
->uio_offset
- start_offset
;
3107 start_offset
= (int)(zero_off1
& PAGE_MASK_64
);
3108 upl_f_offset
= zero_off1
- start_offset
;
3110 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 46)) | DBG_FUNC_NONE
,
3111 (int)zero_off
, (int)zero_cnt
, (int)zero_off1
, (int)zero_cnt1
, 0);
3113 if (total_size
> max_io_size
)
3114 total_size
= max_io_size
;
3116 cl
.b_addr
= (daddr64_t
)(upl_f_offset
/ PAGE_SIZE_64
);
3118 if (uio
&& ((flags
& (IO_SYNC
| IO_HEADZEROFILL
| IO_TAILZEROFILL
)) == 0)) {
3120 * assumption... total_size <= io_resid
3121 * because IO_HEADZEROFILL and IO_TAILZEROFILL not set
3123 if ((start_offset
+ total_size
) > max_io_size
)
3124 total_size
= max_io_size
- start_offset
;
3125 xfer_resid
= total_size
;
3127 retval
= cluster_copy_ubc_data_internal(vp
, uio
, &xfer_resid
, 1, 1);
3132 io_resid
-= (total_size
- xfer_resid
);
3133 total_size
= xfer_resid
;
3134 start_offset
= (int)(uio
->uio_offset
& PAGE_MASK_64
);
3135 upl_f_offset
= uio
->uio_offset
- start_offset
;
3137 if (total_size
== 0) {
3140 * the write did not finish on a page boundary
3141 * which will leave upl_f_offset pointing to the
3142 * beginning of the last page written instead of
3143 * the page beyond it... bump it in this case
3144 * so that the cluster code records the last page
3147 upl_f_offset
+= PAGE_SIZE_64
;
3155 * compute the size of the upl needed to encompass
3156 * the requested write... limit each call to cluster_io
3157 * to the maximum UPL size... cluster_io will clip if
3158 * this exceeds the maximum io_size for the device,
3159 * make sure to account for
3160 * a starting offset that's not page aligned
3162 upl_size
= (start_offset
+ total_size
+ (PAGE_SIZE
- 1)) & ~PAGE_MASK
;
3164 if (upl_size
> max_io_size
)
3165 upl_size
= max_io_size
;
3167 pages_in_upl
= upl_size
/ PAGE_SIZE
;
3168 io_size
= upl_size
- start_offset
;
3170 if ((long long)io_size
> total_size
)
3171 io_size
= total_size
;
3173 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 41)) | DBG_FUNC_START
, upl_size
, io_size
, total_size
, 0, 0);
3177 * Gather the pages from the buffer cache.
3178 * The UPL_WILL_MODIFY flag lets the UPL subsystem know
3179 * that we intend to modify these pages.
3181 kret
= ubc_create_upl(vp
,
3186 UPL_SET_LITE
| (( uio
!=NULL
&& (uio
->uio_flags
& UIO_FLAGS_IS_COMPRESSED_FILE
)) ? 0 : UPL_WILL_MODIFY
));
3187 if (kret
!= KERN_SUCCESS
)
3188 panic("cluster_write_copy: failed to get pagelist");
3190 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 41)) | DBG_FUNC_END
,
3191 upl
, (int)upl_f_offset
, start_offset
, 0, 0);
3193 if (start_offset
&& upl_f_offset
< oldEOF
&& !upl_valid_page(pl
, 0)) {
3197 * we're starting in the middle of the first page of the upl
3198 * and the page isn't currently valid, so we're going to have
3199 * to read it in first... this is a synchronous operation
3201 read_size
= PAGE_SIZE
;
3203 if ((upl_f_offset
+ read_size
) > oldEOF
)
3204 read_size
= oldEOF
- upl_f_offset
;
3206 retval
= cluster_io(vp
, upl
, 0, upl_f_offset
, read_size
,
3207 CL_READ
| bflag
, (buf_t
)NULL
, (struct clios
*)NULL
, callback
, callback_arg
);
3210 * we had an error during the read which causes us to abort
3211 * the current cluster_write request... before we do, we need
3212 * to release the rest of the pages in the upl without modifying
3213 * there state and mark the failed page in error
3215 ubc_upl_abort_range(upl
, 0, PAGE_SIZE
, UPL_ABORT_DUMP_PAGES
|UPL_ABORT_FREE_ON_EMPTY
);
3217 if (upl_size
> PAGE_SIZE
)
3218 ubc_upl_abort_range(upl
, 0, upl_size
, UPL_ABORT_FREE_ON_EMPTY
);
3220 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 45)) | DBG_FUNC_NONE
,
3221 upl
, 0, 0, retval
, 0);
3225 if ((start_offset
== 0 || upl_size
> PAGE_SIZE
) && ((start_offset
+ io_size
) & PAGE_MASK
)) {
3227 * the last offset we're writing to in this upl does not end on a page
3228 * boundary... if it's not beyond the old EOF, then we'll also need to
3229 * pre-read this page in if it isn't already valid
3231 upl_offset
= upl_size
- PAGE_SIZE
;
3233 if ((upl_f_offset
+ start_offset
+ io_size
) < oldEOF
&&
3234 !upl_valid_page(pl
, upl_offset
/ PAGE_SIZE
)) {
3237 read_size
= PAGE_SIZE
;
3239 if ((off_t
)(upl_f_offset
+ upl_offset
+ read_size
) > oldEOF
)
3240 read_size
= oldEOF
- (upl_f_offset
+ upl_offset
);
3242 retval
= cluster_io(vp
, upl
, upl_offset
, upl_f_offset
+ upl_offset
, read_size
,
3243 CL_READ
| bflag
, (buf_t
)NULL
, (struct clios
*)NULL
, callback
, callback_arg
);
3246 * we had an error during the read which causes us to abort
3247 * the current cluster_write request... before we do, we
3248 * need to release the rest of the pages in the upl without
3249 * modifying there state and mark the failed page in error
3251 ubc_upl_abort_range(upl
, upl_offset
, PAGE_SIZE
, UPL_ABORT_DUMP_PAGES
|UPL_ABORT_FREE_ON_EMPTY
);
3253 if (upl_size
> PAGE_SIZE
)
3254 ubc_upl_abort_range(upl
, 0, upl_size
, UPL_ABORT_FREE_ON_EMPTY
);
3256 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 45)) | DBG_FUNC_NONE
,
3257 upl
, 0, 0, retval
, 0);
3262 xfer_resid
= io_size
;
3263 io_offset
= start_offset
;
3265 while (zero_cnt
&& xfer_resid
) {
3267 if (zero_cnt
< (long long)xfer_resid
)
3268 bytes_to_zero
= zero_cnt
;
3270 bytes_to_zero
= xfer_resid
;
3272 bytes_to_zero
= cluster_zero_range(upl
, pl
, flags
, io_offset
, zero_off
, upl_f_offset
, bytes_to_zero
);
3274 xfer_resid
-= bytes_to_zero
;
3275 zero_cnt
-= bytes_to_zero
;
3276 zero_off
+= bytes_to_zero
;
3277 io_offset
+= bytes_to_zero
;
3279 if (xfer_resid
&& io_resid
) {
3280 u_int32_t io_requested
;
3282 bytes_to_move
= min(io_resid
, xfer_resid
);
3283 io_requested
= bytes_to_move
;
3285 retval
= cluster_copy_upl_data(uio
, upl
, io_offset
, (int *)&io_requested
);
3288 ubc_upl_abort_range(upl
, 0, upl_size
, UPL_ABORT_DUMP_PAGES
| UPL_ABORT_FREE_ON_EMPTY
);
3290 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 45)) | DBG_FUNC_NONE
,
3291 upl
, 0, 0, retval
, 0);
3293 io_resid
-= bytes_to_move
;
3294 xfer_resid
-= bytes_to_move
;
3295 io_offset
+= bytes_to_move
;
3298 while (xfer_resid
&& zero_cnt1
&& retval
== 0) {
3300 if (zero_cnt1
< (long long)xfer_resid
)
3301 bytes_to_zero
= zero_cnt1
;
3303 bytes_to_zero
= xfer_resid
;
3305 bytes_to_zero
= cluster_zero_range(upl
, pl
, flags
, io_offset
, zero_off1
, upl_f_offset
, bytes_to_zero
);
3307 xfer_resid
-= bytes_to_zero
;
3308 zero_cnt1
-= bytes_to_zero
;
3309 zero_off1
+= bytes_to_zero
;
3310 io_offset
+= bytes_to_zero
;
3314 int ret_cluster_try_push
;
3316 io_size
+= start_offset
;
3318 if ((upl_f_offset
+ io_size
) >= newEOF
&& (u_int
)io_size
< upl_size
) {
3320 * if we're extending the file with this write
3321 * we'll zero fill the rest of the page so that
3322 * if the file gets extended again in such a way as to leave a
3323 * hole starting at this EOF, we'll have zero's in the correct spot
3325 cluster_zero(upl
, io_size
, upl_size
- io_size
, NULL
);
3328 * release the upl now if we hold one since...
3329 * 1) pages in it may be present in the sparse cluster map
3330 * and may span 2 separate buckets there... if they do and
3331 * we happen to have to flush a bucket to make room and it intersects
3332 * this upl, a deadlock may result on page BUSY
3333 * 2) we're delaying the I/O... from this point forward we're just updating
3334 * the cluster state... no need to hold the pages, so commit them
3335 * 3) IO_SYNC is set...
3336 * because we had to ask for a UPL that provides currenty non-present pages, the
3337 * UPL has been automatically set to clear the dirty flags (both software and hardware)
3338 * upon committing it... this is not the behavior we want since it's possible for
3339 * pages currently present as part of a mapped file to be dirtied while the I/O is in flight.
3340 * we'll pick these pages back up later with the correct behavior specified.
3341 * 4) we don't want to hold pages busy in a UPL and then block on the cluster lock... if a flush
3342 * of this vnode is in progress, we will deadlock if the pages being flushed intersect the pages
3343 * we hold since the flushing context is holding the cluster lock.
3345 ubc_upl_commit_range(upl
, 0, upl_size
,
3346 UPL_COMMIT_SET_DIRTY
| UPL_COMMIT_INACTIVATE
| UPL_COMMIT_FREE_ON_EMPTY
);
3349 * calculate the last logical block number
3350 * that this delayed I/O encompassed
3352 cl
.e_addr
= (daddr64_t
)((upl_f_offset
+ (off_t
)upl_size
) / PAGE_SIZE_64
);
3354 if (flags
& IO_SYNC
) {
3356 * if the IO_SYNC flag is set than we need to
3357 * bypass any clusters and immediately issue
3363 * take the lock to protect our accesses
3364 * of the writebehind and sparse cluster state
3366 wbp
= cluster_get_wbp(vp
, CLW_ALLOCATE
| CLW_RETURNLOCKED
);
3368 if (wbp
->cl_scmap
) {
3370 if ( !(flags
& IO_NOCACHE
)) {
3372 * we've fallen into the sparse
3373 * cluster method of delaying dirty pages
3375 sparse_cluster_add(&(wbp
->cl_scmap
), vp
, &cl
, newEOF
, callback
, callback_arg
);
3377 lck_mtx_unlock(&wbp
->cl_lockw
);
3382 * must have done cached writes that fell into
3383 * the sparse cluster mechanism... we've switched
3384 * to uncached writes on the file, so go ahead
3385 * and push whatever's in the sparse map
3386 * and switch back to normal clustering
3390 sparse_cluster_push(&(wbp
->cl_scmap
), vp
, newEOF
, PUSH_ALL
, 0, callback
, callback_arg
);
3392 * no clusters of either type present at this point
3393 * so just go directly to start_new_cluster since
3394 * we know we need to delay this I/O since we've
3395 * already released the pages back into the cache
3396 * to avoid the deadlock with sparse_cluster_push
3398 goto start_new_cluster
;
3401 if (write_off
== wbp
->cl_last_write
)
3402 wbp
->cl_seq_written
+= write_cnt
;
3404 wbp
->cl_seq_written
= write_cnt
;
3406 wbp
->cl_last_write
= write_off
+ write_cnt
;
3410 if (wbp
->cl_number
== 0)
3412 * no clusters currently present
3414 goto start_new_cluster
;
3416 for (cl_index
= 0; cl_index
< wbp
->cl_number
; cl_index
++) {
3418 * check each cluster that we currently hold
3419 * try to merge some or all of this write into
3420 * one or more of the existing clusters... if
3421 * any portion of the write remains, start a
3424 if (cl
.b_addr
>= wbp
->cl_clusters
[cl_index
].b_addr
) {
3426 * the current write starts at or after the current cluster
3428 if (cl
.e_addr
<= (wbp
->cl_clusters
[cl_index
].b_addr
+ max_cluster_pgcount
)) {
3430 * we have a write that fits entirely
3431 * within the existing cluster limits
3433 if (cl
.e_addr
> wbp
->cl_clusters
[cl_index
].e_addr
)
3435 * update our idea of where the cluster ends
3437 wbp
->cl_clusters
[cl_index
].e_addr
= cl
.e_addr
;
3440 if (cl
.b_addr
< (wbp
->cl_clusters
[cl_index
].b_addr
+ max_cluster_pgcount
)) {
3442 * we have a write that starts in the middle of the current cluster
3443 * but extends beyond the cluster's limit... we know this because
3444 * of the previous checks
3445 * we'll extend the current cluster to the max
3446 * and update the b_addr for the current write to reflect that
3447 * the head of it was absorbed into this cluster...
3448 * note that we'll always have a leftover tail in this case since
3449 * full absorbtion would have occurred in the clause above
3451 wbp
->cl_clusters
[cl_index
].e_addr
= wbp
->cl_clusters
[cl_index
].b_addr
+ max_cluster_pgcount
;
3453 cl
.b_addr
= wbp
->cl_clusters
[cl_index
].e_addr
;
3456 * we come here for the case where the current write starts
3457 * beyond the limit of the existing cluster or we have a leftover
3458 * tail after a partial absorbtion
3460 * in either case, we'll check the remaining clusters before
3461 * starting a new one
3465 * the current write starts in front of the cluster we're currently considering
3467 if ((wbp
->cl_clusters
[cl_index
].e_addr
- cl
.b_addr
) <= max_cluster_pgcount
) {
3469 * we can just merge the new request into
3470 * this cluster and leave it in the cache
3471 * since the resulting cluster is still
3472 * less than the maximum allowable size
3474 wbp
->cl_clusters
[cl_index
].b_addr
= cl
.b_addr
;
3476 if (cl
.e_addr
> wbp
->cl_clusters
[cl_index
].e_addr
) {
3478 * the current write completely
3479 * envelops the existing cluster and since
3480 * each write is limited to at most max_cluster_pgcount pages
3481 * we can just use the start and last blocknos of the write
3482 * to generate the cluster limits
3484 wbp
->cl_clusters
[cl_index
].e_addr
= cl
.e_addr
;
3490 * if we were to combine this write with the current cluster
3491 * we would exceed the cluster size limit.... so,
3492 * let's see if there's any overlap of the new I/O with
3493 * the cluster we're currently considering... in fact, we'll
3494 * stretch the cluster out to it's full limit and see if we
3495 * get an intersection with the current write
3498 if (cl
.e_addr
> wbp
->cl_clusters
[cl_index
].e_addr
- max_cluster_pgcount
) {
3500 * the current write extends into the proposed cluster
3501 * clip the length of the current write after first combining it's
3502 * tail with the newly shaped cluster
3504 wbp
->cl_clusters
[cl_index
].b_addr
= wbp
->cl_clusters
[cl_index
].e_addr
- max_cluster_pgcount
;
3506 cl
.e_addr
= wbp
->cl_clusters
[cl_index
].b_addr
;
3509 * if we get here, there was no way to merge
3510 * any portion of this write with this cluster
3511 * or we could only merge part of it which
3512 * will leave a tail...
