2 * Copyright (c) 2008-2020 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 #include <mach/kern_return.h>
30 #include <mach/memory_object_control.h>
33 #include <kern/ipc_kobject.h>
34 #include <kern/kalloc.h>
35 #include <kern/queue.h>
37 #include <vm/memory_object.h>
38 #include <vm/vm_kern.h>
39 #include <vm/vm_map.h>
40 #include <vm/vm_pageout.h>
41 #include <vm/vm_protos.h>
45 * APPLE SWAPFILE MEMORY PAGER
47 * This external memory manager (EMM) handles mappings of the swap files.
48 * Swap files are not regular files and are used solely to store contents of
49 * anonymous memory mappings while not resident in memory.
50 * There's no valid reason to map a swap file. This just puts extra burden
51 * on the system, is potentially a security issue and is not reliable since
52 * the contents can change at any time with pageout operations.
53 * Here are some of the issues with mapping a swap file.
55 * Each page in the swap file belong to an anonymous memory object. Mapping
56 * the swap file makes those pages also accessible via a vnode memory
57 * object and each page can now be resident twice.
59 * Mapping a swap file allows access to other processes' memory. Swap files
60 * are only accessible by the "root" super-user, who can already access any
61 * process's memory, so this is not a real issue but if permissions on the
62 * swap file got changed, it could become one.
63 * Swap files are not "zero-filled" on creation, so until their contents are
64 * overwritten with pageout operations, they still contain whatever was on
65 * the disk blocks they were allocated. The "super-user" could see the
66 * contents of free blocks anyway, so this is not a new security issue but
67 * it may be perceive as one.
69 * We can't legitimately prevent a user process with appropriate privileges
70 * from mapping a swap file, but we can prevent it from accessing its actual
72 * This pager mostly handles page-in request (from memory_object_data_request())
73 * for swap file mappings and just returns bogus data.
74 * Pageouts are not handled, so mmap() has to make sure it does not allow
75 * writable (i.e. MAP_SHARED and PROT_WRITE) mappings of swap files.
78 /* forward declarations */
79 void swapfile_pager_reference(memory_object_t mem_obj
);
80 void swapfile_pager_deallocate(memory_object_t mem_obj
);
81 kern_return_t
swapfile_pager_init(memory_object_t mem_obj
,
82 memory_object_control_t control
,
83 memory_object_cluster_size_t pg_size
);
84 kern_return_t
swapfile_pager_terminate(memory_object_t mem_obj
);
85 kern_return_t
swapfile_pager_data_request(memory_object_t mem_obj
,
86 memory_object_offset_t offset
,
87 memory_object_cluster_size_t length
,
88 vm_prot_t protection_required
,
89 memory_object_fault_info_t fault_info
);
90 kern_return_t
swapfile_pager_data_return(memory_object_t mem_obj
,
91 memory_object_offset_t offset
,
92 memory_object_cluster_size_t data_cnt
,
93 memory_object_offset_t
*resid_offset
,
96 boolean_t kernel_copy
,
98 kern_return_t
swapfile_pager_data_initialize(memory_object_t mem_obj
,
99 memory_object_offset_t offset
,
100 memory_object_cluster_size_t data_cnt
);
101 kern_return_t
swapfile_pager_data_unlock(memory_object_t mem_obj
,
102 memory_object_offset_t offset
,
103 memory_object_size_t size
,
104 vm_prot_t desired_access
);
105 kern_return_t
swapfile_pager_synchronize(memory_object_t mem_obj
,
106 memory_object_offset_t offset
,
107 memory_object_size_t length
,
108 vm_sync_t sync_flags
);
109 kern_return_t
swapfile_pager_map(memory_object_t mem_obj
,
111 kern_return_t
swapfile_pager_last_unmap(memory_object_t mem_obj
);
114 * Vector of VM operations for this EMM.
115 * These routines are invoked by VM via the memory_object_*() interfaces.
117 const struct memory_object_pager_ops swapfile_pager_ops
= {
118 .memory_object_reference
= swapfile_pager_reference
,
119 .memory_object_deallocate
= swapfile_pager_deallocate
,
120 .memory_object_init
= swapfile_pager_init
,
121 .memory_object_terminate
= swapfile_pager_terminate
,
122 .memory_object_data_request
= swapfile_pager_data_request
,
123 .memory_object_data_return
= swapfile_pager_data_return
,
124 .memory_object_data_initialize
= swapfile_pager_data_initialize
,
125 .memory_object_data_unlock
= swapfile_pager_data_unlock
,
126 .memory_object_synchronize
= swapfile_pager_synchronize
,
127 .memory_object_map
= swapfile_pager_map
,
128 .memory_object_last_unmap
= swapfile_pager_last_unmap
,
129 .memory_object_data_reclaim
= NULL
,
130 .memory_object_pager_name
= "swapfile pager"
134 * The "swapfile_pager" describes a memory object backed by
135 * the "swapfile" EMM.
