2 * Copyright (c) 2000-2018 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University
34 * All Rights Reserved.
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
46 * Carnegie Mellon requests users of this software to return to
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
60 * Hardware trap/fault handler.
64 #include <mach_ldebug.h>
67 #include <i386/eflags.h>
68 #include <i386/trap.h>
69 #include <i386/pmap.h>
71 #include <i386/misc_protos.h> /* panic_io_port_read() */
72 #include <i386/lapic.h>
74 #include <mach/exception.h>
75 #include <mach/kern_return.h>
76 #include <mach/vm_param.h>
77 #include <mach/i386/thread_status.h>
79 #include <vm/vm_kern.h>
80 #include <vm/vm_fault.h>
82 #include <kern/kern_types.h>
83 #include <kern/processor.h>
84 #include <kern/thread.h>
85 #include <kern/task.h>
86 #include <kern/sched.h>
87 #include <kern/sched_prim.h>
88 #include <kern/exception.h>
90 #include <kern/misc_protos.h>
91 #include <kern/debug.h>
93 #include <kern/telemetry.h>
95 #include <sys/kdebug.h>
96 #include <kperf/kperf.h>
97 #include <prng/random.h>
101 #include <i386/postcode.h>
102 #include <i386/mp_desc.h>
103 #include <i386/proc_reg.h>
105 #include <i386/machine_check.h>
107 #include <mach/i386/syscall_sw.h>
109 #include <libkern/OSDebug.h>
110 #include <i386/cpu_threads.h>
111 #include <machine/pal_routines.h>
113 extern void throttle_lowpri_io(int);
114 extern void kprint_state(x86_saved_state64_t
*saved_state
);
117 * Forward declarations
119 static void panic_trap(x86_saved_state64_t
*saved_state
, uint32_t pl
, kern_return_t fault_result
) __dead2
;
120 static void set_recovery_ip(x86_saved_state64_t
*saved_state
, vm_offset_t ip
);
123 /* See <rdar://problem/4613924> */
124 perfCallback tempDTraceTrapHook
= NULL
; /* Pointer to DTrace fbt trap hook routine */
126 extern boolean_t
dtrace_tally_fault(user_addr_t
);
129 extern boolean_t pmap_smep_enabled
;
130 extern boolean_t pmap_smap_enabled
;
132 __attribute__((noreturn
))
134 thread_syscall_return(
137 thread_t thr_act
= current_thread();
141 pal_register_cache_state(thr_act
, DIRTY
);
143 if (thread_is_64bit_addr(thr_act
)) {
144 x86_saved_state64_t
*regs
;
146 regs
= USER_REGS64(thr_act
);
148 code
= (int) (regs
->rax
& SYSCALL_NUMBER_MASK
);
149 is_mach
= (regs
->rax
& SYSCALL_CLASS_MASK
)
150 == (SYSCALL_CLASS_MACH
<< SYSCALL_CLASS_SHIFT
);
151 if (kdebug_enable
&& is_mach
) {
153 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
154 MACHDBG_CODE(DBG_MACH_EXCP_SC
, code
) | DBG_FUNC_END
,
160 DEBUG_KPRINT_SYSCALL_MACH(
161 "thread_syscall_return: 64-bit mach ret=%u\n",
164 DEBUG_KPRINT_SYSCALL_UNIX(
165 "thread_syscall_return: 64-bit unix ret=%u\n",
170 x86_saved_state32_t
*regs
;
172 regs
= USER_REGS32(thr_act
);
174 code
= ((int) regs
->eax
);
175 is_mach
= (code
< 0);
176 if (kdebug_enable
&& is_mach
) {
178 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
179 MACHDBG_CODE(DBG_MACH_EXCP_SC
, -code
) | DBG_FUNC_END
,
185 DEBUG_KPRINT_SYSCALL_MACH(
186 "thread_syscall_return: 32-bit mach ret=%u\n",
189 DEBUG_KPRINT_SYSCALL_UNIX(
190 "thread_syscall_return: 32-bit unix ret=%u\n",
196 #if DEBUG || DEVELOPMENT
197 kern_allocation_name_t
198 prior __assert_only
= thread_get_kernel_state(thr_act
)->allocation_name
;
199 assertf(prior
== NULL
, "thread_set_allocation_name(\"%s\") not cleared", kern_allocation_get_name(prior
));
200 #endif /* DEBUG || DEVELOPMENT */
202 throttle_lowpri_io(1);
204 thread_exception_return();
209 * Fault recovery in copyin/copyout routines.
