]> git.saurik.com Git - apple/xnu.git/blame_incremental - osfmk/kern/telemetry.c
xnu-7195.50.7.100.1.tar.gz
[apple/xnu.git] / osfmk / kern / telemetry.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2012-2020 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28#include <mach/host_priv.h>
29#include <mach/host_special_ports.h>
30#include <mach/mach_types.h>
31#include <mach/telemetry_notification_server.h>
32
33#include <kern/assert.h>
34#include <kern/clock.h>
35#include <kern/debug.h>
36#include <kern/host.h>
37#include <kern/kalloc.h>
38#include <kern/kern_types.h>
39#include <kern/locks.h>
40#include <kern/misc_protos.h>
41#include <kern/sched.h>
42#include <kern/sched_prim.h>
43#include <kern/telemetry.h>
44#include <kern/timer_call.h>
45#include <kern/policy_internal.h>
46#include <kern/kcdata.h>
47
48#include <pexpert/pexpert.h>
49
50#include <vm/vm_kern.h>
51#include <vm/vm_shared_region.h>
52
53#include <kperf/callstack.h>
54#include <kern/backtrace.h>
55#include <kern/monotonic.h>
56
57#include <sys/kdebug.h>
58#include <uuid/uuid.h>
59#include <kdp/kdp_dyld.h>
60
61#define TELEMETRY_DEBUG 0
62
63struct proc;
64extern int proc_pid(struct proc *);
65extern char *proc_name_address(void *p);
66extern uint64_t proc_uniqueid(void *p);
67extern uint64_t proc_was_throttled(void *p);
68extern uint64_t proc_did_throttle(void *p);
69extern int proc_selfpid(void);
70extern boolean_t task_did_exec(task_t task);
71extern boolean_t task_is_exec_copy(task_t task);
72
73struct micro_snapshot_buffer {
74 vm_offset_t buffer;
75 uint32_t size;
76 uint32_t current_position;
77 uint32_t end_point;
78};
79
80void telemetry_take_sample(thread_t thread, uint8_t microsnapshot_flags, struct micro_snapshot_buffer * current_buffer);
81int telemetry_buffer_gather(user_addr_t buffer, uint32_t *length, boolean_t mark, struct micro_snapshot_buffer * current_buffer);
82
83#define TELEMETRY_DEFAULT_SAMPLE_RATE (1) /* 1 sample every 1 second */
84#define TELEMETRY_DEFAULT_BUFFER_SIZE (16*1024)
85#define TELEMETRY_MAX_BUFFER_SIZE (64*1024)
86
87#define TELEMETRY_DEFAULT_NOTIFY_LEEWAY (4*1024) // Userland gets 4k of leeway to collect data after notification
88#define TELEMETRY_MAX_UUID_COUNT (128) // Max of 128 non-shared-cache UUIDs to log for symbolication
89
90uint32_t telemetry_sample_rate = 0;
91volatile boolean_t telemetry_needs_record = FALSE;
92volatile boolean_t telemetry_needs_timer_arming_record = FALSE;
93
94/*
95 * If TRUE, record micro-stackshot samples for all tasks.
96 * If FALSE, only sample tasks which are marked for telemetry.
97 */
98boolean_t telemetry_sample_all_tasks = FALSE;
99boolean_t telemetry_sample_pmis = FALSE;
100uint32_t telemetry_active_tasks = 0; // Number of tasks opted into telemetry
101
102uint32_t telemetry_timestamp = 0;
103
104/*
105 * The telemetry_buffer is responsible
106 * for timer samples and interrupt samples that are driven by
107 * compute_averages(). It will notify its client (if one
108 * exists) when it has enough data to be worth flushing.
109 */
110struct micro_snapshot_buffer telemetry_buffer = {
111 .buffer = 0,
112 .size = 0,
113 .current_position = 0,
114 .end_point = 0
115};
116
117int telemetry_bytes_since_last_mark = -1; // How much data since buf was last marked?
118int telemetry_buffer_notify_at = 0;
119
120LCK_GRP_DECLARE(telemetry_lck_grp, "telemetry group");
121LCK_MTX_DECLARE(telemetry_mtx, &telemetry_lck_grp);
122LCK_MTX_DECLARE(telemetry_pmi_mtx, &telemetry_lck_grp);
123
124#define TELEMETRY_LOCK() do { lck_mtx_lock(&telemetry_mtx); } while (0)
125#define TELEMETRY_TRY_SPIN_LOCK() lck_mtx_try_lock_spin(&telemetry_mtx)
126#define TELEMETRY_UNLOCK() do { lck_mtx_unlock(&telemetry_mtx); } while (0)
127
128#define TELEMETRY_PMI_LOCK() do { lck_mtx_lock(&telemetry_pmi_mtx); } while (0)
129#define TELEMETRY_PMI_UNLOCK() do { lck_mtx_unlock(&telemetry_pmi_mtx); } while (0)
130
131void
132telemetry_init(void)
133{
134 kern_return_t ret;
135 uint32_t telemetry_notification_leeway;
136
137 if (!PE_parse_boot_argn("telemetry_buffer_size",
138 &telemetry_buffer.size, sizeof(telemetry_buffer.size))) {
139 telemetry_buffer.size = TELEMETRY_DEFAULT_BUFFER_SIZE;
140 }
141
142 if (telemetry_buffer.size > TELEMETRY_MAX_BUFFER_SIZE) {
143 telemetry_buffer.size = TELEMETRY_MAX_BUFFER_SIZE;
144 }
145
146 ret = kmem_alloc(kernel_map, &telemetry_buffer.buffer, telemetry_buffer.size, VM_KERN_MEMORY_DIAG);
147 if (ret != KERN_SUCCESS) {
148 kprintf("Telemetry: Allocation failed: %d\n", ret);
149 return;
150 }
151 bzero((void *) telemetry_buffer.buffer, telemetry_buffer.size);
152
153 if (!PE_parse_boot_argn("telemetry_notification_leeway",
154 &telemetry_notification_leeway, sizeof(telemetry_notification_leeway))) {
155 /*
156 * By default, notify the user to collect the buffer when there is this much space left in the buffer.