137 typedef struct swapfile_pager
{
138 /* mandatory generic header */
139 struct memory_object swp_pgr_hdr
;
141 /* pager-specific data */
142 queue_chain_t pager_queue
; /* next & prev pagers */
143 unsigned int ref_count
; /* reference count */
144 boolean_t is_ready
; /* is this pager ready ? */
145 boolean_t is_mapped
; /* is this pager mapped ? */
146 struct vnode
*swapfile_vnode
;/* the swapfile's vnode */
148 #define SWAPFILE_PAGER_NULL ((swapfile_pager_t) NULL)
151 * List of memory objects managed by this EMM.
152 * The list is protected by the "swapfile_pager_lock" lock.
154 int swapfile_pager_count
= 0; /* number of pagers */
155 queue_head_t swapfile_pager_queue
= QUEUE_HEAD_INITIALIZER(swapfile_pager_queue
);
156 LCK_GRP_DECLARE(swapfile_pager_lck_grp
, "swapfile pager");
157 LCK_MTX_DECLARE(swapfile_pager_lock
, &swapfile_pager_lck_grp
);
160 * Statistics & counters.
162 int swapfile_pager_count_max
= 0;
164 /* internal prototypes */
165 swapfile_pager_t
swapfile_pager_create(struct vnode
*vp
);
166 swapfile_pager_t
swapfile_pager_lookup(memory_object_t mem_obj
);
167 void swapfile_pager_dequeue(swapfile_pager_t pager
);
168 void swapfile_pager_deallocate_internal(swapfile_pager_t pager
,
170 void swapfile_pager_terminate_internal(swapfile_pager_t pager
);
174 int swapfile_pagerdebug
= 0;
175 #define PAGER_ALL 0xffffffff
176 #define PAGER_INIT 0x00000001
177 #define PAGER_PAGEIN 0x00000002
179 #define PAGER_DEBUG(LEVEL, A) \
181 if ((swapfile_pagerdebug & LEVEL)==LEVEL) { \
186 #define PAGER_DEBUG(LEVEL, A)
191 * swapfile_pager_init()
193 * Initialize the memory object and makes it ready to be used and mapped.
197 memory_object_t mem_obj
,
198 memory_object_control_t control
,
202 memory_object_cluster_size_t pg_size
)
204 swapfile_pager_t pager
;
206 memory_object_attr_info_data_t attributes
;
208 PAGER_DEBUG(PAGER_ALL
,
209 ("swapfile_pager_init: %p, %p, %x\n",
210 mem_obj
, control
, pg_size
));
212 if (control
== MEMORY_OBJECT_CONTROL_NULL
) {
213 return KERN_INVALID_ARGUMENT
;
216 pager
= swapfile_pager_lookup(mem_obj
);
218 memory_object_control_reference(control
);
220 pager
->swp_pgr_hdr
.mo_control
= control
;
222 attributes
.copy_strategy
= MEMORY_OBJECT_COPY_DELAY
;
223 attributes
.cluster_size
= (1 << (PAGE_SHIFT
));
224 attributes
.may_cache_object
= FALSE
;
225 attributes
.temporary
= TRUE
;
227 kr
= memory_object_change_attributes(
229 MEMORY_OBJECT_ATTRIBUTE_INFO
,
230 (memory_object_info_t
) &attributes
,
231 MEMORY_OBJECT_ATTR_INFO_COUNT
);
232 if (kr
!= KERN_SUCCESS
) {
233 panic("swapfile_pager_init: "
234 "memory_object_change_attributes() failed");
241 * swapfile_data_return()
243 * Handles page-out requests from VM. This should never happen since
244 * the pages provided by this EMM are not supposed to be dirty or dirtied
245 * and VM should simply discard the contents and reclaim the pages if it
249 swapfile_pager_data_return(
250 __unused memory_object_t mem_obj
,
251 __unused memory_object_offset_t offset
,
252 __unused memory_object_cluster_size_t data_cnt
,
253 __unused memory_object_offset_t
*resid_offset
,
254 __unused
int *io_error
,
255 __unused boolean_t dirty
,
256 __unused boolean_t kernel_copy
,
257 __unused
int upl_flags
)
259 panic("swapfile_pager_data_return: should never get called");
264 swapfile_pager_data_initialize(
265 __unused memory_object_t mem_obj
,
266 __unused memory_object_offset_t offset
,
267 __unused memory_object_cluster_size_t data_cnt
)
269 panic("swapfile_pager_data_initialize: should never get called");
274 swapfile_pager_data_unlock(
275 __unused memory_object_t mem_obj
,
276 __unused memory_object_offset_t offset
,
277 __unused memory_object_size_t size
,
278 __unused vm_prot_t desired_access
)
284 * swapfile_pager_data_request()
286 * Handles page-in requests from VM.