3513 * we'll check the remaining clusters before starting a new one
3517 if (cl_index
< wbp
->cl_number
)
3519 * we found an existing cluster(s) that we
3520 * could entirely merge this I/O into
3524 if (!((unsigned int)vfs_flags(vp
->v_mount
) & MNT_DEFWRITE
) &&
3525 wbp
->cl_number
== MAX_CLUSTERS
&&
3526 wbp
->cl_seq_written
>= (MAX_CLUSTERS
* (max_cluster_pgcount
* PAGE_SIZE
))) {
3529 if (vp
->v_mount
->mnt_minsaturationbytecount
) {
3530 n
= vp
->v_mount
->mnt_minsaturationbytecount
/ MAX_CLUSTER_SIZE(vp
);
3532 if (n
> MAX_CLUSTERS
)
3538 if (vp
->v_mount
->mnt_kern_flag
& MNTK_SSD
)
3539 n
= WRITE_BEHIND_SSD
;
3544 cluster_try_push(wbp
, vp
, newEOF
, 0, 0, callback
, callback_arg
, NULL
);
3546 if (wbp
->cl_number
< MAX_CLUSTERS
) {
3548 * we didn't find an existing cluster to
3549 * merge into, but there's room to start
3552 goto start_new_cluster
;
3555 * no exisitng cluster to merge with and no
3556 * room to start a new one... we'll try
3557 * pushing one of the existing ones... if none of
3558 * them are able to be pushed, we'll switch
3559 * to the sparse cluster mechanism
3560 * cluster_try_push updates cl_number to the
3561 * number of remaining clusters... and
3562 * returns the number of currently unused clusters
3564 ret_cluster_try_push
= 0;
3567 * if writes are not deferred, call cluster push immediately
3569 if (!((unsigned int)vfs_flags(vp
->v_mount
) & MNT_DEFWRITE
)) {
3571 ret_cluster_try_push
= cluster_try_push(wbp
, vp
, newEOF
, (flags
& IO_NOCACHE
) ? 0 : PUSH_DELAY
, 0, callback
, callback_arg
, NULL
);
3575 * execute following regardless of writes being deferred or not
3577 if (ret_cluster_try_push
== 0) {
3579 * no more room in the normal cluster mechanism
3580 * so let's switch to the more expansive but expensive
3581 * sparse mechanism....
3583 sparse_cluster_switch(wbp
, vp
, newEOF
, callback
, callback_arg
);
3584 sparse_cluster_add(&(wbp
->cl_scmap
), vp
, &cl
, newEOF
, callback
, callback_arg
);
3586 lck_mtx_unlock(&wbp
->cl_lockw
);
3591 wbp
->cl_clusters
[wbp
->cl_number
].b_addr
= cl
.b_addr
;
3592 wbp
->cl_clusters
[wbp
->cl_number
].e_addr
= cl
.e_addr
;
3594 wbp
->cl_clusters
[wbp
->cl_number
].io_flags
= 0;
3596 if (flags
& IO_NOCACHE
)
3597 wbp
->cl_clusters
[wbp
->cl_number
].io_flags
|= CLW_IONOCACHE
;
3599 if (bflag
& CL_PASSIVE
)
3600 wbp
->cl_clusters
[wbp
->cl_number
].io_flags
|= CLW_IOPASSIVE
;
3604 lck_mtx_unlock(&wbp
->cl_lockw
);
3609 * we don't hold the lock at this point
3611 * we've already dropped the current upl, so pick it back up with COPYOUT_FROM set
3612 * so that we correctly deal with a change in state of the hardware modify bit...
3613 * we do this via cluster_push_now... by passing along the IO_SYNC flag, we force
3614 * cluster_push_now to wait until all the I/Os have completed... cluster_push_now is also
3615 * responsible for generating the correct sized I/O(s)
3617 retval
= cluster_push_now(vp
, &cl
, newEOF
, flags
, callback
, callback_arg
);
3620 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 40)) | DBG_FUNC_END
, retval
, 0, io_resid
, 0, 0);
3628 cluster_read(vnode_t vp
, struct uio
*uio
, off_t filesize
, int xflags
)
3630 return cluster_read_ext(vp
, uio
, filesize
, xflags
, NULL
, NULL
);
3635 cluster_read_ext(vnode_t vp
, struct uio
*uio
, off_t filesize
, int xflags
, int (*callback
)(buf_t
, void *), void *callback_arg
)
3639 user_ssize_t cur_resid
;
3641 u_int32_t read_length
= 0;
3642 int read_type
= IO_COPY
;
3646 if (vp
->v_flag
& VNOCACHE_DATA
)
3647 flags
|= IO_NOCACHE
;
3648 if ((vp
->v_flag
& VRAOFF
) || speculative_reads_disabled
)
3651 if (flags
& IO_SKIP_ENCRYPTION
)
3652 flags
|= IO_ENCRYPTED
;
3655 * do a read through the cache if one of the following is true....
3656 * NOCACHE is not true
3657 * the uio request doesn't target USERSPACE
3658 * Alternatively, if IO_ENCRYPTED is set, then we want to bypass the cache as well.
3659 * Reading encrypted data from a CP filesystem should never result in the data touching
3662 * otherwise, find out if we want the direct or contig variant for
3663 * the first vector in the uio request
3665 if ( ((flags
& IO_NOCACHE
) && UIO_SEG_IS_USER_SPACE(uio
->uio_segflg
)) || (flags
& IO_ENCRYPTED
) ) {
3667 retval
= cluster_io_type(uio
, &read_type
, &read_length
, 0);
3670 while ((cur_resid
= uio_resid(uio
)) && uio
->uio_offset
< filesize
&& retval
== 0) {
3672 switch (read_type
) {
3676 * make sure the uio_resid isn't too big...
3677 * internally, we want to handle all of the I/O in
3678 * chunk sizes that fit in a 32 bit int
3680 if (cur_resid
> (user_ssize_t
)(MAX_IO_REQUEST_SIZE
))
3681 io_size
= MAX_IO_REQUEST_SIZE
;
3683 io_size
= (u_int32_t
)cur_resid
;
3685 retval
= cluster_read_copy(vp
, uio
, io_size
, filesize
, flags
, callback
, callback_arg
);
3689 retval
= cluster_read_direct(vp
, uio
, filesize
, &read_type
, &read_length
, flags
, callback
, callback_arg
);
3693 retval
= cluster_read_contig(vp
, uio
, filesize
, &read_type
, &read_length
, callback
, callback_arg
, flags
);
3697 retval
= cluster_io_type(uio
, &read_type
, &read_length
, 0);
3707 cluster_read_upl_release(upl_t upl
, int start_pg
, int last_pg
, int take_reference
)
3710 int abort_flags
= UPL_ABORT_FREE_ON_EMPTY
;
3712 if ((range
= last_pg
- start_pg
)) {
3714 abort_flags
|= UPL_ABORT_REFERENCE
;
3716 ubc_upl_abort_range(upl
, start_pg
* PAGE_SIZE
, range
* PAGE_SIZE
, abort_flags
);
3722 cluster_read_copy(vnode_t vp
, struct uio
*uio
, u_int32_t io_req_size
, off_t filesize
, int flags
, int (*callback
)(buf_t
, void *), void *callback_arg
)
3724 upl_page_info_t
*pl
;
3726 vm_offset_t upl_offset
;
3735 off_t last_ioread_offset
;
3736 off_t last_request_offset
;
3740 u_int32_t size_of_prefetch
;
3743 u_int32_t max_rd_size
;
3744 u_int32_t max_io_size
;
3745 u_int32_t max_prefetch
;
3746 u_int rd_ahead_enabled
= 1;
3747 u_int prefetch_enabled
= 1;
3748 struct cl_readahead
* rap
;
3749 struct clios iostate
;
3750 struct cl_extent extent
;
3752 int take_reference
= 1;
3753 int policy
= IOPOL_DEFAULT
;
3754 boolean_t iolock_inited
= FALSE
;
3756 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 32)) | DBG_FUNC_START
,
3757 (int)uio
->uio_offset
, io_req_size
, (int)filesize
, flags
, 0);
3759 if (flags
& IO_ENCRYPTED
) {
3760 panic ("encrypted blocks will hit UBC!");
3763 policy
= throttle_get_io_policy(NULL
);
3765 if (policy
== THROTTLE_LEVEL_TIER3
|| policy
== THROTTLE_LEVEL_TIER2
|| (flags
& IO_NOCACHE
))
3768 if (flags
& IO_PASSIVE
)
3773 if (flags
& IO_NOCACHE
)
3774 bflag
|= CL_NOCACHE
;
3776 if (flags
& IO_SKIP_ENCRYPTION
)
3777 bflag
|= CL_ENCRYPTED
;
3779 max_io_size
= cluster_max_io_size(vp
->v_mount
, CL_READ
);
3780 max_prefetch
= MAX_PREFETCH(vp
, max_io_size
, (vp
->v_mount
->mnt_kern_flag
& MNTK_SSD
));
3781 max_rd_size
= max_prefetch
;
3783 last_request_offset
= uio
->uio_offset
+ io_req_size
;
3785 if (last_request_offset
> filesize
)
3786 last_request_offset
= filesize
;
3788 if ((flags
& (IO_RAOFF
|IO_NOCACHE
)) || ((last_request_offset
& ~PAGE_MASK_64
) == (uio
->uio_offset
& ~PAGE_MASK_64
))) {
3789 rd_ahead_enabled
= 0;
3792 if (cluster_is_throttled(vp
)) {
3794 * we're in the throttle window, at the very least
3795 * we want to limit the size of the I/O we're about
3798 rd_ahead_enabled
= 0;
3799 prefetch_enabled
= 0;
3801 max_rd_size
= THROTTLE_MAX_IOSIZE
;
3803 if ((rap
= cluster_get_rap(vp
)) == NULL
)
3804 rd_ahead_enabled
= 0;
3806 extent
.b_addr
= uio
->uio_offset
/ PAGE_SIZE_64
;
3807 extent
.e_addr
= (last_request_offset
- 1) / PAGE_SIZE_64
;
3810 if (rap
!= NULL
&& rap
->cl_ralen
&& (rap
->cl_lastr
== extent
.b_addr
|| (rap
->cl_lastr
+ 1) == extent
.b_addr
)) {
3812 * determine if we already have a read-ahead in the pipe courtesy of the
3813 * last read systemcall that was issued...
3814 * if so, pick up it's extent to determine where we should start
3815 * with respect to any read-ahead that might be necessary to
3816 * garner all the data needed to complete this read systemcall
3818 last_ioread_offset
= (rap
->cl_maxra
* PAGE_SIZE_64
) + PAGE_SIZE_64
;
3820 if (last_ioread_offset
< uio
->uio_offset
)
3821 last_ioread_offset
= (off_t
)0;
3822 else if (last_ioread_offset
> last_request_offset
)
3823 last_ioread_offset
= last_request_offset
;
3825 last_ioread_offset
= (off_t
)0;
3827 while (io_req_size
&& uio
->uio_offset
< filesize
&& retval
== 0) {
3829 max_size
= filesize
- uio
->uio_offset
;
3831 if ((off_t
)(io_req_size
) < max_size
)
3832 io_size
= io_req_size
;
3836 if (!(flags
& IO_NOCACHE
)) {
3840 u_int32_t io_requested
;
3843 * if we keep finding the pages we need already in the cache, then
3844 * don't bother to call cluster_read_prefetch since it costs CPU cycles
3845 * to determine that we have all the pages we need... once we miss in
3846 * the cache and have issued an I/O, than we'll assume that we're likely
3847 * to continue to miss in the cache and it's to our advantage to try and prefetch
3849 if (last_request_offset
&& last_ioread_offset
&& (size_of_prefetch
= (last_request_offset
- last_ioread_offset
))) {
3850 if ((last_ioread_offset
- uio
->uio_offset
) <= max_rd_size
&& prefetch_enabled
) {
3852 * we've already issued I/O for this request and
3853 * there's still work to do and
3854 * our prefetch stream is running dry, so issue a
3855 * pre-fetch I/O... the I/O latency will overlap
3856 * with the copying of the data
3858 if (size_of_prefetch
> max_rd_size
)
3859 size_of_prefetch
= max_rd_size
;
3861 size_of_prefetch
= cluster_read_prefetch(vp
, last_ioread_offset
, size_of_prefetch
, filesize
, callback
, callback_arg
, bflag
);
3863 last_ioread_offset
+= (off_t
)(size_of_prefetch
* PAGE_SIZE
);
3865 if (last_ioread_offset
> last_request_offset
)
3866 last_ioread_offset
= last_request_offset
;
3870 * limit the size of the copy we're about to do so that
3871 * we can notice that our I/O pipe is running dry and
3872 * get the next I/O issued before it does go dry
3874 if (last_ioread_offset
&& io_size
> (max_io_size
/ 4))
3875 io_resid
= (max_io_size
/ 4);
3879 io_requested
= io_resid
;
3881 retval
= cluster_copy_ubc_data_internal(vp
, uio
, (int *)&io_resid
, 0, take_reference
);
3883 xsize
= io_requested
- io_resid
;
3886 io_req_size
-= xsize
;
3888 if (retval
|| io_resid
)
3890 * if we run into a real error or
3891 * a page that is not in the cache
3892 * we need to leave streaming mode
3896 if (rd_ahead_enabled
&& (io_size
== 0 || last_ioread_offset
== last_request_offset
)) {
3898 * we're already finished the I/O for this read request
3899 * let's see if we should do a read-ahead
3901 cluster_read_ahead(vp
, &extent
, filesize
, rap
, callback
, callback_arg
, bflag
);
3908 if (extent
.e_addr
< rap
->cl_lastr
)
3910 rap
->cl_lastr
= extent
.e_addr
;
3915 * recompute max_size since cluster_copy_ubc_data_internal
3916 * may have advanced uio->uio_offset
3918 max_size
= filesize
- uio
->uio_offset
;
3921 iostate
.io_completed
= 0;
3922 iostate
.io_issued
= 0;
3923 iostate
.io_error
= 0;
3924 iostate
.io_wanted
= 0;
3926 if ( (flags
& IO_RETURN_ON_THROTTLE
) ) {
3927 if (cluster_is_throttled(vp
) == THROTTLE_NOW
) {
3928 if ( !cluster_io_present_in_BC(vp
, uio
->uio_offset
)) {
3930 * we're in the throttle window and at least 1 I/O
3931 * has already been issued by a throttleable thread
3932 * in this window, so return with EAGAIN to indicate
3933 * to the FS issuing the cluster_read call that it
3934 * should now throttle after dropping any locks
3936 throttle_info_update_by_mount(vp
->v_mount
);
3945 * compute the size of the upl needed to encompass
3946 * the requested read... limit each call to cluster_io
3947 * to the maximum UPL size... cluster_io will clip if
3948 * this exceeds the maximum io_size for the device,
3949 * make sure to account for
3950 * a starting offset that's not page aligned
3952 start_offset
= (int)(uio
->uio_offset
& PAGE_MASK_64
);
3953 upl_f_offset
= uio
->uio_offset
- (off_t
)start_offset
;
3955 if (io_size
> max_rd_size
)
3956 io_size
= max_rd_size
;
3958 upl_size
= (start_offset
+ io_size
+ (PAGE_SIZE
- 1)) & ~PAGE_MASK
;
3960 if (flags
& IO_NOCACHE
) {
3961 if (upl_size
> max_io_size
)
3962 upl_size
= max_io_size
;
3964 if (upl_size
> max_io_size
/ 4) {
3965 upl_size
= max_io_size
/ 4;
3966 upl_size
&= ~PAGE_MASK
;
3969 upl_size
= PAGE_SIZE
;
3972 pages_in_upl
= upl_size
/ PAGE_SIZE
;
3974 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 33)) | DBG_FUNC_START
,
3975 upl
, (int)upl_f_offset
, upl_size
, start_offset
, 0);
3977 kret
= ubc_create_upl(vp
,
3982 UPL_FILE_IO
| UPL_SET_LITE
);
3983 if (kret
!= KERN_SUCCESS
)
3984 panic("cluster_read_copy: failed to get pagelist");
3986 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 33)) | DBG_FUNC_END
,
3987 upl
, (int)upl_f_offset
, upl_size
, start_offset
, 0);
3990 * scan from the beginning of the upl looking for the first
3991 * non-valid page.... this will become the first page in
3992 * the request we're going to make to 'cluster_io'... if all
3993 * of the pages are valid, we won't call through to 'cluster_io'
3995 for (start_pg
= 0; start_pg
< pages_in_upl
; start_pg
++) {
3996 if (!upl_valid_page(pl
, start_pg
))
4001 * scan from the starting invalid page looking for a valid
4002 * page before the end of the upl is reached, if we
4003 * find one, then it will be the last page of the request to
4006 for (last_pg
= start_pg
; last_pg
< pages_in_upl
; last_pg
++) {
4007 if (upl_valid_page(pl
, last_pg
))
4011 if (start_pg
< last_pg
) {
4013 * we found a range of 'invalid' pages that must be filled
4014 * if the last page in this range is the last page of the file
4015 * we may have to clip the size of it to keep from reading past
4016 * the end of the last physical block associated with the file
4018 if (iolock_inited
== FALSE
) {
4019 lck_mtx_init(&iostate
.io_mtxp
, cl_mtx_grp
, cl_mtx_attr
);
4021 iolock_inited
= TRUE
;
4023 upl_offset
= start_pg
* PAGE_SIZE
;
4024 io_size
= (last_pg
- start_pg
) * PAGE_SIZE
;
4026 if ((off_t
)(upl_f_offset
+ upl_offset
+ io_size
) > filesize
)
4027 io_size
= filesize
- (upl_f_offset
+ upl_offset
);
4030 * issue an asynchronous read to cluster_io
4033 error
= cluster_io(vp
, upl
, upl_offset
, upl_f_offset
+ upl_offset
,
4034 io_size
, CL_READ
| CL_ASYNC
| bflag
, (buf_t
)NULL
, &iostate
, callback
, callback_arg
);
4037 if (extent
.e_addr
< rap
->cl_maxra
) {
4039 * we've just issued a read for a block that should have been
4040 * in the cache courtesy of the read-ahead engine... something
4041 * has gone wrong with the pipeline, so reset the read-ahead
4042 * logic which will cause us to restart from scratch
4050 * if the read completed successfully, or there was no I/O request
4051 * issued, than copy the data into user land via 'cluster_upl_copy_data'
4052 * we'll first add on any 'valid'
4053 * pages that were present in the upl when we acquired it.