212 uintptr_t fault_addr
;
213 uintptr_t recover_addr
;
216 extern struct recovery recover_table
[];
217 extern struct recovery recover_table_end
[];
219 const char * trap_type
[] = {TRAP_NAMES
};
220 unsigned TRAP_TYPES
= sizeof(trap_type
) / sizeof(trap_type
[0]);
222 extern void PE_incoming_interrupt(int interrupt
);
224 #if defined(__x86_64__) && DEBUG
226 kprint_state(x86_saved_state64_t
*saved_state
)
228 kprintf("current_cpu_datap() 0x%lx\n", (uintptr_t)current_cpu_datap());
229 kprintf("Current GS base MSR 0x%llx\n", rdmsr64(MSR_IA32_GS_BASE
));
230 kprintf("Kernel GS base MSR 0x%llx\n", rdmsr64(MSR_IA32_KERNEL_GS_BASE
));
231 kprintf("state at 0x%lx:\n", (uintptr_t) saved_state
);
233 kprintf(" rdi 0x%llx\n", saved_state
->rdi
);
234 kprintf(" rsi 0x%llx\n", saved_state
->rsi
);
235 kprintf(" rdx 0x%llx\n", saved_state
->rdx
);
236 kprintf(" r10 0x%llx\n", saved_state
->r10
);
237 kprintf(" r8 0x%llx\n", saved_state
->r8
);
238 kprintf(" r9 0x%llx\n", saved_state
->r9
);
240 kprintf(" cr2 0x%llx\n", saved_state
->cr2
);
241 kprintf("real cr2 0x%lx\n", get_cr2());
242 kprintf(" r15 0x%llx\n", saved_state
->r15
);
243 kprintf(" r14 0x%llx\n", saved_state
->r14
);
244 kprintf(" r13 0x%llx\n", saved_state
->r13
);
245 kprintf(" r12 0x%llx\n", saved_state
->r12
);
246 kprintf(" r11 0x%llx\n", saved_state
->r11
);
247 kprintf(" rbp 0x%llx\n", saved_state
->rbp
);
248 kprintf(" rbx 0x%llx\n", saved_state
->rbx
);
249 kprintf(" rcx 0x%llx\n", saved_state
->rcx
);
250 kprintf(" rax 0x%llx\n", saved_state
->rax
);
252 kprintf(" gs 0x%x\n", saved_state
->gs
);
253 kprintf(" fs 0x%x\n", saved_state
->fs
);
255 kprintf(" isf.trapno 0x%x\n", saved_state
->isf
.trapno
);
256 kprintf(" isf._pad 0x%x\n", saved_state
->isf
._pad
);
257 kprintf(" isf.trapfn 0x%llx\n", saved_state
->isf
.trapfn
);
258 kprintf(" isf.err 0x%llx\n", saved_state
->isf
.err
);
259 kprintf(" isf.rip 0x%llx\n", saved_state
->isf
.rip
);
260 kprintf(" isf.cs 0x%llx\n", saved_state
->isf
.cs
);
261 kprintf(" isf.rflags 0x%llx\n", saved_state
->isf
.rflags
);
262 kprintf(" isf.rsp 0x%llx\n", saved_state
->isf
.rsp
);
263 kprintf(" isf.ss 0x%llx\n", saved_state
->isf
.ss
);
269 * Non-zero indicates latency assert is enabled and capped at valued
270 * absolute time units.
273 uint64_t interrupt_latency_cap
= 0;
274 boolean_t ilat_assert
= FALSE
;
277 interrupt_latency_tracker_setup(void)
279 uint32_t ilat_cap_us
;
280 if (PE_parse_boot_argn("interrupt_latency_cap_us", &ilat_cap_us
, sizeof(ilat_cap_us
))) {
281 interrupt_latency_cap
= ilat_cap_us
* NSEC_PER_USEC
;
282 nanoseconds_to_absolutetime(interrupt_latency_cap
, &interrupt_latency_cap
);
284 interrupt_latency_cap
= LockTimeOut
;
286 PE_parse_boot_argn("-interrupt_latency_assert_enable", &ilat_assert
, sizeof(ilat_assert
));
290 interrupt_reset_latency_stats(void)
293 for (i
= 0; i
< real_ncpus
; i
++) {
294 cpu_data_ptr
[i
]->cpu_max_observed_int_latency
=
295 cpu_data_ptr
[i
]->cpu_max_observed_int_latency_vector
= 0;
300 interrupt_populate_latency_stats(char *buf
, unsigned bufsize
)
302 uint32_t i
, tcpu
= ~0;
303 uint64_t cur_max
= 0;
305 for (i
= 0; i
< real_ncpus
; i
++) {
306 if (cur_max
< cpu_data_ptr
[i
]->cpu_max_observed_int_latency
) {
307 cur_max
= cpu_data_ptr
[i
]->cpu_max_observed_int_latency
;
312 if (tcpu
< real_ncpus
) {
313 snprintf(buf
, bufsize
, "0x%x 0x%x 0x%llx", tcpu
, cpu_data_ptr
[tcpu
]->cpu_max_observed_int_latency_vector
, cpu_data_ptr
[tcpu
]->cpu_max_observed_int_latency
);
317 uint32_t interrupt_timer_coalescing_enabled
= 1;
318 uint64_t interrupt_coalesced_timers
;
322 * - local APIC interrupts (IPIs, timers, etc) are handled by the kernel,
323 * - device interrupts go to the platform expert.
326 interrupt(x86_saved_state_t
*state
)
331 boolean_t user_mode
= FALSE
;
333 int cnum
= cpu_number();
334 cpu_data_t
*cdp
= cpu_data_ptr
[cnum
];
335 int itype
= DBG_INTR_TYPE_UNKNOWN
;
338 x86_saved_state64_t
*state64
= saved_state64(state
);
339 rip
= state64
->isf
.rip
;
340 rsp
= state64
->isf
.rsp
;
341 interrupt_num
= state64
->isf
.trapno
;
342 if (state64
->isf
.cs
& 0x03) {
346 #if DEVELOPMENT || DEBUG
347 uint64_t frameptr
= is_saved_state64(state
) ? state64
->rbp
: saved_state32(state
)->ebp
;
348 uint32_t traptrace_index
= traptrace_start(interrupt_num
, rip
, mach_absolute_time(), frameptr
);
351 if (cpu_data_ptr
[cnum
]->lcpu
.package
->num_idle
== topoParms
.nLThreadsPerPackage
) {
352 cpu_data_ptr
[cnum
]->cpu_hwIntpexits
[interrupt_num
]++;
355 if (interrupt_num
== (LAPIC_DEFAULT_INTERRUPT_BASE
+ LAPIC_INTERPROCESSOR_INTERRUPT
)) {
356 itype
= DBG_INTR_TYPE_IPI
;
357 } else if (interrupt_num
== (LAPIC_DEFAULT_INTERRUPT_BASE
+ LAPIC_TIMER_INTERRUPT
)) {
358 itype
= DBG_INTR_TYPE_TIMER
;
360 itype
= DBG_INTR_TYPE_OTHER
;
363 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
364 MACHDBG_CODE(DBG_MACH_EXCP_INTR
, 0) | DBG_FUNC_START
,
366 (user_mode
? rip
: VM_KERNEL_UNSLIDE(rip
)),
367 user_mode
, itype
, 0);
369 SCHED_STATS_INTERRUPT(current_processor());
372 if (telemetry_needs_record
) {
373 telemetry_mark_curthread(user_mode
, FALSE
);
377 ipl
= get_preemption_level();
380 * Handle local APIC interrupts
381 * else call platform expert for devices.