157 */
158 telemetry_notification_leeway = TELEMETRY_DEFAULT_NOTIFY_LEEWAY;
159 }
160 if (telemetry_notification_leeway >= telemetry_buffer.size) {
161 printf("telemetry: nonsensical telemetry_notification_leeway boot-arg %d changed to %d\n",
162 telemetry_notification_leeway, TELEMETRY_DEFAULT_NOTIFY_LEEWAY);
163 telemetry_notification_leeway = TELEMETRY_DEFAULT_NOTIFY_LEEWAY;
164 }
165 telemetry_buffer_notify_at = telemetry_buffer.size - telemetry_notification_leeway;
166
167 if (!PE_parse_boot_argn("telemetry_sample_rate",
168 &telemetry_sample_rate, sizeof(telemetry_sample_rate))) {
169 telemetry_sample_rate = TELEMETRY_DEFAULT_SAMPLE_RATE;
170 }
171
172 /*
173 * To enable telemetry for all tasks, include "telemetry_sample_all_tasks=1" in boot-args.
174 */
175 if (!PE_parse_boot_argn("telemetry_sample_all_tasks",
176 &telemetry_sample_all_tasks, sizeof(telemetry_sample_all_tasks))) {
177#if !defined(XNU_TARGET_OS_OSX) && !(DEVELOPMENT || DEBUG)
178 telemetry_sample_all_tasks = FALSE;
179#else
180 telemetry_sample_all_tasks = TRUE;
181#endif /* !defined(XNU_TARGET_OS_OSX) && !(DEVELOPMENT || DEBUG) */
182 }
183
184 kprintf("Telemetry: Sampling %stasks once per %u second%s\n",
185 (telemetry_sample_all_tasks) ? "all " : "",
186 telemetry_sample_rate, telemetry_sample_rate == 1 ? "" : "s");
187}
188
189/*
190 * Enable or disable global microstackshots (ie telemetry_sample_all_tasks).
191 *
192 * enable_disable == 1: turn it on
193 * enable_disable == 0: turn it off
194 */
195void
196telemetry_global_ctl(int enable_disable)
197{
198 if (enable_disable == 1) {
199 telemetry_sample_all_tasks = TRUE;
200 } else {
201 telemetry_sample_all_tasks = FALSE;
202 }
203}
204
205/*
206 * Opt the given task into or out of the telemetry stream.
207 *
208 * Supported reasons (callers may use any or all of):
209 * TF_CPUMON_WARNING
210 * TF_WAKEMON_WARNING
211 *
212 * enable_disable == 1: turn it on
213 * enable_disable == 0: turn it off
214 */
215void
216telemetry_task_ctl(task_t task, uint32_t reasons, int enable_disable)
217{
218 task_lock(task);
219 telemetry_task_ctl_locked(task, reasons, enable_disable);
220 task_unlock(task);
221}
222
223void
224telemetry_task_ctl_locked(task_t task, uint32_t reasons, int enable_disable)
225{
226 uint32_t origflags;
227
228 assert((reasons != 0) && ((reasons | TF_TELEMETRY) == TF_TELEMETRY));
229
230 task_lock_assert_owned(task);
231
232 origflags = task->t_flags;
233
234 if (enable_disable == 1) {
235 task->t_flags |= reasons;
236 if ((origflags & TF_TELEMETRY) == 0) {
237 OSIncrementAtomic(&telemetry_active_tasks);
238#if TELEMETRY_DEBUG
239 printf("%s: telemetry OFF -> ON (%d active)\n", proc_name_address(task->bsd_info), telemetry_active_tasks);
240#endif
241 }
242 } else {
243 task->t_flags &= ~reasons;
244 if (((origflags & TF_TELEMETRY) != 0) && ((task->t_flags & TF_TELEMETRY) == 0)) {
245 /*
246 * If this task went from having at least one telemetry bit to having none,
247 * the net change was to disable telemetry for the task.
248 */
249 OSDecrementAtomic(&telemetry_active_tasks);
250#if TELEMETRY_DEBUG
251 printf("%s: telemetry ON -> OFF (%d active)\n", proc_name_address(task->bsd_info), telemetry_active_tasks);
252#endif
253 }
254 }
255}
256
257/*
258 * Determine if the current thread is eligible for telemetry:
259 *
260 * telemetry_sample_all_tasks: All threads are eligible. This takes precedence.
261 * telemetry_active_tasks: Count of tasks opted in.
262 * task->t_flags & TF_TELEMETRY: This task is opted in.
263 */
264static boolean_t
265telemetry_is_active(thread_t thread)
266{
267 task_t task = thread->task;
268
269 if (task == kernel_task) {
270 /* Kernel threads never return to an AST boundary, and are ineligible */
271 return FALSE;
272 }
273
274 if (telemetry_sample_all_tasks || telemetry_sample_pmis) {
275 return TRUE;
276 }
277
278 if ((telemetry_active_tasks > 0) && ((thread->task->t_flags & TF_TELEMETRY) != 0)) {
279 return TRUE;
280 }
281
282 return FALSE;
283}
284
285/*
286 * Userland is arming a timer. If we are eligible for such a record,
287 * sample now. No need to do this one at the AST because we're already at
288 * a safe place in this system call.
289 */
290int
291telemetry_timer_event(__unused uint64_t deadline, __unused uint64_t interval, __unused uint64_t leeway)
292{
293 if (telemetry_needs_timer_arming_record == TRUE) {
294 telemetry_needs_timer_arming_record = FALSE;
295 telemetry_take_sample(current_thread(), kTimerArmingRecord | kUserMode, &telemetry_buffer);
296 }
297
298 return 0;
299}
300
301#if defined(MT_CORE_INSTRS) && defined(MT_CORE_CYCLES)
302static void
303telemetry_pmi_handler(bool user_mode, __unused void *ctx)
304{
305 telemetry_mark_curthread(user_mode, TRUE);
306}
307#endif /* defined(MT_CORE_INSTRS) && defined(MT_CORE_CYCLES) */
308
309int
310telemetry_pmi_setup(enum telemetry_pmi pmi_ctr, uint64_t period)
311{
312#if defined(MT_CORE_INSTRS) && defined(MT_CORE_CYCLES)
313 static boolean_t sample_all_tasks_aside = FALSE;
314 static uint32_t active_tasks_aside = FALSE;
315 int error = 0;
316 const char *name = "?";
317
318 unsigned int ctr = 0;
319
320 TELEMETRY_PMI_LOCK();
321
322 switch (pmi_ctr) {
323 case TELEMETRY_PMI_NONE:
324 if (!telemetry_sample_pmis) {
325 error = 1;
326 goto out;
327 }
328
329 telemetry_sample_pmis = FALSE;
330 telemetry_sample_all_tasks = sample_all_tasks_aside;
331 telemetry_active_tasks = active_tasks_aside;
332 error = mt_microstackshot_stop();
333 if (!error) {
334 printf("telemetry: disabling ustackshot on PMI\n");
335 }
336 goto out;
337
338 case TELEMETRY_PMI_INSTRS:
339 ctr = MT_CORE_INSTRS;
340 name = "instructions";
341 break;
342
343 case TELEMETRY_PMI_CYCLES:
344 ctr = MT_CORE_CYCLES;
345 name = "cycles";
346 break;
347
348 default:
349 error = 1;
350 goto out;
351 }
352
353 telemetry_sample_pmis = TRUE;
354 sample_all_tasks_aside = telemetry_sample_all_tasks;
355 active_tasks_aside = telemetry_active_tasks;
356 telemetry_sample_all_tasks = FALSE;
357 telemetry_active_tasks = 0;
358
359 error = mt_microstackshot_start(ctr, period, telemetry_pmi_handler, NULL);
360 if (!error) {
361 printf("telemetry: ustackshot every %llu %s\n", period, name);
362 }
363
364out:
365 TELEMETRY_PMI_UNLOCK();
366 return error;
367#else /* defined(MT_CORE_INSTRS) && defined(MT_CORE_CYCLES) */
368#pragma unused(pmi_ctr, period)
369 return 1;
370#endif /* !defined(MT_CORE_INSTRS) || !defined(MT_CORE_CYCLES) */
371}
372
373/*
374 * Mark the current thread for an interrupt-based
375 * telemetry record, to be sampled at the next AST boundary.
