]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2012-2020 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | #include <mach/host_priv.h> | |
29 | #include <mach/host_special_ports.h> | |
30 | #include <mach/mach_types.h> | |
31 | #include <mach/telemetry_notification_server.h> | |
32 | ||
33 | #include <kern/assert.h> | |
34 | #include <kern/clock.h> | |
35 | #include <kern/debug.h> | |
36 | #include <kern/host.h> | |
37 | #include <kern/kalloc.h> | |
38 | #include <kern/kern_types.h> | |
39 | #include <kern/locks.h> | |
40 | #include <kern/misc_protos.h> | |
41 | #include <kern/sched.h> | |
42 | #include <kern/sched_prim.h> | |
43 | #include <kern/telemetry.h> | |
44 | #include <kern/timer_call.h> | |
45 | #include <kern/policy_internal.h> | |
46 | #include <kern/kcdata.h> | |
47 | ||
48 | #include <pexpert/pexpert.h> | |
49 | ||
50 | #include <vm/vm_kern.h> | |
51 | #include <vm/vm_shared_region.h> | |
52 | ||
53 | #include <kperf/callstack.h> | |
54 | #include <kern/backtrace.h> | |
55 | #include <kern/monotonic.h> | |
56 | ||
57 | #include <sys/kdebug.h> | |
58 | #include <uuid/uuid.h> | |
59 | #include <kdp/kdp_dyld.h> | |
60 | ||
61 | #define TELEMETRY_DEBUG 0 | |
62 | ||
63 | struct proc; | |
64 | extern int proc_pid(struct proc *); | |
65 | extern char *proc_name_address(void *p); | |
66 | extern uint64_t proc_uniqueid(void *p); | |
67 | extern uint64_t proc_was_throttled(void *p); | |
68 | extern uint64_t proc_did_throttle(void *p); | |
69 | extern int proc_selfpid(void); | |
70 | extern boolean_t task_did_exec(task_t task); | |
71 | extern boolean_t task_is_exec_copy(task_t task); | |
72 | ||
73 | struct micro_snapshot_buffer { | |
74 | vm_offset_t buffer; | |
75 | uint32_t size; | |
76 | uint32_t current_position; | |
77 | uint32_t end_point; | |
78 | }; | |
79 | ||
80 | void telemetry_take_sample(thread_t thread, uint8_t microsnapshot_flags, struct micro_snapshot_buffer * current_buffer); | |
81 | int telemetry_buffer_gather(user_addr_t buffer, uint32_t *length, boolean_t mark, struct micro_snapshot_buffer * current_buffer); | |
82 | ||
83 | #define TELEMETRY_DEFAULT_SAMPLE_RATE (1) /* 1 sample every 1 second */ | |
84 | #define TELEMETRY_DEFAULT_BUFFER_SIZE (16*1024) | |
85 | #define TELEMETRY_MAX_BUFFER_SIZE (64*1024) | |
86 | ||
87 | #define TELEMETRY_DEFAULT_NOTIFY_LEEWAY (4*1024) // Userland gets 4k of leeway to collect data after notification | |
88 | #define TELEMETRY_MAX_UUID_COUNT (128) // Max of 128 non-shared-cache UUIDs to log for symbolication | |
89 | ||
90 | uint32_t telemetry_sample_rate = 0; | |
91 | volatile boolean_t telemetry_needs_record = FALSE; | |
92 | volatile boolean_t telemetry_needs_timer_arming_record = FALSE; | |
93 | ||
94 | /* | |
95 | * If TRUE, record micro-stackshot samples for all tasks. | |
96 | * If FALSE, only sample tasks which are marked for telemetry. | |
97 | */ | |
98 | boolean_t telemetry_sample_all_tasks = FALSE; | |
99 | boolean_t telemetry_sample_pmis = FALSE; | |
100 | uint32_t telemetry_active_tasks = 0; // Number of tasks opted into telemetry | |
101 | ||
102 | uint32_t telemetry_timestamp = 0; | |
103 | ||
104 | /* | |
105 | * The telemetry_buffer is responsible | |
106 | * for timer samples and interrupt samples that are driven by | |
107 | * compute_averages(). It will notify its client (if one | |
108 | * exists) when it has enough data to be worth flushing. | |
109 | */ | |
110 | struct micro_snapshot_buffer telemetry_buffer = { | |
111 | .buffer = 0, | |
112 | .size = 0, | |
113 | .current_position = 0, | |
114 | .end_point = 0 | |
115 | }; | |
116 | ||
117 | int telemetry_bytes_since_last_mark = -1; // How much data since buf was last marked? | |
118 | int telemetry_buffer_notify_at = 0; | |
119 | ||
120 | LCK_GRP_DECLARE(telemetry_lck_grp, "telemetry group"); | |
121 | LCK_MTX_DECLARE(telemetry_mtx, &telemetry_lck_grp); | |
122 | LCK_MTX_DECLARE(telemetry_pmi_mtx, &telemetry_lck_grp); | |
123 | ||
124 | #define TELEMETRY_LOCK() do { lck_mtx_lock(&telemetry_mtx); } while (0) | |
125 | #define TELEMETRY_TRY_SPIN_LOCK() lck_mtx_try_lock_spin(&telemetry_mtx) | |
126 | #define TELEMETRY_UNLOCK() do { lck_mtx_unlock(&telemetry_mtx); } while (0) | |
127 | ||
128 | #define TELEMETRY_PMI_LOCK() do { lck_mtx_lock(&telemetry_pmi_mtx); } while (0) | |
129 | #define TELEMETRY_PMI_UNLOCK() do { lck_mtx_unlock(&telemetry_pmi_mtx); } while (0) | |
130 | ||
131 | void | |
132 | telemetry_init(void) | |
133 | { | |
134 | kern_return_t ret; | |
135 | uint32_t telemetry_notification_leeway; | |
136 | ||
137 | if (!PE_parse_boot_argn("telemetry_buffer_size", | |
138 | &telemetry_buffer.size, sizeof(telemetry_buffer.size))) { | |
139 | telemetry_buffer.size = TELEMETRY_DEFAULT_BUFFER_SIZE; | |
140 | } | |
141 | ||
142 | if (telemetry_buffer.size > TELEMETRY_MAX_BUFFER_SIZE) { | |
143 | telemetry_buffer.size = TELEMETRY_MAX_BUFFER_SIZE; | |
144 | } | |
145 | ||
146 | ret = kmem_alloc(kernel_map, &telemetry_buffer.buffer, telemetry_buffer.size, VM_KERN_MEMORY_DIAG); | |
147 | if (ret != KERN_SUCCESS) { | |
148 | kprintf("Telemetry: Allocation failed: %d\n", ret); | |
149 | return; | |
150 | } | |
151 | bzero((void *) telemetry_buffer.buffer, telemetry_buffer.size); | |
152 | ||
153 | if (!PE_parse_boot_argn("telemetry_notification_leeway", | |
154 | &telemetry_notification_leeway, sizeof(telemetry_notification_leeway))) { | |
155 | /* | |
156 | * By default, notify the user to collect the buffer when there is this much space left in the buffer. | |
157 | */ | |
158 | telemetry_notification_leeway = TELEMETRY_DEFAULT_NOTIFY_LEEWAY; | |
159 | } | |
160 | if (telemetry_notification_leeway >= telemetry_buffer.size) { | |
161 | printf("telemetry: nonsensical telemetry_notification_leeway boot-arg %d changed to %d\n", | |
162 | telemetry_notification_leeway, TELEMETRY_DEFAULT_NOTIFY_LEEWAY); | |
163 | telemetry_notification_leeway = TELEMETRY_DEFAULT_NOTIFY_LEEWAY; | |
164 | } | |
165 | telemetry_buffer_notify_at = telemetry_buffer.size - telemetry_notification_leeway; | |
166 | ||
167 | if (!PE_parse_boot_argn("telemetry_sample_rate", | |
168 | &telemetry_sample_rate, sizeof(telemetry_sample_rate))) { | |
169 | telemetry_sample_rate = TELEMETRY_DEFAULT_SAMPLE_RATE; | |
170 | } | |
171 | ||
172 | /* | |