383 handled
= lapic_interrupt(interrupt_num
, state
);
386 if (interrupt_num
== (LAPIC_DEFAULT_INTERRUPT_BASE
+ LAPIC_CMCI_INTERRUPT
)) {
388 * CMCI can be signalled on any logical processor, and the kexts
389 * that implement handling CMCI use IOKit to register handlers for
390 * the CMCI vector, so if we see a CMCI, do not encode a CPU
391 * number in bits 8:31 (since the vector is the same regardless of
394 PE_incoming_interrupt(interrupt_num
);
395 } else if (cnum
<= lapic_max_interrupt_cpunum
) {
396 PE_incoming_interrupt((cnum
<< 8) | interrupt_num
);
400 if (__improbable(get_preemption_level() != ipl
)) {
401 panic("Preemption level altered by interrupt vector 0x%x: initial 0x%x, final: 0x%x\n", interrupt_num
, ipl
, get_preemption_level());
405 if (__improbable(cdp
->cpu_nested_istack
)) {
406 cdp
->cpu_nested_istack_events
++;
408 uint64_t ctime
= mach_absolute_time();
409 uint64_t int_latency
= ctime
- cdp
->cpu_int_event_time
;
410 uint64_t esdeadline
, ehdeadline
;
411 /* Attempt to process deferred timers in the context of
412 * this interrupt, unless interrupt time has already exceeded
413 * TCOAL_ILAT_THRESHOLD.
415 #define TCOAL_ILAT_THRESHOLD (30000ULL)
417 if ((int_latency
< TCOAL_ILAT_THRESHOLD
) &&
418 interrupt_timer_coalescing_enabled
) {
419 esdeadline
= cdp
->rtclock_timer
.queue
.earliest_soft_deadline
;
420 ehdeadline
= cdp
->rtclock_timer
.deadline
;
421 if ((ctime
>= esdeadline
) && (ctime
< ehdeadline
)) {
422 interrupt_coalesced_timers
++;
423 TCOAL_DEBUG(0x88880000 | DBG_FUNC_START
, ctime
, esdeadline
, ehdeadline
, interrupt_coalesced_timers
, 0);
425 TCOAL_DEBUG(0x88880000 | DBG_FUNC_END
, ctime
, esdeadline
, interrupt_coalesced_timers
, 0, 0);
427 TCOAL_DEBUG(0x77770000, ctime
, cdp
->rtclock_timer
.queue
.earliest_soft_deadline
, cdp
->rtclock_timer
.deadline
, interrupt_coalesced_timers
, 0);
431 if (__improbable(ilat_assert
&& (int_latency
> interrupt_latency_cap
) && !machine_timeout_suspended())) {
432 panic("Interrupt vector 0x%x exceeded interrupt latency threshold, 0x%llx absolute time delta, prior signals: 0x%x, current signals: 0x%x", interrupt_num
, int_latency
, cdp
->cpu_prior_signals
, cdp
->cpu_signals
);
435 if (__improbable(int_latency
> cdp
->cpu_max_observed_int_latency
)) {
436 cdp
->cpu_max_observed_int_latency
= int_latency
;
437 cdp
->cpu_max_observed_int_latency_vector
= interrupt_num
;
442 * Having serviced the interrupt first, look at the interrupted stack depth.
445 uint64_t depth
= cdp
->cpu_kernel_stack
446 + sizeof(struct thread_kernel_state
)
447 + sizeof(struct i386_exception_link
*)
449 if (__improbable(depth
> kernel_stack_depth_max
)) {
450 kernel_stack_depth_max
= (vm_offset_t
)depth
;
451 KERNEL_DEBUG_CONSTANT(
452 MACHDBG_CODE(DBG_MACH_SCHED
, MACH_STACK_DEPTH
),
453 (long) depth
, (long) VM_KERNEL_UNSLIDE(rip
), 0, 0, 0);
457 if (cnum
== master_cpu
) {
458 ml_entropy_collect();
465 KDBG_RELEASE(MACHDBG_CODE(DBG_MACH_EXCP_INTR
, 0) | DBG_FUNC_END
,
468 assert(ml_get_interrupts_enabled() == FALSE
);
470 #if DEVELOPMENT || DEBUG
471 if (traptrace_index
!= TRAPTRACE_INVALID_INDEX
) {
472 traptrace_end(traptrace_index
, mach_absolute_time());
480 long dr7
= 0x400; /* magic dr7 reset value; 32 bit on i386, 64 bit on x86_64 */
481 __asm__
volatile ("mov %0,%%dr7" : : "r" (dr7
));
484 unsigned kdp_has_active_watchpoints
= 0;
485 #define NO_WATCHPOINTS (!kdp_has_active_watchpoints)
487 #define NO_WATCHPOINTS 1
490 * Trap from kernel mode. Only page-fault errors are recoverable,
491 * and then only in special circumstances. All other errors are
492 * fatal. Return value indicates if trap was handled.