289 swapfile_pager_data_request(
290 memory_object_t mem_obj
,
291 memory_object_offset_t offset
,
292 memory_object_cluster_size_t length
,
296 vm_prot_t protection_required
,
297 __unused memory_object_fault_info_t mo_fault_info
)
299 swapfile_pager_t pager
;
300 memory_object_control_t mo_control
;
304 upl_page_info_t
*upl_pl
= NULL
;
305 unsigned int pl_count
;
306 vm_object_t dst_object
;
307 kern_return_t kr
, retval
;
308 vm_map_offset_t kernel_mapping
;
309 vm_offset_t dst_vaddr
;
311 vm_offset_t cur_offset
;
312 vm_map_entry_t map_entry
;
314 PAGER_DEBUG(PAGER_ALL
, ("swapfile_pager_data_request: %p, %llx, %x, %x\n", mem_obj
, offset
, length
, protection_required
));
320 pager
= swapfile_pager_lookup(mem_obj
);
321 assert(pager
->is_ready
);
322 assert(pager
->ref_count
> 1); /* pager is alive and mapped */
324 PAGER_DEBUG(PAGER_PAGEIN
, ("swapfile_pager_data_request: %p, %llx, %x, %x, pager %p\n", mem_obj
, offset
, length
, protection_required
, pager
));
327 * Gather in a UPL all the VM pages requested by VM.
329 mo_control
= pager
->swp_pgr_hdr
.mo_control
;
333 UPL_RET_ONLY_ABSENT
|
336 UPL_CLEAN_IN_PLACE
| /* triggers UPL_CLEAR_DIRTY */
339 kr
= memory_object_upl_request(mo_control
,
341 &upl
, NULL
, NULL
, upl_flags
, VM_KERN_MEMORY_OSFMK
);
342 if (kr
!= KERN_SUCCESS
) {
346 dst_object
= mo_control
->moc_object
;
347 assert(dst_object
!= VM_OBJECT_NULL
);
351 * Reserve a virtual page in the kernel address space to map each
352 * destination physical page when it's its turn to be processed.
354 vm_object_reference(kernel_object
); /* ref. for mapping */
355 kr
= vm_map_find_space(kernel_map
,
360 VM_MAP_KERNEL_FLAGS_NONE
,
363 if (kr
!= KERN_SUCCESS
) {
364 vm_object_deallocate(kernel_object
);
368 VME_OBJECT_SET(map_entry
, kernel_object
);
369 VME_OFFSET_SET(map_entry
, kernel_mapping
- VM_MIN_KERNEL_ADDRESS
);
370 vm_map_unlock(kernel_map
);
371 dst_vaddr
= CAST_DOWN(vm_offset_t
, kernel_mapping
);
372 dst_ptr
= (char *) dst_vaddr
;
375 * Fill in the contents of the pages requested by VM.
