2 * Copyright (c) 2000-2020 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
34 * All Rights Reserved.
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
46 * Carnegie Mellon requests users of this software to return to
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
60 * Author: Avadis Tevanian, Jr., Michael Wayne Young
63 * Kernel memory management.
66 #include <mach/kern_return.h>
67 #include <mach/vm_param.h>
68 #include <kern/assert.h>
69 #include <kern/thread.h>
70 #include <vm/vm_kern.h>
71 #include <vm/vm_map.h>
72 #include <vm/vm_object.h>
73 #include <vm/vm_page.h>
74 #include <vm/vm_compressor.h>
75 #include <vm/vm_pageout.h>
76 #include <kern/misc_protos.h>
78 #include <kern/ledger.h>
79 #include <kern/bits.h>
80 #include <kern/startup.h>
84 #include <libkern/OSDebug.h>
85 #include <libkern/crypto/sha2.h>
86 #include <libkern/section_keywords.h>
87 #include <sys/kdebug.h>
89 #include <san/kasan.h>
92 * Variables exported by this module.
95 SECURITY_READ_ONLY_LATE(vm_map_t
) kernel_map
;
96 vm_map_t kernel_pageable_map
;
99 * Forward declarations for internal functions.
101 extern kern_return_t
kmem_alloc_pages(
103 vm_object_offset_t offset
,
104 vm_object_size_t size
);
118 vm_object_offset_t offset
;
119 vm_map_offset_t map_addr
;
120 vm_map_offset_t map_mask
;
121 vm_map_size_t map_size
, i
;
122 vm_map_entry_t entry
;
126 assert(VM_KERN_MEMORY_NONE
!= tag
);
128 if (map
== VM_MAP_NULL
|| (flags
& ~(KMA_KOBJECT
| KMA_LOMEM
| KMA_NOPAGEWAIT
))) {
129 return KERN_INVALID_ARGUMENT
;
132 map_size
= vm_map_round_page(size
,
133 VM_MAP_PAGE_MASK(map
));
134 map_mask
= (vm_map_offset_t
)mask
;
136 /* Check for zero allocation size (either directly or via overflow) */
139 return KERN_INVALID_ARGUMENT
;
143 * Allocate a new object (if necessary) and the reference we
144 * will be donating to the map entry. We must do this before
145 * locking the map, or risk deadlock with the default pager.
147 if ((flags
& KMA_KOBJECT
) != 0) {
148 object
= kernel_object
;
149 vm_object_reference(object
);
151 object
= vm_object_allocate(map_size
);
154 kr
= vm_map_find_space(map
, &map_addr
, map_size
, map_mask
, 0,
155 VM_MAP_KERNEL_FLAGS_NONE
, tag
, &entry
);
156 if (KERN_SUCCESS
!= kr
) {
157 vm_object_deallocate(object
);
161 if (object
== kernel_object
) {
166 VME_OBJECT_SET(entry
, object
);
167 VME_OFFSET_SET(entry
, offset
);
169 /* Take an extra object ref in case the map entry gets deleted */
170 vm_object_reference(object
);
173 kr
= cpm_allocate(CAST_DOWN(vm_size_t
, map_size
), &pages
, max_pnum
, pnum_mask
, FALSE
, flags
);
175 if (kr
!= KERN_SUCCESS
) {
177 vm_map_trunc_page(map_addr
,
178 VM_MAP_PAGE_MASK(map
)),
179 vm_map_round_page(map_addr
+ map_size
,
180 VM_MAP_PAGE_MASK(map
)),
181 VM_MAP_REMOVE_NO_FLAGS
);
182 vm_object_deallocate(object
);
187 vm_object_lock(object
);
188 for (i
= 0; i
< map_size
; i
+= PAGE_SIZE
) {
190 pages
= NEXT_PAGE(m
);
191 *(NEXT_PAGE_PTR(m
)) = VM_PAGE_NULL
;
193 vm_page_insert(m
, object
, offset
+ i
);
195 vm_object_unlock(object
);
197 kr
= vm_map_wire_kernel(map
,
198 vm_map_trunc_page(map_addr
,
199 VM_MAP_PAGE_MASK(map
)),
200 vm_map_round_page(map_addr
+ map_size
,
201 VM_MAP_PAGE_MASK(map
)),
202 VM_PROT_DEFAULT
, tag
,
205 if (kr
!= KERN_SUCCESS
) {
206 if (object
== kernel_object
) {
207 vm_object_lock(object
);
208 vm_object_page_remove(object
, offset
, offset
+ map_size
);
209 vm_object_unlock(object
);
212 vm_map_trunc_page(map_addr
,
213 VM_MAP_PAGE_MASK(map
)),
214 vm_map_round_page(map_addr
+ map_size
,
215 VM_MAP_PAGE_MASK(map
)),
216 VM_MAP_REMOVE_NO_FLAGS
);
217 vm_object_deallocate(object
);
220 vm_object_deallocate(object
);
222 if (object
== kernel_object
) {
223 vm_map_simplify(map
, map_addr
);
224 vm_tag_update_size(tag
, map_size
);
226 *addrp
= (vm_offset_t
) map_addr
;
227 assert((vm_map_offset_t
) *addrp
== map_addr
);
233 * Master entry point for allocating kernel memory.
234 * NOTE: this routine is _never_ interrupt safe.