497 x86_saved_state_t
*state
,
500 x86_saved_state64_t
*saved_state
;
504 vm_map_t map
= 0; /* protected by T_PAGE_FAULT */
505 kern_return_t result
= KERN_FAILURE
;
506 kern_return_t fault_result
= KERN_SUCCESS
;
512 #if NCOPY_WINDOWS > 0
513 int fault_in_copy_window
= -1;
516 int trap_pl
= get_preemption_level();
518 thread
= current_thread();
520 if (__improbable(is_saved_state32(state
))) {
521 panic("kernel_trap(%p) with 32-bit state", state
);
523 saved_state
= saved_state64(state
);
525 /* Record cpu where state was captured */
526 saved_state
->isf
.cpu
= cpu_number();
528 vaddr
= (user_addr_t
)saved_state
->cr2
;
529 type
= saved_state
->isf
.trapno
;
530 code
= (int)(saved_state
->isf
.err
& 0xffff);
531 intr
= (saved_state
->isf
.rflags
& EFL_IF
) != 0; /* state of ints at trap */
532 kern_ip
= (vm_offset_t
)saved_state
->isf
.rip
;
534 is_user
= (vaddr
< VM_MAX_USER_PAGE_ADDRESS
);
536 #if DEVELOPMENT || DEBUG
537 uint32_t traptrace_index
= traptrace_start(type
, kern_ip
, mach_absolute_time(), saved_state
->rbp
);
542 * Is there a DTrace hook?
544 if (__improbable(tempDTraceTrapHook
!= NULL
)) {
545 if (tempDTraceTrapHook(type
, state
, lo_spp
, 0) == KERN_SUCCESS
) {
547 * If it succeeds, we are done...
552 #endif /* CONFIG_DTRACE */
555 * we come here with interrupts off as we don't want to recurse
556 * on preemption below. but we do want to re-enable interrupts
557 * as soon we possibly can to hold latency down
559 if (__improbable(T_PREEMPT
== type
)) {
562 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
563 (MACHDBG_CODE(DBG_MACH_EXCP_KTRAP_x86
, type
)) | DBG_FUNC_NONE
,
564 0, 0, 0, VM_KERNEL_UNSLIDE(kern_ip
), 0);
569 user_addr_t kd_vaddr
= is_user
? vaddr
: VM_KERNEL_UNSLIDE(vaddr
);
570 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
571 (MACHDBG_CODE(DBG_MACH_EXCP_KTRAP_x86
, type
)) | DBG_FUNC_NONE
,
572 (unsigned)(kd_vaddr
>> 32), (unsigned)kd_vaddr
, is_user
,
573 VM_KERNEL_UNSLIDE(kern_ip
), 0);
576 if (T_PAGE_FAULT
== type
) {
578 * assume we're faulting in the kernel map
582 if (__probable(thread
!= THREAD_NULL
&& thread
->map
!= kernel_map
)) {
583 #if NCOPY_WINDOWS > 0
584 vm_offset_t copy_window_base
;
588 kvaddr
= (vm_offset_t
)vaddr
;
590 * must determine if fault occurred in
591 * the copy window while pre-emption is
592 * disabled for this processor so that
593 * we only need to look at the window
594 * associated with this processor
596 copy_window_base
= current_cpu_datap()->cpu_copywindow_base
;
598 if (kvaddr
>= copy_window_base
&& kvaddr
< (copy_window_base
+ (NBPDE
* NCOPY_WINDOWS
))) {
599 window_index
= (int)((kvaddr
- copy_window_base
) / NBPDE
);
601 if (thread
->machine
.copy_window
[window_index
].user_base
!= (user_addr_t
)-1) {
602 kvaddr
-= (copy_window_base
+ (NBPDE
* window_index
));
603 vaddr
= thread
->machine
.copy_window
[window_index
].user_base
+ kvaddr
;
606 fault_in_copy_window
= window_index
;
610 if (__probable(vaddr
< VM_MAX_USER_PAGE_ADDRESS
)) {
611 /* fault occurred in userspace */
614 /* Intercept a potential Supervisor Mode Execute
615 * Protection fault. These criteria identify
616 * both NX faults and SMEP faults, but both
617 * are fatal. We avoid checking PTEs (racy).
618 * (The VM could just redrive a SMEP fault, hence
621 if (__improbable((code
== (T_PF_PROT
| T_PF_EXECUTE
)) &&
622 (pmap_smep_enabled
) && (saved_state
->isf
.rip
== vaddr
))) {
627 * Additionally check for SMAP faults...
628 * which are characterized by page-present and
629 * the AC bit unset (i.e. not from copyin/out path).
631 if (__improbable(code
& T_PF_PROT
&&
633 (saved_state
->isf
.rflags
& EFL_AC
) == 0)) {
638 * If we're not sharing cr3 with the user
639 * and we faulted in copyio,
640 * then switch cr3 here and dismiss the fault.
643 (thread
->machine
.specFlags
& CopyIOActive
) &&
644 map
->pmap
->pm_cr3
!= get_cr3_base()) {
645 pmap_assert(current_cpu_datap()->cpu_pmap_pcid_enabled
== FALSE
);
646 set_cr3_raw(map
->pmap
->pm_cr3
);
649 if (__improbable(vaddr
< PAGE_SIZE
) &&
650 ((thread
->machine
.specFlags
& CopyIOActive
) == 0)) {
658 (void) ml_set_interrupts_enabled(intr
);
669 case T_FLOATING_POINT_ERROR
:
673 case T_SSE_FLOAT_ERROR
:
677 case T_INVALID_OPCODE
:
682 if ((saved_state
->isf
.rflags
& EFL_TF
) == 0 && NO_WATCHPOINTS
) {
683 /* We've somehow encountered a debug
684 * register match that does not belong
685 * to the kernel debugger.
