]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2012 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | ||
32 | /* | |
33 | * File: i386/rtclock.c | |
34 | * Purpose: Routines for handling the machine dependent | |
35 | * real-time clock. Historically, this clock is | |
36 | * generated by the Intel 8254 Programmable Interval | |
37 | * Timer, but local apic timers are now used for | |
38 | * this purpose with the master time reference being | |
39 | * the cpu clock counted by the timestamp MSR. | |
40 | */ | |
41 | ||
42 | ||
43 | #include <mach/mach_types.h> | |
44 | ||
45 | #include <kern/cpu_data.h> | |
46 | #include <kern/cpu_number.h> | |
47 | #include <kern/clock.h> | |
48 | #include <kern/host_notify.h> | |
49 | #include <kern/macro_help.h> | |
50 | #include <kern/misc_protos.h> | |
51 | #include <kern/spl.h> | |
52 | #include <kern/assert.h> | |
53 | #include <kern/timer_queue.h> | |
54 | #include <mach/vm_prot.h> | |
55 | #include <vm/pmap.h> | |
56 | #include <vm/vm_kern.h> /* for kernel_map */ | |
57 | #include <architecture/i386/pio.h> | |
58 | #include <i386/machine_cpu.h> | |
59 | #include <i386/cpuid.h> | |
60 | #include <i386/cpu_threads.h> | |
61 | #include <i386/mp.h> | |
62 | #include <i386/machine_routines.h> | |
63 | #include <i386/pal_routines.h> | |
64 | #include <i386/proc_reg.h> | |
65 | #include <i386/misc_protos.h> | |
66 | #include <pexpert/pexpert.h> | |
67 | #include <machine/limits.h> | |
68 | #include <machine/commpage.h> | |
69 | #include <sys/kdebug.h> | |
70 | #include <i386/tsc.h> | |
71 | #include <i386/rtclock_protos.h> | |
72 | #define UI_CPUFREQ_ROUNDING_FACTOR 10000000 | |
73 | ||
74 | int rtclock_init(void); | |
75 | ||
76 | uint64_t tsc_rebase_abs_time = 0; | |
77 | ||
78 | static void rtc_set_timescale(uint64_t cycles); | |
79 | static uint64_t rtc_export_speed(uint64_t cycles); | |
80 | ||
81 | void | |
82 | rtc_timer_start(void) | |
83 | { | |
84 | /* | |
85 | * Force a complete re-evaluation of timer deadlines. | |
86 | */ | |
87 | x86_lcpu()->rtcDeadline = EndOfAllTime; | |
88 | timer_resync_deadlines(); | |
89 | } | |
90 | ||
91 | static inline uint32_t | |
92 | _absolutetime_to_microtime(uint64_t abstime, clock_sec_t *secs, clock_usec_t *microsecs) | |
93 | { | |
94 | uint32_t remain; | |
95 | *secs = abstime / (uint64_t)NSEC_PER_SEC; | |
96 | remain = (uint32_t)(abstime % (uint64_t)NSEC_PER_SEC); | |
97 | *microsecs = remain / NSEC_PER_USEC; | |
98 | return remain; | |
99 | } | |
100 | ||
101 | static inline void | |
102 | _absolutetime_to_nanotime(uint64_t abstime, clock_sec_t *secs, clock_usec_t *nanosecs) | |
103 | { | |
104 | *secs = abstime / (uint64_t)NSEC_PER_SEC; | |
105 | *nanosecs = (clock_usec_t)(abstime % (uint64_t)NSEC_PER_SEC); | |
106 | } | |
107 | ||
108 | /* | |
109 | * Nanotime/mach_absolutime_time | |
110 | * ----------------------------- | |
111 | * The timestamp counter (TSC) - which counts cpu clock cycles and can be read | |
112 | * efficiently by the kernel and in userspace - is the reference for all timing. | |
113 | * The cpu clock rate is platform-dependent and may stop or be reset when the | |
114 | * processor is napped/slept. As a result, nanotime is the software abstraction | |