236 * map : map to allocate into
237 * addrp : pointer to start address of new memory
238 * size : size of memory requested
240 * KMA_HERE *addrp is base address, else "anywhere"
241 * KMA_NOPAGEWAIT don't wait for pages if unavailable
242 * KMA_KOBJECT use kernel_object
243 * KMA_LOMEM support for 32 bit devices in a 64 bit world
244 * if set and a lomemory pool is available
245 * grab pages from it... this also implies
250 kernel_memory_allocate(
259 vm_object_offset_t offset
;
260 vm_object_offset_t pg_offset
;
261 vm_map_entry_t entry
= NULL
;
262 vm_map_offset_t map_addr
, fill_start
;
263 vm_map_offset_t map_mask
;
264 vm_map_size_t map_size
, fill_size
;
265 kern_return_t kr
, pe_result
;
267 vm_page_t guard_page_list
= NULL
;
268 vm_page_t wired_page_list
= NULL
;
269 int guard_page_count
= 0;
270 int wired_page_count
= 0;
271 int page_grab_count
= 0;
274 vm_map_kernel_flags_t vmk_flags
;
276 #if DEVELOPMENT || DEBUG
277 task_t task
= current_task();
278 #endif /* DEVELOPMENT || DEBUG */
280 if (startup_phase
< STARTUP_SUB_KMEM
) {
281 panic("kernel_memory_allocate: VM is not ready");
284 map_size
= vm_map_round_page(size
,
285 VM_MAP_PAGE_MASK(map
));
286 map_mask
= (vm_map_offset_t
) mask
;
288 vm_alloc_flags
= 0; //VM_MAKE_TAG(tag);
289 vmk_flags
= VM_MAP_KERNEL_FLAGS_NONE
;
291 /* Check for zero allocation size (either directly or via overflow) */
294 return KERN_INVALID_ARGUMENT
;
298 * limit the size of a single extent of wired memory
299 * to try and limit the damage to the system if
300 * too many pages get wired down
301 * limit raised to 2GB with 128GB max physical limit,
302 * but scaled by installed memory above this
304 if (!(flags
& (KMA_VAONLY
| KMA_PAGEABLE
)) &&
305 map_size
> MAX(1ULL << 31, sane_size
/ 64)) {
306 return KERN_RESOURCE_SHORTAGE
;
312 * Guard pages are implemented as ficticious pages. By placing guard pages
313 * on either end of a stack, they can help detect cases where a thread walks
314 * off either end of its stack. They are allocated and set up here and attempts
315 * to access those pages are trapped in vm_fault_page().
317 * The map_size we were passed may include extra space for
318 * guard pages. If those were requested, then back it out of fill_size
319 * since vm_map_find_space() takes just the actual size not including
320 * guard pages. Similarly, fill_start indicates where the actual pages
321 * will begin in the range.
325 fill_size
= map_size
;
327 if (flags
& KMA_GUARD_FIRST
) {
328 vmk_flags
.vmkf_guard_before
= TRUE
;
329 fill_start
+= PAGE_SIZE_64
;
330 fill_size
-= PAGE_SIZE_64
;
331 if (map_size
< fill_start
+ fill_size
) {
332 /* no space for a guard page */
334 return KERN_INVALID_ARGUMENT
;
338 if (flags
& KMA_GUARD_LAST
) {
339 vmk_flags
.vmkf_guard_after
= TRUE
;
340 fill_size
-= PAGE_SIZE_64
;
341 if (map_size
<= fill_start
+ fill_size
) {
342 /* no space for a guard page */
344 return KERN_INVALID_ARGUMENT
;
348 wired_page_count
= (int) (fill_size
/ PAGE_SIZE_64
);
349 assert(wired_page_count
* PAGE_SIZE_64
== fill_size
);
351 #if DEBUG || DEVELOPMENT
352 VM_DEBUG_CONSTANT_EVENT(vm_kern_request
, VM_KERN_REQUEST
, DBG_FUNC_START
, size
, 0, 0, 0);
355 for (i
= 0; i
< guard_page_count
; i
++) {
357 mem
= vm_page_grab_guard();
359 if (mem
!= VM_PAGE_NULL
) {
362 if (flags
& KMA_NOPAGEWAIT
) {
363 kr
= KERN_RESOURCE_SHORTAGE
;
366 vm_page_more_fictitious();
368 mem
->vmp_snext
= guard_page_list
;
369 guard_page_list
= mem
;
372 if (!(flags
& (KMA_VAONLY
| KMA_PAGEABLE
))) {
373 for (i
= 0; i
< wired_page_count
; i
++) {
375 if (flags
& KMA_LOMEM
) {
376 mem
= vm_page_grablo();
378 mem
= vm_page_grab();
381 if (mem
!= VM_PAGE_NULL
) {
385 if (flags
& KMA_NOPAGEWAIT
) {
386 kr
= KERN_RESOURCE_SHORTAGE
;
389 if ((flags
& KMA_LOMEM
) && (vm_lopage_needed
== TRUE
)) {
390 kr
= KERN_RESOURCE_SHORTAGE
;
394 /* VM privileged threads should have waited in vm_page_grab() and not get here. */
395 assert(!(current_thread()->options
& TH_OPT_VMPRIV
));
397 uint64_t unavailable
= (vm_page_wire_count
+ vm_page_free_target
) * PAGE_SIZE
;
398 if (unavailable
> max_mem
|| map_size
> (max_mem
- unavailable
)) {
399 kr
= KERN_RESOURCE_SHORTAGE
;
405 if (KMA_ZERO
& flags
) {
406 vm_page_zero_fill(mem
);
408 mem
->vmp_snext
= wired_page_list
;
409 wired_page_list
= mem
;
414 * Allocate a new object (if necessary). We must do this before
415 * locking the map, or risk deadlock with the default pager.