4057 for (uio_last
= last_pg
; uio_last
< pages_in_upl
; uio_last
++) {
4058 if (!upl_valid_page(pl
, uio_last
))
4061 if (uio_last
< pages_in_upl
) {
4063 * there were some invalid pages beyond the valid pages
4064 * that we didn't issue an I/O for, just release them
4065 * unchanged now, so that any prefetch/readahed can
4068 ubc_upl_abort_range(upl
, uio_last
* PAGE_SIZE
,
4069 (pages_in_upl
- uio_last
) * PAGE_SIZE
, UPL_ABORT_FREE_ON_EMPTY
);
4073 * compute size to transfer this round, if io_req_size is
4074 * still non-zero after this attempt, we'll loop around and
4075 * set up for another I/O.
4077 val_size
= (uio_last
* PAGE_SIZE
) - start_offset
;
4079 if (val_size
> max_size
)
4080 val_size
= max_size
;
4082 if (val_size
> io_req_size
)
4083 val_size
= io_req_size
;
4085 if ((uio
->uio_offset
+ val_size
) > last_ioread_offset
)
4086 last_ioread_offset
= uio
->uio_offset
+ val_size
;
4088 if ((size_of_prefetch
= (last_request_offset
- last_ioread_offset
)) && prefetch_enabled
) {
4090 if ((last_ioread_offset
- (uio
->uio_offset
+ val_size
)) <= upl_size
) {
4092 * if there's still I/O left to do for this request, and...
4093 * we're not in hard throttle mode, and...
4094 * we're close to using up the previous prefetch, then issue a
4095 * new pre-fetch I/O... the I/O latency will overlap
4096 * with the copying of the data
4098 if (size_of_prefetch
> max_rd_size
)
4099 size_of_prefetch
= max_rd_size
;
4101 size_of_prefetch
= cluster_read_prefetch(vp
, last_ioread_offset
, size_of_prefetch
, filesize
, callback
, callback_arg
, bflag
);
4103 last_ioread_offset
+= (off_t
)(size_of_prefetch
* PAGE_SIZE
);
4105 if (last_ioread_offset
> last_request_offset
)
4106 last_ioread_offset
= last_request_offset
;
4109 } else if ((uio
->uio_offset
+ val_size
) == last_request_offset
) {
4111 * this transfer will finish this request, so...
4112 * let's try to read ahead if we're in
4113 * a sequential access pattern and we haven't
4114 * explicitly disabled it
4116 if (rd_ahead_enabled
)
4117 cluster_read_ahead(vp
, &extent
, filesize
, rap
, callback
, callback_arg
, bflag
);
4120 if (extent
.e_addr
< rap
->cl_lastr
)
4122 rap
->cl_lastr
= extent
.e_addr
;
4125 if (iolock_inited
== TRUE
)
4126 cluster_iostate_wait(&iostate
, 0, "cluster_read_copy");
4128 if (iostate
.io_error
)
4129 error
= iostate
.io_error
;
4131 u_int32_t io_requested
;
4133 io_requested
= val_size
;
4135 retval
= cluster_copy_upl_data(uio
, upl
, start_offset
, (int *)&io_requested
);
4137 io_req_size
-= (val_size
- io_requested
);
4140 if (iolock_inited
== TRUE
)
4141 cluster_iostate_wait(&iostate
, 0, "cluster_read_copy");
4143 if (start_pg
< last_pg
) {
4145 * compute the range of pages that we actually issued an I/O for
4146 * and either commit them as valid if the I/O succeeded
4147 * or abort them if the I/O failed or we're not supposed to
4148 * keep them in the cache
4150 io_size
= (last_pg
- start_pg
) * PAGE_SIZE
;
4152 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 35)) | DBG_FUNC_START
, upl
, start_pg
* PAGE_SIZE
, io_size
, error
, 0);
4154 if (error
|| (flags
& IO_NOCACHE
))
4155 ubc_upl_abort_range(upl
, start_pg
* PAGE_SIZE
, io_size
,
4156 UPL_ABORT_DUMP_PAGES
| UPL_ABORT_FREE_ON_EMPTY
);
4158 int commit_flags
= UPL_COMMIT_CLEAR_DIRTY
| UPL_COMMIT_FREE_ON_EMPTY
;
4161 commit_flags
|= UPL_COMMIT_INACTIVATE
;
4163 commit_flags
|= UPL_COMMIT_SPECULATE
;
4165 ubc_upl_commit_range(upl
, start_pg
* PAGE_SIZE
, io_size
, commit_flags
);
4167 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 35)) | DBG_FUNC_END
, upl
, start_pg
* PAGE_SIZE
, io_size
, error
, 0);
4169 if ((last_pg
- start_pg
) < pages_in_upl
) {
4171 * the set of pages that we issued an I/O for did not encompass
4172 * the entire upl... so just release these without modifying
4176 ubc_upl_abort_range(upl
, 0, upl_size
, UPL_ABORT_FREE_ON_EMPTY
);
4179 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 35)) | DBG_FUNC_START
,
4180 upl
, -1, pages_in_upl
- (last_pg
- start_pg
), 0, 0);
4183 * handle any valid pages at the beginning of
4184 * the upl... release these appropriately
4186 cluster_read_upl_release(upl
, 0, start_pg
, take_reference
);
4189 * handle any valid pages immediately after the
4190 * pages we issued I/O for... ... release these appropriately
4192 cluster_read_upl_release(upl
, last_pg
, uio_last
, take_reference
);
4194 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 35)) | DBG_FUNC_END
, upl
, -1, -1, 0, 0);
4201 if (cluster_is_throttled(vp
)) {
4203 * we're in the throttle window, at the very least
4204 * we want to limit the size of the I/O we're about
4207 rd_ahead_enabled
= 0;
4208 prefetch_enabled
= 0;
4209 max_rd_size
= THROTTLE_MAX_IOSIZE
;
4211 if (max_rd_size
== THROTTLE_MAX_IOSIZE
) {
4213 * coming out of throttled state
4215 if (policy
!= THROTTLE_LEVEL_TIER3
&& policy
!= THROTTLE_LEVEL_TIER2
) {
4217 rd_ahead_enabled
= 1;
4218 prefetch_enabled
= 1;
4220 max_rd_size
= max_prefetch
;
4221 last_ioread_offset
= 0;
4226 if (iolock_inited
== TRUE
) {
4228 * cluster_io returned an error after it
4229 * had already issued some I/O. we need
4230 * to wait for that I/O to complete before
4231 * we can destroy the iostate mutex...
4232 * 'retval' already contains the early error
4233 * so no need to pick it up from iostate.io_error
4235 cluster_iostate_wait(&iostate
, 0, "cluster_read_copy");
4237 lck_mtx_destroy(&iostate
.io_mtxp
, cl_mtx_grp
);
4240 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 32)) | DBG_FUNC_END
,
4241 (int)uio
->uio_offset
, io_req_size
, rap
->cl_lastr
, retval
, 0);
4243 lck_mtx_unlock(&rap
->cl_lockr
);
4245 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 32)) | DBG_FUNC_END
,
4246 (int)uio
->uio_offset
, io_req_size
, 0, retval
, 0);
4253 * We don't want another read/write lock for every vnode in the system
4254 * so we keep a hash of them here. There should never be very many of
4255 * these around at any point in time.
4257 cl_direct_read_lock_t
*cluster_lock_direct_read(vnode_t vp
, lck_rw_type_t type
)
4259 struct cl_direct_read_locks
*head
4260 = &cl_direct_read_locks
[(uintptr_t)vp
/ sizeof(*vp
)
4261 % CL_DIRECT_READ_LOCK_BUCKETS
];
4263 struct cl_direct_read_lock
*lck
, *new_lck
= NULL
;
4266 lck_spin_lock(&cl_direct_read_spin_lock
);
4268 LIST_FOREACH(lck
, head
, chain
) {
4269 if (lck
->vp
== vp
) {
4271 lck_spin_unlock(&cl_direct_read_spin_lock
);
4273 // Someone beat us to it, ditch the allocation
4274 lck_rw_destroy(&new_lck
->rw_lock
, cl_mtx_grp
);
4275 FREE(new_lck
, M_TEMP
);
4277 lck_rw_lock(&lck
->rw_lock
, type
);
4283 // Use the lock we allocated
4284 LIST_INSERT_HEAD(head
, new_lck
, chain
);
4285 lck_spin_unlock(&cl_direct_read_spin_lock
);
4286 lck_rw_lock(&new_lck
->rw_lock
, type
);
4290 lck_spin_unlock(&cl_direct_read_spin_lock
);
4292 // Allocate a new lock
4293 MALLOC(new_lck
, cl_direct_read_lock_t
*, sizeof(*new_lck
),
4295 lck_rw_init(&new_lck
->rw_lock
, cl_mtx_grp
, cl_mtx_attr
);
4297 new_lck
->ref_count
= 1;
4299 // Got to go round again
4303 void cluster_unlock_direct_read(cl_direct_read_lock_t
*lck
)
4305 lck_rw_done(&lck
->rw_lock
);
4307 lck_spin_lock(&cl_direct_read_spin_lock
);
4308 if (lck
->ref_count
== 1) {
4309 LIST_REMOVE(lck
, chain
);
4310 lck_spin_unlock(&cl_direct_read_spin_lock
);
4311 lck_rw_destroy(&lck
->rw_lock
, cl_mtx_grp
);
4315 lck_spin_unlock(&cl_direct_read_spin_lock
);
4320 cluster_read_direct(vnode_t vp
, struct uio
*uio
, off_t filesize
, int *read_type
, u_int32_t
*read_length
,
4321 int flags
, int (*callback
)(buf_t
, void *), void *callback_arg
)
4324 upl_page_info_t
*pl
;
4326 vm_offset_t upl_offset
, vector_upl_offset
= 0;
4327 upl_size_t upl_size
, vector_upl_size
= 0;
4328 vm_size_t upl_needed_size
;
4329 unsigned int pages_in_pl
;
4330 upl_control_flags_t upl_flags
;
4333 int force_data_sync
;
4335 int no_zero_fill
= 0;
4338 struct clios iostate
;
4339 user_addr_t iov_base
;
4340 u_int32_t io_req_size
;
4341 u_int32_t offset_in_file
;
4342 u_int32_t offset_in_iovbase
;
4346 u_int32_t devblocksize
;
4347 u_int32_t mem_alignment_mask
;
4348 u_int32_t max_upl_size
;
4349 u_int32_t max_rd_size
;
4350 u_int32_t max_rd_ahead
;
4351 u_int32_t max_vector_size
;
4352 boolean_t strict_uncached_IO
= FALSE
;
4353 boolean_t io_throttled
= FALSE
;
4355 u_int32_t vector_upl_iosize
= 0;
4356 int issueVectorUPL
= 0,useVectorUPL
= (uio
->uio_iovcnt
> 1);
4357 off_t v_upl_uio_offset
= 0;
4358 int vector_upl_index
=0;
4359 upl_t vector_upl
= NULL
;
4360 cl_direct_read_lock_t
*lock
= NULL
;
4362 user_addr_t orig_iov_base
= 0;
4363 user_addr_t last_iov_base
= 0;
4364 user_addr_t next_iov_base
= 0;
4366 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 70)) | DBG_FUNC_START
,
4367 (int)uio
->uio_offset
, (int)filesize
, *read_type
, *read_length
, 0);
4369 max_upl_size
= cluster_max_io_size(vp
->v_mount
, CL_READ
);
4371 max_rd_size
= max_upl_size
;
4372 max_rd_ahead
= max_rd_size
* IO_SCALE(vp
, 2);
4374 io_flag
= CL_COMMIT
| CL_READ
| CL_ASYNC
| CL_NOZERO
| CL_DIRECT_IO
;
4376 if (flags
& IO_PASSIVE
)
4377 io_flag
|= CL_PASSIVE
;
4379 if (flags
& IO_ENCRYPTED
) {
4380 io_flag
|= CL_RAW_ENCRYPTED
;
4383 if (flags
& IO_NOCACHE
) {
4384 io_flag
|= CL_NOCACHE
;
4387 if (flags
& IO_SKIP_ENCRYPTION
)
4388 io_flag
|= CL_ENCRYPTED
;
4390 iostate
.io_completed
= 0;
4391 iostate
.io_issued
= 0;
4392 iostate
.io_error
= 0;
4393 iostate
.io_wanted
= 0;
4395 lck_mtx_init(&iostate
.io_mtxp
, cl_mtx_grp
, cl_mtx_attr
);
4397 devblocksize
= (u_int32_t
)vp
->v_mount
->mnt_devblocksize
;
4398 mem_alignment_mask
= (u_int32_t
)vp
->v_mount
->mnt_alignmentmask
;
4400 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 70)) | DBG_FUNC_NONE
,
4401 (int)devblocksize
, (int)mem_alignment_mask
, 0, 0, 0);
4403 if (devblocksize
== 1) {
4405 * the AFP client advertises a devblocksize of 1
4406 * however, its BLOCKMAP routine maps to physical
4407 * blocks that are PAGE_SIZE in size...
4408 * therefore we can't ask for I/Os that aren't page aligned
4409 * or aren't multiples of PAGE_SIZE in size
4410 * by setting devblocksize to PAGE_SIZE, we re-instate
4411 * the old behavior we had before the mem_alignment_mask
4412 * changes went in...
4414 devblocksize
= PAGE_SIZE
;
4417 strict_uncached_IO
= ubc_strict_uncached_IO(vp
);
4419 orig_iov_base
= uio_curriovbase(uio
);
4420 last_iov_base
= orig_iov_base
;
4423 io_req_size
= *read_length
;
4424 iov_base
= uio_curriovbase(uio
);
4426 offset_in_file
= (u_int32_t
)uio
->uio_offset
& (devblocksize
- 1);
4427 offset_in_iovbase
= (u_int32_t
)iov_base
& mem_alignment_mask
;
4429 if (offset_in_file
|| offset_in_iovbase
) {
4431 * one of the 2 important offsets is misaligned
4432 * so fire an I/O through the cache for this entire vector
4436 if (iov_base
& (devblocksize
- 1)) {
4438 * the offset in memory must be on a device block boundary
4439 * so that we can guarantee that we can generate an
4440 * I/O that ends on a page boundary in cluster_io
4445 max_io_size
= filesize
- uio
->uio_offset
;
4448 * The user must request IO in aligned chunks. If the
4449 * offset into the file is bad, or the userland pointer
4450 * is non-aligned, then we cannot service the encrypted IO request.
4452 if (flags
& IO_ENCRYPTED
) {
4453 if (misaligned
|| (io_req_size
& (devblocksize
- 1)))
4456 max_io_size
= roundup(max_io_size
, devblocksize
);
4459 if ((off_t
)io_req_size
> max_io_size
)
4460 io_req_size
= max_io_size
;
4463 * When we get to this point, we know...
4464 * -- the offset into the file is on a devblocksize boundary
4467 while (io_req_size
&& retval
== 0) {
4470 if (cluster_is_throttled(vp
)) {
4472 * we're in the throttle window, at the very least
4473 * we want to limit the size of the I/O we're about
4476 max_rd_size
= THROTTLE_MAX_IOSIZE
;
4477 max_rd_ahead
= THROTTLE_MAX_IOSIZE
- 1;
4478 max_vector_size
= THROTTLE_MAX_IOSIZE
;
4480 max_rd_size
= max_upl_size
;
4481 max_rd_ahead
= max_rd_size
* IO_SCALE(vp
, 2);
4482 max_vector_size
= MAX_VECTOR_UPL_SIZE
;
4484 io_start
= io_size
= io_req_size
;
4487 * First look for pages already in the cache
4488 * and move them to user space. But only do this
4489 * check if we are not retrieving encrypted data directly
4490 * from the filesystem; those blocks should never
4493 * cluster_copy_ubc_data returns the resid
4496 if ((strict_uncached_IO
== FALSE
) && ((flags
& IO_ENCRYPTED
) == 0)) {
4497 retval
= cluster_copy_ubc_data_internal(vp
, uio
, (int *)&io_size
, 0, 0);
4500 * calculate the number of bytes actually copied
4501 * starting size - residual
4503 xsize
= io_start
- io_size
;
4505 io_req_size
-= xsize
;
4507 if(useVectorUPL
&& (xsize
|| (iov_base
& PAGE_MASK
))) {
4509 * We found something in the cache or we have an iov_base that's not
4512 * Issue all I/O's that have been collected within this Vectored UPL.