115 | * used to maintain a monotonic clock, adjusted from an outside reference as needed. | |
116 | * | |
117 | * The kernel maintains nanotime information recording: | |
118 | * - the ratio of tsc to nanoseconds | |
119 | * with this ratio expressed as a 32-bit scale and shift | |
120 | * (power of 2 divider); | |
121 | * - { tsc_base, ns_base } pair of corresponding timestamps. | |
122 | * | |
123 | * The tuple {tsc_base, ns_base, scale, shift} is exported in the commpage | |
124 | * for the userspace nanotime routine to read. | |
125 | * | |
126 | * All of the routines which update the nanotime data are non-reentrant. This must | |
127 | * be guaranteed by the caller. | |
128 | */ | |
129 | static inline void | |
130 | rtc_nanotime_set_commpage(pal_rtc_nanotime_t *rntp) | |
131 | { | |
132 | commpage_set_nanotime(rntp->tsc_base, rntp->ns_base, rntp->scale, rntp->shift); | |
133 | } | |
134 | ||
135 | /* | |
136 | * rtc_nanotime_init: | |
137 | * | |
138 | * Intialize the nanotime info from the base time. | |
139 | */ | |
140 | static inline void | |
141 | _rtc_nanotime_init(pal_rtc_nanotime_t *rntp, uint64_t base) | |
142 | { | |
143 | uint64_t tsc = rdtsc64(); | |
144 | ||
145 | _pal_rtc_nanotime_store(tsc, base, rntp->scale, rntp->shift, rntp); | |
146 | } | |
147 | ||
148 | void | |
149 | rtc_nanotime_init(uint64_t base) | |
150 | { | |
151 | _rtc_nanotime_init(&pal_rtc_nanotime_info, base); | |
152 | rtc_nanotime_set_commpage(&pal_rtc_nanotime_info); | |
153 | } | |
154 | ||
155 | /* | |
156 | * rtc_nanotime_init_commpage: | |
157 | * | |
158 | * Call back from the commpage initialization to | |
159 | * cause the commpage data to be filled in once the | |
160 | * commpages have been created. | |
161 | */ | |
162 | void | |
163 | rtc_nanotime_init_commpage(void) | |
164 | { | |
165 | spl_t s = splclock(); | |
166 | ||
167 | rtc_nanotime_set_commpage(&pal_rtc_nanotime_info); | |
168 | splx(s); | |
169 | } | |
170 | ||
171 | /* | |
172 | * rtc_nanotime_read: | |
173 | * | |
174 | * Returns the current nanotime value, accessable from any | |
175 | * context. | |
176 | */ | |
177 | static inline uint64_t | |
178 | rtc_nanotime_read(void) | |
179 | { | |
180 | return _rtc_nanotime_read(&pal_rtc_nanotime_info); | |
181 | } | |
182 | ||
183 | /* | |
184 | * rtc_clock_napped: | |
185 | * | |
186 | * Invoked from power management when we exit from a low C-State (>= C4) | |
187 | * and the TSC has stopped counting. The nanotime data is updated according | |
188 | * to the provided value which represents the new value for nanotime. | |
189 | */ | |
190 | void | |
191 | rtc_clock_napped(uint64_t base, uint64_t tsc_base) | |
192 | { | |
193 | pal_rtc_nanotime_t *rntp = &pal_rtc_nanotime_info; | |
194 | uint64_t oldnsecs; | |
195 | uint64_t newnsecs; | |
196 | uint64_t tsc; | |
197 | ||
198 | assert(!ml_get_interrupts_enabled()); | |
199 | tsc = rdtsc64(); | |
200 | oldnsecs = rntp->ns_base + _rtc_tsc_to_nanoseconds(tsc - rntp->tsc_base, rntp); | |
201 | newnsecs = base + _rtc_tsc_to_nanoseconds(tsc - tsc_base, rntp); | |
202 | ||
203 | /* | |
204 | * Only update the base values if time using the new base values | |
