]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2019 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. Please obtain a copy of the License at | |
10 | * http://www.opensource.apple.com/apsl/ and read it before using this | |
11 | * file. | |
12 | * | |
13 | * The Original Code and all software distributed under the License are | |
14 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
15 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
16 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
17 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
18 | * Please see the License for the specific language governing rights and | |
19 | * limitations under the License. | |
20 | * | |
21 | * @APPLE_LICENSE_HEADER_END@ | |
22 | */ | |
23 | ||
24 | #include <kern/sched_prim.h> | |
25 | #include <kern/ledger.h> | |
26 | #include <kern/policy_internal.h> | |
27 | ||
28 | #include <libkern/OSDebug.h> | |
29 | ||
30 | #include <mach/mach_types.h> | |
31 | ||
32 | #include <machine/limits.h> | |
33 | ||
34 | #include <vm/vm_compressor_pager.h> | |
35 | #include <vm/vm_kern.h> /* kmem_alloc */ | |
36 | #include <vm/vm_page.h> | |
37 | #include <vm/vm_pageout.h> | |
38 | #include <vm/vm_protos.h> | |
39 | #include <vm/vm_purgeable_internal.h> | |
40 | ||
41 | #include <sys/kdebug.h> | |
42 | ||
43 | /* | |
44 | * LOCK ORDERING for task-owned purgeable objects | |
45 | * | |
46 | * Whenever we need to hold multiple locks while adding to, removing from, | |
47 | * or scanning a task's task_objq list of VM objects it owns, locks should | |
48 | * be taken in this order: | |
49 | * | |
50 | * VM object ==> vm_purgeable_queue_lock ==> owner_task->task_objq_lock | |
51 | * | |
52 | * If one needs to acquire the VM object lock after any of the other 2 locks, | |
53 | * one needs to use vm_object_lock_try() and, if that fails, release the | |
54 | * other locks and retake them all in the correct order. | |
55 | */ | |
56 | ||
57 | extern vm_pressure_level_t memorystatus_vm_pressure_level; | |
58 | ||
59 | struct token { | |
60 | token_cnt_t count; | |
61 | token_idx_t prev; | |
62 | token_idx_t next; | |
63 | }; | |
64 | ||
65 | struct token *tokens; | |
66 | token_idx_t token_q_max_cnt = 0; | |
67 | vm_size_t token_q_cur_size = 0; | |
68 | ||
69 | token_idx_t token_free_idx = 0; /* head of free queue */ | |
70 | token_idx_t token_init_idx = 1; /* token 0 is reserved!! */ | |
71 | int32_t token_new_pagecount = 0; /* count of pages that will | |
72 | * be added onto token queue */ | |
73 | ||
74 | int available_for_purge = 0; /* increase when ripe token | |
75 | * added, decrease when ripe | |
76 | * token removed. | |
77 | * protected by page_queue_lock | |
78 | */ | |
79 | ||
80 | static int token_q_allocating = 0; /* flag for singlethreading | |
81 | * allocator */ | |
82 | ||
83 | struct purgeable_q purgeable_queues[PURGEABLE_Q_TYPE_MAX]; | |
84 | queue_head_t purgeable_nonvolatile_queue; | |
85 | int purgeable_nonvolatile_count; | |
86 | ||
87 | decl_lck_mtx_data(, vm_purgeable_queue_lock); | |
88 | ||
89 | static token_idx_t vm_purgeable_token_remove_first(purgeable_q_t queue); | |
90 | ||
91 | static void vm_purgeable_stats_helper(vm_purgeable_stat_t *stat, purgeable_q_t queue, int group, task_t target_task); | |
92 | ||
93 | ||
94 | #if MACH_ASSERT | |
95 | static void | |
96 | vm_purgeable_token_check_queue(purgeable_q_t queue) | |
97 | { | |
98 | int token_cnt = 0, page_cnt = 0; | |
99 | token_idx_t token = queue->token_q_head; | |
100 | token_idx_t unripe = 0; | |
101 | int our_inactive_count; | |
102 | ||
103 | ||
104 | #if DEVELOPMENT | |
105 | static int lightweight_check = 0; | |
106 | ||
107 | /* | |
108 | * Due to performance impact, perform this check less frequently on DEVELOPMENT kernels. | |
109 | * Checking the queue scales linearly with its length, so we compensate by | |
110 | * by performing this check less frequently as the queue grows. | |
111 | */ | |
112 | if (lightweight_check++ < (100 + queue->debug_count_tokens / 512)) { | |
113 | return; | |
114 | } | |
115 | ||
116 | lightweight_check = 0; | |
117 | #endif | |
118 | ||
119 | while (token) { | |
120 | if (tokens[token].count != 0) { | |
121 | assert(queue->token_q_unripe); | |
122 | if (unripe == 0) { | |
123 | assert(token == queue->token_q_unripe); | |
124 | unripe = token; | |
125 | } | |
126 | page_cnt += tokens[token].count; | |
127 | } | |
128 | if (tokens[token].next == 0) { | |
129 | assert(queue->token_q_tail == token); | |
130 | } | |
131 | ||
132 | token_cnt++; | |
133 | token = tokens[token].next; | |
134 | } | |
135 | ||
136 | if (unripe) { | |
137 | assert(queue->token_q_unripe == unripe); | |
138 | } | |
139 | assert(token_cnt == queue->debug_count_tokens); | |
140 | ||
141 | /* obsolete queue doesn't maintain token counts */ | |
142 | if (queue->type != PURGEABLE_Q_TYPE_OBSOLETE) { | |
143 | our_inactive_count = page_cnt + queue->new_pages + token_new_pagecount; | |
144 | assert(our_inactive_count >= 0); | |
145 | assert((uint32_t) our_inactive_count == vm_page_inactive_count - vm_page_cleaned_count); | |
146 | } | |
147 | } | |
148 | #endif | |
149 | ||
150 | /* | |
151 | * Add a token. Allocate token queue memory if necessary. | |
152 | * Call with page queue locked. | |
153 | */ | |
154 | kern_return_t | |
155 | vm_purgeable_token_add(purgeable_q_t queue) | |
156 | { | |
157 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
158 | ||
159 | /* new token */ | |
160 | token_idx_t token; | |
161 | enum purgeable_q_type i; | |
162 | ||
163 | find_available_token: | |
164 | ||
165 | if (token_free_idx) { /* unused tokens available */ | |
166 | token = token_free_idx; | |
167 | token_free_idx = tokens[token_free_idx].next; | |
168 | } else if (token_init_idx < token_q_max_cnt) { /* lazy token array init */ | |
169 | token = token_init_idx; | |
170 | token_init_idx++; | |
171 | } else { /* allocate more memory */ | |
172 | /* Wait if another thread is inside the memory alloc section */ | |
173 | while (token_q_allocating) { | |
174 | wait_result_t res = lck_mtx_sleep(&vm_page_queue_lock, | |
175 | LCK_SLEEP_DEFAULT, | |
176 | (event_t)&token_q_allocating, | |
177 | THREAD_UNINT); | |
178 | if (res != THREAD_AWAKENED) { | |
179 | return KERN_ABORTED; | |
180 | } | |
181 | } | |
182 | ; | |
183 | ||
184 | /* Check whether memory is still maxed out */ | |
185 | if (token_init_idx < token_q_max_cnt) { | |
186 | goto find_available_token; | |
187 | } | |
188 | ||
189 | /* Still no memory. Allocate some. */ | |
190 | token_q_allocating = 1; | |
191 | ||
192 | /* Drop page queue lock so we can allocate */ | |
193 | vm_page_unlock_queues(); | |
194 | ||
195 | struct token *new_loc; | |
196 | vm_size_t alloc_size = token_q_cur_size + PAGE_SIZE; | |
197 | kern_return_t result; | |
198 | ||
199 | if (alloc_size / sizeof(struct token) > TOKEN_COUNT_MAX) { | |
200 | result = KERN_RESOURCE_SHORTAGE; | |
201 | } else { | |
202 | if (token_q_cur_size) { | |
203 | result = kmem_realloc(kernel_map, | |
204 | (vm_offset_t) tokens, | |
205 | token_q_cur_size, | |
206 | (vm_offset_t *) &new_loc, | |
207 | alloc_size, VM_KERN_MEMORY_OSFMK); | |
208 | } else { | |
209 | result = kmem_alloc(kernel_map, | |
210 | (vm_offset_t *) &new_loc, | |
211 | alloc_size, VM_KERN_MEMORY_OSFMK); | |
212 | } | |
213 | } | |
214 | ||
215 | vm_page_lock_queues(); | |
216 | ||
217 | if (result) { | |
218 | /* Unblock waiting threads */ | |
219 | token_q_allocating = 0; | |
220 | thread_wakeup((event_t)&token_q_allocating); | |
221 | return result; | |
222 | } | |
223 | ||
224 | /* If we get here, we allocated new memory. Update pointers and | |
225 | * dealloc old range */ | |
226 | struct token *old_tokens = tokens; | |
227 | tokens = new_loc; | |
228 | vm_size_t old_token_q_cur_size = token_q_cur_size; | |
229 | token_q_cur_size = alloc_size; | |