377 upl_pl
= UPL_GET_INTERNAL_PAGE_LIST(upl
);
378 pl_count
= length
/ PAGE_SIZE
;
379 for (cur_offset
= 0; cur_offset
< length
; cur_offset
+= PAGE_SIZE
) {
382 if (!upl_page_present(upl_pl
, (int)(cur_offset
/ PAGE_SIZE
))) {
383 /* this page is not in the UPL: skip it */
388 * Establish an explicit pmap mapping of the destination
390 * We can't do a regular VM mapping because the VM page
394 upl_phys_page(upl_pl
, (int)(cur_offset
/ PAGE_SIZE
));
395 assert(dst_pnum
!= 0);
396 retval
= pmap_enter(kernel_pmap
,
399 VM_PROT_READ
| VM_PROT_WRITE
,
404 assert(retval
== KERN_SUCCESS
);
406 if (retval
!= KERN_SUCCESS
) {
410 memset(dst_ptr
, '\0', PAGE_SIZE
);
411 /* add an end-of-line to keep line counters happy */
412 dst_ptr
[PAGE_SIZE
- 1] = '\n';
415 * Remove the pmap mapping of the destination page
418 pmap_remove(kernel_pmap
,
419 (addr64_t
) kernel_mapping
,
420 (addr64_t
) (kernel_mapping
+ PAGE_SIZE_64
));
423 retval
= KERN_SUCCESS
;
426 /* clean up the UPL */
429 * The pages are currently dirty because we've just been
430 * writing on them, but as far as we're concerned, they're
431 * clean since they contain their "original" contents as
432 * provided by us, the pager.
433 * Tell the UPL to mark them "clean".
435 upl_clear_dirty(upl
, TRUE
);
437 /* abort or commit the UPL */
438 if (retval
!= KERN_SUCCESS
) {
442 assertf(page_aligned(upl
->u_offset
) && page_aligned(upl
->u_size
),
443 "upl %p offset 0x%llx size 0x%x",
444 upl
, upl
->u_offset
, upl
->u_size
);
445 upl_commit_range(upl
, 0, upl
->u_size
,
446 UPL_COMMIT_CS_VALIDATED
,
447 upl_pl
, pl_count
, &empty
);
450 /* and deallocate the UPL */
454 if (kernel_mapping
!= 0) {
455 /* clean up the mapping of the source and destination pages */
456 kr
= vm_map_remove(kernel_map
,
458 kernel_mapping
+ PAGE_SIZE_64
,
459 VM_MAP_REMOVE_NO_FLAGS
);
460 assert(kr
== KERN_SUCCESS
);
469 * swapfile_pager_reference()
471 * Get a reference on this memory object.
472 * For external usage only. Assumes that the initial reference count is not 0,
473 * i.e one should not "revive" a dead pager this way.
476 swapfile_pager_reference(
477 memory_object_t mem_obj
)
479 swapfile_pager_t pager
;
481 pager
= swapfile_pager_lookup(mem_obj
);
483 lck_mtx_lock(&swapfile_pager_lock
);
484 assert(pager
->ref_count
> 0);
486 lck_mtx_unlock(&swapfile_pager_lock
);
491 * swapfile_pager_dequeue:
493 * Removes a pager from the list of pagers.
495 * The caller must hold "swapfile_pager_lock".
498 swapfile_pager_dequeue(
499 swapfile_pager_t pager
)
501 assert(!pager
->is_mapped
);
503 queue_remove(&swapfile_pager_queue
,
507 pager
->pager_queue
.next
= NULL
;
508 pager
->pager_queue
.prev
= NULL
;
510 swapfile_pager_count
--;
514 * swapfile_pager_terminate_internal:
516 * Trigger the asynchronous termination of the memory object associated
518 * When the memory object is terminated, there will be one more call
519 * to memory_object_deallocate() (i.e. swapfile_pager_deallocate())
520 * to finish the clean up.
522 * "swapfile_pager_lock" should not be held by the caller.
523 * We don't need the lock because the pager has already been removed from
524 * the pagers' list and is now ours exclusively.
527 swapfile_pager_terminate_internal(
528 swapfile_pager_t pager
)
530 assert(pager
->is_ready
);
531 assert(!pager
->is_mapped
);
533 if (pager
->swapfile_vnode
!= NULL
) {
534 pager
->swapfile_vnode
= NULL
;
537 /* trigger the destruction of the memory object */
538 memory_object_destroy(pager
->swp_pgr_hdr
.mo_control
, 0);
542 * swapfile_pager_deallocate_internal()
544 * Release a reference on this pager and free it when the last
545 * reference goes away.
546 * Can be called with swapfile_pager_lock held or not but always returns
550 swapfile_pager_deallocate_internal(
551 swapfile_pager_t pager
,
555 lck_mtx_lock(&swapfile_pager_lock
);
558 /* drop a reference on this pager */
561 if (pager
->ref_count
== 1) {
563 * Only the "named" reference is left, which means that
564 * no one is really holding on to this pager anymore.