4514 if(vector_upl_index
) {
4515 retval
= vector_cluster_io(vp
, vector_upl
, vector_upl_offset
, v_upl_uio_offset
, vector_upl_iosize
, io_flag
, (buf_t
)NULL
, &iostate
, callback
, callback_arg
);
4516 reset_vector_run_state();
4523 * After this point, if we are using the Vector UPL path and the base is
4524 * not page-aligned then the UPL with that base will be the first in the vector UPL.
4529 * check to see if we are finished with this request.
4531 * If we satisfied this IO already, then io_req_size will be 0.
4532 * Otherwise, see if the IO was mis-aligned and needs to go through
4533 * the UBC to deal with the 'tail'.
4536 if (io_req_size
== 0 || (misaligned
)) {
4538 * see if there's another uio vector to
4539 * process that's of type IO_DIRECT
4541 * break out of while loop to get there
4546 * assume the request ends on a device block boundary
4548 io_min
= devblocksize
;
4551 * we can handle I/O's in multiples of the device block size
4552 * however, if io_size isn't a multiple of devblocksize we
4553 * want to clip it back to the nearest page boundary since
4554 * we are going to have to go through cluster_read_copy to
4555 * deal with the 'overhang'... by clipping it to a PAGE_SIZE
4556 * multiple, we avoid asking the drive for the same physical
4557 * blocks twice.. once for the partial page at the end of the
4558 * request and a 2nd time for the page we read into the cache
4559 * (which overlaps the end of the direct read) in order to
4560 * get at the overhang bytes
4562 if (io_size
& (devblocksize
- 1)) {
4563 assert(!(flags
& IO_ENCRYPTED
));
4565 * Clip the request to the previous page size boundary
4566 * since request does NOT end on a device block boundary
4568 io_size
&= ~PAGE_MASK
;
4571 if (retval
|| io_size
< io_min
) {
4573 * either an error or we only have the tail left to
4574 * complete via the copy path...
4575 * we may have already spun some portion of this request
4576 * off as async requests... we need to wait for the I/O
4577 * to complete before returning
4579 goto wait_for_dreads
;
4583 * Don't re-check the UBC data if we are looking for uncached IO
4584 * or asking for encrypted blocks.
4586 if ((strict_uncached_IO
== FALSE
) && ((flags
& IO_ENCRYPTED
) == 0)) {
4588 if ((xsize
= io_size
) > max_rd_size
)
4589 xsize
= max_rd_size
;
4595 * We hold a lock here between the time we check the
4596 * cache and the time we issue I/O. This saves us
4597 * from having to lock the pages in the cache. Not
4598 * all clients will care about this lock but some
4599 * clients may want to guarantee stability between
4600 * here and when the I/O is issued in which case they
4601 * will take the lock exclusively.
4603 lock
= cluster_lock_direct_read(vp
, LCK_RW_TYPE_SHARED
);
4606 ubc_range_op(vp
, uio
->uio_offset
, uio
->uio_offset
+ xsize
, UPL_ROP_ABSENT
, (int *)&io_size
);
4610 * a page must have just come into the cache
4611 * since the first page in this range is no
4612 * longer absent, go back and re-evaluate
4617 if ( (flags
& IO_RETURN_ON_THROTTLE
) ) {
4618 if (cluster_is_throttled(vp
) == THROTTLE_NOW
) {
4619 if ( !cluster_io_present_in_BC(vp
, uio
->uio_offset
)) {
4621 * we're in the throttle window and at least 1 I/O
4622 * has already been issued by a throttleable thread
4623 * in this window, so return with EAGAIN to indicate
4624 * to the FS issuing the cluster_read call that it
4625 * should now throttle after dropping any locks
4627 throttle_info_update_by_mount(vp
->v_mount
);
4629 io_throttled
= TRUE
;
4630 goto wait_for_dreads
;
4634 if (io_size
> max_rd_size
)
4635 io_size
= max_rd_size
;
4637 iov_base
= uio_curriovbase(uio
);
4639 upl_offset
= (vm_offset_t
)((u_int32_t
)iov_base
& PAGE_MASK
);
4640 upl_needed_size
= (upl_offset
+ io_size
+ (PAGE_SIZE
-1)) & ~PAGE_MASK
;
4642 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 72)) | DBG_FUNC_START
,
4643 (int)upl_offset
, upl_needed_size
, (int)iov_base
, io_size
, 0);
4645 if (upl_offset
== 0 && ((io_size
& PAGE_MASK
) == 0))
4650 vm_map_t map
= UIO_SEG_IS_USER_SPACE(uio
->uio_segflg
) ? current_map() : kernel_map
;
4651 for (force_data_sync
= 0; force_data_sync
< 3; force_data_sync
++) {
4653 upl_size
= upl_needed_size
;
4654 upl_flags
= UPL_FILE_IO
| UPL_NO_SYNC
| UPL_SET_INTERNAL
| UPL_SET_LITE
| UPL_SET_IO_WIRE
4655 | UPL_MEMORY_TAG_MAKE(VM_KERN_MEMORY_FILE
);
4657 upl_flags
|= UPL_NOZEROFILL
;
4658 if (force_data_sync
)
4659 upl_flags
|= UPL_FORCE_DATA_SYNC
;
4661 kret
= vm_map_create_upl(map
,
4662 (vm_map_offset_t
)(iov_base
& ~((user_addr_t
)PAGE_MASK
)),
4663 &upl_size
, &upl
, NULL
, &pages_in_pl
, &upl_flags
);
4665 if (kret
!= KERN_SUCCESS
) {
4666 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 72)) | DBG_FUNC_END
,
4667 (int)upl_offset
, upl_size
, io_size
, kret
, 0);
4669 * failed to get pagelist
4671 * we may have already spun some portion of this request
4672 * off as async requests... we need to wait for the I/O
4673 * to complete before returning
4675 goto wait_for_dreads
;
4677 pages_in_pl
= upl_size
/ PAGE_SIZE
;
4678 pl
= UPL_GET_INTERNAL_PAGE_LIST(upl
);
4680 for (i
= 0; i
< pages_in_pl
; i
++) {
4681 if (!upl_page_present(pl
, i
))
4684 if (i
== pages_in_pl
)
4687 ubc_upl_abort(upl
, 0);
4689 if (force_data_sync
>= 3) {
4690 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 72)) | DBG_FUNC_END
,
4691 (int)upl_offset
, upl_size
, io_size
, kret
, 0);
4693 goto wait_for_dreads
;
4696 * Consider the possibility that upl_size wasn't satisfied.
4698 if (upl_size
< upl_needed_size
) {
4699 if (upl_size
&& upl_offset
== 0)
4705 ubc_upl_abort(upl
, 0);
4706 goto wait_for_dreads
;
4708 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 72)) | DBG_FUNC_END
,
4709 (int)upl_offset
, upl_size
, io_size
, kret
, 0);
4712 vm_offset_t end_off
= ((iov_base
+ io_size
) & PAGE_MASK
);
4716 * After this point, if we are using a vector UPL, then
4717 * either all the UPL elements end on a page boundary OR
4718 * this UPL is the last element because it does not end
4719 * on a page boundary.
4724 * request asynchronously so that we can overlap
4725 * the preparation of the next I/O
4726 * if there are already too many outstanding reads
4727 * wait until some have completed before issuing the next read
4729 cluster_iostate_wait(&iostate
, max_rd_ahead
, "cluster_read_direct");
4731 if (iostate
.io_error
) {
4733 * one of the earlier reads we issued ran into a hard error
4734 * don't issue any more reads, cleanup the UPL
4735 * that was just created but not used, then
4736 * go wait for any other reads to complete before
4737 * returning the error to the caller
4739 ubc_upl_abort(upl
, 0);
4741 goto wait_for_dreads
;
4743 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 73)) | DBG_FUNC_START
,
4744 upl
, (int)upl_offset
, (int)uio
->uio_offset
, io_size
, 0);
4748 io_flag
&= ~CL_PRESERVE
;
4750 io_flag
|= CL_PRESERVE
;
4752 retval
= cluster_io(vp
, upl
, upl_offset
, uio
->uio_offset
, io_size
, io_flag
, (buf_t
)NULL
, &iostate
, callback
, callback_arg
);
4756 if(!vector_upl_index
) {
4757 vector_upl
= vector_upl_create(upl_offset
);
4758 v_upl_uio_offset
= uio
->uio_offset
;
4759 vector_upl_offset
= upl_offset
;
4762 vector_upl_set_subupl(vector_upl
,upl
, upl_size
);
4763 vector_upl_set_iostate(vector_upl
, upl
, vector_upl_size
, upl_size
);
4765 vector_upl_size
+= upl_size
;
4766 vector_upl_iosize
+= io_size
;
4768 if(issueVectorUPL
|| vector_upl_index
== MAX_VECTOR_UPL_ELEMENTS
|| vector_upl_size
>= max_vector_size
) {
4769 retval
= vector_cluster_io(vp
, vector_upl
, vector_upl_offset
, v_upl_uio_offset
, vector_upl_iosize
, io_flag
, (buf_t
)NULL
, &iostate
, callback
, callback_arg
);
4770 reset_vector_run_state();
4773 last_iov_base
= iov_base
+ io_size
;
4776 // We don't need to wait for the I/O to complete
4777 cluster_unlock_direct_read(lock
);
4782 * update the uio structure
4784 if ((flags
& IO_ENCRYPTED
) && (max_io_size
< io_size
)) {
4785 uio_update(uio
, (user_size_t
)max_io_size
);
4788 uio_update(uio
, (user_size_t
)io_size
);
4791 io_req_size
-= io_size
;
4793 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 73)) | DBG_FUNC_END
,
4794 upl
, (int)uio
->uio_offset
, io_req_size
, retval
, 0);
4798 if (retval
== 0 && iostate
.io_error
== 0 && io_req_size
== 0 && uio
->uio_offset
< filesize
) {
4800 retval
= cluster_io_type(uio
, read_type
, read_length
, 0);
4802 if (retval
== 0 && *read_type
== IO_DIRECT
) {
4804 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 70)) | DBG_FUNC_NONE
,
4805 (int)uio
->uio_offset
, (int)filesize
, *read_type
, *read_length
, 0);
4813 if(retval
== 0 && iostate
.io_error
== 0 && useVectorUPL
&& vector_upl_index
) {
4814 retval
= vector_cluster_io(vp
, vector_upl
, vector_upl_offset
, v_upl_uio_offset
, vector_upl_iosize
, io_flag
, (buf_t
)NULL
, &iostate
, callback
, callback_arg
);
4815 reset_vector_run_state();
4818 // We don't need to wait for the I/O to complete
4820 cluster_unlock_direct_read(lock
);
4823 * make sure all async reads that are part of this stream
4824 * have completed before we return
4826 cluster_iostate_wait(&iostate
, 0, "cluster_read_direct");
4828 if (iostate
.io_error
)
4829 retval
= iostate
.io_error
;
4831 lck_mtx_destroy(&iostate
.io_mtxp
, cl_mtx_grp
);
4833 if (io_throttled
== TRUE
&& retval
== 0)
4836 for (next_iov_base
= orig_iov_base
; next_iov_base
< last_iov_base
; next_iov_base
+= PAGE_SIZE
) {
4838 * This is specifically done for pmap accounting purposes.
4839 * vm_pre_fault() will call vm_fault() to enter the page into
4840 * the pmap if there isn't _a_ physical page for that VA already.
4842 vm_pre_fault(vm_map_trunc_page(next_iov_base
, PAGE_MASK
));
4845 if (io_req_size
&& retval
== 0) {
4847 * we couldn't handle the tail of this request in DIRECT mode
4848 * so fire it through the copy path
4850 retval
= cluster_read_copy(vp
, uio
, io_req_size
, filesize
, flags
, callback
, callback_arg
);
4852 *read_type
= IO_UNKNOWN
;
4854 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 70)) | DBG_FUNC_END
,
4855 (int)uio
->uio_offset
, (int)uio_resid(uio
), io_req_size
, retval
, 0);
4862 cluster_read_contig(vnode_t vp
, struct uio
*uio
, off_t filesize
, int *read_type
, u_int32_t
*read_length
,
4863 int (*callback
)(buf_t
, void *), void *callback_arg
, int flags
)
4865 upl_page_info_t
*pl
;
4866 upl_t upl
[MAX_VECTS
];
4867 vm_offset_t upl_offset
;
4868 addr64_t dst_paddr
= 0;
4869 user_addr_t iov_base
;
4871 upl_size_t upl_size
;
4872 vm_size_t upl_needed_size
;
4873 mach_msg_type_number_t pages_in_pl
;
4874 upl_control_flags_t upl_flags
;
4876 struct clios iostate
;
4883 u_int32_t devblocksize
;
4884 u_int32_t mem_alignment_mask
;
4885 u_int32_t tail_size
= 0;
4888 if (flags
& IO_PASSIVE
)
4893 if (flags
& IO_NOCACHE
)
4894 bflag
|= CL_NOCACHE
;
4897 * When we enter this routine, we know
4898 * -- the read_length will not exceed the current iov_len
4899 * -- the target address is physically contiguous for read_length
4901 cluster_syncup(vp
, filesize
, callback
, callback_arg
, PUSH_SYNC
);
4903 devblocksize
= (u_int32_t
)vp
->v_mount
->mnt_devblocksize
;
4904 mem_alignment_mask
= (u_int32_t
)vp
->v_mount
->mnt_alignmentmask
;
4906 iostate
.io_completed
= 0;
4907 iostate
.io_issued
= 0;
4908 iostate
.io_error
= 0;
4909 iostate
.io_wanted
= 0;
4911 lck_mtx_init(&iostate
.io_mtxp
, cl_mtx_grp
, cl_mtx_attr
);
4914 io_size
= *read_length
;
4916 max_size
= filesize
- uio
->uio_offset
;
4918 if (io_size
> max_size
)
4921 iov_base
= uio_curriovbase(uio
);
4923 upl_offset
= (vm_offset_t
)((u_int32_t
)iov_base
& PAGE_MASK
);
4924 upl_needed_size
= upl_offset
+ io_size
;
4927 upl_size
= upl_needed_size
;
4928 upl_flags
= UPL_FILE_IO
| UPL_NO_SYNC
| UPL_CLEAN_IN_PLACE
| UPL_SET_INTERNAL
| UPL_SET_LITE
| UPL_SET_IO_WIRE
4929 | UPL_MEMORY_TAG_MAKE(VM_KERN_MEMORY_FILE
);
4932 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 92)) | DBG_FUNC_START
,
4933 (int)upl_offset
, (int)upl_size
, (int)iov_base
, io_size
, 0);
4935 vm_map_t map
= UIO_SEG_IS_USER_SPACE(uio
->uio_segflg
) ? current_map() : kernel_map
;
4936 kret
= vm_map_get_upl(map
,
4937 (vm_map_offset_t
)(iov_base
& ~((user_addr_t
)PAGE_MASK
)),
4938 &upl_size
, &upl
[cur_upl
], NULL
, &pages_in_pl
, &upl_flags
, 0);
4940 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 92)) | DBG_FUNC_END
,
4941 (int)upl_offset
, upl_size
, io_size
, kret
, 0);
4943 if (kret
!= KERN_SUCCESS
) {
4945 * failed to get pagelist
4948 goto wait_for_creads
;
4952 if (upl_size
< upl_needed_size
) {
4954 * The upl_size wasn't satisfied.
4957 goto wait_for_creads
;
4959 pl
= ubc_upl_pageinfo(upl
[cur_upl
]);
4961 dst_paddr
= ((addr64_t
)upl_phys_page(pl
, 0) << PAGE_SHIFT
) + (addr64_t
)upl_offset
;
4963 while (((uio
->uio_offset
& (devblocksize
- 1)) || io_size
< devblocksize
) && io_size
) {
4964 u_int32_t head_size
;
4966 head_size
= devblocksize
- (u_int32_t
)(uio
->uio_offset
& (devblocksize
- 1));
4968 if (head_size
> io_size
)
4969 head_size
= io_size
;
4971 error
= cluster_align_phys_io(vp
, uio
, dst_paddr
, head_size
, CL_READ
, callback
, callback_arg
);
4974 goto wait_for_creads
;
4976 upl_offset
+= head_size
;
4977 dst_paddr
+= head_size
;
4978 io_size
-= head_size
;
4980 iov_base
+= head_size
;
4982 if ((u_int32_t
)iov_base
& mem_alignment_mask
) {
4984 * request doesn't set up on a memory boundary
4985 * the underlying DMA engine can handle...