230 | token_q_max_cnt = (token_idx_t) (token_q_cur_size / | |
231 | sizeof(struct token)); | |
232 | assert(token_init_idx < token_q_max_cnt); /* We must have a free token now */ | |
233 | ||
234 | if (old_token_q_cur_size) { /* clean up old mapping */ | |
235 | vm_page_unlock_queues(); | |
236 | /* kmem_realloc leaves the old region mapped. Get rid of it. */ | |
237 | kmem_free(kernel_map, (vm_offset_t)old_tokens, old_token_q_cur_size); | |
238 | vm_page_lock_queues(); | |
239 | } | |
240 | ||
241 | /* Unblock waiting threads */ | |
242 | token_q_allocating = 0; | |
243 | thread_wakeup((event_t)&token_q_allocating); | |
244 | ||
245 | goto find_available_token; | |
246 | } | |
247 | ||
248 | assert(token); | |
249 | ||
250 | /* | |
251 | * the new pagecount we got need to be applied to all queues except | |
252 | * obsolete | |
253 | */ | |
254 | for (i = PURGEABLE_Q_TYPE_FIFO; i < PURGEABLE_Q_TYPE_MAX; i++) { | |
255 | int64_t pages = purgeable_queues[i].new_pages += token_new_pagecount; | |
256 | assert(pages >= 0); | |
257 | assert(pages <= TOKEN_COUNT_MAX); | |
258 | purgeable_queues[i].new_pages = (int32_t) pages; | |
259 | assert(purgeable_queues[i].new_pages == pages); | |
260 | } | |
261 | token_new_pagecount = 0; | |
262 | ||
263 | /* set token counter value */ | |
264 | if (queue->type != PURGEABLE_Q_TYPE_OBSOLETE) { | |
265 | tokens[token].count = queue->new_pages; | |
266 | } else { | |
267 | tokens[token].count = 0; /* all obsolete items are | |
268 | * ripe immediately */ | |
269 | } | |
270 | queue->new_pages = 0; | |
271 | ||
272 | /* put token on token counter list */ | |
273 | tokens[token].next = 0; | |
274 | if (queue->token_q_tail == 0) { | |
275 | assert(queue->token_q_head == 0 && queue->token_q_unripe == 0); | |
276 | queue->token_q_head = token; | |
277 | tokens[token].prev = 0; | |
278 | } else { | |
279 | tokens[queue->token_q_tail].next = token; | |
280 | tokens[token].prev = queue->token_q_tail; | |
281 | } | |
282 | if (queue->token_q_unripe == 0) { /* only ripe tokens (token | |
283 | * count == 0) in queue */ | |
284 | if (tokens[token].count > 0) { | |
285 | queue->token_q_unripe = token; /* first unripe token */ | |
286 | } else { | |
287 | available_for_purge++; /* added a ripe token? | |
288 | * increase available count */ | |
289 | } | |
290 | } | |
291 | queue->token_q_tail = token; | |
292 | ||
293 | #if MACH_ASSERT | |
294 | queue->debug_count_tokens++; | |
295 | /* Check both queues, since we modified the new_pages count on each */ | |
296 | vm_purgeable_token_check_queue(&purgeable_queues[PURGEABLE_Q_TYPE_FIFO]); | |
297 | vm_purgeable_token_check_queue(&purgeable_queues[PURGEABLE_Q_TYPE_LIFO]); | |
298 | ||
299 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, TOKEN_ADD)), | |
300 | queue->type, | |
301 | tokens[token].count, /* num pages on token | |
302 | * (last token) */ | |
303 | queue->debug_count_tokens, | |
304 | 0, | |
305 | 0); | |
306 | #endif | |
307 | ||
308 | return KERN_SUCCESS; | |
309 | } | |
310 | ||
311 | /* | |
312 | * Remove first token from queue and return its index. Add its count to the | |
313 | * count of the next token. | |
314 | * Call with page queue locked. | |
315 | */ | |
316 | static token_idx_t | |
317 | vm_purgeable_token_remove_first(purgeable_q_t queue) | |
318 | { | |
319 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
320 | ||
321 | token_idx_t token; | |
322 | token = queue->token_q_head; | |
323 | ||
324 | assert(token); | |
325 | ||
326 | if (token) { | |
327 | assert(queue->token_q_tail); | |
328 | if (queue->token_q_head == queue->token_q_unripe) { | |
329 | /* no ripe tokens... must move unripe pointer */ | |
330 | queue->token_q_unripe = tokens[token].next; | |
331 | } else { | |
332 | /* we're removing a ripe token. decrease count */ | |
333 | available_for_purge--; | |
334 | assert(available_for_purge >= 0); | |
335 | } | |
336 | ||
337 | if (queue->token_q_tail == queue->token_q_head) { | |
338 | assert(tokens[token].next == 0); | |
339 | } | |
340 | ||
341 | queue->token_q_head = tokens[token].next; | |
342 | if (queue->token_q_head) { | |
343 | tokens[queue->token_q_head].count += tokens[token].count; | |
344 | tokens[queue->token_q_head].prev = 0; | |
345 | } else { | |
346 | /* currently no other tokens in the queue */ | |
347 | /* | |
348 | * the page count must be added to the next newly | |
349 | * created token | |
350 | */ | |
351 | queue->new_pages += tokens[token].count; | |
352 | /* if head is zero, tail is too */ | |
353 | queue->token_q_tail = 0; | |
354 | } | |
355 | ||
356 | #if MACH_ASSERT | |
357 | queue->debug_count_tokens--; | |
358 | vm_purgeable_token_check_queue(queue); | |
359 | ||
360 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, TOKEN_DELETE)), | |
361 | queue->type, | |
362 | tokens[queue->token_q_head].count, /* num pages on new | |
363 | * first token */ | |
364 | token_new_pagecount, /* num pages waiting for | |
365 | * next token */ | |
366 | available_for_purge, | |
367 | 0); | |
368 | #endif | |
369 | } | |
370 | return token; | |
371 | } | |
372 | ||
373 | static token_idx_t | |
374 | vm_purgeable_token_remove_last(purgeable_q_t queue) | |
375 | { | |
376 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
377 | ||
378 | token_idx_t token; | |
379 | token = queue->token_q_tail; | |
380 | ||
381 | assert(token); | |
382 | ||
383 | if (token) { | |
384 | assert(queue->token_q_head); | |
385 | ||
386 | if (queue->token_q_tail == queue->token_q_head) { | |
387 | assert(tokens[token].next == 0); | |
388 | } | |
389 | ||
390 | if (queue->token_q_unripe == 0) { | |
391 | /* we're removing a ripe token. decrease count */ | |
392 | available_for_purge--; | |
393 | assert(available_for_purge >= 0); | |
394 | } else if (queue->token_q_unripe == token) { | |
395 | /* we're removing the only unripe token */ | |
396 | queue->token_q_unripe = 0; | |
397 | } | |
398 | ||
399 | if (token == queue->token_q_head) { | |
400 | /* token is the last one in the queue */ | |
401 | queue->token_q_head = 0; | |
402 | queue->token_q_tail = 0; | |
403 | } else { | |
404 | token_idx_t new_tail; | |
405 | ||
406 | new_tail = tokens[token].prev; | |
407 | ||
408 | assert(new_tail); | |
409 | assert(tokens[new_tail].next == token); | |
410 | ||
411 | queue->token_q_tail = new_tail; | |
412 | tokens[new_tail].next = 0; | |
413 | } | |
414 | ||
415 | queue->new_pages += tokens[token].count; | |
416 | ||
417 | #if MACH_ASSERT | |
418 | queue->debug_count_tokens--; | |
419 | vm_purgeable_token_check_queue(queue); | |
420 | ||
421 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, TOKEN_DELETE)), | |
422 | queue->type, | |
423 | tokens[queue->token_q_head].count, /* num pages on new | |
424 | * first token */ | |
425 | token_new_pagecount, /* num pages waiting for | |
426 | * next token */ | |
427 | available_for_purge, | |
428 | 0); | |
429 | #endif | |
430 | } | |
431 | return token; | |
432 | } | |
433 | ||
434 | /* | |
435 | * Delete first token from queue. Return token to token queue. | |
436 | * Call with page queue locked. | |
437 | */ | |
438 | void | |
439 | vm_purgeable_token_delete_first(purgeable_q_t queue) | |
440 | { | |
441 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
442 | token_idx_t token = vm_purgeable_token_remove_first(queue); | |
443 | ||
444 | if (token) { | |
445 | /* stick removed token on free queue */ | |
446 | tokens[token].next = token_free_idx; | |
447 | tokens[token].prev = 0; | |
448 | token_free_idx = token; | |
449 | } | |
450 | } | |
451 | ||
452 | void | |
453 | vm_purgeable_token_delete_last(purgeable_q_t queue) | |
454 | { | |
455 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
456 | token_idx_t token = vm_purgeable_token_remove_last(queue); | |
457 | ||
458 | if (token) { | |
459 | /* stick removed token on free queue */ | |
