5 * Created by Michael Brouwer on 7/25/10.
6 * Copyright 2010,2011 Apple Inc. All rights reserved.
10 #ifndef _CORECRYPTO_CCN_H_
11 #define _CORECRYPTO_CCN_H_
13 #include <corecrypto/cc_config.h>
14 #include <corecrypto/cc_priv.h> /* TODO: Get rid of this include in this header. */
17 typedef uint8_t cc_byte
;
18 typedef size_t cc_size
;
20 #if CCN_UNIT_SIZE == 8
21 typedef uint64_t cc_unit
; // 64 bit unit
22 //typedef uint128_t cc_dunit; // 128 bit double width unit
23 #define CCN_LOG2_BITS_PER_UNIT 6 // 2^6 = 64 bits
24 #define CC_UNIT_C(x) UINT64_C(x)
25 #elif CCN_UNIT_SIZE == 4
26 typedef uint32_t cc_unit
; // 32 bit unit
27 typedef uint64_t cc_dunit
; // 64 bit double width unit
28 #define CCN_LOG2_BITS_PER_UNIT 5 // 2^5 = 32 bits
29 #define CC_UNIT_C(x) UINT32_C(x)
30 #elif CCN_UNIT_SIZE == 2
31 typedef uint16_t cc_unit
; // 16 bit unit
32 typedef uint32_t cc_dunit
; // 32 bit double width unit
33 #define CCN_LOG2_BITS_PER_UNIT 4 // 2^4 = 16 bits
34 #define CC_UNIT_C(x) UINT16_C(x)
35 #elif CCN_UNIT_SIZE == 1
36 typedef uint8_t cc_unit
; // 8 bit unit
37 typedef uint16_t cc_dunit
; // 16 bit double width unit
38 #define CCN_LOG2_BITS_PER_UNIT 3 // 2^3 = 8 bits
39 #define CC_UNIT_C(x) UINT8_C(x)
41 #error invalid CCN_UNIT_SIZE
44 // All mp types have units in little endian unit order.
45 typedef cc_unit
*ccn_t
; // n unit long mp
46 typedef cc_unit
*ccnp1_t
; // n + 1 unit long mp
47 typedef cc_unit
*cc2n_t
; // 2 * n unit long mp
48 typedef cc_unit
*cc2np2_t
; // 2 * n + 2 unit long mp
49 typedef const cc_unit
*ccn_in_t
; // n unit long mp
50 typedef const cc_unit
*ccnp1_in_t
; // n + 1 unit long mp
51 typedef const cc_unit
*cc2n_in_t
; // 2 * n unit long mp
52 typedef const cc_unit
*cc2np2_in_t
; // 2 * n + 2 unit long mp
54 #define CCN_UNIT_BITS (sizeof(cc_unit) * 8)
55 #define CCN_UNIT_MASK ((cc_unit)~0)
58 /* Conversions between n sizeof and bits */
60 /* Returns the sizeof a ccn vector of length _n_ units. */
61 #define ccn_sizeof_n(_n_) (sizeof(cc_unit) * (_n_))
63 /* Returns the count (n) of a ccn vector that can represent _bits_. */
64 #define ccn_nof(_bits_) (((_bits_) + CCN_UNIT_BITS - 1) / CCN_UNIT_BITS)
66 /* Returns the sizeof a ccn vector that can represent _bits_. */
67 #define ccn_sizeof(_bits_) (ccn_sizeof_n(ccn_nof(_bits_)))
69 /* Returns the count (n) of a ccn vector that can represent _size_ bytes. */
70 #define ccn_nof_size(_size_) (((_size_) + CCN_UNIT_SIZE - 1) / CCN_UNIT_SIZE)