686 * This isn't supposed to happen.
697 if (thread
!= THREAD_NULL
&& thread
->t_dtrace_inprobe
) { /* Executing under dtrace_probe? */
698 if (dtrace_tally_fault(vaddr
)) { /* Should a fault under dtrace be ignored? */
700 * DTrace has "anticipated" the possibility of this fault, and has
701 * established the suitable recovery state. Drop down now into the
702 * recovery handling code in "case T_GENERAL_PROTECTION:".
707 #endif /* CONFIG_DTRACE */
711 if (code
& T_PF_WRITE
) {
712 prot
|= VM_PROT_WRITE
;
714 if (code
& T_PF_EXECUTE
) {
715 prot
|= VM_PROT_EXECUTE
;
718 fault_result
= result
= vm_fault(map
,
721 FALSE
, VM_KERN_MEMORY_NONE
,
722 THREAD_UNINT
, NULL
, 0);
724 if (result
== KERN_SUCCESS
) {
725 #if NCOPY_WINDOWS > 0
726 if (fault_in_copy_window
!= -1) {
727 ml_set_interrupts_enabled(FALSE
);
728 copy_window_fault(thread
, map
,
729 fault_in_copy_window
);
730 (void) ml_set_interrupts_enabled(intr
);
732 #endif /* NCOPY_WINDOWS > 0 */
740 #endif /* CONFIG_DTRACE */
742 case T_GENERAL_PROTECTION
:
744 * If there is a failure recovery address
745 * for this fault, go there.
747 for (rp
= recover_table
; rp
< recover_table_end
; rp
++) {
748 if (kern_ip
== rp
->fault_addr
) {
749 set_recovery_ip(saved_state
, rp
->recover_addr
);
755 * Check thread recovery address also.
757 if (thread
!= THREAD_NULL
&& thread
->recover
) {
758 set_recovery_ip(saved_state
, thread
->recover
);
763 * Unanticipated page-fault errors in kernel
770 * Exception 15 is reserved but some chips may generate it
771 * spuriously. Seen at startup on AMD Athlon-64.
774 kprintf("kernel_trap() ignoring spurious trap 15\n");
778 /* Ensure that the i386_kernel_state at the base of the
779 * current thread's stack (if any) is synchronized with the
780 * context at the moment of the trap, to facilitate
781 * access through the debugger.
783 sync_iss_to_iks(state
);
785 if (kdp_i386_trap(type
, saved_state
, result
, (vm_offset_t
)vaddr
)) {
791 panic_trap(saved_state
, trap_pl
, fault_result
);
797 #if DEVELOPMENT || DEBUG
798 if (traptrace_index
!= TRAPTRACE_INVALID_INDEX
) {
799 traptrace_end(traptrace_index
, mach_absolute_time());
806 set_recovery_ip(x86_saved_state64_t
*saved_state
, vm_offset_t ip
)
808 saved_state
->isf
.rip
= ip
;
812 panic_trap(x86_saved_state64_t
*regs
, uint32_t pl
, kern_return_t fault_result
)
814 const char *trapname
= "Unknown";
815 pal_cr_t cr0
, cr2
, cr3
, cr4
;
816 boolean_t potential_smep_fault
= FALSE
, potential_kernel_NX_fault
= FALSE
;
817 boolean_t potential_smap_fault
= FALSE
;
819 pal_get_control_registers( &cr0
, &cr2
, &cr3
, &cr4
);
820 assert(ml_get_interrupts_enabled() == FALSE
);
821 current_cpu_datap()->cpu_fatal_trap_state
= regs
;
823 * Issue an I/O port read if one has been requested - this is an
824 * event logic analyzers can use as a trigger point.