460 | tokens[token].next = token_free_idx; | |
461 | tokens[token].prev = 0; | |
462 | token_free_idx = token; | |
463 | } | |
464 | } | |
465 | ||
466 | ||
467 | /* Call with page queue locked. */ | |
468 | void | |
469 | vm_purgeable_q_advance_all() | |
470 | { | |
471 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
472 | ||
473 | /* check queue counters - if they get really large, scale them back. | |
474 | * They tend to get that large when there is no purgeable queue action */ | |
475 | int i; | |
476 | if (token_new_pagecount > (TOKEN_NEW_PAGECOUNT_MAX >> 1)) { /* a system idling years might get there */ | |
477 | for (i = PURGEABLE_Q_TYPE_FIFO; i < PURGEABLE_Q_TYPE_MAX; i++) { | |
478 | int64_t pages = purgeable_queues[i].new_pages += token_new_pagecount; | |
479 | assert(pages >= 0); | |
480 | assert(pages <= TOKEN_COUNT_MAX); | |
481 | purgeable_queues[i].new_pages = (int32_t) pages; | |
482 | assert(purgeable_queues[i].new_pages == pages); | |
483 | } | |
484 | token_new_pagecount = 0; | |
485 | } | |
486 | ||
487 | /* | |
488 | * Decrement token counters. A token counter can be zero, this means the | |
489 | * object is ripe to be purged. It is not purged immediately, because that | |
490 | * could cause several objects to be purged even if purging one would satisfy | |
491 | * the memory needs. Instead, the pageout thread purges one after the other | |
492 | * by calling vm_purgeable_object_purge_one and then rechecking the memory | |
493 | * balance. | |
494 | * | |
495 | * No need to advance obsolete queue - all items are ripe there, | |
496 | * always | |
497 | */ | |
498 | for (i = PURGEABLE_Q_TYPE_FIFO; i < PURGEABLE_Q_TYPE_MAX; i++) { | |
499 | purgeable_q_t queue = &purgeable_queues[i]; | |
500 | uint32_t num_pages = 1; | |
501 | ||
502 | /* Iterate over tokens as long as there are unripe tokens. */ | |
503 | while (queue->token_q_unripe) { | |
504 | if (tokens[queue->token_q_unripe].count && num_pages) { | |
505 | tokens[queue->token_q_unripe].count -= 1; | |
506 | num_pages -= 1; | |
507 | } | |
508 | ||
509 | if (tokens[queue->token_q_unripe].count == 0) { | |
510 | queue->token_q_unripe = tokens[queue->token_q_unripe].next; | |
511 | available_for_purge++; | |
512 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, TOKEN_RIPEN)), | |
513 | queue->type, | |
514 | tokens[queue->token_q_head].count, /* num pages on new | |
515 | * first token */ | |
516 | 0, | |
517 | available_for_purge, | |
518 | 0); | |
519 | continue; /* One token ripened. Make sure to | |
520 | * check the next. */ | |
521 | } | |
522 | if (num_pages == 0) { | |
523 | break; /* Current token not ripe and no more pages. | |
524 | * Work done. */ | |
525 | } | |
526 | } | |
527 | ||
528 | /* | |
529 | * if there are no unripe tokens in the queue, decrement the | |
530 | * new_pages counter instead new_pages can be negative, but must be | |
531 | * canceled out by token_new_pagecount -- since inactive queue as a | |
532 | * whole always contains a nonnegative number of pages | |
533 | */ | |
534 | if (!queue->token_q_unripe) { | |
535 | queue->new_pages -= num_pages; | |
536 | assert((int32_t) token_new_pagecount + queue->new_pages >= 0); | |
537 | } | |
538 | #if MACH_ASSERT | |
539 | vm_purgeable_token_check_queue(queue); | |
540 | #endif | |
541 | } | |
542 | } | |
543 | ||
544 | /* | |
545 | * grab any ripe object and purge it obsolete queue first. then, go through | |
546 | * each volatile group. Select a queue with a ripe token. | |
547 | * Start with first group (0) | |
548 | * 1. Look at queue. Is there an object? | |
549 | * Yes - purge it. Remove token. | |
550 | * No - check other queue. Is there an object? | |
551 | * No - increment group, then go to (1) | |
552 | * Yes - purge it. Remove token. If there is no ripe token, remove ripe | |
553 | * token from other queue and migrate unripe token from this | |
554 | * queue to other queue. | |
555 | * Call with page queue locked. | |
556 | */ | |
557 | static void | |
558 | vm_purgeable_token_remove_ripe(purgeable_q_t queue) | |
559 | { | |
560 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
561 | assert(queue->token_q_head && tokens[queue->token_q_head].count == 0); | |
562 | /* return token to free list. advance token list. */ | |
563 | token_idx_t new_head = tokens[queue->token_q_head].next; | |
564 | tokens[queue->token_q_head].next = token_free_idx; | |
565 | tokens[queue->token_q_head].prev = 0; | |
566 | token_free_idx = queue->token_q_head; | |
567 | queue->token_q_head = new_head; | |
568 | tokens[new_head].prev = 0; | |
569 | if (new_head == 0) { | |
570 | queue->token_q_tail = 0; | |
571 | } | |
572 | ||
573 | #if MACH_ASSERT | |
574 | queue->debug_count_tokens--; | |
575 | vm_purgeable_token_check_queue(queue); | |
576 | #endif | |
577 | ||
578 | available_for_purge--; | |
579 | assert(available_for_purge >= 0); | |
580 | } | |
581 | ||
582 | /* | |
583 | * Delete a ripe token from the given queue. If there are no ripe tokens on | |
584 | * that queue, delete a ripe token from queue2, and migrate an unripe token | |
585 | * from queue to queue2 | |
586 | * Call with page queue locked. | |
587 | */ | |
588 | static void | |
589 | vm_purgeable_token_choose_and_delete_ripe(purgeable_q_t queue, purgeable_q_t queue2) | |
590 | { | |
591 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
592 | assert(queue->token_q_head); | |
593 | ||
594 | if (tokens[queue->token_q_head].count == 0) { | |
595 | /* This queue has a ripe token. Remove. */ | |
596 | vm_purgeable_token_remove_ripe(queue); | |
597 | } else { | |
598 | assert(queue2); | |
599 | /* | |
600 | * queue2 must have a ripe token. Remove, and migrate one | |
601 | * from queue to queue2. | |
602 | */ | |
603 | vm_purgeable_token_remove_ripe(queue2); | |
604 | /* migrate unripe token */ | |
605 | token_idx_t token; | |
606 | token_cnt_t count; | |
607 | ||
608 | /* remove token from queue1 */ | |
609 | assert(queue->token_q_unripe == queue->token_q_head); /* queue1 had no unripe | |
610 | * tokens, remember? */ | |
611 | token = vm_purgeable_token_remove_first(queue); | |
612 | assert(token); | |
613 | ||
614 | count = tokens[token].count; | |
615 | ||
616 | /* migrate to queue2 */ | |
617 | /* go to migration target loc */ | |
618 | ||
619 | token_idx_t token_to_insert_before = queue2->token_q_head, token_to_insert_after; | |
620 | ||
621 | while (token_to_insert_before != 0 && count > tokens[token_to_insert_before].count) { | |
622 | count -= tokens[token_to_insert_before].count; | |
623 | token_to_insert_before = tokens[token_to_insert_before].next; | |
624 | } | |
625 | ||
626 | /* token_to_insert_before is now set correctly */ | |
627 | ||
628 | /* should the inserted token become the first unripe token? */ | |
629 | if ((token_to_insert_before == queue2->token_q_unripe) || (queue2->token_q_unripe == 0)) { | |
630 | queue2->token_q_unripe = token; /* if so, must update unripe pointer */ | |
631 | } | |
632 | /* | |
633 | * insert token. | |
634 | * if inserting at end, reduce new_pages by that value; | |
635 | * otherwise, reduce counter of next token | |
636 | */ | |
637 | ||
638 | tokens[token].count = count; | |
639 | ||
640 | if (token_to_insert_before != 0) { | |
641 | token_to_insert_after = tokens[token_to_insert_before].prev; | |
642 | ||
643 | tokens[token].next = token_to_insert_before; | |
644 | tokens[token_to_insert_before].prev = token; | |
645 | ||
646 | assert(tokens[token_to_insert_before].count >= count); | |
647 | tokens[token_to_insert_before].count -= count; | |
648 | } else { | |
649 | /* if we ran off the end of the list, the token to insert after is the tail */ | |
650 | token_to_insert_after = queue2->token_q_tail; | |
651 | ||
652 | tokens[token].next = 0; | |
653 | queue2->token_q_tail = token; | |
654 | ||
655 | assert(queue2->new_pages >= (int32_t) count); | |