72 /* Return the max number of bits a ccn vector of _n_ units can hold. */
73 #define ccn_bitsof_n(_n_) ((_n_) * CCN_UNIT_BITS)
75 /* Return the max number of bits a ccn vector of _size_ bytes can hold. */
76 #define ccn_bitsof_size(_size_) ((_size_) * 8)
78 /* Return the size of a ccn of size bytes in bytes. */
79 #define ccn_sizeof_size(_size_) ccn_sizeof_n(ccn_nof_size(_size_))
81 /* Returns the value of bit _k_ of _ccn_, both are only evaluated once. */
82 #define ccn_bit(_ccn_, _k_) ({__typeof__ (_k_) __k = (_k_); \
83 1 & ((_ccn_)[__k / CCN_UNIT_BITS] >> (__k & (CCN_UNIT_BITS - 1)));})
85 #define ccn_set_bit(_ccn_, _k_, _v_) ({__typeof__ (_k_) __k = (_k_); \
87 (_ccn_)[__k/CCN_UNIT_BITS] |= CC_UNIT_C(1) << (__k & (CCN_UNIT_BITS - 1)); \
89 (_ccn_)[__k/CCN_UNIT_BITS] &= ~(CC_UNIT_C(1) << (__k & (CCN_UNIT_BITS - 1))); \
92 /* Macros for making ccn constants. You must use list of CCN64_C() instances
93 separated by commas, with an optional smaller sized CCN32_C, CCN16_C, or
94 CCN8_C() instance at the end of the list, when making macros to declare
95 larger sized constants. */
96 #define CCN8_C(a0) CC_UNIT_C(0x##a0)
98 #if CCN_UNIT_SIZE >= 2
99 #define CCN16_C(a1,a0) CC_UNIT_C(0x##a1##a0)
100 #define ccn16_v(a0) (a0)
101 #elif CCN_UNIT_SIZE == 1
102 #define CCN16_C(a1,a0) CCN8_C(a0),CCN8_C(a1)
103 #define ccn16_v(a0) (a0 & UINT8_C(0xff)),(a0 >> 8)
106 #if CCN_UNIT_SIZE >= 4
107 #define CCN32_C(a3,a2,a1,a0) CC_UNIT_C(0x##a3##a2##a1##a0)
108 #define ccn32_v(a0) (a0)
110 #define CCN32_C(a3,a2,a1,a0) CCN16_C(a1,a0),CCN16_C(a3,a2)
111 #define ccn32_v(a0) ccn16_v(a0 & UINT16_C(0xffff)),ccn16_v(a0 >> 16)
114 #if CCN_UNIT_SIZE == 8
115 #define CCN64_C(a7,a6,a5,a4,a3,a2,a1,a0) CC_UNIT_C(0x##a7##a6##a5##a4##a3##a2##a1##a0)
116 #define CCN40_C(a4,a3,a2,a1,a0) CC_UNIT_C(0x##a4##a3##a2##a1##a0)
117 #define ccn64_v(a0) (a0)
118 //#define ccn64_32(a1,a0) ((a1 << 32) | a0)
119 //#define ccn_uint64(a,i) (a[i])
121 #define CCN64_C(a7,a6,a5,a4,a3,a2,a1,a0) CCN32_C(a3,a2,a1,a0),CCN32_C(a7,a6,a5,a4)
122 #define CCN40_C(a4,a3,a2,a1,a0) CCN32_C(a3,a2,a1,a0),CCN8_C(a4)
123 #define ccn64_v(a0) ccn32_v((uint64_t)a0 & UINT32_C(0xffffffff)),ccn32_v((uint64_t)a0 >> 32)
124 //#define ccn64_32(a1,a0) ccn32_v(a0),ccn32_v(a1)
125 //#define ccn_uint64(a,i) ((uint64_t)ccn_uint32(a, i << 1 + 1) << 32 | (uint64_t)ccn_uint32(a, i << 1))
