2 * Copyright (c) 2000-2019 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
36 #include <mach_assert.h>
37 #include <machine/atomic.h>
39 #include <kern/assert.h>
40 #include <kern/kern_types.h>
41 #include <kern/mpqueue.h>
42 #include <kern/queue.h>
43 #include <kern/processor.h>
45 #include <pexpert/pexpert.h>
46 #include <mach/i386/thread_status.h>
47 #include <mach/i386/vm_param.h>
48 #include <i386/locks.h>
49 #include <i386/rtclock_protos.h>
50 #include <i386/pmCPU.h>
51 #include <i386/cpu_topology.h>
56 #include <i386/vmx/vmx_cpu.h>
60 #include <machine/monotonic.h>
61 #endif /* MONOTONIC */
63 #include <machine/pal_routines.h>
66 * Data structures referenced (anonymously) from per-cpu data:
68 struct cpu_cons_buffer
;
69 struct cpu_desc_table
;
74 * Data structures embedded in per-cpu data:
76 typedef struct rtclock_timer
{
80 boolean_t has_expired
;
84 /* The 'u' suffixed fields store the double-mapped descriptor addresses */
85 struct x86_64_tss
*cdi_ktssu
;
86 struct x86_64_tss
*cdi_ktssb
;
87 x86_64_desc_register_t cdi_gdtu
;
88 x86_64_desc_register_t cdi_gdtb
;
89 x86_64_desc_register_t cdi_idtu
;
90 x86_64_desc_register_t cdi_idtb
;
91 struct real_descriptor
*cdi_ldtu
;
92 struct real_descriptor
*cdi_ldtb
;
93 vm_offset_t cdi_sstku
;
94 vm_offset_t cdi_sstkb
;
98 TASK_MAP_32BIT
, /* 32-bit user, compatibility mode */
99 TASK_MAP_64BIT
, /* 64-bit user thread, shared space */
104 * This structure is used on entry into the (uber-)kernel on syscall from
105 * a 64-bit user. It contains the address of the machine state save area
106 * for the current thread and a temporary place to save the user's rsp
107 * before loading this address into rsp.
110 addr64_t cu_isf
; /* thread->pcb->iss.isf */
111 uint64_t cu_tmp
; /* temporary scratch */
112 addr64_t cu_user_gs_base
;
115 typedef uint16_t pcid_t
;
116 typedef uint8_t pcid_ref_t
;
118 #define CPU_RTIME_BINS (12)
119 #define CPU_ITIME_BINS (CPU_RTIME_BINS)
121 #define MAX_TRACE_BTFRAMES (16)
125 uint64_t plbt
[MAX_TRACE_BTFRAMES
];
128 #if DEVELOPMENT || DEBUG
130 IOTRACE_PHYS_READ
= 1,
139 iotrace_type_e iotype
;
144 uint64_t start_time_abs
;
146 uint64_t backtrace
[MAX_TRACE_BTFRAMES
];
150 int vector
; /* Vector number of interrupt */
151 thread_t curthread
; /* Current thread at the time of the interrupt */
152 uint64_t interrupted_pc
;
153 int curpl
; /* Current preemption level */
154 int curil
; /* Current interrupt level */
155 uint64_t start_time_abs
;
157 uint64_t backtrace
[MAX_TRACE_BTFRAMES
];
160 #define DEFAULT_IOTRACE_ENTRIES_PER_CPU (64)
161 #define IOTRACE_MAX_ENTRIES_PER_CPU (256)
162 extern volatile int mmiotrace_enabled
;
163 extern int iotrace_generators
;
164 extern int iotrace_entries_per_cpu
;
165 extern int *iotrace_next
;
166 extern iotrace_entry_t
**iotrace_ring
;
168 #define TRAPTRACE_INVALID_INDEX (~0U)
169 #define DEFAULT_TRAPTRACE_ENTRIES_PER_CPU (16)
170 #define TRAPTRACE_MAX_ENTRIES_PER_CPU (256)
171 extern volatile int traptrace_enabled
;
172 extern int traptrace_generators
;
173 extern int traptrace_entries_per_cpu
;
174 extern int *traptrace_next
;
175 extern traptrace_entry_t
**traptrace_ring
;
176 #endif /* DEVELOPMENT || DEBUG */
181 * Each processor has a per-cpu data area which is dereferenced through the
182 * current_cpu_datap() macro. For speed, the %gs segment is based here, and
183 * using this, inlines provides single-instruction access to frequently used
184 * members - such as get_cpu_number()/cpu_number(), and get_active_thread()/
187 * Cpu data owned by another processor can be accessed using the
