]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2007 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | /* | |
57 | */ | |
58 | /* | |
59 | * File: vm/vm_user.c | |
60 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |
61 | * | |
62 | * User-exported virtual memory functions. | |
63 | */ | |
64 | ||
65 | /* | |
66 | * There are three implementations of the "XXX_allocate" functionality in | |
67 | * the kernel: mach_vm_allocate (for any task on the platform), vm_allocate | |
68 | * (for a task with the same address space size, especially the current task), | |
69 | * and vm32_vm_allocate (for the specific case of a 32-bit task). vm_allocate | |
70 | * in the kernel should only be used on the kernel_task. vm32_vm_allocate only | |
71 | * makes sense on platforms where a user task can either be 32 or 64, or the kernel | |
72 | * task can be 32 or 64. mach_vm_allocate makes sense everywhere, and is preferred | |
73 | * for new code. | |
74 | * | |
75 | * The entrypoints into the kernel are more complex. All platforms support a | |
76 | * mach_vm_allocate-style API (subsystem 4800) which operates with the largest | |
77 | * size types for the platform. On platforms that only support U32/K32, | |
78 | * subsystem 4800 is all you need. On platforms that support both U32 and U64, | |
79 | * subsystem 3800 is used disambiguate the size of parameters, and they will | |
80 | * always be 32-bit and call into the vm32_vm_allocate APIs. On non-U32/K32 platforms, | |
81 | * the MIG glue should never call into vm_allocate directly, because the calling | |
82 | * task and kernel_task are unlikely to use the same size parameters | |
83 | * | |
84 | * New VM call implementations should be added here and to mach_vm.defs | |
85 | * (subsystem 4800), and use mach_vm_* "wide" types. | |
86 | */ | |
87 | ||
88 | #include <debug.h> | |
89 | ||
90 | #include <vm_cpm.h> | |
91 | #include <mach/boolean.h> | |
92 | #include <mach/kern_return.h> | |
93 | #include <mach/mach_types.h> /* to get vm_address_t */ | |
94 | #include <mach/memory_object.h> | |
95 | #include <mach/std_types.h> /* to get pointer_t */ | |
96 | #include <mach/upl.h> | |
97 | #include <mach/vm_attributes.h> | |
98 | #include <mach/vm_param.h> | |
99 | #include <mach/vm_statistics.h> | |
100 | #include <mach/mach_syscalls.h> | |
101 | #include <mach/sdt.h> | |
102 | ||
103 | #include <mach/host_priv_server.h> | |
104 | #include <mach/mach_vm_server.h> | |
105 | #include <mach/vm_map_server.h> | |
106 | ||
107 | #include <kern/host.h> | |
108 | #include <kern/kalloc.h> | |
109 | #include <kern/task.h> | |
110 | #include <kern/misc_protos.h> | |
111 | #include <vm/vm_fault.h> | |
112 | #include <vm/vm_map.h> | |
113 | #include <vm/vm_object.h> | |
114 | #include <vm/vm_page.h> | |
115 | #include <vm/memory_object.h> | |
116 | #include <vm/vm_pageout.h> | |
117 | #include <vm/vm_protos.h> | |
118 | #include <vm/vm_purgeable_internal.h> | |
119 | #include <vm/vm_init.h> | |
120 | ||
121 | #include <san/kasan.h> | |
122 | ||
123 | vm_size_t upl_offset_to_pagelist = 0; | |
124 | ||
125 | #if VM_CPM | |
126 | #include <vm/cpm.h> | |
127 | #endif /* VM_CPM */ | |
128 | ||
129 | /* | |
130 | * mach_vm_allocate allocates "zero fill" memory in the specfied | |
131 | * map. | |
132 | */ | |
133 | kern_return_t | |
134 | mach_vm_allocate_external( | |
135 | vm_map_t map, | |
136 | mach_vm_offset_t *addr, | |
137 | mach_vm_size_t size, | |
138 | int flags) | |
139 | { | |
140 | vm_tag_t tag; | |
141 | ||
142 | VM_GET_FLAGS_ALIAS(flags, tag); | |
143 | return (mach_vm_allocate_kernel(map, addr, size, flags, tag)); | |
144 | } | |
145 | ||
146 | kern_return_t | |
147 | mach_vm_allocate_kernel( | |
148 | vm_map_t map, | |
149 | mach_vm_offset_t *addr, | |
150 | mach_vm_size_t size, | |
151 | int flags, | |
152 | vm_tag_t tag) | |
153 | { | |
154 | vm_map_offset_t map_addr; | |
155 | vm_map_size_t map_size; | |
156 | kern_return_t result; | |
157 | boolean_t anywhere; | |
158 | ||
159 | /* filter out any kernel-only flags */ | |
160 | if (flags & ~VM_FLAGS_USER_ALLOCATE) | |
161 | return KERN_INVALID_ARGUMENT; | |
162 | ||
163 | if (map == VM_MAP_NULL) | |
164 | return(KERN_INVALID_ARGUMENT); | |
165 | if (size == 0) { | |
166 | *addr = 0; | |
167 | return(KERN_SUCCESS); | |
168 | } | |
169 | ||
170 | anywhere = ((VM_FLAGS_ANYWHERE & flags) != 0); | |
171 | if (anywhere) { | |
172 | /* | |
173 | * No specific address requested, so start candidate address | |
174 | * search at the minimum address in the map. However, if that | |
175 | * minimum is 0, bump it up by PAGE_SIZE. We want to limit | |
176 | * allocations of PAGEZERO to explicit requests since its | |
177 | * normal use is to catch dereferences of NULL and many | |
178 | * applications also treat pointers with a value of 0 as | |
179 | * special and suddenly having address 0 contain useable | |
180 | * memory would tend to confuse those applications. | |
181 | */ | |
182 | map_addr = vm_map_min(map); | |
183 | if (map_addr == 0) | |
184 | map_addr += VM_MAP_PAGE_SIZE(map); | |
185 | } else | |
186 | map_addr = vm_map_trunc_page(*addr, | |
187 | VM_MAP_PAGE_MASK(map)); | |
188 | map_size = vm_map_round_page(size, | |
189 | VM_MAP_PAGE_MASK(map)); | |
190 | if (map_size == 0) { | |
191 | return(KERN_INVALID_ARGUMENT); | |
192 | } | |
193 | ||
194 | result = vm_map_enter( | |
195 | map, | |
196 | &map_addr, | |
197 | map_size, | |
198 | (vm_map_offset_t)0, | |
199 | flags, | |
200 | VM_MAP_KERNEL_FLAGS_NONE, | |
201 | tag, | |
202 | VM_OBJECT_NULL, | |
203 | (vm_object_offset_t)0, | |
204 | FALSE, | |
205 | VM_PROT_DEFAULT, | |
206 | VM_PROT_ALL, | |
207 | VM_INHERIT_DEFAULT); | |
208 | ||
209 | *addr = map_addr; | |
210 | return(result); | |
211 | } | |
212 | ||
213 | /* | |
214 | * vm_allocate | |
215 | * Legacy routine that allocates "zero fill" memory in the specfied | |
216 | * map (which is limited to the same size as the kernel). | |
217 | */ | |
218 | kern_return_t | |
219 | vm_allocate_external( | |
220 | vm_map_t map, | |
221 | vm_offset_t *addr, | |
222 | vm_size_t size, | |
223 | int flags) | |
224 | { | |
225 | vm_tag_t tag; | |
226 | ||
227 | VM_GET_FLAGS_ALIAS(flags, tag); | |
228 | return (vm_allocate_kernel(map, addr, size, flags, tag)); | |
229 | } | |
230 | ||
231 | kern_return_t | |
232 | vm_allocate_kernel( | |
233 | vm_map_t map, | |
234 | vm_offset_t *addr, | |
235 | vm_size_t size, | |
236 | int flags, | |
237 | vm_tag_t tag) | |
238 | { | |
239 | vm_map_offset_t map_addr; | |
240 | vm_map_size_t map_size; | |
241 | kern_return_t result; | |
242 | boolean_t anywhere; | |
243 | ||
244 | /* filter out any kernel-only flags */ | |
245 | if (flags & ~VM_FLAGS_USER_ALLOCATE) | |
246 | return KERN_INVALID_ARGUMENT; | |
247 | ||
248 | if (map == VM_MAP_NULL) | |
249 | return(KERN_INVALID_ARGUMENT); | |
250 | if (size == 0) { | |
251 | *addr = 0; | |
252 | return(KERN_SUCCESS); | |
253 | } | |
254 | ||
255 | anywhere = ((VM_FLAGS_ANYWHERE & flags) != 0); | |
256 | if (anywhere) { | |
257 | /* | |
258 | * No specific address requested, so start candidate address | |
259 | * search at the minimum address in the map. However, if that | |
260 | * minimum is 0, bump it up by PAGE_SIZE. We want to limit | |
261 | * allocations of PAGEZERO to explicit requests since its | |
262 | * normal use is to catch dereferences of NULL and many | |
263 | * applications also treat pointers with a value of 0 as | |
264 | * special and suddenly having address 0 contain useable | |
265 | * memory would tend to confuse those applications. | |
266 | */ | |
267 | map_addr = vm_map_min(map); | |
268 | if (map_addr == 0) | |
269 | map_addr += VM_MAP_PAGE_SIZE(map); | |
270 | } else | |
271 | map_addr = vm_map_trunc_page(*addr, | |
272 | VM_MAP_PAGE_MASK(map)); | |
273 | map_size = vm_map_round_page(size, | |
274 | VM_MAP_PAGE_MASK(map)); | |
275 | if (map_size == 0) { | |
276 | return(KERN_INVALID_ARGUMENT); | |
277 | } | |
278 | ||
279 | result = vm_map_enter( | |
280 | map, | |
281 | &map_addr, | |
282 | map_size, | |
283 | (vm_map_offset_t)0, | |
284 | flags, | |
285 | VM_MAP_KERNEL_FLAGS_NONE, | |
286 | tag, | |
287 | VM_OBJECT_NULL, | |
288 | (vm_object_offset_t)0, | |
289 | FALSE, | |
290 | VM_PROT_DEFAULT, | |
291 | VM_PROT_ALL, | |
292 | VM_INHERIT_DEFAULT); | |
293 | ||
294 | #if KASAN | |
295 | if (result == KERN_SUCCESS && map->pmap == kernel_pmap) { | |
296 | kasan_notify_address(map_addr, map_size); | |
297 | } | |
298 | #endif | |
299 | ||
300 | *addr = CAST_DOWN(vm_offset_t, map_addr); | |
301 | return(result); | |
302 | } | |
303 | ||
304 | /* | |
305 | * mach_vm_deallocate - | |
306 | * deallocates the specified range of addresses in the | |
307 | * specified address map. | |
308 | */ | |
309 | kern_return_t | |
310 | mach_vm_deallocate( | |
311 | vm_map_t map, | |
312 | mach_vm_offset_t start, | |
313 | mach_vm_size_t size) | |
314 | { | |
315 | if ((map == VM_MAP_NULL) || (start + size < start)) | |
316 | return(KERN_INVALID_ARGUMENT); | |
317 | ||
318 | if (size == (mach_vm_offset_t) 0) | |
319 | return(KERN_SUCCESS); | |
320 | ||
321 | return(vm_map_remove(map, | |
322 | vm_map_trunc_page(start, | |
323 | VM_MAP_PAGE_MASK(map)), | |
324 | vm_map_round_page(start+size, | |
325 | VM_MAP_PAGE_MASK(map)), | |
326 | VM_MAP_NO_FLAGS)); | |
327 | } | |
328 | ||
329 | /* | |
330 | * vm_deallocate - | |
331 | * deallocates the specified range of addresses in the | |
332 | * specified address map (limited to addresses the same | |
333 | * size as the kernel). | |
334 | */ | |
335 | kern_return_t | |
336 | vm_deallocate( | |
337 | vm_map_t map, | |
338 | vm_offset_t start, | |
339 | vm_size_t size) | |
340 | { | |
341 | if ((map == VM_MAP_NULL) || (start + size < start)) | |
342 | return(KERN_INVALID_ARGUMENT); | |
343 | ||
344 | if (size == (vm_offset_t) 0) | |
345 | return(KERN_SUCCESS); | |
346 | ||
347 | return(vm_map_remove(map, | |
348 | vm_map_trunc_page(start, | |
349 | VM_MAP_PAGE_MASK(map)), | |
350 | vm_map_round_page(start+size, | |
351 | VM_MAP_PAGE_MASK(map)), | |
352 | VM_MAP_NO_FLAGS)); | |
353 | } | |
354 | ||
355 | /* | |
356 | * mach_vm_inherit - | |
357 | * Sets the inheritance of the specified range in the | |
358 | * specified map. | |
359 | */ | |
360 | kern_return_t | |
361 | mach_vm_inherit( | |
362 | vm_map_t map, | |
363 | mach_vm_offset_t start, | |
364 | mach_vm_size_t size, | |
365 | vm_inherit_t new_inheritance) | |
366 | { | |
367 | if ((map == VM_MAP_NULL) || (start + size < start) || | |
368 | (new_inheritance > VM_INHERIT_LAST_VALID)) | |
369 | return(KERN_INVALID_ARGUMENT); | |
370 | ||
371 | if (size == 0) | |
372 | return KERN_SUCCESS; | |
373 | ||
374 | return(vm_map_inherit(map, | |
375 | vm_map_trunc_page(start, | |
376 | VM_MAP_PAGE_MASK(map)), | |
377 | vm_map_round_page(start+size, | |
378 | VM_MAP_PAGE_MASK(map)), | |
379 | new_inheritance)); | |
380 | } | |
381 | ||
382 | /* | |
383 | * vm_inherit - | |
384 | * Sets the inheritance of the specified range in the | |
385 | * specified map (range limited to addresses | |
386 | */ | |
387 | kern_return_t | |
388 | vm_inherit( | |
389 | vm_map_t map, | |
390 | vm_offset_t start, | |
391 | vm_size_t size, | |
392 | vm_inherit_t new_inheritance) | |
393 | { | |
394 | if ((map == VM_MAP_NULL) || (start + size < start) || | |
395 | (new_inheritance > VM_INHERIT_LAST_VALID)) | |
396 | return(KERN_INVALID_ARGUMENT); | |
397 | ||
398 | if (size == 0) | |
399 | return KERN_SUCCESS; | |
400 | ||
401 | return(vm_map_inherit(map, | |
402 | vm_map_trunc_page(start, | |
403 | VM_MAP_PAGE_MASK(map)), | |
404 | vm_map_round_page(start+size, | |
405 | VM_MAP_PAGE_MASK(map)), | |
406 | new_inheritance)); | |
407 | } | |
408 | ||
409 | /* | |
410 | * mach_vm_protect - | |
411 | * Sets the protection of the specified range in the | |
412 | * specified map. | |
413 | */ | |
414 | ||
415 | kern_return_t | |
416 | mach_vm_protect( | |
417 | vm_map_t map, | |
418 | mach_vm_offset_t start, | |
419 | mach_vm_size_t size, | |
420 | boolean_t set_maximum, | |
421 | vm_prot_t new_protection) | |
422 | { | |
423 | if ((map == VM_MAP_NULL) || (start + size < start) || | |
424 | (new_protection & ~(VM_PROT_ALL | VM_PROT_COPY))) | |
425 | return(KERN_INVALID_ARGUMENT); | |
426 | ||
427 | if (size == 0) | |
428 | return KERN_SUCCESS; | |
429 | ||
430 | return(vm_map_protect(map, | |
431 | vm_map_trunc_page(start, | |
432 | VM_MAP_PAGE_MASK(map)), | |
433 | vm_map_round_page(start+size, | |
434 | VM_MAP_PAGE_MASK(map)), | |
435 | new_protection, | |
436 | set_maximum)); | |
437 | } | |
438 | ||
439 | /* | |
440 | * vm_protect - | |
441 | * Sets the protection of the specified range in the | |
442 | * specified map. Addressability of the range limited | |
443 | * to the same size as the kernel. | |
444 | */ | |
445 | ||
446 | kern_return_t | |
447 | vm_protect( | |
448 | vm_map_t map, | |
449 | vm_offset_t start, | |
450 | vm_size_t size, | |
451 | boolean_t set_maximum, | |
452 | vm_prot_t new_protection) | |
453 | { | |
454 | if ((map == VM_MAP_NULL) || (start + size < start) || | |
455 | (new_protection & ~(VM_PROT_ALL | VM_PROT_COPY))) | |
456 | return(KERN_INVALID_ARGUMENT); | |
457 | ||
458 | if (size == 0) | |
459 | return KERN_SUCCESS; | |
460 | ||
461 | return(vm_map_protect(map, | |
462 | vm_map_trunc_page(start, | |
463 | VM_MAP_PAGE_MASK(map)), | |
464 | vm_map_round_page(start+size, | |
465 | VM_MAP_PAGE_MASK(map)), | |
466 | new_protection, | |
467 | set_maximum)); | |
468 | } | |
469 | ||
470 | /* | |
471 | * mach_vm_machine_attributes - | |
472 | * Handle machine-specific attributes for a mapping, such | |
473 | * as cachability, migrability, etc. | |
474 | */ | |
475 | kern_return_t | |
476 | mach_vm_machine_attribute( | |
477 | vm_map_t map, | |
478 | mach_vm_address_t addr, | |
479 | mach_vm_size_t size, | |
480 | vm_machine_attribute_t attribute, | |
481 | vm_machine_attribute_val_t* value) /* IN/OUT */ | |
482 | { | |
483 | if ((map == VM_MAP_NULL) || (addr + size < addr)) | |
484 | return(KERN_INVALID_ARGUMENT); | |
485 | ||
486 | if (size == 0) | |
487 | return KERN_SUCCESS; | |
488 | ||
489 | return vm_map_machine_attribute( | |
490 | map, | |
491 | vm_map_trunc_page(addr, | |
492 | VM_MAP_PAGE_MASK(map)), | |
493 | vm_map_round_page(addr+size, | |
494 | VM_MAP_PAGE_MASK(map)), | |
495 | attribute, | |
496 | value); | |
497 | } | |
498 | ||
499 | /* | |
500 | * vm_machine_attribute - | |
501 | * Handle machine-specific attributes for a mapping, such | |
502 | * as cachability, migrability, etc. Limited addressability | |
503 | * (same range limits as for the native kernel map). | |
504 | */ | |
505 | kern_return_t | |
506 | vm_machine_attribute( | |
507 | vm_map_t map, | |
508 | vm_address_t addr, | |
509 | vm_size_t size, | |
510 | vm_machine_attribute_t attribute, | |
511 | vm_machine_attribute_val_t* value) /* IN/OUT */ | |
512 | { | |
513 | if ((map == VM_MAP_NULL) || (addr + size < addr)) | |
514 | return(KERN_INVALID_ARGUMENT); | |
515 | ||
516 | if (size == 0) | |
517 | return KERN_SUCCESS; | |
518 | ||
519 | return vm_map_machine_attribute( | |
520 | map, | |
521 | vm_map_trunc_page(addr, | |
522 | VM_MAP_PAGE_MASK(map)), | |
523 | vm_map_round_page(addr+size, | |
524 | VM_MAP_PAGE_MASK(map)), | |
525 | attribute, | |
526 | value); | |
527 | } | |
528 | ||
529 | /* | |
530 | * mach_vm_read - | |
531 | * Read/copy a range from one address space and return it to the caller. | |
532 | * | |
533 | * It is assumed that the address for the returned memory is selected by | |
534 | * the IPC implementation as part of receiving the reply to this call. | |
535 | * If IPC isn't used, the caller must deal with the vm_map_copy_t object | |
536 | * that gets returned. | |
537 | * | |
538 | * JMM - because of mach_msg_type_number_t, this call is limited to a | |
539 | * single 4GB region at this time. | |
540 | * | |
541 | */ | |
542 | kern_return_t | |
543 | mach_vm_read( | |
544 | vm_map_t map, | |
545 | mach_vm_address_t addr, | |
546 | mach_vm_size_t size, | |
547 | pointer_t *data, | |
548 | mach_msg_type_number_t *data_size) | |
549 | { | |
550 | kern_return_t error; | |
551 | vm_map_copy_t ipc_address; | |
552 | ||
553 | if (map == VM_MAP_NULL) | |
554 | return(KERN_INVALID_ARGUMENT); | |
555 | ||
556 | if ((mach_msg_type_number_t) size != size) | |
557 | return KERN_INVALID_ARGUMENT; | |
558 | ||
559 | error = vm_map_copyin(map, | |
560 | (vm_map_address_t)addr, | |
561 | (vm_map_size_t)size, | |
562 | FALSE, /* src_destroy */ | |
563 | &ipc_address); | |
564 | ||
565 | if (KERN_SUCCESS == error) { | |
566 | *data = (pointer_t) ipc_address; | |
567 | *data_size = (mach_msg_type_number_t) size; | |
568 | assert(*data_size == size); | |
569 | } | |
570 | return(error); | |
571 | } | |
572 | ||
573 | /* | |
574 | * vm_read - | |
575 | * Read/copy a range from one address space and return it to the caller. | |
576 | * Limited addressability (same range limits as for the native kernel map). | |
577 | * | |
578 | * It is assumed that the address for the returned memory is selected by | |
579 | * the IPC implementation as part of receiving the reply to this call. | |