4986 * return an error instead of going through
4987 * the slow copy path since the intent of this
4988 * path is direct I/O to device memory
4991 goto wait_for_creads
;
4994 tail_size
= io_size
& (devblocksize
- 1);
4996 io_size
-= tail_size
;
4998 while (io_size
&& error
== 0) {
5000 if (io_size
> MAX_IO_CONTIG_SIZE
)
5001 xsize
= MAX_IO_CONTIG_SIZE
;
5005 * request asynchronously so that we can overlap
5006 * the preparation of the next I/O... we'll do
5007 * the commit after all the I/O has completed
5008 * since its all issued against the same UPL
5009 * if there are already too many outstanding reads
5010 * wait until some have completed before issuing the next
5012 cluster_iostate_wait(&iostate
, MAX_IO_CONTIG_SIZE
* IO_SCALE(vp
, 2), "cluster_read_contig");
5014 if (iostate
.io_error
) {
5016 * one of the earlier reads we issued ran into a hard error
5017 * don't issue any more reads...
5018 * go wait for any other reads to complete before
5019 * returning the error to the caller
5021 goto wait_for_creads
;
5023 error
= cluster_io(vp
, upl
[cur_upl
], upl_offset
, uio
->uio_offset
, xsize
,
5024 CL_READ
| CL_NOZERO
| CL_DEV_MEMORY
| CL_ASYNC
| bflag
,
5025 (buf_t
)NULL
, &iostate
, callback
, callback_arg
);
5027 * The cluster_io read was issued successfully,
5028 * update the uio structure
5031 uio_update(uio
, (user_size_t
)xsize
);
5034 upl_offset
+= xsize
;
5038 if (error
== 0 && iostate
.io_error
== 0 && tail_size
== 0 && num_upl
< MAX_VECTS
&& uio
->uio_offset
< filesize
) {
5040 error
= cluster_io_type(uio
, read_type
, read_length
, 0);
5042 if (error
== 0 && *read_type
== IO_CONTIG
) {
5047 *read_type
= IO_UNKNOWN
;
5051 * make sure all async reads that are part of this stream
5052 * have completed before we proceed
5054 cluster_iostate_wait(&iostate
, 0, "cluster_read_contig");
5056 if (iostate
.io_error
)
5057 error
= iostate
.io_error
;
5059 lck_mtx_destroy(&iostate
.io_mtxp
, cl_mtx_grp
);
5061 if (error
== 0 && tail_size
)
5062 error
= cluster_align_phys_io(vp
, uio
, dst_paddr
, tail_size
, CL_READ
, callback
, callback_arg
);
5064 for (n
= 0; n
< num_upl
; n
++)
5066 * just release our hold on each physically contiguous
5067 * region without changing any state
5069 ubc_upl_abort(upl
[n
], 0);
5076 cluster_io_type(struct uio
*uio
, int *io_type
, u_int32_t
*io_length
, u_int32_t min_length
)
5078 user_size_t iov_len
;
5079 user_addr_t iov_base
= 0;
5081 upl_size_t upl_size
;
5082 upl_control_flags_t upl_flags
;
5086 * skip over any emtpy vectors
5088 uio_update(uio
, (user_size_t
)0);
5090 iov_len
= uio_curriovlen(uio
);
5092 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 94)) | DBG_FUNC_START
, uio
, (int)iov_len
, 0, 0, 0);
5095 iov_base
= uio_curriovbase(uio
);
5097 * make sure the size of the vector isn't too big...
5098 * internally, we want to handle all of the I/O in
5099 * chunk sizes that fit in a 32 bit int
5101 if (iov_len
> (user_size_t
)MAX_IO_REQUEST_SIZE
)
5102 upl_size
= MAX_IO_REQUEST_SIZE
;
5104 upl_size
= (u_int32_t
)iov_len
;
5106 upl_flags
= UPL_QUERY_OBJECT_TYPE
| UPL_MEMORY_TAG_MAKE(VM_KERN_MEMORY_FILE
);
5108 vm_map_t map
= UIO_SEG_IS_USER_SPACE(uio
->uio_segflg
) ? current_map() : kernel_map
;
5109 if ((vm_map_get_upl(map
,
5110 (vm_map_offset_t
)(iov_base
& ~((user_addr_t
)PAGE_MASK
)),
5111 &upl_size
, &upl
, NULL
, NULL
, &upl_flags
, 0)) != KERN_SUCCESS
) {
5113 * the user app must have passed in an invalid address
5120 *io_length
= upl_size
;
5122 if (upl_flags
& UPL_PHYS_CONTIG
)
5123 *io_type
= IO_CONTIG
;
5124 else if (iov_len
>= min_length
)
5125 *io_type
= IO_DIRECT
;
5130 * nothing left to do for this uio
5133 *io_type
= IO_UNKNOWN
;
5135 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 94)) | DBG_FUNC_END
, iov_base
, *io_type
, *io_length
, retval
, 0);
5142 * generate advisory I/O's in the largest chunks possible
5143 * the completed pages will be released into the VM cache
5146 advisory_read(vnode_t vp
, off_t filesize
, off_t f_offset
, int resid
)
5148 return advisory_read_ext(vp
, filesize
, f_offset
, resid
, NULL
, NULL
, CL_PASSIVE
);
5152 advisory_read_ext(vnode_t vp
, off_t filesize
, off_t f_offset
, int resid
, int (*callback
)(buf_t
, void *), void *callback_arg
, int bflag
)
5154 upl_page_info_t
*pl
;
5156 vm_offset_t upl_offset
;
5169 uint32_t max_io_size
;
5172 if ( !UBCINFOEXISTS(vp
))
5178 max_io_size
= cluster_max_io_size(vp
->v_mount
, CL_READ
);
5180 if ((vp
->v_mount
->mnt_kern_flag
& MNTK_SSD
) && !ignore_is_ssd
) {
5181 if (max_io_size
> speculative_prefetch_max_iosize
)
5182 max_io_size
= speculative_prefetch_max_iosize
;
5185 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 60)) | DBG_FUNC_START
,
5186 (int)f_offset
, resid
, (int)filesize
, 0, 0);
5188 while (resid
&& f_offset
< filesize
&& retval
== 0) {
5190 * compute the size of the upl needed to encompass
5191 * the requested read... limit each call to cluster_io
5192 * to the maximum UPL size... cluster_io will clip if
5193 * this exceeds the maximum io_size for the device,
5194 * make sure to account for
5195 * a starting offset that's not page aligned
5197 start_offset
= (int)(f_offset
& PAGE_MASK_64
);
5198 upl_f_offset
= f_offset
- (off_t
)start_offset
;
5199 max_size
= filesize
- f_offset
;
5201 if (resid
< max_size
)
5206 upl_size
= (start_offset
+ io_size
+ (PAGE_SIZE
- 1)) & ~PAGE_MASK
;
5207 if ((uint32_t)upl_size
> max_io_size
)
5208 upl_size
= max_io_size
;
5212 * return the number of contiguously present pages in the cache
5213 * starting at upl_f_offset within the file
5215 ubc_range_op(vp
, upl_f_offset
, upl_f_offset
+ upl_size
, UPL_ROP_PRESENT
, &skip_range
);
5219 * skip over pages already present in the cache
5221 io_size
= skip_range
- start_offset
;
5223 f_offset
+= io_size
;
5226 if (skip_range
== upl_size
)
5229 * have to issue some real I/O
5230 * at this point, we know it's starting on a page boundary
5231 * because we've skipped over at least the first page in the request
5234 upl_f_offset
+= skip_range
;
5235 upl_size
-= skip_range
;
5237 pages_in_upl
= upl_size
/ PAGE_SIZE
;
5239 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 61)) | DBG_FUNC_START
,
5240 upl
, (int)upl_f_offset
, upl_size
, start_offset
, 0);
5242 kret
= ubc_create_upl(vp
,
5247 UPL_RET_ONLY_ABSENT
| UPL_SET_LITE
);
5248 if (kret
!= KERN_SUCCESS
)
5253 * before we start marching forward, we must make sure we end on
5254 * a present page, otherwise we will be working with a freed
5257 for (last_pg
= pages_in_upl
- 1; last_pg
>= 0; last_pg
--) {
5258 if (upl_page_present(pl
, last_pg
))
5261 pages_in_upl
= last_pg
+ 1;
5264 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 61)) | DBG_FUNC_END
,
5265 upl
, (int)upl_f_offset
, upl_size
, start_offset
, 0);
5268 for (last_pg
= 0; last_pg
< pages_in_upl
; ) {
5270 * scan from the beginning of the upl looking for the first
5271 * page that is present.... this will become the first page in
5272 * the request we're going to make to 'cluster_io'... if all
5273 * of the pages are absent, we won't call through to 'cluster_io'
5275 for (start_pg
= last_pg
; start_pg
< pages_in_upl
; start_pg
++) {
5276 if (upl_page_present(pl
, start_pg
))
5281 * scan from the starting present page looking for an absent
5282 * page before the end of the upl is reached, if we
5283 * find one, then it will terminate the range of pages being
5284 * presented to 'cluster_io'
5286 for (last_pg
= start_pg
; last_pg
< pages_in_upl
; last_pg
++) {
5287 if (!upl_page_present(pl
, last_pg
))
5291 if (last_pg
> start_pg
) {
5293 * we found a range of pages that must be filled
5294 * if the last page in this range is the last page of the file
5295 * we may have to clip the size of it to keep from reading past
5296 * the end of the last physical block associated with the file
5298 upl_offset
= start_pg
* PAGE_SIZE
;
5299 io_size
= (last_pg
- start_pg
) * PAGE_SIZE
;
5301 if ((off_t
)(upl_f_offset
+ upl_offset
+ io_size
) > filesize
)
5302 io_size
= filesize
- (upl_f_offset
+ upl_offset
);
5305 * issue an asynchronous read to cluster_io
5307 retval
= cluster_io(vp
, upl
, upl_offset
, upl_f_offset
+ upl_offset
, io_size
,
5308 CL_ASYNC
| CL_READ
| CL_COMMIT
| CL_AGE
| bflag
, (buf_t
)NULL
, (struct clios
*)NULL
, callback
, callback_arg
);
5314 ubc_upl_abort(upl
, 0);
5316 io_size
= upl_size
- start_offset
;
5318 if (io_size
> resid
)
5320 f_offset
+= io_size
;
5324 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 60)) | DBG_FUNC_END
,
5325 (int)f_offset
, resid
, retval
, 0, 0);
5332 cluster_push(vnode_t vp
, int flags
)
5334 return cluster_push_ext(vp
, flags
, NULL
, NULL
);
5339 cluster_push_ext(vnode_t vp
, int flags
, int (*callback
)(buf_t
, void *), void *callback_arg
)
5341 return cluster_push_err(vp
, flags
, callback
, callback_arg
, NULL
);
5344 /* write errors via err, but return the number of clusters written */
5346 cluster_push_err(vnode_t vp
, int flags
, int (*callback
)(buf_t
, void *), void *callback_arg
, int *err
)
5349 int my_sparse_wait
= 0;
5350 struct cl_writebehind
*wbp
;
5355 if ( !UBCINFOEXISTS(vp
)) {
5356 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 53)) | DBG_FUNC_NONE
, kdebug_vnode(vp
), flags
, 0, -1, 0);
5359 /* return if deferred write is set */
5360 if (((unsigned int)vfs_flags(vp
->v_mount
) & MNT_DEFWRITE
) && (flags
& IO_DEFWRITE
)) {
5363 if ((wbp
= cluster_get_wbp(vp
, CLW_RETURNLOCKED
)) == NULL
) {
5364 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 53)) | DBG_FUNC_NONE
, kdebug_vnode(vp
), flags
, 0, -2, 0);
5367 if (!ISSET(flags
, IO_SYNC
) && wbp
->cl_number
== 0 && wbp
->cl_scmap
== NULL
) {
5368 lck_mtx_unlock(&wbp
->cl_lockw
);
5370 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 53)) | DBG_FUNC_NONE
, kdebug_vnode(vp
), flags
, 0, -3, 0);
5373 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 53)) | DBG_FUNC_START
,
5374 wbp
->cl_scmap
, wbp
->cl_number
, flags
, 0, 0);
5377 * if we have an fsync in progress, we don't want to allow any additional
5378 * sync/fsync/close(s) to occur until it finishes.
5379 * note that its possible for writes to continue to occur to this file
5380 * while we're waiting and also once the fsync starts to clean if we're
5381 * in the sparse map case
5383 while (wbp
->cl_sparse_wait
) {
5384 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 97)) | DBG_FUNC_START
, kdebug_vnode(vp
), 0, 0, 0, 0);
5386 msleep((caddr_t
)&wbp
->cl_sparse_wait
, &wbp
->cl_lockw
, PRIBIO
+ 1, "cluster_push_ext", NULL
);
5388 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 97)) | DBG_FUNC_END
, kdebug_vnode(vp
), 0, 0, 0, 0);
5390 if (flags
& IO_SYNC
) {
5392 wbp
->cl_sparse_wait
= 1;
5395 * this is an fsync (or equivalent)... we must wait for any existing async
5396 * cleaning operations to complete before we evaulate the current state
5397 * and finish cleaning... this insures that all writes issued before this
5398 * fsync actually get cleaned to the disk before this fsync returns
5400 while (wbp
->cl_sparse_pushes
) {
5401 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 98)) | DBG_FUNC_START
, kdebug_vnode(vp
), 0, 0, 0, 0);
5403 msleep((caddr_t
)&wbp
->cl_sparse_pushes
, &wbp
->cl_lockw
, PRIBIO
+ 1, "cluster_push_ext", NULL
);
5405 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 98)) | DBG_FUNC_END
, kdebug_vnode(vp
), 0, 0, 0, 0);
5408 if (wbp
->cl_scmap
) {
5411 if (wbp
->cl_sparse_pushes
< SPARSE_PUSH_LIMIT
) {
5413 scmap
= wbp
->cl_scmap
;
5414 wbp
->cl_scmap
= NULL
;
5416 wbp
->cl_sparse_pushes
++;
5418 lck_mtx_unlock(&wbp
->cl_lockw
);
5420 retval
= sparse_cluster_push(&scmap
, vp
, ubc_getsize(vp
), PUSH_ALL
, flags
, callback
, callback_arg
);
5422 lck_mtx_lock(&wbp
->cl_lockw
);
5424 wbp
->cl_sparse_pushes
--;
5426 if (wbp
->cl_sparse_wait
&& wbp
->cl_sparse_pushes
== 0)
5427 wakeup((caddr_t
)&wbp
->cl_sparse_pushes
);
5429 retval
= sparse_cluster_push(&(wbp
->cl_scmap
), vp
, ubc_getsize(vp
), PUSH_ALL
, flags
, callback
, callback_arg
);
5435 retval
= cluster_try_push(wbp
, vp
, ubc_getsize(vp
), PUSH_ALL
, flags
, callback
, callback_arg
, err
);
5437 lck_mtx_unlock(&wbp
->cl_lockw
);
5439 if (flags
& IO_SYNC
)
5440 (void)vnode_waitforwrites(vp
, 0, 0, 0, "cluster_push");
5442 if (my_sparse_wait
) {
5444 * I'm the owner of the serialization token
5445 * clear it and wakeup anyone that is waiting
5448 lck_mtx_lock(&wbp
->cl_lockw
);
5450 wbp
->cl_sparse_wait
= 0;
5451 wakeup((caddr_t
)&wbp
->cl_sparse_wait
);
5453 lck_mtx_unlock(&wbp
->cl_lockw
);
5455 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 53)) | DBG_FUNC_END
,
5456 wbp
->cl_scmap
, wbp
->cl_number
, retval
, 0, 0);
5462 __private_extern__
void
5463 cluster_release(struct ubc_info
*ubc
)
5465 struct cl_writebehind
*wbp
;
5466 struct cl_readahead
*rap
;
5468 if ((wbp
= ubc
->cl_wbehind
)) {
5470 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 81)) | DBG_FUNC_START
, ubc
, wbp
->cl_scmap
, 0, 0, 0);
5473 vfs_drt_control(&(wbp
->cl_scmap
), 0);
5475 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 81)) | DBG_FUNC_START
, ubc
, 0, 0, 0, 0);
5478 rap
= ubc
->cl_rahead
;
5481 lck_mtx_destroy(&wbp
->cl_lockw
, cl_mtx_grp
);
5482 FREE_ZONE((void *)wbp
, sizeof *wbp
, M_CLWRBEHIND
);
5484 if ((rap
= ubc
->cl_rahead
)) {
5485 lck_mtx_destroy(&rap
->cl_lockr
, cl_mtx_grp
);
5486 FREE_ZONE((void *)rap
, sizeof *rap
, M_CLRDAHEAD
);
5488 ubc
->cl_rahead
= NULL
;
5489 ubc
->cl_wbehind
= NULL
;
5491 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 81)) | DBG_FUNC_END
, ubc
, rap
, wbp
, 0, 0);
5496 cluster_try_push(struct cl_writebehind
*wbp
, vnode_t vp
, off_t EOF
, int push_flag
, int io_flags
, int (*callback
)(buf_t
, void *), void *callback_arg
, int *err
)
5503 struct cl_wextent l_clusters
[MAX_CLUSTERS
];
5504 u_int max_cluster_pgcount
;
5507 max_cluster_pgcount
= MAX_CLUSTER_SIZE(vp
) / PAGE_SIZE
;
5509 * the write behind context exists and has
5510 * already been locked...
