]> git.saurik.com Git - apple/xnu.git/blob - osfmk/i386/machine_routines.c
xnu-2050.9.2.tar.gz
[apple/xnu.git] / osfmk / i386 / machine_routines.c
1 /*
2 * Copyright (c) 2000-2010 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 #include <i386/machine_routines.h>
30 #include <i386/io_map_entries.h>
31 #include <i386/cpuid.h>
32 #include <i386/fpu.h>
33 #include <mach/processor.h>
34 #include <kern/processor.h>
35 #include <kern/machine.h>
36 #include <kern/cpu_data.h>
37 #include <kern/cpu_number.h>
38 #include <kern/thread.h>
39 #include <i386/machine_cpu.h>
40 #include <i386/lapic.h>
41 #include <i386/lock.h>
42 #include <i386/mp_events.h>
43 #include <i386/pmCPU.h>
44 #include <i386/trap.h>
45 #include <i386/tsc.h>
46 #include <i386/cpu_threads.h>
47 #include <i386/proc_reg.h>
48 #include <mach/vm_param.h>
49 #include <i386/pmap.h>
50 #include <i386/pmap_internal.h>
51 #include <i386/misc_protos.h>
52
53 #if DEBUG
54 #define DBG(x...) kprintf("DBG: " x)
55 #else
56 #define DBG(x...)
57 #endif
58
59 extern void wakeup(void *);
60
61 static int max_cpus_initialized = 0;
62
63 unsigned int LockTimeOut;
64 unsigned int LockTimeOutTSC;
65 unsigned int MutexSpin;
66 uint64_t LastDebuggerEntryAllowance;
67 uint64_t delay_spin_threshold;
68
69 extern uint64_t panic_restart_timeout;
70
71 boolean_t virtualized = FALSE;
72
73 #define MAX_CPUS_SET 0x1
74 #define MAX_CPUS_WAIT 0x2
75
76 /* IO memory map services */
77
78 /* Map memory map IO space */
79 vm_offset_t ml_io_map(
80 vm_offset_t phys_addr,
81 vm_size_t size)
82 {
83 return(io_map(phys_addr,size,VM_WIMG_IO));
84 }
85
86 /* boot memory allocation */
87 vm_offset_t ml_static_malloc(
88 __unused vm_size_t size)
89 {
90 return((vm_offset_t)NULL);
91 }
92
93
94 void ml_get_bouncepool_info(vm_offset_t *phys_addr, vm_size_t *size)
95 {
96 *phys_addr = 0;
97 *size = 0;
98 }
99
100
101 vm_offset_t
102 ml_static_ptovirt(
103 vm_offset_t paddr)
104 {
105 #if defined(__x86_64__)
106 return (vm_offset_t)(((unsigned long) paddr) | VM_MIN_KERNEL_ADDRESS);
107 #else
108 return (vm_offset_t)((paddr) | LINEAR_KERNEL_ADDRESS);
109 #endif
110 }
111
112
113 /*
114 * Routine: ml_static_mfree
115 * Function:
116 */
117 void
118 ml_static_mfree(
119 vm_offset_t vaddr,
120 vm_size_t size)
121 {
122 addr64_t vaddr_cur;
123 ppnum_t ppn;
124 uint32_t freed_pages = 0;
125 assert(vaddr >= VM_MIN_KERNEL_ADDRESS);
126
127 assert((vaddr & (PAGE_SIZE-1)) == 0); /* must be page aligned */
128
129 for (vaddr_cur = vaddr;
130 vaddr_cur < round_page_64(vaddr+size);
131 vaddr_cur += PAGE_SIZE) {
132 ppn = pmap_find_phys(kernel_pmap, vaddr_cur);
133 if (ppn != (vm_offset_t)NULL) {
134 kernel_pmap->stats.resident_count++;
135 if (kernel_pmap->stats.resident_count >
136 kernel_pmap->stats.resident_max) {
137 kernel_pmap->stats.resident_max =
138 kernel_pmap->stats.resident_count;
139 }
140 pmap_remove(kernel_pmap, vaddr_cur, vaddr_cur+PAGE_SIZE);
141 assert(pmap_valid_page(ppn));
142
143 if (IS_MANAGED_PAGE(ppn)) {
144 vm_page_create(ppn,(ppn+1));
145 vm_page_wire_count--;
146 freed_pages++;
147 }
148 }
149 }
150 #if DEBUG
151 kprintf("ml_static_mfree: Released 0x%x pages at VA %p, size:0x%llx, last ppn: 0x%x\n", freed_pages, (void *)vaddr, (uint64_t)size, ppn);
152 #endif
153 }
154
155
156 /* virtual to physical on wired pages */
157 vm_offset_t ml_vtophys(
158 vm_offset_t vaddr)
159 {
160 return (vm_offset_t)kvtophys(vaddr);
161 }
162
163 /*
164 * Routine: ml_nofault_copy
165 * Function: Perform a physical mode copy if the source and
166 * destination have valid translations in the kernel pmap.