128 /* Macro's for reading uint32_t and uint64_t from ccns, the index is in 32 or
129 64 bit units respectively. */
130 #if CCN_UNIT_SIZE == 8
131 //#define ccn_uint16(a,i) ((i & 3) == 3 ? ((uint16_t)(a[i >> 2] >> 48)) : \
132 // (i & 3) == 2 ? ((uint16_t)(a[i >> 2] >> 32) & UINT16_C(0xffff)) : \
133 // (i & 3) == 1 ? ((uint16_t)(a[i >> 2] >> 16) & UINT16_C(0xffff)) : \
134 // ((uint16_t)(a[i >> 1] & UINT16_C(0xffff))))
135 //#define ccn_uint32(a,i) (i & 1 ? ((uint32_t)(a[i >> 1] >> 32)) : ((uint32_t)(a[i >> 1] & UINT32_C(0xffffffff))))
136 #elif CCN_UNIT_SIZE == 4
137 //#define ccn16_v(a0) (a0)
138 //#define ccn32_v(a0) (a0)
139 //#define ccn_uint16(a,i) (i & 1 ? ((uint16_t)(a[i >> 1] >> 16)) : ((uint16_t)(a[i >> 1] & UINT16_C(0xffff))))
140 //#define ccn_uint32(a,i) (a[i])
141 #elif CCN_UNIT_SIZE == 2
142 //#define ccn16_v(a0) (a0)
143 //#define ccn32_v(a0,a1) (a1,a0)
144 //#define ccn_uint16(a,i) (a[i])
145 //#define ccn_uint32(a,i) (((uint32_t)a[i << 1 + 1]) << 16 | (uint32_t)a[i << 1]))
146 #elif CCN_UNIT_SIZE == 1
147 //#define ccn16_v(a0) (a0 & UINT8_C(0xff)),(a0 >> 8)
148 //#define ccn_uint16(a,i) ((uint16_t)((a[i << 1 + 1] << 8) | a[i << 1]))
149 //#define ccn_uint32(a,i) ((uint32_t)ccn_uint16(a, i << 1 + 1) << 16 | (uint32_t)ccn_uint16(a, i << 1))
152 /* Macro's for reading uint32_t and uint64_t from ccns, the index is in 32 or
153 64 bit units respectively. */
154 #if CCN_UNIT_SIZE == 8
156 #define ccn64_32(a1,a0) (((cc_unit)a1) << 32 | ((cc_unit)a0))
157 #define ccn32_32(a0) a0
158 #if __LITTLE_ENDIAN__
159 #define ccn32_32_parse(p,i) (((uint32_t *)p)[i])
161 #define ccn32_32_parse(p,i) (((uint32_t *)p)[i^1])
163 #define ccn32_32_null 0
165 #define ccn64_64(a0) a0
166 #define ccn64_64_parse(p,i) p[i]
167 #define ccn64_64_null 0
169 #elif CCN_UNIT_SIZE == 4
171 #define ccn32_32(a0) a0
172 #define ccn32_32_parse(p,i) p[i]
173 #define ccn32_32_null 0
174 #define ccn64_32(a1,a0) ccn32_32(a0),ccn32_32(a1)
176 #define ccn64_64(a1,a0) a0,a1
177 #define ccn64_64_parse(p,i) p[1+(i<<1)],p[i<<1]
178 #define ccn64_64_null 0,0
180 #elif CCN_UNIT_SIZE == 2
182 #define ccn32_32(a1,a0) a0,a1
183 #define ccn32_32_parse(p,i) p[1+(i<<1)],p[i<<1]
184 #define ccn32_32_null 0,0
185 #define ccn64_32(a3,a2,a1,a0) ccn32_32(a1,a0),ccn32_32(a3,a2)
187 #define ccn64_64(a3,a2,a1,a0) a0,a1,a2,a3
188 #define ccn64_64_parse(p,i) p[3+(i<<2)],p[2+(i<<2)],p[1+(i<<2)],p[i<<2]
189 #define ccn64_64_null 0,0,0,0