580 | * If IPC isn't used, the caller must deal with the vm_map_copy_t object | |
581 | * that gets returned. | |
582 | */ | |
583 | kern_return_t | |
584 | vm_read( | |
585 | vm_map_t map, | |
586 | vm_address_t addr, | |
587 | vm_size_t size, | |
588 | pointer_t *data, | |
589 | mach_msg_type_number_t *data_size) | |
590 | { | |
591 | kern_return_t error; | |
592 | vm_map_copy_t ipc_address; | |
593 | ||
594 | if (map == VM_MAP_NULL) | |
595 | return(KERN_INVALID_ARGUMENT); | |
596 | ||
597 | if (size > (unsigned)(mach_msg_type_number_t) -1) { | |
598 | /* | |
599 | * The kernel could handle a 64-bit "size" value, but | |
600 | * it could not return the size of the data in "*data_size" | |
601 | * without overflowing. | |
602 | * Let's reject this "size" as invalid. | |
603 | */ | |
604 | return KERN_INVALID_ARGUMENT; | |
605 | } | |
606 | ||
607 | error = vm_map_copyin(map, | |
608 | (vm_map_address_t)addr, | |
609 | (vm_map_size_t)size, | |
610 | FALSE, /* src_destroy */ | |
611 | &ipc_address); | |
612 | ||
613 | if (KERN_SUCCESS == error) { | |
614 | *data = (pointer_t) ipc_address; | |
615 | *data_size = (mach_msg_type_number_t) size; | |
616 | assert(*data_size == size); | |
617 | } | |
618 | return(error); | |
619 | } | |
620 | ||
621 | /* | |
622 | * mach_vm_read_list - | |
623 | * Read/copy a list of address ranges from specified map. | |
624 | * | |
625 | * MIG does not know how to deal with a returned array of | |
626 | * vm_map_copy_t structures, so we have to do the copyout | |
627 | * manually here. | |
628 | */ | |
629 | kern_return_t | |
630 | mach_vm_read_list( | |
631 | vm_map_t map, | |
632 | mach_vm_read_entry_t data_list, | |
633 | natural_t count) | |
634 | { | |
635 | mach_msg_type_number_t i; | |
636 | kern_return_t error; | |
637 | vm_map_copy_t copy; | |
638 | ||
639 | if (map == VM_MAP_NULL || | |
640 | count > VM_MAP_ENTRY_MAX) | |
641 | return(KERN_INVALID_ARGUMENT); | |
642 | ||
643 | error = KERN_SUCCESS; | |
644 | for(i=0; i<count; i++) { | |
645 | vm_map_address_t map_addr; | |
646 | vm_map_size_t map_size; | |
647 | ||
648 | map_addr = (vm_map_address_t)(data_list[i].address); | |
649 | map_size = (vm_map_size_t)(data_list[i].size); | |
650 | ||
651 | if(map_size != 0) { | |
652 | error = vm_map_copyin(map, | |
653 | map_addr, | |
654 | map_size, | |
655 | FALSE, /* src_destroy */ | |
656 | ©); | |
657 | if (KERN_SUCCESS == error) { | |
658 | error = vm_map_copyout( | |
659 | current_task()->map, | |
660 | &map_addr, | |
661 | copy); | |
662 | if (KERN_SUCCESS == error) { | |
663 | data_list[i].address = map_addr; | |
664 | continue; | |
665 | } | |
666 | vm_map_copy_discard(copy); | |
667 | } | |
668 | } | |
669 | data_list[i].address = (mach_vm_address_t)0; | |
670 | data_list[i].size = (mach_vm_size_t)0; | |
671 | } | |
672 | return(error); | |
673 | } | |
674 | ||
675 | /* | |
676 | * vm_read_list - | |
677 | * Read/copy a list of address ranges from specified map. | |
678 | * | |
679 | * MIG does not know how to deal with a returned array of | |
680 | * vm_map_copy_t structures, so we have to do the copyout | |
681 | * manually here. | |
682 | * | |
683 | * The source and destination ranges are limited to those | |
684 | * that can be described with a vm_address_t (i.e. same | |
685 | * size map as the kernel). | |
686 | * | |
687 | * JMM - If the result of the copyout is an address range | |
688 | * that cannot be described with a vm_address_t (i.e. the | |
689 | * caller had a larger address space but used this call | |
690 | * anyway), it will result in a truncated address being | |
691 | * returned (and a likely confused caller). | |
692 | */ | |
693 | ||
694 | kern_return_t | |
695 | vm_read_list( | |
696 | vm_map_t map, | |
697 | vm_read_entry_t data_list, | |
698 | natural_t count) | |
699 | { | |
700 | mach_msg_type_number_t i; | |
701 | kern_return_t error; | |
702 | vm_map_copy_t copy; | |
703 | ||
704 | if (map == VM_MAP_NULL || | |
705 | count > VM_MAP_ENTRY_MAX) | |
706 | return(KERN_INVALID_ARGUMENT); | |
707 | ||
708 | error = KERN_SUCCESS; | |
709 | for(i=0; i<count; i++) { | |
710 | vm_map_address_t map_addr; | |
711 | vm_map_size_t map_size; | |
712 | ||
713 | map_addr = (vm_map_address_t)(data_list[i].address); | |
714 | map_size = (vm_map_size_t)(data_list[i].size); | |
715 | ||
716 | if(map_size != 0) { | |
717 | error = vm_map_copyin(map, | |
718 | map_addr, | |
719 | map_size, | |
720 | FALSE, /* src_destroy */ | |
721 | ©); | |
722 | if (KERN_SUCCESS == error) { | |
723 | error = vm_map_copyout(current_task()->map, | |
724 | &map_addr, | |
725 | copy); | |
726 | if (KERN_SUCCESS == error) { | |
727 | data_list[i].address = | |
728 | CAST_DOWN(vm_offset_t, map_addr); | |
729 | continue; | |
730 | } | |
731 | vm_map_copy_discard(copy); | |
732 | } | |
733 | } | |
734 | data_list[i].address = (mach_vm_address_t)0; | |
735 | data_list[i].size = (mach_vm_size_t)0; | |
736 | } | |
737 | return(error); | |
738 | } | |
739 | ||
740 | /* | |
741 | * mach_vm_read_overwrite - | |
742 | * Overwrite a range of the current map with data from the specified | |
743 | * map/address range. | |
744 | * | |
745 | * In making an assumption that the current thread is local, it is | |
746 | * no longer cluster-safe without a fully supportive local proxy | |
747 | * thread/task (but we don't support cluster's anymore so this is moot). | |
748 | */ | |
749 | ||
750 | kern_return_t | |
751 | mach_vm_read_overwrite( | |
752 | vm_map_t map, | |
753 | mach_vm_address_t address, | |
754 | mach_vm_size_t size, | |
755 | mach_vm_address_t data, | |
756 | mach_vm_size_t *data_size) | |
757 | { | |
758 | kern_return_t error; | |
759 | vm_map_copy_t copy; | |
760 | ||
761 | if (map == VM_MAP_NULL) | |
762 | return(KERN_INVALID_ARGUMENT); | |
763 | ||
764 | error = vm_map_copyin(map, (vm_map_address_t)address, | |
765 | (vm_map_size_t)size, FALSE, ©); | |
766 | ||
767 | if (KERN_SUCCESS == error) { | |
768 | error = vm_map_copy_overwrite(current_thread()->map, | |
769 | (vm_map_address_t)data, | |
770 | copy, FALSE); | |
771 | if (KERN_SUCCESS == error) { | |
772 | *data_size = size; | |
773 | return error; | |
774 | } | |
775 | vm_map_copy_discard(copy); | |
776 | } | |
777 | return(error); | |
778 | } | |
779 | ||
780 | /* | |
781 | * vm_read_overwrite - | |
782 | * Overwrite a range of the current map with data from the specified | |
783 | * map/address range. | |
784 | * | |
785 | * This routine adds the additional limitation that the source and | |
786 | * destination ranges must be describable with vm_address_t values | |
787 | * (i.e. the same size address spaces as the kernel, or at least the | |
788 | * the ranges are in that first portion of the respective address | |
789 | * spaces). | |
790 | */ | |
791 | ||
792 | kern_return_t | |
793 | vm_read_overwrite( | |
794 | vm_map_t map, | |
795 | vm_address_t address, | |
796 | vm_size_t size, | |
797 | vm_address_t data, | |
798 | vm_size_t *data_size) | |
799 | { | |
800 | kern_return_t error; | |
801 | vm_map_copy_t copy; | |
802 | ||
803 | if (map == VM_MAP_NULL) | |
804 | return(KERN_INVALID_ARGUMENT); | |
805 | ||
806 | error = vm_map_copyin(map, (vm_map_address_t)address, | |
807 | (vm_map_size_t)size, FALSE, ©); | |
808 | ||
809 | if (KERN_SUCCESS == error) { | |
810 | error = vm_map_copy_overwrite(current_thread()->map, | |
811 | (vm_map_address_t)data, | |
812 | copy, FALSE); | |
813 | if (KERN_SUCCESS == error) { | |
814 | *data_size = size; | |
815 | return error; | |
816 | } | |
817 | vm_map_copy_discard(copy); | |
818 | } | |
819 | return(error); | |
820 | } | |
821 | ||
822 | ||
823 | /* | |
824 | * mach_vm_write - | |
825 | * Overwrite the specified address range with the data provided | |
826 | * (from the current map). | |
827 | */ | |
828 | kern_return_t | |
829 | mach_vm_write( | |
830 | vm_map_t map, | |
831 | mach_vm_address_t address, | |
832 | pointer_t data, | |
833 | __unused mach_msg_type_number_t size) | |
834 | { | |
835 | if (map == VM_MAP_NULL) | |
836 | return KERN_INVALID_ARGUMENT; | |
837 | ||
838 | return vm_map_copy_overwrite(map, (vm_map_address_t)address, | |
839 | (vm_map_copy_t) data, FALSE /* interruptible XXX */); | |
840 | } | |
841 | ||
842 | /* | |
843 | * vm_write - | |
844 | * Overwrite the specified address range with the data provided | |
845 | * (from the current map). | |
846 | * | |
847 | * The addressability of the range of addresses to overwrite is | |
848 | * limited bu the use of a vm_address_t (same size as kernel map). | |
849 | * Either the target map is also small, or the range is in the | |
850 | * low addresses within it. | |
851 | */ | |
852 | kern_return_t | |
853 | vm_write( | |
854 | vm_map_t map, | |
855 | vm_address_t address, | |
856 | pointer_t data, | |
857 | __unused mach_msg_type_number_t size) | |
858 | { | |
859 | if (map == VM_MAP_NULL) | |
860 | return KERN_INVALID_ARGUMENT; | |
861 | ||
862 | return vm_map_copy_overwrite(map, (vm_map_address_t)address, | |
863 | (vm_map_copy_t) data, FALSE /* interruptible XXX */); | |
864 | } | |
865 | ||
866 | /* | |
867 | * mach_vm_copy - | |
868 | * Overwrite one range of the specified map with the contents of | |
869 | * another range within that same map (i.e. both address ranges | |
870 | * are "over there"). | |
871 | */ | |
872 | kern_return_t | |
873 | mach_vm_copy( | |
874 | vm_map_t map, | |
875 | mach_vm_address_t source_address, | |
876 | mach_vm_size_t size, | |
877 | mach_vm_address_t dest_address) | |
878 | { | |
879 | vm_map_copy_t copy; | |
880 | kern_return_t kr; | |
881 | ||
882 | if (map == VM_MAP_NULL) | |
883 | return KERN_INVALID_ARGUMENT; | |
884 | ||
885 | kr = vm_map_copyin(map, (vm_map_address_t)source_address, | |
886 | (vm_map_size_t)size, FALSE, ©); | |
887 | ||
888 | if (KERN_SUCCESS == kr) { | |
889 | kr = vm_map_copy_overwrite(map, | |
890 | (vm_map_address_t)dest_address, | |
891 | copy, FALSE /* interruptible XXX */); | |
892 | ||
893 | if (KERN_SUCCESS != kr) | |
894 | vm_map_copy_discard(copy); | |
895 | } | |
896 | return kr; | |
897 | } | |
898 | ||
899 | kern_return_t | |
900 | vm_copy( | |
901 | vm_map_t map, | |
902 | vm_address_t source_address, | |
903 | vm_size_t size, | |
904 | vm_address_t dest_address) | |
905 | { | |
906 | vm_map_copy_t copy; | |
907 | kern_return_t kr; | |
908 | ||
909 | if (map == VM_MAP_NULL) | |
910 | return KERN_INVALID_ARGUMENT; | |
911 | ||
912 | kr = vm_map_copyin(map, (vm_map_address_t)source_address, | |
913 | (vm_map_size_t)size, FALSE, ©); | |
914 | ||
915 | if (KERN_SUCCESS == kr) { | |
916 | kr = vm_map_copy_overwrite(map, | |
917 | (vm_map_address_t)dest_address, | |
918 | copy, FALSE /* interruptible XXX */); | |
919 | ||
920 | if (KERN_SUCCESS != kr) | |
921 | vm_map_copy_discard(copy); | |
922 | } | |
923 | return kr; | |
924 | } | |
925 | ||
926 | /* | |
927 | * mach_vm_map - | |
928 | * Map some range of an object into an address space. | |
929 | * | |
930 | * The object can be one of several types of objects: | |
931 | * NULL - anonymous memory | |
932 | * a named entry - a range within another address space | |
933 | * or a range within a memory object | |
934 | * a whole memory object | |
935 | * | |
936 | */ | |
937 | kern_return_t | |
938 | mach_vm_map_external( | |
939 | vm_map_t target_map, | |
940 | mach_vm_offset_t *address, | |
941 | mach_vm_size_t initial_size, | |
942 | mach_vm_offset_t mask, | |
943 | int flags, | |
944 | ipc_port_t port, | |
945 | vm_object_offset_t offset, | |
946 | boolean_t copy, | |
947 | vm_prot_t cur_protection, | |
948 | vm_prot_t max_protection, | |
949 | vm_inherit_t inheritance) | |
950 | { | |
951 | vm_tag_t tag; | |
952 | ||
953 | VM_GET_FLAGS_ALIAS(flags, tag); | |
954 | return (mach_vm_map_kernel(target_map, address, initial_size, mask, flags, tag, port, | |
955 | offset, copy, cur_protection, max_protection, inheritance)); | |
956 | } | |
957 | ||
958 | kern_return_t | |
959 | mach_vm_map_kernel( | |
960 | vm_map_t target_map, | |
961 | mach_vm_offset_t *address, | |
962 | mach_vm_size_t initial_size, | |
963 | mach_vm_offset_t mask, | |
964 | int flags, | |
965 | vm_tag_t tag, | |
966 | ipc_port_t port, | |
967 | vm_object_offset_t offset, | |
968 | boolean_t copy, | |
969 | vm_prot_t cur_protection, | |
970 | vm_prot_t max_protection, | |
971 | vm_inherit_t inheritance) | |
972 | { | |
973 | kern_return_t kr; | |
974 | vm_map_offset_t vmmaddr; | |
975 | ||
976 | vmmaddr = (vm_map_offset_t) *address; | |
977 | ||
978 | /* filter out any kernel-only flags */ | |
979 | if (flags & ~VM_FLAGS_USER_MAP) | |
980 | return KERN_INVALID_ARGUMENT; | |
981 | ||
982 | kr = vm_map_enter_mem_object(target_map, | |
983 | &vmmaddr, | |
984 | initial_size, | |
985 | mask, | |
986 | flags, | |
987 | VM_MAP_KERNEL_FLAGS_NONE, | |
988 | tag, | |
989 | port, | |
990 | offset, | |
991 | copy, | |
992 | cur_protection, | |
993 | max_protection, | |
994 | inheritance); | |
995 | ||
996 | #if KASAN | |
997 | if (kr == KERN_SUCCESS && target_map->pmap == kernel_pmap) { | |
998 | kasan_notify_address(vmmaddr, initial_size); | |
999 | } | |
1000 | #endif | |
1001 | ||
1002 | *address = vmmaddr; | |
1003 | return kr; | |
1004 | } | |
1005 | ||
1006 | ||
1007 | /* legacy interface */ | |
1008 | kern_return_t | |
1009 | vm_map_64_external( | |
1010 | vm_map_t target_map, | |
1011 | vm_offset_t *address, | |
1012 | vm_size_t size, | |
1013 | vm_offset_t mask, | |
1014 | int flags, | |
1015 | ipc_port_t port, | |
1016 | vm_object_offset_t offset, | |
1017 | boolean_t copy, | |
1018 | vm_prot_t cur_protection, | |
1019 | vm_prot_t max_protection, | |
1020 | vm_inherit_t inheritance) | |
1021 | { | |
1022 | vm_tag_t tag; | |
1023 | ||
1024 | VM_GET_FLAGS_ALIAS(flags, tag); | |
1025 | return (vm_map_64_kernel(target_map, address, size, mask, flags, tag, port, offset, | |
1026 | copy, cur_protection, max_protection, inheritance)); | |
1027 | } | |
1028 | ||
1029 | kern_return_t | |
1030 | vm_map_64_kernel( | |
1031 | vm_map_t target_map, | |
1032 | vm_offset_t *address, | |
1033 | vm_size_t size, | |
1034 | vm_offset_t mask, | |
1035 | int flags, | |
1036 | vm_tag_t tag, | |
1037 | ipc_port_t port, | |
1038 | vm_object_offset_t offset, | |
1039 | boolean_t copy, | |
1040 | vm_prot_t cur_protection, | |
1041 | vm_prot_t max_protection, | |
1042 | vm_inherit_t inheritance) | |
1043 | { | |
1044 | mach_vm_address_t map_addr; | |
1045 | mach_vm_size_t map_size; | |
1046 | mach_vm_offset_t map_mask; | |
1047 | kern_return_t kr; | |
1048 | ||
1049 | map_addr = (mach_vm_address_t)*address; | |
1050 | map_size = (mach_vm_size_t)size; | |
1051 | map_mask = (mach_vm_offset_t)mask; | |
1052 | ||
1053 | kr = mach_vm_map_kernel(target_map, &map_addr, map_size, map_mask, flags, tag, | |
1054 | port, offset, copy, | |
1055 | cur_protection, max_protection, inheritance); | |
1056 | *address = CAST_DOWN(vm_offset_t, map_addr); | |
1057 | return kr; | |
1058 | } | |
1059 | ||
1060 | /* temporary, until world build */ | |
1061 | kern_return_t | |
1062 | vm_map_external( | |
1063 | vm_map_t target_map, | |
1064 | vm_offset_t *address, | |
1065 | vm_size_t size, | |
1066 | vm_offset_t mask, | |
1067 | int flags, | |
1068 | ipc_port_t port, | |
1069 | vm_offset_t offset, | |
1070 | boolean_t copy, | |
1071 | vm_prot_t cur_protection, | |
1072 | vm_prot_t max_protection, | |
1073 | vm_inherit_t inheritance) | |
1074 | { | |
1075 | vm_tag_t tag; | |
1076 | ||
1077 | VM_GET_FLAGS_ALIAS(flags, tag); | |
1078 | return (vm_map_kernel(target_map, address, size, mask, flags, tag, port, offset, copy, cur_protection, max_protection, inheritance)); | |
1079 | } | |
1080 | ||
1081 | kern_return_t | |
1082 | vm_map_kernel( | |
1083 | vm_map_t target_map, | |
1084 | vm_offset_t *address, | |
1085 | vm_size_t size, | |
1086 | vm_offset_t mask, | |
1087 | int flags, | |
1088 | vm_tag_t tag, | |
1089 | ipc_port_t port, | |
1090 | vm_offset_t offset, | |
1091 | boolean_t copy, | |
1092 | vm_prot_t cur_protection, | |
1093 | vm_prot_t max_protection, | |
1094 | vm_inherit_t inheritance) | |
1095 | { | |
1096 | mach_vm_address_t map_addr; | |
1097 | mach_vm_size_t map_size; | |
1098 | mach_vm_offset_t map_mask; | |
1099 | vm_object_offset_t obj_offset; | |
1100 | kern_return_t kr; | |
1101 | ||
1102 | map_addr = (mach_vm_address_t)*address; | |
1103 | map_size = (mach_vm_size_t)size; | |
1104 | map_mask = (mach_vm_offset_t)mask; | |
1105 | obj_offset = (vm_object_offset_t)offset; | |
1106 | ||
1107 | kr = mach_vm_map_kernel(target_map, &map_addr, map_size, map_mask, flags, tag, | |
1108 | port, obj_offset, copy, | |
1109 | cur_protection, max_protection, inheritance); | |
1110 | *address = CAST_DOWN(vm_offset_t, map_addr); | |
1111 | return kr; | |
1112 | } | |
1113 | ||
1114 | /* | |
1115 | * mach_vm_remap - | |
1116 | * Remap a range of memory from one task into another, | |
1117 | * to another address range within the same task, or | |
1118 | * over top of itself (with altered permissions and/or | |
1119 | * as an in-place copy of itself). | |
1120 | */ | |
1121 | kern_return_t | |
1122 | mach_vm_remap_external( | |