656 | queue2->new_pages -= count; | |
657 | } | |
658 | ||
659 | if (token_to_insert_after != 0) { | |
660 | tokens[token].prev = token_to_insert_after; | |
661 | tokens[token_to_insert_after].next = token; | |
662 | } else { | |
663 | /* is this case possible? */ | |
664 | tokens[token].prev = 0; | |
665 | queue2->token_q_head = token; | |
666 | } | |
667 | ||
668 | #if MACH_ASSERT | |
669 | queue2->debug_count_tokens++; | |
670 | vm_purgeable_token_check_queue(queue2); | |
671 | #endif | |
672 | } | |
673 | } | |
674 | ||
675 | /* Find an object that can be locked. Returns locked object. */ | |
676 | /* Call with purgeable queue locked. */ | |
677 | static vm_object_t | |
678 | vm_purgeable_object_find_and_lock( | |
679 | purgeable_q_t queue, | |
680 | int group, | |
681 | boolean_t pick_ripe) | |
682 | { | |
683 | vm_object_t object, best_object; | |
684 | int object_task_importance; | |
685 | int best_object_task_importance; | |
686 | int best_object_skipped; | |
687 | int num_objects_skipped; | |
688 | int try_lock_failed = 0; | |
689 | int try_lock_succeeded = 0; | |
690 | task_t owner; | |
691 | ||
692 | best_object = VM_OBJECT_NULL; | |
693 | best_object_task_importance = INT_MAX; | |
694 | ||
695 | LCK_MTX_ASSERT(&vm_purgeable_queue_lock, LCK_MTX_ASSERT_OWNED); | |
696 | /* | |
697 | * Usually we would pick the first element from a queue. However, we | |
698 | * might not be able to get a lock on it, in which case we try the | |
699 | * remaining elements in order. | |
700 | */ | |
701 | ||
702 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (MACHDBG_CODE(DBG_MACH_VM, OBJECT_PURGE_LOOP) | DBG_FUNC_START), | |
703 | pick_ripe, | |
704 | group, | |
705 | VM_KERNEL_UNSLIDE_OR_PERM(queue), | |
706 | 0, | |
707 | 0); | |
708 | ||
709 | num_objects_skipped = 0; | |
710 | for (object = (vm_object_t) queue_first(&queue->objq[group]); | |
711 | !queue_end(&queue->objq[group], (queue_entry_t) object); | |
712 | object = (vm_object_t) queue_next(&object->objq), | |
713 | num_objects_skipped++) { | |
714 | /* | |
715 | * To prevent us looping for an excessively long time, choose | |
716 | * the best object we've seen after looking at PURGEABLE_LOOP_MAX elements. | |
717 | * If we haven't seen an eligible object after PURGEABLE_LOOP_MAX elements, | |
718 | * we keep going until we find the first eligible object. | |
719 | */ | |
720 | if ((num_objects_skipped >= PURGEABLE_LOOP_MAX) && (best_object != NULL)) { | |
721 | break; | |
722 | } | |
723 | ||
724 | if (pick_ripe && | |
725 | !object->purgeable_when_ripe) { | |
726 | /* we want an object that has a ripe token */ | |
727 | continue; | |
728 | } | |
729 | ||
730 | object_task_importance = 0; | |
731 | ||
732 | /* | |
733 | * We don't want to use VM_OBJECT_OWNER() here: we want to | |
734 | * distinguish kernel-owned and disowned objects. | |
735 | * Disowned objects have no owner and will have no importance... | |
736 | */ | |
737 | owner = object->vo_owner; | |
738 | if (owner != NULL && owner != VM_OBJECT_OWNER_DISOWNED) { | |
739 | #if CONFIG_EMBEDDED | |
740 | #if CONFIG_JETSAM | |
741 | object_task_importance = proc_get_memstat_priority((struct proc *)get_bsdtask_info(owner), TRUE); | |
742 | #endif /* CONFIG_JETSAM */ | |
743 | #else /* CONFIG_EMBEDDED */ | |
744 | object_task_importance = task_importance_estimate(owner); | |
745 | #endif /* CONFIG_EMBEDDED */ | |
746 | } | |
747 | ||
748 | if (object_task_importance < best_object_task_importance) { | |
749 | if (vm_object_lock_try(object)) { | |
750 | try_lock_succeeded++; | |
751 | if (best_object != VM_OBJECT_NULL) { | |
752 | /* forget about previous best object */ | |
753 | vm_object_unlock(best_object); | |
754 | } | |
755 | best_object = object; | |
756 | best_object_task_importance = object_task_importance; | |
757 | best_object_skipped = num_objects_skipped; | |
758 | if (best_object_task_importance == 0) { | |
759 | /* can't get any better: stop looking */ | |
760 | break; | |
761 | } | |
762 | } else { | |
763 | try_lock_failed++; | |
764 | } | |
765 | } | |
766 | } | |
767 | ||
768 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (MACHDBG_CODE(DBG_MACH_VM, OBJECT_PURGE_LOOP) | DBG_FUNC_END), | |
769 | num_objects_skipped, /* considered objects */ | |
770 | try_lock_failed, | |
771 | try_lock_succeeded, | |
772 | VM_KERNEL_UNSLIDE_OR_PERM(best_object), | |
773 | ((best_object == NULL) ? 0 : best_object->resident_page_count)); | |
774 | ||
775 | object = best_object; | |
776 | ||
777 | if (object == VM_OBJECT_NULL) { | |
778 | return VM_OBJECT_NULL; | |
779 | } | |
780 | ||
781 | /* Locked. Great. We'll take it. Remove and return. */ | |
782 | // printf("FOUND PURGEABLE object %p skipped %d\n", object, num_objects_skipped); | |
783 | ||
784 | vm_object_lock_assert_exclusive(object); | |
785 | ||
786 | queue_remove(&queue->objq[group], object, | |
787 | vm_object_t, objq); | |
788 | object->objq.next = NULL; | |
789 | object->objq.prev = NULL; | |
790 | object->purgeable_queue_type = PURGEABLE_Q_TYPE_MAX; | |
791 | object->purgeable_queue_group = 0; | |
792 | /* one less volatile object for this object's owner */ | |
793 | vm_purgeable_volatile_owner_update(VM_OBJECT_OWNER(object), -1); | |
794 | ||
795 | #if DEBUG | |
796 | object->vo_purgeable_volatilizer = NULL; | |
797 | #endif /* DEBUG */ | |
798 | ||
799 | /* keep queue of non-volatile objects */ | |
800 | queue_enter(&purgeable_nonvolatile_queue, object, | |
801 | vm_object_t, objq); | |
802 | assert(purgeable_nonvolatile_count >= 0); | |
803 | purgeable_nonvolatile_count++; | |
804 | assert(purgeable_nonvolatile_count > 0); | |
805 | /* one more nonvolatile object for this object's owner */ | |
806 | vm_purgeable_nonvolatile_owner_update(VM_OBJECT_OWNER(object), +1); | |
807 | ||
808 | #if MACH_ASSERT | |
809 | queue->debug_count_objects--; | |
810 | #endif | |
811 | return object; | |
812 | } | |
813 | ||
814 | /* Can be called without holding locks */ | |
815 | void | |
816 | vm_purgeable_object_purge_all(void) | |
817 | { | |
818 | enum purgeable_q_type i; | |
819 | int group; | |
820 | vm_object_t object; | |
821 | unsigned int purged_count; | |
822 | uint32_t collisions; | |
823 | ||
824 | purged_count = 0; | |
825 | collisions = 0; | |
826 | ||
827 | restart: | |
828 | lck_mtx_lock(&vm_purgeable_queue_lock); | |
829 | /* Cycle through all queues */ | |
830 | for (i = PURGEABLE_Q_TYPE_OBSOLETE; i < PURGEABLE_Q_TYPE_MAX; i++) { | |
831 | purgeable_q_t queue; | |
832 | ||
833 | queue = &purgeable_queues[i]; | |
834 | ||
835 | /* | |
836 | * Look through all groups, starting from the lowest. If | |
837 | * we find an object in that group, try to lock it (this can | |
838 | * fail). If locking is successful, we can drop the queue | |
839 | * lock, remove a token and then purge the object. | |
840 | */ | |
841 | for (group = 0; group < NUM_VOLATILE_GROUPS; group++) { | |
842 | while (!queue_empty(&queue->objq[group])) { | |
843 | object = vm_purgeable_object_find_and_lock(queue, group, FALSE); | |
844 | if (object == VM_OBJECT_NULL) { | |
845 | lck_mtx_unlock(&vm_purgeable_queue_lock); | |
846 | mutex_pause(collisions++); | |
847 | goto restart; | |
848 | } | |
849 | ||
850 | lck_mtx_unlock(&vm_purgeable_queue_lock); | |
851 | ||
852 | /* Lock the page queue here so we don't hold it | |
853 | * over the whole, legthy operation */ | |
854 | if (object->purgeable_when_ripe) { | |
855 | vm_page_lock_queues(); | |
856 | vm_purgeable_token_remove_first(queue); | |
857 | vm_page_unlock_queues(); | |
858 | } | |
859 | ||
860 | (void) vm_object_purge(object, 0); | |
861 | assert(object->purgable == VM_PURGABLE_EMPTY); | |
862 | /* no change in purgeable accounting */ | |
863 | ||
864 | vm_object_unlock(object); | |
865 | purged_count++; | |
866 | goto restart; | |
867 | } | |
868 | assert(queue->debug_count_objects >= 0); | |
869 | } | |