376 */
377void
378telemetry_mark_curthread(boolean_t interrupted_userspace, boolean_t pmi)
379{
380 uint32_t ast_bits = 0;
381 thread_t thread = current_thread();
382
383 /*
384 * If telemetry isn't active for this thread, return and try
385 * again next time.
386 */
387 if (telemetry_is_active(thread) == FALSE) {
388 return;
389 }
390
391 ast_bits |= (interrupted_userspace ? AST_TELEMETRY_USER : AST_TELEMETRY_KERNEL);
392 if (pmi) {
393 ast_bits |= AST_TELEMETRY_PMI;
394 }
395
396 telemetry_needs_record = FALSE;
397 thread_ast_set(thread, ast_bits);
398 ast_propagate(thread);
399}
400
401void
402compute_telemetry(void *arg __unused)
403{
404 if (telemetry_sample_all_tasks || (telemetry_active_tasks > 0)) {
405 if ((++telemetry_timestamp) % telemetry_sample_rate == 0) {
406 telemetry_needs_record = TRUE;
407 telemetry_needs_timer_arming_record = TRUE;
408 }
409 }
410}
411
412/*
413 * If userland has registered a port for telemetry notifications, send one now.
414 */
415static void
416telemetry_notify_user(void)
417{
418 mach_port_t user_port = MACH_PORT_NULL;
419
420 kern_return_t kr = host_get_telemetry_port(host_priv_self(), &user_port);
421 if ((kr != KERN_SUCCESS) || !IPC_PORT_VALID(user_port)) {
422 return;
423 }
424
425 telemetry_notification(user_port, 0);
426 ipc_port_release_send(user_port);
427}
428
429void
430telemetry_ast(thread_t thread, ast_t reasons)
431{
432 assert((reasons & AST_TELEMETRY_ALL) != 0);
433
434 uint8_t record_type = 0;
435 if (reasons & AST_TELEMETRY_IO) {
436 record_type |= kIORecord;
437 }
438 if (reasons & (AST_TELEMETRY_USER | AST_TELEMETRY_KERNEL)) {
439 record_type |= (reasons & AST_TELEMETRY_PMI) ? kPMIRecord :
440 kInterruptRecord;
441 }
442
443 uint8_t user_telemetry = (reasons & AST_TELEMETRY_USER) ? kUserMode : 0;
444
445 uint8_t microsnapshot_flags = record_type | user_telemetry;
446
447 telemetry_take_sample(thread, microsnapshot_flags, &telemetry_buffer);
448}
449
450void
451telemetry_take_sample(thread_t thread, uint8_t microsnapshot_flags, struct micro_snapshot_buffer * current_buffer)
452{
453 task_t task;
454 void *p;
455 uint32_t btcount = 0, bti;
456 struct micro_snapshot *msnap;
457 struct task_snapshot *tsnap;
458 struct thread_snapshot *thsnap;
459 clock_sec_t secs;
460 clock_usec_t usecs;
461 vm_size_t framesize;
462 uint32_t current_record_start;
463 uint32_t tmp = 0;
464 boolean_t notify = FALSE;
465
466 if (thread == THREAD_NULL) {
467 return;
468 }
469
470 task = thread->task;
471 if ((task == TASK_NULL) || (task == kernel_task) || task_did_exec(task) || task_is_exec_copy(task)) {
472 return;
473 }
474
475 /* telemetry_XXX accessed outside of lock for instrumentation only */
476 KDBG(MACHDBG_CODE(DBG_MACH_STACKSHOT, MICROSTACKSHOT_RECORD) | DBG_FUNC_START,
477 microsnapshot_flags, telemetry_bytes_since_last_mark, 0,
478 (&telemetry_buffer != current_buffer));
479
480 p = get_bsdtask_info(task);
481
482 /*
483 * Gather up the data we'll need for this sample. The sample is written into the kernel
484 * buffer with the global telemetry lock held -- so we must do our (possibly faulting)
485 * copies from userland here, before taking the lock.
486 */
487
488 uintptr_t frames[128];
489 bool user64_regs = false;
490 int bterror = 0;
491 btcount = backtrace_user(frames,
492 sizeof(frames) / sizeof(frames[0]), &bterror, &user64_regs, NULL);
493 if (bterror != 0) {
494 return;
495 }
496 bool user64_va = task_has_64Bit_addr(task);
497
498 /*
499 * Find the actual [slid] address of the shared cache's UUID, and copy it in from userland.
500 */
501 int shared_cache_uuid_valid = 0;
502 uint64_t shared_cache_base_address = 0;
503 struct _dyld_cache_header shared_cache_header = {};
504 uint64_t shared_cache_slide = 0;
505
506 /*
507 * Don't copy in the entire shared cache header; we only need the UUID. Calculate the
508 * offset of that one field.