417 if ((flags
& KMA_KOBJECT
) != 0) {
418 object
= kernel_object
;
419 vm_object_reference(object
);
420 } else if ((flags
& KMA_COMPRESSOR
) != 0) {
421 object
= compressor_object
;
422 vm_object_reference(object
);
424 object
= vm_object_allocate(map_size
);
427 if (flags
& KMA_ATOMIC
) {
428 vmk_flags
.vmkf_atomic_entry
= TRUE
;
431 if (flags
& KMA_KHEAP
) {
432 vm_alloc_flags
|= VM_MAP_FIND_LAST_FREE
;
435 kr
= vm_map_find_space(map
, &map_addr
,
437 vm_alloc_flags
, vmk_flags
, tag
, &entry
);
438 if (KERN_SUCCESS
!= kr
) {
439 vm_object_deallocate(object
);
443 if (object
== kernel_object
|| object
== compressor_object
) {
448 VME_OBJECT_SET(entry
, object
);
449 VME_OFFSET_SET(entry
, offset
);
451 if (!(flags
& (KMA_COMPRESSOR
| KMA_PAGEABLE
))) {
452 entry
->wired_count
++;
455 if (flags
& KMA_PERMANENT
) {
456 entry
->permanent
= TRUE
;
459 if (object
!= kernel_object
&& object
!= compressor_object
) {
460 vm_object_reference(object
);
463 vm_object_lock(object
);
469 if (guard_page_list
== NULL
) {
470 panic("kernel_memory_allocate: guard_page_list == NULL");
473 mem
= guard_page_list
;
474 guard_page_list
= mem
->vmp_snext
;
475 mem
->vmp_snext
= NULL
;
477 vm_page_insert(mem
, object
, offset
+ pg_offset
);
479 mem
->vmp_busy
= FALSE
;
480 pg_offset
+= PAGE_SIZE_64
;
483 kma_prot
= VM_PROT_READ
| VM_PROT_WRITE
;
486 if (!(flags
& KMA_VAONLY
)) {
487 /* for VAONLY mappings we notify in populate only */
488 kasan_notify_address(map_addr
, size
);
492 if (flags
& (KMA_VAONLY
| KMA_PAGEABLE
)) {
493 pg_offset
= fill_start
+ fill_size
;
495 for (pg_offset
= fill_start
; pg_offset
< fill_start
+ fill_size
; pg_offset
+= PAGE_SIZE_64
) {
496 if (wired_page_list
== NULL
) {
497 panic("kernel_memory_allocate: wired_page_list == NULL");
500 mem
= wired_page_list
;
501 wired_page_list
= mem
->vmp_snext
;
502 mem
->vmp_snext
= NULL
;
504 assert(mem
->vmp_wire_count
== 0);
505 assert(mem
->vmp_q_state
== VM_PAGE_NOT_ON_Q
);
507 mem
->vmp_q_state
= VM_PAGE_IS_WIRED
;
508 mem
->vmp_wire_count
++;
509 if (__improbable(mem
->vmp_wire_count
== 0)) {
510 panic("kernel_memory_allocate(%p): wire_count overflow",
514 vm_page_insert_wired(mem
, object
, offset
+ pg_offset
, tag
);
516 mem
->vmp_busy
= FALSE
;
517 mem
->vmp_pmapped
= TRUE
;
518 mem
->vmp_wpmapped
= TRUE
;
520 PMAP_ENTER_OPTIONS(kernel_pmap
, map_addr
+ pg_offset
,
521 0, /* fault_phys_offset */
523 kma_prot
, VM_PROT_NONE
, ((flags
& KMA_KSTACK
) ? VM_MEM_STACK
: 0), TRUE
,
524 PMAP_OPTIONS_NOWAIT
, pe_result
);
526 if (pe_result
== KERN_RESOURCE_SHORTAGE
) {
527 vm_object_unlock(object
);
529 PMAP_ENTER(kernel_pmap
, map_addr
+ pg_offset
, mem
,
530 kma_prot
, VM_PROT_NONE
, ((flags
& KMA_KSTACK
) ? VM_MEM_STACK
: 0), TRUE
,
533 vm_object_lock(object
);
536 assert(pe_result
== KERN_SUCCESS
);
538 if (flags
& KMA_NOENCRYPT
) {
539 bzero(CAST_DOWN(void *, (map_addr
+ pg_offset
)), PAGE_SIZE
);
541 pmap_set_noencrypt(VM_PAGE_GET_PHYS_PAGE(mem
));
544 if (kernel_object
== object
) {
545 vm_tag_update_size(tag
, fill_size
);
548 if ((fill_start
+ fill_size
) < map_size
) {
549 if (guard_page_list
== NULL
) {
550 panic("kernel_memory_allocate: guard_page_list == NULL");
553 mem
= guard_page_list
;
554 guard_page_list
= mem
->vmp_snext
;
555 mem
->vmp_snext
= NULL
;
557 vm_page_insert(mem
, object
, offset
+ pg_offset
);
559 mem
->vmp_busy
= FALSE
;
561 if (guard_page_list
|| wired_page_list
) {
562 panic("kernel_memory_allocate: non empty list\n");
565 if (!(flags
& (KMA_VAONLY
| KMA_PAGEABLE
))) {
566 vm_page_lockspin_queues();
567 vm_page_wire_count
+= wired_page_count
;
568 vm_page_unlock_queues();
571 vm_object_unlock(object
);
574 * now that the pages are wired, we no longer have to fear coalesce
576 if (object
== kernel_object
|| object
== compressor_object
) {
577 vm_map_simplify(map
, map_addr
);
579 vm_object_deallocate(object
);
582 #if DEBUG || DEVELOPMENT
583 VM_DEBUG_CONSTANT_EVENT(vm_kern_request
, VM_KERN_REQUEST
, DBG_FUNC_END
, page_grab_count
, 0, 0, 0);
585 ledger_credit(task
->ledger
, task_ledgers
.pages_grabbed_kern
, page_grab_count
);
590 * Return the memory, not zeroed.
592 *addrp
= CAST_DOWN(vm_offset_t
, map_addr
);
596 if (guard_page_list
) {
597 vm_page_free_list(guard_page_list
, FALSE
);
600 if (wired_page_list
) {
601 vm_page_free_list(wired_page_list
, FALSE
);
604 #if DEBUG || DEVELOPMENT
605 VM_DEBUG_CONSTANT_EVENT(vm_kern_request
, VM_KERN_REQUEST
, DBG_FUNC_END
, page_grab_count
, 0, 0, 0);
606 if (task
!= NULL
&& kr
== KERN_SUCCESS
) {
607 ledger_credit(task
->ledger
, task_ledgers
.pages_grabbed_kern
, page_grab_count
);
615 kernel_memory_populate(
623 vm_object_offset_t offset
, pg_offset
;
624 kern_return_t kr
, pe_result
;
626 vm_page_t page_list
= NULL
;
628 int page_grab_count
= 0;
631 #if DEBUG || DEVELOPMENT
632 task_t task
= current_task();
633 VM_DEBUG_CONSTANT_EVENT(vm_kern_request
, VM_KERN_REQUEST
, DBG_FUNC_START
, size
, 0, 0, 0);
636 page_count
= (int) (size
/ PAGE_SIZE_64
);
638 assert((flags
& (KMA_COMPRESSOR
| KMA_KOBJECT
)) != (KMA_COMPRESSOR
| KMA_KOBJECT
));
640 if (flags
& KMA_COMPRESSOR
) {
641 pg_offset
= page_count
* PAGE_SIZE_64
;
645 mem
= vm_page_grab();
647 if (mem
!= VM_PAGE_NULL
) {
654 if (KMA_ZERO
& flags
) {
655 vm_page_zero_fill(mem
);
657 mem
->vmp_snext
= page_list
;
660 pg_offset
-= PAGE_SIZE_64
;
662 kr
= pmap_enter_options(kernel_pmap
,
663 addr
+ pg_offset
, VM_PAGE_GET_PHYS_PAGE(mem