870 | } | |
871 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, OBJECT_PURGE_ALL)), | |
872 | purged_count, /* # of purged objects */ | |
873 | 0, | |
874 | available_for_purge, | |
875 | 0, | |
876 | 0); | |
877 | lck_mtx_unlock(&vm_purgeable_queue_lock); | |
878 | return; | |
879 | } | |
880 | ||
881 | boolean_t | |
882 | vm_purgeable_object_purge_one_unlocked( | |
883 | int force_purge_below_group) | |
884 | { | |
885 | boolean_t retval; | |
886 | ||
887 | vm_page_lock_queues(); | |
888 | retval = vm_purgeable_object_purge_one(force_purge_below_group, 0); | |
889 | vm_page_unlock_queues(); | |
890 | ||
891 | return retval; | |
892 | } | |
893 | ||
894 | boolean_t | |
895 | vm_purgeable_object_purge_one( | |
896 | int force_purge_below_group, | |
897 | int flags) | |
898 | { | |
899 | enum purgeable_q_type i; | |
900 | int group; | |
901 | vm_object_t object = 0; | |
902 | purgeable_q_t queue, queue2; | |
903 | boolean_t forced_purge; | |
904 | unsigned int resident_page_count; | |
905 | ||
906 | ||
907 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, OBJECT_PURGE)) | DBG_FUNC_START, | |
908 | force_purge_below_group, flags, 0, 0, 0); | |
909 | ||
910 | /* Need the page queue lock since we'll be changing the token queue. */ | |
911 | LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
912 | lck_mtx_lock(&vm_purgeable_queue_lock); | |
913 | ||
914 | /* Cycle through all queues */ | |
915 | for (i = PURGEABLE_Q_TYPE_OBSOLETE; i < PURGEABLE_Q_TYPE_MAX; i++) { | |
916 | queue = &purgeable_queues[i]; | |
917 | ||
918 | if (force_purge_below_group == 0) { | |
919 | /* | |
920 | * Are there any ripe tokens on this queue? If yes, | |
921 | * we'll find an object to purge there | |
922 | */ | |
923 | if (!queue->token_q_head) { | |
924 | /* no token: look at next purgeable queue */ | |
925 | continue; | |
926 | } | |
927 | ||
928 | if (tokens[queue->token_q_head].count != 0) { | |
929 | /* no ripe token: next queue */ | |
930 | continue; | |
931 | } | |
932 | } | |
933 | ||
934 | /* | |
935 | * Now look through all groups, starting from the lowest. If | |
936 | * we find an object in that group, try to lock it (this can | |
937 | * fail). If locking is successful, we can drop the queue | |
938 | * lock, remove a token and then purge the object. | |
939 | */ | |
940 | for (group = 0; group < NUM_VOLATILE_GROUPS; group++) { | |
941 | if (!queue->token_q_head || | |
942 | tokens[queue->token_q_head].count != 0) { | |
943 | /* no tokens or no ripe tokens */ | |
944 | ||
945 | if (group >= force_purge_below_group) { | |
946 | /* no more groups to force-purge */ | |
947 | break; | |
948 | } | |
949 | ||
950 | /* | |
951 | * Try and purge an object in this group | |
952 | * even though no tokens are ripe. | |
953 | */ | |
954 | if (!queue_empty(&queue->objq[group]) && | |
955 | (object = vm_purgeable_object_find_and_lock(queue, group, FALSE))) { | |
956 | lck_mtx_unlock(&vm_purgeable_queue_lock); | |
957 | if (object->purgeable_when_ripe) { | |
958 | vm_purgeable_token_delete_first(queue); | |
959 | } | |
960 | forced_purge = TRUE; | |
961 | goto purge_now; | |
962 | } | |
963 | ||
964 | /* nothing to purge in this group: next group */ | |
965 | continue; | |
966 | } | |
967 | if (!queue_empty(&queue->objq[group]) && | |
968 | (object = vm_purgeable_object_find_and_lock(queue, group, TRUE))) { | |
969 | lck_mtx_unlock(&vm_purgeable_queue_lock); | |
970 | if (object->purgeable_when_ripe) { | |
971 | vm_purgeable_token_choose_and_delete_ripe(queue, 0); | |
972 | } | |
973 | forced_purge = FALSE; | |
974 | goto purge_now; | |
975 | } | |
976 | if (i != PURGEABLE_Q_TYPE_OBSOLETE) { | |
977 | /* This is the token migration case, and it works between | |
978 | * FIFO and LIFO only */ | |
979 | queue2 = &purgeable_queues[i != PURGEABLE_Q_TYPE_FIFO ? | |
980 | PURGEABLE_Q_TYPE_FIFO : | |
981 | PURGEABLE_Q_TYPE_LIFO]; | |
982 | ||
983 | if (!queue_empty(&queue2->objq[group]) && | |
984 | (object = vm_purgeable_object_find_and_lock(queue2, group, TRUE))) { | |
985 | lck_mtx_unlock(&vm_purgeable_queue_lock); | |
986 | if (object->purgeable_when_ripe) { | |
987 | vm_purgeable_token_choose_and_delete_ripe(queue2, queue); | |
988 | } | |
989 | forced_purge = FALSE; | |
990 | goto purge_now; | |
991 | } | |
992 | } | |
993 | assert(queue->debug_count_objects >= 0); | |
994 | } | |
995 | } | |
996 | /* | |
997 | * because we have to do a try_lock on the objects which could fail, | |
998 | * we could end up with no object to purge at this time, even though | |
999 | * we have objects in a purgeable state | |
1000 | */ | |
1001 | lck_mtx_unlock(&vm_purgeable_queue_lock); | |
1002 | ||
1003 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, OBJECT_PURGE)) | DBG_FUNC_END, | |
1004 | 0, 0, available_for_purge, 0, 0); | |
1005 | ||
1006 | return FALSE; | |
1007 | ||
1008 | purge_now: | |
1009 | ||
1010 | assert(object); | |
1011 | vm_page_unlock_queues(); /* Unlock for call to vm_object_purge() */ | |
1012 | // printf("%sPURGING object %p task %p importance %d queue %d group %d force_purge_below_group %d memorystatus_vm_pressure_level %d\n", forced_purge ? "FORCED " : "", object, object->vo_owner, task_importance_estimate(object->vo_owner), i, group, force_purge_below_group, memorystatus_vm_pressure_level); | |
1013 | resident_page_count = object->resident_page_count; | |
1014 | (void) vm_object_purge(object, flags); | |
1015 | assert(object->purgable == VM_PURGABLE_EMPTY); | |
1016 | /* no change in purgeable accounting */ | |
1017 | vm_object_unlock(object); | |
1018 | vm_page_lock_queues(); | |
1019 | ||
1020 | vm_pageout_vminfo.vm_pageout_pages_purged += resident_page_count; | |
1021 | ||
1022 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, OBJECT_PURGE)) | DBG_FUNC_END, | |
1023 | VM_KERNEL_UNSLIDE_OR_PERM(object), /* purged object */ | |
1024 | resident_page_count, | |
1025 | available_for_purge, | |
1026 | 0, | |
1027 | 0); | |
1028 | ||
1029 | return TRUE; | |
1030 | } | |
1031 | ||
1032 | /* Called with object lock held */ | |
1033 | void | |
1034 | vm_purgeable_object_add(vm_object_t object, purgeable_q_t queue, int group) | |
1035 | { | |
1036 | vm_object_lock_assert_exclusive(object); | |
1037 | lck_mtx_lock(&vm_purgeable_queue_lock); | |
1038 | ||
1039 | assert(object->objq.next != NULL); | |
1040 | assert(object->objq.prev != NULL); | |
1041 | queue_remove(&purgeable_nonvolatile_queue, object, | |
1042 | vm_object_t, objq); | |
1043 | object->objq.next = NULL; | |
1044 | object->objq.prev = NULL; | |
1045 | assert(purgeable_nonvolatile_count > 0); | |
1046 | purgeable_nonvolatile_count--; | |
1047 | assert(purgeable_nonvolatile_count >= 0); | |
1048 | /* one less nonvolatile object for this object's owner */ | |
1049 | vm_purgeable_nonvolatile_owner_update(VM_OBJECT_OWNER(object), -1); | |
1050 | ||
1051 | if (queue->type == PURGEABLE_Q_TYPE_OBSOLETE) { | |
1052 | group = 0; | |
1053 | } | |
1054 | ||
1055 | if (queue->type != PURGEABLE_Q_TYPE_LIFO) { /* fifo and obsolete are | |
1056 | * fifo-queued */ | |
1057 | queue_enter(&queue->objq[group], object, vm_object_t, objq); /* last to die */ | |
1058 | } else { | |
1059 | queue_enter_first(&queue->objq[group], object, vm_object_t, objq); /* first to die */ | |
1060 | } | |
1061 | /* one more volatile object for this object's owner */ | |
1062 | vm_purgeable_volatile_owner_update(VM_OBJECT_OWNER(object), +1); | |
1063 | ||
1064 | object->purgeable_queue_type = queue->type; | |
1065 | object->purgeable_queue_group = group; | |
1066 | ||
1067 | #if DEBUG | |
1068 | assert(object->vo_purgeable_volatilizer == NULL); | |
1069 | object->vo_purgeable_volatilizer = current_task(); | |
1070 | OSBacktrace(&object->purgeable_volatilizer_bt[0], | |
1071 | ARRAY_COUNT(object->purgeable_volatilizer_bt)); | |
1072 | #endif /* DEBUG */ | |
1073 | ||
1074 | #if MACH_ASSERT | |