509 */
510 int sc_header_uuid_offset = (char *)&shared_cache_header.uuid - (char *)&shared_cache_header;
511 vm_shared_region_t sr = vm_shared_region_get(task);
512 if (sr != NULL) {
513 if ((vm_shared_region_start_address(sr, &shared_cache_base_address) == KERN_SUCCESS) &&
514 (copyin(shared_cache_base_address + sc_header_uuid_offset, (char *)&shared_cache_header.uuid,
515 sizeof(shared_cache_header.uuid)) == 0)) {
516 shared_cache_uuid_valid = 1;
517 shared_cache_slide = sr->sr_slide;
518 }
519 // vm_shared_region_get() gave us a reference on the shared region.
520 vm_shared_region_deallocate(sr);
521 }
522
523 /*
524 * Retrieve the array of UUID's for binaries used by this task.
525 * We reach down into DYLD's data structures to find the array.
526 *
527 * XXX - make this common with kdp?
528 */
529 uint32_t uuid_info_count = 0;
530 mach_vm_address_t uuid_info_addr = 0;
531 uint32_t uuid_info_size = 0;
532 if (user64_va) {
533 uuid_info_size = sizeof(struct user64_dyld_uuid_info);
534 struct user64_dyld_all_image_infos task_image_infos;
535 if (copyin(task->all_image_info_addr, (char *)&task_image_infos, sizeof(task_image_infos)) == 0) {
536 uuid_info_count = (uint32_t)task_image_infos.uuidArrayCount;
537 uuid_info_addr = task_image_infos.uuidArray;
538 }
539 } else {
540 uuid_info_size = sizeof(struct user32_dyld_uuid_info);
541 struct user32_dyld_all_image_infos task_image_infos;
542 if (copyin(task->all_image_info_addr, (char *)&task_image_infos, sizeof(task_image_infos)) == 0) {
543 uuid_info_count = task_image_infos.uuidArrayCount;
544 uuid_info_addr = task_image_infos.uuidArray;
545 }
546 }
547
548 /*
549 * If we get a NULL uuid_info_addr (which can happen when we catch dyld in the middle of updating
550 * this data structure), we zero the uuid_info_count so that we won't even try to save load info
551 * for this task.
552 */
553 if (!uuid_info_addr) {
554 uuid_info_count = 0;
555 }
556
557 /*
558 * Don't copy in an unbounded amount of memory. The main binary and interesting
559 * non-shared-cache libraries should be in the first few images.
560 */
561 if (uuid_info_count > TELEMETRY_MAX_UUID_COUNT) {
562 uuid_info_count = TELEMETRY_MAX_UUID_COUNT;
563 }
564
565 uint32_t uuid_info_array_size = uuid_info_count * uuid_info_size;
566 char *uuid_info_array = NULL;
567
568 if (uuid_info_count > 0) {
569 uuid_info_array = kheap_alloc(KHEAP_TEMP,
570 uuid_info_array_size, Z_WAITOK);
571 if (uuid_info_array == NULL) {
572 return;
573 }
574
575 /*
576 * Copy in the UUID info array.
577 * It may be nonresident, in which case just fix up nloadinfos to 0 in the task snapshot.
578 */
579 if (copyin(uuid_info_addr, uuid_info_array, uuid_info_array_size) != 0) {
580 kheap_free(KHEAP_TEMP, uuid_info_array, uuid_info_array_size);
581 uuid_info_array = NULL;
582 uuid_info_array_size = 0;
583 }
584 }
585
586 /*
587 * Look for a dispatch queue serial number, and copy it in from userland if present.
588 */
589 uint64_t dqserialnum = 0;
590 int dqserialnum_valid = 0;
591
592 uint64_t dqkeyaddr = thread_dispatchqaddr(thread);
593 if (dqkeyaddr != 0) {
594 uint64_t dqaddr = 0;
595 uint64_t dq_serialno_offset = get_task_dispatchqueue_serialno_offset(task);
596 if ((copyin(dqkeyaddr, (char *)&dqaddr, (user64_va ? 8 : 4)) == 0) &&
597 (dqaddr != 0) && (dq_serialno_offset != 0)) {
598 uint64_t dqserialnumaddr = dqaddr + dq_serialno_offset;
599 if (copyin(dqserialnumaddr, (char *)&dqserialnum, (user64_va ? 8 : 4)) == 0) {
600 dqserialnum_valid = 1;
601 }
602 }
603 }
604
605 clock_get_calendar_microtime(&secs, &usecs);
606
607 TELEMETRY_LOCK();
608
609 /*
610 * If our buffer is not backed by anything,
611 * then we cannot take the sample. Meant to allow us to deallocate the window
612 * buffer if it is disabled.
613 */
614 if (!current_buffer->buffer) {
615 goto cancel_sample;
616 }
617
618 /*
619 * We do the bulk of the operation under the telemetry lock, on assumption that
620 * any page faults during execution will not cause another AST_TELEMETRY_ALL
621 * to deadlock; they will just block until we finish. This makes it easier
622 * to copy into the buffer directly. As soon as we unlock, userspace can copy
623 * out of our buffer.
624 */
625
626copytobuffer:
627
628 current_record_start = current_buffer->current_position;
629
630 if ((current_buffer->size - current_buffer->current_position) < sizeof(struct micro_snapshot)) {
631 /*
632 * We can't fit a record in the space available, so wrap around to the beginning.
633 * Save the current position as the known end point of valid data.