167 * If translations are present, they are assumed to
168 * be wired; i.e. no attempt is made to guarantee that the
169 * translations obtained remained valid for
170 * the duration of the copy process.
171 */
172
173 vm_size_t ml_nofault_copy(
174 vm_offset_t virtsrc, vm_offset_t virtdst, vm_size_t size)
175 {
176 addr64_t cur_phys_dst, cur_phys_src;
177 uint32_t count, nbytes = 0;
178
179 while (size > 0) {
180 if (!(cur_phys_src = kvtophys(virtsrc)))
181 break;
182 if (!(cur_phys_dst = kvtophys(virtdst)))
183 break;
184 if (!pmap_valid_page(i386_btop(cur_phys_dst)) || !pmap_valid_page(i386_btop(cur_phys_src)))
185 break;
186 count = (uint32_t)(PAGE_SIZE - (cur_phys_src & PAGE_MASK));
187 if (count > (PAGE_SIZE - (cur_phys_dst & PAGE_MASK)))
188 count = (uint32_t)(PAGE_SIZE - (cur_phys_dst & PAGE_MASK));
189 if (count > size)
190 count = (uint32_t)size;
191
192 bcopy_phys(cur_phys_src, cur_phys_dst, count);
193
194 nbytes += count;
195 virtsrc += count;
196 virtdst += count;
197 size -= count;
198 }
199
200 return nbytes;
201 }
202
203 /* Interrupt handling */
204
205 /* Initialize Interrupts */
206 void ml_init_interrupt(void)
207 {
208 (void) ml_set_interrupts_enabled(TRUE);
209 }
210
211
212 /* Get Interrupts Enabled */
213 boolean_t ml_get_interrupts_enabled(void)
214 {
215 unsigned long flags;
216
217 __asm__ volatile("pushf; pop %0" : "=r" (flags));
218 return (flags & EFL_IF) != 0;
219 }
220
221 /* Set Interrupts Enabled */
222 boolean_t ml_set_interrupts_enabled(boolean_t enable)
223 {
224 unsigned long flags;
225 boolean_t istate;
226
227 __asm__ volatile("pushf; pop %0" : "=r" (flags));
228
229 istate = ((flags & EFL_IF) != 0);
230
231 if (enable) {
232 __asm__ volatile("sti;nop");
233
234 if ((get_preemption_level() == 0) && (*ast_pending() & AST_URGENT))
235 __asm__ volatile ("int $0xff");
236 }
237 else {
238 if (istate)
239 __asm__ volatile("cli");
240 }
241
242 return istate;
243 }
244
245 /* Check if running at interrupt context */
246 boolean_t ml_at_interrupt_context(void)
247 {
248 return get_interrupt_level() != 0;
249 }
250
251 /* Generate a fake interrupt */
252 void ml_cause_interrupt(void)
253 {
254 panic("ml_cause_interrupt not defined yet on Intel");
255 }
256
257 void ml_thread_policy(
258 thread_t thread,
259 __unused unsigned policy_id,