),
664 VM_PROT_READ
| VM_PROT_WRITE
, VM_PROT_NONE
, 0, TRUE
,
665 PMAP_OPTIONS_INTERNAL
, NULL
);
666 assert(kr
== KERN_SUCCESS
);
670 object
= compressor_object
;
672 vm_object_lock(object
);
676 pg_offset
+= PAGE_SIZE_64
) {
678 page_list
= mem
->vmp_snext
;
679 mem
->vmp_snext
= NULL
;
681 vm_page_insert(mem
, object
, offset
+ pg_offset
);
682 assert(mem
->vmp_busy
);
684 mem
->vmp_busy
= FALSE
;
685 mem
->vmp_pmapped
= TRUE
;
686 mem
->vmp_wpmapped
= TRUE
;
687 mem
->vmp_q_state
= VM_PAGE_USED_BY_COMPRESSOR
;
689 vm_object_unlock(object
);
692 if (map
== compressor_map
) {
693 kasan_notify_address_nopoison(addr
, size
);
695 kasan_notify_address(addr
, size
);
699 #if DEBUG || DEVELOPMENT
700 VM_DEBUG_CONSTANT_EVENT(vm_kern_request
, VM_KERN_REQUEST
, DBG_FUNC_END
, page_grab_count
, 0, 0, 0);
702 ledger_credit(task
->ledger
, task_ledgers
.pages_grabbed_kern
, page_grab_count
);
708 for (i
= 0; i
< page_count
; i
++) {
710 if (flags
& KMA_LOMEM
) {
711 mem
= vm_page_grablo();
713 mem
= vm_page_grab();
716 if (mem
!= VM_PAGE_NULL
) {
720 if (flags
& KMA_NOPAGEWAIT
) {
721 kr
= KERN_RESOURCE_SHORTAGE
;
724 if ((flags
& KMA_LOMEM
) &&
725 (vm_lopage_needed
== TRUE
)) {
726 kr
= KERN_RESOURCE_SHORTAGE
;
732 if (KMA_ZERO
& flags
) {
733 vm_page_zero_fill(mem
);
735 mem
->vmp_snext
= page_list
;
738 if (flags
& KMA_KOBJECT
) {
740 object
= kernel_object
;
742 vm_object_lock(object
);
745 * If it's not the kernel object, we need to:
749 * take reference on object;
752 panic("kernel_memory_populate(%p,0x%llx,0x%llx,0x%x): "
754 map
, (uint64_t) addr
, (uint64_t) size
, flags
);
759 pg_offset
+= PAGE_SIZE_64
) {
760 if (page_list
== NULL
) {
761 panic("kernel_memory_populate: page_list == NULL");
765 page_list
= mem
->vmp_snext
;
766 mem
->vmp_snext
= NULL
;
768 assert(mem
->vmp_q_state
== VM_PAGE_NOT_ON_Q
);
769 mem
->vmp_q_state
= VM_PAGE_IS_WIRED
;
770 mem
->vmp_wire_count
++;
771 if (__improbable(mem
->vmp_wire_count
== 0)) {
772 panic("kernel_memory_populate(%p): wire_count overflow", mem
);
775 vm_page_insert_wired(mem
, object
, offset
+ pg_offset
, tag
);
777 mem
->vmp_busy
= FALSE
;
778 mem
->vmp_pmapped
= TRUE
;
779 mem
->vmp_wpmapped
= TRUE
;
781 PMAP_ENTER_OPTIONS(kernel_pmap
, addr
+ pg_offset
,
782 0, /* fault_phys_offset */
784 VM_PROT_READ
| VM_PROT_WRITE
, VM_PROT_NONE
,
785 ((flags
& KMA_KSTACK
) ? VM_MEM_STACK
: 0), TRUE
,
786 PMAP_OPTIONS_NOWAIT
, pe_result
);
788 if (pe_result
== KERN_RESOURCE_SHORTAGE
) {
789 vm_object_unlock(object
);
791 PMAP_ENTER(kernel_pmap
, addr
+ pg_offset
, mem
,
792 VM_PROT_READ
| VM_PROT_WRITE
, VM_PROT_NONE
,
793 ((flags
& KMA_KSTACK
) ? VM_MEM_STACK
: 0), TRUE
,
796 vm_object_lock(object
);
799 assert(pe_result
== KERN_SUCCESS
);
801 if (flags
& KMA_NOENCRYPT
) {
802 bzero(CAST_DOWN(void *, (addr
+ pg_offset
)), PAGE_SIZE
);
803 pmap_set_noencrypt(VM_PAGE_GET_PHYS_PAGE(mem
));
806 vm_object_unlock(object
);
808 vm_page_lockspin_queues();
809 vm_page_wire_count
+= page_count
;
810 vm_page_unlock_queues();
811 vm_tag_update_size(tag
, ptoa_64(page_count
));
813 #if DEBUG || DEVELOPMENT
814 VM_DEBUG_CONSTANT_EVENT(vm_kern_request
, VM_KERN_REQUEST
, DBG_FUNC_END
, page_grab_count
, 0, 0, 0);
816 ledger_credit(task
->ledger
, task_ledgers
.pages_grabbed_kern
, page_grab_count
);
821 if (map
== compressor_map
) {
822 kasan_notify_address_nopoison(addr
, size
);
824 kasan_notify_address(addr
, size
);
831 vm_page_free_list(page_list
, FALSE
);
834 #if DEBUG || DEVELOPMENT
835 VM_DEBUG_CONSTANT_EVENT(vm_kern_request
, VM_KERN_REQUEST
, DBG_FUNC_END
, page_grab_count
, 0, 0, 0);
836 if (task
!= NULL
&& kr
== KERN_SUCCESS
) {
837 ledger_credit(task
->ledger
, task_ledgers
.pages_grabbed_kern
, page_grab_count
);
846 kernel_memory_depopulate(
854 vm_object_offset_t offset
, pg_offset
;
856 vm_page_t local_freeq
= NULL
;
857 unsigned int pages_unwired
;
859 assert((flags
& (KMA_COMPRESSOR
| KMA_KOBJECT
)) != (KMA_COMPRESSOR
| KMA_KOBJECT
));
861 if (flags
& KMA_COMPRESSOR
) {
863 object
= compressor_object
;
865 vm_object_lock(object
);
866 } else if (flags
& KMA_KOBJECT
) {
868 object
= kernel_object
;
869 vm_object_lock(object
);
874 * If it's not the kernel object, we need to:
880 panic("kernel_memory_depopulate(%p,0x%llx,0x%llx,0x%x): "
882 map
, (uint64_t) addr
, (uint64_t) size
, flags
);
884 pmap_protect(kernel_map
->pmap
, offset
, offset
+ size
, VM_PROT_NONE
);
886 for (pg_offset
= 0, pages_unwired
= 0;
888 pg_offset
+= PAGE_SIZE_64
) {
889 mem
= vm_page_lookup(object
, offset
+ pg_offset
);
893 if (mem
->vmp_q_state
!= VM_PAGE_USED_BY_COMPRESSOR
) {
894 pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(mem
));
898 mem
->vmp_busy
= TRUE
;
900 assert(mem
->vmp_tabled
);
901 vm_page_remove(mem
, TRUE
);
902 assert(mem
->vmp_busy
);
904 assert(mem
->vmp_pageq
.next
== 0 && mem
->vmp_pageq
.prev
== 0);
905 assert((mem
->vmp_q_state
== VM_PAGE_USED_BY_COMPRESSOR
) ||
906 (mem
->vmp_q_state
== VM_PAGE_IS_WIRED
));
908 mem
->vmp_q_state
= VM_PAGE_NOT_ON_Q
;
909 mem
->vmp_snext
= local_freeq
;
912 vm_object_unlock(object
);
916 vm_page_free_list(local_freeq
, TRUE
);
917 if (pages_unwired
!= 0) {
918 vm_page_lockspin_queues();
919 vm_page_wire_count
-= pages_unwired
;
920 vm_page_unlock_queues();
921 vm_tag_update_size(tag
, -ptoa_64(pages_unwired
));
929 * Allocate wired-down memory in the kernel's address map
930 * or a submap. The memory is not zero-filled.