191 #elif CCN_UNIT_SIZE == 1
193 #define ccn32_32(a3,a2,a1,a0) a0,a1,a2,a3
194 #define ccn32_32_parse(p,i) p[3+(i<<2)],p[2+(i<<2)],p[1+(i<<2)],p[i<<2]
195 #define ccn32_32_null 0,0,0,0
196 #define ccn64_32(a7,a6,a5,a4,a3,a2,a1,a0) ccn32_32(a3,a2,a1,a0),ccn32_32(a7,a6,a5,a4)
198 #define ccn64_64(a7,a6,a5,a4,a3,a2,a1,a0) a0,a1,a2,a3,a4,a5,a6,a7
199 #define ccn64_64_parse(p,i) p[7+(i<<3)],p[6+(i<<3)],p[5+(i<<3)],p[4+(i<<3)],p[3+(i<<3)],p[2+(i<<3)],p[1+(i<<3)],p[i<<3]
200 #define ccn64_64_null 0,0,0,0,0,0,0,0
205 /* Macros to construct fixed size ccn arrays from 64 or 32 bit quantities. */
206 #define ccn192_64(a2,a1,a0) ccn64_64(a0),ccn64_64(a1),ccn64_64(a2)
207 #define ccn224_32(a6,a5,a4,a3,a2,a1,a0) ccn64_32(a1,a0),ccn64_32(a3,a2),ccn64_32(a5,a4),ccn32_32(a6)
208 #define ccn256_32(a7,a6,a5,a4,a3,a2,a1,a0) ccn64_32(a1,a0),ccn64_32(a3,a2),ccn64_32(a5,a4),ccn64_32(a7,a6)
209 #define ccn384_32(a11,a10,a9,a8,a7,a6,a5,a4,a3,a2,a1,a0) ccn64_32(a1,a0),ccn64_32(a3,a2),ccn64_32(a5,a4),ccn64_32(a7,a6),ccn64_32(a9,a8),ccn64_32(a11,a10)
212 #define CCN192_C(c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
213 CCN64_C(a7,a6,a5,a4,a3,a2,a1,a0),\
214 CCN64_C(b7,b6,b5,b4,b3,b2,b1,b0),\
215 CCN64_C(c7,c6,c5,c4,c3,c2,c1,c0)
217 #define CCN200_C(d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
218 CCN192_C(c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0),\
221 #define CCN224_C(d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
222 CCN192_C(c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0),\
225 #define CCN232_C(d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
226 CCN192_C(c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0),\
227 CCN40_C(d4,d3,d2,d1,d0)
229 #define CCN256_C(d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
230 CCN192_C(c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0),\
231 CCN64_C(d7,d6,d5,d4,d3,d2,d1,d0)
233 #define CCN264_C(e0,d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
234 CCN256_C(d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0),\
237 #define CCN384_C(f7,f6,f5,f4,f3,f2,f1,f0,e7,e6,e5,e4,e3,e2,e1,e0,d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
238 CCN256_C(d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0),\
239 CCN64_C(e7,e6,e5,e4,e3,e2,e1,e0),\
240 CCN64_C(f7,f6,f5,f4,f3,f2,f1,f0)
242 #define CCN392_C(g0,f7,f6,f5,f4,f3,f2,f1,f0,e7,e6,e5,e4,e3,e2,e1,e0,d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