1075 | queue->debug_count_objects++; | |
1076 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, OBJECT_ADD)), | |
1077 | 0, | |
1078 | tokens[queue->token_q_head].count, | |
1079 | queue->type, | |
1080 | group, | |
1081 | 0); | |
1082 | #endif | |
1083 | ||
1084 | lck_mtx_unlock(&vm_purgeable_queue_lock); | |
1085 | } | |
1086 | ||
1087 | /* Look for object. If found, remove from purgeable queue. */ | |
1088 | /* Called with object lock held */ | |
1089 | purgeable_q_t | |
1090 | vm_purgeable_object_remove(vm_object_t object) | |
1091 | { | |
1092 | int group; | |
1093 | enum purgeable_q_type type; | |
1094 | purgeable_q_t queue; | |
1095 | ||
1096 | vm_object_lock_assert_exclusive(object); | |
1097 | ||
1098 | type = object->purgeable_queue_type; | |
1099 | group = object->purgeable_queue_group; | |
1100 | ||
1101 | if (type == PURGEABLE_Q_TYPE_MAX) { | |
1102 | if (object->objq.prev || object->objq.next) { | |
1103 | panic("unmarked object on purgeable q"); | |
1104 | } | |
1105 | ||
1106 | return NULL; | |
1107 | } else if (!(object->objq.prev && object->objq.next)) { | |
1108 | panic("marked object not on purgeable q"); | |
1109 | } | |
1110 | ||
1111 | lck_mtx_lock(&vm_purgeable_queue_lock); | |
1112 | ||
1113 | queue = &purgeable_queues[type]; | |
1114 | ||
1115 | queue_remove(&queue->objq[group], object, vm_object_t, objq); | |
1116 | object->objq.next = NULL; | |
1117 | object->objq.prev = NULL; | |
1118 | /* one less volatile object for this object's owner */ | |
1119 | vm_purgeable_volatile_owner_update(VM_OBJECT_OWNER(object), -1); | |
1120 | #if DEBUG | |
1121 | object->vo_purgeable_volatilizer = NULL; | |
1122 | #endif /* DEBUG */ | |
1123 | /* keep queue of non-volatile objects */ | |
1124 | if (object->alive && !object->terminating) { | |
1125 | queue_enter(&purgeable_nonvolatile_queue, object, | |
1126 | vm_object_t, objq); | |
1127 | assert(purgeable_nonvolatile_count >= 0); | |
1128 | purgeable_nonvolatile_count++; | |
1129 | assert(purgeable_nonvolatile_count > 0); | |
1130 | /* one more nonvolatile object for this object's owner */ | |
1131 | vm_purgeable_nonvolatile_owner_update(VM_OBJECT_OWNER(object), +1); | |
1132 | } | |
1133 | ||
1134 | #if MACH_ASSERT | |
1135 | queue->debug_count_objects--; | |
1136 | KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, OBJECT_REMOVE)), | |
1137 | 0, | |
1138 | tokens[queue->token_q_head].count, | |
1139 | queue->type, | |
1140 | group, | |
1141 | 0); | |
1142 | #endif | |
1143 | ||
1144 | lck_mtx_unlock(&vm_purgeable_queue_lock); | |
1145 | ||
1146 | object->purgeable_queue_type = PURGEABLE_Q_TYPE_MAX; | |
1147 | object->purgeable_queue_group = 0; | |
1148 | ||
1149 | vm_object_lock_assert_exclusive(object); | |
1150 | ||
1151 | return &purgeable_queues[type]; | |
1152 | } | |
1153 | ||
1154 | void | |
1155 | vm_purgeable_stats_helper(vm_purgeable_stat_t *stat, purgeable_q_t queue, int group, task_t target_task) | |
1156 | { | |
1157 | LCK_MTX_ASSERT(&vm_purgeable_queue_lock, LCK_MTX_ASSERT_OWNED); | |
1158 | ||
1159 | stat->count = stat->size = 0; | |
1160 | vm_object_t object; | |
1161 | for (object = (vm_object_t) queue_first(&queue->objq[group]); | |
1162 | !queue_end(&queue->objq[group], (queue_entry_t) object); | |
1163 | object = (vm_object_t) queue_next(&object->objq)) { | |
1164 | if (!target_task || VM_OBJECT_OWNER(object) == target_task) { | |
1165 | stat->count++; | |
1166 | stat->size += (object->resident_page_count * PAGE_SIZE); | |
1167 | } | |
1168 | } | |
1169 | return; | |
1170 | } | |
1171 | ||
1172 | void | |
1173 | vm_purgeable_stats(vm_purgeable_info_t info, task_t target_task) | |
1174 | { | |
1175 | purgeable_q_t queue; | |
1176 | int group; | |
1177 | ||
1178 | lck_mtx_lock(&vm_purgeable_queue_lock); | |
1179 | ||
1180 | /* Populate fifo_data */ | |
1181 | queue = &purgeable_queues[PURGEABLE_Q_TYPE_FIFO]; | |
1182 | for (group = 0; group < NUM_VOLATILE_GROUPS; group++) { | |
1183 | vm_purgeable_stats_helper(&(info->fifo_data[group]), queue, group, target_task); | |
1184 | } | |
1185 | ||
1186 | /* Populate lifo_data */ | |
1187 | queue = &purgeable_queues[PURGEABLE_Q_TYPE_LIFO]; | |
1188 | for (group = 0; group < NUM_VOLATILE_GROUPS; group++) { | |
1189 | vm_purgeable_stats_helper(&(info->lifo_data[group]), queue, group, target_task); | |
1190 | } | |
1191 | ||
1192 | /* Populate obsolete data */ | |
1193 | queue = &purgeable_queues[PURGEABLE_Q_TYPE_OBSOLETE]; | |
1194 | vm_purgeable_stats_helper(&(info->obsolete_data), queue, 0, target_task); | |
1195 | ||
1196 | lck_mtx_unlock(&vm_purgeable_queue_lock); | |
1197 | return; | |
1198 | } | |
1199 | ||
1200 | #if DEVELOPMENT || DEBUG | |
1201 | static void | |
1202 | vm_purgeable_account_volatile_queue( | |
1203 | purgeable_q_t queue, | |
1204 | int group, | |
1205 | task_t task, | |
1206 | pvm_account_info_t acnt_info) | |
1207 | { | |
1208 | vm_object_t object; | |
1209 | uint64_t compressed_count; | |
1210 | ||
1211 | for (object = (vm_object_t) queue_first(&queue->objq[group]); | |
1212 | !queue_end(&queue->objq[group], (queue_entry_t) object); | |
1213 | object = (vm_object_t) queue_next(&object->objq)) { | |
1214 | if (VM_OBJECT_OWNER(object) == task) { | |
1215 | compressed_count = vm_compressor_pager_get_count(object->pager); | |
1216 | acnt_info->pvm_volatile_compressed_count += compressed_count; | |
1217 | acnt_info->pvm_volatile_count += (object->resident_page_count - object->wired_page_count); | |
1218 | acnt_info->pvm_nonvolatile_count += object->wired_page_count; | |
1219 | } | |
1220 | } | |
1221 | } | |
1222 | ||
1223 | /* | |
1224 | * Walks the purgeable object queues and calculates the usage | |
1225 | * associated with the objects for the given task. | |
1226 | */ | |
1227 | kern_return_t | |
1228 | vm_purgeable_account( | |
1229 | task_t task, | |
1230 | pvm_account_info_t acnt_info) | |
1231 | { | |
1232 | queue_head_t *nonvolatile_q; | |
1233 | vm_object_t object; | |
1234 | int group; | |
1235 | int state; | |
1236 | uint64_t compressed_count; | |
1237 | purgeable_q_t volatile_q; | |
1238 | ||
1239 | ||
1240 | if ((task == NULL) || (acnt_info == NULL)) { | |
1241 | return KERN_INVALID_ARGUMENT; | |
1242 | } | |
1243 | ||
1244 | acnt_info->pvm_volatile_count = 0; | |
1245 | acnt_info->pvm_volatile_compressed_count = 0; | |
1246 | acnt_info->pvm_nonvolatile_count = 0; | |
1247 | acnt_info->pvm_nonvolatile_compressed_count = 0; | |
1248 | ||
1249 | lck_mtx_lock(&vm_purgeable_queue_lock); | |
1250 | ||
1251 | nonvolatile_q = &purgeable_nonvolatile_queue; | |
1252 | for (object = (vm_object_t) queue_first(nonvolatile_q); | |
1253 | !queue_end(nonvolatile_q, (queue_entry_t) object); | |
1254 | object = (vm_object_t) queue_next(&object->objq)) { | |
1255 | if (VM_OBJECT_OWNER(object) == task) { | |
1256 | state = object->purgable; | |
1257 | compressed_count = vm_compressor_pager_get_count(object->pager); | |
1258 | if (state == VM_PURGABLE_EMPTY) { | |
1259 | acnt_info->pvm_volatile_count += (object->resident_page_count - object->wired_page_count); | |
1260 | acnt_info->pvm_volatile_compressed_count += compressed_count; | |
1261 | } else { | |
1262 | acnt_info->pvm_nonvolatile_count += (object->resident_page_count - object->wired_page_count); | |
1263 | acnt_info->pvm_nonvolatile_compressed_count += compressed_count; | |
1264 | } | |
1265 | acnt_info->pvm_nonvolatile_count += object->wired_page_count; | |
1266 | } | |
1267 | } | |
1268 | ||
1269 | volatile_q = &purgeable_queues[PURGEABLE_Q_TYPE_OBSOLETE]; | |
1270 | vm_purgeable_account_volatile_queue(volatile_q, 0, task, acnt_info); | |
1271 | ||
1272 | volatile_q = &purgeable_queues[PURGEABLE_Q_TYPE_FIFO]; | |
1273 | for (group = 0; group < NUM_VOLATILE_GROUPS; group++) { | |
1274 | vm_purgeable_account_volatile_queue(volatile_q, group, task, acnt_info); | |
1275 | } | |
1276 | ||