188 * cpu_datap(cpu_number) macro which uses the cpu_data_ptr[] array of per-cpu
192 pcid_t cpu_pcid_free_hint
;
193 #define PMAP_PCID_MAX_PCID (0x800)
194 pcid_ref_t cpu_pcid_refcounts
[PMAP_PCID_MAX_PCID
];
195 pmap_t cpu_pcid_last_pmap_dispatched
[PMAP_PCID_MAX_PCID
];
198 typedef struct cpu_data
{
199 struct pal_cpu_data cpu_pal_data
; /* PAL-specific data */
200 #define cpu_pd cpu_pal_data /* convenience alias */
201 struct cpu_data
*cpu_this
; /* pointer to myself */
202 thread_t cpu_active_thread
;
203 thread_t cpu_nthread
;
204 volatile int cpu_preemption_level
;
205 int cpu_number
; /* Logical CPU */
206 void *cpu_int_state
; /* interrupt state */
207 vm_offset_t cpu_active_stack
; /* kernel stack base */
208 vm_offset_t cpu_kernel_stack
; /* kernel stack top */
209 vm_offset_t cpu_int_stack_top
;
210 int cpu_interrupt_level
;
211 volatile int cpu_signals
; /* IPI events */
212 volatile int cpu_prior_signals
; /* Last set of events,
215 ast_t cpu_pending_ast
;
216 volatile int cpu_running
;
218 boolean_t cpu_fixed_pmcs_enabled
;
219 #endif /* !MONOTONIC */
220 rtclock_timer_t rtclock_timer
;
221 uint64_t quantum_timer_deadline
;
222 volatile addr64_t cpu_active_cr3
__attribute((aligned(64)));
224 volatile uint32_t cpu_tlb_invalid
;
226 volatile uint16_t cpu_tlb_invalid_local
;
227 volatile uint16_t cpu_tlb_invalid_global
;
230 uint64_t cpu_ip_desc
[2];
231 volatile task_map_t cpu_task_map
;
232 volatile addr64_t cpu_task_cr3
;
233 addr64_t cpu_kernel_cr3
;
234 volatile addr64_t cpu_ucr3
;
235 volatile addr64_t cpu_shadowtask_cr3
;
236 boolean_t cpu_pagezero_mapped
;
238 /* Double-mapped per-CPU exception stack address */
241 int cpu_curtask_has_ldt
;
242 int cpu_curthread_do_segchk
;
243 /* Address of shadowed, partially mirrored CPU data structures located
244 * in the double mapped PML4
248 volatile uint32_t cpu_tlb_invalid_count
;
250 volatile uint16_t cpu_tlb_invalid_local_count
;
251 volatile uint16_t cpu_tlb_invalid_global_count
;
255 uint16_t cpu_tlb_gen_counts_local
[MAX_CPUS
];
256 uint16_t cpu_tlb_gen_counts_global
[MAX_CPUS
];
258 struct processor
*cpu_processor
;
259 #if NCOPY_WINDOWS > 0
260 struct cpu_pmap
*cpu_pmap
;
262 struct real_descriptor
*cpu_ldtp
;
263 struct cpu_desc_table
*cpu_desc_tablep
;
264 cpu_desc_index_t cpu_desc_index
;
266 #if NCOPY_WINDOWS > 0
267 vm_offset_t cpu_copywindow_base
;
268 uint64_t *cpu_copywindow_pdp
;
270 vm_offset_t cpu_physwindow_base
;
271 uint64_t *cpu_physwindow_ptep
;
274 #define HWINTCNT_SIZE 256
275 uint32_t cpu_hwIntCnt
[HWINTCNT_SIZE
]; /* Interrupt counts */
276 uint64_t cpu_hwIntpexits
[HWINTCNT_SIZE
];
277 uint64_t cpu_dr7
; /* debug control register */
278 uint64_t cpu_int_event_time
; /* intr entry/exit time */
279 pal_rtc_nanotime_t
*cpu_nanotime
; /* Nanotime info */
281 /* double-buffered performance counter data */
282 uint64_t *cpu_kpc_buf
[2];
283 /* PMC shadow and reload value buffers */
284 uint64_t *cpu_kpc_shadow
;
285 uint64_t *cpu_kpc_reload
;
288 struct mt_cpu cpu_monotonic
;
289 #endif /* MONOTONIC */
290 uint32_t cpu_pmap_pcid_enabled
;
291 pcid_t cpu_active_pcid
;
292 pcid_t cpu_last_pcid
;
293 pcid_t cpu_kernel_pcid
;
294 volatile pcid_ref_t
*cpu_pmap_pcid_coherentp
;
295 volatile pcid_ref_t
*cpu_pmap_pcid_coherentp_kernel
;
296 pcid_cdata_t
*cpu_pcid_data
;
298 uint64_t cpu_pmap_pcid_flushes
;
299 uint64_t cpu_pmap_pcid_preserves
;
306 uint64_t cpu_itime_total
;
307 uint64_t cpu_rtime_total
;
309 uint64_t cpu_idle_exits
;
310 uint64_t cpu_rtimes
[CPU_RTIME_BINS
];
311 uint64_t cpu_itimes
[CPU_ITIME_BINS
];
313 uint64_t cpu_cur_insns
;
314 uint64_t cpu_cur_ucc
;
315 uint64_t cpu_cur_urc