260 unsigned policy_info)
261 {
262 if (policy_info & MACHINE_NETWORK_WORKLOOP) {
263 spl_t s = splsched();
264
265 thread_lock(thread);
266
267 set_priority(thread, thread->priority + 1);
268
269 thread_unlock(thread);
270 splx(s);
271 }
272 }
273
274 /* Initialize Interrupts */
275 void ml_install_interrupt_handler(
276 void *nub,
277 int source,
278 void *target,
279 IOInterruptHandler handler,
280 void *refCon)
281 {
282 boolean_t current_state;
283
284 current_state = ml_get_interrupts_enabled();
285
286 PE_install_interrupt_handler(nub, source, target,
287 (IOInterruptHandler) handler, refCon);
288
289 (void) ml_set_interrupts_enabled(current_state);
290
291 initialize_screen(NULL, kPEAcquireScreen);
292 }
293
294
295 void
296 machine_signal_idle(
297 processor_t processor)
298 {
299 cpu_interrupt(processor->cpu_id);
300 }
301
302 static kern_return_t
303 register_cpu(
304 uint32_t lapic_id,
305 processor_t *processor_out,
306 boolean_t boot_cpu )
307 {
308 int target_cpu;
309 cpu_data_t *this_cpu_datap;
310
311 this_cpu_datap = cpu_data_alloc(boot_cpu);
312 if (this_cpu_datap == NULL) {
313 return KERN_FAILURE;
314 }
315 target_cpu = this_cpu_datap->cpu_number;
316 assert((boot_cpu && (target_cpu == 0)) ||
317 (!boot_cpu && (target_cpu != 0)));
318
319 lapic_cpu_map(lapic_id, target_cpu);
320
321 /* The cpu_id is not known at registration phase. Just do
322 * lapic_id for now
323 */
324 this_cpu_datap->cpu_phys_number = lapic_id;
325
326 this_cpu_datap->cpu_console_buf = console_cpu_alloc(boot_cpu);
327 if (this_cpu_datap->cpu_console_buf == NULL)
328 goto failed;
329
330 this_cpu_datap->cpu_chud = chudxnu_cpu_alloc(boot_cpu);
331 if (this_cpu_datap->cpu_chud == NULL)
332 goto failed;
333
334 if (!boot_cpu) {
335 cpu_thread_alloc(this_cpu_datap->cpu_number);
336 if (this_cpu_datap->lcpu.core == NULL)
337 goto failed;
338
339 #if NCOPY_WINDOWS > 0
340 this_cpu_datap->cpu_pmap = pmap_cpu_alloc(boot_cpu);
341 if (this_cpu_datap->cpu_pmap == NULL)
342 goto failed;
343 #endif
344
345 this_cpu_datap->cpu_processor = cpu_processor_alloc(boot_cpu);
346 if (this_cpu_datap->cpu_processor == NULL)
347 goto failed;
348 /*
349 * processor_init() deferred to topology start
350 * because "slot numbers" a.k.a. logical processor numbers
351 * are not yet finalized.