205 | * is later than the time using the old base values. | |
206 | */ | |
207 | if (oldnsecs < newnsecs) { | |
208 | _pal_rtc_nanotime_store(tsc_base, base, rntp->scale, rntp->shift, rntp); | |
209 | rtc_nanotime_set_commpage(rntp); | |
210 | } | |
211 | } | |
212 | ||
213 | /* | |
214 | * Invoked from power management to correct the SFLM TSC entry drift problem: | |
215 | * a small delta is added to the tsc_base. This is equivalent to nudgin time | |
216 | * backwards. We require this to be on the order of a TSC quantum which won't | |
217 | * cause callers of mach_absolute_time() to see time going backwards! | |
218 | */ | |
219 | void | |
220 | rtc_clock_adjust(uint64_t tsc_base_delta) | |
221 | { | |
222 | pal_rtc_nanotime_t *rntp = &pal_rtc_nanotime_info; | |
223 | ||
224 | assert(!ml_get_interrupts_enabled()); | |
225 | assert(tsc_base_delta < 100ULL); /* i.e. it's small */ | |
226 | _rtc_nanotime_adjust(tsc_base_delta, rntp); | |
227 | rtc_nanotime_set_commpage(rntp); | |
228 | } | |
229 | ||
230 | /* | |
231 | * rtc_sleep_wakeup: | |
232 | * | |
233 | * Invoked from power management when we have awoken from a sleep (S3) | |
234 | * and the TSC has been reset, or from Deep Idle (S0) sleep when the TSC | |
235 | * has progressed. The nanotime data is updated based on the passed-in value. | |
236 | * | |
237 | * The caller must guarantee non-reentrancy. | |
238 | */ | |
239 | void | |
240 | rtc_sleep_wakeup( | |
241 | uint64_t base) | |
242 | { | |
243 | /* Set fixed configuration for lapic timers */ | |
244 | rtc_timer->rtc_config(); | |
245 | ||
246 | /* | |
247 | * Reset nanotime. | |
248 | * The timestamp counter will have been reset | |
249 | * but nanotime (uptime) marches onward. | |
250 | */ | |
251 | rtc_nanotime_init(base); | |
252 | } | |
253 | ||
254 | void | |
255 | rtc_decrementer_configure(void) | |
256 | { | |
257 | rtc_timer->rtc_config(); | |
258 | } | |
259 | /* | |
260 | * rtclock_early_init() is called very early at boot to | |
261 | * establish mach_absolute_time() and set it to zero. | |
262 | */ | |
263 | void | |
264 | rtclock_early_init(void) | |
265 | { | |
266 | assert(tscFreq); | |
267 | rtc_set_timescale(tscFreq); | |
268 | } | |
269 | ||
270 | /* | |
271 | * Initialize the real-time clock device. | |
272 | * In addition, various variables used to support the clock are initialized. | |
273 | */ | |
274 | int | |
275 | rtclock_init(void) | |
276 | { | |
277 | uint64_t cycles; | |
278 | ||
279 | assert(!ml_get_interrupts_enabled()); | |
280 | ||
281 | if (cpu_number() == master_cpu) { | |
282 | assert(tscFreq); | |
283 | ||
284 | /* | |
285 | * Adjust and set the exported cpu speed. | |
286 | */ | |
287 | cycles = rtc_export_speed(tscFreq); | |
288 | ||
289 | /* | |
290 | * Set min/max to actual. | |
291 | * ACPI may update these later if speed-stepping is detected. | |
292 | */ | |
293 | gPEClockFrequencyInfo.cpu_frequency_min_hz = cycles; | |
294 | gPEClockFrequencyInfo.cpu_frequency_max_hz = cycles; | |
295 | ||
296 | rtc_timer_init(); | |
297 | clock_timebase_init(); | |
298 | ml_init_lock_timeout(); | |
299 | ml_init_delay_spin_threshold(10); | |
300 | } | |
301 | ||
302 | /* Set fixed configuration for lapic timers */ | |