939 return kmem_alloc(map
, addrp
, size
, vm_tag_bt());
950 return kmem_alloc_flags(map
, addrp
, size
, tag
, 0);
961 kern_return_t kr
= kernel_memory_allocate(map
, addrp
, size
, 0, flags
, tag
);
962 if (kr
== KERN_SUCCESS
) {
963 TRACE_MACHLEAKS(KMEM_ALLOC_CODE
, KMEM_ALLOC_CODE_2
, size
, *addrp
);
971 * Reallocate wired-down memory in the kernel's address map
972 * or a submap. Newly allocated pages are not zeroed.
973 * This can only be used on regions allocated with kmem_alloc.
975 * If successful, the pages in the old region are mapped twice.
976 * The old region is unchanged. Use kmem_free to get rid of it.
983 vm_offset_t
*newaddrp
,
988 vm_object_offset_t offset
;
989 vm_map_offset_t oldmapmin
;
990 vm_map_offset_t oldmapmax
;
991 vm_map_offset_t newmapaddr
;
992 vm_map_size_t oldmapsize
;
993 vm_map_size_t newmapsize
;
994 vm_map_entry_t oldentry
;
995 vm_map_entry_t newentry
;
999 oldmapmin
= vm_map_trunc_page(oldaddr
,
1000 VM_MAP_PAGE_MASK(map
));
1001 oldmapmax
= vm_map_round_page(oldaddr
+ oldsize
,
1002 VM_MAP_PAGE_MASK(map
));
1003 oldmapsize
= oldmapmax
- oldmapmin
;
1004 newmapsize
= vm_map_round_page(newsize
,
1005 VM_MAP_PAGE_MASK(map
));
1006 if (newmapsize
< newsize
) {
1009 return KERN_INVALID_ARGUMENT
;
1013 * Find the VM object backing the old region.
1018 if (!vm_map_lookup_entry(map
, oldmapmin
, &oldentry
)) {
1019 panic("kmem_realloc");
1021 object
= VME_OBJECT(oldentry
);
1024 * Increase the size of the object and
1025 * fill in the new region.
1028 vm_object_reference(object
);
1029 /* by grabbing the object lock before unlocking the map */
1030 /* we guarantee that we will panic if more than one */
1031 /* attempt is made to realloc a kmem_alloc'd area */
1032 vm_object_lock(object
);
1034 if (object
->vo_size
!= oldmapsize
) {
1035 panic("kmem_realloc");
1037 object
->vo_size
= newmapsize
;
1038 vm_object_unlock(object
);
1040 /* allocate the new pages while expanded portion of the */
1041 /* object is still not mapped */
1042 kmem_alloc_pages(object
, vm_object_round_page(oldmapsize
),
1043 vm_object_round_page(newmapsize
- oldmapsize
));
1046 * Find space for the new region.
1049 kr
= vm_map_find_space(map
, &newmapaddr
, newmapsize
,
1050 (vm_map_offset_t
) 0, 0,
1051 VM_MAP_KERNEL_FLAGS_NONE
,
1054 if (kr
!= KERN_SUCCESS
) {
1055 vm_object_lock(object
);
1056 for (offset
= oldmapsize
;
1057 offset
< newmapsize
; offset
+= PAGE_SIZE
) {
1058 if ((mem
= vm_page_lookup(object
, offset
)) != VM_PAGE_NULL
) {
1062 object
->vo_size
= oldmapsize
;
1063 vm_object_unlock(object
);
1064 vm_object_deallocate(object
);
1067 VME_OBJECT_SET(newentry
, object
);
1068 VME_OFFSET_SET(newentry
, 0);
1069 assert(newentry
->wired_count
== 0);
1072 /* add an extra reference in case we have someone doing an */
1073 /* unexpected deallocate */
1074 vm_object_reference(object
);
1077 kr
= vm_map_wire_kernel(map
, newmapaddr
, newmapaddr
+ newmapsize
,
1078 VM_PROT_DEFAULT
, tag
, FALSE
);
1079 if (KERN_SUCCESS
!= kr
) {
1080 vm_map_remove(map
, newmapaddr
, newmapaddr
+ newmapsize
, VM_MAP_REMOVE_NO_FLAGS
);
1081 vm_object_lock(object
);
1082 for (offset
= oldsize
; offset
< newmapsize
; offset
+= PAGE_SIZE
) {
1083 if ((mem
= vm_page_lookup(object
, offset
)) != VM_PAGE_NULL
) {
1087 object
->vo_size
= oldmapsize
;
1088 vm_object_unlock(object
);
1089 vm_object_deallocate(object
);
1092 vm_object_deallocate(object
);
1094 if (kernel_object
== object
) {
1095 vm_tag_update_size(tag
, newmapsize
);
1098 *newaddrp
= CAST_DOWN(vm_offset_t
, newmapaddr
);
1099 return KERN_SUCCESS
;
1103 * kmem_alloc_kobject:
1105 * Allocate wired-down memory in the kernel's address map
1106 * or a submap. The memory is not zero-filled.