826 panic_io_port_read();
828 kprintf("CPU %d panic trap number 0x%x, rip 0x%016llx\n",
829 cpu_number(), regs
->isf
.trapno
, regs
->isf
.rip
);
830 kprintf("cr0 0x%016llx cr2 0x%016llx cr3 0x%016llx cr4 0x%016llx\n",
833 if (regs
->isf
.trapno
< TRAP_TYPES
) {
834 trapname
= trap_type
[regs
->isf
.trapno
];
837 if ((regs
->isf
.trapno
== T_PAGE_FAULT
) && (regs
->isf
.err
== (T_PF_PROT
| T_PF_EXECUTE
)) && (regs
->isf
.rip
== regs
->cr2
)) {
838 if (pmap_smep_enabled
&& (regs
->isf
.rip
< VM_MAX_USER_PAGE_ADDRESS
)) {
839 potential_smep_fault
= TRUE
;
840 } else if (regs
->isf
.rip
>= VM_MIN_KERNEL_AND_KEXT_ADDRESS
) {
841 potential_kernel_NX_fault
= TRUE
;
843 } else if (pmap_smap_enabled
&&
844 regs
->isf
.trapno
== T_PAGE_FAULT
&&
845 regs
->isf
.err
& T_PF_PROT
&&
846 regs
->cr2
< VM_MAX_USER_PAGE_ADDRESS
&&
847 regs
->isf
.rip
>= VM_MIN_KERNEL_AND_KEXT_ADDRESS
) {
848 potential_smap_fault
= TRUE
;
852 panic("Kernel trap at 0x%016llx, type %d=%s, registers:\n"
853 "CR0: 0x%016llx, CR2: 0x%016llx, CR3: 0x%016llx, CR4: 0x%016llx\n"
854 "RAX: 0x%016llx, RBX: 0x%016llx, RCX: 0x%016llx, RDX: 0x%016llx\n"
855 "RSP: 0x%016llx, RBP: 0x%016llx, RSI: 0x%016llx, RDI: 0x%016llx\n"
856 "R8: 0x%016llx, R9: 0x%016llx, R10: 0x%016llx, R11: 0x%016llx\n"
857 "R12: 0x%016llx, R13: 0x%016llx, R14: 0x%016llx, R15: 0x%016llx\n"
858 "RFL: 0x%016llx, RIP: 0x%016llx, CS: 0x%016llx, SS: 0x%016llx\n"
859 "Fault CR2: 0x%016llx, Error code: 0x%016llx, Fault CPU: 0x%x%s%s%s%s, PL: %d, VF: %d\n",
860 regs
->isf
.rip
, regs
->isf
.trapno
, trapname
,
862 regs
->rax
, regs
->rbx
, regs
->rcx
, regs
->rdx
,
863 regs
->isf
.rsp
, regs
->rbp
, regs
->rsi
, regs
->rdi
,
864 regs
->r8
, regs
->r9
, regs
->r10
, regs
->r11
,
865 regs
->r12
, regs
->r13
, regs
->r14
, regs
->r15
,
866 regs
->isf
.rflags
, regs
->isf
.rip
, regs
->isf
.cs
& 0xFFFF,
867 regs
->isf
.ss
& 0xFFFF, regs
->cr2
, regs
->isf
.err
, regs
->isf
.cpu
,
868 virtualized
? " VMM" : "",
869 potential_kernel_NX_fault
? " Kernel NX fault" : "",
870 potential_smep_fault
? " SMEP/User NX fault" : "",
871 potential_smap_fault
? " SMAP fault" : "",
877 extern kern_return_t
dtrace_user_probe(x86_saved_state_t
*);
882 uint32_t fsigns
, fsigcs
;
886 * Trap from user mode.
890 x86_saved_state_t
*saved_state
)
894 mach_exception_code_t code
;
895 mach_exception_subcode_t subcode
;
899 thread_t thread
= current_thread();
902 unsigned long dr6
= 0; /* 32 bit for i386, 64 bit for x86_64 */
903 #if DEVELOPMENT || DEBUG
904 uint32_t traptrace_index
;
906 assert((is_saved_state32(saved_state
) && !thread_is_64bit_addr(thread
)) ||
907 (is_saved_state64(saved_state
) && thread_is_64bit_addr(thread
)));
909 if (is_saved_state64(saved_state
)) {
910 x86_saved_state64_t
*regs
;
912 regs
= saved_state64(saved_state
);
914 /* Record cpu where state was captured */
915 regs
->isf
.cpu
= cpu_number();
917 type
= regs
->isf
.trapno
;
918 err
= (int)regs
->isf
.err
& 0xffff;
919 vaddr
= (user_addr_t
)regs
->cr2
;
920 rip
= (user_addr_t
)regs
->isf
.rip
;
921 #if DEVELOPMENT || DEBUG
922 traptrace_index
= traptrace_start(type
, rip
, mach_absolute_time(), regs
->rbp
);
925 x86_saved_state32_t
*regs
;
927 regs
= saved_state32(saved_state
);
929 /* Record cpu where state was captured */
930 regs
->cpu
= cpu_number();
933 err
= regs
->err
& 0xffff;
934 vaddr
= (user_addr_t
)regs
->cr2
;
935 rip
= (user_addr_t
)regs
->eip
;
936 #if DEVELOPMENT || DEBUG
937 traptrace_index
= traptrace_start(type
, rip
, mach_absolute_time(), regs
->ebp
);
942 if ((type
== T_DEBUG
) && thread
->machine
.ids
) {
943 unsigned long clear
= 0;
944 /* Stash and clear this processor's DR6 value, in the event
945 * this was a debug register match
947 __asm__
volatile ("mov %%db6, %0" : "=r" (dr6
));
948 __asm__
volatile ("mov %0, %%db6" : : "r" (clear
));
953 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
954 (MACHDBG_CODE(DBG_MACH_EXCP_UTRAP_x86
, type
)) | DBG_FUNC_NONE
,
955 (unsigned)(vaddr
>> 32), (unsigned)vaddr
,
956 (unsigned)(rip
>> 32), (unsigned)rip
, 0);
964 * DTrace does not consume all user traps, only INT_3's for now.
965 * Avoid needlessly calling tempDTraceTrapHook here, and let the
966 * INT_3 case handle them.
970 DEBUG_KPRINT_SYSCALL_MASK(1,
971 "user_trap: type=0x%x(%s) err=0x%x cr2=%p rip=%p\n",
972 type
, trap_type
[type
], err
, (void *)(long) vaddr
, (void *)(long) rip
);
976 exc
= EXC_ARITHMETIC
;
984 * Update the PCB with this processor's DR6 value
985 * in the event this was a debug register match.