243 CCN384_C(f7,f6,f5,f4,f3,f2,f1,f0,e7,e6,e5,e4,e3,e2,e1,e0,d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0),\
246 #define CCN528_C(i1,i0,h7,h6,h5,h4,h3,h2,h1,h0,g7,g6,g5,g4,g3,g2,g1,g0,f7,f6,f5,f4,f3,f2,f1,f0,e7,e6,e5,e4,e3,e2,e1,e0,d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0) \
247 CCN256_C(d7,d6,d5,d4,d3,d2,d1,d0,c7,c6,c5,c4,c3,c2,c1,c0,b7,b6,b5,b4,b3,b2,b1,b0,a7,a6,a5,a4,a3,a2,a1,a0),\
248 CCN256_C(h7,h6,h5,h4,h3,h2,h1,h0,g7,g6,g5,g4,g3,g2,g1,g0,f7,f6,f5,f4,f3,f2,f1,f0,e7,e6,e5,e4,e3,e2,e1,e0),\
251 #define CCN192_N ccn_nof(192)
252 #define CCN224_N ccn_nof(224)
253 #define CCN256_N ccn_nof(256)
254 #define CCN384_N ccn_nof(384)
255 #define CCN521_N ccn_nof(521)
257 #if defined(_ARM_ARCH_6) || defined(_ARM_ARCH_7)
258 #if CCN_USE_BUILTIN_CLZ
260 cc_unit
cc_clz(cc_unit data
)
262 return __builtin_clzl(data
);
266 cc_unit
cc_clz(cc_unit data
)
268 __asm__ ("clz %0, %1\n" : "=l" (data
) : "l" (data
));
271 #endif /* CCN_USE_BUILTIN_CLZ */
272 #endif /* !defined(_ARM_ARCH_6) && !defined(_ARM_ARCH_7) */
276 /* Return the number of used units after stripping leading 0 units. */
277 CC_INLINE CC_PURE CC_NONNULL2
278 cc_size
ccn_n(cc_size n
, const cc_unit
*s
) {
280 while (n
-- && s
[n
] == 0) {}
283 while (n
&& s
[n
- 1] == 0) {
294 cc_unit a
[2] = { s
[n
- 1], s
[n
- 2] };
302 cc_unit a
[4] = { s
[n
- 1], s
[n
- 2], s
[n
- 3], s
[n
- 4] };
317 /* Return the number of used units after stripping leading 0 units. */
319 cc_size
ccn_n(cc_size n
, const cc_unit
*s
);
322 /* s >> k -> r return bits shifted out of least significant word in bits [0, n>
323 { N bit, scalar -> N bit } N = n * sizeof(cc_unit) * 8
324 the _multi version doesn't return the shifted bits, but does support multiple
327 cc_unit
ccn_shift_right(cc_size n
, cc_unit
*r
, const cc_unit
*s
, size_t k
);
329 void ccn_shift_right_multi(cc_size n
, cc_unit
*r
,const cc_unit
*s
, size_t k
);
331 /* s << k -> r return bits shifted out of most significant word in bits [0, n>
332 { N bit, scalar -> N bit } N = n * sizeof(cc_unit) * 8
333 the _multi version doesn't return the shifted bits, but does support multiple
336 cc_unit
ccn_shift_left(cc_size n
, cc_unit
*r
, const cc_unit
*s
, size_t k
);
338 void ccn_shift_left_multi(cc_size n
, cc_unit
*r
, const cc_unit
*s
, size_t k
);
340 /* s == 0 -> return 0 | s > 0 -> return index (starting at 1) of most
341 significant bit that is 1.