1108 * The memory is allocated in the kernel_object.
1109 * It may not be copied with vm_map_copy, and
1110 * it may not be reallocated with kmem_realloc.
1114 kmem_alloc_kobject_external(
1119 return kmem_alloc_kobject(map
, addrp
, size
, vm_tag_bt());
1129 return kernel_memory_allocate(map
, addrp
, size
, 0, KMA_KOBJECT
, tag
);
1133 * kmem_alloc_aligned:
1135 * Like kmem_alloc_kobject, except that the memory is aligned.
1136 * The size should be a power-of-2.
1146 if ((size
& (size
- 1)) != 0) {
1147 panic("kmem_alloc_aligned: size not aligned");
1149 return kernel_memory_allocate(map
, addrp
, size
, size
- 1, KMA_KOBJECT
, tag
);
1153 * kmem_alloc_pageable:
1155 * Allocate pageable memory in the kernel's address map.
1159 kmem_alloc_pageable_external(
1164 return kmem_alloc_pageable(map
, addrp
, size
, vm_tag_bt());
1168 kmem_alloc_pageable(
1174 vm_map_offset_t map_addr
;
1175 vm_map_size_t map_size
;
1179 map_addr
= (vm_map_min(map
)) + PAGE_SIZE
;
1181 map_addr
= vm_map_min(map
);
1183 map_size
= vm_map_round_page(size
,
1184 VM_MAP_PAGE_MASK(map
));
1185 if (map_size
< size
) {
1188 return KERN_INVALID_ARGUMENT
;
1191 kr
= vm_map_enter(map
, &map_addr
, map_size
,
1192 (vm_map_offset_t
) 0,
1194 VM_MAP_KERNEL_FLAGS_NONE
,
1196 VM_OBJECT_NULL
, (vm_object_offset_t
) 0, FALSE
,
1197 VM_PROT_DEFAULT
, VM_PROT_ALL
, VM_INHERIT_DEFAULT
);
1199 if (kr
!= KERN_SUCCESS
) {
1204 kasan_notify_address(map_addr
, map_size
);
1206 *addrp
= CAST_DOWN(vm_offset_t
, map_addr
);
1207 return KERN_SUCCESS
;
1213 * Release a region of kernel virtual memory allocated
1214 * with kmem_alloc, kmem_alloc_kobject, or kmem_alloc_pageable,
1215 * and return the physical pages associated with that region.
1226 assert(addr
>= VM_MIN_KERNEL_AND_KEXT_ADDRESS
);
1228 TRACE_MACHLEAKS(KMEM_FREE_CODE
, KMEM_FREE_CODE_2
, size
, addr
);
1232 printf("kmem_free called with size==0 for map: %p with addr: 0x%llx\n", map
, (uint64_t)addr
);
1237 kr
= vm_map_remove(map
,
1238 vm_map_trunc_page(addr
,
1239 VM_MAP_PAGE_MASK(map
)),
1240 vm_map_round_page(addr
+ size
,
1241 VM_MAP_PAGE_MASK(map
)),
1242 VM_MAP_REMOVE_KUNWIRE
);
1243 if (kr
!= KERN_SUCCESS
) {
1249 * Allocate new pages in an object.
1255 vm_object_offset_t offset
,
1256 vm_object_size_t size
)
1258 vm_object_size_t alloc_size
;
1260 alloc_size
= vm_object_round_page(size
);
1261 vm_object_lock(object
);
1262 while (alloc_size
) {
1269 while (VM_PAGE_NULL
==
1270 (mem
= vm_page_alloc(object
, offset
))) {
1271 vm_object_unlock(object
);
1273 vm_object_lock(object
);
1275 mem
->vmp_busy
= FALSE
;
1277 alloc_size
-= PAGE_SIZE
;
1278 offset
+= PAGE_SIZE
;
1280 vm_object_unlock(object
);
1281 return KERN_SUCCESS
;
1287 * Allocates a map to manage a subrange
1288 * of the kernel virtual address space.
1290 * Arguments are as follows:
1292 * parent Map to take range from
1293 * addr Address of start of range (IN/OUT)
1294 * size Size of range to find
1295 * pageable Can region be paged
1296 * anywhere Can region be located anywhere in map
1297 * new_map Pointer to new submap
1306 vm_map_kernel_flags_t vmk_flags
,
1311 vm_map_offset_t map_addr
;
1312 vm_map_size_t map_size
;
1315 map_size
= vm_map_round_page(size
,
1316 VM_MAP_PAGE_MASK(parent
));
1317 if (map_size
< size
) {
1320 return KERN_INVALID_ARGUMENT
;
1324 * Need reference on submap object because it is internal
1325 * to the vm_system. vm_object_enter will never be called
1326 * on it (usual source of reference for vm_map_enter).
1328 vm_object_reference(vm_submap_object
);
1330 map_addr
= ((flags
& VM_FLAGS_ANYWHERE
)
1331 ? vm_map_min(parent
)
1332 : vm_map_trunc_page(*addr
,
1333 VM_MAP_PAGE_MASK(parent
)));
1335 kr
= vm_map_enter(parent
, &map_addr
, map_size
,
1336 (vm_map_offset_t
) 0, flags
, vmk_flags
, tag
,
1337 vm_submap_object
, (vm_object_offset_t
) 0, FALSE
,
1338 VM_PROT_DEFAULT
, VM_PROT_ALL
, VM_INHERIT_DEFAULT
);
1339 if (kr
!= KERN_SUCCESS
) {
1340 vm_object_deallocate(vm_submap_object
);
1344 pmap_reference(vm_map_pmap(parent
));
1345 map
= vm_map_create(vm_map_pmap(parent
), map_addr
, map_addr
+ map_size
, pageable
);
1346 if (map
== VM_MAP_NULL
) {
1347 panic("kmem_suballoc: vm_map_create failed"); /* "can't happen" */
1349 /* inherit the parent map's page size */
1350 vm_map_set_page_shift(map
, VM_MAP_PAGE_SHIFT(parent
));
1352 kr
= vm_map_submap(parent
, map_addr
, map_addr
+ map_size
, map
, map_addr
, FALSE
);
1353 if (kr
!= KERN_SUCCESS
) {
1355 * See comment preceding vm_map_submap().