;
316 #endif /* !MONOTONIC */
317 uint64_t cpu_gpmcs
[4];
318 uint64_t cpu_max_observed_int_latency
;
319 int cpu_max_observed_int_latency_vector
;
320 volatile boolean_t cpu_NMI_acknowledged
;
321 uint64_t debugger_entry_time
;
322 uint64_t debugger_ipi_time
;
323 /* A separate nested interrupt stack flag, to account
324 * for non-nested interrupts arriving while on the interrupt stack
325 * Currently only occurs when AICPM enables interrupts on the
326 * interrupt stack during processor offlining.
328 uint32_t cpu_nested_istack
;
329 uint32_t cpu_nested_istack_events
;
330 x86_saved_state64_t
*cpu_fatal_trap_state
;
331 x86_saved_state64_t
*cpu_post_fatal_trap_state
;
333 vmx_cpu_t cpu_vmx
; /* wonderful world of virtualization */
336 struct mca_state
*cpu_mca_state
; /* State at MC fault */
342 boolean_t cpu_boot_complete
;
344 #define MAX_PREEMPTION_RECORDS (8)
345 #if DEVELOPMENT || DEBUG
347 plrecord_t plrecords
[MAX_PREEMPTION_RECORDS
];
349 void *cpu_console_buf
;
350 struct x86_lcpu lcpu
;
351 int cpu_phys_number
; /* Physical CPU */
352 cpu_id_t cpu_id
; /* Platform Expert */
354 uint64_t cpu_entry_cr3
;
355 uint64_t cpu_exit_cr3
;
356 uint64_t cpu_pcid_last_cr3
;
358 boolean_t cpu_rendezvous_in_progress
;
361 extern cpu_data_t
*cpu_data_ptr
[];
363 /* Macro to generate inline bodies to retrieve per-cpu data fields. */
364 #if defined(__clang__)
365 #define GS_RELATIVE volatile __attribute__((address_space(256)))
367 #define offsetof(TYPE, MEMBER) __builtin_offsetof(TYPE,MEMBER)
370 #define CPU_DATA_GET(member, type) \
371 cpu_data_t GS_RELATIVE *cpu_data = \
372 (cpu_data_t GS_RELATIVE *)0UL; \
374 ret = cpu_data->member; \
377 #define CPU_DATA_GET_INDEX(member, index, type) \
378 cpu_data_t GS_RELATIVE *cpu_data = \
379 (cpu_data_t GS_RELATIVE *)0UL; \
381 ret = cpu_data->member[index]; \
384 #define CPU_DATA_SET(member, value) \
385 cpu_data_t GS_RELATIVE *cpu_data = \
386 (cpu_data_t GS_RELATIVE *)0UL; \
387 cpu_data->member = value;
389 #define CPU_DATA_XCHG(member, value, type) \
390 cpu_data_t GS_RELATIVE *cpu_data = \
391 (cpu_data_t GS_RELATIVE *)0UL; \
393 ret = cpu_data->member; \
394 cpu_data->member = value; \
397 #else /* !defined(__clang__) */
400 #define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
401 #endif /* offsetof */
402 #define CPU_DATA_GET(member, type) \
404 __asm__ volatile ("mov %%gs:%P1,%0" \
406 : "i" (offsetof(cpu_data_t,member))); \
409 #define CPU_DATA_GET_INDEX(member, index, type) \
411 __asm__ volatile ("mov %%gs:(%1),%0" \
413 : "r" (offsetof(cpu_data_t,member[index]))); \
416 #define CPU_DATA_SET(member, value) \
417 __asm__ volatile ("mov %0,%%gs:%P1" \
419 : "r" (value), "i" (offsetof(cpu_data_t,member)));
421 #define CPU_DATA_XCHG(member, value, type) \
423 __asm__ volatile ("xchg %0,%%gs:%P1" \
425 : "i" (offsetof(cpu_data_t,member)), "0" (value)); \
428 #endif /* !defined(__clang__) */
431 * Everyone within the osfmk part of the kernel can use the fast
432 * inline versions of these routines. Everyone outside, must call
438 * The "volatile" flavor of current_thread() is intended for use by
439 * scheduler code which may need to update the thread pointer in the
440 * course of a context switch. Any call to current_thread() made
441 * prior to the thread pointer update should be safe to optimize away
442 * as it should be consistent with that thread's state to the extent
443 * the compiler can reason about it. Likewise, the context switch
444 * path will eventually result in an arbitrary branch to the new
445 * thread's pc, about which the compiler won't be able to reason.