634 */
635 current_buffer->end_point = current_record_start;
636 current_buffer->current_position = 0;
637 if (current_record_start == 0) {
638 /* This sample is too large to fit in the buffer even when we started at 0, so skip it */
639 goto cancel_sample;
640 }
641 goto copytobuffer;
642 }
643
644 msnap = (struct micro_snapshot *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position);
645 msnap->snapshot_magic = STACKSHOT_MICRO_SNAPSHOT_MAGIC;
646 msnap->ms_flags = microsnapshot_flags;
647 msnap->ms_opaque_flags = 0; /* namespace managed by userspace */
648 msnap->ms_cpu = cpu_number();
649 msnap->ms_time = secs;
650 msnap->ms_time_microsecs = usecs;
651
652 current_buffer->current_position += sizeof(struct micro_snapshot);
653
654 if ((current_buffer->size - current_buffer->current_position) < sizeof(struct task_snapshot)) {
655 current_buffer->end_point = current_record_start;
656 current_buffer->current_position = 0;
657 if (current_record_start == 0) {
658 /* This sample is too large to fit in the buffer even when we started at 0, so skip it */
659 goto cancel_sample;
660 }
661 goto copytobuffer;
662 }
663
664 tsnap = (struct task_snapshot *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position);
665 bzero(tsnap, sizeof(*tsnap));
666 tsnap->snapshot_magic = STACKSHOT_TASK_SNAPSHOT_MAGIC;
667 tsnap->pid = proc_pid(p);
668 tsnap->uniqueid = proc_uniqueid(p);
669 tsnap->user_time_in_terminated_threads = task->total_user_time;
670 tsnap->system_time_in_terminated_threads = task->total_system_time;
671 tsnap->suspend_count = task->suspend_count;
672 tsnap->task_size = (typeof(tsnap->task_size))(get_task_phys_footprint(task) / PAGE_SIZE);
673 tsnap->faults = task->faults;
674 tsnap->pageins = task->pageins;
675 tsnap->cow_faults = task->cow_faults;
676 /*
677 * The throttling counters are maintained as 64-bit counters in the proc
678 * structure. However, we reserve 32-bits (each) for them in the task_snapshot
679 * struct to save space and since we do not expect them to overflow 32-bits. If we
680 * find these values overflowing in the future, the fix would be to simply
681 * upgrade these counters to 64-bit in the task_snapshot struct
682 */
683 tsnap->was_throttled = (uint32_t) proc_was_throttled(p);
684 tsnap->did_throttle = (uint32_t) proc_did_throttle(p);
685
686 if (task->t_flags & TF_TELEMETRY) {
687 tsnap->ss_flags |= kTaskRsrcFlagged;
688 }
689
690 if (proc_get_effective_task_policy(task, TASK_POLICY_DARWIN_BG)) {
691 tsnap->ss_flags |= kTaskDarwinBG;
692 }
693
694 proc_get_darwinbgstate(task, &tmp);
695
696 if (proc_get_effective_task_policy(task, TASK_POLICY_ROLE) == TASK_FOREGROUND_APPLICATION) {
697 tsnap->ss_flags |= kTaskIsForeground;
698 }
699
700 if (tmp & PROC_FLAG_ADAPTIVE_IMPORTANT) {
701 tsnap->ss_flags |= kTaskIsBoosted;
702 }
703
704 if (tmp & PROC_FLAG_SUPPRESSED) {
705 tsnap->ss_flags |= kTaskIsSuppressed;
706 }
707
708
709 tsnap->latency_qos = task_grab_latency_qos(task);
710
711 strlcpy(tsnap->p_comm, proc_name_address(p), sizeof(tsnap->p_comm));
712 if (user64_va) {
713 tsnap->ss_flags |= kUser64_p;
714 }
715
716 if (shared_cache_uuid_valid) {
717 tsnap->shared_cache_slide = shared_cache_slide;
718 bcopy(shared_cache_header.uuid, tsnap->shared_cache_identifier, sizeof(shared_cache_header.uuid));
719 }
720
721 current_buffer->current_position += sizeof(struct task_snapshot);
722
723 /*
724 * Directly after the task snapshot, place the array of UUID's corresponding to the binaries
725 * used by this task.
726 */
727 if ((current_buffer->size - current_buffer->current_position) < uuid_info_array_size) {
728 current_buffer->end_point = current_record_start;
729 current_buffer->current_position = 0;
730 if (current_record_start == 0) {
731 /* This sample is too large to fit in the buffer even when we started at 0, so skip it */
732 goto cancel_sample;
733 }
734 goto copytobuffer;
735 }
736
737 /*
738 * Copy the UUID info array into our sample.
739 */
740 if (uuid_info_array_size > 0) {
741 bcopy(uuid_info_array, (char *)(current_buffer->buffer + current_buffer->current_position), uuid_info_array_size);
742 tsnap->nloadinfos = uuid_info_count;
743 }
744
745 current_buffer->current_position += uuid_info_array_size;
746
747 /*
748 * After the task snapshot & list of binary UUIDs, we place a thread snapshot.
749 */
750
751 if ((current_buffer->size - current_buffer->current_position) < sizeof(struct thread_snapshot)) {
752 /* wrap and overwrite */
753 current_buffer->end_point = current_record_start;
754 current_buffer->current_position = 0;
755 if (current_record_start == 0) {
756 /* This sample is too large to fit in the buffer even when we started at 0, so skip it */
757 goto cancel_sample;
758 }
759 goto copytobuffer;
760 }
761
762 thsnap = (struct thread_snapshot *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position);
763 bzero(thsnap, sizeof(*thsnap));
764
765 thsnap->snapshot_magic = STACKSHOT_THREAD_SNAPSHOT_MAGIC;
766 thsnap->thread_id = thread_tid(thread);
767 thsnap->state = thread->state;
768 thsnap->priority = thread->base_pri;
769 thsnap->sched_pri = thread->sched_pri;
770 thsnap->sched_flags = thread->sched_flags;
771 thsnap->ss_flags |= kStacksPCOnly;
772 thsnap->ts_qos = thread->effective_policy.thep_qos;
773 thsnap->ts_rqos = thread->requested_policy.thrp_qos;
774 thsnap->ts_rqos_override = MAX(thread->requested_policy.thrp_qos_override,
775 thread->requested_policy.thrp_qos_workq_override);
776
777 if (proc_get_effective_thread_policy(thread, TASK_POLICY_DARWIN_BG)) {
778 thsnap->ss_flags |= kThreadDarwinBG;
779 }
780
781 thsnap->user_time = timer_grab(&thread->user_timer);
782
783 uint64_t tval = timer_grab(&thread->system_timer);
784
785 if (thread->precise_user_kernel_time) {
786 thsnap->system_time = tval;
787 } else {
788 thsnap->user_time += tval;
789 thsnap->system_time = 0;
790 }
791
792 current_buffer->current_position += sizeof(struct thread_snapshot);
793
794 /*
795 * If this thread has a dispatch queue serial number, include it here.
796 */
797 if (dqserialnum_valid) {
798 if ((current_buffer->size - current_buffer->current_position) < sizeof(dqserialnum)) {
799 /* wrap and overwrite */
800 current_buffer->end_point = current_record_start;
801 current_buffer->current_position = 0;
802 if (current_record_start == 0) {
803 /* This sample is too large to fit in the buffer even when we started at 0, so skip it */
804 goto cancel_sample;
805 }
806 goto copytobuffer;
807 }
808
809 thsnap->ss_flags |= kHasDispatchSerial;
810 bcopy(&dqserialnum, (char *)current_buffer->buffer + current_buffer->current_position, sizeof(dqserialnum));
811 current_buffer->current_position += sizeof(dqserialnum);
812 }
813
814 if (user64_regs) {
815 framesize = 8;
816 thsnap->ss_flags |= kUser64_p;
817 } else {
818 framesize = 4;
819 }
820
821 /*
822 * If we can't fit this entire stacktrace then cancel this record, wrap to the beginning,
823 * and start again there so that we always store a full record.