1277 | volatile_q = &purgeable_queues[PURGEABLE_Q_TYPE_LIFO]; | |
1278 | for (group = 0; group < NUM_VOLATILE_GROUPS; group++) { | |
1279 | vm_purgeable_account_volatile_queue(volatile_q, group, task, acnt_info); | |
1280 | } | |
1281 | lck_mtx_unlock(&vm_purgeable_queue_lock); | |
1282 | ||
1283 | acnt_info->pvm_volatile_count = (acnt_info->pvm_volatile_count * PAGE_SIZE); | |
1284 | acnt_info->pvm_volatile_compressed_count = (acnt_info->pvm_volatile_compressed_count * PAGE_SIZE); | |
1285 | acnt_info->pvm_nonvolatile_count = (acnt_info->pvm_nonvolatile_count * PAGE_SIZE); | |
1286 | acnt_info->pvm_nonvolatile_compressed_count = (acnt_info->pvm_nonvolatile_compressed_count * PAGE_SIZE); | |
1287 | ||
1288 | return KERN_SUCCESS; | |
1289 | } | |
1290 | #endif /* DEVELOPMENT || DEBUG */ | |
1291 | ||
1292 | static uint64_t | |
1293 | vm_purgeable_queue_purge_task_owned( | |
1294 | purgeable_q_t queue, | |
1295 | int group, | |
1296 | task_t task) | |
1297 | { | |
1298 | vm_object_t object = VM_OBJECT_NULL; | |
1299 | int collisions = 0; | |
1300 | uint64_t num_pages_purged = 0; | |
1301 | ||
1302 | num_pages_purged = 0; | |
1303 | collisions = 0; | |
1304 | ||
1305 | look_again: | |
1306 | lck_mtx_lock(&vm_purgeable_queue_lock); | |
1307 | ||
1308 | for (object = (vm_object_t) queue_first(&queue->objq[group]); | |
1309 | !queue_end(&queue->objq[group], (queue_entry_t) object); | |
1310 | object = (vm_object_t) queue_next(&object->objq)) { | |
1311 | if (object->vo_owner != task) { | |
1312 | continue; | |
1313 | } | |
1314 | ||
1315 | /* found an object: try and grab it */ | |
1316 | if (!vm_object_lock_try(object)) { | |
1317 | lck_mtx_unlock(&vm_purgeable_queue_lock); | |
1318 | mutex_pause(collisions++); | |
1319 | goto look_again; | |
1320 | } | |
1321 | /* got it ! */ | |
1322 | ||
1323 | collisions = 0; | |
1324 | ||
1325 | /* remove object from purgeable queue */ | |
1326 | queue_remove(&queue->objq[group], object, | |
1327 | vm_object_t, objq); | |
1328 | object->objq.next = NULL; | |
1329 | object->objq.prev = NULL; | |
1330 | object->purgeable_queue_type = PURGEABLE_Q_TYPE_MAX; | |
1331 | object->purgeable_queue_group = 0; | |
1332 | /* one less volatile object for this object's owner */ | |
1333 | assert(object->vo_owner == task); | |
1334 | vm_purgeable_volatile_owner_update(task, -1); | |
1335 | ||
1336 | #if DEBUG | |
1337 | object->vo_purgeable_volatilizer = NULL; | |
1338 | #endif /* DEBUG */ | |
1339 | queue_enter(&purgeable_nonvolatile_queue, object, | |
1340 | vm_object_t, objq); | |
1341 | assert(purgeable_nonvolatile_count >= 0); | |
1342 | purgeable_nonvolatile_count++; | |
1343 | assert(purgeable_nonvolatile_count > 0); | |
1344 | /* one more nonvolatile object for this object's owner */ | |
1345 | assert(object->vo_owner == task); | |
1346 | vm_purgeable_nonvolatile_owner_update(task, +1); | |
1347 | ||
1348 | /* unlock purgeable queues */ | |
1349 | lck_mtx_unlock(&vm_purgeable_queue_lock); | |
1350 | ||
1351 | if (object->purgeable_when_ripe) { | |
1352 | /* remove a token */ | |
1353 | vm_page_lock_queues(); | |
1354 | vm_purgeable_token_remove_first(queue); | |
1355 | vm_page_unlock_queues(); | |
1356 | } | |
1357 | ||
1358 | /* purge the object */ | |
1359 | num_pages_purged += vm_object_purge(object, 0); | |
1360 | ||
1361 | assert(object->purgable == VM_PURGABLE_EMPTY); | |
1362 | /* no change for purgeable accounting */ | |
1363 | vm_object_unlock(object); | |
1364 | ||
1365 | /* we unlocked the purgeable queues, so start over */ | |
1366 | goto look_again; | |
1367 | } | |
1368 | ||
1369 | lck_mtx_unlock(&vm_purgeable_queue_lock); | |
1370 | ||
1371 | return num_pages_purged; | |
1372 | } | |
1373 | ||
1374 | uint64_t | |
1375 | vm_purgeable_purge_task_owned( | |
1376 | task_t task) | |
1377 | { | |
1378 | purgeable_q_t queue = NULL; | |
1379 | int group = 0; | |
1380 | uint64_t num_pages_purged = 0; | |
1381 | ||
1382 | num_pages_purged = 0; | |
1383 | ||
1384 | queue = &purgeable_queues[PURGEABLE_Q_TYPE_OBSOLETE]; | |
1385 | num_pages_purged += vm_purgeable_queue_purge_task_owned(queue, | |
1386 | 0, | |
1387 | task); | |
1388 | ||
1389 | queue = &purgeable_queues[PURGEABLE_Q_TYPE_FIFO]; | |
1390 | for (group = 0; group < NUM_VOLATILE_GROUPS; group++) { | |
1391 | num_pages_purged += vm_purgeable_queue_purge_task_owned(queue, | |
1392 | group, | |
1393 | task); | |
1394 | } | |
1395 | ||
1396 | queue = &purgeable_queues[PURGEABLE_Q_TYPE_LIFO]; | |
1397 | for (group = 0; group < NUM_VOLATILE_GROUPS; group++) { | |
1398 | num_pages_purged += vm_purgeable_queue_purge_task_owned(queue, | |
1399 | group, | |
1400 | task); | |
1401 | } | |
1402 | ||
1403 | return num_pages_purged; | |
1404 | } | |
1405 | ||
1406 | void | |
1407 | vm_purgeable_nonvolatile_enqueue( | |
1408 | vm_object_t object, | |
1409 | task_t owner) | |
1410 | { | |
1411 | int ledger_flags; | |
1412 | kern_return_t kr; | |
1413 | ||
1414 | vm_object_lock_assert_exclusive(object); | |
1415 | ||
1416 | assert(object->purgable == VM_PURGABLE_NONVOLATILE); | |
1417 | assert(object->vo_owner == NULL); | |
1418 | ||
1419 | lck_mtx_lock(&vm_purgeable_queue_lock); | |
1420 | ||
1421 | if (owner != NULL && | |
1422 | owner->task_objects_disowning) { | |
1423 | /* task is exiting and no longer tracking purgeable objects */ | |
1424 | owner = VM_OBJECT_OWNER_DISOWNED; | |
1425 | } | |
1426 | if (owner == NULL) { | |
1427 | owner = kernel_task; | |
1428 | } | |
1429 | #if DEBUG | |
1430 | OSBacktrace(&object->purgeable_owner_bt[0], | |
1431 | ARRAY_COUNT(object->purgeable_owner_bt)); | |
1432 | object->vo_purgeable_volatilizer = NULL; | |
1433 | #endif /* DEBUG */ | |
1434 | ||
1435 | ledger_flags = 0; | |
1436 | if (object->vo_no_footprint) { | |
1437 | ledger_flags |= VM_LEDGER_FLAG_NO_FOOTPRINT; | |
1438 | } | |
1439 | kr = vm_object_ownership_change(object, | |
1440 | object->vo_ledger_tag, /* tag unchanged */ | |
1441 | owner, | |
1442 | ledger_flags, | |
1443 | FALSE); /* task_objq_locked */ | |
1444 | assert(kr == KERN_SUCCESS); | |
1445 | ||
1446 | assert(object->objq.next == NULL); | |
1447 | assert(object->objq.prev == NULL); | |
1448 | ||
1449 | queue_enter(&purgeable_nonvolatile_queue, object, | |
1450 | vm_object_t, objq); | |
1451 | assert(purgeable_nonvolatile_count >= 0); | |
1452 | purgeable_nonvolatile_count++; | |
1453 | assert(purgeable_nonvolatile_count > 0); | |
1454 | lck_mtx_unlock(&vm_purgeable_queue_lock); | |
1455 | ||
1456 | vm_object_lock_assert_exclusive(object); | |
1457 | } | |
1458 | ||
1459 | void | |
1460 | vm_purgeable_nonvolatile_dequeue( | |
1461 | vm_object_t object) | |
1462 | { | |
1463 | task_t owner; | |
1464 | kern_return_t kr; | |
1465 | ||
1466 | vm_object_lock_assert_exclusive(object); | |
1467 | ||
1468 | owner = VM_OBJECT_OWNER(object); | |
1469 | #if DEBUG | |
1470 | assert(object->vo_purgeable_volatilizer == NULL); | |
1471 | #endif /* DEBUG */ | |
1472 | if (owner != NULL) { | |
1473 | /* | |
1474 | * Update the owner's ledger to stop accounting | |
1475 | * for this object. | |
1476 | */ | |
1477 | /* transfer ownership to the kernel */ | |
1478 | assert(VM_OBJECT_OWNER(object) != kernel_task); | |
1479 | kr = vm_object_ownership_change( | |
1480 | object, | |
1481 | object->vo_ledger_tag, /* unchanged */ | |
1482 | VM_OBJECT_OWNER_DISOWNED, /* new owner */ | |
1483 | 0, /* ledger_flags */ | |
1484 | FALSE); /* old_owner->task_objq locked */ | |
1485 | assert(kr == KERN_SUCCESS); | |
1486 | assert(object->vo_owner == VM_OBJECT_OWNER_DISOWNED); | |
1487 | } | |
1488 | ||
1489 | lck_mtx_lock(&vm_purgeable_queue_lock); | |
1490 | assert(object->objq.next != NULL); | |
1491 | assert(object->objq.prev != NULL); | |
1492 | queue_remove(&purgeable_nonvolatile_queue, object, | |
1493 | vm_object_t, objq); | |
1494 | object->objq.next = NULL; | |
1495 | object->objq.prev = NULL; | |