1123 | vm_map_t target_map, | |
1124 | mach_vm_offset_t *address, | |
1125 | mach_vm_size_t size, | |
1126 | mach_vm_offset_t mask, | |
1127 | int flags, | |
1128 | vm_map_t src_map, | |
1129 | mach_vm_offset_t memory_address, | |
1130 | boolean_t copy, | |
1131 | vm_prot_t *cur_protection, | |
1132 | vm_prot_t *max_protection, | |
1133 | vm_inherit_t inheritance) | |
1134 | { | |
1135 | vm_tag_t tag; | |
1136 | VM_GET_FLAGS_ALIAS(flags, tag); | |
1137 | ||
1138 | return (mach_vm_remap_kernel(target_map, address, size, mask, flags, tag, src_map, memory_address, | |
1139 | copy, cur_protection, max_protection, inheritance)); | |
1140 | } | |
1141 | ||
1142 | kern_return_t | |
1143 | mach_vm_remap_kernel( | |
1144 | vm_map_t target_map, | |
1145 | mach_vm_offset_t *address, | |
1146 | mach_vm_size_t size, | |
1147 | mach_vm_offset_t mask, | |
1148 | int flags, | |
1149 | vm_tag_t tag, | |
1150 | vm_map_t src_map, | |
1151 | mach_vm_offset_t memory_address, | |
1152 | boolean_t copy, | |
1153 | vm_prot_t *cur_protection, | |
1154 | vm_prot_t *max_protection, | |
1155 | vm_inherit_t inheritance) | |
1156 | { | |
1157 | vm_map_offset_t map_addr; | |
1158 | kern_return_t kr; | |
1159 | ||
1160 | if (VM_MAP_NULL == target_map || VM_MAP_NULL == src_map) | |
1161 | return KERN_INVALID_ARGUMENT; | |
1162 | ||
1163 | /* filter out any kernel-only flags */ | |
1164 | if (flags & ~VM_FLAGS_USER_REMAP) | |
1165 | return KERN_INVALID_ARGUMENT; | |
1166 | ||
1167 | map_addr = (vm_map_offset_t)*address; | |
1168 | ||
1169 | kr = vm_map_remap(target_map, | |
1170 | &map_addr, | |
1171 | size, | |
1172 | mask, | |
1173 | flags, | |
1174 | VM_MAP_KERNEL_FLAGS_NONE, | |
1175 | tag, | |
1176 | src_map, | |
1177 | memory_address, | |
1178 | copy, | |
1179 | cur_protection, | |
1180 | max_protection, | |
1181 | inheritance); | |
1182 | *address = map_addr; | |
1183 | return kr; | |
1184 | } | |
1185 | ||
1186 | /* | |
1187 | * vm_remap - | |
1188 | * Remap a range of memory from one task into another, | |
1189 | * to another address range within the same task, or | |
1190 | * over top of itself (with altered permissions and/or | |
1191 | * as an in-place copy of itself). | |
1192 | * | |
1193 | * The addressability of the source and target address | |
1194 | * range is limited by the size of vm_address_t (in the | |
1195 | * kernel context). | |
1196 | */ | |
1197 | kern_return_t | |
1198 | vm_remap_external( | |
1199 | vm_map_t target_map, | |
1200 | vm_offset_t *address, | |
1201 | vm_size_t size, | |
1202 | vm_offset_t mask, | |
1203 | int flags, | |
1204 | vm_map_t src_map, | |
1205 | vm_offset_t memory_address, | |
1206 | boolean_t copy, | |
1207 | vm_prot_t *cur_protection, | |
1208 | vm_prot_t *max_protection, | |
1209 | vm_inherit_t inheritance) | |
1210 | { | |
1211 | vm_tag_t tag; | |
1212 | VM_GET_FLAGS_ALIAS(flags, tag); | |
1213 | ||
1214 | return (vm_remap_kernel(target_map, address, size, mask, flags, tag, src_map, | |
1215 | memory_address, copy, cur_protection, max_protection, inheritance)); | |
1216 | } | |
1217 | ||
1218 | kern_return_t | |
1219 | vm_remap_kernel( | |
1220 | vm_map_t target_map, | |
1221 | vm_offset_t *address, | |
1222 | vm_size_t size, | |
1223 | vm_offset_t mask, | |
1224 | int flags, | |
1225 | vm_tag_t tag, | |
1226 | vm_map_t src_map, | |
1227 | vm_offset_t memory_address, | |
1228 | boolean_t copy, | |
1229 | vm_prot_t *cur_protection, | |
1230 | vm_prot_t *max_protection, | |
1231 | vm_inherit_t inheritance) | |
1232 | { | |
1233 | vm_map_offset_t map_addr; | |
1234 | kern_return_t kr; | |
1235 | ||
1236 | if (VM_MAP_NULL == target_map || VM_MAP_NULL == src_map) | |
1237 | return KERN_INVALID_ARGUMENT; | |
1238 | ||
1239 | /* filter out any kernel-only flags */ | |
1240 | if (flags & ~VM_FLAGS_USER_REMAP) | |
1241 | return KERN_INVALID_ARGUMENT; | |
1242 | ||
1243 | map_addr = (vm_map_offset_t)*address; | |
1244 | ||
1245 | kr = vm_map_remap(target_map, | |
1246 | &map_addr, | |
1247 | size, | |
1248 | mask, | |
1249 | flags, | |
1250 | VM_MAP_KERNEL_FLAGS_NONE, | |
1251 | tag, | |
1252 | src_map, | |
1253 | memory_address, | |
1254 | copy, | |
1255 | cur_protection, | |
1256 | max_protection, | |
1257 | inheritance); | |
1258 | *address = CAST_DOWN(vm_offset_t, map_addr); | |
1259 | return kr; | |
1260 | } | |
1261 | ||
1262 | /* | |
1263 | * NOTE: these routine (and this file) will no longer require mach_host_server.h | |
1264 | * when mach_vm_wire and vm_wire are changed to use ledgers. | |
1265 | */ | |
1266 | #include <mach/mach_host_server.h> | |
1267 | /* | |
1268 | * mach_vm_wire | |
1269 | * Specify that the range of the virtual address space | |
1270 | * of the target task must not cause page faults for | |
1271 | * the indicated accesses. | |
1272 | * | |
1273 | * [ To unwire the pages, specify VM_PROT_NONE. ] | |
1274 | */ | |
1275 | kern_return_t | |
1276 | mach_vm_wire_external( | |
1277 | host_priv_t host_priv, | |
1278 | vm_map_t map, | |
1279 | mach_vm_offset_t start, | |
1280 | mach_vm_size_t size, | |
1281 | vm_prot_t access) | |
1282 | { | |
1283 | return (mach_vm_wire_kernel(host_priv, map, start, size, access, VM_KERN_MEMORY_MLOCK)); | |
1284 | } | |
1285 | ||
1286 | kern_return_t | |
1287 | mach_vm_wire_kernel( | |
1288 | host_priv_t host_priv, | |
1289 | vm_map_t map, | |
1290 | mach_vm_offset_t start, | |
1291 | mach_vm_size_t size, | |
1292 | vm_prot_t access, | |
1293 | vm_tag_t tag) | |
1294 | { | |
1295 | kern_return_t rc; | |
1296 | ||
1297 | if (host_priv == HOST_PRIV_NULL) | |
1298 | return KERN_INVALID_HOST; | |
1299 | ||
1300 | assert(host_priv == &realhost); | |
1301 | ||
1302 | if (map == VM_MAP_NULL) | |
1303 | return KERN_INVALID_TASK; | |
1304 | ||
1305 | if (access & ~VM_PROT_ALL || (start + size < start)) | |
1306 | return KERN_INVALID_ARGUMENT; | |
1307 | ||
1308 | if (access != VM_PROT_NONE) { | |
1309 | rc = vm_map_wire_kernel(map, | |
1310 | vm_map_trunc_page(start, | |
1311 | VM_MAP_PAGE_MASK(map)), | |
1312 | vm_map_round_page(start+size, | |
1313 | VM_MAP_PAGE_MASK(map)), | |
1314 | access, tag, | |
1315 | TRUE); | |
1316 | } else { | |
1317 | rc = vm_map_unwire(map, | |
1318 | vm_map_trunc_page(start, | |
1319 | VM_MAP_PAGE_MASK(map)), | |
1320 | vm_map_round_page(start+size, | |
1321 | VM_MAP_PAGE_MASK(map)), | |
1322 | TRUE); | |
1323 | } | |
1324 | return rc; | |
1325 | } | |
1326 | ||
1327 | /* | |
1328 | * vm_wire - | |
1329 | * Specify that the range of the virtual address space | |
1330 | * of the target task must not cause page faults for | |
1331 | * the indicated accesses. | |
1332 | * | |
1333 | * [ To unwire the pages, specify VM_PROT_NONE. ] | |
1334 | */ | |
1335 | kern_return_t | |
1336 | vm_wire( | |
1337 | host_priv_t host_priv, | |
1338 | vm_map_t map, | |
1339 | vm_offset_t start, | |
1340 | vm_size_t size, | |
1341 | vm_prot_t access) | |
1342 | { | |
1343 | kern_return_t rc; | |
1344 | ||
1345 | if (host_priv == HOST_PRIV_NULL) | |
1346 | return KERN_INVALID_HOST; | |
1347 | ||
1348 | assert(host_priv == &realhost); | |
1349 | ||
1350 | if (map == VM_MAP_NULL) | |
1351 | return KERN_INVALID_TASK; | |
1352 | ||
1353 | if ((access & ~VM_PROT_ALL) || (start + size < start)) | |
1354 | return KERN_INVALID_ARGUMENT; | |
1355 | ||
1356 | if (size == 0) { | |
1357 | rc = KERN_SUCCESS; | |
1358 | } else if (access != VM_PROT_NONE) { | |
1359 | rc = vm_map_wire_kernel(map, | |
1360 | vm_map_trunc_page(start, | |
1361 | VM_MAP_PAGE_MASK(map)), | |
1362 | vm_map_round_page(start+size, | |
1363 | VM_MAP_PAGE_MASK(map)), | |
1364 | access, VM_KERN_MEMORY_OSFMK, | |
1365 | TRUE); | |
1366 | } else { | |
1367 | rc = vm_map_unwire(map, | |
1368 | vm_map_trunc_page(start, | |
1369 | VM_MAP_PAGE_MASK(map)), | |
1370 | vm_map_round_page(start+size, | |
1371 | VM_MAP_PAGE_MASK(map)), | |
1372 | TRUE); | |
1373 | } | |
1374 | return rc; | |
1375 | } | |
1376 | ||
1377 | /* | |
1378 | * vm_msync | |
1379 | * | |
1380 | * Synchronises the memory range specified with its backing store | |
1381 | * image by either flushing or cleaning the contents to the appropriate | |
1382 | * memory manager. | |
1383 | * | |
1384 | * interpretation of sync_flags | |
1385 | * VM_SYNC_INVALIDATE - discard pages, only return precious | |
1386 | * pages to manager. | |
1387 | * | |
1388 | * VM_SYNC_INVALIDATE & (VM_SYNC_SYNCHRONOUS | VM_SYNC_ASYNCHRONOUS) | |
1389 | * - discard pages, write dirty or precious | |
1390 | * pages back to memory manager. | |
1391 | * | |
1392 | * VM_SYNC_SYNCHRONOUS | VM_SYNC_ASYNCHRONOUS | |
1393 | * - write dirty or precious pages back to | |
1394 | * the memory manager. | |
1395 | * | |
1396 | * VM_SYNC_CONTIGUOUS - does everything normally, but if there | |
1397 | * is a hole in the region, and we would | |
1398 | * have returned KERN_SUCCESS, return | |
1399 | * KERN_INVALID_ADDRESS instead. | |
1400 | * | |
1401 | * RETURNS | |
1402 | * KERN_INVALID_TASK Bad task parameter | |
1403 | * KERN_INVALID_ARGUMENT both sync and async were specified. | |
1404 | * KERN_SUCCESS The usual. | |
1405 | * KERN_INVALID_ADDRESS There was a hole in the region. | |
1406 | */ | |
1407 | ||
1408 | kern_return_t | |
1409 | mach_vm_msync( | |
1410 | vm_map_t map, | |
1411 | mach_vm_address_t address, | |
1412 | mach_vm_size_t size, | |
1413 | vm_sync_t sync_flags) | |
1414 | { | |
1415 | ||
1416 | if (map == VM_MAP_NULL) | |
1417 | return(KERN_INVALID_TASK); | |
1418 | ||
1419 | return vm_map_msync(map, (vm_map_address_t)address, | |
1420 | (vm_map_size_t)size, sync_flags); | |
1421 | } | |
1422 | ||
1423 | /* | |
1424 | * vm_msync | |
1425 | * | |
1426 | * Synchronises the memory range specified with its backing store | |
1427 | * image by either flushing or cleaning the contents to the appropriate | |
1428 | * memory manager. | |
1429 | * | |
1430 | * interpretation of sync_flags | |
1431 | * VM_SYNC_INVALIDATE - discard pages, only return precious | |
1432 | * pages to manager. | |
1433 | * | |
1434 | * VM_SYNC_INVALIDATE & (VM_SYNC_SYNCHRONOUS | VM_SYNC_ASYNCHRONOUS) | |
1435 | * - discard pages, write dirty or precious | |
1436 | * pages back to memory manager. | |
1437 | * | |
1438 | * VM_SYNC_SYNCHRONOUS | VM_SYNC_ASYNCHRONOUS | |
1439 | * - write dirty or precious pages back to | |
1440 | * the memory manager. | |
1441 | * | |
1442 | * VM_SYNC_CONTIGUOUS - does everything normally, but if there | |
1443 | * is a hole in the region, and we would | |
1444 | * have returned KERN_SUCCESS, return | |
1445 | * KERN_INVALID_ADDRESS instead. | |
1446 | * | |
1447 | * The addressability of the range is limited to that which can | |
1448 | * be described by a vm_address_t. | |
1449 | * | |
1450 | * RETURNS | |
1451 | * KERN_INVALID_TASK Bad task parameter | |
1452 | * KERN_INVALID_ARGUMENT both sync and async were specified. | |
1453 | * KERN_SUCCESS The usual. | |
1454 | * KERN_INVALID_ADDRESS There was a hole in the region. | |
1455 | */ | |
1456 | ||
1457 | kern_return_t | |
1458 | vm_msync( | |
1459 | vm_map_t map, | |
1460 | vm_address_t address, | |
1461 | vm_size_t size, | |
1462 | vm_sync_t sync_flags) | |
1463 | { | |
1464 | ||
1465 | if (map == VM_MAP_NULL) | |
1466 | return(KERN_INVALID_TASK); | |
1467 | ||
1468 | return vm_map_msync(map, (vm_map_address_t)address, | |
1469 | (vm_map_size_t)size, sync_flags); | |
1470 | } | |
1471 | ||
1472 | ||
1473 | int | |
1474 | vm_toggle_entry_reuse(int toggle, int *old_value) | |
1475 | { | |
1476 | vm_map_t map = current_map(); | |
1477 | ||
1478 | assert(!map->is_nested_map); | |
1479 | if(toggle == VM_TOGGLE_GETVALUE && old_value != NULL){ | |
1480 | *old_value = map->disable_vmentry_reuse; | |
1481 | } else if(toggle == VM_TOGGLE_SET){ | |
1482 | vm_map_entry_t map_to_entry; | |
1483 | ||
1484 | vm_map_lock(map); | |
1485 | vm_map_disable_hole_optimization(map); | |
1486 | map->disable_vmentry_reuse = TRUE; | |
1487 | __IGNORE_WCASTALIGN(map_to_entry = vm_map_to_entry(map)); | |
1488 | if (map->first_free == map_to_entry) { | |
1489 | map->highest_entry_end = vm_map_min(map); | |
1490 | } else { | |
1491 | map->highest_entry_end = map->first_free->vme_end; | |
1492 | } | |
1493 | vm_map_unlock(map); | |
1494 | } else if (toggle == VM_TOGGLE_CLEAR){ | |
1495 | vm_map_lock(map); | |
1496 | map->disable_vmentry_reuse = FALSE; | |
1497 | vm_map_unlock(map); | |
1498 | } else | |
1499 | return KERN_INVALID_ARGUMENT; | |
1500 | ||
1501 | return KERN_SUCCESS; | |
1502 | } | |
1503 | ||
1504 | /* | |
1505 | * mach_vm_behavior_set | |
1506 | * | |
1507 | * Sets the paging behavior attribute for the specified range | |
1508 | * in the specified map. | |
1509 | * | |
1510 | * This routine will fail with KERN_INVALID_ADDRESS if any address | |
1511 | * in [start,start+size) is not a valid allocated memory region. | |
1512 | */ | |
1513 | kern_return_t | |
1514 | mach_vm_behavior_set( | |
1515 | vm_map_t map, | |
1516 | mach_vm_offset_t start, | |
1517 | mach_vm_size_t size, | |
1518 | vm_behavior_t new_behavior) | |
1519 | { | |
1520 | vm_map_offset_t align_mask; | |
1521 | ||
1522 | if ((map == VM_MAP_NULL) || (start + size < start)) | |
1523 | return(KERN_INVALID_ARGUMENT); | |
1524 | ||
1525 | if (size == 0) | |
1526 | return KERN_SUCCESS; | |
1527 | ||
1528 | switch (new_behavior) { | |
1529 | case VM_BEHAVIOR_REUSABLE: | |
1530 | case VM_BEHAVIOR_REUSE: | |
1531 | case VM_BEHAVIOR_CAN_REUSE: | |
1532 | /* | |
1533 | * Align to the hardware page size, to allow | |
1534 | * malloc() to maximize the amount of re-usability, | |
1535 | * even on systems with larger software page size. | |
1536 | */ | |
1537 | align_mask = PAGE_MASK; | |
1538 | break; | |
1539 | default: | |
1540 | align_mask = VM_MAP_PAGE_MASK(map); | |
1541 | break; | |
1542 | } | |
1543 | ||
1544 | return vm_map_behavior_set(map, | |
1545 | vm_map_trunc_page(start, align_mask), | |
1546 | vm_map_round_page(start+size, align_mask), | |
1547 | new_behavior); | |
1548 | } | |
1549 | ||
1550 | /* | |
1551 | * vm_behavior_set | |
1552 | * | |
1553 | * Sets the paging behavior attribute for the specified range | |
1554 | * in the specified map. | |
1555 | * | |
1556 | * This routine will fail with KERN_INVALID_ADDRESS if any address | |
1557 | * in [start,start+size) is not a valid allocated memory region. | |
1558 | * | |
1559 | * This routine is potentially limited in addressibility by the | |
1560 | * use of vm_offset_t (if the map provided is larger than the | |
1561 | * kernel's). | |
1562 | */ | |
1563 | kern_return_t | |
1564 | vm_behavior_set( | |
1565 | vm_map_t map, | |
1566 | vm_offset_t start, | |
1567 | vm_size_t size, | |
1568 | vm_behavior_t new_behavior) | |
1569 | { | |
1570 | if (start + size < start) | |
1571 | return KERN_INVALID_ARGUMENT; | |
1572 | ||
1573 | return mach_vm_behavior_set(map, | |
1574 | (mach_vm_offset_t) start, | |
1575 | (mach_vm_size_t) size, | |
1576 | new_behavior); | |
1577 | } | |
1578 | ||
1579 | /* | |
1580 | * mach_vm_region: | |
1581 | * | |
1582 | * User call to obtain information about a region in | |
1583 | * a task's address map. Currently, only one flavor is | |
1584 | * supported. | |
1585 | * | |
1586 | * XXX The reserved and behavior fields cannot be filled | |
1587 | * in until the vm merge from the IK is completed, and | |
1588 | * vm_reserve is implemented. | |
1589 | * | |
1590 | * XXX Dependency: syscall_vm_region() also supports only one flavor. | |
1591 | */ | |
1592 | ||
1593 | kern_return_t | |
1594 | mach_vm_region( | |
1595 | vm_map_t map, | |
1596 | mach_vm_offset_t *address, /* IN/OUT */ | |
1597 | mach_vm_size_t *size, /* OUT */ | |
1598 | vm_region_flavor_t flavor, /* IN */ | |
1599 | vm_region_info_t info, /* OUT */ | |
1600 | mach_msg_type_number_t *count, /* IN/OUT */ | |
1601 | mach_port_t *object_name) /* OUT */ | |
1602 | { | |
1603 | vm_map_offset_t map_addr; | |
1604 | vm_map_size_t map_size; | |
1605 | kern_return_t kr; | |
1606 | ||
1607 | if (VM_MAP_NULL == map) | |
1608 | return KERN_INVALID_ARGUMENT; | |
1609 | ||
1610 | map_addr = (vm_map_offset_t)*address; | |
1611 | map_size = (vm_map_size_t)*size; | |
1612 | ||
1613 | /* legacy conversion */ | |
1614 | if (VM_REGION_BASIC_INFO == flavor) | |
1615 | flavor = VM_REGION_BASIC_INFO_64; | |
1616 | ||
1617 | kr = vm_map_region(map, | |
1618 | &map_addr, &map_size, | |
1619 | flavor, info, count, | |
1620 | object_name); | |
1621 | ||
1622 | *address = map_addr; | |
1623 | *size = map_size; | |
1624 | return kr; | |
1625 | } | |
1626 | ||
1627 | /* | |
1628 | * vm_region_64 and vm_region: | |
1629 | * | |
1630 | * User call to obtain information about a region in | |
1631 | * a task's address map. Currently, only one flavor is | |
1632 | * supported. | |
1633 | * | |
1634 | * XXX The reserved and behavior fields cannot be filled | |
1635 | * in until the vm merge from the IK is completed, and | |
1636 | * vm_reserve is implemented. | |
1637 | * | |
1638 | * XXX Dependency: syscall_vm_region() also supports only one flavor. | |
1639 | */ | |
1640 | ||
1641 | kern_return_t | |
1642 | vm_region_64( | |
1643 | vm_map_t map, | |
1644 | vm_offset_t *address, /* IN/OUT */ | |
1645 | vm_size_t *size, /* OUT */ | |