173 | * To enable telemetry for all tasks, include "telemetry_sample_all_tasks=1" in boot-args. | |
174 | */ | |
175 | if (!PE_parse_boot_argn("telemetry_sample_all_tasks", | |
176 | &telemetry_sample_all_tasks, sizeof(telemetry_sample_all_tasks))) { | |
177 | #if !defined(XNU_TARGET_OS_OSX) && !(DEVELOPMENT || DEBUG) | |
178 | telemetry_sample_all_tasks = FALSE; | |
179 | #else | |
180 | telemetry_sample_all_tasks = TRUE; | |
181 | #endif /* !defined(XNU_TARGET_OS_OSX) && !(DEVELOPMENT || DEBUG) */ | |
182 | } | |
183 | ||
184 | kprintf("Telemetry: Sampling %stasks once per %u second%s\n", | |
185 | (telemetry_sample_all_tasks) ? "all " : "", | |
186 | telemetry_sample_rate, telemetry_sample_rate == 1 ? "" : "s"); | |
187 | } | |
188 | ||
189 | /* | |
190 | * Enable or disable global microstackshots (ie telemetry_sample_all_tasks). | |
191 | * | |
192 | * enable_disable == 1: turn it on | |
193 | * enable_disable == 0: turn it off | |
194 | */ | |
195 | void | |
196 | telemetry_global_ctl(int enable_disable) | |
197 | { | |
198 | if (enable_disable == 1) { | |
199 | telemetry_sample_all_tasks = TRUE; | |
200 | } else { | |
201 | telemetry_sample_all_tasks = FALSE; | |
202 | } | |
203 | } | |
204 | ||
205 | /* | |
206 | * Opt the given task into or out of the telemetry stream. | |
207 | * | |
208 | * Supported reasons (callers may use any or all of): | |
209 | * TF_CPUMON_WARNING | |
210 | * TF_WAKEMON_WARNING | |
211 | * | |
212 | * enable_disable == 1: turn it on | |
213 | * enable_disable == 0: turn it off | |
214 | */ | |
215 | void | |
216 | telemetry_task_ctl(task_t task, uint32_t reasons, int enable_disable) | |
217 | { | |
218 | task_lock(task); | |
219 | telemetry_task_ctl_locked(task, reasons, enable_disable); | |
220 | task_unlock(task); | |
221 | } | |
222 | ||
223 | void | |
224 | telemetry_task_ctl_locked(task_t task, uint32_t reasons, int enable_disable) | |
225 | { | |
226 | uint32_t origflags; | |
227 | ||
228 | assert((reasons != 0) && ((reasons | TF_TELEMETRY) == TF_TELEMETRY)); | |
229 | ||
230 | task_lock_assert_owned(task); | |
231 | ||
232 | origflags = task->t_flags; | |
233 | ||
234 | if (enable_disable == 1) { | |
235 | task->t_flags |= reasons; | |
236 | if ((origflags & TF_TELEMETRY) == 0) { | |
237 | OSIncrementAtomic(&telemetry_active_tasks); | |
238 | #if TELEMETRY_DEBUG | |
239 | printf("%s: telemetry OFF -> ON (%d active)\n", proc_name_address(task->bsd_info), telemetry_active_tasks); | |
240 | #endif | |
241 | } | |
242 | } else { | |
243 | task->t_flags &= ~reasons; | |
244 | if (((origflags & TF_TELEMETRY) != 0) && ((task->t_flags & TF_TELEMETRY) == 0)) { | |
245 | /* | |
246 | * If this task went from having at least one telemetry bit to having none, | |
247 | * the net change was to disable telemetry for the task. | |
248 | */ | |
249 | OSDecrementAtomic(&telemetry_active_tasks); | |
250 | #if TELEMETRY_DEBUG | |
251 | printf("%s: telemetry ON -> OFF (%d active)\n", proc_name_address(task->bsd_info), telemetry_active_tasks); | |
252 | #endif | |
253 | } | |
254 | } | |
255 | } | |
256 | ||
257 | /* | |
258 | * Determine if the current thread is eligible for telemetry: | |
259 | * | |
260 | * telemetry_sample_all_tasks: All threads are eligible. This takes precedence. | |
261 | * telemetry_active_tasks: Count of tasks opted in. | |
262 | * task->t_flags & TF_TELEMETRY: This task is opted in. | |
263 | */ | |
264 | static boolean_t | |
265 | telemetry_is_active(thread_t thread) | |
266 | { | |
267 | task_t task = thread->task; | |
268 | ||
269 | if (task == kernel_task) { | |
270 | /* Kernel threads never return to an AST boundary, and are ineligible */ | |
271 | return FALSE; | |
272 | } | |
273 | ||
274 | if (telemetry_sample_all_tasks || telemetry_sample_pmis) { | |
275 | return TRUE; | |
276 | } | |
277 | ||
278 | if ((telemetry_active_tasks > 0) && ((thread->task->t_flags & TF_TELEMETRY) != 0)) { | |
279 | return TRUE; | |
280 | } | |
281 | ||
282 | return FALSE; | |
283 | } | |
284 | ||
285 | /* | |
286 | * Userland is arming a timer. If we are eligible for such a record, | |
287 | * sample now. No need to do this one at the AST because we're already at | |
288 | * a safe place in this system call. | |
289 | */ | |
290 | int | |
291 | telemetry_timer_event(__unused uint64_t deadline, __unused uint64_t interval, __unused uint64_t leeway) | |
292 | { | |
293 | if (telemetry_needs_timer_arming_record == TRUE) { | |
294 | telemetry_needs_timer_arming_record = FALSE; | |
295 | telemetry_take_sample(current_thread(), kTimerArmingRecord | kUserMode, &telemetry_buffer); | |
296 | } | |
297 | ||
298 | return 0; | |
299 | } | |
300 | ||
301 | #if defined(MT_CORE_INSTRS) && defined(MT_CORE_CYCLES) | |
302 | static void | |
303 | telemetry_pmi_handler(bool user_mode, __unused void *ctx) | |
304 | { | |
305 | telemetry_mark_curthread(user_mode, TRUE); | |
306 | } | |
307 | #endif /* defined(MT_CORE_INSTRS) && defined(MT_CORE_CYCLES) */ | |
308 | ||
309 | int | |
310 | telemetry_pmi_setup(enum telemetry_pmi pmi_ctr, uint64_t period) | |
311 | { | |
312 | #if defined(MT_CORE_INSTRS) && defined(MT_CORE_CYCLES) | |
313 | static boolean_t sample_all_tasks_aside = FALSE; | |
314 | static uint32_t active_tasks_aside = FALSE; | |
315 | int error = 0; | |
316 | const char *name = "?"; | |
317 | ||
318 | unsigned int ctr = 0; | |
319 | ||
320 | TELEMETRY_PMI_LOCK(); | |
321 | ||
322 | switch (pmi_ctr) { | |
323 | case TELEMETRY_PMI_NONE: | |
324 | if (!telemetry_sample_pmis) { | |
325 | error = 1; | |
326 | goto out; | |
327 | } | |
328 | ||
329 | telemetry_sample_pmis = FALSE; | |
330 | telemetry_sample_all_tasks = sample_all_tasks_aside; | |
331 | telemetry_active_tasks = active_tasks_aside; | |
332 | error = mt_microstackshot_stop(); | |
333 | if (!error) { | |
334 | printf("telemetry: disabling ustackshot on PMI\n"); | |
335 | } | |
336 | goto out; | |
337 | ||
338 | case TELEMETRY_PMI_INSTRS: | |
339 | ctr = MT_CORE_INSTRS; | |
340 | name = "instructions"; | |
341 | break; | |
342 | ||
343 | case TELEMETRY_PMI_CYCLES: | |
344 | ctr = MT_CORE_CYCLES; | |
345 | name = "cycles"; | |
346 | break; | |
347 | ||
348 | default: | |
349 | error = 1; | |
350 | goto out; | |
351 | } | |
352 | ||
353 | telemetry_sample_pmis = TRUE; | |