352 */
353 }
354
355 *processor_out = this_cpu_datap->cpu_processor;
356
357 return KERN_SUCCESS;
358
359 failed:
360 cpu_processor_free(this_cpu_datap->cpu_processor);
361 #if NCOPY_WINDOWS > 0
362 pmap_cpu_free(this_cpu_datap->cpu_pmap);
363 #endif
364 chudxnu_cpu_free(this_cpu_datap->cpu_chud);
365 console_cpu_free(this_cpu_datap->cpu_console_buf);
366 return KERN_FAILURE;
367 }
368
369
370 kern_return_t
371 ml_processor_register(
372 cpu_id_t cpu_id,
373 uint32_t lapic_id,
374 processor_t *processor_out,
375 boolean_t boot_cpu,
376 boolean_t start )
377 {
378 static boolean_t done_topo_sort = FALSE;
379 static uint32_t num_registered = 0;
380
381 /* Register all CPUs first, and track max */
382 if( start == FALSE )
383 {
384 num_registered++;
385
386 DBG( "registering CPU lapic id %d\n", lapic_id );
387
388 return register_cpu( lapic_id, processor_out, boot_cpu );
389 }
390
391 /* Sort by topology before we start anything */
392 if( !done_topo_sort )
393 {
394 DBG( "about to start CPUs. %d registered\n", num_registered );
395
396 cpu_topology_sort( num_registered );
397 done_topo_sort = TRUE;
398 }
399
400 /* Assign the cpu ID */
401 uint32_t cpunum = -1;
402 cpu_data_t *this_cpu_datap = NULL;
403
404 /* find cpu num and pointer */
405 cpunum = ml_get_cpuid( lapic_id );
406
407 if( cpunum == 0xFFFFFFFF ) /* never heard of it? */
408 panic( "trying to start invalid/unregistered CPU %d\n", lapic_id );
409
410 this_cpu_datap = cpu_datap(cpunum);
411
412 /* fix the CPU id */
413 this_cpu_datap->cpu_id = cpu_id;
414
415 /* output arg */
416 *processor_out = this_cpu_datap->cpu_processor;
417
418 /* OK, try and start this CPU */
419 return cpu_topology_start_cpu( cpunum );
420 }
421
422
423 void
424 ml_cpu_get_info(ml_cpu_info_t *cpu_infop)
425 {
426 boolean_t os_supports_sse;
427 i386_cpu_info_t *cpuid_infop;
428
429 if (cpu_infop == NULL)
430 return;
431
432 /*
433 * Are we supporting MMX/SSE/SSE2/SSE3?
434 * As distinct from whether the cpu has these capabilities.
435 */
436 os_supports_sse = !!(get_cr4() & CR4_OSXMM);
437
438 if (ml_fpu_avx_enabled())
439 cpu_infop->vector_unit = 9;
440 else if ((cpuid_features() & CPUID_FEATURE_SSE4_2) && os_supports_sse)
441 cpu_infop->vector_unit = 8;
442 else if ((cpuid_features() & CPUID_FEATURE_SSE4_1) && os_supports_sse)
443 cpu_infop->vector_unit = 7;
444 else if ((cpuid_features() & CPUID_FEATURE_SSSE3) && os_supports_sse)
445 cpu_infop->vector_unit = 6;
446 else if ((cpuid_features() & CPUID_FEATURE_SSE3) && os_supports_sse)
447 cpu_infop->vector_unit = 5;
448 else if ((cpuid_features() & CPUID_FEATURE_SSE2) && os_supports_sse)
449 cpu_infop->vector_unit = 4;
450 else if ((cpuid_features() & CPUID_FEATURE_SSE) && os_supports_sse)
451 cpu_infop->vector_unit = 3;
452 else if (cpuid_features() & CPUID_FEATURE_MMX)
453 cpu_infop->vector_unit = 2;
454 else
455 cpu_infop->vector_unit = 0;
456
457 cpuid_infop = cpuid_info();
458
459 cpu_infop->cache_line_size = cpuid_infop->cache_linesize;
460
461 cpu_infop->l1_icache_size = cpuid_infop->cache_size[L1I];
462 cpu_infop->l1_dcache_size = cpuid_infop->cache_size[L1D];
463
464 if (cpuid_infop->cache_size[L2U] > 0) {
465 cpu_infop->l2_settings = 1;
466 cpu_infop->l2_cache_size = cpuid_infop->cache_size[L2U];
467 } else {
468 cpu_infop->l2_settings = 0;
469 cpu_infop->l2_cache_size = 0xFFFFFFFF;
470 }
471
472 if (cpuid_infop->cache_size[L3U] > 0) {
473 cpu_infop->l3_settings = 1;
474 cpu_infop->l3_cache_size = cpuid_infop->cache_size[L3U];
475 } else {
476 cpu_infop->l3_settings = 0;
477 cpu_infop->l3_cache_size = 0xFFFFFFFF;
478 }
479 }
480
481 void
482 ml_init_max_cpus(unsigned long max_cpus)
483 {
484 boolean_t current_state;
485
486 current_state = ml_set_interrupts_enabled(FALSE);
487 if (max_cpus_initialized != MAX_CPUS_SET) {
488 if (max_cpus > 0 && max_cpus <= MAX_CPUS) {
489 /*
490 * Note: max_cpus is the number of enabled processors
491 * that ACPI found; max_ncpus is the maximum number
492 * that the kernel supports or that the "cpus="
493 * boot-arg has set. Here we take int minimum.