824 */
825 if ((current_buffer->size - current_buffer->current_position) / framesize < btcount) {
826 current_buffer->end_point = current_record_start;
827 current_buffer->current_position = 0;
828 if (current_record_start == 0) {
829 /* This sample is too large to fit in the buffer even when we started at 0, so skip it */
830 goto cancel_sample;
831 }
832 goto copytobuffer;
833 }
834
835 for (bti = 0; bti < btcount; bti++, current_buffer->current_position += framesize) {
836 if (framesize == 8) {
837 *(uint64_t *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position) = frames[bti];
838 } else {
839 *(uint32_t *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position) = (uint32_t)frames[bti];
840 }
841 }
842
843 if (current_buffer->end_point < current_buffer->current_position) {
844 /*
845 * Each time the cursor wraps around to the beginning, we leave a
846 * differing amount of unused space at the end of the buffer. Make
847 * sure the cursor pushes the end point in case we're making use of
848 * more of the buffer than we did the last time we wrapped.
849 */
850 current_buffer->end_point = current_buffer->current_position;
851 }
852
853 thsnap->nuser_frames = btcount;
854
855 /*
856 * Now THIS is a hack.
857 */
858 if (current_buffer == &telemetry_buffer) {
859 telemetry_bytes_since_last_mark += (current_buffer->current_position - current_record_start);
860 if (telemetry_bytes_since_last_mark > telemetry_buffer_notify_at) {
861 notify = TRUE;
862 }
863 }
864
865cancel_sample:
866 TELEMETRY_UNLOCK();
867
868 KDBG(MACHDBG_CODE(DBG_MACH_STACKSHOT, MICROSTACKSHOT_RECORD) | DBG_FUNC_END,
869 notify, telemetry_bytes_since_last_mark,
870 current_buffer->current_position, current_buffer->end_point);
871
872 if (notify) {
873 telemetry_notify_user();
874 }
875
876 if (uuid_info_array != NULL) {
877 kheap_free(KHEAP_TEMP, uuid_info_array, uuid_info_array_size);
878 }
879}
880
881#if TELEMETRY_DEBUG
882static void
883log_telemetry_output(vm_offset_t buf, uint32_t pos, uint32_t sz)
884{
885 struct micro_snapshot *p;
886 uint32_t offset;
887
888 printf("Copying out %d bytes of telemetry at offset %d\n", sz, pos);
889
890 buf += pos;
891
892 /*
893 * Find and log each timestamp in this chunk of buffer.
894 */
895 for (offset = 0; offset < sz; offset++) {
896 p = (struct micro_snapshot *)(buf + offset);
897 if (p->snapshot_magic == STACKSHOT_MICRO_SNAPSHOT_MAGIC) {
898 printf("telemetry timestamp: %lld\n", p->ms_time);
899 }
900 }
901}
902#endif
903
904int
905telemetry_gather(user_addr_t buffer, uint32_t *length, boolean_t mark)
906{
907 return telemetry_buffer_gather(buffer, length, mark, &telemetry_buffer);
908}
909
910int
911telemetry_buffer_gather(user_addr_t buffer, uint32_t *length, boolean_t mark, struct micro_snapshot_buffer * current_buffer)
912{
913 int result = 0;
914 uint32_t oldest_record_offset;
915
916 KDBG(MACHDBG_CODE(DBG_MACH_STACKSHOT, MICROSTACKSHOT_GATHER) | DBG_FUNC_START,
917 mark, telemetry_bytes_since_last_mark, 0,
918 (&telemetry_buffer != current_buffer));
919
920 TELEMETRY_LOCK();
921
922 if (current_buffer->buffer == 0) {
923 *length = 0;
924 goto out;
925 }
926
927 if (*length < current_buffer->size) {
928 result = KERN_NO_SPACE;
929 goto out;
930 }
931
932 /*
933 * Copy the ring buffer out to userland in order sorted by time: least recent to most recent.
934 * First, we need to search forward from the cursor to find the oldest record in our buffer.
935 */
936 oldest_record_offset = current_buffer->current_position;
937 do {
938 if (((oldest_record_offset + sizeof(uint32_t)) > current_buffer->size) ||
939 ((oldest_record_offset + sizeof(uint32_t)) > current_buffer->end_point)) {
940 if (*(uint32_t *)(uintptr_t)(current_buffer->buffer) == 0) {
941 /*
942 * There is no magic number at the start of the buffer, which means
943 * it's empty; nothing to see here yet.
944 */
945 *length = 0;
946 goto out;
947 }
948 /*
949 * We've looked through the end of the active buffer without finding a valid
950 * record; that means all valid records are in a single chunk, beginning at
951 * the very start of the buffer.
952 */
953
954 oldest_record_offset = 0;
955 assert(*(uint32_t *)(uintptr_t)(current_buffer->buffer) == STACKSHOT_MICRO_SNAPSHOT_MAGIC);
956 break;
957 }
958
959 if (*(uint32_t *)(uintptr_t)(current_buffer->buffer + oldest_record_offset) == STACKSHOT_MICRO_SNAPSHOT_MAGIC) {
960 break;
961 }
962
963 /*
964 * There are no alignment guarantees for micro-stackshot records, so we must search at each
965 * byte offset.
966 */
967 oldest_record_offset++;
968 } while (oldest_record_offset != current_buffer->current_position);
969
970 /*
971 * If needed, copyout in two chunks: from the oldest record to the end of the buffer, and then
972 * from the beginning of the buffer up to the current position.