1646 | vm_region_flavor_t flavor, /* IN */ | |
1647 | vm_region_info_t info, /* OUT */ | |
1648 | mach_msg_type_number_t *count, /* IN/OUT */ | |
1649 | mach_port_t *object_name) /* OUT */ | |
1650 | { | |
1651 | vm_map_offset_t map_addr; | |
1652 | vm_map_size_t map_size; | |
1653 | kern_return_t kr; | |
1654 | ||
1655 | if (VM_MAP_NULL == map) | |
1656 | return KERN_INVALID_ARGUMENT; | |
1657 | ||
1658 | map_addr = (vm_map_offset_t)*address; | |
1659 | map_size = (vm_map_size_t)*size; | |
1660 | ||
1661 | /* legacy conversion */ | |
1662 | if (VM_REGION_BASIC_INFO == flavor) | |
1663 | flavor = VM_REGION_BASIC_INFO_64; | |
1664 | ||
1665 | kr = vm_map_region(map, | |
1666 | &map_addr, &map_size, | |
1667 | flavor, info, count, | |
1668 | object_name); | |
1669 | ||
1670 | *address = CAST_DOWN(vm_offset_t, map_addr); | |
1671 | *size = CAST_DOWN(vm_size_t, map_size); | |
1672 | ||
1673 | if (KERN_SUCCESS == kr && map_addr + map_size > VM_MAX_ADDRESS) | |
1674 | return KERN_INVALID_ADDRESS; | |
1675 | return kr; | |
1676 | } | |
1677 | ||
1678 | kern_return_t | |
1679 | vm_region( | |
1680 | vm_map_t map, | |
1681 | vm_address_t *address, /* IN/OUT */ | |
1682 | vm_size_t *size, /* OUT */ | |
1683 | vm_region_flavor_t flavor, /* IN */ | |
1684 | vm_region_info_t info, /* OUT */ | |
1685 | mach_msg_type_number_t *count, /* IN/OUT */ | |
1686 | mach_port_t *object_name) /* OUT */ | |
1687 | { | |
1688 | vm_map_address_t map_addr; | |
1689 | vm_map_size_t map_size; | |
1690 | kern_return_t kr; | |
1691 | ||
1692 | if (VM_MAP_NULL == map) | |
1693 | return KERN_INVALID_ARGUMENT; | |
1694 | ||
1695 | map_addr = (vm_map_address_t)*address; | |
1696 | map_size = (vm_map_size_t)*size; | |
1697 | ||
1698 | kr = vm_map_region(map, | |
1699 | &map_addr, &map_size, | |
1700 | flavor, info, count, | |
1701 | object_name); | |
1702 | ||
1703 | *address = CAST_DOWN(vm_address_t, map_addr); | |
1704 | *size = CAST_DOWN(vm_size_t, map_size); | |
1705 | ||
1706 | if (KERN_SUCCESS == kr && map_addr + map_size > VM_MAX_ADDRESS) | |
1707 | return KERN_INVALID_ADDRESS; | |
1708 | return kr; | |
1709 | } | |
1710 | ||
1711 | /* | |
1712 | * vm_region_recurse: A form of vm_region which follows the | |
1713 | * submaps in a target map | |
1714 | * | |
1715 | */ | |
1716 | kern_return_t | |
1717 | mach_vm_region_recurse( | |
1718 | vm_map_t map, | |
1719 | mach_vm_address_t *address, | |
1720 | mach_vm_size_t *size, | |
1721 | uint32_t *depth, | |
1722 | vm_region_recurse_info_t info, | |
1723 | mach_msg_type_number_t *infoCnt) | |
1724 | { | |
1725 | vm_map_address_t map_addr; | |
1726 | vm_map_size_t map_size; | |
1727 | kern_return_t kr; | |
1728 | ||
1729 | if (VM_MAP_NULL == map) | |
1730 | return KERN_INVALID_ARGUMENT; | |
1731 | ||
1732 | map_addr = (vm_map_address_t)*address; | |
1733 | map_size = (vm_map_size_t)*size; | |
1734 | ||
1735 | kr = vm_map_region_recurse_64( | |
1736 | map, | |
1737 | &map_addr, | |
1738 | &map_size, | |
1739 | depth, | |
1740 | (vm_region_submap_info_64_t)info, | |
1741 | infoCnt); | |
1742 | ||
1743 | *address = map_addr; | |
1744 | *size = map_size; | |
1745 | return kr; | |
1746 | } | |
1747 | ||
1748 | /* | |
1749 | * vm_region_recurse: A form of vm_region which follows the | |
1750 | * submaps in a target map | |
1751 | * | |
1752 | */ | |
1753 | kern_return_t | |
1754 | vm_region_recurse_64( | |
1755 | vm_map_t map, | |
1756 | vm_address_t *address, | |
1757 | vm_size_t *size, | |
1758 | uint32_t *depth, | |
1759 | vm_region_recurse_info_64_t info, | |
1760 | mach_msg_type_number_t *infoCnt) | |
1761 | { | |
1762 | vm_map_address_t map_addr; | |
1763 | vm_map_size_t map_size; | |
1764 | kern_return_t kr; | |
1765 | ||
1766 | if (VM_MAP_NULL == map) | |
1767 | return KERN_INVALID_ARGUMENT; | |
1768 | ||
1769 | map_addr = (vm_map_address_t)*address; | |
1770 | map_size = (vm_map_size_t)*size; | |
1771 | ||
1772 | kr = vm_map_region_recurse_64( | |
1773 | map, | |
1774 | &map_addr, | |
1775 | &map_size, | |
1776 | depth, | |
1777 | (vm_region_submap_info_64_t)info, | |
1778 | infoCnt); | |
1779 | ||
1780 | *address = CAST_DOWN(vm_address_t, map_addr); | |
1781 | *size = CAST_DOWN(vm_size_t, map_size); | |
1782 | ||
1783 | if (KERN_SUCCESS == kr && map_addr + map_size > VM_MAX_ADDRESS) | |
1784 | return KERN_INVALID_ADDRESS; | |
1785 | return kr; | |
1786 | } | |
1787 | ||
1788 | kern_return_t | |
1789 | vm_region_recurse( | |
1790 | vm_map_t map, | |
1791 | vm_offset_t *address, /* IN/OUT */ | |
1792 | vm_size_t *size, /* OUT */ | |
1793 | natural_t *depth, /* IN/OUT */ | |
1794 | vm_region_recurse_info_t info32, /* IN/OUT */ | |
1795 | mach_msg_type_number_t *infoCnt) /* IN/OUT */ | |
1796 | { | |
1797 | vm_region_submap_info_data_64_t info64; | |
1798 | vm_region_submap_info_t info; | |
1799 | vm_map_address_t map_addr; | |
1800 | vm_map_size_t map_size; | |
1801 | kern_return_t kr; | |
1802 | ||
1803 | if (VM_MAP_NULL == map || *infoCnt < VM_REGION_SUBMAP_INFO_COUNT) | |
1804 | return KERN_INVALID_ARGUMENT; | |
1805 | ||
1806 | ||
1807 | map_addr = (vm_map_address_t)*address; | |
1808 | map_size = (vm_map_size_t)*size; | |
1809 | info = (vm_region_submap_info_t)info32; | |
1810 | *infoCnt = VM_REGION_SUBMAP_INFO_COUNT_64; | |
1811 | ||
1812 | kr = vm_map_region_recurse_64(map, &map_addr,&map_size, | |
1813 | depth, &info64, infoCnt); | |
1814 | ||
1815 | info->protection = info64.protection; | |
1816 | info->max_protection = info64.max_protection; | |
1817 | info->inheritance = info64.inheritance; | |
1818 | info->offset = (uint32_t)info64.offset; /* trouble-maker */ | |
1819 | info->user_tag = info64.user_tag; | |
1820 | info->pages_resident = info64.pages_resident; | |
1821 | info->pages_shared_now_private = info64.pages_shared_now_private; | |
1822 | info->pages_swapped_out = info64.pages_swapped_out; | |
1823 | info->pages_dirtied = info64.pages_dirtied; | |
1824 | info->ref_count = info64.ref_count; | |
1825 | info->shadow_depth = info64.shadow_depth; | |
1826 | info->external_pager = info64.external_pager; | |
1827 | info->share_mode = info64.share_mode; | |
1828 | info->is_submap = info64.is_submap; | |
1829 | info->behavior = info64.behavior; | |
1830 | info->object_id = info64.object_id; | |
1831 | info->user_wired_count = info64.user_wired_count; | |
1832 | ||
1833 | *address = CAST_DOWN(vm_address_t, map_addr); | |
1834 | *size = CAST_DOWN(vm_size_t, map_size); | |
1835 | *infoCnt = VM_REGION_SUBMAP_INFO_COUNT; | |
1836 | ||
1837 | if (KERN_SUCCESS == kr && map_addr + map_size > VM_MAX_ADDRESS) | |
1838 | return KERN_INVALID_ADDRESS; | |
1839 | return kr; | |
1840 | } | |
1841 | ||
1842 | kern_return_t | |
1843 | mach_vm_purgable_control( | |
1844 | vm_map_t map, | |
1845 | mach_vm_offset_t address, | |
1846 | vm_purgable_t control, | |
1847 | int *state) | |
1848 | { | |
1849 | if (VM_MAP_NULL == map) | |
1850 | return KERN_INVALID_ARGUMENT; | |
1851 | ||
1852 | if (control == VM_PURGABLE_SET_STATE_FROM_KERNEL) { | |
1853 | /* not allowed from user-space */ | |
1854 | return KERN_INVALID_ARGUMENT; | |
1855 | } | |
1856 | ||
1857 | return vm_map_purgable_control(map, | |
1858 | vm_map_trunc_page(address, PAGE_MASK), | |
1859 | control, | |
1860 | state); | |
1861 | } | |
1862 | ||
1863 | kern_return_t | |
1864 | vm_purgable_control( | |
1865 | vm_map_t map, | |
1866 | vm_offset_t address, | |
1867 | vm_purgable_t control, | |
1868 | int *state) | |
1869 | { | |
1870 | if (VM_MAP_NULL == map) | |
1871 | return KERN_INVALID_ARGUMENT; | |
1872 | ||
1873 | if (control == VM_PURGABLE_SET_STATE_FROM_KERNEL) { | |
1874 | /* not allowed from user-space */ | |
1875 | return KERN_INVALID_ARGUMENT; | |
1876 | } | |
1877 | ||
1878 | return vm_map_purgable_control(map, | |
1879 | vm_map_trunc_page(address, PAGE_MASK), | |
1880 | control, | |
1881 | state); | |
1882 | } | |
1883 | ||
1884 | ||
1885 | /* | |
1886 | * Ordinarily, the right to allocate CPM is restricted | |
1887 | * to privileged applications (those that can gain access | |
1888 | * to the host priv port). Set this variable to zero if | |
1889 | * you want to let any application allocate CPM. | |
1890 | */ | |
1891 | unsigned int vm_allocate_cpm_privileged = 0; | |
1892 | ||
1893 | /* | |
1894 | * Allocate memory in the specified map, with the caveat that | |
1895 | * the memory is physically contiguous. This call may fail | |
1896 | * if the system can't find sufficient contiguous memory. | |
1897 | * This call may cause or lead to heart-stopping amounts of | |
1898 | * paging activity. | |
1899 | * | |
1900 | * Memory obtained from this call should be freed in the | |
1901 | * normal way, viz., via vm_deallocate. | |
1902 | */ | |
1903 | kern_return_t | |
1904 | vm_allocate_cpm( | |
1905 | host_priv_t host_priv, | |
1906 | vm_map_t map, | |
1907 | vm_address_t *addr, | |
1908 | vm_size_t size, | |
1909 | int flags) | |
1910 | { | |
1911 | vm_map_address_t map_addr; | |
1912 | vm_map_size_t map_size; | |
1913 | kern_return_t kr; | |
1914 | ||
1915 | if (vm_allocate_cpm_privileged && HOST_PRIV_NULL == host_priv) | |
1916 | return KERN_INVALID_HOST; | |
1917 | ||
1918 | if (VM_MAP_NULL == map) | |
1919 | return KERN_INVALID_ARGUMENT; | |
1920 | ||
1921 | map_addr = (vm_map_address_t)*addr; | |
1922 | map_size = (vm_map_size_t)size; | |
1923 | ||
1924 | kr = vm_map_enter_cpm(map, | |
1925 | &map_addr, | |
1926 | map_size, | |
1927 | flags); | |
1928 | ||
1929 | *addr = CAST_DOWN(vm_address_t, map_addr); | |
1930 | return kr; | |
1931 | } | |
1932 | ||
1933 | ||
1934 | kern_return_t | |
1935 | mach_vm_page_query( | |
1936 | vm_map_t map, | |
1937 | mach_vm_offset_t offset, | |
1938 | int *disposition, | |
1939 | int *ref_count) | |
1940 | { | |
1941 | if (VM_MAP_NULL == map) | |
1942 | return KERN_INVALID_ARGUMENT; | |
1943 | ||
1944 | return vm_map_page_query_internal( | |
1945 | map, | |
1946 | vm_map_trunc_page(offset, PAGE_MASK), | |
1947 | disposition, ref_count); | |
1948 | } | |
1949 | ||
1950 | kern_return_t | |
1951 | vm_map_page_query( | |
1952 | vm_map_t map, | |
1953 | vm_offset_t offset, | |
1954 | int *disposition, | |
1955 | int *ref_count) | |
1956 | { | |
1957 | if (VM_MAP_NULL == map) | |
1958 | return KERN_INVALID_ARGUMENT; | |
1959 | ||
1960 | return vm_map_page_query_internal( | |
1961 | map, | |
1962 | vm_map_trunc_page(offset, PAGE_MASK), | |
1963 | disposition, ref_count); | |
1964 | } | |
1965 | ||
1966 | kern_return_t | |
1967 | mach_vm_page_range_query( | |
1968 | vm_map_t map, | |
1969 | mach_vm_offset_t address, | |
1970 | mach_vm_size_t size, | |
1971 | mach_vm_address_t dispositions_addr, | |
1972 | mach_vm_size_t *dispositions_count) | |
1973 | { | |
1974 | kern_return_t kr = KERN_SUCCESS; | |
1975 | int num_pages = 0, i = 0; | |
1976 | mach_vm_size_t curr_sz = 0, copy_sz = 0; | |
1977 | mach_vm_size_t disp_buf_req_size = 0, disp_buf_total_size = 0; | |
1978 | mach_msg_type_number_t count = 0; | |
1979 | ||
1980 | void *info = NULL; | |
1981 | void *local_disp = NULL;; | |
1982 | vm_map_size_t info_size = 0, local_disp_size = 0; | |
1983 | mach_vm_offset_t start = 0, end = 0; | |
1984 | ||
1985 | if (map == VM_MAP_NULL || dispositions_count == NULL) { | |
1986 | return KERN_INVALID_ARGUMENT; | |
1987 | } | |
1988 | ||
1989 | disp_buf_req_size = ( *dispositions_count * sizeof(int)); | |
1990 | start = mach_vm_trunc_page(address); | |
1991 | end = mach_vm_round_page(address + size); | |
1992 | ||
1993 | if (end < start) { | |
1994 | return KERN_INVALID_ARGUMENT; | |
1995 | } | |
1996 | ||
1997 | if (disp_buf_req_size == 0 || (end == start)) { | |
1998 | return KERN_SUCCESS; | |
1999 | } | |
2000 | ||
2001 | /* | |
2002 | * For large requests, we will go through them | |
2003 | * MAX_PAGE_RANGE_QUERY chunk at a time. | |
2004 | */ | |
2005 | ||
2006 | curr_sz = MIN(end - start, MAX_PAGE_RANGE_QUERY); | |
2007 | num_pages = (int) (curr_sz >> PAGE_SHIFT); | |
2008 | ||
2009 | info_size = num_pages * sizeof(vm_page_info_basic_data_t); | |
2010 | info = kalloc(info_size); | |
2011 | ||
2012 | if (info == NULL) { | |
2013 | return KERN_RESOURCE_SHORTAGE; | |
2014 | } | |
2015 | ||
2016 | local_disp_size = num_pages * sizeof(int); | |
2017 | local_disp = kalloc(local_disp_size); | |
2018 | ||
2019 | if (local_disp == NULL) { | |
2020 | ||
2021 | kfree(info, info_size); | |
2022 | info = NULL; | |
2023 | return KERN_RESOURCE_SHORTAGE; | |
2024 | } | |
2025 | ||
2026 | while (size) { | |
2027 | ||
2028 | count = VM_PAGE_INFO_BASIC_COUNT; | |
2029 | kr = vm_map_page_range_info_internal( | |
2030 | map, | |
2031 | start, | |
2032 | mach_vm_round_page(start + curr_sz), | |
2033 | VM_PAGE_INFO_BASIC, | |
2034 | (vm_page_info_t) info, | |
2035 | &count); | |
2036 | ||
2037 | assert(kr == KERN_SUCCESS); | |
2038 | ||
2039 | for (i = 0; i < num_pages; i++) { | |
2040 | ||
2041 | ((int*)local_disp)[i] = ((vm_page_info_basic_t)info)[i].disposition; | |
2042 | } | |
2043 | ||
2044 | copy_sz = MIN(disp_buf_req_size, num_pages * sizeof(int)/* an int per page */); | |
2045 | kr = copyout(local_disp, (mach_vm_address_t)dispositions_addr, copy_sz); | |
2046 | ||
2047 | start += curr_sz; | |
2048 | disp_buf_req_size -= copy_sz; | |
2049 | disp_buf_total_size += copy_sz; | |
2050 | ||
2051 | if (kr != 0) { | |
2052 | break; | |
2053 | } | |
2054 | ||
2055 | if ((disp_buf_req_size == 0) || (curr_sz >= size)) { | |
2056 | ||
2057 | /* | |
2058 | * We might have inspected the full range OR | |
2059 | * more than it esp. if the user passed in | |
2060 | * non-page aligned start/size and/or if we | |
2061 | * descended into a submap. We are done here. | |
2062 | */ | |
2063 | ||
2064 | size = 0; | |
2065 | ||
2066 | } else { | |
2067 | ||
2068 | dispositions_addr += copy_sz; | |
2069 | ||
2070 | size -= curr_sz; | |
2071 | ||
2072 | curr_sz = MIN(mach_vm_round_page(size), MAX_PAGE_RANGE_QUERY); | |
2073 | num_pages = (int)(curr_sz >> PAGE_SHIFT); | |
2074 | } | |
2075 | } | |
2076 | ||
2077 | *dispositions_count = disp_buf_total_size / sizeof(int); | |
2078 | ||
2079 | kfree(local_disp, local_disp_size); | |
2080 | local_disp = NULL; | |
2081 | ||
2082 | kfree(info, info_size); | |
2083 | info = NULL; | |
2084 | ||
2085 | return kr; | |
2086 | } | |
2087 | ||
2088 | kern_return_t | |
2089 | mach_vm_page_info( | |
2090 | vm_map_t map, | |
2091 | mach_vm_address_t address, | |
2092 | vm_page_info_flavor_t flavor, | |
2093 | vm_page_info_t info, | |
2094 | mach_msg_type_number_t *count) | |
2095 | { | |
2096 | kern_return_t kr; | |
2097 | ||
2098 | if (map == VM_MAP_NULL) { | |
2099 | return KERN_INVALID_ARGUMENT; | |
2100 | } | |
2101 | ||
2102 | kr = vm_map_page_info(map, address, flavor, info, count); | |
2103 | return kr; | |
2104 | } | |
2105 | ||
2106 | /* map a (whole) upl into an address space */ | |
2107 | kern_return_t | |
2108 | vm_upl_map( | |
2109 | vm_map_t map, | |
2110 | upl_t upl, | |
2111 | vm_address_t *dst_addr) | |
2112 | { | |
2113 | vm_map_offset_t map_addr; | |
2114 | kern_return_t kr; | |
2115 | ||
2116 | if (VM_MAP_NULL == map) | |
2117 | return KERN_INVALID_ARGUMENT; | |
2118 | ||
2119 | kr = vm_map_enter_upl(map, upl, &map_addr); | |
2120 | *dst_addr = CAST_DOWN(vm_address_t, map_addr); | |
2121 | return kr; | |
2122 | } | |
2123 | ||
2124 | kern_return_t | |
2125 | vm_upl_unmap( | |
2126 | vm_map_t map, | |
2127 | upl_t upl) | |
2128 | { | |
2129 | if (VM_MAP_NULL == map) | |
2130 | return KERN_INVALID_ARGUMENT; | |
2131 | ||
2132 | return (vm_map_remove_upl(map, upl)); | |
2133 | } | |
2134 | ||
2135 | /* Retrieve a upl for an object underlying an address range in a map */ | |
2136 | ||
2137 | kern_return_t | |
2138 | vm_map_get_upl( | |
2139 | vm_map_t map, | |
2140 | vm_map_offset_t map_offset, | |
2141 | upl_size_t *upl_size, | |
2142 | upl_t *upl, | |
2143 | upl_page_info_array_t page_list, | |
2144 | unsigned int *count, | |
2145 | upl_control_flags_t *flags, | |
2146 | vm_tag_t tag, | |
2147 | int force_data_sync) | |
2148 | { | |
2149 | upl_control_flags_t map_flags; | |
2150 | kern_return_t kr; | |
2151 | ||
2152 | if (VM_MAP_NULL == map) | |
2153 | return KERN_INVALID_ARGUMENT; | |
2154 | ||
2155 | map_flags = *flags & ~UPL_NOZEROFILL; | |
2156 | if (force_data_sync) | |
2157 | map_flags |= UPL_FORCE_DATA_SYNC; | |
2158 | ||
2159 | kr = vm_map_create_upl(map, | |
2160 | map_offset, | |
2161 | upl_size, | |
2162 | upl, | |
2163 | page_list, | |
2164 | count, | |
2165 | &map_flags, | |
2166 | tag); | |
2167 | ||
2168 | *flags = (map_flags & ~UPL_FORCE_DATA_SYNC); | |
2169 | return kr; | |
2170 | } | |
2171 | ||
2172 | #if CONFIG_EMBEDDED | |
2173 | extern int proc_selfpid(void); | |
2174 | extern char *proc_name_address(void *p); | |
2175 | int cs_executable_mem_entry = 0; | |
2176 | int log_executable_mem_entry = 0; | |
2177 | #endif /* CONFIG_EMBEDDED */ | |
2178 | ||
2179 | /* | |
2180 | * mach_make_memory_entry_64 | |
2181 | * | |
2182 | * Think of it as a two-stage vm_remap() operation. First | |
2183 | * you get a handle. Second, you get map that handle in | |
2184 | * somewhere else. Rather than doing it all at once (and | |
2185 | * without needing access to the other whole map). | |
2186 | */ | |