1496 | assert(purgeable_nonvolatile_count > 0); | |
1497 | purgeable_nonvolatile_count--; | |
1498 | assert(purgeable_nonvolatile_count >= 0); | |
1499 | lck_mtx_unlock(&vm_purgeable_queue_lock); | |
1500 | ||
1501 | vm_object_lock_assert_exclusive(object); | |
1502 | } | |
1503 | ||
1504 | void | |
1505 | vm_purgeable_accounting( | |
1506 | vm_object_t object, | |
1507 | vm_purgable_t old_state) | |
1508 | { | |
1509 | task_t owner; | |
1510 | int resident_page_count; | |
1511 | int wired_page_count; | |
1512 | int compressed_page_count; | |
1513 | int ledger_idx_volatile; | |
1514 | int ledger_idx_nonvolatile; | |
1515 | int ledger_idx_volatile_compressed; | |
1516 | int ledger_idx_nonvolatile_compressed; | |
1517 | boolean_t do_footprint; | |
1518 | ||
1519 | vm_object_lock_assert_exclusive(object); | |
1520 | assert(object->purgable != VM_PURGABLE_DENY); | |
1521 | ||
1522 | owner = VM_OBJECT_OWNER(object); | |
1523 | if (owner == NULL || | |
1524 | object->purgable == VM_PURGABLE_DENY) { | |
1525 | return; | |
1526 | } | |
1527 | ||
1528 | vm_object_ledger_tag_ledgers(object, | |
1529 | &ledger_idx_volatile, | |
1530 | &ledger_idx_nonvolatile, | |
1531 | &ledger_idx_volatile_compressed, | |
1532 | &ledger_idx_nonvolatile_compressed, | |
1533 | &do_footprint); | |
1534 | ||
1535 | resident_page_count = object->resident_page_count; | |
1536 | wired_page_count = object->wired_page_count; | |
1537 | if (VM_CONFIG_COMPRESSOR_IS_PRESENT && | |
1538 | object->pager != NULL) { | |
1539 | compressed_page_count = | |
1540 | vm_compressor_pager_get_count(object->pager); | |
1541 | } else { | |
1542 | compressed_page_count = 0; | |
1543 | } | |
1544 | ||
1545 | if (old_state == VM_PURGABLE_VOLATILE || | |
1546 | old_state == VM_PURGABLE_EMPTY) { | |
1547 | /* less volatile bytes in ledger */ | |
1548 | ledger_debit(owner->ledger, | |
1549 | ledger_idx_volatile, | |
1550 | ptoa_64(resident_page_count - wired_page_count)); | |
1551 | /* less compressed volatile bytes in ledger */ | |
1552 | ledger_debit(owner->ledger, | |
1553 | ledger_idx_volatile_compressed, | |
1554 | ptoa_64(compressed_page_count)); | |
1555 | ||
1556 | /* more non-volatile bytes in ledger */ | |
1557 | ledger_credit(owner->ledger, | |
1558 | ledger_idx_nonvolatile, | |
1559 | ptoa_64(resident_page_count - wired_page_count)); | |
1560 | /* more compressed non-volatile bytes in ledger */ | |
1561 | ledger_credit(owner->ledger, | |
1562 | ledger_idx_nonvolatile_compressed, | |
1563 | ptoa_64(compressed_page_count)); | |
1564 | if (do_footprint) { | |
1565 | /* more footprint */ | |
1566 | ledger_credit(owner->ledger, | |
1567 | task_ledgers.phys_footprint, | |
1568 | ptoa_64(resident_page_count | |
1569 | + compressed_page_count | |
1570 | - wired_page_count)); | |
1571 | } | |
1572 | } else if (old_state == VM_PURGABLE_NONVOLATILE) { | |
1573 | /* less non-volatile bytes in ledger */ | |
1574 | ledger_debit(owner->ledger, | |
1575 | ledger_idx_nonvolatile, | |
1576 | ptoa_64(resident_page_count - wired_page_count)); | |
1577 | /* less compressed non-volatile bytes in ledger */ | |
1578 | ledger_debit(owner->ledger, | |
1579 | ledger_idx_nonvolatile_compressed, | |
1580 | ptoa_64(compressed_page_count)); | |
1581 | if (do_footprint) { | |
1582 | /* less footprint */ | |
1583 | ledger_debit(owner->ledger, | |
1584 | task_ledgers.phys_footprint, | |
1585 | ptoa_64(resident_page_count | |
1586 | + compressed_page_count | |
1587 | - wired_page_count)); | |
1588 | } | |
1589 | ||
1590 | /* more volatile bytes in ledger */ | |
1591 | ledger_credit(owner->ledger, | |
1592 | ledger_idx_volatile, | |
1593 | ptoa_64(resident_page_count - wired_page_count)); | |
1594 | /* more compressed volatile bytes in ledger */ | |
1595 | ledger_credit(owner->ledger, | |
1596 | ledger_idx_volatile_compressed, | |
1597 | ptoa_64(compressed_page_count)); | |
1598 | } else { | |
1599 | panic("vm_purgeable_accounting(%p): " | |
1600 | "unexpected old_state=%d\n", | |
1601 | object, old_state); | |
1602 | } | |
1603 | ||
1604 | vm_object_lock_assert_exclusive(object); | |
1605 | } | |
1606 | ||
1607 | void | |
1608 | vm_purgeable_nonvolatile_owner_update( | |
1609 | task_t owner, | |
1610 | int delta) | |
1611 | { | |
1612 | if (owner == NULL || delta == 0) { | |
1613 | return; | |
1614 | } | |
1615 | ||
1616 | if (delta > 0) { | |
1617 | assert(owner->task_nonvolatile_objects >= 0); | |
1618 | OSAddAtomic(delta, &owner->task_nonvolatile_objects); | |
1619 | assert(owner->task_nonvolatile_objects > 0); | |
1620 | } else { | |
1621 | assert(owner->task_nonvolatile_objects > delta); | |
1622 | OSAddAtomic(delta, &owner->task_nonvolatile_objects); | |
1623 | assert(owner->task_nonvolatile_objects >= 0); | |
1624 | } | |
1625 | } | |
1626 | ||
1627 | void | |
1628 | vm_purgeable_volatile_owner_update( | |
1629 | task_t owner, | |
1630 | int delta) | |
1631 | { | |
1632 | if (owner == NULL || delta == 0) { | |
1633 | return; | |
1634 | } | |
1635 | ||
1636 | if (delta > 0) { | |
1637 | assert(owner->task_volatile_objects >= 0); | |
1638 | OSAddAtomic(delta, &owner->task_volatile_objects); | |
1639 | assert(owner->task_volatile_objects > 0); | |
1640 | } else { | |
1641 | assert(owner->task_volatile_objects > delta); | |
1642 | OSAddAtomic(delta, &owner->task_volatile_objects); | |
1643 | assert(owner->task_volatile_objects >= 0); | |
1644 | } | |
1645 | } | |
1646 | ||
1647 | void | |
1648 | vm_object_owner_compressed_update( | |
1649 | vm_object_t object, | |
1650 | int delta) | |
1651 | { | |
1652 | task_t owner; | |
1653 | int ledger_idx_volatile; | |
1654 | int ledger_idx_nonvolatile; | |
1655 | int ledger_idx_volatile_compressed; | |
1656 | int ledger_idx_nonvolatile_compressed; | |
1657 | boolean_t do_footprint; | |
1658 | ||
1659 | vm_object_lock_assert_exclusive(object); | |
1660 | ||
1661 | owner = VM_OBJECT_OWNER(object); | |
1662 | ||
1663 | if (delta == 0 || | |
1664 | !object->internal || | |
1665 | (object->purgable == VM_PURGABLE_DENY && | |
1666 | !object->vo_ledger_tag) || | |
1667 | owner == NULL) { | |
1668 | /* not an owned purgeable (or tagged) VM object: nothing to update */ | |
1669 | return; | |
1670 | } | |
1671 | ||
1672 | vm_object_ledger_tag_ledgers(object, | |
1673 | &ledger_idx_volatile, | |
1674 | &ledger_idx_nonvolatile, | |
1675 | &ledger_idx_volatile_compressed, | |
1676 | &ledger_idx_nonvolatile_compressed, | |
1677 | &do_footprint); | |
1678 | switch (object->purgable) { | |
1679 | case VM_PURGABLE_DENY: | |
1680 | /* not purgeable: must be ledger-tagged */ | |
1681 | assert(object->vo_ledger_tag != VM_LEDGER_TAG_NONE); | |
1682 | /* fallthru */ | |
1683 | case VM_PURGABLE_NONVOLATILE: | |
1684 | if (delta > 0) { | |
1685 | ledger_credit(owner->ledger, | |
1686 | ledger_idx_nonvolatile_compressed, | |
1687 | ptoa_64(delta)); | |
1688 | if (do_footprint) { | |
1689 | ledger_credit(owner->ledger, | |
1690 | task_ledgers.phys_footprint, | |
1691 | ptoa_64(delta)); | |
1692 | } | |
1693 | } else { | |
1694 | ledger_debit(owner->ledger, | |
1695 | ledger_idx_nonvolatile_compressed, | |
1696 | ptoa_64(-delta)); | |
1697 | if (do_footprint) { | |
1698 | ledger_debit(owner->ledger, | |
1699 | task_ledgers.phys_footprint, | |
1700 | ptoa_64(-delta)); | |
1701 | } | |
1702 | } | |
1703 | break; | |
1704 | case VM_PURGABLE_VOLATILE: | |
1705 | case VM_PURGABLE_EMPTY: | |
1706 | if (delta > 0) { | |
1707 | ledger_credit(owner->ledger, | |
1708 | ledger_idx_volatile_compressed, | |
1709 | ptoa_64(delta)); | |
1710 | } else { | |
1711 | ledger_debit(owner->ledger, | |
1712 | ledger_idx_volatile_compressed, | |
1713 | ptoa_64(-delta)); | |
1714 | } | |
1715 | break; | |
1716 | default: | |
1717 | panic("vm_purgeable_compressed_update(): " | |
1718 | "unexpected purgable %d for object %p\n", | |
1719 | object->purgable, object); | |
1720 | } | |
1721 | } |