973 */
974 if (oldest_record_offset != 0) {
975#if TELEMETRY_DEBUG
976 log_telemetry_output(current_buffer->buffer, oldest_record_offset,
977 current_buffer->end_point - oldest_record_offset);
978#endif
979 if ((result = copyout((void *)(current_buffer->buffer + oldest_record_offset), buffer,
980 current_buffer->end_point - oldest_record_offset)) != 0) {
981 *length = 0;
982 goto out;
983 }
984 *length = current_buffer->end_point - oldest_record_offset;
985 } else {
986 *length = 0;
987 }
988
989#if TELEMETRY_DEBUG
990 log_telemetry_output(current_buffer->buffer, 0, current_buffer->current_position);
991#endif
992 if ((result = copyout((void *)current_buffer->buffer, buffer + *length,
993 current_buffer->current_position)) != 0) {
994 *length = 0;
995 goto out;
996 }
997 *length += (uint32_t)current_buffer->current_position;
998
999out:
1000
1001 if (mark && (*length > 0)) {
1002 telemetry_bytes_since_last_mark = 0;
1003 }
1004
1005 TELEMETRY_UNLOCK();
1006
1007 KDBG(MACHDBG_CODE(DBG_MACH_STACKSHOT, MICROSTACKSHOT_GATHER) | DBG_FUNC_END,
1008 current_buffer->current_position, *length,
1009 current_buffer->end_point, (&telemetry_buffer != current_buffer));
1010
1011 return result;
1012}
1013
1014/************************/
1015/* BOOT PROFILE SUPPORT */
1016/************************/
1017/*
1018 * Boot Profiling
1019 *
1020 * The boot-profiling support is a mechanism to sample activity happening on the
1021 * system during boot. This mechanism sets up a periodic timer and on every timer fire,
1022 * captures a full backtrace into the boot profiling buffer. This buffer can be pulled
1023 * out and analyzed from user-space. It is turned on using the following boot-args:
1024 * "bootprofile_buffer_size" specifies the size of the boot profile buffer
1025 * "bootprofile_interval_ms" specifies the interval for the profiling timer
1026 *
1027 * Process Specific Boot Profiling
1028 *
1029 * The boot-arg "bootprofile_proc_name" can be used to specify a certain
1030 * process that needs to profiled during boot. Setting this boot-arg changes
1031 * the way stackshots are captured. At every timer fire, the code looks at the
1032 * currently running process and takes a stackshot only if the requested process
1033 * is on-core (which makes it unsuitable for MP systems).
1034 *
1035 * Trigger Events
1036 *
1037 * The boot-arg "bootprofile_type=boot" starts the timer during early boot. Using
1038 * "wake" starts the timer at AP wake from suspend-to-RAM.
1039 */
1040
1041#define BOOTPROFILE_MAX_BUFFER_SIZE (64*1024*1024) /* see also COPYSIZELIMIT_PANIC */
1042
1043vm_offset_t bootprofile_buffer = 0;
1044uint32_t bootprofile_buffer_size = 0;
1045uint32_t bootprofile_buffer_current_position = 0;
1046uint32_t bootprofile_interval_ms = 0;
1047uint64_t bootprofile_stackshot_flags = 0;
1048uint64_t bootprofile_interval_abs = 0;
1049uint64_t bootprofile_next_deadline = 0;
1050uint32_t bootprofile_all_procs = 0;
1051char bootprofile_proc_name[17];
1052uint64_t bootprofile_delta_since_timestamp = 0;
1053LCK_GRP_DECLARE(bootprofile_lck_grp, "bootprofile_group");
1054LCK_MTX_DECLARE(bootprofile_mtx, &bootprofile_lck_grp);
1055
1056
1057enum {
1058 kBootProfileDisabled = 0,
1059 kBootProfileStartTimerAtBoot,
1060 kBootProfileStartTimerAtWake
1061} bootprofile_type = kBootProfileDisabled;
1062
1063
1064static timer_call_data_t bootprofile_timer_call_entry;
1065
1066#define BOOTPROFILE_LOCK() do { lck_mtx_lock(&bootprofile_mtx); } while(0)
1067#define BOOTPROFILE_TRY_SPIN_LOCK() lck_mtx_try_lock_spin(&bootprofile_mtx)
1068#define BOOTPROFILE_UNLOCK() do { lck_mtx_unlock(&bootprofile_mtx); } while(0)
1069
1070static void bootprofile_timer_call(
1071 timer_call_param_t param0,
1072 timer_call_param_t param1);
1073
1074void
1075bootprofile_init(void)
1076{
1077 kern_return_t ret;
1078 char type[32];
1079
1080 if (!PE_parse_boot_argn("bootprofile_buffer_size",
1081 &bootprofile_buffer_size, sizeof(bootprofile_buffer_size))) {
1082 bootprofile_buffer_size = 0;
1083 }
1084
1085 if (bootprofile_buffer_size > BOOTPROFILE_MAX_BUFFER_SIZE) {
1086 bootprofile_buffer_size = BOOTPROFILE_MAX_BUFFER_SIZE;
1087 }
1088
1089 if (!PE_parse_boot_argn("bootprofile_interval_ms",
1090 &bootprofile_interval_ms, sizeof(bootprofile_interval_ms))) {
1091 bootprofile_interval_ms = 0;
1092 }
1093
1094 if (!PE_parse_boot_argn("bootprofile_stackshot_flags",
1095 &bootprofile_stackshot_flags, sizeof(bootprofile_stackshot_flags))) {
1096 bootprofile_stackshot_flags = 0;
1097 }
1098
1099 if (!PE_parse_boot_argn("bootprofile_proc_name",
1100 &bootprofile_proc_name, sizeof(bootprofile_proc_name))) {
1101 bootprofile_all_procs = 1;
1102 bootprofile_proc_name[0] = '\0';
1103 }
1104
1105 if (PE_parse_boot_argn("bootprofile_type", type, sizeof(type))) {
1106 if (0 == strcmp(type, "boot")) {
1107 bootprofile_type = kBootProfileStartTimerAtBoot;
1108 } else if (0 == strcmp(type, "wake")) {
1109 bootprofile_type = kBootProfileStartTimerAtWake;
1110 } else {
1111 bootprofile_type = kBootProfileDisabled;
1112 }
1113 } else {
1114 bootprofile_type = kBootProfileDisabled;
1115 }
1116
1117 clock_interval_to_absolutetime_interval(bootprofile_interval_ms, NSEC_PER_MSEC, &bootprofile_interval_abs);
1118
1119 /* Both boot args must be set to enable */
1120 if ((bootprofile_type == kBootProfileDisabled) || (bootprofile_buffer_size == 0) || (bootprofile_interval_abs == 0)) {
1121 return;
1122 }
1123
1124 ret = kmem_alloc(kernel_map, &bootprofile_buffer, bootprofile_buffer_size, VM_KERN_MEMORY_DIAG);
1125 if (ret != KERN_SUCCESS) {
1126 kprintf("Boot profile: Allocation failed: %d\n", ret);
1127 return;
1128 }
1129 bzero((void *) bootprofile_buffer, bootprofile_buffer_size);
1130
1131 kprintf("Boot profile: Sampling %s once per %u ms at %s\n",
1132 bootprofile_all_procs ? "all procs" : bootprofile_proc_name, bootprofile_interval_ms,
1133 bootprofile_type == kBootProfileStartTimerAtBoot ? "boot" : (bootprofile_type == kBootProfileStartTimerAtWake ? "wake" : "unknown"));
1134
1135 timer_call_setup(&bootprofile_timer_call_entry,
1136 bootprofile_timer_call,
1137 NULL);
1138
1139 if (bootprofile_type == kBootProfileStartTimerAtBoot) {
1140 bootprofile_next_deadline = mach_absolute_time() + bootprofile_interval_abs;
1141 timer_call_enter_with_leeway(&bootprofile_timer_call_entry,
1142 NULL,
1143 bootprofile_next_deadline,
1144 0,
1145 TIMER_CALL_SYS_NORMAL,
1146 FALSE);
1147 }
1148}
1149
1150void
1151bootprofile_wake_from_sleep(void)
1152{
1153 if (bootprofile_type == kBootProfileStartTimerAtWake) {
1154 bootprofile_next_deadline = mach_absolute_time() + bootprofile_interval_abs;
1155 timer_call_enter_with_leeway(&bootprofile_timer_call_entry,
1156 NULL,
1157 bootprofile_next_deadline,
1158 0,
1159 TIMER_CALL_SYS_NORMAL,
1160 FALSE);
1161 }
1162}
1163
1164
1165static void
1166bootprofile_timer_call(
1167 timer_call_param_t param0 __unused,
1168 timer_call_param_t param1 __unused)
1169{
1170 unsigned retbytes = 0;
1171 int pid_to_profile = -1;
1172
1173 if (!BOOTPROFILE_TRY_SPIN_LOCK()) {
1174 goto reprogram;
1175 }
1176
1177 /* Check if process-specific boot profiling is turned on */
1178 if (!bootprofile_all_procs) {
1179 /*
1180 * Since boot profiling initializes really early in boot, it is
1181 * possible that at this point, the task/proc is not initialized.