303 | rtc_timer->rtc_config(); | |
304 | rtc_timer_start(); | |
305 | ||
306 | return 1; | |
307 | } | |
308 | ||
309 | // utility routine | |
310 | // Code to calculate how many processor cycles are in a second... | |
311 | ||
312 | static void | |
313 | rtc_set_timescale(uint64_t cycles) | |
314 | { | |
315 | pal_rtc_nanotime_t *rntp = &pal_rtc_nanotime_info; | |
316 | uint32_t shift = 0; | |
317 | ||
318 | /* the "scale" factor will overflow unless cycles>SLOW_TSC_THRESHOLD */ | |
319 | ||
320 | while (cycles <= SLOW_TSC_THRESHOLD) { | |
321 | shift++; | |
322 | cycles <<= 1; | |
323 | } | |
324 | ||
325 | rntp->scale = (uint32_t)(((uint64_t)NSEC_PER_SEC << 32) / cycles); | |
326 | ||
327 | rntp->shift = shift; | |
328 | ||
329 | /* | |
330 | * On some platforms, the TSC is not reset at warm boot. But the | |
331 | * rebase time must be relative to the current boot so we can't use | |
332 | * mach_absolute_time(). Instead, we convert the TSC delta since boot | |
333 | * to nanoseconds. | |
334 | */ | |
335 | if (tsc_rebase_abs_time == 0) { | |
336 | tsc_rebase_abs_time = _rtc_tsc_to_nanoseconds( | |
337 | rdtsc64() - tsc_at_boot, rntp); | |
338 | } | |
339 | ||
340 | rtc_nanotime_init(0); | |
341 | } | |
342 | ||
343 | static uint64_t | |
344 | rtc_export_speed(uint64_t cyc_per_sec) | |
345 | { | |
346 | pal_rtc_nanotime_t *rntp = &pal_rtc_nanotime_info; | |
347 | uint64_t cycles; | |
348 | ||
349 | if (rntp->shift != 0) { | |
350 | printf("Slow TSC, rtc_nanotime.shift == %d\n", rntp->shift); | |
351 | } | |
352 | ||
353 | /* Round: */ | |
354 | cycles = ((cyc_per_sec + (UI_CPUFREQ_ROUNDING_FACTOR / 2)) | |
355 | / UI_CPUFREQ_ROUNDING_FACTOR) | |
356 | * UI_CPUFREQ_ROUNDING_FACTOR; | |
357 | ||
358 | /* | |
359 | * Set current measured speed. | |
360 | */ | |
361 | if (cycles >= 0x100000000ULL) { | |
362 | gPEClockFrequencyInfo.cpu_clock_rate_hz = 0xFFFFFFFFUL; | |
363 | } else { | |
364 | gPEClockFrequencyInfo.cpu_clock_rate_hz = (unsigned long)cycles; | |
365 | } | |
366 | gPEClockFrequencyInfo.cpu_frequency_hz = cycles; | |
367 | ||
368 | kprintf("[RTCLOCK] frequency %llu (%llu)\n", cycles, cyc_per_sec); | |
369 | return cycles; | |
370 | } | |
371 | ||
372 | void | |
373 | clock_get_system_microtime( | |
374 | clock_sec_t *secs, | |
375 | clock_usec_t *microsecs) | |
376 | { | |
377 | uint64_t now = rtc_nanotime_read(); | |
378 | ||
379 | _absolutetime_to_microtime(now, secs, microsecs); | |
380 | } | |
381 | ||
382 | void | |
383 | clock_get_system_nanotime( | |
384 | clock_sec_t *secs, | |
385 | clock_nsec_t *nanosecs) | |
386 | { | |
387 | uint64_t now = rtc_nanotime_read(); | |
388 | ||
389 | _absolutetime_to_nanotime(now, secs, nanosecs); | |
390 | } | |
391 | ||
392 | void | |
393 | clock_gettimeofday_set_commpage(uint64_t abstime, uint64_t sec, uint64_t frac, uint64_t scale, uint64_t tick_per_sec) | |
394 | { | |
395 | commpage_set_timestamp(abstime, sec, frac, scale, tick_per_sec); | |
396 | } | |
397 | ||
398 | void | |
399 | clock_timebase_info( | |
400 | mach_timebase_info_t info) | |
401 | { | |
402 | info->numer = info->denom = 1; | |
403 | } | |
404 | ||
405 | /* | |
406 | * Real-time clock device interrupt. | |