567 swapfile_pager_dequeue(pager
);
568 /* the pager is all ours: no need for the lock now */
569 lck_mtx_unlock(&swapfile_pager_lock
);
570 swapfile_pager_terminate_internal(pager
);
571 } else if (pager
->ref_count
== 0) {
573 * Dropped the existence reference; the memory object has
574 * been terminated. Do some final cleanup and release the
577 lck_mtx_unlock(&swapfile_pager_lock
);
578 if (pager
->swp_pgr_hdr
.mo_control
!= MEMORY_OBJECT_CONTROL_NULL
) {
579 memory_object_control_deallocate(pager
->swp_pgr_hdr
.mo_control
);
580 pager
->swp_pgr_hdr
.mo_control
= MEMORY_OBJECT_CONTROL_NULL
;
582 kfree(pager
, sizeof(*pager
));
583 pager
= SWAPFILE_PAGER_NULL
;
585 /* there are still plenty of references: keep going... */
586 lck_mtx_unlock(&swapfile_pager_lock
);
589 /* caution: lock is not held on return... */
593 * swapfile_pager_deallocate()
595 * Release a reference on this pager and free it when the last
596 * reference goes away.
599 swapfile_pager_deallocate(
600 memory_object_t mem_obj
)
602 swapfile_pager_t pager
;
604 PAGER_DEBUG(PAGER_ALL
, ("swapfile_pager_deallocate: %p\n", mem_obj
));
605 pager
= swapfile_pager_lookup(mem_obj
);
606 swapfile_pager_deallocate_internal(pager
, FALSE
);
613 swapfile_pager_terminate(
617 memory_object_t mem_obj
)
619 PAGER_DEBUG(PAGER_ALL
, ("swapfile_pager_terminate: %p\n", mem_obj
));
628 swapfile_pager_synchronize(
629 __unused memory_object_t mem_obbj
,
630 __unused memory_object_offset_t offset
,
631 __unused memory_object_size_t length
,
632 __unused vm_sync_t sync_flags
)
634 panic("swapfile_pager_synchronize: memory_object_synchronize no longer supported\n");
639 * swapfile_pager_map()
641 * This allows VM to let us, the EMM, know that this memory object
642 * is currently mapped one or more times. This is called by VM each time
643 * the memory object gets mapped and we take one extra reference on the
644 * memory object to account for all its mappings.
648 memory_object_t mem_obj
,
649 __unused vm_prot_t prot
)
651 swapfile_pager_t pager
;
653 PAGER_DEBUG(PAGER_ALL
, ("swapfile_pager_map: %p\n", mem_obj
));
655 pager
= swapfile_pager_lookup(mem_obj
);
657 lck_mtx_lock(&swapfile_pager_lock
);
658 assert(pager
->is_ready
);
659 assert(pager
->ref_count
> 0); /* pager is alive */
660 if (pager
->is_mapped
== FALSE
) {
662 * First mapping of this pager: take an extra reference
663 * that will remain until all the mappings of this pager
666 pager
->is_mapped
= TRUE
;
669 lck_mtx_unlock(&swapfile_pager_lock
);
675 * swapfile_pager_last_unmap()
677 * This is called by VM when this memory object is no longer mapped anywhere.
680 swapfile_pager_last_unmap(
681 memory_object_t mem_obj
)
683 swapfile_pager_t pager
;
685 PAGER_DEBUG(PAGER_ALL
,
686 ("swapfile_pager_last_unmap: %p\n", mem_obj
));
688 pager
= swapfile_pager_lookup(mem_obj
);
690 lck_mtx_lock(&swapfile_pager_lock
);
691 if (pager
->is_mapped
) {
693 * All the mappings are gone, so let go of the one extra
694 * reference that represents all the mappings of this pager.
696 pager
->is_mapped
= FALSE
;
697 swapfile_pager_deallocate_internal(pager
, TRUE
);
698 /* caution: deallocate_internal() released the lock ! */
700 lck_mtx_unlock(&swapfile_pager_lock
);
711 swapfile_pager_lookup(
712 memory_object_t mem_obj
)
714 swapfile_pager_t pager
;
716 assert(mem_obj
->mo_pager_ops
== &swapfile_pager_ops
);
717 __IGNORE_WCASTALIGN(pager
= (swapfile_pager_t
) mem_obj
);
718 assert(pager
->ref_count
> 0);
723 swapfile_pager_create(
726 swapfile_pager_t pager
, pager2
;
727 memory_object_control_t control
;
730 pager
= (swapfile_pager_t
) kalloc(sizeof(*pager
));
731 if (pager
== SWAPFILE_PAGER_NULL
) {
732 return SWAPFILE_PAGER_NULL
;
736 * The vm_map call takes both named entry ports and raw memory
737 * objects in the same parameter. We need to make sure that
738 * vm_map does not see this object as a named entry port. So,
739 * we reserve the second word in the object for a fake ip_kotype
740 * setting - that will tell vm_map to use it as a memory object.