342 { N bit } N = n * sizeof(cc_unit) * 8 */
344 size_t ccn_bitlen(cc_size n
, const cc_unit
*s
);
346 /* Returns the number of bits which are zero before the first one bit
347 counting from least to most significant bit. */
348 size_t ccn_trailing_zeros(cc_size n
, const cc_unit
*s
);
350 /* s == 0 -> return true | s != 0 -> return false
351 { N bit } N = n * sizeof(cc_unit) * 8 */
352 #define ccn_is_zero(_n_, _s_) (!ccn_n(_n_, _s_))
354 /* s == 1 -> return true | s != 1 -> return false
355 { N bit } N = n * sizeof(cc_unit) * 8 */
356 #define ccn_is_one(_n_, _s_) (ccn_n(_n_, _s_) == 1 && _s_[0] == 1)
359 CC_INLINE CC_PURE
CC_NONNULL((2,3))
360 int ccn_cmp(cc_size n
, const cc_unit
*s
, const cc_unit
*t
) {
366 return si
> ti
? 1 : -1;
371 /* s < t -> return - 1 | s == t -> return 0 | s > t -> return 1
372 { N bit, N bit -> int } N = n * sizeof(cc_unit) * 8 */
373 CC_PURE
CC_NONNULL((2,3))
374 int ccn_cmp(cc_size n
, const cc_unit
*s
, const cc_unit
*t
);
377 /* s < t -> return - 1 | s == t -> return 0 | s > t -> return 1
378 { N bit, M bit -> int } N = ns * sizeof(cc_unit) * 8 M = nt * sizeof(cc_unit) * 8 */
380 int ccn_cmpn(cc_size ns
, const cc_unit
*s
,
381 cc_size nt
, const cc_unit
*t
) {
384 } else if (ns
< nt
) {
387 return ccn_cmp(ns
, s
, t
);
390 /* s - t -> r return 1 iff t > s
391 { N bit, N bit -> N bit } N = n * sizeof(cc_unit) * 8 */
393 cc_unit
ccn_sub(cc_size n
, cc_unit
*r
, const cc_unit
*s
, const cc_unit
*t
);
395 /* s - v -> r return 1 iff v > s return 0 otherwise.
396 { N bit, sizeof(cc_unit) * 8 bit -> N bit } N = n * sizeof(cc_unit) * 8 */
398 cc_unit
ccn_sub1(cc_size n
, cc_unit
*r
, const cc_unit
*s
, cc_unit v
);
400 /* s - t -> r return 1 iff t > s
401 { N bit, NT bit -> N bit NT <= N} N = n * sizeof(cc_unit) * 8 */
404 cc_unit
ccn_subn(cc_size n
, cc_unit
*r
,const cc_unit
*s
,
405 cc_size nt
, const cc_unit
*t
) {
406 return ccn_sub1(n
- nt
, r
+ nt
, s
+ nt
, ccn_sub(nt
, r
, s
, t
));
410 /* s + t -> r return carry if result doesn't fit in n bits.
411 { N bit, N bit -> N bit } N = n * sizeof(cc_unit) * 8 */
413 cc_unit
ccn_add(cc_size n
, cc_unit
*r
, const cc_unit
*s
, const cc_unit
*t
);
415 /* s + v -> r return carry if result doesn't fit in n bits.
416 { N bit, sizeof(cc_unit) * 8 bit -> N bit } N = n * sizeof(cc_unit) * 8 */
418 cc_unit
ccn_add1(cc_size n
, cc_unit
*r
, const cc_unit
*s
, cc_unit v
);
420 /* s + t -> r return carry if result doesn't fit in n bits
421 { N bit, NT bit -> N bit NT <= N} N = n * sizeof(cc_unit) * 8 */
424 cc_unit
ccn_addn(cc_size n
, cc_unit
*r
, const cc_unit
*s
,
425 cc_size nt
, const cc_unit
*t
) {
426 return ccn_add1(n
- nt
, r
+ nt
, s
+ nt
, ccn_add(nt
, r
, s
, t
));
430 void ccn_divmod(cc_size n
, cc_unit
*q
, cc_unit
*r
, const cc_unit
*s
, const cc_unit
*t
);
434 void ccn_lcm(cc_size n
, cc_unit
*r2n
, const cc_unit
*s
, const cc_unit
*t
);
438 { n bit, n bit -> 2 * n bit } n = count * sizeof(cc_unit) * 8 */
440 void ccn_mul(cc_size n
, cc_unit
*r_2n
, const cc_unit
*s
, const cc_unit
*t
);
443 cc_unit
ccn_mul1(cc_size n
, cc_unit
*r
, const cc_unit
*s
, const cc_unit v
);
445 cc_unit
ccn_addmul1(cc_size n
, cc_unit
*r
, const cc_unit
*s
, const cc_unit v
);
449 {2 * n bit, n bit -> n bit } n = count * sizeof(cc_unit) * 8 */
451 void ccn_mod(cc_size n
, cc_unit
*r
, const cc_unit
*a_2n
, const cc_unit
*d
);
455 N bit, N bit -> N bit */
457 void ccn_gcd(cc_size n
, cc_unit
*r
, const cc_unit
*s
, const cc_unit
*t
);
460 N bit, N bit -> O bit */
462 void ccn_gcdn(cc_size rn
, cc_unit
*r
, cc_size sn
, const cc_unit
*s
, cc_size tn
, const cc_unit
*t
);
464 /* r = (data, len) treated as a big endian byte array, return -1 if data
465 doesn't fit in r, return 0 otherwise. */
467 int ccn_read_uint(cc_size n
, cc_unit
*r
, size_t data_size
, const uint8_t *data
);
469 /* r = (data, len) treated as a big endian byte array, return -1 if data
470 doesn't fit in r, return 0 otherwise.