407 | */ | |
408 | void | |
409 | rtclock_intr( | |
410 | x86_saved_state_t *tregs) | |
411 | { | |
412 | uint64_t rip; | |
413 | boolean_t user_mode = FALSE; | |
414 | ||
415 | assert(get_preemption_level() > 0); | |
416 | assert(!ml_get_interrupts_enabled()); | |
417 | ||
418 | if (is_saved_state64(tregs) == TRUE) { | |
419 | x86_saved_state64_t *regs; | |
420 | ||
421 | regs = saved_state64(tregs); | |
422 | ||
423 | if (regs->isf.cs & 0x03) { | |
424 | user_mode = TRUE; | |
425 | } | |
426 | rip = regs->isf.rip; | |
427 | } else { | |
428 | x86_saved_state32_t *regs; | |
429 | ||
430 | regs = saved_state32(tregs); | |
431 | ||
432 | if (regs->cs & 0x03) { | |
433 | user_mode = TRUE; | |
434 | } | |
435 | rip = regs->eip; | |
436 | } | |
437 | ||
438 | /* call the generic etimer */ | |
439 | timer_intr(user_mode, rip); | |
440 | } | |
441 | ||
442 | ||
443 | /* | |
444 | * Request timer pop from the hardware | |
445 | */ | |
446 | ||
447 | uint64_t | |
448 | setPop(uint64_t time) | |
449 | { | |
450 | uint64_t now; | |
451 | uint64_t pop; | |
452 | ||
453 | /* 0 and EndOfAllTime are special-cases for "clear the timer" */ | |
454 | if (time == 0 || time == EndOfAllTime) { | |
455 | time = EndOfAllTime; | |
456 | now = 0; | |
457 | pop = rtc_timer->rtc_set(0, 0); | |
458 | } else { | |
459 | now = rtc_nanotime_read(); /* The time in nanoseconds */ | |
460 | pop = rtc_timer->rtc_set(time, now); | |
461 | } | |
462 | ||
463 | /* Record requested and actual deadlines set */ | |
464 | x86_lcpu()->rtcDeadline = time; | |
465 | x86_lcpu()->rtcPop = pop; | |
466 | ||
467 | return pop - now; | |
468 | } | |
469 | ||
470 | uint64_t | |
471 | mach_absolute_time(void) | |
472 | { | |
473 | return rtc_nanotime_read(); | |
474 | } | |
475 | ||
476 | uint64_t | |
477 | mach_approximate_time(void) | |
478 | { | |
479 | return rtc_nanotime_read(); | |
480 | } | |
481 | ||
482 | void | |
483 | clock_interval_to_absolutetime_interval( | |
484 | uint32_t interval, | |
485 | uint32_t scale_factor, | |
486 | uint64_t *result) | |
487 | { | |
488 | *result = (uint64_t)interval * scale_factor; | |
489 | } | |
490 | ||
491 | void | |
492 | absolutetime_to_microtime( | |
493 | uint64_t abstime, | |
494 | clock_sec_t *secs, | |
495 | clock_usec_t *microsecs) | |
496 | { | |
497 | _absolutetime_to_microtime(abstime, secs, microsecs); | |
498 | } | |
499 | ||
500 | void | |
501 | nanotime_to_absolutetime( | |
502 | clock_sec_t secs, | |
503 | clock_nsec_t nanosecs, | |
504 | uint64_t *result) | |
505 | { | |
506 | *result = ((uint64_t)secs * NSEC_PER_SEC) + nanosecs; | |
507 | } | |
508 | ||
509 | void | |
510 | absolutetime_to_nanoseconds( | |
511 | uint64_t abstime, | |
512 | uint64_t *result) | |
513 | { | |
514 | *result = abstime; | |
515 | } | |
516 | ||
517 | void | |
518 | nanoseconds_to_absolutetime( | |
519 | uint64_t nanoseconds, | |
520 | uint64_t *result) | |
521 | { | |
522 | *result = nanoseconds; | |
523 | } | |
524 | ||
525 | void | |
526 | machine_delay_until( | |
527 | uint64_t interval, | |
528 | uint64_t deadline) | |
529 | { | |
530 | (void)interval; | |
531 | while (mach_absolute_time() < deadline) { | |
532 | cpu_pause(); | |
533 | } | |
534 | } |