354 | sample_all_tasks_aside = telemetry_sample_all_tasks; | |
355 | active_tasks_aside = telemetry_active_tasks; | |
356 | telemetry_sample_all_tasks = FALSE; | |
357 | telemetry_active_tasks = 0; | |
358 | ||
359 | error = mt_microstackshot_start(ctr, period, telemetry_pmi_handler, NULL); | |
360 | if (!error) { | |
361 | printf("telemetry: ustackshot every %llu %s\n", period, name); | |
362 | } | |
363 | ||
364 | out: | |
365 | TELEMETRY_PMI_UNLOCK(); | |
366 | return error; | |
367 | #else /* defined(MT_CORE_INSTRS) && defined(MT_CORE_CYCLES) */ | |
368 | #pragma unused(pmi_ctr, period) | |
369 | return 1; | |
370 | #endif /* !defined(MT_CORE_INSTRS) || !defined(MT_CORE_CYCLES) */ | |
371 | } | |
372 | ||
373 | /* | |
374 | * Mark the current thread for an interrupt-based | |
375 | * telemetry record, to be sampled at the next AST boundary. | |
376 | */ | |
377 | void | |
378 | telemetry_mark_curthread(boolean_t interrupted_userspace, boolean_t pmi) | |
379 | { | |
380 | uint32_t ast_bits = 0; | |
381 | thread_t thread = current_thread(); | |
382 | ||
383 | /* | |
384 | * If telemetry isn't active for this thread, return and try | |
385 | * again next time. | |
386 | */ | |
387 | if (telemetry_is_active(thread) == FALSE) { | |
388 | return; | |
389 | } | |
390 | ||
391 | ast_bits |= (interrupted_userspace ? AST_TELEMETRY_USER : AST_TELEMETRY_KERNEL); | |
392 | if (pmi) { | |
393 | ast_bits |= AST_TELEMETRY_PMI; | |
394 | } | |
395 | ||
396 | telemetry_needs_record = FALSE; | |
397 | thread_ast_set(thread, ast_bits); | |
398 | ast_propagate(thread); | |
399 | } | |
400 | ||
401 | void | |
402 | compute_telemetry(void *arg __unused) | |
403 | { | |
404 | if (telemetry_sample_all_tasks || (telemetry_active_tasks > 0)) { | |
405 | if ((++telemetry_timestamp) % telemetry_sample_rate == 0) { | |
406 | telemetry_needs_record = TRUE; | |
407 | telemetry_needs_timer_arming_record = TRUE; | |
408 | } | |
409 | } | |
410 | } | |
411 | ||
412 | /* | |
413 | * If userland has registered a port for telemetry notifications, send one now. | |
414 | */ | |
415 | static void | |
416 | telemetry_notify_user(void) | |
417 | { | |
418 | mach_port_t user_port = MACH_PORT_NULL; | |
419 | ||
420 | kern_return_t kr = host_get_telemetry_port(host_priv_self(), &user_port); | |
421 | if ((kr != KERN_SUCCESS) || !IPC_PORT_VALID(user_port)) { | |
422 | return; | |
423 | } | |
424 | ||
425 | telemetry_notification(user_port, 0); | |
426 | ipc_port_release_send(user_port); | |
427 | } | |
428 | ||
429 | void | |
430 | telemetry_ast(thread_t thread, ast_t reasons) | |
431 | { | |
432 | assert((reasons & AST_TELEMETRY_ALL) != 0); | |
433 | ||
434 | uint8_t record_type = 0; | |
435 | if (reasons & AST_TELEMETRY_IO) { | |
436 | record_type |= kIORecord; | |
437 | } | |
438 | if (reasons & (AST_TELEMETRY_USER | AST_TELEMETRY_KERNEL)) { | |
439 | record_type |= (reasons & AST_TELEMETRY_PMI) ? kPMIRecord : | |
440 | kInterruptRecord; | |
441 | } | |
442 | ||
443 | uint8_t user_telemetry = (reasons & AST_TELEMETRY_USER) ? kUserMode : 0; | |
444 | ||
445 | uint8_t microsnapshot_flags = record_type | user_telemetry; | |
446 | ||
447 | telemetry_take_sample(thread, microsnapshot_flags, &telemetry_buffer); | |
448 | } | |
449 | ||
450 | void | |
451 | telemetry_take_sample(thread_t thread, uint8_t microsnapshot_flags, struct micro_snapshot_buffer * current_buffer) | |
452 | { | |
453 | task_t task; | |
454 | void *p; | |
455 | uint32_t btcount = 0, bti; | |
456 | struct micro_snapshot *msnap; | |
457 | struct task_snapshot *tsnap; | |
458 | struct thread_snapshot *thsnap; | |
459 | clock_sec_t secs; | |
460 | clock_usec_t usecs; | |
461 | vm_size_t framesize; | |
462 | uint32_t current_record_start; | |
463 | uint32_t tmp = 0; | |
464 | boolean_t notify = FALSE; | |
465 | ||
466 | if (thread == THREAD_NULL) { | |
467 | return; | |
468 | } | |
469 | ||
470 | task = thread->task; | |
471 | if ((task == TASK_NULL) || (task == kernel_task) || task_did_exec(task) || task_is_exec_copy(task)) { | |
472 | return; | |
473 | } | |
474 | ||
475 | /* telemetry_XXX accessed outside of lock for instrumentation only */ | |
476 | KDBG(MACHDBG_CODE(DBG_MACH_STACKSHOT, MICROSTACKSHOT_RECORD) | DBG_FUNC_START, | |
477 | microsnapshot_flags, telemetry_bytes_since_last_mark, 0, | |
478 | (&telemetry_buffer != current_buffer)); | |
479 | ||
480 | p = get_bsdtask_info(task); | |
481 | ||
482 | /* | |
483 | * Gather up the data we'll need for this sample. The sample is written into the kernel | |
484 | * buffer with the global telemetry lock held -- so we must do our (possibly faulting) | |
485 | * copies from userland here, before taking the lock. | |
486 | */ | |
487 | ||
488 | uintptr_t frames[128]; | |
489 | bool user64_regs = false; | |
490 | int bterror = 0; | |
491 | btcount = backtrace_user(frames, | |
492 | sizeof(frames) / sizeof(frames[0]), &bterror, &user64_regs, NULL); | |
493 | if (bterror != 0) { | |
494 | return; | |
495 | } | |
496 | bool user64_va = task_has_64Bit_addr(task); | |
497 | ||
498 | /* | |
499 | * Find the actual [slid] address of the shared cache's UUID, and copy it in from userland. | |
500 | */ | |
501 | int shared_cache_uuid_valid = 0; | |
502 | uint64_t shared_cache_base_address = 0; | |
503 | struct _dyld_cache_header shared_cache_header = {}; | |
504 | uint64_t shared_cache_slide = 0; | |
505 | ||
506 | /* | |
507 | * Don't copy in the entire shared cache header; we only need the UUID. Calculate the | |
508 | * offset of that one field. | |
509 | */ | |
510 | int sc_header_uuid_offset = (char *)&shared_cache_header.uuid - (char *)&shared_cache_header; | |
511 | vm_shared_region_t sr = vm_shared_region_get(task); | |
512 | if (sr != NULL) { | |
513 | if ((vm_shared_region_start_address(sr, &shared_cache_base_address) == KERN_SUCCESS) && | |
514 | (copyin(shared_cache_base_address + sc_header_uuid_offset, (char *)&shared_cache_header.uuid, | |
515 | sizeof(shared_cache_header.uuid)) == 0)) { | |
516 | shared_cache_uuid_valid = 1; | |
517 | shared_cache_slide = sr->sr_slide; | |
518 | } | |
519 | // vm_shared_region_get() gave us a reference on the shared region. | |
520 | vm_shared_region_deallocate(sr); | |
521 | } | |
522 | ||
523 | /* | |
524 | * Retrieve the array of UUID's for binaries used by this task. | |