5512 if (wbp
->cl_number
== 0)
5514 * no clusters to push
5515 * return number of empty slots
5517 return (MAX_CLUSTERS
);
5520 * make a local 'sorted' copy of the clusters
5521 * and clear wbp->cl_number so that new clusters can
5524 for (cl_index
= 0; cl_index
< wbp
->cl_number
; cl_index
++) {
5525 for (min_index
= -1, cl_index1
= 0; cl_index1
< wbp
->cl_number
; cl_index1
++) {
5526 if (wbp
->cl_clusters
[cl_index1
].b_addr
== wbp
->cl_clusters
[cl_index1
].e_addr
)
5528 if (min_index
== -1)
5529 min_index
= cl_index1
;
5530 else if (wbp
->cl_clusters
[cl_index1
].b_addr
< wbp
->cl_clusters
[min_index
].b_addr
)
5531 min_index
= cl_index1
;
5533 if (min_index
== -1)
5536 l_clusters
[cl_index
].b_addr
= wbp
->cl_clusters
[min_index
].b_addr
;
5537 l_clusters
[cl_index
].e_addr
= wbp
->cl_clusters
[min_index
].e_addr
;
5538 l_clusters
[cl_index
].io_flags
= wbp
->cl_clusters
[min_index
].io_flags
;
5540 wbp
->cl_clusters
[min_index
].b_addr
= wbp
->cl_clusters
[min_index
].e_addr
;
5546 /* skip switching to the sparse cluster mechanism if on diskimage */
5547 if ( ((push_flag
& PUSH_DELAY
) && cl_len
== MAX_CLUSTERS
) &&
5548 !(vp
->v_mount
->mnt_kern_flag
& MNTK_VIRTUALDEV
) ) {
5552 * determine if we appear to be writing the file sequentially
5553 * if not, by returning without having pushed any clusters
5554 * we will cause this vnode to be pushed into the sparse cluster mechanism
5555 * used for managing more random I/O patterns
5557 * we know that we've got all clusters currently in use and the next write doesn't fit into one of them...
5558 * that's why we're in try_push with PUSH_DELAY...
5560 * check to make sure that all the clusters except the last one are 'full'... and that each cluster
5561 * is adjacent to the next (i.e. we're looking for sequential writes) they were sorted above
5562 * so we can just make a simple pass through, up to, but not including the last one...
5563 * note that e_addr is not inclusive, so it will be equal to the b_addr of the next cluster if they
5566 * we let the last one be partial as long as it was adjacent to the previous one...
5567 * we need to do this to deal with multi-threaded servers that might write an I/O or 2 out
5568 * of order... if this occurs at the tail of the last cluster, we don't want to fall into the sparse cluster world...
5570 for (i
= 0; i
< MAX_CLUSTERS
- 1; i
++) {
5571 if ((l_clusters
[i
].e_addr
- l_clusters
[i
].b_addr
) != max_cluster_pgcount
)
5573 if (l_clusters
[i
].e_addr
!= l_clusters
[i
+1].b_addr
)
5577 for (cl_index
= 0; cl_index
< cl_len
; cl_index
++) {
5579 struct cl_extent cl
;
5582 flags
= io_flags
& (IO_PASSIVE
|IO_CLOSE
);
5585 * try to push each cluster in turn...
5587 if (l_clusters
[cl_index
].io_flags
& CLW_IONOCACHE
)
5588 flags
|= IO_NOCACHE
;
5590 if (l_clusters
[cl_index
].io_flags
& CLW_IOPASSIVE
)
5591 flags
|= IO_PASSIVE
;
5593 if (push_flag
& PUSH_SYNC
)
5596 cl
.b_addr
= l_clusters
[cl_index
].b_addr
;
5597 cl
.e_addr
= l_clusters
[cl_index
].e_addr
;
5599 retval
= cluster_push_now(vp
, &cl
, EOF
, flags
, callback
, callback_arg
);
5601 if (error
== 0 && retval
)
5604 l_clusters
[cl_index
].b_addr
= 0;
5605 l_clusters
[cl_index
].e_addr
= 0;
5609 if ( !(push_flag
& PUSH_ALL
) )
5616 if (cl_len
> cl_pushed
) {
5618 * we didn't push all of the clusters, so
5619 * lets try to merge them back in to the vnode
5621 if ((MAX_CLUSTERS
- wbp
->cl_number
) < (cl_len
- cl_pushed
)) {
5623 * we picked up some new clusters while we were trying to
5624 * push the old ones... this can happen because I've dropped
5625 * the vnode lock... the sum of the
5626 * leftovers plus the new cluster count exceeds our ability
5627 * to represent them, so switch to the sparse cluster mechanism
5629 * collect the active public clusters...
5631 sparse_cluster_switch(wbp
, vp
, EOF
, callback
, callback_arg
);
5633 for (cl_index
= 0, cl_index1
= 0; cl_index
< cl_len
; cl_index
++) {
5634 if (l_clusters
[cl_index
].b_addr
== l_clusters
[cl_index
].e_addr
)
5636 wbp
->cl_clusters
[cl_index1
].b_addr
= l_clusters
[cl_index
].b_addr
;
5637 wbp
->cl_clusters
[cl_index1
].e_addr
= l_clusters
[cl_index
].e_addr
;
5638 wbp
->cl_clusters
[cl_index1
].io_flags
= l_clusters
[cl_index
].io_flags
;
5643 * update the cluster count
5645 wbp
->cl_number
= cl_index1
;
5648 * and collect the original clusters that were moved into the
5649 * local storage for sorting purposes
5651 sparse_cluster_switch(wbp
, vp
, EOF
, callback
, callback_arg
);
5655 * we've got room to merge the leftovers back in
5656 * just append them starting at the next 'hole'
5657 * represented by wbp->cl_number
5659 for (cl_index
= 0, cl_index1
= wbp
->cl_number
; cl_index
< cl_len
; cl_index
++) {
5660 if (l_clusters
[cl_index
].b_addr
== l_clusters
[cl_index
].e_addr
)
5663 wbp
->cl_clusters
[cl_index1
].b_addr
= l_clusters
[cl_index
].b_addr
;
5664 wbp
->cl_clusters
[cl_index1
].e_addr
= l_clusters
[cl_index
].e_addr
;
5665 wbp
->cl_clusters
[cl_index1
].io_flags
= l_clusters
[cl_index
].io_flags
;
5670 * update the cluster count
5672 wbp
->cl_number
= cl_index1
;
5675 return (MAX_CLUSTERS
- wbp
->cl_number
);
5681 cluster_push_now(vnode_t vp
, struct cl_extent
*cl
, off_t EOF
, int flags
, int (*callback
)(buf_t
, void *), void *callback_arg
)
5683 upl_page_info_t
*pl
;
5685 vm_offset_t upl_offset
;
5700 if (flags
& IO_PASSIVE
)
5705 if (flags
& IO_SKIP_ENCRYPTION
)
5706 bflag
|= CL_ENCRYPTED
;
5708 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 51)) | DBG_FUNC_START
,
5709 (int)cl
->b_addr
, (int)cl
->e_addr
, (int)EOF
, flags
, 0);
5711 if ((pages_in_upl
= (int)(cl
->e_addr
- cl
->b_addr
)) == 0) {
5712 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 51)) | DBG_FUNC_END
, 1, 0, 0, 0, 0);
5716 upl_size
= pages_in_upl
* PAGE_SIZE
;
5717 upl_f_offset
= (off_t
)(cl
->b_addr
* PAGE_SIZE_64
);
5719 if (upl_f_offset
+ upl_size
>= EOF
) {
5721 if (upl_f_offset
>= EOF
) {
5723 * must have truncated the file and missed
5724 * clearing a dangling cluster (i.e. it's completely
5725 * beyond the new EOF
5727 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 51)) | DBG_FUNC_END
, 1, 1, 0, 0, 0);
5731 size
= EOF
- upl_f_offset
;
5733 upl_size
= (size
+ (PAGE_SIZE
- 1)) & ~PAGE_MASK
;
5734 pages_in_upl
= upl_size
/ PAGE_SIZE
;
5738 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 41)) | DBG_FUNC_START
, upl_size
, size
, 0, 0, 0);
5741 * by asking for UPL_COPYOUT_FROM and UPL_RET_ONLY_DIRTY, we get the following desirable behavior
5743 * - only pages that are currently dirty are returned... these are the ones we need to clean
5744 * - the hardware dirty bit is cleared when the page is gathered into the UPL... the software dirty bit is set
5745 * - if we have to abort the I/O for some reason, the software dirty bit is left set since we didn't clean the page
5746 * - when we commit the page, the software dirty bit is cleared... the hardware dirty bit is untouched so that if
5747 * someone dirties this page while the I/O is in progress, we don't lose track of the new state
5749 * when the I/O completes, we no longer ask for an explicit clear of the DIRTY state (either soft or hard)
5752 if ((vp
->v_flag
& VNOCACHE_DATA
) || (flags
& IO_NOCACHE
))
5753 upl_flags
= UPL_COPYOUT_FROM
| UPL_RET_ONLY_DIRTY
| UPL_SET_LITE
| UPL_WILL_BE_DUMPED
;
5755 upl_flags
= UPL_COPYOUT_FROM
| UPL_RET_ONLY_DIRTY
| UPL_SET_LITE
;
5757 kret
= ubc_create_upl(vp
,
5763 if (kret
!= KERN_SUCCESS
)
5764 panic("cluster_push: failed to get pagelist");
5766 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 41)) | DBG_FUNC_END
, upl
, upl_f_offset
, 0, 0, 0);
5769 * since we only asked for the dirty pages back
5770 * it's possible that we may only get a few or even none, so...
5771 * before we start marching forward, we must make sure we know
5772 * where the last present page is in the UPL, otherwise we could
5773 * end up working with a freed upl due to the FREE_ON_EMPTY semantics
5774 * employed by commit_range and abort_range.
5776 for (last_pg
= pages_in_upl
- 1; last_pg
>= 0; last_pg
--) {
5777 if (upl_page_present(pl
, last_pg
))
5780 pages_in_upl
= last_pg
+ 1;
5782 if (pages_in_upl
== 0) {
5783 ubc_upl_abort(upl
, 0);
5785 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 51)) | DBG_FUNC_END
, 1, 2, 0, 0, 0);
5789 for (last_pg
= 0; last_pg
< pages_in_upl
; ) {
5791 * find the next dirty page in the UPL
5792 * this will become the first page in the
5793 * next I/O to generate
5795 for (start_pg
= last_pg
; start_pg
< pages_in_upl
; start_pg
++) {
5796 if (upl_dirty_page(pl
, start_pg
))
5798 if (upl_page_present(pl
, start_pg
))
5800 * RET_ONLY_DIRTY will return non-dirty 'precious' pages
5801 * just release these unchanged since we're not going
5802 * to steal them or change their state
5804 ubc_upl_abort_range(upl
, start_pg
* PAGE_SIZE
, PAGE_SIZE
, UPL_ABORT_FREE_ON_EMPTY
);
5806 if (start_pg
>= pages_in_upl
)
5808 * done... no more dirty pages to push
5811 if (start_pg
> last_pg
)
5813 * skipped over some non-dirty pages
5815 size
-= ((start_pg
- last_pg
) * PAGE_SIZE
);
5818 * find a range of dirty pages to write
5820 for (last_pg
= start_pg
; last_pg
< pages_in_upl
; last_pg
++) {
5821 if (!upl_dirty_page(pl
, last_pg
))
5824 upl_offset
= start_pg
* PAGE_SIZE
;
5826 io_size
= min(size
, (last_pg
- start_pg
) * PAGE_SIZE
);
5828 io_flags
= CL_THROTTLE
| CL_COMMIT
| CL_AGE
| bflag
;
5830 if ( !(flags
& IO_SYNC
))
5831 io_flags
|= CL_ASYNC
;
5833 if (flags
& IO_CLOSE
)
5834 io_flags
|= CL_CLOSE
;
5836 if (flags
& IO_NOCACHE
)
5837 io_flags
|= CL_NOCACHE
;
5839 retval
= cluster_io(vp
, upl
, upl_offset
, upl_f_offset
+ upl_offset
, io_size
,
5840 io_flags
, (buf_t
)NULL
, (struct clios
*)NULL
, callback
, callback_arg
);
5842 if (error
== 0 && retval
)
5847 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 51)) | DBG_FUNC_END
, 1, 3, 0, 0, 0);
5854 * sparse_cluster_switch is called with the write behind lock held
5857 sparse_cluster_switch(struct cl_writebehind
*wbp
, vnode_t vp
, off_t EOF
, int (*callback
)(buf_t
, void *), void *callback_arg
)
5861 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 78)) | DBG_FUNC_START
, kdebug_vnode(vp
), wbp
->cl_scmap
, 0, 0, 0);
5863 for (cl_index
= 0; cl_index
< wbp
->cl_number
; cl_index
++) {
5865 struct cl_extent cl
;
5867 for (cl
.b_addr
= wbp
->cl_clusters
[cl_index
].b_addr
; cl
.b_addr
< wbp
->cl_clusters
[cl_index
].e_addr
; cl
.b_addr
++) {
5869 if (ubc_page_op(vp
, (off_t
)(cl
.b_addr
* PAGE_SIZE_64
), 0, NULL
, &flags
) == KERN_SUCCESS
) {
5870 if (flags
& UPL_POP_DIRTY
) {
5871 cl
.e_addr
= cl
.b_addr
+ 1;
5873 sparse_cluster_add(&(wbp
->cl_scmap
), vp
, &cl
, EOF
, callback
, callback_arg
);
5880 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 78)) | DBG_FUNC_END
, kdebug_vnode(vp
), wbp
->cl_scmap
, 0, 0, 0);
5885 * sparse_cluster_push must be called with the write-behind lock held if the scmap is
5886 * still associated with the write-behind context... however, if the scmap has been disassociated
5887 * from the write-behind context (the cluster_push case), the wb lock is not held
5890 sparse_cluster_push(void **scmap
, vnode_t vp
, off_t EOF
, int push_flag
, int io_flags
, int (*callback
)(buf_t
, void *), void *callback_arg
)
5892 struct cl_extent cl
;
5897 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 79)) | DBG_FUNC_START
, kdebug_vnode(vp
), (*scmap
), 0, push_flag
, 0);
5899 if (push_flag
& PUSH_ALL
)
5900 vfs_drt_control(scmap
, 1);
5904 if (vfs_drt_get_cluster(scmap
, &offset
, &length
) != KERN_SUCCESS
)
5907 cl
.b_addr
= (daddr64_t
)(offset
/ PAGE_SIZE_64
);
5908 cl
.e_addr
= (daddr64_t
)((offset
+ length
) / PAGE_SIZE_64
);
5910 retval
= cluster_push_now(vp
, &cl
, EOF
, io_flags
& (IO_PASSIVE
|IO_CLOSE
), callback
, callback_arg
);
5911 if (error
== 0 && retval
)
5914 if ( !(push_flag
& PUSH_ALL
) )
5917 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 79)) | DBG_FUNC_END
, kdebug_vnode(vp
), (*scmap
), 0, 0, 0);
5924 * sparse_cluster_add is called with the write behind lock held
5927 sparse_cluster_add(void **scmap
, vnode_t vp
, struct cl_extent
*cl
, off_t EOF
, int (*callback
)(buf_t
, void *), void *callback_arg
)
5933 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 80)) | DBG_FUNC_START
, (*scmap
), 0, cl
->b_addr
, (int)cl
->e_addr
, 0);
5935 offset
= (off_t
)(cl
->b_addr
* PAGE_SIZE_64
);
5936 length
= ((u_int
)(cl
->e_addr
- cl
->b_addr
)) * PAGE_SIZE
;
5938 while (vfs_drt_mark_pages(scmap
, offset
, length
, &new_dirty
) != KERN_SUCCESS
) {
5940 * no room left in the map
5941 * only a partial update was done
5942 * push out some pages and try again
5944 sparse_cluster_push(scmap
, vp
, EOF
, 0, 0, callback
, callback_arg
);
5946 offset
+= (new_dirty
* PAGE_SIZE_64
);
5947 length
-= (new_dirty
* PAGE_SIZE
);
5949 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 80)) | DBG_FUNC_END
, kdebug_vnode(vp
), (*scmap
), 0, 0, 0);
5954 cluster_align_phys_io(vnode_t vp
, struct uio
*uio
, addr64_t usr_paddr
, u_int32_t xsize
, int flags
, int (*callback
)(buf_t
, void *), void *callback_arg
)
5956 upl_page_info_t
*pl
;
5966 if (flags
& IO_PASSIVE
)
5971 if (flags
& IO_NOCACHE
)
5972 bflag
|= CL_NOCACHE
;
5974 upl_flags
= UPL_SET_LITE
;
5976 if ( !(flags
& CL_READ
) ) {
5978 * "write" operation: let the UPL subsystem know
5979 * that we intend to modify the buffer cache pages
5982 upl_flags
|= UPL_WILL_MODIFY
;
5985 * indicate that there is no need to pull the
5986 * mapping for this page... we're only going
5987 * to read from it, not modify it.