471 ccn_read_uint strips leading zeroes and doesn't care about sign. */
472 #define ccn_read_int(n, r, data_size, data) ccn_read_uint(n, r, data_size, data)
474 /* Return actual size in bytes needed to serialize s. */
476 size_t ccn_write_uint_size(cc_size n
, const cc_unit
*s
);
478 /* Serialize s, to out.
479 First byte of byte stream is the m.s. byte of s,
480 regardless of the size of cc_unit.
482 No assumption is made about the alignment of out.
484 The out_size argument should be the value returned from ccn_write_uint_size,
485 and is also the exact number of bytes this function will write to out.
486 If out_size if less than the value returned by ccn_write_uint_size, only the
487 first out_size non-zero most significant octects of s will be written. */
489 void ccn_write_uint(cc_size n
, const cc_unit
*s
, size_t out_size
, void *out
);
492 CC_INLINE
CC_NONNULL((2,4))
493 cc_size
ccn_write_uint_padded(cc_size n
, const cc_unit
* s
, size_t out_size
, uint8_t* to
)
495 size_t bytesInKey
= ccn_write_uint_size(n
, s
);
496 cc_size offset
= (out_size
> bytesInKey
) ? out_size
- bytesInKey
: 0;
499 ccn_write_uint(n
, s
, out_size
- offset
, to
+ offset
);
505 /* Return actual size in bytes needed to serialize s as int
506 (adding leading zero if high bit is set). */
508 size_t ccn_write_int_size(cc_size n
, const cc_unit
*s
);
510 /* Serialize s, to out.
511 First byte of byte stream is the m.s. byte of s,
512 regardless of the size of cc_unit.
514 No assumption is made about the alignment of out.
516 The out_size argument should be the value returned from ccn_write_int_size,
517 and is also the exact number of bytes this function will write to out.
518 If out_size if less than the value returned by ccn_write_int_size, only the
519 first out_size non-zero most significant octects of s will be written. */
521 void ccn_write_int(cc_size n
, const cc_unit
*s
, size_t out_size
, void *out
);
525 { n bit -> 2 * n bit } */
526 CC_INLINE
CC_NONNULL((2,3))
527 void ccn_sqr(cc_size n
, cc_unit
*r
, const cc_unit
*s
) {
532 { n bit -> n bit } */
534 void ccn_set(cc_size n
, cc_unit
*r
, const cc_unit
*s
);
536 CC_INLINE CC_NONNULL2
537 void ccn_zero(cc_size n
, cc_unit
*r
) {
538 CC_BZERO(r
, ccn_sizeof_n(n
));
541 /* Burn (zero fill or otherwise overwrite) n cc_units of stack space. */
542 void ccn_burn_stack(cc_size n
);
544 CC_INLINE CC_NONNULL2
545 void ccn_seti(cc_size n
, cc_unit
*r
, cc_unit v
) {
548 ccn_zero(n
- 1, r
+ 1);
551 CC_INLINE
CC_NONNULL((2,4))
552 void ccn_setn(cc_size n
, cc_unit
*r
, CC_UNUSED
const cc_size s_size
, const cc_unit
*s
) {
553 /* FIXME: assert not available in kernel.