494 */
495 machine_info.max_cpus = (integer_t)MIN(max_cpus, max_ncpus);
496 }
497 if (max_cpus_initialized == MAX_CPUS_WAIT)
498 wakeup((event_t)&max_cpus_initialized);
499 max_cpus_initialized = MAX_CPUS_SET;
500 }
501 (void) ml_set_interrupts_enabled(current_state);
502 }
503
504 int
505 ml_get_max_cpus(void)
506 {
507 boolean_t current_state;
508
509 current_state = ml_set_interrupts_enabled(FALSE);
510 if (max_cpus_initialized != MAX_CPUS_SET) {
511 max_cpus_initialized = MAX_CPUS_WAIT;
512 assert_wait((event_t)&max_cpus_initialized, THREAD_UNINT);
513 (void)thread_block(THREAD_CONTINUE_NULL);
514 }
515 (void) ml_set_interrupts_enabled(current_state);
516 return(machine_info.max_cpus);
517 }
518
519 /*
520 * Routine: ml_init_lock_timeout
521 * Function:
522 */
523 void
524 ml_init_lock_timeout(void)
525 {
526 uint64_t abstime;
527 uint32_t mtxspin;
528 uint64_t default_timeout_ns = NSEC_PER_SEC>>2;
529 uint32_t slto;
530 uint32_t prt;
531
532 if (PE_parse_boot_argn("slto_us", &slto, sizeof (slto)))
533 default_timeout_ns = slto * NSEC_PER_USEC;
534
535 /* LockTimeOut is absolutetime, LockTimeOutTSC is in TSC ticks */
536 nanoseconds_to_absolutetime(default_timeout_ns, &abstime);
537 LockTimeOut = (uint32_t) abstime;
538 LockTimeOutTSC = (uint32_t) tmrCvt(abstime, tscFCvtn2t);
539
540 if (PE_parse_boot_argn("mtxspin", &mtxspin, sizeof (mtxspin))) {
541 if (mtxspin > USEC_PER_SEC>>4)
542 mtxspin = USEC_PER_SEC>>4;
543 nanoseconds_to_absolutetime(mtxspin*NSEC_PER_USEC, &abstime);
544 } else {
545 nanoseconds_to_absolutetime(10*NSEC_PER_USEC, &abstime);
546 }
547 MutexSpin = (unsigned int)abstime;
548
549 nanoseconds_to_absolutetime(4ULL * NSEC_PER_SEC, &LastDebuggerEntryAllowance);
550 if (PE_parse_boot_argn("panic_restart_timeout", &prt, sizeof (prt)))
551 nanoseconds_to_absolutetime(prt * NSEC_PER_SEC, &panic_restart_timeout);
552 virtualized = ((cpuid_features() & CPUID_FEATURE_VMM) != 0);
553 interrupt_latency_tracker_setup();
554 }
555
556 /*
557 * Threshold above which we should attempt to block
558 * instead of spinning for clock_delay_until().