525 | * We reach down into DYLD's data structures to find the array. | |
526 | * | |
527 | * XXX - make this common with kdp? | |
528 | */ | |
529 | uint32_t uuid_info_count = 0; | |
530 | mach_vm_address_t uuid_info_addr = 0; | |
531 | uint32_t uuid_info_size = 0; | |
532 | if (user64_va) { | |
533 | uuid_info_size = sizeof(struct user64_dyld_uuid_info); | |
534 | struct user64_dyld_all_image_infos task_image_infos; | |
535 | if (copyin(task->all_image_info_addr, (char *)&task_image_infos, sizeof(task_image_infos)) == 0) { | |
536 | uuid_info_count = (uint32_t)task_image_infos.uuidArrayCount; | |
537 | uuid_info_addr = task_image_infos.uuidArray; | |
538 | } | |
539 | } else { | |
540 | uuid_info_size = sizeof(struct user32_dyld_uuid_info); | |
541 | struct user32_dyld_all_image_infos task_image_infos; | |
542 | if (copyin(task->all_image_info_addr, (char *)&task_image_infos, sizeof(task_image_infos)) == 0) { | |
543 | uuid_info_count = task_image_infos.uuidArrayCount; | |
544 | uuid_info_addr = task_image_infos.uuidArray; | |
545 | } | |
546 | } | |
547 | ||
548 | /* | |
549 | * If we get a NULL uuid_info_addr (which can happen when we catch dyld in the middle of updating | |
550 | * this data structure), we zero the uuid_info_count so that we won't even try to save load info | |
551 | * for this task. | |
552 | */ | |
553 | if (!uuid_info_addr) { | |
554 | uuid_info_count = 0; | |
555 | } | |
556 | ||
557 | /* | |
558 | * Don't copy in an unbounded amount of memory. The main binary and interesting | |
559 | * non-shared-cache libraries should be in the first few images. | |
560 | */ | |
561 | if (uuid_info_count > TELEMETRY_MAX_UUID_COUNT) { | |
562 | uuid_info_count = TELEMETRY_MAX_UUID_COUNT; | |
563 | } | |
564 | ||
565 | uint32_t uuid_info_array_size = uuid_info_count * uuid_info_size; | |
566 | char *uuid_info_array = NULL; | |
567 | ||
568 | if (uuid_info_count > 0) { | |
569 | uuid_info_array = kheap_alloc(KHEAP_TEMP, | |
570 | uuid_info_array_size, Z_WAITOK); | |
571 | if (uuid_info_array == NULL) { | |
572 | return; | |
573 | } | |
574 | ||
575 | /* | |
576 | * Copy in the UUID info array. | |
577 | * It may be nonresident, in which case just fix up nloadinfos to 0 in the task snapshot. | |
578 | */ | |
579 | if (copyin(uuid_info_addr, uuid_info_array, uuid_info_array_size) != 0) { | |
580 | kheap_free(KHEAP_TEMP, uuid_info_array, uuid_info_array_size); | |
581 | uuid_info_array = NULL; | |
582 | uuid_info_array_size = 0; | |
583 | } | |
584 | } | |
585 | ||
586 | /* | |
587 | * Look for a dispatch queue serial number, and copy it in from userland if present. | |
588 | */ | |
589 | uint64_t dqserialnum = 0; | |
590 | int dqserialnum_valid = 0; | |
591 | ||
592 | uint64_t dqkeyaddr = thread_dispatchqaddr(thread); | |
593 | if (dqkeyaddr != 0) { | |
594 | uint64_t dqaddr = 0; | |
595 | uint64_t dq_serialno_offset = get_task_dispatchqueue_serialno_offset(task); | |
596 | if ((copyin(dqkeyaddr, (char *)&dqaddr, (user64_va ? 8 : 4)) == 0) && | |
597 | (dqaddr != 0) && (dq_serialno_offset != 0)) { | |
598 | uint64_t dqserialnumaddr = dqaddr + dq_serialno_offset; | |
599 | if (copyin(dqserialnumaddr, (char *)&dqserialnum, (user64_va ? 8 : 4)) == 0) { | |
600 | dqserialnum_valid = 1; | |
601 | } | |
602 | } | |
603 | } | |
604 | ||
605 | clock_get_calendar_microtime(&secs, &usecs); | |
606 | ||
607 | TELEMETRY_LOCK(); | |
608 | ||
609 | /* | |
610 | * If our buffer is not backed by anything, | |
611 | * then we cannot take the sample. Meant to allow us to deallocate the window | |
612 | * buffer if it is disabled. | |
613 | */ | |
614 | if (!current_buffer->buffer) { | |
615 | goto cancel_sample; | |
616 | } | |
617 | ||
618 | /* | |
619 | * We do the bulk of the operation under the telemetry lock, on assumption that | |
620 | * any page faults during execution will not cause another AST_TELEMETRY_ALL | |
621 | * to deadlock; they will just block until we finish. This makes it easier | |
622 | * to copy into the buffer directly. As soon as we unlock, userspace can copy | |
623 | * out of our buffer. | |
624 | */ | |
625 | ||
626 | copytobuffer: | |
627 | ||
628 | current_record_start = current_buffer->current_position; | |
629 | ||
630 | if ((current_buffer->size - current_buffer->current_position) < sizeof(struct micro_snapshot)) { | |
631 | /* | |
632 | * We can't fit a record in the space available, so wrap around to the beginning. | |
633 | * Save the current position as the known end point of valid data. | |
634 | */ | |
635 | current_buffer->end_point = current_record_start; | |
636 | current_buffer->current_position = 0; | |
637 | if (current_record_start == 0) { | |
638 | /* This sample is too large to fit in the buffer even when we started at 0, so skip it */ | |
639 | goto cancel_sample; | |
640 | } | |
641 | goto copytobuffer; | |
642 | } | |
643 | ||
644 | msnap = (struct micro_snapshot *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position); | |
645 | msnap->snapshot_magic = STACKSHOT_MICRO_SNAPSHOT_MAGIC; | |
646 | msnap->ms_flags = microsnapshot_flags; | |
647 | msnap->ms_opaque_flags = 0; /* namespace managed by userspace */ | |
648 | msnap->ms_cpu = cpu_number(); | |
649 | msnap->ms_time = secs; | |
650 | msnap->ms_time_microsecs = usecs; | |
651 | ||
652 | current_buffer->current_position += sizeof(struct micro_snapshot); | |
653 | ||
654 | if ((current_buffer->size - current_buffer->current_position) < sizeof(struct task_snapshot)) { | |
655 | current_buffer->end_point = current_record_start; | |
656 | current_buffer->current_position = 0; | |
657 | if (current_record_start == 0) { | |
658 | /* This sample is too large to fit in the buffer even when we started at 0, so skip it */ | |
659 | goto cancel_sample; | |
660 | } | |
661 | goto copytobuffer; | |
662 | } | |
663 | ||
664 | tsnap = (struct task_snapshot *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position); | |
665 | bzero(tsnap, sizeof(*tsnap)); | |
666 | tsnap->snapshot_magic = STACKSHOT_TASK_SNAPSHOT_MAGIC; | |
667 | tsnap->pid = proc_pid(p); | |
668 | tsnap->uniqueid = proc_uniqueid(p); | |
669 | tsnap->user_time_in_terminated_threads = task->total_user_time; | |
670 | tsnap->system_time_in_terminated_threads = task->total_system_time; | |