1357 vm_map_remove(parent
, map_addr
, map_addr
+ map_size
,
1358 VM_MAP_REMOVE_NO_FLAGS
);
1359 vm_map_deallocate(map
); /* also removes ref to pmap */
1360 vm_object_deallocate(vm_submap_object
);
1363 *addr
= CAST_DOWN(vm_offset_t
, map_addr
);
1365 return KERN_SUCCESS
;
1368 * The default percentage of memory that can be mlocked is scaled based on the total
1369 * amount of memory in the system. These percentages are caclulated
1370 * offline and stored in this table. We index this table by
1371 * log2(max_mem) - VM_USER_WIREABLE_MIN_CONFIG. We clamp this index in the range
1372 * [0, sizeof(wire_limit_percents) / sizeof(vm_map_size_t))
1374 * Note that these values were picked for mac.
1375 * If we ever have very large memory config arm devices, we may want to revisit
1376 * since the kernel overhead is smaller there due to the larger page size.
1379 /* Start scaling iff we're managing > 2^32 = 4GB of RAM. */
1380 #define VM_USER_WIREABLE_MIN_CONFIG 32
1381 static vm_map_size_t wire_limit_percents
[] =
1382 { 70, 73, 76, 79, 82, 85, 88, 91, 94, 97};
1385 * Sets the default global user wire limit which limits the amount of
1386 * memory that can be locked via mlock() based on the above algorithm..
1387 * This can be overridden via a sysctl.
1390 kmem_set_user_wire_limits(void)
1392 uint64_t available_mem_log
;
1393 uint64_t max_wire_percent
;
1394 size_t wire_limit_percents_length
= sizeof(wire_limit_percents
) /
1395 sizeof(vm_map_size_t
);
1396 vm_map_size_t limit
;
1397 uint64_t config_memsize
= max_mem
;
1398 #if defined(XNU_TARGET_OS_OSX)
1399 config_memsize
= max_mem_actual
;
1400 #endif /* defined(XNU_TARGET_OS_OSX) */
1402 available_mem_log
= bit_floor(config_memsize
);
1404 if (available_mem_log
< VM_USER_WIREABLE_MIN_CONFIG
) {
1405 available_mem_log
= 0;
1407 available_mem_log
-= VM_USER_WIREABLE_MIN_CONFIG
;
1409 if (available_mem_log
>= wire_limit_percents_length
) {
1410 available_mem_log
= wire_limit_percents_length
- 1;
1412 max_wire_percent
= wire_limit_percents
[available_mem_log
];
1414 limit
= config_memsize
* max_wire_percent
/ 100;
1415 /* Cap the number of non lockable bytes at VM_NOT_USER_WIREABLE_MAX */
1416 if (config_memsize
- limit
> VM_NOT_USER_WIREABLE_MAX
) {
1417 limit
= config_memsize
- VM_NOT_USER_WIREABLE_MAX
;
1420 vm_global_user_wire_limit
= limit
;
1421 /* the default per task limit is the same as the global limit */
1422 vm_per_task_user_wire_limit
= limit
;
1423 vm_add_wire_count_over_global_limit
= 0;
1424 vm_add_wire_count_over_user_limit
= 0;
1431 * Initialize the kernel's virtual memory map, taking
1432 * into account all memory allocated up to this time.
1440 vm_map_offset_t map_start
;
1441 vm_map_offset_t map_end
;
1442 vm_map_kernel_flags_t vmk_flags
;
1444 vmk_flags
= VM_MAP_KERNEL_FLAGS_NONE
;
1445 vmk_flags
.vmkf_permanent
= TRUE
;
1446 vmk_flags
.vmkf_no_pmap_check
= TRUE
;
1448 map_start
= vm_map_trunc_page(start
,
1449 VM_MAP_PAGE_MASK(kernel_map
));
1450 map_end
= vm_map_round_page(end
,
1451 VM_MAP_PAGE_MASK(kernel_map
));
1453 #if defined(__arm__) || defined(__arm64__)
1454 kernel_map
= vm_map_create(pmap_kernel(), VM_MIN_KERNEL_AND_KEXT_ADDRESS
,
1455 VM_MAX_KERNEL_ADDRESS
, FALSE
);
1457 * Reserve virtual memory allocated up to this time.
1460 unsigned int region_select
= 0;
1461 vm_map_offset_t region_start
;
1462 vm_map_size_t region_size
;
1463 vm_map_offset_t map_addr
;
1466 while (pmap_virtual_region(region_select
, ®ion_start
, ®ion_size
)) {
1467 map_addr
= region_start
;
1468 kr
= vm_map_enter(kernel_map
, &map_addr
,
1469 vm_map_round_page(region_size
,
1470 VM_MAP_PAGE_MASK(kernel_map
)),
1471 (vm_map_offset_t
) 0,
1474 VM_KERN_MEMORY_NONE
,
1476 (vm_object_offset_t
) 0, FALSE
, VM_PROT_NONE
, VM_PROT_NONE
,
1477 VM_INHERIT_DEFAULT
);
1479 if (kr
!= KERN_SUCCESS
) {
1480 panic("kmem_init(0x%llx,0x%llx): vm_map_enter(0x%llx,0x%llx) error 0x%x\n",
1481 (uint64_t) start
, (uint64_t) end
, (uint64_t) region_start
,
1482 (uint64_t) region_size
, kr
);
1489 kernel_map
= vm_map_create(pmap_kernel(), VM_MIN_KERNEL_AND_KEXT_ADDRESS
,
1492 * Reserve virtual memory allocated up to this time.
1494 if (start
!= VM_MIN_KERNEL_AND_KEXT_ADDRESS
) {
1495 vm_map_offset_t map_addr
;
1498 vmk_flags
= VM_MAP_KERNEL_FLAGS_NONE
;
1499 vmk_flags
.vmkf_no_pmap_check
= TRUE
;
1501 map_addr
= VM_MIN_KERNEL_AND_KEXT_ADDRESS
;
1502 kr
= vm_map_enter(kernel_map
,
1504 (vm_map_size_t
)(map_start
- VM_MIN_KERNEL_AND_KEXT_ADDRESS
),
1505 (vm_map_offset_t
) 0,
1508 VM_KERN_MEMORY_NONE
,
1510 (vm_object_offset_t
) 0, FALSE
,
1511 VM_PROT_NONE
, VM_PROT_NONE
,
1512 VM_INHERIT_DEFAULT
);
1514 if (kr
!= KERN_SUCCESS
) {
1515 panic("kmem_init(0x%llx,0x%llx): vm_map_enter(0x%llx,0x%llx) error 0x%x\n",
1516 (uint64_t) start
, (uint64_t) end
,
1517 (uint64_t) VM_MIN_KERNEL_AND_KEXT_ADDRESS
,
1518 (uint64_t) (map_start
- VM_MIN_KERNEL_AND_KEXT_ADDRESS
),
1524 kmem_set_user_wire_limits();
1528 * Routine: copyinmap
1530 * Like copyin, except that fromaddr is an address
1531 * in the specified VM map. This implementation
1532 * is incomplete; it handles the current user map
1533 * and the kernel map/submaps.