446 * Thus any compile-time optimization of current_thread() calls made
447 * within the new thread should be safely encapsulated in its
448 * register/stack state. The volatile form therefore exists to cover
449 * the window between the thread pointer update and the branch to
452 static inline thread_t
453 get_active_thread_volatile(void)
455 CPU_DATA_GET(cpu_active_thread
, thread_t
)
458 static inline __attribute__((const)) thread_t
459 get_active_thread(void)
461 CPU_DATA_GET(cpu_active_thread
, thread_t
)
464 #define current_thread_fast() get_active_thread()
465 #define current_thread_volatile() get_active_thread_volatile()
466 #define current_thread() current_thread_fast()
468 #define cpu_mode_is64bit() TRUE
471 get_preemption_level(void)
473 CPU_DATA_GET(cpu_preemption_level
, int)
476 get_interrupt_level(void)
478 CPU_DATA_GET(cpu_interrupt_level
, int)
483 CPU_DATA_GET(cpu_number
, int)
486 get_cpu_phys_number(void)
488 CPU_DATA_GET(cpu_phys_number
, int)
491 static inline cpu_data_t
*
492 current_cpu_datap(void)
494 CPU_DATA_GET(cpu_this
, cpu_data_t
*);
498 * Facility to diagnose preemption-level imbalances, which are otherwise
499 * challenging to debug. On each operation that enables or disables preemption,
500 * we record a backtrace into a per-CPU ring buffer, along with the current
501 * preemption level and operation type. Thus, if an imbalance is observed,
502 * one can examine these per-CPU records to determine which codepath failed
503 * to re-enable preemption, enabled premption without a corresponding
504 * disablement etc. The backtracer determines which stack is currently active,
505 * and uses that to perform bounds checks on unterminated stacks.
506 * To enable, sysctl -w machdep.pltrace=1 on DEVELOPMENT or DEBUG kernels (DRK '15)
507 * The bounds check currently doesn't account for non-default thread stack sizes.
509 #if DEVELOPMENT || DEBUG
511 rbtrace_bt(uint64_t *rets
, int maxframes
, cpu_data_t
*cdata
, uint64_t frameptr
, bool use_cursp
)
513 extern uint32_t low_intstack
[]; /* bottom */
514 extern uint32_t low_eintstack
[]; /* top */
515 extern char mp_slave_stack
[];
518 uint64_t kstackb
, kstackt
;
520 /* Obtain the 'current' program counter, initial backtrace
521 * element. This will also indicate if we were unable to
522 * trace further up the stack for some reason
525 __asm__
volatile ("leaq 1f(%%rip), %%rax; mov %%rax, %0\n1:"
526 : "=m" (rets
[btidx
++])
531 thread_t cplthread
= cdata
->cpu_active_thread
;
534 if (use_cursp
== true) {
535 __asm__
__volatile__ ("movq %%rsp, %0": "=r" (csp
):);
539 /* Determine which stack we're on to populate stack bounds.