671 | tsnap->suspend_count = task->suspend_count; | |
672 | tsnap->task_size = (typeof(tsnap->task_size))(get_task_phys_footprint(task) / PAGE_SIZE); | |
673 | tsnap->faults = task->faults; | |
674 | tsnap->pageins = task->pageins; | |
675 | tsnap->cow_faults = task->cow_faults; | |
676 | /* | |
677 | * The throttling counters are maintained as 64-bit counters in the proc | |
678 | * structure. However, we reserve 32-bits (each) for them in the task_snapshot | |
679 | * struct to save space and since we do not expect them to overflow 32-bits. If we | |
680 | * find these values overflowing in the future, the fix would be to simply | |
681 | * upgrade these counters to 64-bit in the task_snapshot struct | |
682 | */ | |
683 | tsnap->was_throttled = (uint32_t) proc_was_throttled(p); | |
684 | tsnap->did_throttle = (uint32_t) proc_did_throttle(p); | |
685 | ||
686 | if (task->t_flags & TF_TELEMETRY) { | |
687 | tsnap->ss_flags |= kTaskRsrcFlagged; | |
688 | } | |
689 | ||
690 | if (proc_get_effective_task_policy(task, TASK_POLICY_DARWIN_BG)) { | |
691 | tsnap->ss_flags |= kTaskDarwinBG; | |
692 | } | |
693 | ||
694 | proc_get_darwinbgstate(task, &tmp); | |
695 | ||
696 | if (proc_get_effective_task_policy(task, TASK_POLICY_ROLE) == TASK_FOREGROUND_APPLICATION) { | |
697 | tsnap->ss_flags |= kTaskIsForeground; | |
698 | } | |
699 | ||
700 | if (tmp & PROC_FLAG_ADAPTIVE_IMPORTANT) { | |
701 | tsnap->ss_flags |= kTaskIsBoosted; | |
702 | } | |
703 | ||
704 | if (tmp & PROC_FLAG_SUPPRESSED) { | |
705 | tsnap->ss_flags |= kTaskIsSuppressed; | |
706 | } | |
707 | ||
708 | ||
709 | tsnap->latency_qos = task_grab_latency_qos(task); | |
710 | ||
711 | strlcpy(tsnap->p_comm, proc_name_address(p), sizeof(tsnap->p_comm)); | |
712 | if (user64_va) { | |
713 | tsnap->ss_flags |= kUser64_p; | |
714 | } | |
715 | ||
716 | if (shared_cache_uuid_valid) { | |
717 | tsnap->shared_cache_slide = shared_cache_slide; | |
718 | bcopy(shared_cache_header.uuid, tsnap->shared_cache_identifier, sizeof(shared_cache_header.uuid)); | |
719 | } | |
720 | ||
721 | current_buffer->current_position += sizeof(struct task_snapshot); | |
722 | ||
723 | /* | |
724 | * Directly after the task snapshot, place the array of UUID's corresponding to the binaries | |
725 | * used by this task. | |
726 | */ | |
727 | if ((current_buffer->size - current_buffer->current_position) < uuid_info_array_size) { | |
728 | current_buffer->end_point = current_record_start; | |
729 | current_buffer->current_position = 0; | |
730 | if (current_record_start == 0) { | |
731 | /* This sample is too large to fit in the buffer even when we started at 0, so skip it */ | |
732 | goto cancel_sample; | |
733 | } | |
734 | goto copytobuffer; | |
735 | } | |
736 | ||
737 | /* | |
738 | * Copy the UUID info array into our sample. | |
739 | */ | |
740 | if (uuid_info_array_size > 0) { | |
741 | bcopy(uuid_info_array, (char *)(current_buffer->buffer + current_buffer->current_position), uuid_info_array_size); | |
742 | tsnap->nloadinfos = uuid_info_count; | |
743 | } | |
744 | ||
745 | current_buffer->current_position += uuid_info_array_size; | |
746 | ||
747 | /* | |
748 | * After the task snapshot & list of binary UUIDs, we place a thread snapshot. | |
749 | */ | |
750 | ||
751 | if ((current_buffer->size - current_buffer->current_position) < sizeof(struct thread_snapshot)) { | |
752 | /* wrap and overwrite */ | |
753 | current_buffer->end_point = current_record_start; | |
754 | current_buffer->current_position = 0; | |
755 | if (current_record_start == 0) { | |
756 | /* This sample is too large to fit in the buffer even when we started at 0, so skip it */ | |
757 | goto cancel_sample; | |
758 | } | |
759 | goto copytobuffer; | |
760 | } | |
761 | ||
762 | thsnap = (struct thread_snapshot *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position); | |
763 | bzero(thsnap, sizeof(*thsnap)); | |
764 | ||
765 | thsnap->snapshot_magic = STACKSHOT_THREAD_SNAPSHOT_MAGIC; | |
766 | thsnap->thread_id = thread_tid(thread); | |
767 | thsnap->state = thread->state; | |
768 | thsnap->priority = thread->base_pri; | |
769 | thsnap->sched_pri = thread->sched_pri; | |
770 | thsnap->sched_flags = thread->sched_flags; | |
771 | thsnap->ss_flags |= kStacksPCOnly; | |
772 | thsnap->ts_qos = thread->effective_policy.thep_qos; | |
773 | thsnap->ts_rqos = thread->requested_policy.thrp_qos; | |
774 | thsnap->ts_rqos_override = MAX(thread->requested_policy.thrp_qos_override, | |
775 | thread->requested_policy.thrp_qos_workq_override); | |
776 | ||
777 | if (proc_get_effective_thread_policy(thread, TASK_POLICY_DARWIN_BG)) { | |
778 | thsnap->ss_flags |= kThreadDarwinBG; | |
779 | } | |
780 | ||
781 | thsnap->user_time = timer_grab(&thread->user_timer); | |
782 | ||
783 | uint64_t tval = timer_grab(&thread->system_timer); | |
784 | ||
785 | if (thread->precise_user_kernel_time) { | |
786 | thsnap->system_time = tval; | |
787 | } else { | |
788 | thsnap->user_time += tval; | |
789 | thsnap->system_time = 0; | |
790 | } | |
791 | ||
792 | current_buffer->current_position += sizeof(struct thread_snapshot); | |
793 | ||
794 | /* | |
795 | * If this thread has a dispatch queue serial number, include it here. | |
796 | */ | |
797 | if (dqserialnum_valid) { | |
798 | if ((current_buffer->size - current_buffer->current_position) < sizeof(dqserialnum)) { | |
799 | /* wrap and overwrite */ | |
800 | current_buffer->end_point = current_record_start; | |
801 | current_buffer->current_position = 0; | |
802 | if (current_record_start == 0) { | |
803 | /* This sample is too large to fit in the buffer even when we started at 0, so skip it */ | |
804 | goto cancel_sample; | |
805 | } | |
806 | goto copytobuffer; | |
807 | } | |
808 | ||
809 | thsnap->ss_flags |= kHasDispatchSerial; | |
810 | bcopy(&dqserialnum, (char *)current_buffer->buffer + current_buffer->current_position, sizeof(dqserialnum)); | |
811 | current_buffer->current_position += sizeof(dqserialnum); | |
812 | } | |
813 | ||
814 | if (user64_regs) { | |
815 | framesize = 8; | |
816 | thsnap->ss_flags |= kUser64_p; | |
817 | } else { | |
818 | framesize = 4; | |
819 | } | |
820 | ||
821 | /* | |
822 | * If we can't fit this entire stacktrace then cancel this record, wrap to the beginning, | |