1538 vm_map_offset_t fromaddr
,
1542 kern_return_t kr
= KERN_SUCCESS
;
1545 if (vm_map_pmap(map
) == pmap_kernel()) {
1546 /* assume a correct copy */
1547 memcpy(todata
, CAST_DOWN(void *, fromaddr
), length
);
1548 } else if (current_map() == map
) {
1549 if (copyin(fromaddr
, todata
, length
) != 0) {
1550 kr
= KERN_INVALID_ADDRESS
;
1553 vm_map_reference(map
);
1554 oldmap
= vm_map_switch(map
);
1555 if (copyin(fromaddr
, todata
, length
) != 0) {
1556 kr
= KERN_INVALID_ADDRESS
;
1558 vm_map_switch(oldmap
);
1559 vm_map_deallocate(map
);
1565 * Routine: copyoutmap
1567 * Like copyout, except that toaddr is an address
1568 * in the specified VM map.
1574 vm_map_address_t toaddr
,
1577 kern_return_t kr
= KERN_SUCCESS
;
1580 if (vm_map_pmap(map
) == pmap_kernel()) {
1581 /* assume a correct copy */
1582 memcpy(CAST_DOWN(void *, toaddr
), fromdata
, length
);
1583 } else if (current_map() == map
) {
1584 if (copyout(fromdata
, toaddr
, length
) != 0) {
1585 kr
= KERN_INVALID_ADDRESS
;
1588 vm_map_reference(map
);
1589 oldmap
= vm_map_switch(map
);
1590 if (copyout(fromdata
, toaddr
, length
) != 0) {
1591 kr
= KERN_INVALID_ADDRESS
;
1593 vm_map_switch(oldmap
);
1594 vm_map_deallocate(map
);
1601 * The following two functions are to be used when exposing kernel
1602 * addresses to userspace via any of the various debug or info
1603 * facilities that exist. These are basically the same as VM_KERNEL_ADDRPERM()
1604 * and VM_KERNEL_UNSLIDE_OR_PERM() except they use a different random seed and
1605 * are exported to KEXTs.
1607 * NOTE: USE THE MACRO VERSIONS OF THESE FUNCTIONS (in vm_param.h) FROM WITHIN THE KERNEL
1611 vm_kernel_addrhash_internal(
1613 vm_offset_t
*hash_addr
,
1623 if (VM_KERNEL_IS_SLID(addr
)) {
1624 *hash_addr
= VM_KERNEL_UNSLIDE(addr
);
1628 vm_offset_t sha_digest
[SHA256_DIGEST_LENGTH
/ sizeof(vm_offset_t
)];
1631 SHA256_Init(&sha_ctx
);
1632 SHA256_Update(&sha_ctx
, &salt
, sizeof(salt
));
1633 SHA256_Update(&sha_ctx
, &addr
, sizeof(addr
));
1634 SHA256_Final(sha_digest
, &sha_ctx
);
1636 *hash_addr
= sha_digest
[0];
1640 vm_kernel_addrhash_external(
1642 vm_offset_t
*hash_addr
)
1644 return vm_kernel_addrhash_internal(addr
, hash_addr
, vm_kernel_addrhash_salt_ext
);
1648 vm_kernel_addrhash(vm_offset_t addr
)
1650 vm_offset_t hash_addr
;
1651 vm_kernel_addrhash_internal(addr
, &hash_addr
, vm_kernel_addrhash_salt
);
1658 vm_offset_t
*hide_addr
)
1660 *hide_addr
= VM_KERNEL_ADDRHIDE(addr
);
1664 * vm_kernel_addrperm_external:
1665 * vm_kernel_unslide_or_perm_external:
1667 * Use these macros when exposing an address to userspace that could come from
1668 * either kernel text/data *or* the heap.
1671 vm_kernel_addrperm_external(
1673 vm_offset_t
*perm_addr
)
1675 if (VM_KERNEL_IS_SLID(addr
)) {
1676 *perm_addr
= VM_KERNEL_UNSLIDE(addr
);
1677 } else if (VM_KERNEL_ADDRESS(addr
)) {
1678 *perm_addr
= addr
+ vm_kernel_addrperm_ext
;
1685 vm_kernel_unslide_or_perm_external(
1687 vm_offset_t
*up_addr
)
1689 vm_kernel_addrperm_external(addr
, up_addr
);
1693 vm_packing_pointer_invalid(vm_offset_t ptr
, vm_packing_params_t params
)
1695 if (ptr
& ((1ul << params
.vmpp_shift
) - 1)) {
1696 panic("pointer %p can't be packed: low %d bits aren't 0",
1697 (void *)ptr
, params
.vmpp_shift
);
1698 } else if (ptr
<= params
.vmpp_base
) {
1699 panic("pointer %p can't be packed: below base %p",
1700 (void *)ptr
, (void *)params
.vmpp_base
);
1702 panic("pointer %p can't be packed: maximum encodable pointer is %p",
1703 (void *)ptr
, (void *)vm_packing_max_packable(params
));
1708 vm_packing_verify_range(
1709 const char *subsystem
,
1710 vm_offset_t min_address
,
1711 vm_offset_t max_address
,
1712 vm_packing_params_t params
)
1714 if (min_address
> max_address
) {
1715 panic("%s: %s range invalid min:%p > max:%p",
1716 __func__
, subsystem
, (void *)min_address
, (void *)max_address
);
1719 if (!params
.vmpp_base_relative
) {
1723 if (min_address
<= params
.vmpp_base
) {
1724 panic("%s: %s range invalid min:%p <= base:%p",
1725 __func__
, subsystem
, (void *)min_address
, (void *)params
.vmpp_base
);
1728 if (max_address
> vm_packing_max_packable(params
)) {
1729 panic("%s: %s range invalid max:%p >= max packable:%p",
1730 __func__
, subsystem
, (void *)max_address
,
1731 (void *)vm_packing_max_packable(params
));