5989 upl_flags
|= UPL_FILE_IO
;
5991 kret
= ubc_create_upl(vp
,
5992 uio
->uio_offset
& ~PAGE_MASK_64
,
5998 if (kret
!= KERN_SUCCESS
)
6001 if (!upl_valid_page(pl
, 0)) {
6003 * issue a synchronous read to cluster_io
6005 error
= cluster_io(vp
, upl
, 0, uio
->uio_offset
& ~PAGE_MASK_64
, PAGE_SIZE
,
6006 CL_READ
| bflag
, (buf_t
)NULL
, (struct clios
*)NULL
, callback
, callback_arg
);
6008 ubc_upl_abort_range(upl
, 0, PAGE_SIZE
, UPL_ABORT_DUMP_PAGES
| UPL_ABORT_FREE_ON_EMPTY
);
6014 ubc_paddr
= ((addr64_t
)upl_phys_page(pl
, 0) << PAGE_SHIFT
) + (addr64_t
)(uio
->uio_offset
& PAGE_MASK_64
);
6017 * NOTE: There is no prototype for the following in BSD. It, and the definitions
6018 * of the defines for cppvPsrc, cppvPsnk, cppvFsnk, and cppvFsrc will be found in
6019 * osfmk/ppc/mappings.h. They are not included here because there appears to be no
6020 * way to do so without exporting them to kexts as well.
6022 if (flags
& CL_READ
)
6023 // copypv(ubc_paddr, usr_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsnk); /* Copy physical to physical and flush the destination */
6024 copypv(ubc_paddr
, usr_paddr
, xsize
, 2 | 1 | 4); /* Copy physical to physical and flush the destination */
6026 // copypv(usr_paddr, ubc_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsrc); /* Copy physical to physical and flush the source */
6027 copypv(usr_paddr
, ubc_paddr
, xsize
, 2 | 1 | 8); /* Copy physical to physical and flush the source */
6029 if ( !(flags
& CL_READ
) || (upl_valid_page(pl
, 0) && upl_dirty_page(pl
, 0))) {
6031 * issue a synchronous write to cluster_io
6033 error
= cluster_io(vp
, upl
, 0, uio
->uio_offset
& ~PAGE_MASK_64
, PAGE_SIZE
,
6034 bflag
, (buf_t
)NULL
, (struct clios
*)NULL
, callback
, callback_arg
);
6037 uio_update(uio
, (user_size_t
)xsize
);
6040 abort_flags
= UPL_ABORT_FREE_ON_EMPTY
;
6042 abort_flags
= UPL_ABORT_FREE_ON_EMPTY
| UPL_ABORT_DUMP_PAGES
;
6044 ubc_upl_abort_range(upl
, 0, PAGE_SIZE
, abort_flags
);
6050 cluster_copy_upl_data(struct uio
*uio
, upl_t upl
, int upl_offset
, int *io_resid
)
6058 upl_page_info_t
*pl
;
6063 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 34)) | DBG_FUNC_START
,
6064 (int)uio
->uio_offset
, upl_offset
, xsize
, 0, 0);
6066 segflg
= uio
->uio_segflg
;
6070 case UIO_USERSPACE32
:
6071 case UIO_USERISPACE32
:
6072 uio
->uio_segflg
= UIO_PHYS_USERSPACE32
;
6076 case UIO_USERISPACE
:
6077 uio
->uio_segflg
= UIO_PHYS_USERSPACE
;
6080 case UIO_USERSPACE64
:
6081 case UIO_USERISPACE64
:
6082 uio
->uio_segflg
= UIO_PHYS_USERSPACE64
;
6086 uio
->uio_segflg
= UIO_PHYS_SYSSPACE
;
6090 pl
= ubc_upl_pageinfo(upl
);
6092 pg_index
= upl_offset
/ PAGE_SIZE
;
6093 pg_offset
= upl_offset
& PAGE_MASK
;
6094 csize
= min(PAGE_SIZE
- pg_offset
, xsize
);
6097 while (xsize
&& retval
== 0) {
6100 paddr
= ((addr64_t
)upl_phys_page(pl
, pg_index
) << PAGE_SHIFT
) + pg_offset
;
6101 if ((uio
->uio_rw
== UIO_WRITE
) && (upl_dirty_page(pl
, pg_index
) == FALSE
))
6104 retval
= uiomove64(paddr
, csize
, uio
);
6109 csize
= min(PAGE_SIZE
, xsize
);
6113 uio
->uio_segflg
= segflg
;
6115 task_update_logical_writes(current_task(), (dirty_count
* PAGE_SIZE
), TASK_WRITE_DEFERRED
, upl_lookup_vnode(upl
));
6116 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 34)) | DBG_FUNC_END
,
6117 (int)uio
->uio_offset
, xsize
, retval
, segflg
, 0);
6124 cluster_copy_ubc_data(vnode_t vp
, struct uio
*uio
, int *io_resid
, int mark_dirty
)
6127 return (cluster_copy_ubc_data_internal(vp
, uio
, io_resid
, mark_dirty
, 1));
6132 cluster_copy_ubc_data_internal(vnode_t vp
, struct uio
*uio
, int *io_resid
, int mark_dirty
, int take_reference
)
6139 memory_object_control_t control
;
6141 io_size
= *io_resid
;
6143 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 34)) | DBG_FUNC_START
,
6144 (int)uio
->uio_offset
, io_size
, mark_dirty
, take_reference
, 0);
6146 control
= ubc_getobject(vp
, UBC_FLAGS_NONE
);
6148 if (control
== MEMORY_OBJECT_CONTROL_NULL
) {
6149 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 34)) | DBG_FUNC_END
,
6150 (int)uio
->uio_offset
, io_size
, retval
, 3, 0);
6154 segflg
= uio
->uio_segflg
;
6158 case UIO_USERSPACE32
:
6159 case UIO_USERISPACE32
:
6160 uio
->uio_segflg
= UIO_PHYS_USERSPACE32
;
6163 case UIO_USERSPACE64
:
6164 case UIO_USERISPACE64
:
6165 uio
->uio_segflg
= UIO_PHYS_USERSPACE64
;
6169 case UIO_USERISPACE
:
6170 uio
->uio_segflg
= UIO_PHYS_USERSPACE
;
6174 uio
->uio_segflg
= UIO_PHYS_SYSSPACE
;
6178 if ( (io_size
= *io_resid
) ) {
6179 start_offset
= (int)(uio
->uio_offset
& PAGE_MASK_64
);
6180 xsize
= uio_resid(uio
);
6182 retval
= memory_object_control_uiomove(control
, uio
->uio_offset
- start_offset
, uio
,
6183 start_offset
, io_size
, mark_dirty
, take_reference
);
6184 xsize
-= uio_resid(uio
);
6187 uio
->uio_segflg
= segflg
;
6188 *io_resid
= io_size
;
6190 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 34)) | DBG_FUNC_END
,
6191 (int)uio
->uio_offset
, io_size
, retval
, 0x80000000 | segflg
, 0);
6198 is_file_clean(vnode_t vp
, off_t filesize
)
6202 int total_dirty
= 0;
6204 for (f_offset
= 0; f_offset
< filesize
; f_offset
+= PAGE_SIZE_64
) {
6205 if (ubc_page_op(vp
, f_offset
, 0, NULL
, &flags
) == KERN_SUCCESS
) {
6206 if (flags
& UPL_POP_DIRTY
) {
6220 * Dirty region tracking/clustering mechanism.
6222 * This code (vfs_drt_*) provides a mechanism for tracking and clustering
6223 * dirty regions within a larger space (file). It is primarily intended to
6224 * support clustering in large files with many dirty areas.
6226 * The implementation assumes that the dirty regions are pages.
6228 * To represent dirty pages within the file, we store bit vectors in a
6229 * variable-size circular hash.
6233 * Bitvector size. This determines the number of pages we group in a
6234 * single hashtable entry. Each hashtable entry is aligned to this
6235 * size within the file.
6237 #define DRT_BITVECTOR_PAGES ((1024 * 1024) / PAGE_SIZE)
6240 * File offset handling.
6242 * DRT_ADDRESS_MASK is dependent on DRT_BITVECTOR_PAGES;
6243 * the correct formula is (~((DRT_BITVECTOR_PAGES * PAGE_SIZE) - 1))
6245 #define DRT_ADDRESS_MASK (~((DRT_BITVECTOR_PAGES * PAGE_SIZE) - 1))
6246 #define DRT_ALIGN_ADDRESS(addr) ((addr) & DRT_ADDRESS_MASK)
6249 * Hashtable address field handling.
6251 * The low-order bits of the hashtable address are used to conserve
6254 * DRT_HASH_COUNT_MASK must be large enough to store the range
6255 * 0-DRT_BITVECTOR_PAGES inclusive, as well as have one value
6256 * to indicate that the bucket is actually unoccupied.
6258 #define DRT_HASH_GET_ADDRESS(scm, i) ((scm)->scm_hashtable[(i)].dhe_control & DRT_ADDRESS_MASK)
6259 #define DRT_HASH_SET_ADDRESS(scm, i, a) \
6261 (scm)->scm_hashtable[(i)].dhe_control = \
6262 ((scm)->scm_hashtable[(i)].dhe_control & ~DRT_ADDRESS_MASK) | DRT_ALIGN_ADDRESS(a); \
6264 #define DRT_HASH_COUNT_MASK 0x1ff
6265 #define DRT_HASH_GET_COUNT(scm, i) ((scm)->scm_hashtable[(i)].dhe_control & DRT_HASH_COUNT_MASK)
6266 #define DRT_HASH_SET_COUNT(scm, i, c) \
6268 (scm)->scm_hashtable[(i)].dhe_control = \
6269 ((scm)->scm_hashtable[(i)].dhe_control & ~DRT_HASH_COUNT_MASK) | ((c) & DRT_HASH_COUNT_MASK); \
6271 #define DRT_HASH_CLEAR(scm, i) \
6273 (scm)->scm_hashtable[(i)].dhe_control = 0; \
6275 #define DRT_HASH_VACATE(scm, i) DRT_HASH_SET_COUNT((scm), (i), DRT_HASH_COUNT_MASK)
6276 #define DRT_HASH_VACANT(scm, i) (DRT_HASH_GET_COUNT((scm), (i)) == DRT_HASH_COUNT_MASK)
6277 #define DRT_HASH_COPY(oscm, oi, scm, i) \
6279 (scm)->scm_hashtable[(i)].dhe_control = (oscm)->scm_hashtable[(oi)].dhe_control; \
6280 DRT_BITVECTOR_COPY(oscm, oi, scm, i); \
6285 * Hash table moduli.
6287 * Since the hashtable entry's size is dependent on the size of
6288 * the bitvector, and since the hashtable size is constrained to
6289 * both being prime and fitting within the desired allocation
6290 * size, these values need to be manually determined.
6292 * For DRT_BITVECTOR_SIZE = 256, the entry size is 40 bytes.
6294 * The small hashtable allocation is 1024 bytes, so the modulus is 23.
6295 * The large hashtable allocation is 16384 bytes, so the modulus is 401.
6297 #define DRT_HASH_SMALL_MODULUS 23
6298 #define DRT_HASH_LARGE_MODULUS 401
6301 * Physical memory required before the large hash modulus is permitted.
6303 * On small memory systems, the large hash modulus can lead to phsyical
6304 * memory starvation, so we avoid using it there.
6306 #define DRT_HASH_LARGE_MEMORY_REQUIRED (1024LL * 1024LL * 1024LL) /* 1GiB */
6308 #define DRT_SMALL_ALLOCATION 1024 /* 104 bytes spare */
6309 #define DRT_LARGE_ALLOCATION 16384 /* 344 bytes spare */
6311 /* *** nothing below here has secret dependencies on DRT_BITVECTOR_PAGES *** */
6314 * Hashtable bitvector handling.
6316 * Bitvector fields are 32 bits long.
6319 #define DRT_HASH_SET_BIT(scm, i, bit) \
6320 (scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] |= (1 << ((bit) % 32))
6322 #define DRT_HASH_CLEAR_BIT(scm, i, bit) \
6323 (scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] &= ~(1 << ((bit) % 32))
6325 #define DRT_HASH_TEST_BIT(scm, i, bit) \
6326 ((scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] & (1 << ((bit) % 32)))
6328 #define DRT_BITVECTOR_CLEAR(scm, i) \
6329 bzero(&(scm)->scm_hashtable[(i)].dhe_bitvector[0], (DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t))
6331 #define DRT_BITVECTOR_COPY(oscm, oi, scm, i) \
6332 bcopy(&(oscm)->scm_hashtable[(oi)].dhe_bitvector[0], \
6333 &(scm)->scm_hashtable[(i)].dhe_bitvector[0], \
6334 (DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t))
6341 struct vfs_drt_hashentry
{
6342 u_int64_t dhe_control
;
6344 * dhe_bitvector was declared as dhe_bitvector[DRT_BITVECTOR_PAGES / 32];
6345 * DRT_BITVECTOR_PAGES is defined as ((1024 * 1024) / PAGE_SIZE)
6346 * Since PAGE_SIZE is only known at boot time,
6347 * -define MAX_DRT_BITVECTOR_PAGES for smallest supported page size (4k)
6348 * -declare dhe_bitvector array for largest possible length
6350 #define MAX_DRT_BITVECTOR_PAGES (1024 * 1024)/( 4 * 1024)
6351 u_int32_t dhe_bitvector
[MAX_DRT_BITVECTOR_PAGES
/32];
6355 * Dirty Region Tracking structure.
6357 * The hashtable is allocated entirely inside the DRT structure.
6359 * The hash is a simple circular prime modulus arrangement, the structure
6360 * is resized from small to large if it overflows.
6363 struct vfs_drt_clustermap
{
6364 u_int32_t scm_magic
; /* sanity/detection */
6365 #define DRT_SCM_MAGIC 0x12020003
6366 u_int32_t scm_modulus
; /* current ring size */
6367 u_int32_t scm_buckets
; /* number of occupied buckets */
6368 u_int32_t scm_lastclean
; /* last entry we cleaned */
6369 u_int32_t scm_iskips
; /* number of slot skips */
6371 struct vfs_drt_hashentry scm_hashtable
[0];
6375 #define DRT_HASH(scm, addr) ((addr) % (scm)->scm_modulus)
6376 #define DRT_HASH_NEXT(scm, addr) (((addr) + 1) % (scm)->scm_modulus)
6379 * Debugging codes and arguments.
6381 #define DRT_DEBUG_EMPTYFREE (FSDBG_CODE(DBG_FSRW, 82)) /* nil */
6382 #define DRT_DEBUG_RETCLUSTER (FSDBG_CODE(DBG_FSRW, 83)) /* offset, length */
6383 #define DRT_DEBUG_ALLOC (FSDBG_CODE(DBG_FSRW, 84)) /* copycount */
6384 #define DRT_DEBUG_INSERT (FSDBG_CODE(DBG_FSRW, 85)) /* offset, iskip */
6385 #define DRT_DEBUG_MARK (FSDBG_CODE(DBG_FSRW, 86)) /* offset, length,
6388 /* 1 (clean, no map) */
6389 /* 2 (map alloc fail) */
6390 /* 3, resid (partial) */
6391 #define DRT_DEBUG_6 (FSDBG_CODE(DBG_FSRW, 87))
6392 #define DRT_DEBUG_SCMDATA (FSDBG_CODE(DBG_FSRW, 88)) /* modulus, buckets,
6393 * lastclean, iskips */
6396 static kern_return_t
vfs_drt_alloc_map(struct vfs_drt_clustermap
**cmapp
);
6397 static kern_return_t
vfs_drt_free_map(struct vfs_drt_clustermap
*cmap
);
6398 static kern_return_t
vfs_drt_search_index(struct vfs_drt_clustermap
*cmap
,
6399 u_int64_t offset
, int *indexp
);
6400 static kern_return_t
vfs_drt_get_index(struct vfs_drt_clustermap
**cmapp
,
6404 static kern_return_t
vfs_drt_do_mark_pages(
6410 static void vfs_drt_trace(
6411 struct vfs_drt_clustermap
*cmap
,
6420 * Allocate and initialise a sparse cluster map.