823 | * and start again there so that we always store a full record. | |
824 | */ | |
825 | if ((current_buffer->size - current_buffer->current_position) / framesize < btcount) { | |
826 | current_buffer->end_point = current_record_start; | |
827 | current_buffer->current_position = 0; | |
828 | if (current_record_start == 0) { | |
829 | /* This sample is too large to fit in the buffer even when we started at 0, so skip it */ | |
830 | goto cancel_sample; | |
831 | } | |
832 | goto copytobuffer; | |
833 | } | |
834 | ||
835 | for (bti = 0; bti < btcount; bti++, current_buffer->current_position += framesize) { | |
836 | if (framesize == 8) { | |
837 | *(uint64_t *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position) = frames[bti]; | |
838 | } else { | |
839 | *(uint32_t *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position) = (uint32_t)frames[bti]; | |
840 | } | |
841 | } | |
842 | ||
843 | if (current_buffer->end_point < current_buffer->current_position) { | |
844 | /* | |
845 | * Each time the cursor wraps around to the beginning, we leave a | |
846 | * differing amount of unused space at the end of the buffer. Make | |
847 | * sure the cursor pushes the end point in case we're making use of | |
848 | * more of the buffer than we did the last time we wrapped. | |
849 | */ | |
850 | current_buffer->end_point = current_buffer->current_position; | |
851 | } | |
852 | ||
853 | thsnap->nuser_frames = btcount; | |
854 | ||
855 | /* | |
856 | * Now THIS is a hack. | |
857 | */ | |
858 | if (current_buffer == &telemetry_buffer) { | |
859 | telemetry_bytes_since_last_mark += (current_buffer->current_position - current_record_start); | |
860 | if (telemetry_bytes_since_last_mark > telemetry_buffer_notify_at) { | |
861 | notify = TRUE; | |
862 | } | |
863 | } | |
864 | ||
865 | cancel_sample: | |
866 | TELEMETRY_UNLOCK(); | |
867 | ||
868 | KDBG(MACHDBG_CODE(DBG_MACH_STACKSHOT, MICROSTACKSHOT_RECORD) | DBG_FUNC_END, | |
869 | notify, telemetry_bytes_since_last_mark, | |
870 | current_buffer->current_position, current_buffer->end_point); | |
871 | ||
872 | if (notify) { | |
873 | telemetry_notify_user(); | |
874 | } | |
875 | ||
876 | if (uuid_info_array != NULL) { | |
877 | kheap_free(KHEAP_TEMP, uuid_info_array, uuid_info_array_size); | |
878 | } | |
879 | } | |
880 | ||
881 | #if TELEMETRY_DEBUG | |
882 | static void | |
883 | log_telemetry_output(vm_offset_t buf, uint32_t pos, uint32_t sz) | |
884 | { | |
885 | struct micro_snapshot *p; | |
886 | uint32_t offset; | |
887 | ||
888 | printf("Copying out %d bytes of telemetry at offset %d\n", sz, pos); | |
889 | ||
890 | buf += pos; | |
891 | ||
892 | /* | |
893 | * Find and log each timestamp in this chunk of buffer. | |
894 | */ | |
895 | for (offset = 0; offset < sz; offset++) { | |
896 | p = (struct micro_snapshot *)(buf + offset); | |
897 | if (p->snapshot_magic == STACKSHOT_MICRO_SNAPSHOT_MAGIC) { | |
898 | printf("telemetry timestamp: %lld\n", p->ms_time); | |
899 | } | |
900 | } | |
901 | } | |
902 | #endif | |
903 | ||
904 | int | |
905 | telemetry_gather(user_addr_t buffer, uint32_t *length, boolean_t mark) | |
906 | { | |
907 | return telemetry_buffer_gather(buffer, length, mark, &telemetry_buffer); | |
908 | } | |
909 | ||
910 | int | |
911 | telemetry_buffer_gather(user_addr_t buffer, uint32_t *length, boolean_t mark, struct micro_snapshot_buffer * current_buffer) | |
912 | { | |
913 | int result = 0; | |
914 | uint32_t oldest_record_offset; | |
915 | ||
916 | KDBG(MACHDBG_CODE(DBG_MACH_STACKSHOT, MICROSTACKSHOT_GATHER) | DBG_FUNC_START, | |
917 | mark, telemetry_bytes_since_last_mark, 0, | |
918 | (&telemetry_buffer != current_buffer)); | |
919 | ||
920 | TELEMETRY_LOCK(); | |
921 | ||
922 | if (current_buffer->buffer == 0) { | |
923 | *length = 0; | |
924 | goto out; | |
925 | } | |
926 | ||
927 | if (*length < current_buffer->size) { | |
928 | result = KERN_NO_SPACE; | |
929 | goto out; | |
930 | } | |
931 | ||
932 | /* | |
933 | * Copy the ring buffer out to userland in order sorted by time: least recent to most recent. | |
934 | * First, we need to search forward from the cursor to find the oldest record in our buffer. | |
935 | */ | |
936 | oldest_record_offset = current_buffer->current_position; | |
937 | do { | |
938 | if (((oldest_record_offset + sizeof(uint32_t)) > current_buffer->size) || | |
939 | ((oldest_record_offset + sizeof(uint32_t)) > current_buffer->end_point)) { | |
940 | if (*(uint32_t *)(uintptr_t)(current_buffer->buffer) == 0) { | |
941 | /* | |
942 | * There is no magic number at the start of the buffer, which means | |
943 | * it's empty; nothing to see here yet. | |
944 | */ | |
945 | *length = 0; | |
946 | goto out; | |
947 | } | |
948 | /* | |
949 | * We've looked through the end of the active buffer without finding a valid | |
950 | * record; that means all valid records are in a single chunk, beginning at | |
951 | * the very start of the buffer. | |
952 | */ | |
953 | ||
954 | oldest_record_offset = 0; | |
955 | assert(*(uint32_t *)(uintptr_t)(current_buffer->buffer) == STACKSHOT_MICRO_SNAPSHOT_MAGIC); | |
956 | break; | |
957 | } | |
958 | ||
959 | if (*(uint32_t *)(uintptr_t)(current_buffer->buffer + oldest_record_offset) == STACKSHOT_MICRO_SNAPSHOT_MAGIC) { | |
960 | break; | |
961 | } | |
962 | ||
963 | /* | |
964 | * There are no alignment guarantees for micro-stackshot records, so we must search at each | |
965 | * byte offset. | |
966 | */ | |
967 | oldest_record_offset++; | |
968 | } while (oldest_record_offset != current_buffer->current_position); | |
969 | ||
970 | /* | |
971 | * If needed, copyout in two chunks: from the oldest record to the end of the buffer, and then | |
972 | * from the beginning of the buffer up to the current position. | |
973 | */ | |
974 | if (oldest_record_offset != 0) { | |
975 | #if TELEMETRY_DEBUG | |
976 | log_telemetry_output(current_buffer->buffer, oldest_record_offset, | |
977 | current_buffer->end_point - oldest_record_offset); | |
978 | #endif | |
979 | if ((result = copyout((void *)(current_buffer->buffer + oldest_record_offset), buffer, | |
980 | current_buffer->end_point - oldest_record_offset)) != 0) { | |
981 | *length = 0; | |
982 | goto out; | |
983 | } | |
984 | *length = current_buffer->end_point - oldest_record_offset; | |