540 * We don't need to trace across stack boundaries for this
543 kstackb
= cdata
->cpu_active_stack
;
544 kstackt
= kstackb
+ KERNEL_STACK_SIZE
;
545 if (csp
< kstackb
|| csp
> kstackt
) {
546 kstackt
= cdata
->cpu_kernel_stack
;
547 kstackb
= kstackt
- KERNEL_STACK_SIZE
;
548 if (csp
< kstackb
|| csp
> kstackt
) {
549 kstackt
= cdata
->cpu_int_stack_top
;
550 kstackb
= kstackt
- INTSTACK_SIZE
;
551 if (csp
< kstackb
|| csp
> kstackt
) {
552 kstackt
= (uintptr_t)low_eintstack
;
553 kstackb
= kstackt
- INTSTACK_SIZE
;
554 if (csp
< kstackb
|| csp
> kstackt
) {
555 kstackb
= (uintptr_t) mp_slave_stack
;
556 kstackt
= kstackb
+ PAGE_SIZE
;
565 if (__probable(kstackb
&& kstackt
)) {
566 uint64_t *cfp
= (uint64_t *) frameptr
;
569 for (rbbtf
= btidx
; rbbtf
< maxframes
; rbbtf
++) {
570 if (((uint64_t)cfp
== 0) || (((uint64_t)cfp
< kstackb
) || ((uint64_t)cfp
> kstackt
))) {
574 rets
[rbbtf
] = *(cfp
+ 1);
575 cfp
= (uint64_t *) (*cfp
);
582 pltrace_internal(boolean_t enable
)
584 cpu_data_t
*cdata
= current_cpu_datap();
585 int cpli
= cdata
->cpu_preemption_level
;
586 int cplrecord
= cdata
->cpu_plri
;
591 cdata
->plrecords
[cplrecord
].pltype
= enable
;
592 cdata
->plrecords
[cplrecord
].plevel
= cpli
;
594 plbts
= &cdata
->plrecords
[cplrecord
].plbt
[0];
598 if (cplrecord
>= MAX_PREEMPTION_RECORDS
) {
602 cdata
->cpu_plri
= cplrecord
;
604 rbtrace_bt(plbts
, MAX_TRACE_BTFRAMES
- 1, cdata
, (uint64_t)__builtin_frame_address(0), true);
607 extern int plctrace_enabled
;
610 iotrace(iotrace_type_e type
, uint64_t vaddr
, uint64_t paddr
, int size
, uint64_t val
,
611 uint64_t sabs
, uint64_t duration
)
614 int cpu_num
, nextidx
;
615 iotrace_entry_t
*cur_iotrace_ring
;
617 if (__improbable(mmiotrace_enabled
== 0 || iotrace_generators
== 0)) {
621 cdata
= current_cpu_datap();
622 cpu_num
= cdata
->cpu_number
;
623 nextidx
= iotrace_next
[cpu_num
];
624 cur_iotrace_ring
= iotrace_ring
[cpu_num
];
626 cur_iotrace_ring
[nextidx
].iotype
= type
;
627 cur_iotrace_ring
[nextidx
].vaddr
= vaddr
;
628 cur_iotrace_ring
[nextidx
].paddr
= paddr
;
629 cur_iotrace_ring
[nextidx
].size
= size
;
630 cur_iotrace_ring
[nextidx
].val
= val
;
631 cur_iotrace_ring
[nextidx
].start_time_abs
= sabs
;
632 cur_iotrace_ring
[nextidx
].duration
= duration
;
634 iotrace_next
[cpu_num
] = ((nextidx
+ 1) >= iotrace_entries_per_cpu
) ? 0 : (nextidx
+ 1);
636 rbtrace_bt(&cur_iotrace_ring
[nextidx
].backtrace
[0],
637 MAX_TRACE_BTFRAMES
- 1, cdata
, (uint64_t)__builtin_frame_address(0), true);
640 static inline uint32_t
641 traptrace_start(int vecnum
, uint64_t ipc
, uint64_t sabs
, uint64_t frameptr
)
644 int cpu_num
, nextidx
;
645 traptrace_entry_t
*cur_traptrace_ring
;
647 if (__improbable(traptrace_enabled
== 0 || traptrace_generators
== 0)) {
648 return TRAPTRACE_INVALID_INDEX
;
651 assert(ml_get_interrupts_enabled() == FALSE
);
652 cdata
= current_cpu_datap();
653 cpu_num
= cdata
->cpu_number
;
654 nextidx
= traptrace_next
[cpu_num
];
655 /* prevent nested interrupts from clobbering this record */
656 traptrace_next
[cpu_num
] = ((nextidx
+ 1) >= traptrace_entries_per_cpu
) ? 0 : (nextidx
+ 1);
658 cur_traptrace_ring
= traptrace_ring
[cpu_num
];
660 cur_traptrace_ring
[nextidx
].vector
= vecnum
;
661 cur_traptrace_ring
[nextidx
].curthread
= current_thread();