2187 | kern_return_t | |
2188 | mach_make_memory_entry_64( | |
2189 | vm_map_t target_map, | |
2190 | memory_object_size_t *size, | |
2191 | memory_object_offset_t offset, | |
2192 | vm_prot_t permission, | |
2193 | ipc_port_t *object_handle, | |
2194 | ipc_port_t parent_handle) | |
2195 | { | |
2196 | if ((permission & MAP_MEM_FLAGS_MASK) & ~MAP_MEM_FLAGS_USER) { | |
2197 | /* | |
2198 | * Unknown flag: reject for forward compatibility. | |
2199 | */ | |
2200 | return KERN_INVALID_VALUE; | |
2201 | } | |
2202 | ||
2203 | return mach_make_memory_entry_internal(target_map, | |
2204 | size, | |
2205 | offset, | |
2206 | permission, | |
2207 | object_handle, | |
2208 | parent_handle); | |
2209 | } | |
2210 | ||
2211 | extern int pacified_purgeable_iokit; | |
2212 | ||
2213 | kern_return_t | |
2214 | mach_make_memory_entry_internal( | |
2215 | vm_map_t target_map, | |
2216 | memory_object_size_t *size, | |
2217 | memory_object_offset_t offset, | |
2218 | vm_prot_t permission, | |
2219 | ipc_port_t *object_handle, | |
2220 | ipc_port_t parent_handle) | |
2221 | { | |
2222 | vm_map_version_t version; | |
2223 | vm_named_entry_t parent_entry; | |
2224 | vm_named_entry_t user_entry; | |
2225 | ipc_port_t user_handle; | |
2226 | kern_return_t kr; | |
2227 | vm_map_t real_map; | |
2228 | ||
2229 | /* needed for call to vm_map_lookup_locked */ | |
2230 | boolean_t wired; | |
2231 | boolean_t iskernel; | |
2232 | vm_object_offset_t obj_off; | |
2233 | vm_prot_t prot; | |
2234 | struct vm_object_fault_info fault_info; | |
2235 | vm_object_t object; | |
2236 | vm_object_t shadow_object; | |
2237 | ||
2238 | /* needed for direct map entry manipulation */ | |
2239 | vm_map_entry_t map_entry; | |
2240 | vm_map_entry_t next_entry; | |
2241 | vm_map_t local_map; | |
2242 | vm_map_t original_map = target_map; | |
2243 | vm_map_size_t total_size, map_size; | |
2244 | vm_map_offset_t map_start, map_end; | |
2245 | vm_map_offset_t local_offset; | |
2246 | vm_object_size_t mappable_size; | |
2247 | ||
2248 | /* | |
2249 | * Stash the offset in the page for use by vm_map_enter_mem_object() | |
2250 | * in the VM_FLAGS_RETURN_DATA_ADDR/MAP_MEM_USE_DATA_ADDR case. | |
2251 | */ | |
2252 | vm_object_offset_t offset_in_page; | |
2253 | ||
2254 | unsigned int access; | |
2255 | vm_prot_t protections; | |
2256 | vm_prot_t original_protections, mask_protections; | |
2257 | unsigned int wimg_mode; | |
2258 | ||
2259 | boolean_t force_shadow = FALSE; | |
2260 | boolean_t use_data_addr; | |
2261 | boolean_t use_4K_compat; | |
2262 | ||
2263 | if ((permission & MAP_MEM_FLAGS_MASK) & ~MAP_MEM_FLAGS_ALL) { | |
2264 | /* | |
2265 | * Unknown flag: reject for forward compatibility. | |
2266 | */ | |
2267 | return KERN_INVALID_VALUE; | |
2268 | } | |
2269 | ||
2270 | if (parent_handle != IP_NULL && | |
2271 | ip_kotype(parent_handle) == IKOT_NAMED_ENTRY) { | |
2272 | parent_entry = (vm_named_entry_t) parent_handle->ip_kobject; | |
2273 | } else { | |
2274 | parent_entry = NULL; | |
2275 | } | |
2276 | ||
2277 | if (parent_entry && parent_entry->is_copy) { | |
2278 | return KERN_INVALID_ARGUMENT; | |
2279 | } | |
2280 | ||
2281 | original_protections = permission & VM_PROT_ALL; | |
2282 | protections = original_protections; | |
2283 | mask_protections = permission & VM_PROT_IS_MASK; | |
2284 | access = GET_MAP_MEM(permission); | |
2285 | use_data_addr = ((permission & MAP_MEM_USE_DATA_ADDR) != 0); | |
2286 | use_4K_compat = ((permission & MAP_MEM_4K_DATA_ADDR) != 0); | |
2287 | ||
2288 | user_handle = IP_NULL; | |
2289 | user_entry = NULL; | |
2290 | ||
2291 | map_start = vm_map_trunc_page(offset, PAGE_MASK); | |
2292 | ||
2293 | if (permission & MAP_MEM_ONLY) { | |
2294 | boolean_t parent_is_object; | |
2295 | ||
2296 | map_end = vm_map_round_page(offset + *size, PAGE_MASK); | |
2297 | map_size = map_end - map_start; | |
2298 | ||
2299 | if (use_data_addr || use_4K_compat || parent_entry == NULL) { | |
2300 | return KERN_INVALID_ARGUMENT; | |
2301 | } | |
2302 | ||
2303 | parent_is_object = !parent_entry->is_sub_map; | |
2304 | object = parent_entry->backing.object; | |
2305 | if(parent_is_object && object != VM_OBJECT_NULL) | |
2306 | wimg_mode = object->wimg_bits; | |
2307 | else | |
2308 | wimg_mode = VM_WIMG_USE_DEFAULT; | |
2309 | if((access != GET_MAP_MEM(parent_entry->protection)) && | |
2310 | !(parent_entry->protection & VM_PROT_WRITE)) { | |
2311 | return KERN_INVALID_RIGHT; | |
2312 | } | |
2313 | vm_prot_to_wimg(access, &wimg_mode); | |
2314 | if (access != MAP_MEM_NOOP) | |
2315 | SET_MAP_MEM(access, parent_entry->protection); | |
2316 | if (parent_is_object && object && | |
2317 | (access != MAP_MEM_NOOP) && | |
2318 | (!(object->nophyscache))) { | |
2319 | ||
2320 | if (object->wimg_bits != wimg_mode) { | |
2321 | vm_object_lock(object); | |
2322 | vm_object_change_wimg_mode(object, wimg_mode); | |
2323 | vm_object_unlock(object); | |
2324 | } | |
2325 | } | |
2326 | if (object_handle) | |
2327 | *object_handle = IP_NULL; | |
2328 | return KERN_SUCCESS; | |
2329 | } else if (permission & MAP_MEM_NAMED_CREATE) { | |
2330 | map_end = vm_map_round_page(offset + *size, PAGE_MASK); | |
2331 | map_size = map_end - map_start; | |
2332 | ||
2333 | if (use_data_addr || use_4K_compat) { | |
2334 | return KERN_INVALID_ARGUMENT; | |
2335 | } | |
2336 | ||
2337 | kr = mach_memory_entry_allocate(&user_entry, &user_handle); | |
2338 | if (kr != KERN_SUCCESS) { | |
2339 | return KERN_FAILURE; | |
2340 | } | |
2341 | ||
2342 | /* | |
2343 | * Force the creation of the VM object now. | |
2344 | */ | |
2345 | if (map_size > (vm_map_size_t) ANON_MAX_SIZE) { | |
2346 | /* | |
2347 | * LP64todo - for now, we can only allocate 4GB-4096 | |
2348 | * internal objects because the default pager can't | |
2349 | * page bigger ones. Remove this when it can. | |
2350 | */ | |
2351 | kr = KERN_FAILURE; | |
2352 | goto make_mem_done; | |
2353 | } | |
2354 | ||
2355 | object = vm_object_allocate(map_size); | |
2356 | assert(object != VM_OBJECT_NULL); | |
2357 | ||
2358 | if (permission & MAP_MEM_PURGABLE) { | |
2359 | if (! (permission & VM_PROT_WRITE)) { | |
2360 | /* if we can't write, we can't purge */ | |
2361 | vm_object_deallocate(object); | |
2362 | kr = KERN_INVALID_ARGUMENT; | |
2363 | goto make_mem_done; | |
2364 | } | |
2365 | object->purgable = VM_PURGABLE_NONVOLATILE; | |
2366 | if (permission & MAP_MEM_PURGABLE_KERNEL_ONLY) { | |
2367 | object->purgeable_only_by_kernel = TRUE; | |
2368 | } | |
2369 | assert(object->vo_purgeable_owner == NULL); | |
2370 | assert(object->resident_page_count == 0); | |
2371 | assert(object->wired_page_count == 0); | |
2372 | vm_object_lock(object); | |
2373 | if (pacified_purgeable_iokit) { | |
2374 | if (permission & MAP_MEM_LEDGER_TAG_NETWORK) { | |
2375 | vm_purgeable_nonvolatile_enqueue(object, | |
2376 | kernel_task); | |
2377 | } else { | |
2378 | vm_purgeable_nonvolatile_enqueue(object, | |
2379 | current_task()); | |
2380 | } | |
2381 | } else { | |
2382 | if (object->purgeable_only_by_kernel) { | |
2383 | vm_purgeable_nonvolatile_enqueue(object, | |
2384 | kernel_task); | |
2385 | } else { | |
2386 | vm_purgeable_nonvolatile_enqueue(object, | |
2387 | current_task()); | |
2388 | } | |
2389 | } | |
2390 | vm_object_unlock(object); | |
2391 | } | |
2392 | ||
2393 | #if CONFIG_SECLUDED_MEMORY | |
2394 | if (secluded_for_iokit && /* global boot-arg */ | |
2395 | ((permission & MAP_MEM_GRAB_SECLUDED) | |
2396 | #if 11 | |
2397 | /* XXX FBDP for my testing only */ | |
2398 | || (secluded_for_fbdp && map_size == 97550336) | |
2399 | #endif | |
2400 | )) { | |
2401 | #if 11 | |
2402 | if (!(permission & MAP_MEM_GRAB_SECLUDED) && | |
2403 | secluded_for_fbdp) { | |
2404 | printf("FBDP: object %p size %lld can grab secluded\n", object, (uint64_t) map_size); | |
2405 | } | |
2406 | #endif | |
2407 | object->can_grab_secluded = TRUE; | |
2408 | assert(!object->eligible_for_secluded); | |
2409 | } | |
2410 | #endif /* CONFIG_SECLUDED_MEMORY */ | |
2411 | ||
2412 | /* | |
2413 | * The VM object is brand new and nobody else knows about it, | |
2414 | * so we don't need to lock it. | |
2415 | */ | |
2416 | ||
2417 | wimg_mode = object->wimg_bits; | |
2418 | vm_prot_to_wimg(access, &wimg_mode); | |
2419 | if (access != MAP_MEM_NOOP) { | |
2420 | object->wimg_bits = wimg_mode; | |
2421 | } | |
2422 | ||
2423 | /* the object has no pages, so no WIMG bits to update here */ | |
2424 | ||
2425 | /* | |
2426 | * XXX | |
2427 | * We use this path when we want to make sure that | |
2428 | * nobody messes with the object (coalesce, for | |
2429 | * example) before we map it. | |
2430 | * We might want to use these objects for transposition via | |
2431 | * vm_object_transpose() too, so we don't want any copy or | |
2432 | * shadow objects either... | |
2433 | */ | |
2434 | object->copy_strategy = MEMORY_OBJECT_COPY_NONE; | |
2435 | object->true_share = TRUE; | |
2436 | ||
2437 | user_entry->backing.object = object; | |
2438 | user_entry->internal = TRUE; | |
2439 | user_entry->is_sub_map = FALSE; | |
2440 | user_entry->offset = 0; | |
2441 | user_entry->data_offset = 0; | |
2442 | user_entry->protection = protections; | |
2443 | SET_MAP_MEM(access, user_entry->protection); | |
2444 | user_entry->size = map_size; | |
2445 | ||
2446 | /* user_object pager and internal fields are not used */ | |
2447 | /* when the object field is filled in. */ | |
2448 | ||
2449 | *size = CAST_DOWN(vm_size_t, (user_entry->size - | |
2450 | user_entry->data_offset)); | |
2451 | *object_handle = user_handle; | |
2452 | return KERN_SUCCESS; | |
2453 | } | |
2454 | ||
2455 | if (permission & MAP_MEM_VM_COPY) { | |
2456 | vm_map_copy_t copy; | |
2457 | ||
2458 | if (target_map == VM_MAP_NULL) { | |
2459 | return KERN_INVALID_TASK; | |
2460 | } | |
2461 | ||
2462 | map_end = vm_map_round_page(offset + *size, PAGE_MASK); | |
2463 | map_size = map_end - map_start; | |
2464 | if (use_data_addr || use_4K_compat) { | |
2465 | offset_in_page = offset - map_start; | |
2466 | if (use_4K_compat) | |
2467 | offset_in_page &= ~((signed)(0xFFF)); | |
2468 | } else { | |
2469 | offset_in_page = 0; | |
2470 | } | |
2471 | ||
2472 | kr = vm_map_copyin_internal(target_map, | |
2473 | map_start, | |
2474 | map_size, | |
2475 | VM_MAP_COPYIN_ENTRY_LIST, | |
2476 | ©); | |
2477 | if (kr != KERN_SUCCESS) { | |
2478 | return kr; | |
2479 | } | |
2480 | ||
2481 | kr = mach_memory_entry_allocate(&user_entry, &user_handle); | |
2482 | if (kr != KERN_SUCCESS) { | |
2483 | vm_map_copy_discard(copy); | |
2484 | return KERN_FAILURE; | |
2485 | } | |
2486 | ||
2487 | user_entry->backing.copy = copy; | |
2488 | user_entry->internal = FALSE; | |
2489 | user_entry->is_sub_map = FALSE; | |
2490 | user_entry->is_copy = TRUE; | |
2491 | user_entry->offset = 0; | |
2492 | user_entry->protection = protections; | |
2493 | user_entry->size = map_size; | |
2494 | user_entry->data_offset = offset_in_page; | |
2495 | ||
2496 | *size = CAST_DOWN(vm_size_t, (user_entry->size - | |
2497 | user_entry->data_offset)); | |
2498 | *object_handle = user_handle; | |
2499 | return KERN_SUCCESS; | |
2500 | } | |
2501 | ||
2502 | if (permission & MAP_MEM_VM_SHARE) { | |
2503 | vm_map_copy_t copy; | |
2504 | vm_prot_t cur_prot, max_prot; | |
2505 | ||
2506 | if (target_map == VM_MAP_NULL) { | |
2507 | return KERN_INVALID_TASK; | |
2508 | } | |
2509 | ||
2510 | map_end = vm_map_round_page(offset + *size, PAGE_MASK); | |
2511 | map_size = map_end - map_start; | |
2512 | if (use_data_addr || use_4K_compat) { | |
2513 | offset_in_page = offset - map_start; | |
2514 | if (use_4K_compat) | |
2515 | offset_in_page &= ~((signed)(0xFFF)); | |
2516 | } else { | |
2517 | offset_in_page = 0; | |
2518 | } | |
2519 | ||
2520 | cur_prot = VM_PROT_ALL; | |
2521 | kr = vm_map_copy_extract(target_map, | |
2522 | map_start, | |
2523 | map_size, | |
2524 | ©, | |
2525 | &cur_prot, | |
2526 | &max_prot); | |
2527 | if (kr != KERN_SUCCESS) { | |
2528 | return kr; | |
2529 | } | |
2530 | ||
2531 | if (mask_protections) { | |
2532 | /* | |
2533 | * We just want as much of "original_protections" | |
2534 | * as we can get out of the actual "cur_prot". | |
2535 | */ | |
2536 | protections &= cur_prot; | |
2537 | if (protections == VM_PROT_NONE) { | |
2538 | /* no access at all: fail */ | |
2539 | vm_map_copy_discard(copy); | |
2540 | return KERN_PROTECTION_FAILURE; | |
2541 | } | |
2542 | } else { | |
2543 | /* | |
2544 | * We want exactly "original_protections" | |
2545 | * out of "cur_prot". | |
2546 | */ | |
2547 | if ((cur_prot & protections) != protections) { | |
2548 | vm_map_copy_discard(copy); | |
2549 | return KERN_PROTECTION_FAILURE; | |
2550 | } | |
2551 | } | |
2552 | ||
2553 | kr = mach_memory_entry_allocate(&user_entry, &user_handle); | |
2554 | if (kr != KERN_SUCCESS) { | |
2555 | vm_map_copy_discard(copy); | |
2556 | return KERN_FAILURE; | |
2557 | } | |
2558 | ||
2559 | user_entry->backing.copy = copy; | |
2560 | user_entry->internal = FALSE; | |
2561 | user_entry->is_sub_map = FALSE; | |
2562 | user_entry->is_copy = TRUE; | |
2563 | user_entry->offset = 0; | |
2564 | user_entry->protection = protections; | |
2565 | user_entry->size = map_size; | |
2566 | user_entry->data_offset = offset_in_page; | |
2567 | ||
2568 | *size = CAST_DOWN(vm_size_t, (user_entry->size - | |
2569 | user_entry->data_offset)); | |
2570 | *object_handle = user_handle; | |
2571 | return KERN_SUCCESS; | |
2572 | } | |
2573 | ||
2574 | if (parent_entry == NULL || | |
2575 | (permission & MAP_MEM_NAMED_REUSE)) { | |
2576 | ||
2577 | map_end = vm_map_round_page(offset + *size, PAGE_MASK); | |
2578 | map_size = map_end - map_start; | |
2579 | if (use_data_addr || use_4K_compat) { | |
2580 | offset_in_page = offset - map_start; | |
2581 | if (use_4K_compat) | |
2582 | offset_in_page &= ~((signed)(0xFFF)); | |
2583 | } else { | |
2584 | offset_in_page = 0; | |
2585 | } | |
2586 | ||
2587 | /* Create a named object based on address range within the task map */ | |
2588 | /* Go find the object at given address */ | |
2589 | ||
2590 | if (target_map == VM_MAP_NULL) { | |
2591 | return KERN_INVALID_TASK; | |
2592 | } | |
2593 | ||
2594 | redo_lookup: | |
2595 | protections = original_protections; | |
2596 | vm_map_lock_read(target_map); | |
2597 | ||
2598 | /* get the object associated with the target address */ | |
2599 | /* note we check the permission of the range against */ | |
2600 | /* that requested by the caller */ | |
2601 | ||
2602 | kr = vm_map_lookup_locked(&target_map, map_start, | |
2603 | protections | mask_protections, | |
2604 | OBJECT_LOCK_EXCLUSIVE, &version, | |
2605 | &object, &obj_off, &prot, &wired, | |
2606 | &fault_info, | |
2607 | &real_map); | |
2608 | if (kr != KERN_SUCCESS) { | |
2609 | vm_map_unlock_read(target_map); | |
2610 | goto make_mem_done; | |
2611 | } | |
2612 | if (mask_protections) { | |
2613 | /* | |
2614 | * The caller asked us to use the "protections" as | |
2615 | * a mask, so restrict "protections" to what this | |
2616 | * mapping actually allows. | |
2617 | */ | |
2618 | protections &= prot; | |
2619 | } | |
2620 | #if CONFIG_EMBEDDED | |
2621 | /* | |
2622 | * Wiring would copy the pages to a shadow object. | |
2623 | * The shadow object would not be code-signed so | |
2624 | * attempting to execute code from these copied pages | |
2625 | * would trigger a code-signing violation. | |
2626 | */ | |
2627 | if (prot & VM_PROT_EXECUTE) { | |
2628 | if (log_executable_mem_entry) { | |
2629 | void *bsd_info; | |
2630 | bsd_info = current_task()->bsd_info; | |
2631 | printf("pid %d[%s] making memory entry out of " | |
2632 | "executable range from 0x%llx to 0x%llx:" | |
2633 | "might cause code-signing issues " | |
2634 | "later\n", | |
2635 | proc_selfpid(), | |
2636 | (bsd_info != NULL | |
2637 | ? proc_name_address(bsd_info) | |
2638 | : "?"), | |
2639 | (uint64_t) map_start, | |
2640 | (uint64_t) map_end); | |
2641 | } | |
2642 | DTRACE_VM2(cs_executable_mem_entry, | |
2643 | uint64_t, (uint64_t)map_start, | |
2644 | uint64_t, (uint64_t)map_end); | |
2645 | cs_executable_mem_entry++; | |
2646 | ||
2647 | #if 11 | |
2648 | /* | |
2649 | * We don't know how the memory entry will be used. | |
2650 | * It might never get wired and might not cause any | |
2651 | * trouble, so let's not reject this request... | |
2652 | */ | |
2653 | #else /* 11 */ | |
2654 | kr = KERN_PROTECTION_FAILURE; | |
2655 | vm_object_unlock(object); | |
2656 | vm_map_unlock_read(target_map); | |
2657 | if(real_map != target_map) | |
2658 | vm_map_unlock_read(real_map); | |
2659 | goto make_mem_done; | |
2660 | #endif /* 11 */ | |
2661 | ||
2662 | } | |
2663 | #endif /* CONFIG_EMBEDDED */ | |
2664 | ||
2665 | if (((prot & protections) != protections) | |
2666 | || (object == kernel_object)) { | |
2667 | kr = KERN_INVALID_RIGHT; | |
2668 | vm_object_unlock(object); | |
2669 | vm_map_unlock_read(target_map); | |
2670 | if(real_map != target_map) | |
2671 | vm_map_unlock_read(real_map); | |
2672 | if(object == kernel_object) { | |
2673 | printf("Warning: Attempt to create a named" | |
2674 | " entry from the kernel_object\n"); | |
2675 | } | |
2676 | goto make_mem_done; | |