987 pcb
= THREAD_TO_PCB(thread
);
990 * We can get and set the status register
991 * in 32-bit mode even on a 64-bit thread
992 * because the high order bits are not
995 if (thread_is_64bit_addr(thread
)) {
996 x86_debug_state64_t
*ids
= pcb
->ids
;
998 } else { /* 32 bit thread */
999 x86_debug_state32_t
*ids
= pcb
->ids
;
1000 ids
->dr6
= (uint32_t) dr6
;
1003 exc
= EXC_BREAKPOINT
;
1004 code
= EXC_I386_SGL
;
1009 if (dtrace_user_probe(saved_state
) == KERN_SUCCESS
) {
1010 return; /* If it succeeds, we are done... */
1013 exc
= EXC_BREAKPOINT
;
1014 code
= EXC_I386_BPT
;
1018 exc
= EXC_ARITHMETIC
;
1019 code
= EXC_I386_INTO
;
1022 case T_OUT_OF_BOUNDS
:
1024 code
= EXC_I386_BOUND
;
1027 case T_INVALID_OPCODE
:
1028 if (fpUDflt(rip
) == 1) {
1029 exc
= EXC_BAD_INSTRUCTION
;
1030 code
= EXC_I386_INVOP
;
1043 exc
= EXC_BAD_ACCESS
;
1044 code
= VM_PROT_READ
| VM_PROT_EXECUTE
;
1048 case T_INVALID_TSS
: /* invalid TSS == iret with NT flag set */
1049 exc
= EXC_BAD_INSTRUCTION
;
1050 code
= EXC_I386_INVTSSFLT
;
1054 case T_SEGMENT_NOT_PRESENT
:
1055 exc
= EXC_BAD_INSTRUCTION
;
1056 code
= EXC_I386_SEGNPFLT
;
1061 exc
= EXC_BAD_INSTRUCTION
;
1062 code
= EXC_I386_STKFLT
;
1066 case T_GENERAL_PROTECTION
:
1068 * There's a wide range of circumstances which generate this
1069 * class of exception. From user-space, many involve bad
1070 * addresses (such as a non-canonical 64-bit address).
1071 * So we map this to EXC_BAD_ACCESS (and thereby SIGSEGV).
1072 * The trouble is cr2 doesn't contain the faulting address;
1073 * we'd need to decode the faulting instruction to really
1074 * determine this. We'll leave that to debuggers.
1075 * However, attempted execution of privileged instructions
1076 * (e.g. cli) also generate GP faults and so we map these to
1077 * to EXC_BAD_ACCESS (and thence SIGSEGV) also - rather than
1078 * EXC_BAD_INSTRUCTION which is more accurate. We just can't
1081 exc
= EXC_BAD_ACCESS
;
1082 code
= EXC_I386_GPFLT
;
1088 prot
= VM_PROT_READ
;
1090 if (err
& T_PF_WRITE
) {
1091 prot
|= VM_PROT_WRITE
;
1093 if (__improbable(err
& T_PF_EXECUTE
)) {
1094 prot
|= VM_PROT_EXECUTE
;
1096 #if DEVELOPMENT || DEBUG
1098 fsig
= thread_fpsimd_hash(thread
);
1103 kret
= vm_fault(thread
->map
,
1105 prot
, FALSE
, VM_KERN_MEMORY_NONE
,
1106 THREAD_ABORTSAFE
, NULL
, 0);
1107 #if DEVELOPMENT || DEBUG
1109 uint32_t fsig2
= thread_fpsimd_hash(thread
);
1114 if (fsig
!= fsig2
) {
1115 panic("FP/SIMD state hash mismatch across fault thread: %p 0x%x->0x%x", thread
, fsig
, fsig2
);
1123 if (__probable((kret
== KERN_SUCCESS
) || (kret
== KERN_ABORTED
))) {
1125 } else if (__improbable(kret
== KERN_FAILURE
)) {
1127 * For a user trap, vm_fault() should never return KERN_FAILURE.
1128 * If it does, we're leaking preemption disables somewhere in the kernel.
1130 panic("vm_fault() KERN_FAILURE from user fault on thread %p", thread
);
1133 /* PAL debug hook (empty on x86) */
1134 pal_dbg_page_fault(thread
, vaddr
, kret
);
1135 exc
= EXC_BAD_ACCESS
;
1141 case T_SSE_FLOAT_ERROR
:
1143 exc
= EXC_ARITHMETIC
;
1144 code
= EXC_I386_SSEEXTERR
;
1145 subcode
= ((struct x86_fx_thread_state
*)thread
->machine
.ifps
)->fx_MXCSR
;
1149 case T_FLOATING_POINT_ERROR
:
1151 exc
= EXC_ARITHMETIC
;
1152 code
= EXC_I386_EXTERR
;
1153 subcode
= ((struct x86_fx_thread_state
*)thread
->machine
.ifps
)->fx_status
;
1158 if (dtrace_user_probe(saved_state
) == KERN_SUCCESS
) {
1159 return; /* If it succeeds, we are done... */
1163 * If we get an INT 0x7f when we do not expect to,
1164 * treat it as an illegal instruction
1166 exc
= EXC_BAD_INSTRUCTION
;
1167 code
= EXC_I386_INVOP
;
1171 panic("Unexpected user trap, type %d", type
);
1174 #if DEVELOPMENT || DEBUG
1175 if (traptrace_index
!= TRAPTRACE_INVALID_INDEX
) {
1176 traptrace_end(traptrace_index
, mach_absolute_time());
1182 * Note: Codepaths that directly return from user_trap() have pending
1183 * ASTs processed in locore
1185 i386_exception(exc
, code
, subcode
);
1191 * Handle exceptions for i386.
1193 * If we are an AT bus machine, we must turn off the AST for a
1194 * delayed floating-point exception.