6422 * Will allocate a new map, resize or compact an existing map.
6424 * XXX we should probably have at least one intermediate map size,
6425 * as the 1:16 ratio seems a bit drastic.
6427 static kern_return_t
6428 vfs_drt_alloc_map(struct vfs_drt_clustermap
**cmapp
)
6430 struct vfs_drt_clustermap
*cmap
, *ocmap
;
6434 int nsize
, active_buckets
, index
, copycount
;
6441 * Decide on the size of the new map.
6443 if (ocmap
== NULL
) {
6444 nsize
= DRT_HASH_SMALL_MODULUS
;
6446 /* count the number of active buckets in the old map */
6448 for (i
= 0; i
< ocmap
->scm_modulus
; i
++) {
6449 if (!DRT_HASH_VACANT(ocmap
, i
) &&
6450 (DRT_HASH_GET_COUNT(ocmap
, i
) != 0))
6454 * If we're currently using the small allocation, check to
6455 * see whether we should grow to the large one.
6457 if (ocmap
->scm_modulus
== DRT_HASH_SMALL_MODULUS
) {
6459 * If the ring is nearly full and we are allowed to
6460 * use the large modulus, upgrade.
6462 if ((active_buckets
> (DRT_HASH_SMALL_MODULUS
- 5)) &&
6463 (max_mem
>= DRT_HASH_LARGE_MEMORY_REQUIRED
)) {
6464 nsize
= DRT_HASH_LARGE_MODULUS
;
6466 nsize
= DRT_HASH_SMALL_MODULUS
;
6469 /* already using the large modulus */
6470 nsize
= DRT_HASH_LARGE_MODULUS
;
6472 * If the ring is completely full, there's
6473 * nothing useful for us to do. Behave as
6474 * though we had compacted into the new
6477 if (active_buckets
>= DRT_HASH_LARGE_MODULUS
)
6478 return(KERN_SUCCESS
);
6483 * Allocate and initialise the new map.
6486 kret
= kmem_alloc(kernel_map
, (vm_offset_t
*)&cmap
,
6487 (nsize
== DRT_HASH_SMALL_MODULUS
) ? DRT_SMALL_ALLOCATION
: DRT_LARGE_ALLOCATION
, VM_KERN_MEMORY_FILE
);
6488 if (kret
!= KERN_SUCCESS
)
6490 cmap
->scm_magic
= DRT_SCM_MAGIC
;
6491 cmap
->scm_modulus
= nsize
;
6492 cmap
->scm_buckets
= 0;
6493 cmap
->scm_lastclean
= 0;
6494 cmap
->scm_iskips
= 0;
6495 for (i
= 0; i
< cmap
->scm_modulus
; i
++) {
6496 DRT_HASH_CLEAR(cmap
, i
);
6497 DRT_HASH_VACATE(cmap
, i
);
6498 DRT_BITVECTOR_CLEAR(cmap
, i
);
6502 * If there's an old map, re-hash entries from it into the new map.
6505 if (ocmap
!= NULL
) {
6506 for (i
= 0; i
< ocmap
->scm_modulus
; i
++) {
6507 /* skip empty buckets */
6508 if (DRT_HASH_VACANT(ocmap
, i
) ||
6509 (DRT_HASH_GET_COUNT(ocmap
, i
) == 0))
6512 offset
= DRT_HASH_GET_ADDRESS(ocmap
, i
);
6513 kret
= vfs_drt_get_index(&cmap
, offset
, &index
, 1);
6514 if (kret
!= KERN_SUCCESS
) {
6515 /* XXX need to bail out gracefully here */
6516 panic("vfs_drt: new cluster map mysteriously too small");
6520 DRT_HASH_COPY(ocmap
, i
, cmap
, index
);
6525 /* log what we've done */
6526 vfs_drt_trace(cmap
, DRT_DEBUG_ALLOC
, copycount
, 0, 0, 0);
6529 * It's important to ensure that *cmapp always points to
6530 * a valid map, so we must overwrite it before freeing
6534 if (ocmap
!= NULL
) {
6535 /* emit stats into trace buffer */
6536 vfs_drt_trace(ocmap
, DRT_DEBUG_SCMDATA
,
6539 ocmap
->scm_lastclean
,
6542 vfs_drt_free_map(ocmap
);
6544 return(KERN_SUCCESS
);
6549 * Free a sparse cluster map.
6551 static kern_return_t
6552 vfs_drt_free_map(struct vfs_drt_clustermap
*cmap
)
6554 kmem_free(kernel_map
, (vm_offset_t
)cmap
,
6555 (cmap
->scm_modulus
== DRT_HASH_SMALL_MODULUS
) ? DRT_SMALL_ALLOCATION
: DRT_LARGE_ALLOCATION
);
6556 return(KERN_SUCCESS
);
6561 * Find the hashtable slot currently occupied by an entry for the supplied offset.
6563 static kern_return_t
6564 vfs_drt_search_index(struct vfs_drt_clustermap
*cmap
, u_int64_t offset
, int *indexp
)
6569 offset
= DRT_ALIGN_ADDRESS(offset
);
6570 index
= DRT_HASH(cmap
, offset
);
6572 /* traverse the hashtable */
6573 for (i
= 0; i
< cmap
->scm_modulus
; i
++) {
6576 * If the slot is vacant, we can stop.
6578 if (DRT_HASH_VACANT(cmap
, index
))
6582 * If the address matches our offset, we have success.
6584 if (DRT_HASH_GET_ADDRESS(cmap
, index
) == offset
) {
6586 return(KERN_SUCCESS
);
6590 * Move to the next slot, try again.
6592 index
= DRT_HASH_NEXT(cmap
, index
);
6597 return(KERN_FAILURE
);
6601 * Find the hashtable slot for the supplied offset. If we haven't allocated
6602 * one yet, allocate one and populate the address field. Note that it will
6603 * not have a nonzero page count and thus will still technically be free, so
6604 * in the case where we are called to clean pages, the slot will remain free.
6606 static kern_return_t
6607 vfs_drt_get_index(struct vfs_drt_clustermap
**cmapp
, u_int64_t offset
, int *indexp
, int recursed
)
6609 struct vfs_drt_clustermap
*cmap
;
6616 /* look for an existing entry */
6617 kret
= vfs_drt_search_index(cmap
, offset
, indexp
);
6618 if (kret
== KERN_SUCCESS
)
6621 /* need to allocate an entry */
6622 offset
= DRT_ALIGN_ADDRESS(offset
);
6623 index
= DRT_HASH(cmap
, offset
);
6625 /* scan from the index forwards looking for a vacant slot */
6626 for (i
= 0; i
< cmap
->scm_modulus
; i
++) {
6628 if (DRT_HASH_VACANT(cmap
, index
) || DRT_HASH_GET_COUNT(cmap
,index
) == 0) {
6629 cmap
->scm_buckets
++;
6630 if (index
< cmap
->scm_lastclean
)
6631 cmap
->scm_lastclean
= index
;
6632 DRT_HASH_SET_ADDRESS(cmap
, index
, offset
);
6633 DRT_HASH_SET_COUNT(cmap
, index
, 0);
6634 DRT_BITVECTOR_CLEAR(cmap
, index
);
6636 vfs_drt_trace(cmap
, DRT_DEBUG_INSERT
, (int)offset
, i
, 0, 0);
6637 return(KERN_SUCCESS
);
6639 cmap
->scm_iskips
+= i
;
6640 index
= DRT_HASH_NEXT(cmap
, index
);
6644 * We haven't found a vacant slot, so the map is full. If we're not
6645 * already recursed, try reallocating/compacting it.
6648 return(KERN_FAILURE
);
6649 kret
= vfs_drt_alloc_map(cmapp
);
6650 if (kret
== KERN_SUCCESS
) {
6651 /* now try to insert again */
6652 kret
= vfs_drt_get_index(cmapp
, offset
, indexp
, 1);
6658 * Implementation of set dirty/clean.
6660 * In the 'clean' case, not finding a map is OK.
6662 static kern_return_t
6663 vfs_drt_do_mark_pages(
6670 struct vfs_drt_clustermap
*cmap
, **cmapp
;
6672 int i
, index
, pgoff
, pgcount
, setcount
, ecount
;
6674 cmapp
= (struct vfs_drt_clustermap
**)private;
6677 vfs_drt_trace(cmap
, DRT_DEBUG_MARK
| DBG_FUNC_START
, (int)offset
, (int)length
, dirty
, 0);
6679 if (setcountp
!= NULL
)
6682 /* allocate a cluster map if we don't already have one */
6684 /* no cluster map, nothing to clean */
6686 vfs_drt_trace(cmap
, DRT_DEBUG_MARK
| DBG_FUNC_END
, 1, 0, 0, 0);
6687 return(KERN_SUCCESS
);
6689 kret
= vfs_drt_alloc_map(cmapp
);
6690 if (kret
!= KERN_SUCCESS
) {
6691 vfs_drt_trace(cmap
, DRT_DEBUG_MARK
| DBG_FUNC_END
, 2, 0, 0, 0);
6698 * Iterate over the length of the region.
6700 while (length
> 0) {
6702 * Get the hashtable index for this offset.
6704 * XXX this will add blank entries if we are clearing a range
6705 * that hasn't been dirtied.
6707 kret
= vfs_drt_get_index(cmapp
, offset
, &index
, 0);
6708 cmap
= *cmapp
; /* may have changed! */
6709 /* this may be a partial-success return */
6710 if (kret
!= KERN_SUCCESS
) {
6711 if (setcountp
!= NULL
)
6712 *setcountp
= setcount
;
6713 vfs_drt_trace(cmap
, DRT_DEBUG_MARK
| DBG_FUNC_END
, 3, (int)length
, 0, 0);
6719 * Work out how many pages we're modifying in this
6722 pgoff
= (offset
- DRT_ALIGN_ADDRESS(offset
)) / PAGE_SIZE
;
6723 pgcount
= min((length
/ PAGE_SIZE
), (DRT_BITVECTOR_PAGES
- pgoff
));
6726 * Iterate over pages, dirty/clearing as we go.
6728 ecount
= DRT_HASH_GET_COUNT(cmap
, index
);
6729 for (i
= 0; i
< pgcount
; i
++) {
6731 if (!DRT_HASH_TEST_BIT(cmap
, index
, pgoff
+ i
)) {
6732 DRT_HASH_SET_BIT(cmap
, index
, pgoff
+ i
);
6737 if (DRT_HASH_TEST_BIT(cmap
, index
, pgoff
+ i
)) {
6738 DRT_HASH_CLEAR_BIT(cmap
, index
, pgoff
+ i
);
6744 DRT_HASH_SET_COUNT(cmap
, index
, ecount
);
6746 offset
+= pgcount
* PAGE_SIZE
;
6747 length
-= pgcount
* PAGE_SIZE
;
6749 if (setcountp
!= NULL
)
6750 *setcountp
= setcount
;
6752 vfs_drt_trace(cmap
, DRT_DEBUG_MARK
| DBG_FUNC_END
, 0, setcount
, 0, 0);
6754 return(KERN_SUCCESS
);
6758 * Mark a set of pages as dirty/clean.
6760 * This is a public interface.
6763 * Pointer to storage suitable for holding a pointer. Note that
6764 * this must either be NULL or a value set by this function.
6767 * Current file size in bytes.
6770 * Offset of the first page to be marked as dirty, in bytes. Must be
6774 * Length of dirty region, in bytes. Must be a multiple of PAGE_SIZE.
6777 * Number of pages newly marked dirty by this call (optional).
6779 * Returns KERN_SUCCESS if all the pages were successfully marked.
6781 static kern_return_t
6782 vfs_drt_mark_pages(void **cmapp
, off_t offset
, u_int length
, u_int
*setcountp
)
6784 /* XXX size unused, drop from interface */
6785 return(vfs_drt_do_mark_pages(cmapp
, offset
, length
, setcountp
, 1));
6789 static kern_return_t
6790 vfs_drt_unmark_pages(void **cmapp
, off_t offset
, u_int length
)
6792 return(vfs_drt_do_mark_pages(cmapp
, offset
, length
, NULL
, 0));
6797 * Get a cluster of dirty pages.
6799 * This is a public interface.
6802 * Pointer to storage managed by drt_mark_pages. Note that this must
6803 * be NULL or a value set by drt_mark_pages.
6806 * Returns the byte offset into the file of the first page in the cluster.
6809 * Returns the length in bytes of the cluster of dirty pages.
6811 * Returns success if a cluster was found. If KERN_FAILURE is returned, there
6812 * are no dirty pages meeting the minmum size criteria. Private storage will
6813 * be released if there are no more dirty pages left in the map
6816 static kern_return_t
6817 vfs_drt_get_cluster(void **cmapp
, off_t
*offsetp
, u_int
*lengthp
)
6819 struct vfs_drt_clustermap
*cmap
;
6823 int index
, i
, fs
, ls
;
6826 if ((cmapp
== NULL
) || (*cmapp
== NULL
))
6827 return(KERN_FAILURE
);
6830 /* walk the hashtable */
6831 for (offset
= 0, j
= 0; j
< cmap
->scm_modulus
; offset
+= (DRT_BITVECTOR_PAGES
* PAGE_SIZE
), j
++) {
6832 index
= DRT_HASH(cmap
, offset
);
6834 if (DRT_HASH_VACANT(cmap
, index
) || (DRT_HASH_GET_COUNT(cmap
, index
) == 0))
6837 /* scan the bitfield for a string of bits */
6840 for (i
= 0; i
< DRT_BITVECTOR_PAGES
; i
++) {
6841 if (DRT_HASH_TEST_BIT(cmap
, index
, i
)) {
6847 /* didn't find any bits set */
6848 panic("vfs_drt: entry summary count > 0 but no bits set in map");
6850 for (ls
= 0; i
< DRT_BITVECTOR_PAGES
; i
++, ls
++) {
6851 if (!DRT_HASH_TEST_BIT(cmap
, index
, i
))
6855 /* compute offset and length, mark pages clean */
6856 offset
= DRT_HASH_GET_ADDRESS(cmap
, index
) + (PAGE_SIZE
* fs
);
6857 length
= ls
* PAGE_SIZE
;
6858 vfs_drt_do_mark_pages(cmapp
, offset
, length
, NULL
, 0);
6859 cmap
->scm_lastclean
= index
;
6861 /* return successful */
6862 *offsetp
= (off_t
)offset
;
6865 vfs_drt_trace(cmap
, DRT_DEBUG_RETCLUSTER
, (int)offset
, (int)length
, 0, 0);
6866 return(KERN_SUCCESS
);
6869 * We didn't find anything... hashtable is empty
6870 * emit stats into trace buffer and
6873 vfs_drt_trace(cmap
, DRT_DEBUG_SCMDATA
,
6876 cmap
->scm_lastclean
,
6879 vfs_drt_free_map(cmap
);
6882 return(KERN_FAILURE
);
6886 static kern_return_t
6887 vfs_drt_control(void **cmapp
, int op_type
)
6889 struct vfs_drt_clustermap
*cmap
;
6892 if ((cmapp
== NULL
) || (*cmapp
== NULL
))
6893 return(KERN_FAILURE
);
6898 /* emit stats into trace buffer */
6899 vfs_drt_trace(cmap
, DRT_DEBUG_SCMDATA
,
6902 cmap
->scm_lastclean
,
6905 vfs_drt_free_map(cmap
);
6910 cmap
->scm_lastclean
= 0;
6913 return(KERN_SUCCESS
);
6919 * Emit a summary of the state of the clustermap into the trace buffer
6920 * along with some caller-provided data.
6924 vfs_drt_trace(__unused
struct vfs_drt_clustermap
*cmap
, int code
, int arg1
, int arg2
, int arg3
, int arg4
)
6926 KERNEL_DEBUG(code
, arg1
, arg2
, arg3
, arg4
, 0);
6930 vfs_drt_trace(__unused
struct vfs_drt_clustermap
*cmap
, __unused
int code
,
6931 __unused
int arg1
, __unused
int arg2
, __unused
int arg3
,
6939 * Perform basic sanity check on the hash entry summary count
6940 * vs. the actual bits set in the entry.
6943 vfs_drt_sanity(struct vfs_drt_clustermap
*cmap
)
6948 for (index
= 0; index
< cmap
->scm_modulus
; index
++) {
6949 if (DRT_HASH_VACANT(cmap
, index
))
6952 for (bits_on
= 0, i
= 0; i
< DRT_BITVECTOR_PAGES
; i
++) {
6953 if (DRT_HASH_TEST_BIT(cmap
, index
, i
))
6956 if (bits_on
!= DRT_HASH_GET_COUNT(cmap
, index
))
6957 panic("bits_on = %d, index = %d\n", bits_on
, index
);