2677 | } | |
2678 | ||
2679 | /* We have an object, now check to see if this object */ | |
2680 | /* is suitable. If not, create a shadow and share that */ | |
2681 | ||
2682 | /* | |
2683 | * We have to unlock the VM object to avoid deadlocking with | |
2684 | * a VM map lock (the lock ordering is map, the object), if we | |
2685 | * need to modify the VM map to create a shadow object. Since | |
2686 | * we might release the VM map lock below anyway, we have | |
2687 | * to release the VM map lock now. | |
2688 | * XXX FBDP There must be a way to avoid this double lookup... | |
2689 | * | |
2690 | * Take an extra reference on the VM object to make sure it's | |
2691 | * not going to disappear. | |
2692 | */ | |
2693 | vm_object_reference_locked(object); /* extra ref to hold obj */ | |
2694 | vm_object_unlock(object); | |
2695 | ||
2696 | local_map = original_map; | |
2697 | local_offset = map_start; | |
2698 | if(target_map != local_map) { | |
2699 | vm_map_unlock_read(target_map); | |
2700 | if(real_map != target_map) | |
2701 | vm_map_unlock_read(real_map); | |
2702 | vm_map_lock_read(local_map); | |
2703 | target_map = local_map; | |
2704 | real_map = local_map; | |
2705 | } | |
2706 | while(TRUE) { | |
2707 | if(!vm_map_lookup_entry(local_map, | |
2708 | local_offset, &map_entry)) { | |
2709 | kr = KERN_INVALID_ARGUMENT; | |
2710 | vm_map_unlock_read(target_map); | |
2711 | if(real_map != target_map) | |
2712 | vm_map_unlock_read(real_map); | |
2713 | vm_object_deallocate(object); /* release extra ref */ | |
2714 | object = VM_OBJECT_NULL; | |
2715 | goto make_mem_done; | |
2716 | } | |
2717 | iskernel = (local_map->pmap == kernel_pmap); | |
2718 | if(!(map_entry->is_sub_map)) { | |
2719 | if (VME_OBJECT(map_entry) != object) { | |
2720 | kr = KERN_INVALID_ARGUMENT; | |
2721 | vm_map_unlock_read(target_map); | |
2722 | if(real_map != target_map) | |
2723 | vm_map_unlock_read(real_map); | |
2724 | vm_object_deallocate(object); /* release extra ref */ | |
2725 | object = VM_OBJECT_NULL; | |
2726 | goto make_mem_done; | |
2727 | } | |
2728 | break; | |
2729 | } else { | |
2730 | vm_map_t tmap; | |
2731 | tmap = local_map; | |
2732 | local_map = VME_SUBMAP(map_entry); | |
2733 | ||
2734 | vm_map_lock_read(local_map); | |
2735 | vm_map_unlock_read(tmap); | |
2736 | target_map = local_map; | |
2737 | real_map = local_map; | |
2738 | local_offset = local_offset - map_entry->vme_start; | |
2739 | local_offset += VME_OFFSET(map_entry); | |
2740 | } | |
2741 | } | |
2742 | ||
2743 | /* | |
2744 | * We found the VM map entry, lock the VM object again. | |
2745 | */ | |
2746 | vm_object_lock(object); | |
2747 | if(map_entry->wired_count) { | |
2748 | /* JMM - The check below should be reworked instead. */ | |
2749 | object->true_share = TRUE; | |
2750 | } | |
2751 | if (mask_protections) { | |
2752 | /* | |
2753 | * The caller asked us to use the "protections" as | |
2754 | * a mask, so restrict "protections" to what this | |
2755 | * mapping actually allows. | |
2756 | */ | |
2757 | protections &= map_entry->max_protection; | |
2758 | } | |
2759 | if(((map_entry->max_protection) & protections) != protections) { | |
2760 | kr = KERN_INVALID_RIGHT; | |
2761 | vm_object_unlock(object); | |
2762 | vm_map_unlock_read(target_map); | |
2763 | if(real_map != target_map) | |
2764 | vm_map_unlock_read(real_map); | |
2765 | vm_object_deallocate(object); | |
2766 | object = VM_OBJECT_NULL; | |
2767 | goto make_mem_done; | |
2768 | } | |
2769 | ||
2770 | mappable_size = fault_info.hi_offset - obj_off; | |
2771 | total_size = map_entry->vme_end - map_entry->vme_start; | |
2772 | if(map_size > mappable_size) { | |
2773 | /* try to extend mappable size if the entries */ | |
2774 | /* following are from the same object and are */ | |
2775 | /* compatible */ | |
2776 | next_entry = map_entry->vme_next; | |
2777 | /* lets see if the next map entry is still */ | |
2778 | /* pointing at this object and is contiguous */ | |
2779 | while(map_size > mappable_size) { | |
2780 | if ((VME_OBJECT(next_entry) == object) && | |
2781 | (next_entry->vme_start == | |
2782 | next_entry->vme_prev->vme_end) && | |
2783 | (VME_OFFSET(next_entry) == | |
2784 | (VME_OFFSET(next_entry->vme_prev) + | |
2785 | (next_entry->vme_prev->vme_end - | |
2786 | next_entry->vme_prev->vme_start)))) { | |
2787 | if (mask_protections) { | |
2788 | /* | |
2789 | * The caller asked us to use | |
2790 | * the "protections" as a mask, | |
2791 | * so restrict "protections" to | |
2792 | * what this mapping actually | |
2793 | * allows. | |
2794 | */ | |
2795 | protections &= next_entry->max_protection; | |
2796 | } | |
2797 | if ((next_entry->wired_count) && | |
2798 | (map_entry->wired_count == 0)) { | |
2799 | break; | |
2800 | } | |
2801 | if(((next_entry->max_protection) | |
2802 | & protections) != protections) { | |
2803 | break; | |
2804 | } | |
2805 | if (next_entry->needs_copy != | |
2806 | map_entry->needs_copy) | |
2807 | break; | |
2808 | mappable_size += next_entry->vme_end | |
2809 | - next_entry->vme_start; | |
2810 | total_size += next_entry->vme_end | |
2811 | - next_entry->vme_start; | |
2812 | next_entry = next_entry->vme_next; | |
2813 | } else { | |
2814 | break; | |
2815 | } | |
2816 | ||
2817 | } | |
2818 | } | |
2819 | ||
2820 | /* vm_map_entry_should_cow_for_true_share() checks for malloc tags, | |
2821 | * never true in kernel */ | |
2822 | if (!iskernel && vm_map_entry_should_cow_for_true_share(map_entry) && | |
2823 | object->vo_size > map_size && | |
2824 | map_size != 0) { | |
2825 | /* | |
2826 | * Set up the targeted range for copy-on-write to | |
2827 | * limit the impact of "true_share"/"copy_delay" to | |
2828 | * that range instead of the entire VM object... | |
2829 | */ | |
2830 | ||
2831 | vm_object_unlock(object); | |
2832 | if (vm_map_lock_read_to_write(target_map)) { | |
2833 | vm_object_deallocate(object); | |
2834 | target_map = original_map; | |
2835 | goto redo_lookup; | |
2836 | } | |
2837 | ||
2838 | vm_map_clip_start(target_map, | |
2839 | map_entry, | |
2840 | vm_map_trunc_page(map_start, | |
2841 | VM_MAP_PAGE_MASK(target_map))); | |
2842 | vm_map_clip_end(target_map, | |
2843 | map_entry, | |
2844 | (vm_map_round_page(map_end, | |
2845 | VM_MAP_PAGE_MASK(target_map)))); | |
2846 | force_shadow = TRUE; | |
2847 | ||
2848 | if ((map_entry->vme_end - offset) < map_size) { | |
2849 | map_size = map_entry->vme_end - map_start; | |
2850 | } | |
2851 | total_size = map_entry->vme_end - map_entry->vme_start; | |
2852 | ||
2853 | vm_map_lock_write_to_read(target_map); | |
2854 | vm_object_lock(object); | |
2855 | } | |
2856 | ||
2857 | if (object->internal) { | |
2858 | /* vm_map_lookup_locked will create a shadow if */ | |
2859 | /* needs_copy is set but does not check for the */ | |
2860 | /* other two conditions shown. It is important to */ | |
2861 | /* set up an object which will not be pulled from */ | |
2862 | /* under us. */ | |
2863 | ||
2864 | if (force_shadow || | |
2865 | ((map_entry->needs_copy || | |
2866 | object->shadowed || | |
2867 | (object->vo_size > total_size && | |
2868 | (VME_OFFSET(map_entry) != 0 || | |
2869 | object->vo_size > | |
2870 | vm_map_round_page(total_size, | |
2871 | VM_MAP_PAGE_MASK(target_map))))) | |
2872 | && !object->true_share)) { | |
2873 | /* | |
2874 | * We have to unlock the VM object before | |
2875 | * trying to upgrade the VM map lock, to | |
2876 | * honor lock ordering (map then object). | |
2877 | * Otherwise, we would deadlock if another | |
2878 | * thread holds a read lock on the VM map and | |
2879 | * is trying to acquire the VM object's lock. | |
2880 | * We still hold an extra reference on the | |
2881 | * VM object, guaranteeing that it won't | |
2882 | * disappear. | |
2883 | */ | |
2884 | vm_object_unlock(object); | |
2885 | ||
2886 | if (vm_map_lock_read_to_write(target_map)) { | |
2887 | /* | |
2888 | * We couldn't upgrade our VM map lock | |
2889 | * from "read" to "write" and we lost | |
2890 | * our "read" lock. | |
2891 | * Start all over again... | |
2892 | */ | |
2893 | vm_object_deallocate(object); /* extra ref */ | |
2894 | target_map = original_map; | |
2895 | goto redo_lookup; | |
2896 | } | |
2897 | #if 00 | |
2898 | vm_object_lock(object); | |
2899 | #endif | |
2900 | ||
2901 | /* | |
2902 | * JMM - We need to avoid coming here when the object | |
2903 | * is wired by anybody, not just the current map. Why | |
2904 | * couldn't we use the standard vm_object_copy_quickly() | |
2905 | * approach here? | |
2906 | */ | |
2907 | ||
2908 | /* create a shadow object */ | |
2909 | VME_OBJECT_SHADOW(map_entry, total_size); | |
2910 | shadow_object = VME_OBJECT(map_entry); | |
2911 | #if 00 | |
2912 | vm_object_unlock(object); | |
2913 | #endif | |
2914 | ||
2915 | prot = map_entry->protection & ~VM_PROT_WRITE; | |
2916 | ||
2917 | if (override_nx(target_map, | |
2918 | VME_ALIAS(map_entry)) | |
2919 | && prot) | |
2920 | prot |= VM_PROT_EXECUTE; | |
2921 | ||
2922 | vm_object_pmap_protect( | |
2923 | object, VME_OFFSET(map_entry), | |
2924 | total_size, | |
2925 | ((map_entry->is_shared | |
2926 | || target_map->mapped_in_other_pmaps) | |
2927 | ? PMAP_NULL : | |
2928 | target_map->pmap), | |
2929 | map_entry->vme_start, | |
2930 | prot); | |
2931 | total_size -= (map_entry->vme_end | |
2932 | - map_entry->vme_start); | |
2933 | next_entry = map_entry->vme_next; | |
2934 | map_entry->needs_copy = FALSE; | |
2935 | ||
2936 | vm_object_lock(shadow_object); | |
2937 | while (total_size) { | |
2938 | assert((next_entry->wired_count == 0) || | |
2939 | (map_entry->wired_count)); | |
2940 | ||
2941 | if (VME_OBJECT(next_entry) == object) { | |
2942 | vm_object_reference_locked(shadow_object); | |
2943 | VME_OBJECT_SET(next_entry, | |
2944 | shadow_object); | |
2945 | vm_object_deallocate(object); | |
2946 | VME_OFFSET_SET( | |
2947 | next_entry, | |
2948 | (VME_OFFSET(next_entry->vme_prev) + | |
2949 | (next_entry->vme_prev->vme_end | |
2950 | - next_entry->vme_prev->vme_start))); | |
2951 | next_entry->use_pmap = TRUE; | |
2952 | next_entry->needs_copy = FALSE; | |
2953 | } else { | |
2954 | panic("mach_make_memory_entry_64:" | |
2955 | " map entries out of sync\n"); | |
2956 | } | |
2957 | total_size -= | |
2958 | next_entry->vme_end | |
2959 | - next_entry->vme_start; | |
2960 | next_entry = next_entry->vme_next; | |
2961 | } | |
2962 | ||
2963 | /* | |
2964 | * Transfer our extra reference to the | |
2965 | * shadow object. | |
2966 | */ | |
2967 | vm_object_reference_locked(shadow_object); | |
2968 | vm_object_deallocate(object); /* extra ref */ | |
2969 | object = shadow_object; | |
2970 | ||
2971 | obj_off = ((local_offset - map_entry->vme_start) | |
2972 | + VME_OFFSET(map_entry)); | |
2973 | ||
2974 | vm_map_lock_write_to_read(target_map); | |
2975 | } | |
2976 | } | |
2977 | ||
2978 | /* note: in the future we can (if necessary) allow for */ | |
2979 | /* memory object lists, this will better support */ | |
2980 | /* fragmentation, but is it necessary? The user should */ | |
2981 | /* be encouraged to create address space oriented */ | |
2982 | /* shared objects from CLEAN memory regions which have */ | |
2983 | /* a known and defined history. i.e. no inheritence */ | |
2984 | /* share, make this call before making the region the */ | |
2985 | /* target of ipc's, etc. The code above, protecting */ | |
2986 | /* against delayed copy, etc. is mostly defensive. */ | |
2987 | ||
2988 | wimg_mode = object->wimg_bits; | |
2989 | if(!(object->nophyscache)) | |
2990 | vm_prot_to_wimg(access, &wimg_mode); | |
2991 | ||
2992 | #if VM_OBJECT_TRACKING_OP_TRUESHARE | |
2993 | if (!object->true_share && | |
2994 | vm_object_tracking_inited) { | |
2995 | void *bt[VM_OBJECT_TRACKING_BTDEPTH]; | |
2996 | int num = 0; | |
2997 | ||
2998 | num = OSBacktrace(bt, | |
2999 | VM_OBJECT_TRACKING_BTDEPTH); | |
3000 | btlog_add_entry(vm_object_tracking_btlog, | |
3001 | object, | |
3002 | VM_OBJECT_TRACKING_OP_TRUESHARE, | |
3003 | bt, | |
3004 | num); | |
3005 | } | |
3006 | #endif /* VM_OBJECT_TRACKING_OP_TRUESHARE */ | |
3007 | ||
3008 | vm_object_lock_assert_exclusive(object); | |
3009 | object->true_share = TRUE; | |
3010 | if (object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC) | |
3011 | object->copy_strategy = MEMORY_OBJECT_COPY_DELAY; | |
3012 | ||
3013 | /* | |
3014 | * The memory entry now points to this VM object and we | |
3015 | * need to hold a reference on the VM object. Use the extra | |
3016 | * reference we took earlier to keep the object alive when we | |
3017 | * had to unlock it. | |
3018 | */ | |
3019 | ||
3020 | vm_map_unlock_read(target_map); | |
3021 | if(real_map != target_map) | |
3022 | vm_map_unlock_read(real_map); | |
3023 | ||
3024 | if (object->wimg_bits != wimg_mode) | |
3025 | vm_object_change_wimg_mode(object, wimg_mode); | |
3026 | ||
3027 | /* the size of mapped entry that overlaps with our region */ | |
3028 | /* which is targeted for share. */ | |
3029 | /* (entry_end - entry_start) - */ | |
3030 | /* offset of our beg addr within entry */ | |
3031 | /* it corresponds to this: */ | |
3032 | ||
3033 | if(map_size > mappable_size) | |
3034 | map_size = mappable_size; | |
3035 | ||
3036 | if (permission & MAP_MEM_NAMED_REUSE) { | |
3037 | /* | |
3038 | * Compare what we got with the "parent_entry". | |
3039 | * If they match, re-use the "parent_entry" instead | |
3040 | * of creating a new one. | |
3041 | */ | |
3042 | if (parent_entry != NULL && | |
3043 | parent_entry->backing.object == object && | |
3044 | parent_entry->internal == object->internal && | |
3045 | parent_entry->is_sub_map == FALSE && | |
3046 | parent_entry->offset == obj_off && | |
3047 | parent_entry->protection == protections && | |
3048 | parent_entry->size == map_size && | |
3049 | ((!(use_data_addr || use_4K_compat) && | |
3050 | (parent_entry->data_offset == 0)) || | |
3051 | ((use_data_addr || use_4K_compat) && | |
3052 | (parent_entry->data_offset == offset_in_page)))) { | |
3053 | /* | |
3054 | * We have a match: re-use "parent_entry". | |
3055 | */ | |
3056 | /* release our extra reference on object */ | |
3057 | vm_object_unlock(object); | |
3058 | vm_object_deallocate(object); | |
3059 | /* parent_entry->ref_count++; XXX ? */ | |
3060 | /* Get an extra send-right on handle */ | |
3061 | ipc_port_copy_send(parent_handle); | |
3062 | ||
3063 | *size = CAST_DOWN(vm_size_t, | |
3064 | (parent_entry->size - | |
3065 | parent_entry->data_offset)); | |
3066 | *object_handle = parent_handle; | |
3067 | return KERN_SUCCESS; | |
3068 | } else { | |
3069 | /* | |
3070 | * No match: we need to create a new entry. | |
3071 | * fall through... | |
3072 | */ | |
3073 | } | |
3074 | } | |
3075 | ||
3076 | vm_object_unlock(object); | |
3077 | if (mach_memory_entry_allocate(&user_entry, &user_handle) | |
3078 | != KERN_SUCCESS) { | |
3079 | /* release our unused reference on the object */ | |
3080 | vm_object_deallocate(object); | |
3081 | return KERN_FAILURE; | |
3082 | } | |
3083 | ||
3084 | user_entry->backing.object = object; | |
3085 | user_entry->internal = object->internal; | |
3086 | user_entry->is_sub_map = FALSE; | |
3087 | user_entry->offset = obj_off; | |
3088 | user_entry->data_offset = offset_in_page; | |
3089 | user_entry->protection = protections; | |
3090 | SET_MAP_MEM(GET_MAP_MEM(permission), user_entry->protection); | |
3091 | user_entry->size = map_size; | |
3092 | ||
3093 | /* user_object pager and internal fields are not used */ | |
3094 | /* when the object field is filled in. */ | |
3095 | ||
3096 | *size = CAST_DOWN(vm_size_t, (user_entry->size - | |
3097 | user_entry->data_offset)); | |
3098 | *object_handle = user_handle; | |
3099 | return KERN_SUCCESS; | |
3100 | ||
3101 | } else { | |
3102 | /* The new object will be base on an existing named object */ | |
3103 | if (parent_entry == NULL) { | |
3104 | kr = KERN_INVALID_ARGUMENT; | |
3105 | goto make_mem_done; | |
3106 | } | |
3107 | ||
3108 | if (use_data_addr || use_4K_compat) { | |
3109 | /* | |
3110 | * submaps and pagers should only be accessible from within | |
3111 | * the kernel, which shouldn't use the data address flag, so can fail here. | |
3112 | */ | |
3113 | if (parent_entry->is_sub_map) { | |
3114 | panic("Shouldn't be using data address with a parent entry that is a submap."); | |
3115 | } | |
3116 | /* | |
3117 | * Account for offset to data in parent entry and | |
3118 | * compute our own offset to data. | |
3119 | */ | |
3120 | if((offset + *size + parent_entry->data_offset) > parent_entry->size) { | |
3121 | kr = KERN_INVALID_ARGUMENT; | |
3122 | goto make_mem_done; | |
3123 | } | |
3124 | ||
3125 | map_start = vm_map_trunc_page(offset + parent_entry->data_offset, PAGE_MASK); | |
3126 | offset_in_page = (offset + parent_entry->data_offset) - map_start; | |
3127 | if (use_4K_compat) | |
3128 | offset_in_page &= ~((signed)(0xFFF)); | |
3129 | map_end = vm_map_round_page(offset + parent_entry->data_offset + *size, PAGE_MASK); | |
3130 | map_size = map_end - map_start; | |
3131 | } else { | |
3132 | map_end = vm_map_round_page(offset + *size, PAGE_MASK); | |