742 pager
->swp_pgr_hdr
.mo_ikot
= IKOT_MEMORY_OBJECT
;
743 pager
->swp_pgr_hdr
.mo_pager_ops
= &swapfile_pager_ops
;
744 pager
->swp_pgr_hdr
.mo_control
= MEMORY_OBJECT_CONTROL_NULL
;
746 pager
->is_ready
= FALSE
;/* not ready until it has a "name" */
747 pager
->ref_count
= 1; /* setup reference */
748 pager
->is_mapped
= FALSE
;
749 pager
->swapfile_vnode
= vp
;
751 lck_mtx_lock(&swapfile_pager_lock
);
752 /* see if anyone raced us to create a pager for the same object */
753 queue_iterate(&swapfile_pager_queue
,
757 if (pager2
->swapfile_vnode
== vp
) {
761 if (!queue_end(&swapfile_pager_queue
,
762 (queue_entry_t
) pager2
)) {
763 /* while we hold the lock, transfer our setup ref to winner */
765 /* we lost the race, down with the loser... */
766 lck_mtx_unlock(&swapfile_pager_lock
);
767 pager
->swapfile_vnode
= NULL
;
768 kfree(pager
, sizeof(*pager
));
769 /* ... and go with the winner */
771 /* let the winner make sure the pager gets ready */
775 /* enter new pager at the head of our list of pagers */
776 queue_enter_first(&swapfile_pager_queue
,
780 swapfile_pager_count
++;
781 if (swapfile_pager_count
> swapfile_pager_count_max
) {
782 swapfile_pager_count_max
= swapfile_pager_count
;
784 lck_mtx_unlock(&swapfile_pager_lock
);
786 kr
= memory_object_create_named((memory_object_t
) pager
,
789 assert(kr
== KERN_SUCCESS
);
791 memory_object_mark_trusted(control
);
793 lck_mtx_lock(&swapfile_pager_lock
);
794 /* the new pager is now ready to be used */
795 pager
->is_ready
= TRUE
;
796 lck_mtx_unlock(&swapfile_pager_lock
);
798 /* wakeup anyone waiting for this pager to be ready */
799 thread_wakeup(&pager
->is_ready
);
805 * swapfile_pager_setup()
807 * Provide the caller with a memory object backed by the provided
808 * "backing_object" VM object. If such a memory object already exists,
809 * re-use it, otherwise create a new memory object.
812 swapfile_pager_setup(
815 swapfile_pager_t pager
;
817 lck_mtx_lock(&swapfile_pager_lock
);
819 queue_iterate(&swapfile_pager_queue
,
823 if (pager
->swapfile_vnode
== vp
) {
827 if (queue_end(&swapfile_pager_queue
,
828 (queue_entry_t
) pager
)) {
829 /* no existing pager for this backing object */
830 pager
= SWAPFILE_PAGER_NULL
;
832 /* make sure pager doesn't disappear */
836 lck_mtx_unlock(&swapfile_pager_lock
);
838 if (pager
== SWAPFILE_PAGER_NULL
) {
839 pager
= swapfile_pager_create(vp
);
840 if (pager
== SWAPFILE_PAGER_NULL
) {
841 return MEMORY_OBJECT_NULL
;
845 lck_mtx_lock(&swapfile_pager_lock
);
846 while (!pager
->is_ready
) {
847 lck_mtx_sleep(&swapfile_pager_lock
,
852 lck_mtx_unlock(&swapfile_pager_lock
);
854 return (memory_object_t
) pager
;
857 memory_object_control_t
858 swapfile_pager_control(
859 memory_object_t mem_obj
)
861 swapfile_pager_t pager
;
863 if (mem_obj
== MEMORY_OBJECT_NULL
||
864 mem_obj
->mo_pager_ops
!= &swapfile_pager_ops
) {
865 return MEMORY_OBJECT_CONTROL_NULL
;
867 pager
= swapfile_pager_lookup(mem_obj
);
868 return pager
->swp_pgr_hdr
.mo_control
;