662 cur_traptrace_ring
[nextidx
].interrupted_pc
= ipc
;
663 cur_traptrace_ring
[nextidx
].curpl
= cdata
->cpu_preemption_level
;
664 cur_traptrace_ring
[nextidx
].curil
= cdata
->cpu_interrupt_level
;
665 cur_traptrace_ring
[nextidx
].start_time_abs
= sabs
;
666 cur_traptrace_ring
[nextidx
].duration
= ~0ULL;
668 rbtrace_bt(&cur_traptrace_ring
[nextidx
].backtrace
[0],
669 MAX_TRACE_BTFRAMES
- 1, cdata
, frameptr
, false);
671 assert(nextidx
<= 0xFFFF);
673 return ((unsigned)cpu_num
<< 16) | nextidx
;
677 traptrace_end(uint32_t index
, uint64_t eabs
)
679 if (index
!= TRAPTRACE_INVALID_INDEX
) {
680 traptrace_entry_t
*ttentp
= &traptrace_ring
[index
>> 16][index
& 0xFFFF];
682 ttentp
->duration
= eabs
- ttentp
->start_time_abs
;
686 #endif /* DEVELOPMENT || DEBUG */
689 pltrace(boolean_t plenable
)
691 #if DEVELOPMENT || DEBUG
692 if (__improbable(plctrace_enabled
!= 0)) {
693 pltrace_internal(plenable
);
701 disable_preemption_internal(void)
703 assert(get_preemption_level() >= 0);
705 os_compiler_barrier(release
);
706 #if defined(__clang__)
707 cpu_data_t GS_RELATIVE
*cpu_data
= (cpu_data_t GS_RELATIVE
*)0UL;
708 cpu_data
->cpu_preemption_level
++;
710 __asm__
volatile ("incl %%gs:%P0"
712 : "i" (offsetof(cpu_data_t
, cpu_preemption_level
)));
714 os_compiler_barrier(acquire
);
719 enable_preemption_internal(void)
721 assert(get_preemption_level() > 0);
723 os_compiler_barrier(release
);
724 #if defined(__clang__)
725 cpu_data_t GS_RELATIVE
*cpu_data
= (cpu_data_t GS_RELATIVE
*)0UL;
726 if (0 == --cpu_data
->cpu_preemption_level
) {
727 kernel_preempt_check();
730 __asm__
volatile ("decl %%gs:%P0 \n\t"
732 "call _kernel_preempt_check \n\t"
735 : "i" (offsetof(cpu_data_t
, cpu_preemption_level
))
736 : "eax", "ecx", "edx", "cc", "memory");
738 os_compiler_barrier(acquire
);
742 enable_preemption_no_check(void)
744 assert(get_preemption_level() > 0);
747 os_compiler_barrier(release
);
748 #if defined(__clang__)
749 cpu_data_t GS_RELATIVE
*cpu_data
= (cpu_data_t GS_RELATIVE
*)0UL;
750 cpu_data
->cpu_preemption_level
--;
752 __asm__
volatile ("decl %%gs:%P0"
754 : "i" (offsetof(cpu_data_t
, cpu_preemption_level
))
757 os_compiler_barrier(acquire
);
761 _enable_preemption_no_check(void)
763 enable_preemption_no_check();
767 mp_disable_preemption(void)
769 disable_preemption_internal();
773 _mp_disable_preemption(void)
775 disable_preemption_internal();
779 mp_enable_preemption(void)
781 enable_preemption_internal();
785 _mp_enable_preemption(void)
787 enable_preemption_internal();
791 mp_enable_preemption_no_check(void)
793 enable_preemption_no_check();
797 _mp_enable_preemption_no_check(void)
799 enable_preemption_no_check();
802 #ifdef XNU_KERNEL_PRIVATE
803 #define disable_preemption() disable_preemption_internal()
804 #define enable_preemption() enable_preemption_internal()
805 #define MACHINE_PREEMPTION_MACROS (1)
808 static inline cpu_data_t
*
811 return cpu_data_ptr
[cpu
];
815 cpu_is_running(int cpu
)
817 return (cpu_datap(cpu
) != NULL
) && (cpu_datap(cpu
)->cpu_running
);
820 #ifdef MACH_KERNEL_PRIVATE
821 static inline cpu_data_t
*
824 return cpu_data_ptr
[cpu
]->cd_shadow
;
828 extern cpu_data_t
*cpu_data_alloc(boolean_t is_boot_cpu
);
829 extern void cpu_data_realloc(void);
831 #endif /* I386_CPU_DATA */