985 | } else { | |
986 | *length = 0; | |
987 | } | |
988 | ||
989 | #if TELEMETRY_DEBUG | |
990 | log_telemetry_output(current_buffer->buffer, 0, current_buffer->current_position); | |
991 | #endif | |
992 | if ((result = copyout((void *)current_buffer->buffer, buffer + *length, | |
993 | current_buffer->current_position)) != 0) { | |
994 | *length = 0; | |
995 | goto out; | |
996 | } | |
997 | *length += (uint32_t)current_buffer->current_position; | |
998 | ||
999 | out: | |
1000 | ||
1001 | if (mark && (*length > 0)) { | |
1002 | telemetry_bytes_since_last_mark = 0; | |
1003 | } | |
1004 | ||
1005 | TELEMETRY_UNLOCK(); | |
1006 | ||
1007 | KDBG(MACHDBG_CODE(DBG_MACH_STACKSHOT, MICROSTACKSHOT_GATHER) | DBG_FUNC_END, | |
1008 | current_buffer->current_position, *length, | |
1009 | current_buffer->end_point, (&telemetry_buffer != current_buffer)); | |
1010 | ||
1011 | return result; | |
1012 | } | |
1013 | ||
1014 | /************************/ | |
1015 | /* BOOT PROFILE SUPPORT */ | |
1016 | /************************/ | |
1017 | /* | |
1018 | * Boot Profiling | |
1019 | * | |
1020 | * The boot-profiling support is a mechanism to sample activity happening on the | |
1021 | * system during boot. This mechanism sets up a periodic timer and on every timer fire, | |
1022 | * captures a full backtrace into the boot profiling buffer. This buffer can be pulled | |
1023 | * out and analyzed from user-space. It is turned on using the following boot-args: | |
1024 | * "bootprofile_buffer_size" specifies the size of the boot profile buffer | |
1025 | * "bootprofile_interval_ms" specifies the interval for the profiling timer | |
1026 | * | |
1027 | * Process Specific Boot Profiling | |
1028 | * | |
1029 | * The boot-arg "bootprofile_proc_name" can be used to specify a certain | |
1030 | * process that needs to profiled during boot. Setting this boot-arg changes | |
1031 | * the way stackshots are captured. At every timer fire, the code looks at the | |
1032 | * currently running process and takes a stackshot only if the requested process | |
1033 | * is on-core (which makes it unsuitable for MP systems). | |
1034 | * | |
1035 | * Trigger Events | |
1036 | * | |
1037 | * The boot-arg "bootprofile_type=boot" starts the timer during early boot. Using | |
1038 | * "wake" starts the timer at AP wake from suspend-to-RAM. | |
1039 | */ | |
1040 | ||
1041 | #define BOOTPROFILE_MAX_BUFFER_SIZE (64*1024*1024) /* see also COPYSIZELIMIT_PANIC */ | |
1042 | ||
1043 | vm_offset_t bootprofile_buffer = 0; | |
1044 | uint32_t bootprofile_buffer_size = 0; | |
1045 | uint32_t bootprofile_buffer_current_position = 0; | |
1046 | uint32_t bootprofile_interval_ms = 0; | |
1047 | uint64_t bootprofile_stackshot_flags = 0; | |
1048 | uint64_t bootprofile_interval_abs = 0; | |
1049 | uint64_t bootprofile_next_deadline = 0; | |
1050 | uint32_t bootprofile_all_procs = 0; | |
1051 | char bootprofile_proc_name[17]; | |
1052 | uint64_t bootprofile_delta_since_timestamp = 0; | |
1053 | LCK_GRP_DECLARE(bootprofile_lck_grp, "bootprofile_group"); | |
1054 | LCK_MTX_DECLARE(bootprofile_mtx, &bootprofile_lck_grp); | |
1055 | ||
1056 | ||
1057 | enum { | |
1058 | kBootProfileDisabled = 0, | |
1059 | kBootProfileStartTimerAtBoot, | |
1060 | kBootProfileStartTimerAtWake | |
1061 | } bootprofile_type = kBootProfileDisabled; | |
1062 | ||
1063 | ||
1064 | static timer_call_data_t bootprofile_timer_call_entry; | |
1065 | ||
1066 | #define BOOTPROFILE_LOCK() do { lck_mtx_lock(&bootprofile_mtx); } while(0) | |
1067 | #define BOOTPROFILE_TRY_SPIN_LOCK() lck_mtx_try_lock_spin(&bootprofile_mtx) | |
1068 | #define BOOTPROFILE_UNLOCK() do { lck_mtx_unlock(&bootprofile_mtx); } while(0) | |
1069 | ||
1070 | static void bootprofile_timer_call( | |
1071 | timer_call_param_t param0, | |
1072 | timer_call_param_t param1); | |
1073 | ||
1074 | void | |
1075 | bootprofile_init(void) | |
1076 | { | |
1077 | kern_return_t ret; | |
1078 | char type[32]; | |
1079 | ||
1080 | if (!PE_parse_boot_argn("bootprofile_buffer_size", | |
1081 | &bootprofile_buffer_size, sizeof(bootprofile_buffer_size))) { | |
1082 | bootprofile_buffer_size = 0; | |
1083 | } | |
1084 | ||
1085 | if (bootprofile_buffer_size > BOOTPROFILE_MAX_BUFFER_SIZE) { | |
1086 | bootprofile_buffer_size = BOOTPROFILE_MAX_BUFFER_SIZE; | |
1087 | } | |
1088 | ||
1089 | if (!PE_parse_boot_argn("bootprofile_interval_ms", | |
1090 | &bootprofile_interval_ms, sizeof(bootprofile_interval_ms))) { | |
1091 | bootprofile_interval_ms = 0; | |
1092 | } | |
1093 | ||
1094 | if (!PE_parse_boot_argn("bootprofile_stackshot_flags", | |
1095 | &bootprofile_stackshot_flags, sizeof(bootprofile_stackshot_flags))) { | |
1096 | bootprofile_stackshot_flags = 0; | |
1097 | } | |
1098 | ||
1099 | if (!PE_parse_boot_argn("bootprofile_proc_name", | |
1100 | &bootprofile_proc_name, sizeof(bootprofile_proc_name))) { | |
1101 | bootprofile_all_procs = 1; | |
1102 | bootprofile_proc_name[0] = '\0'; | |
1103 | } | |
1104 | ||
1105 | if (PE_parse_boot_argn("bootprofile_type", type, sizeof(type))) { | |
1106 | if (0 == strcmp(type, "boot")) { | |
1107 | bootprofile_type = kBootProfileStartTimerAtBoot; | |
1108 | } else if (0 == strcmp(type, "wake")) { | |
1109 | bootprofile_type = kBootProfileStartTimerAtWake; | |
1110 | } else { | |
1111 | bootprofile_type = kBootProfileDisabled; | |
1112 | } | |
1113 | } else { | |
1114 | bootprofile_type = kBootProfileDisabled; | |
1115 | } | |
1116 | ||
1117 | clock_interval_to_absolutetime_interval(bootprofile_interval_ms, NSEC_PER_MSEC, &bootprofile_interval_abs); | |
1118 | ||
1119 | /* Both boot args must be set to enable */ | |
1120 | if ((bootprofile_type == kBootProfileDisabled) || (bootprofile_buffer_size == 0) || (bootprofile_interval_abs == 0)) { | |
1121 | return; | |
1122 | } | |
1123 | ||
1124 | ret = kmem_alloc(kernel_map, &bootprofile_buffer, bootprofile_buffer_size, VM_KERN_MEMORY_DIAG); | |
1125 | if (ret != KERN_SUCCESS) { | |
1126 | kprintf("Boot profile: Allocation failed: %d\n", ret); | |
1127 | return; | |
1128 | } | |
1129 | bzero((void *) bootprofile_buffer, bootprofile_buffer_size); | |
1130 | ||
1131 | kprintf("Boot profile: Sampling %s once per %u ms at %s\n", | |
1132 | bootprofile_all_procs ? "all procs" : bootprofile_proc_name, bootprofile_interval_ms, | |