558 ccn_set(s_size
, r
, s
);
559 ccn_zero(n
- s_size
, r
+ s_size
);
562 #define CC_SWAP_HOST_BIG_64(x) \
563 ((uint64_t)((((uint64_t)(x) & 0xff00000000000000ULL) >> 56) | \
564 (((uint64_t)(x) & 0x00ff000000000000ULL) >> 40) | \
565 (((uint64_t)(x) & 0x0000ff0000000000ULL) >> 24) | \
566 (((uint64_t)(x) & 0x000000ff00000000ULL) >> 8) | \
567 (((uint64_t)(x) & 0x00000000ff000000ULL) << 8) | \
568 (((uint64_t)(x) & 0x0000000000ff0000ULL) << 24) | \
569 (((uint64_t)(x) & 0x000000000000ff00ULL) << 40) | \
570 (((uint64_t)(x) & 0x00000000000000ffULL) << 56)))
571 #define CC_SWAP_HOST_BIG_32(x) \
572 ((((x) & 0xff000000) >> 24) | \
573 (((x) & 0x00ff0000) >> 8) | \
574 (((x) & 0x0000ff00) << 8) | \
575 (((x) & 0x000000ff) << 24) )
576 #define CC_SWAP_HOST_BIG_16(x) \
577 (((x) & 0xff00) >> 8) | \
578 (((x) & 0x00ff) << 8) | \
580 /* This should probably move if we move ccn_swap out of line. */
581 #if CCN_UNIT_SIZE == 8
582 #define CC_UNIT_TO_BIG(x) CC_SWAP_HOST_BIG_64(x)
583 #elif CCN_UNIT_SIZE == 4
584 #define CC_UNIT_TO_BIG(x) CC_SWAP_HOST_BIG_32(x)
585 #elif CCN_UNIT_SIZE == 2
586 #define CC_UNIT_TO_BIG(x) CC_SWAP_HOST_BIG_16(x)
587 #elif CCN_UNIT_SIZE == 1
588 #define CC_UNIT_TO_BIG(x) (x)
590 #error unsupported CCN_UNIT_SIZE
593 /* Swap units in r in place from cc_unit vector byte order to big endian byte order (or back). */
594 CC_INLINE CC_NONNULL2
595 void ccn_swap(cc_size n
, cc_unit
*r
) {
597 for (e
= r
+ n
- 1; r
< e
; ++r
, --e
) {
598 cc_unit t
= CC_UNIT_TO_BIG(*r
);
599 *r
= CC_UNIT_TO_BIG(*e
);
603 *r
= CC_UNIT_TO_BIG(*r
);
606 CC_INLINE CC_NONNULL2 CC_NONNULL3 CC_NONNULL4
607 void ccn_xor(cc_size n
, cc_unit
*r
, const cc_unit
*s
, const cc_unit
*t
) {
615 void ccn_print(cc_size n
, const cc_unit
*s
);
617 void ccn_lprint(cc_size n
, const char *label
, const cc_unit
*s
);
619 /* Forward declaration so we don't depend on ccrng.h. */
623 CC_INLINE
CC_NONNULL((2,3))
624 int ccn_random(cc_size n
, cc_unit
*r
, struct ccrng_state
*rng
) {
625 return (RNG
)->generate((RNG
), ccn_sizeof_n(n
), (unsigned char *)r
);
628 #define ccn_random(_n_,_r_,_ccrng_ctx_) \
629 ccrng_generate(_ccrng_ctx_, ccn_sizeof_n(_n_), (unsigned char *)_r_);
632 /* Make a ccn of size ccn_nof(nbits) units with up to nbits sized random value. */
634 int ccn_random_bits(cc_size nbits
, cc_unit
*r
, struct ccrng_state
*rng
);
636 #endif /* _CORECRYPTO_CCN_H_ */