1196 * If we are providing floating-point emulation, we may have
1197 * to retrieve the real register values from the floating point
1203 mach_exception_code_t code
,
1204 mach_exception_subcode_t subcode
)
1206 mach_exception_data_type_t codes
[EXCEPTION_CODE_MAX
];
1208 DEBUG_KPRINT_SYSCALL_MACH("i386_exception: exc=%d code=0x%llx subcode=0x%llx\n",
1209 exc
, code
, subcode
);
1210 codes
[0] = code
; /* new exception interface */
1212 exception_triage(exc
, codes
, 2);
1217 /* Synchronize a thread's x86_kernel_state (if any) with the given
1218 * x86_saved_state_t obtained from the trap/IPI handler; called in
1219 * kernel_trap() prior to entering the debugger, and when receiving
1220 * an "MP_KDP" IPI. Called with null saved_state if an incoming IPI
1221 * was detected from the kernel while spinning with interrupts masked.
1225 sync_iss_to_iks(x86_saved_state_t
*saved_state
)
1227 struct x86_kernel_state
*iks
= NULL
;
1229 boolean_t record_active_regs
= FALSE
;
1231 /* The PAL may have a special way to sync registers */
1232 if (saved_state
&& saved_state
->flavor
== THREAD_STATE_NONE
) {
1233 pal_get_kern_regs( saved_state
);
1236 if (current_thread() != NULL
&&
1237 (kstack
= current_thread()->kernel_stack
) != 0) {
1238 x86_saved_state64_t
*regs
= saved_state64(saved_state
);
1240 iks
= STACK_IKS(kstack
);
1242 /* Did we take the trap/interrupt in kernel mode? */
1243 if (saved_state
== NULL
|| /* NULL => polling in kernel */
1244 regs
== USER_REGS64(current_thread())) {
1245 record_active_regs
= TRUE
;
1247 iks
->k_rbx
= regs
->rbx
;
1248 iks
->k_rsp
= regs
->isf
.rsp
;
1249 iks
->k_rbp
= regs
->rbp
;
1250 iks
->k_r12
= regs
->r12
;
1251 iks
->k_r13
= regs
->r13
;
1252 iks
->k_r14
= regs
->r14
;
1253 iks
->k_r15
= regs
->r15
;
1254 iks
->k_rip
= regs
->isf
.rip
;
1258 if (record_active_regs
== TRUE
) {
1259 /* Show the trap handler path */
1260 __asm__
volatile ("movq %%rbx, %0" : "=m" (iks
->k_rbx
));
1261 __asm__
volatile ("movq %%rsp, %0" : "=m" (iks
->k_rsp
));
1262 __asm__
volatile ("movq %%rbp, %0" : "=m" (iks
->k_rbp
));
1263 __asm__
volatile ("movq %%r12, %0" : "=m" (iks
->k_r12
));
1264 __asm__
volatile ("movq %%r13, %0" : "=m" (iks
->k_r13
));
1265 __asm__
volatile ("movq %%r14, %0" : "=m" (iks
->k_r14
));
1266 __asm__
volatile ("movq %%r15, %0" : "=m" (iks
->k_r15
));
1267 /* "Current" instruction pointer */
1268 __asm__
volatile ("leaq 1f(%%rip), %%rax; mov %%rax, %0\n1:"
1276 * This is used by the NMI interrupt handler (from mp.c) to
1277 * uncondtionally sync the trap handler context to the IKS
1278 * irrespective of whether the NMI was fielded in kernel
1282 sync_iss_to_iks_unconditionally(__unused x86_saved_state_t
*saved_state
)
1284 struct x86_kernel_state
*iks
;
1287 if ((kstack
= current_thread()->kernel_stack
) != 0) {
1288 iks
= STACK_IKS(kstack
);
1289 /* Display the trap handler path */
1290 __asm__
volatile ("movq %%rbx, %0" : "=m" (iks
->k_rbx
));
1291 __asm__
volatile ("movq %%rsp, %0" : "=m" (iks
->k_rsp
));
1292 __asm__
volatile ("movq %%rbp, %0" : "=m" (iks
->k_rbp
));
1293 __asm__
volatile ("movq %%r12, %0" : "=m" (iks
->k_r12
));
1294 __asm__
volatile ("movq %%r13, %0" : "=m" (iks
->k_r13
));
1295 __asm__
volatile ("movq %%r14, %0" : "=m" (iks
->k_r14
));
1296 __asm__
volatile ("movq %%r15, %0" : "=m" (iks
->k_r15
));
1297 /* "Current" instruction pointer */
1298 __asm__
volatile ("leaq 1f(%%rip), %%rax; mov %%rax, %0\n1:" : "=m" (iks
->k_rip
)::"rax");
1307 extern void thread_exception_return_internal(void) __dead2
;
1310 thread_exception_return(void)
1312 thread_t thread
= current_thread();
1313 ml_set_interrupts_enabled(FALSE
);
1314 if (thread_is_64bit_addr(thread
) != task_has_64Bit_addr(thread
->task
)) {
1315 panic("Task/thread bitness mismatch %p %p, task: %d, thread: %d", thread
, thread
->task
, thread_is_64bit_addr(thread
), task_has_64Bit_addr(thread
->task
));
1318 if (thread_is_64bit_addr(thread
)) {
1319 if ((gdt_desc_p(USER64_CS
)->access
& ACC_PL_U
) == 0) {
1320 panic("64-GDT mismatch %p, descriptor: %p", thread
, gdt_desc_p(USER64_CS
));
1323 if ((gdt_desc_p(USER_CS
)->access
& ACC_PL_U
) == 0) {
1324 panic("32-GDT mismatch %p, descriptor: %p", thread
, gdt_desc_p(USER_CS
));
1327 assert(get_preemption_level() == 0);
1328 thread_exception_return_internal();