1182 * Nothing to do in that case.
1183 */
1184
1185 if ((current_task() != NULL) && (current_task()->bsd_info != NULL) &&
1186 (0 == strncmp(bootprofile_proc_name, proc_name_address(current_task()->bsd_info), 17))) {
1187 pid_to_profile = proc_selfpid();
1188 } else {
1189 /*
1190 * Process-specific boot profiling requested but the on-core process is
1191 * something else. Nothing to do here.
1192 */
1193 BOOTPROFILE_UNLOCK();
1194 goto reprogram;
1195 }
1196 }
1197
1198 /* initiate a stackshot with whatever portion of the buffer is left */
1199 if (bootprofile_buffer_current_position < bootprofile_buffer_size) {
1200 uint64_t flags = STACKSHOT_KCDATA_FORMAT | STACKSHOT_TRYLOCK | STACKSHOT_SAVE_LOADINFO
1201 | STACKSHOT_GET_GLOBAL_MEM_STATS;
1202#if defined(XNU_TARGET_OS_OSX)
1203 flags |= STACKSHOT_SAVE_KEXT_LOADINFO;
1204#endif
1205
1206
1207 /* OR on flags specified in boot-args */
1208 flags |= bootprofile_stackshot_flags;
1209 if ((flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) && (bootprofile_delta_since_timestamp == 0)) {
1210 /* Can't take deltas until the first one */
1211 flags &= ~STACKSHOT_COLLECT_DELTA_SNAPSHOT;
1212 }
1213
1214 uint64_t timestamp = 0;
1215 if (bootprofile_stackshot_flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) {
1216 timestamp = mach_absolute_time();
1217 }
1218
1219 kern_return_t r = stack_snapshot_from_kernel(
1220 pid_to_profile, (void *)(bootprofile_buffer + bootprofile_buffer_current_position),
1221 bootprofile_buffer_size - bootprofile_buffer_current_position,
1222 flags, bootprofile_delta_since_timestamp, 0, &retbytes);
1223
1224 /*
1225 * We call with STACKSHOT_TRYLOCK because the stackshot lock is coarser
1226 * than the bootprofile lock. If someone else has the lock we'll just
1227 * try again later.
1228 */
1229
1230 if (r == KERN_LOCK_OWNED) {
1231 BOOTPROFILE_UNLOCK();
1232 goto reprogram;
1233 }
1234
1235 if (bootprofile_stackshot_flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT &&
1236 r == KERN_SUCCESS) {
1237 bootprofile_delta_since_timestamp = timestamp;
1238 }
1239
1240 bootprofile_buffer_current_position += retbytes;
1241 }
1242
1243 BOOTPROFILE_UNLOCK();
1244
1245 /* If we didn't get any data or have run out of buffer space, stop profiling */
1246 if ((retbytes == 0) || (bootprofile_buffer_current_position == bootprofile_buffer_size)) {
1247 return;
1248 }
1249
1250
1251reprogram:
1252 /* If the user gathered the buffer, no need to keep profiling */
1253 if (bootprofile_interval_abs == 0) {
1254 return;
1255 }
1256
1257 clock_deadline_for_periodic_event(bootprofile_interval_abs,
1258 mach_absolute_time(),
1259 &bootprofile_next_deadline);
1260 timer_call_enter_with_leeway(&bootprofile_timer_call_entry,
1261 NULL,
1262 bootprofile_next_deadline,
1263 0,
1264 TIMER_CALL_SYS_NORMAL,
1265 FALSE);
1266}
1267
1268void
1269bootprofile_get(void **buffer, uint32_t *length)
1270{
1271 BOOTPROFILE_LOCK();
1272 *buffer = (void*) bootprofile_buffer;
1273 *length = bootprofile_buffer_current_position;
1274 BOOTPROFILE_UNLOCK();
1275}
1276
1277int
1278bootprofile_gather(user_addr_t buffer, uint32_t *length)
1279{
1280 int result = 0;
1281
1282 BOOTPROFILE_LOCK();
1283
1284 if (bootprofile_buffer == 0) {
1285 *length = 0;
1286 goto out;
1287 }
1288
1289 if (*length < bootprofile_buffer_current_position) {
1290 result = KERN_NO_SPACE;
1291 goto out;
1292 }
1293
1294 if ((result = copyout((void *)bootprofile_buffer, buffer,
1295 bootprofile_buffer_current_position)) != 0) {
1296 *length = 0;
1297 goto out;
1298 }
1299 *length = bootprofile_buffer_current_position;
1300
1301 /* cancel future timers */
1302 bootprofile_interval_abs = 0;
1303
1304out:
1305
1306 BOOTPROFILE_UNLOCK();
1307
1308 return result;
1309}