3133 | map_size = map_end - map_start; | |
3134 | offset_in_page = 0; | |
3135 | ||
3136 | if((offset + map_size) > parent_entry->size) { | |
3137 | kr = KERN_INVALID_ARGUMENT; | |
3138 | goto make_mem_done; | |
3139 | } | |
3140 | } | |
3141 | ||
3142 | if (mask_protections) { | |
3143 | /* | |
3144 | * The caller asked us to use the "protections" as | |
3145 | * a mask, so restrict "protections" to what this | |
3146 | * mapping actually allows. | |
3147 | */ | |
3148 | protections &= parent_entry->protection; | |
3149 | } | |
3150 | if((protections & parent_entry->protection) != protections) { | |
3151 | kr = KERN_PROTECTION_FAILURE; | |
3152 | goto make_mem_done; | |
3153 | } | |
3154 | ||
3155 | if (mach_memory_entry_allocate(&user_entry, &user_handle) | |
3156 | != KERN_SUCCESS) { | |
3157 | kr = KERN_FAILURE; | |
3158 | goto make_mem_done; | |
3159 | } | |
3160 | ||
3161 | user_entry->size = map_size; | |
3162 | user_entry->offset = parent_entry->offset + map_start; | |
3163 | user_entry->data_offset = offset_in_page; | |
3164 | user_entry->is_sub_map = parent_entry->is_sub_map; | |
3165 | user_entry->is_copy = parent_entry->is_copy; | |
3166 | user_entry->internal = parent_entry->internal; | |
3167 | user_entry->protection = protections; | |
3168 | ||
3169 | if(access != MAP_MEM_NOOP) { | |
3170 | SET_MAP_MEM(access, user_entry->protection); | |
3171 | } | |
3172 | ||
3173 | if(parent_entry->is_sub_map) { | |
3174 | user_entry->backing.map = parent_entry->backing.map; | |
3175 | vm_map_lock(user_entry->backing.map); | |
3176 | user_entry->backing.map->ref_count++; | |
3177 | vm_map_unlock(user_entry->backing.map); | |
3178 | } else { | |
3179 | object = parent_entry->backing.object; | |
3180 | assert(object != VM_OBJECT_NULL); | |
3181 | user_entry->backing.object = object; | |
3182 | /* we now point to this object, hold on */ | |
3183 | vm_object_lock(object); | |
3184 | vm_object_reference_locked(object); | |
3185 | #if VM_OBJECT_TRACKING_OP_TRUESHARE | |
3186 | if (!object->true_share && | |
3187 | vm_object_tracking_inited) { | |
3188 | void *bt[VM_OBJECT_TRACKING_BTDEPTH]; | |
3189 | int num = 0; | |
3190 | ||
3191 | num = OSBacktrace(bt, | |
3192 | VM_OBJECT_TRACKING_BTDEPTH); | |
3193 | btlog_add_entry(vm_object_tracking_btlog, | |
3194 | object, | |
3195 | VM_OBJECT_TRACKING_OP_TRUESHARE, | |
3196 | bt, | |
3197 | num); | |
3198 | } | |
3199 | #endif /* VM_OBJECT_TRACKING_OP_TRUESHARE */ | |
3200 | ||
3201 | object->true_share = TRUE; | |
3202 | if (object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC) | |
3203 | object->copy_strategy = MEMORY_OBJECT_COPY_DELAY; | |
3204 | vm_object_unlock(object); | |
3205 | } | |
3206 | *size = CAST_DOWN(vm_size_t, (user_entry->size - | |
3207 | user_entry->data_offset)); | |
3208 | *object_handle = user_handle; | |
3209 | return KERN_SUCCESS; | |
3210 | } | |
3211 | ||
3212 | make_mem_done: | |
3213 | if (user_handle != IP_NULL) { | |
3214 | /* | |
3215 | * Releasing "user_handle" causes the kernel object | |
3216 | * associated with it ("user_entry" here) to also be | |
3217 | * released and freed. | |
3218 | */ | |
3219 | mach_memory_entry_port_release(user_handle); | |
3220 | } | |
3221 | return kr; | |
3222 | } | |
3223 | ||
3224 | kern_return_t | |
3225 | _mach_make_memory_entry( | |
3226 | vm_map_t target_map, | |
3227 | memory_object_size_t *size, | |
3228 | memory_object_offset_t offset, | |
3229 | vm_prot_t permission, | |
3230 | ipc_port_t *object_handle, | |
3231 | ipc_port_t parent_entry) | |
3232 | { | |
3233 | memory_object_size_t mo_size; | |
3234 | kern_return_t kr; | |
3235 | ||
3236 | mo_size = (memory_object_size_t)*size; | |
3237 | kr = mach_make_memory_entry_64(target_map, &mo_size, | |
3238 | (memory_object_offset_t)offset, permission, object_handle, | |
3239 | parent_entry); | |
3240 | *size = mo_size; | |
3241 | return kr; | |
3242 | } | |
3243 | ||
3244 | kern_return_t | |
3245 | mach_make_memory_entry( | |
3246 | vm_map_t target_map, | |
3247 | vm_size_t *size, | |
3248 | vm_offset_t offset, | |
3249 | vm_prot_t permission, | |
3250 | ipc_port_t *object_handle, | |
3251 | ipc_port_t parent_entry) | |
3252 | { | |
3253 | memory_object_size_t mo_size; | |
3254 | kern_return_t kr; | |
3255 | ||
3256 | mo_size = (memory_object_size_t)*size; | |
3257 | kr = mach_make_memory_entry_64(target_map, &mo_size, | |
3258 | (memory_object_offset_t)offset, permission, object_handle, | |
3259 | parent_entry); | |
3260 | *size = CAST_DOWN(vm_size_t, mo_size); | |
3261 | return kr; | |
3262 | } | |
3263 | ||
3264 | /* | |
3265 | * task_wire | |
3266 | * | |
3267 | * Set or clear the map's wiring_required flag. This flag, if set, | |
3268 | * will cause all future virtual memory allocation to allocate | |
3269 | * user wired memory. Unwiring pages wired down as a result of | |
3270 | * this routine is done with the vm_wire interface. | |
3271 | */ | |
3272 | kern_return_t | |
3273 | task_wire( | |
3274 | vm_map_t map, | |
3275 | boolean_t must_wire) | |
3276 | { | |
3277 | if (map == VM_MAP_NULL) | |
3278 | return(KERN_INVALID_ARGUMENT); | |
3279 | ||
3280 | if (must_wire) | |
3281 | map->wiring_required = TRUE; | |
3282 | else | |
3283 | map->wiring_required = FALSE; | |
3284 | ||
3285 | return(KERN_SUCCESS); | |
3286 | } | |
3287 | ||
3288 | kern_return_t | |
3289 | vm_map_exec_lockdown( | |
3290 | vm_map_t map) | |
3291 | { | |
3292 | if (map == VM_MAP_NULL) | |
3293 | return(KERN_INVALID_ARGUMENT); | |
3294 | ||
3295 | vm_map_lock(map); | |
3296 | map->map_disallow_new_exec = TRUE; | |
3297 | vm_map_unlock(map); | |
3298 | ||
3299 | return(KERN_SUCCESS); | |
3300 | } | |
3301 | ||
3302 | __private_extern__ kern_return_t | |
3303 | mach_memory_entry_allocate( | |
3304 | vm_named_entry_t *user_entry_p, | |
3305 | ipc_port_t *user_handle_p) | |
3306 | { | |
3307 | vm_named_entry_t user_entry; | |
3308 | ipc_port_t user_handle; | |
3309 | ipc_port_t previous; | |
3310 | ||
3311 | user_entry = (vm_named_entry_t) kalloc(sizeof *user_entry); | |
3312 | if (user_entry == NULL) | |
3313 | return KERN_FAILURE; | |
3314 | ||
3315 | named_entry_lock_init(user_entry); | |
3316 | ||
3317 | user_handle = ipc_port_alloc_kernel(); | |
3318 | if (user_handle == IP_NULL) { | |
3319 | kfree(user_entry, sizeof *user_entry); | |
3320 | return KERN_FAILURE; | |
3321 | } | |
3322 | ip_lock(user_handle); | |
3323 | ||
3324 | /* make a sonce right */ | |
3325 | user_handle->ip_sorights++; | |
3326 | ip_reference(user_handle); | |
3327 | ||
3328 | user_handle->ip_destination = IP_NULL; | |
3329 | user_handle->ip_receiver_name = MACH_PORT_NULL; | |
3330 | user_handle->ip_receiver = ipc_space_kernel; | |
3331 | ||
3332 | /* make a send right */ | |
3333 | user_handle->ip_mscount++; | |
3334 | user_handle->ip_srights++; | |
3335 | ip_reference(user_handle); | |
3336 | ||
3337 | ipc_port_nsrequest(user_handle, 1, user_handle, &previous); | |
3338 | /* nsrequest unlocks user_handle */ | |
3339 | ||
3340 | user_entry->backing.object = NULL; | |
3341 | user_entry->is_sub_map = FALSE; | |
3342 | user_entry->is_copy = FALSE; | |
3343 | user_entry->internal = FALSE; | |
3344 | user_entry->size = 0; | |
3345 | user_entry->offset = 0; | |
3346 | user_entry->data_offset = 0; | |
3347 | user_entry->protection = VM_PROT_NONE; | |
3348 | user_entry->ref_count = 1; | |
3349 | ||
3350 | ipc_kobject_set(user_handle, (ipc_kobject_t) user_entry, | |
3351 | IKOT_NAMED_ENTRY); | |
3352 | ||
3353 | *user_entry_p = user_entry; | |
3354 | *user_handle_p = user_handle; | |
3355 | ||
3356 | return KERN_SUCCESS; | |
3357 | } | |
3358 | ||
3359 | /* | |
3360 | * mach_memory_object_memory_entry_64 | |
3361 | * | |
3362 | * Create a named entry backed by the provided pager. | |
3363 | * | |
3364 | */ | |
3365 | kern_return_t | |
3366 | mach_memory_object_memory_entry_64( | |
3367 | host_t host, | |
3368 | boolean_t internal, | |
3369 | vm_object_offset_t size, | |
3370 | vm_prot_t permission, | |
3371 | memory_object_t pager, | |
3372 | ipc_port_t *entry_handle) | |
3373 | { | |
3374 | unsigned int access; | |
3375 | vm_named_entry_t user_entry; | |
3376 | ipc_port_t user_handle; | |
3377 | vm_object_t object; | |
3378 | ||
3379 | if (host == HOST_NULL) | |
3380 | return(KERN_INVALID_HOST); | |
3381 | ||
3382 | if (pager == MEMORY_OBJECT_NULL && internal) { | |
3383 | object = vm_object_allocate(size); | |
3384 | if (object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC) { | |
3385 | object->copy_strategy = MEMORY_OBJECT_COPY_DELAY; | |
3386 | } | |
3387 | } else { | |
3388 | object = memory_object_to_vm_object(pager); | |
3389 | if (object != VM_OBJECT_NULL) { | |
3390 | vm_object_reference(object); | |
3391 | } | |
3392 | } | |
3393 | if (object == VM_OBJECT_NULL) { | |
3394 | return KERN_INVALID_ARGUMENT; | |
3395 | } | |
3396 | ||
3397 | if (mach_memory_entry_allocate(&user_entry, &user_handle) | |
3398 | != KERN_SUCCESS) { | |
3399 | vm_object_deallocate(object); | |
3400 | return KERN_FAILURE; | |
3401 | } | |
3402 | ||
3403 | user_entry->size = size; | |
3404 | user_entry->offset = 0; | |
3405 | user_entry->protection = permission & VM_PROT_ALL; | |
3406 | access = GET_MAP_MEM(permission); | |
3407 | SET_MAP_MEM(access, user_entry->protection); | |
3408 | user_entry->is_sub_map = FALSE; | |
3409 | assert(user_entry->ref_count == 1); | |
3410 | ||
3411 | user_entry->backing.object = object; | |
3412 | user_entry->internal = object->internal; | |
3413 | assert(object->internal == internal); | |
3414 | ||
3415 | *entry_handle = user_handle; | |
3416 | return KERN_SUCCESS; | |
3417 | } | |
3418 | ||
3419 | kern_return_t | |
3420 | mach_memory_object_memory_entry( | |
3421 | host_t host, | |
3422 | boolean_t internal, | |
3423 | vm_size_t size, | |
3424 | vm_prot_t permission, | |
3425 | memory_object_t pager, | |
3426 | ipc_port_t *entry_handle) | |
3427 | { | |
3428 | return mach_memory_object_memory_entry_64( host, internal, | |
3429 | (vm_object_offset_t)size, permission, pager, entry_handle); | |
3430 | } | |
3431 | ||
3432 | ||
3433 | kern_return_t | |
3434 | mach_memory_entry_purgable_control( | |
3435 | ipc_port_t entry_port, | |
3436 | vm_purgable_t control, | |
3437 | int *state) | |
3438 | { | |
3439 | if (control == VM_PURGABLE_SET_STATE_FROM_KERNEL) { | |
3440 | /* not allowed from user-space */ | |
3441 | return KERN_INVALID_ARGUMENT; | |
3442 | } | |
3443 | ||
3444 | return memory_entry_purgeable_control_internal(entry_port, control, state); | |
3445 | } | |
3446 | ||
3447 | kern_return_t | |
3448 | memory_entry_purgeable_control_internal( | |
3449 | ipc_port_t entry_port, | |
3450 | vm_purgable_t control, | |
3451 | int *state) | |
3452 | { | |
3453 | kern_return_t kr; | |
3454 | vm_named_entry_t mem_entry; | |
3455 | vm_object_t object; | |
3456 | ||
3457 | if (entry_port == IP_NULL || | |
3458 | ip_kotype(entry_port) != IKOT_NAMED_ENTRY) { | |
3459 | return KERN_INVALID_ARGUMENT; | |
3460 | } | |
3461 | if (control != VM_PURGABLE_SET_STATE && | |
3462 | control != VM_PURGABLE_GET_STATE && | |
3463 | control != VM_PURGABLE_SET_STATE_FROM_KERNEL) | |
3464 | return(KERN_INVALID_ARGUMENT); | |
3465 | ||
3466 | if ((control == VM_PURGABLE_SET_STATE || | |
3467 | control == VM_PURGABLE_SET_STATE_FROM_KERNEL) && | |
3468 | (((*state & ~(VM_PURGABLE_ALL_MASKS)) != 0) || | |
3469 | ((*state & VM_PURGABLE_STATE_MASK) > VM_PURGABLE_STATE_MASK))) | |
3470 | return(KERN_INVALID_ARGUMENT); | |
3471 | ||
3472 | mem_entry = (vm_named_entry_t) entry_port->ip_kobject; | |
3473 | ||
3474 | named_entry_lock(mem_entry); | |
3475 | ||
3476 | if (mem_entry->is_sub_map || | |
3477 | mem_entry->is_copy) { | |
3478 | named_entry_unlock(mem_entry); | |
3479 | return KERN_INVALID_ARGUMENT; | |
3480 | } | |
3481 | ||
3482 | object = mem_entry->backing.object; | |
3483 | if (object == VM_OBJECT_NULL) { | |
3484 | named_entry_unlock(mem_entry); | |
3485 | return KERN_INVALID_ARGUMENT; | |
3486 | } | |
3487 | ||
3488 | vm_object_lock(object); | |
3489 | ||
3490 | /* check that named entry covers entire object ? */ | |
3491 | if (mem_entry->offset != 0 || object->vo_size != mem_entry->size) { | |
3492 | vm_object_unlock(object); | |
3493 | named_entry_unlock(mem_entry); | |
3494 | return KERN_INVALID_ARGUMENT; | |
3495 | } | |
3496 | ||
3497 | named_entry_unlock(mem_entry); | |
3498 | ||
3499 | kr = vm_object_purgable_control(object, control, state); | |
3500 | ||
3501 | vm_object_unlock(object); | |
3502 | ||
3503 | return kr; | |
3504 | } | |
3505 | ||
3506 | kern_return_t | |
3507 | mach_memory_entry_get_page_counts( | |
3508 | ipc_port_t entry_port, | |
3509 | unsigned int *resident_page_count, | |
3510 | unsigned int *dirty_page_count) | |
3511 | { | |
3512 | kern_return_t kr; | |
3513 | vm_named_entry_t mem_entry; | |
3514 | vm_object_t object; | |
3515 | vm_object_offset_t offset; | |
3516 | vm_object_size_t size; | |
3517 | ||
3518 | if (entry_port == IP_NULL || | |
3519 | ip_kotype(entry_port) != IKOT_NAMED_ENTRY) { | |
3520 | return KERN_INVALID_ARGUMENT; | |
3521 | } | |
3522 | ||
3523 | mem_entry = (vm_named_entry_t) entry_port->ip_kobject; | |
3524 | ||
3525 | named_entry_lock(mem_entry); | |
3526 | ||
3527 | if (mem_entry->is_sub_map || | |
3528 | mem_entry->is_copy) { | |
3529 | named_entry_unlock(mem_entry); | |
3530 | return KERN_INVALID_ARGUMENT; | |
3531 | } | |
3532 | ||
3533 | object = mem_entry->backing.object; | |
3534 | if (object == VM_OBJECT_NULL) { | |
3535 | named_entry_unlock(mem_entry); | |
3536 | return KERN_INVALID_ARGUMENT; | |
3537 | } | |
3538 | ||
3539 | vm_object_lock(object); | |
3540 | ||
3541 | offset = mem_entry->offset; | |
3542 | size = mem_entry->size; | |
3543 | ||
3544 | named_entry_unlock(mem_entry); | |
3545 | ||
3546 | kr = vm_object_get_page_counts(object, offset, size, resident_page_count, dirty_page_count); | |
3547 | ||
3548 | vm_object_unlock(object); | |
3549 | ||
3550 | return kr; | |
3551 | } | |
3552 | ||
3553 | /* | |
3554 | * mach_memory_entry_port_release: | |
3555 | * | |
3556 | * Release a send right on a named entry port. This is the correct | |
3557 | * way to destroy a named entry. When the last right on the port is | |
3558 | * released, ipc_kobject_destroy() will call mach_destroy_memory_entry(). | |
3559 | */ | |
3560 | void | |
3561 | mach_memory_entry_port_release( | |
3562 | ipc_port_t port) | |
3563 | { | |
3564 | assert(ip_kotype(port) == IKOT_NAMED_ENTRY); | |
3565 | ipc_port_release_send(port); | |
3566 | } | |
3567 | ||
3568 | /* | |
3569 | * mach_destroy_memory_entry: | |
3570 | * | |
3571 | * Drops a reference on a memory entry and destroys the memory entry if | |
3572 | * there are no more references on it. | |
3573 | * NOTE: This routine should not be called to destroy a memory entry from the | |
3574 | * kernel, as it will not release the Mach port associated with the memory | |
3575 | * entry. The proper way to destroy a memory entry in the kernel is to | |
3576 | * call mach_memort_entry_port_release() to release the kernel's send-right on | |
3577 | * the memory entry's port. When the last send right is released, the memory | |
3578 | * entry will be destroyed via ipc_kobject_destroy(). | |
3579 | */ | |
3580 | void | |
3581 | mach_destroy_memory_entry( | |
3582 | ipc_port_t port) | |
3583 | { | |
3584 | vm_named_entry_t named_entry; | |
3585 | #if MACH_ASSERT | |
3586 | assert(ip_kotype(port) == IKOT_NAMED_ENTRY); | |
3587 | #endif /* MACH_ASSERT */ | |
3588 | named_entry = (vm_named_entry_t)port->ip_kobject; | |
3589 | ||
3590 | named_entry_lock(named_entry); | |
3591 | named_entry->ref_count -= 1; | |
3592 | ||
3593 | if(named_entry->ref_count == 0) { | |
3594 | if (named_entry->is_sub_map) { | |
3595 | vm_map_deallocate(named_entry->backing.map); | |
3596 | } else if (named_entry->is_copy) { | |
3597 | vm_map_copy_discard(named_entry->backing.copy); | |
3598 | } else { | |
3599 | /* release the VM object we've been pointing to */ | |
3600 | vm_object_deallocate(named_entry->backing.object); | |
3601 | } | |
3602 | ||
3603 | named_entry_unlock(named_entry); | |
3604 | named_entry_lock_destroy(named_entry); | |
3605 | ||
3606 | kfree((void *) port->ip_kobject, | |
3607 | sizeof (struct vm_named_entry)); | |
3608 | } else | |
3609 | named_entry_unlock(named_entry); | |
3610 | } | |
3611 | ||
3612 | /* Allow manipulation of individual page state. This is actually part of */ | |
3613 | /* the UPL regimen but takes place on the memory entry rather than on a UPL */ | |
3614 | ||
3615 | kern_return_t | |
3616 | mach_memory_entry_page_op( | |
3617 | ipc_port_t entry_port, | |
3618 | vm_object_offset_t offset, | |
3619 | int ops, | |
3620 | ppnum_t *phys_entry, | |
3621 | int *flags) | |
3622 | { | |
3623 | vm_named_entry_t mem_entry; | |
3624 | vm_object_t object; | |
3625 | kern_return_t kr; | |
3626 | ||
3627 | if (entry_port == IP_NULL || | |
3628 | ip_kotype(entry_port) != IKOT_NAMED_ENTRY) { | |
3629 | return KERN_INVALID_ARGUMENT; | |
3630 | } | |
3631 | ||
3632 | mem_entry = (vm_named_entry_t) entry_port->ip_kobject; | |
3633 | ||
3634 | named_entry_lock(mem_entry); | |
3635 | ||
3636 | if (mem_entry->is_sub_map || | |