559 */
560 void
561 ml_init_delay_spin_threshold(void)
562 {
563 nanoseconds_to_absolutetime(10ULL * NSEC_PER_USEC, &delay_spin_threshold);
564 }
565
566 boolean_t
567 ml_delay_should_spin(uint64_t interval)
568 {
569 return (interval < delay_spin_threshold) ? TRUE : FALSE;
570 }
571
572 /*
573 * This is called from the machine-independent routine cpu_up()
574 * to perform machine-dependent info updates. Defer to cpu_thread_init().
575 */
576 void
577 ml_cpu_up(void)
578 {
579 return;
580 }
581
582 /*
583 * This is called from the machine-independent routine cpu_down()
584 * to perform machine-dependent info updates.
585 */
586 void
587 ml_cpu_down(void)
588 {
589 return;
590 }
591
592 /*
593 * The following are required for parts of the kernel
594 * that cannot resolve these functions as inlines:
595 */
596 extern thread_t current_act(void);
597 thread_t
598 current_act(void)
599 {
600 return(current_thread_fast());
601 }
602
603 #undef current_thread
604 extern thread_t current_thread(void);
605 thread_t
606 current_thread(void)
607 {
608 return(current_thread_fast());
609 }
610
611
612 boolean_t ml_is64bit(void) {
613
614 return (cpu_mode_is64bit());
615 }
616
617
618 boolean_t ml_thread_is64bit(thread_t thread) {
619
620 return (thread_is_64bit(thread));
621 }
622
623
624 boolean_t ml_state_is64bit(void *saved_state) {
625
626 return is_saved_state64(saved_state);
627 }
628
629 void ml_cpu_set_ldt(int selector)
630 {
631 /*
632 * Avoid loading the LDT
633 * if we're setting the KERNEL LDT and it's already set.
634 */
635 if (selector == KERNEL_LDT &&
636 current_cpu_datap()->cpu_ldt == KERNEL_LDT)
637 return;
638
639 #if defined(__i386__)
640 /*
641 * If 64bit this requires a mode switch (and back).
642 */
643 if (cpu_mode_is64bit())
644 ml_64bit_lldt(selector);
645 else
646 lldt(selector);
647 #else
648 lldt(selector);
649 #endif
650 current_cpu_datap()->cpu_ldt = selector;
651 }
652
653 void ml_fp_setvalid(boolean_t value)
654 {
655 fp_setvalid(value);
656 }
657
658 uint64_t ml_cpu_int_event_time(void)
659 {
660 return current_cpu_datap()->cpu_int_event_time;
661 }
662
663 vm_offset_t ml_stack_remaining(void)
664 {
665 uintptr_t local = (uintptr_t) &local;
666
667 if (ml_at_interrupt_context() != 0) {
668 return (local - (current_cpu_datap()->cpu_int_stack_top - INTSTACK_SIZE));
669 } else {
670 return (local - current_thread()->kernel_stack);
671 }
672 }
673
674 void
675 kernel_preempt_check(void)
676 {
677 boolean_t intr;
678 unsigned long flags;
679
680 assert(get_preemption_level() == 0);
681
682 __asm__ volatile("pushf; pop %0" : "=r" (flags));
683
684 intr = ((flags & EFL_IF) != 0);
685
686 if ((*ast_pending() & AST_URGENT) && intr == TRUE) {
687 /*
688 * can handle interrupts and preemptions
689 * at this point
690 */
691
692 /*
693 * now cause the PRE-EMPTION trap
694 */
695 __asm__ volatile ("int %0" :: "N" (T_PREEMPT));
696 }
697 }
698
699 boolean_t machine_timeout_suspended(void) {
700 return (virtualized || pmap_tlb_flush_timeout || spinlock_timed_out || panic_active() || mp_recent_debugger_activity());
701 }