1133 | bootprofile_type == kBootProfileStartTimerAtBoot ? "boot" : (bootprofile_type == kBootProfileStartTimerAtWake ? "wake" : "unknown")); | |
1134 | ||
1135 | timer_call_setup(&bootprofile_timer_call_entry, | |
1136 | bootprofile_timer_call, | |
1137 | NULL); | |
1138 | ||
1139 | if (bootprofile_type == kBootProfileStartTimerAtBoot) { | |
1140 | bootprofile_next_deadline = mach_absolute_time() + bootprofile_interval_abs; | |
1141 | timer_call_enter_with_leeway(&bootprofile_timer_call_entry, | |
1142 | NULL, | |
1143 | bootprofile_next_deadline, | |
1144 | 0, | |
1145 | TIMER_CALL_SYS_NORMAL, | |
1146 | FALSE); | |
1147 | } | |
1148 | } | |
1149 | ||
1150 | void | |
1151 | bootprofile_wake_from_sleep(void) | |
1152 | { | |
1153 | if (bootprofile_type == kBootProfileStartTimerAtWake) { | |
1154 | bootprofile_next_deadline = mach_absolute_time() + bootprofile_interval_abs; | |
1155 | timer_call_enter_with_leeway(&bootprofile_timer_call_entry, | |
1156 | NULL, | |
1157 | bootprofile_next_deadline, | |
1158 | 0, | |
1159 | TIMER_CALL_SYS_NORMAL, | |
1160 | FALSE); | |
1161 | } | |
1162 | } | |
1163 | ||
1164 | ||
1165 | static void | |
1166 | bootprofile_timer_call( | |
1167 | timer_call_param_t param0 __unused, | |
1168 | timer_call_param_t param1 __unused) | |
1169 | { | |
1170 | unsigned retbytes = 0; | |
1171 | int pid_to_profile = -1; | |
1172 | ||
1173 | if (!BOOTPROFILE_TRY_SPIN_LOCK()) { | |
1174 | goto reprogram; | |
1175 | } | |
1176 | ||
1177 | /* Check if process-specific boot profiling is turned on */ | |
1178 | if (!bootprofile_all_procs) { | |
1179 | /* | |
1180 | * Since boot profiling initializes really early in boot, it is | |
1181 | * possible that at this point, the task/proc is not initialized. | |
1182 | * Nothing to do in that case. | |
1183 | */ | |
1184 | ||
1185 | if ((current_task() != NULL) && (current_task()->bsd_info != NULL) && | |
1186 | (0 == strncmp(bootprofile_proc_name, proc_name_address(current_task()->bsd_info), 17))) { | |
1187 | pid_to_profile = proc_selfpid(); | |
1188 | } else { | |
1189 | /* | |
1190 | * Process-specific boot profiling requested but the on-core process is | |
1191 | * something else. Nothing to do here. | |
1192 | */ | |
1193 | BOOTPROFILE_UNLOCK(); | |
1194 | goto reprogram; | |
1195 | } | |
1196 | } | |
1197 | ||
1198 | /* initiate a stackshot with whatever portion of the buffer is left */ | |
1199 | if (bootprofile_buffer_current_position < bootprofile_buffer_size) { | |
1200 | uint64_t flags = STACKSHOT_KCDATA_FORMAT | STACKSHOT_TRYLOCK | STACKSHOT_SAVE_LOADINFO | |
1201 | | STACKSHOT_GET_GLOBAL_MEM_STATS; | |
1202 | #if defined(XNU_TARGET_OS_OSX) | |
1203 | flags |= STACKSHOT_SAVE_KEXT_LOADINFO; | |
1204 | #endif | |
1205 | ||
1206 | ||
1207 | /* OR on flags specified in boot-args */ | |
1208 | flags |= bootprofile_stackshot_flags; | |
1209 | if ((flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) && (bootprofile_delta_since_timestamp == 0)) { | |
1210 | /* Can't take deltas until the first one */ | |
1211 | flags &= ~STACKSHOT_COLLECT_DELTA_SNAPSHOT; | |
1212 | } | |
1213 | ||
1214 | uint64_t timestamp = 0; | |
1215 | if (bootprofile_stackshot_flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) { | |
1216 | timestamp = mach_absolute_time(); | |
1217 | } | |
1218 | ||
1219 | kern_return_t r = stack_snapshot_from_kernel( | |
1220 | pid_to_profile, (void *)(bootprofile_buffer + bootprofile_buffer_current_position), | |
1221 | bootprofile_buffer_size - bootprofile_buffer_current_position, | |
1222 | flags, bootprofile_delta_since_timestamp, 0, &retbytes); | |
1223 | ||
1224 | /* | |
1225 | * We call with STACKSHOT_TRYLOCK because the stackshot lock is coarser | |
1226 | * than the bootprofile lock. If someone else has the lock we'll just | |
1227 | * try again later. | |
1228 | */ | |
1229 | ||
1230 | if (r == KERN_LOCK_OWNED) { | |
1231 | BOOTPROFILE_UNLOCK(); | |
1232 | goto reprogram; | |
1233 | } | |
1234 | ||
1235 | if (bootprofile_stackshot_flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT && | |
1236 | r == KERN_SUCCESS) { | |
1237 | bootprofile_delta_since_timestamp = timestamp; | |
1238 | } | |
1239 | ||
1240 | bootprofile_buffer_current_position += retbytes; | |
1241 | } | |
1242 | ||
1243 | BOOTPROFILE_UNLOCK(); | |
1244 | ||
1245 | /* If we didn't get any data or have run out of buffer space, stop profiling */ | |
1246 | if ((retbytes == 0) || (bootprofile_buffer_current_position == bootprofile_buffer_size)) { | |
1247 | return; | |
1248 | } | |
1249 | ||
1250 | ||
1251 | reprogram: | |
1252 | /* If the user gathered the buffer, no need to keep profiling */ | |
1253 | if (bootprofile_interval_abs == 0) { | |
1254 | return; | |
1255 | } | |
1256 | ||
1257 | clock_deadline_for_periodic_event(bootprofile_interval_abs, | |
1258 | mach_absolute_time(), | |
1259 | &bootprofile_next_deadline); | |
1260 | timer_call_enter_with_leeway(&bootprofile_timer_call_entry, | |
1261 | NULL, | |
1262 | bootprofile_next_deadline, | |
1263 | 0, | |
1264 | TIMER_CALL_SYS_NORMAL, | |
1265 | FALSE); | |
1266 | } | |
1267 | ||
1268 | void | |
1269 | bootprofile_get(void **buffer, uint32_t *length) | |
1270 | { | |
1271 | BOOTPROFILE_LOCK(); | |
1272 | *buffer = (void*) bootprofile_buffer; | |
1273 | *length = bootprofile_buffer_current_position; | |
1274 | BOOTPROFILE_UNLOCK(); | |
1275 | } | |
1276 | ||
1277 | int | |
1278 | bootprofile_gather(user_addr_t buffer, uint32_t *length) | |
1279 | { | |
1280 | int result = 0; | |
1281 | ||
1282 | BOOTPROFILE_LOCK(); | |
1283 | ||
1284 | if (bootprofile_buffer == 0) { | |
1285 | *length = 0; | |
1286 | goto out; | |
1287 | } | |
1288 | ||
1289 | if (*length < bootprofile_buffer_current_position) { | |
1290 | result = KERN_NO_SPACE; | |
1291 | goto out; | |
1292 | } | |
1293 | ||
1294 | if ((result = copyout((void *)bootprofile_buffer, buffer, | |
1295 | bootprofile_buffer_current_position)) != 0) { | |
1296 | *length = 0; | |
1297 | goto out; | |
1298 | } | |
1299 | *length = bootprofile_buffer_current_position; | |
1300 | ||
1301 | /* cancel future timers */ | |
1302 | bootprofile_interval_abs = 0; | |
1303 | ||
1304 | out: | |
1305 | ||
1306 | BOOTPROFILE_UNLOCK(); | |
1307 | ||
1308 | return result; | |
1309 | } |