3637 | mem_entry->is_copy) { | |
3638 | named_entry_unlock(mem_entry); | |
3639 | return KERN_INVALID_ARGUMENT; | |
3640 | } | |
3641 | ||
3642 | object = mem_entry->backing.object; | |
3643 | if (object == VM_OBJECT_NULL) { | |
3644 | named_entry_unlock(mem_entry); | |
3645 | return KERN_INVALID_ARGUMENT; | |
3646 | } | |
3647 | ||
3648 | vm_object_reference(object); | |
3649 | named_entry_unlock(mem_entry); | |
3650 | ||
3651 | kr = vm_object_page_op(object, offset, ops, phys_entry, flags); | |
3652 | ||
3653 | vm_object_deallocate(object); | |
3654 | ||
3655 | return kr; | |
3656 | } | |
3657 | ||
3658 | /* | |
3659 | * mach_memory_entry_range_op offers performance enhancement over | |
3660 | * mach_memory_entry_page_op for page_op functions which do not require page | |
3661 | * level state to be returned from the call. Page_op was created to provide | |
3662 | * a low-cost alternative to page manipulation via UPLs when only a single | |
3663 | * page was involved. The range_op call establishes the ability in the _op | |
3664 | * family of functions to work on multiple pages where the lack of page level | |
3665 | * state handling allows the caller to avoid the overhead of the upl structures. | |
3666 | */ | |
3667 | ||
3668 | kern_return_t | |
3669 | mach_memory_entry_range_op( | |
3670 | ipc_port_t entry_port, | |
3671 | vm_object_offset_t offset_beg, | |
3672 | vm_object_offset_t offset_end, | |
3673 | int ops, | |
3674 | int *range) | |
3675 | { | |
3676 | vm_named_entry_t mem_entry; | |
3677 | vm_object_t object; | |
3678 | kern_return_t kr; | |
3679 | ||
3680 | if (entry_port == IP_NULL || | |
3681 | ip_kotype(entry_port) != IKOT_NAMED_ENTRY) { | |
3682 | return KERN_INVALID_ARGUMENT; | |
3683 | } | |
3684 | ||
3685 | mem_entry = (vm_named_entry_t) entry_port->ip_kobject; | |
3686 | ||
3687 | named_entry_lock(mem_entry); | |
3688 | ||
3689 | if (mem_entry->is_sub_map || | |
3690 | mem_entry->is_copy) { | |
3691 | named_entry_unlock(mem_entry); | |
3692 | return KERN_INVALID_ARGUMENT; | |
3693 | } | |
3694 | ||
3695 | object = mem_entry->backing.object; | |
3696 | if (object == VM_OBJECT_NULL) { | |
3697 | named_entry_unlock(mem_entry); | |
3698 | return KERN_INVALID_ARGUMENT; | |
3699 | } | |
3700 | ||
3701 | vm_object_reference(object); | |
3702 | named_entry_unlock(mem_entry); | |
3703 | ||
3704 | kr = vm_object_range_op(object, | |
3705 | offset_beg, | |
3706 | offset_end, | |
3707 | ops, | |
3708 | (uint32_t *) range); | |
3709 | ||
3710 | vm_object_deallocate(object); | |
3711 | ||
3712 | return kr; | |
3713 | } | |
3714 | ||
3715 | /* ******* Temporary Internal calls to UPL for BSD ***** */ | |
3716 | ||
3717 | extern int kernel_upl_map( | |
3718 | vm_map_t map, | |
3719 | upl_t upl, | |
3720 | vm_offset_t *dst_addr); | |
3721 | ||
3722 | extern int kernel_upl_unmap( | |
3723 | vm_map_t map, | |
3724 | upl_t upl); | |
3725 | ||
3726 | extern int kernel_upl_commit( | |
3727 | upl_t upl, | |
3728 | upl_page_info_t *pl, | |
3729 | mach_msg_type_number_t count); | |
3730 | ||
3731 | extern int kernel_upl_commit_range( | |
3732 | upl_t upl, | |
3733 | upl_offset_t offset, | |
3734 | upl_size_t size, | |
3735 | int flags, | |
3736 | upl_page_info_array_t pl, | |
3737 | mach_msg_type_number_t count); | |
3738 | ||
3739 | extern int kernel_upl_abort( | |
3740 | upl_t upl, | |
3741 | int abort_type); | |
3742 | ||
3743 | extern int kernel_upl_abort_range( | |
3744 | upl_t upl, | |
3745 | upl_offset_t offset, | |
3746 | upl_size_t size, | |
3747 | int abort_flags); | |
3748 | ||
3749 | ||
3750 | kern_return_t | |
3751 | kernel_upl_map( | |
3752 | vm_map_t map, | |
3753 | upl_t upl, | |
3754 | vm_offset_t *dst_addr) | |
3755 | { | |
3756 | return vm_upl_map(map, upl, dst_addr); | |
3757 | } | |
3758 | ||
3759 | ||
3760 | kern_return_t | |
3761 | kernel_upl_unmap( | |
3762 | vm_map_t map, | |
3763 | upl_t upl) | |
3764 | { | |
3765 | return vm_upl_unmap(map, upl); | |
3766 | } | |
3767 | ||
3768 | kern_return_t | |
3769 | kernel_upl_commit( | |
3770 | upl_t upl, | |
3771 | upl_page_info_t *pl, | |
3772 | mach_msg_type_number_t count) | |
3773 | { | |
3774 | kern_return_t kr; | |
3775 | ||
3776 | kr = upl_commit(upl, pl, count); | |
3777 | upl_deallocate(upl); | |
3778 | return kr; | |
3779 | } | |
3780 | ||
3781 | ||
3782 | kern_return_t | |
3783 | kernel_upl_commit_range( | |
3784 | upl_t upl, | |
3785 | upl_offset_t offset, | |
3786 | upl_size_t size, | |
3787 | int flags, | |
3788 | upl_page_info_array_t pl, | |
3789 | mach_msg_type_number_t count) | |
3790 | { | |
3791 | boolean_t finished = FALSE; | |
3792 | kern_return_t kr; | |
3793 | ||
3794 | if (flags & UPL_COMMIT_FREE_ON_EMPTY) | |
3795 | flags |= UPL_COMMIT_NOTIFY_EMPTY; | |
3796 | ||
3797 | if (flags & UPL_COMMIT_KERNEL_ONLY_FLAGS) { | |
3798 | return KERN_INVALID_ARGUMENT; | |
3799 | } | |
3800 | ||
3801 | kr = upl_commit_range(upl, offset, size, flags, pl, count, &finished); | |
3802 | ||
3803 | if ((flags & UPL_COMMIT_NOTIFY_EMPTY) && finished) | |
3804 | upl_deallocate(upl); | |
3805 | ||
3806 | return kr; | |
3807 | } | |
3808 | ||
3809 | kern_return_t | |
3810 | kernel_upl_abort_range( | |
3811 | upl_t upl, | |
3812 | upl_offset_t offset, | |
3813 | upl_size_t size, | |
3814 | int abort_flags) | |
3815 | { | |
3816 | kern_return_t kr; | |
3817 | boolean_t finished = FALSE; | |
3818 | ||
3819 | if (abort_flags & UPL_COMMIT_FREE_ON_EMPTY) | |
3820 | abort_flags |= UPL_COMMIT_NOTIFY_EMPTY; | |
3821 | ||
3822 | kr = upl_abort_range(upl, offset, size, abort_flags, &finished); | |
3823 | ||
3824 | if ((abort_flags & UPL_COMMIT_FREE_ON_EMPTY) && finished) | |
3825 | upl_deallocate(upl); | |
3826 | ||
3827 | return kr; | |
3828 | } | |
3829 | ||
3830 | kern_return_t | |
3831 | kernel_upl_abort( | |
3832 | upl_t upl, | |
3833 | int abort_type) | |
3834 | { | |
3835 | kern_return_t kr; | |
3836 | ||
3837 | kr = upl_abort(upl, abort_type); | |
3838 | upl_deallocate(upl); | |
3839 | return kr; | |
3840 | } | |
3841 | ||
3842 | /* | |
3843 | * Now a kernel-private interface (for BootCache | |
3844 | * use only). Need a cleaner way to create an | |
3845 | * empty vm_map() and return a handle to it. | |
3846 | */ | |
3847 | ||
3848 | kern_return_t | |
3849 | vm_region_object_create( | |
3850 | __unused vm_map_t target_map, | |
3851 | vm_size_t size, | |
3852 | ipc_port_t *object_handle) | |
3853 | { | |
3854 | vm_named_entry_t user_entry; | |
3855 | ipc_port_t user_handle; | |
3856 | ||
3857 | vm_map_t new_map; | |
3858 | ||
3859 | if (mach_memory_entry_allocate(&user_entry, &user_handle) | |
3860 | != KERN_SUCCESS) { | |
3861 | return KERN_FAILURE; | |
3862 | } | |
3863 | ||
3864 | /* Create a named object based on a submap of specified size */ | |
3865 | ||
3866 | new_map = vm_map_create(PMAP_NULL, VM_MAP_MIN_ADDRESS, | |
3867 | vm_map_round_page(size, | |
3868 | VM_MAP_PAGE_MASK(target_map)), | |
3869 | TRUE); | |
3870 | vm_map_set_page_shift(new_map, VM_MAP_PAGE_SHIFT(target_map)); | |
3871 | ||
3872 | user_entry->backing.map = new_map; | |
3873 | user_entry->internal = TRUE; | |
3874 | user_entry->is_sub_map = TRUE; | |
3875 | user_entry->offset = 0; | |
3876 | user_entry->protection = VM_PROT_ALL; | |
3877 | user_entry->size = size; | |
3878 | assert(user_entry->ref_count == 1); | |
3879 | ||
3880 | *object_handle = user_handle; | |
3881 | return KERN_SUCCESS; | |
3882 | ||
3883 | } | |
3884 | ||
3885 | ppnum_t vm_map_get_phys_page( /* forward */ | |
3886 | vm_map_t map, | |
3887 | vm_offset_t offset); | |
3888 | ||
3889 | ppnum_t | |
3890 | vm_map_get_phys_page( | |
3891 | vm_map_t map, | |
3892 | vm_offset_t addr) | |
3893 | { | |
3894 | vm_object_offset_t offset; | |
3895 | vm_object_t object; | |
3896 | vm_map_offset_t map_offset; | |
3897 | vm_map_entry_t entry; | |
3898 | ppnum_t phys_page = 0; | |
3899 | ||
3900 | map_offset = vm_map_trunc_page(addr, PAGE_MASK); | |
3901 | ||
3902 | vm_map_lock(map); | |
3903 | while (vm_map_lookup_entry(map, map_offset, &entry)) { | |
3904 | ||
3905 | if (VME_OBJECT(entry) == VM_OBJECT_NULL) { | |
3906 | vm_map_unlock(map); | |
3907 | return (ppnum_t) 0; | |
3908 | } | |
3909 | if (entry->is_sub_map) { | |
3910 | vm_map_t old_map; | |
3911 | vm_map_lock(VME_SUBMAP(entry)); | |
3912 | old_map = map; | |
3913 | map = VME_SUBMAP(entry); | |
3914 | map_offset = (VME_OFFSET(entry) + | |
3915 | (map_offset - entry->vme_start)); | |
3916 | vm_map_unlock(old_map); | |
3917 | continue; | |
3918 | } | |
3919 | if (VME_OBJECT(entry)->phys_contiguous) { | |
3920 | /* These are not standard pageable memory mappings */ | |
3921 | /* If they are not present in the object they will */ | |
3922 | /* have to be picked up from the pager through the */ | |
3923 | /* fault mechanism. */ | |
3924 | if (VME_OBJECT(entry)->vo_shadow_offset == 0) { | |
3925 | /* need to call vm_fault */ | |
3926 | vm_map_unlock(map); | |
3927 | vm_fault(map, map_offset, VM_PROT_NONE, | |
3928 | FALSE /* change_wiring */, VM_KERN_MEMORY_NONE, | |
3929 | THREAD_UNINT, NULL, 0); | |
3930 | vm_map_lock(map); | |
3931 | continue; | |
3932 | } | |
3933 | offset = (VME_OFFSET(entry) + | |
3934 | (map_offset - entry->vme_start)); | |
3935 | phys_page = (ppnum_t) | |
3936 | ((VME_OBJECT(entry)->vo_shadow_offset | |
3937 | + offset) >> PAGE_SHIFT); | |
3938 | break; | |
3939 | ||
3940 | } | |
3941 | offset = (VME_OFFSET(entry) + (map_offset - entry->vme_start)); | |
3942 | object = VME_OBJECT(entry); | |
3943 | vm_object_lock(object); | |
3944 | while (TRUE) { | |
3945 | vm_page_t dst_page = vm_page_lookup(object,offset); | |
3946 | if(dst_page == VM_PAGE_NULL) { | |
3947 | if(object->shadow) { | |
3948 | vm_object_t old_object; | |
3949 | vm_object_lock(object->shadow); | |
3950 | old_object = object; | |
3951 | offset = offset + object->vo_shadow_offset; | |
3952 | object = object->shadow; | |
3953 | vm_object_unlock(old_object); | |
3954 | } else { | |
3955 | vm_object_unlock(object); | |
3956 | break; | |
3957 | } | |
3958 | } else { | |
3959 | phys_page = (ppnum_t)(VM_PAGE_GET_PHYS_PAGE(dst_page)); | |
3960 | vm_object_unlock(object); | |
3961 | break; | |
3962 | } | |
3963 | } | |
3964 | break; | |
3965 | ||
3966 | } | |
3967 | ||
3968 | vm_map_unlock(map); | |
3969 | return phys_page; | |
3970 | } | |
3971 | ||
3972 | #if 0 | |
3973 | kern_return_t kernel_object_iopl_request( /* forward */ | |
3974 | vm_named_entry_t named_entry, | |
3975 | memory_object_offset_t offset, | |
3976 | upl_size_t *upl_size, | |
3977 | upl_t *upl_ptr, | |
3978 | upl_page_info_array_t user_page_list, | |
3979 | unsigned int *page_list_count, | |
3980 | int *flags); | |
3981 | ||
3982 | kern_return_t | |
3983 | kernel_object_iopl_request( | |
3984 | vm_named_entry_t named_entry, | |
3985 | memory_object_offset_t offset, | |
3986 | upl_size_t *upl_size, | |
3987 | upl_t *upl_ptr, | |
3988 | upl_page_info_array_t user_page_list, | |
3989 | unsigned int *page_list_count, | |
3990 | int *flags) | |
3991 | { | |
3992 | vm_object_t object; | |
3993 | kern_return_t ret; | |
3994 | ||
3995 | int caller_flags; | |
3996 | ||
3997 | caller_flags = *flags; | |
3998 | ||
3999 | if (caller_flags & ~UPL_VALID_FLAGS) { | |
4000 | /* | |
4001 | * For forward compatibility's sake, | |
4002 | * reject any unknown flag. | |
4003 | */ | |
4004 | return KERN_INVALID_VALUE; | |
4005 | } | |
4006 | ||
4007 | /* a few checks to make sure user is obeying rules */ | |
4008 | if(*upl_size == 0) { | |
4009 | if(offset >= named_entry->size) | |
4010 | return(KERN_INVALID_RIGHT); | |
4011 | *upl_size = (upl_size_t) (named_entry->size - offset); | |
4012 | if (*upl_size != named_entry->size - offset) | |
4013 | return KERN_INVALID_ARGUMENT; | |
4014 | } | |
4015 | if(caller_flags & UPL_COPYOUT_FROM) { | |
4016 | if((named_entry->protection & VM_PROT_READ) | |
4017 | != VM_PROT_READ) { | |
4018 | return(KERN_INVALID_RIGHT); | |
4019 | } | |
4020 | } else { | |
4021 | if((named_entry->protection & | |
4022 | (VM_PROT_READ | VM_PROT_WRITE)) | |
4023 | != (VM_PROT_READ | VM_PROT_WRITE)) { | |
4024 | return(KERN_INVALID_RIGHT); | |
4025 | } | |
4026 | } | |
4027 | if(named_entry->size < (offset + *upl_size)) | |
4028 | return(KERN_INVALID_ARGUMENT); | |
4029 | ||
4030 | /* the callers parameter offset is defined to be the */ | |
4031 | /* offset from beginning of named entry offset in object */ | |
4032 | offset = offset + named_entry->offset; | |
4033 | ||
4034 | if (named_entry->is_sub_map || | |
4035 | named_entry->is_copy) | |
4036 | return KERN_INVALID_ARGUMENT; | |
4037 | ||
4038 | named_entry_lock(named_entry); | |
4039 | ||
4040 | /* This is the case where we are going to operate */ | |
4041 | /* on an already known object. If the object is */ | |
4042 | /* not ready it is internal. An external */ | |
4043 | /* object cannot be mapped until it is ready */ | |
4044 | /* we can therefore avoid the ready check */ | |
4045 | /* in this case. */ | |
4046 | object = named_entry->backing.object; | |
4047 | vm_object_reference(object); | |
4048 | named_entry_unlock(named_entry); | |
4049 | ||
4050 | if (!object->private) { | |
4051 | if (*upl_size > MAX_UPL_TRANSFER_BYTES) | |
4052 | *upl_size = MAX_UPL_TRANSFER_BYTES; | |
4053 | if (object->phys_contiguous) { | |
4054 | *flags = UPL_PHYS_CONTIG; | |
4055 | } else { | |
4056 | *flags = 0; | |
4057 | } | |
4058 | } else { | |
4059 | *flags = UPL_DEV_MEMORY | UPL_PHYS_CONTIG; | |
4060 | } | |
4061 | ||
4062 | ret = vm_object_iopl_request(object, | |
4063 | offset, | |
4064 | *upl_size, | |
4065 | upl_ptr, | |
4066 | user_page_list, | |
4067 | page_list_count, | |
4068 | (upl_control_flags_t)(unsigned int)caller_flags); | |
4069 | vm_object_deallocate(object); | |
4070 | return ret; | |
4071 | } | |
4072 | #endif | |
4073 | ||
4074 | /* | |
4075 | * These symbols are looked up at runtime by vmware, VirtualBox, | |
4076 | * despite not being exported in the symbol sets. | |
4077 | */ | |
4078 | ||
4079 | #if defined(__x86_64__) | |
4080 | ||
4081 | kern_return_t | |
4082 | mach_vm_map( | |
4083 | vm_map_t target_map, | |
4084 | mach_vm_offset_t *address, | |
4085 | mach_vm_size_t initial_size, | |
4086 | mach_vm_offset_t mask, | |
4087 | int flags, | |
4088 | ipc_port_t port, | |
4089 | vm_object_offset_t offset, | |
4090 | boolean_t copy, | |
4091 | vm_prot_t cur_protection, | |
4092 | vm_prot_t max_protection, | |
4093 | vm_inherit_t inheritance); | |
4094 | ||
4095 | kern_return_t | |
4096 | mach_vm_remap( | |
4097 | vm_map_t target_map, | |
4098 | mach_vm_offset_t *address, | |
4099 | mach_vm_size_t size, | |
4100 | mach_vm_offset_t mask, | |
4101 | int flags, | |
4102 | vm_map_t src_map, | |
4103 | mach_vm_offset_t memory_address, | |
4104 | boolean_t copy, | |
4105 | vm_prot_t *cur_protection, | |
4106 | vm_prot_t *max_protection, | |
4107 | vm_inherit_t inheritance); | |
4108 | ||
4109 | kern_return_t | |
4110 | mach_vm_map( | |
4111 | vm_map_t target_map, | |
4112 | mach_vm_offset_t *address, | |
4113 | mach_vm_size_t initial_size, | |
4114 | mach_vm_offset_t mask, | |
4115 | int flags, | |
4116 | ipc_port_t port, | |
4117 | vm_object_offset_t offset, | |
4118 | boolean_t copy, | |
4119 | vm_prot_t cur_protection, | |
4120 | vm_prot_t max_protection, | |
4121 | vm_inherit_t inheritance) | |
4122 | { | |
4123 | return (mach_vm_map_external(target_map, address, initial_size, mask, flags, port, | |
4124 | offset, copy, cur_protection, max_protection, inheritance)); | |
4125 | } | |
4126 | ||
4127 | kern_return_t | |
4128 | mach_vm_remap( | |
4129 | vm_map_t target_map, | |
4130 | mach_vm_offset_t *address, | |
4131 | mach_vm_size_t size, | |
4132 | mach_vm_offset_t mask, | |
4133 | int flags, | |
4134 | vm_map_t src_map, | |
4135 | mach_vm_offset_t memory_address, | |
4136 | boolean_t copy, | |
4137 | vm_prot_t *cur_protection, | |
4138 | vm_prot_t *max_protection, | |
4139 | vm_inherit_t inheritance) | |
4140 | { | |
4141 | return (mach_vm_remap_external(target_map, address, size, mask, flags, src_map, memory_address, | |
4142 | copy, cur_protection, max_protection, inheritance)); | |
4143 | } | |
4144 | ||
4145 | kern_return_t | |
4146 | vm_map( | |
4147 | vm_map_t target_map, | |
4148 | vm_offset_t *address, | |
4149 | vm_size_t size, | |
4150 | vm_offset_t mask, | |
4151 | int flags, | |
4152 | ipc_port_t port, | |
4153 | vm_offset_t offset, | |
4154 | boolean_t copy, | |
4155 | vm_prot_t cur_protection, | |
4156 | vm_prot_t max_protection, | |
4157 | vm_inherit_t inheritance); | |
4158 | ||
4159 | kern_return_t | |
4160 | vm_map( | |
4161 | vm_map_t target_map, | |
4162 | vm_offset_t *address, | |
4163 | vm_size_t size, | |
4164 | vm_offset_t mask, | |
4165 | int flags, | |
4166 | ipc_port_t port, | |
4167 | vm_offset_t offset, | |
4168 | boolean_t copy, | |
4169 | vm_prot_t cur_protection, | |
4170 | vm_prot_t max_protection, | |
4171 | vm_inherit_t inheritance) | |
4172 | { | |
4173 | vm_tag_t tag; | |
4174 | ||
4175 | VM_GET_FLAGS_ALIAS(flags, tag); | |
4176 | return (vm_map_kernel(target_map, address, size, mask, flags, tag, port, offset, copy, cur_protection, max_protection, inheritance)); | |
4177 | } | |
4178 | ||
4179 | #endif /* __x86_64__ */ |