]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2017 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995 | |
30 | * The Regents of the University of California. All rights reserved. | |
31 | * | |
32 | * Redistribution and use in source and binary forms, with or without | |
33 | * modification, are permitted provided that the following conditions | |
34 | * are met: | |
35 | * 1. Redistributions of source code must retain the above copyright | |
36 | * notice, this list of conditions and the following disclaimer. | |
37 | * 2. Redistributions in binary form must reproduce the above copyright | |
38 | * notice, this list of conditions and the following disclaimer in the | |
39 | * documentation and/or other materials provided with the distribution. | |
40 | * 3. All advertising materials mentioning features or use of this software | |
41 | * must display the following acknowledgement: | |
42 | * This product includes software developed by the University of | |
43 | * California, Berkeley and its contributors. | |
44 | * 4. Neither the name of the University nor the names of its contributors | |
45 | * may be used to endorse or promote products derived from this software | |
46 | * without specific prior written permission. | |
47 | * | |
48 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |
49 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
50 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
51 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |
52 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
53 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
54 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
55 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
56 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
57 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
58 | * SUCH DAMAGE. | |
59 | * | |
60 | * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95 | |
61 | * $FreeBSD: src/sys/netinet/tcp_input.c,v 1.107.2.16 2001/08/22 00:59:12 silby Exp $ | |
62 | */ | |
63 | /* | |
64 | * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce | |
65 | * support for mandatory and extensible security protections. This notice | |
66 | * is included in support of clause 2.2 (b) of the Apple Public License, | |
67 | * Version 2.0. | |
68 | */ | |
69 | ||
70 | #include <sys/param.h> | |
71 | #include <sys/systm.h> | |
72 | #include <sys/kernel.h> | |
73 | #include <sys/sysctl.h> | |
74 | #include <sys/malloc.h> | |
75 | #include <sys/mbuf.h> | |
76 | #include <sys/proc.h> /* for proc0 declaration */ | |
77 | #include <sys/protosw.h> | |
78 | #include <sys/socket.h> | |
79 | #include <sys/socketvar.h> | |
80 | #include <sys/syslog.h> | |
81 | #include <sys/mcache.h> | |
82 | #if !CONFIG_EMBEDDED | |
83 | #include <sys/kasl.h> | |
84 | #endif | |
85 | #include <sys/kauth.h> | |
86 | #include <kern/cpu_number.h> /* before tcp_seq.h, for tcp_random18() */ | |
87 | ||
88 | #include <machine/endian.h> | |
89 | ||
90 | #include <net/if.h> | |
91 | #include <net/if_types.h> | |
92 | #include <net/route.h> | |
93 | #include <net/ntstat.h> | |
94 | #include <net/dlil.h> | |
95 | ||
96 | #include <netinet/in.h> | |
97 | #include <netinet/in_systm.h> | |
98 | #include <netinet/ip.h> | |
99 | #include <netinet/ip_icmp.h> /* for ICMP_BANDLIM */ | |
100 | #include <netinet/in_var.h> | |
101 | #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */ | |
102 | #include <netinet/in_pcb.h> | |
103 | #include <netinet/ip_var.h> | |
104 | #include <mach/sdt.h> | |
105 | #if INET6 | |
106 | #include <netinet/ip6.h> | |
107 | #include <netinet/icmp6.h> | |
108 | #include <netinet6/nd6.h> | |
109 | #include <netinet6/ip6_var.h> | |
110 | #include <netinet6/in6_pcb.h> | |
111 | #endif | |
112 | #include <netinet/tcp.h> | |
113 | #include <netinet/tcp_cache.h> | |
114 | #include <netinet/tcp_fsm.h> | |
115 | #include <netinet/tcp_seq.h> | |
116 | #include <netinet/tcp_timer.h> | |
117 | #include <netinet/tcp_var.h> | |
118 | #include <netinet/tcp_cc.h> | |
119 | #include <dev/random/randomdev.h> | |
120 | #include <kern/zalloc.h> | |
121 | #if INET6 | |
122 | #include <netinet6/tcp6_var.h> | |
123 | #endif | |
124 | #include <netinet/tcpip.h> | |
125 | #if TCPDEBUG | |
126 | #include <netinet/tcp_debug.h> | |
127 | u_char tcp_saveipgen[40]; /* the size must be of max ip header, now IPv6 */ | |
128 | struct tcphdr tcp_savetcp; | |
129 | #endif /* TCPDEBUG */ | |
130 | ||
131 | #if IPSEC | |
132 | #include <netinet6/ipsec.h> | |
133 | #if INET6 | |
134 | #include <netinet6/ipsec6.h> | |
135 | #endif | |
136 | #include <netkey/key.h> | |
137 | #endif /*IPSEC*/ | |
138 | ||
139 | #if CONFIG_MACF_NET || CONFIG_MACF_SOCKET | |
140 | #include <security/mac_framework.h> | |
141 | #endif /* CONFIG_MACF_NET || CONFIG_MACF_SOCKET */ | |
142 | ||
143 | #include <sys/kdebug.h> | |
144 | #include <netinet/lro_ext.h> | |
145 | #if MPTCP | |
146 | #include <netinet/mptcp_var.h> | |
147 | #include <netinet/mptcp.h> | |
148 | #include <netinet/mptcp_opt.h> | |
149 | #endif /* MPTCP */ | |
150 | ||
151 | #include <corecrypto/ccaes.h> | |
152 | ||
153 | #define DBG_LAYER_BEG NETDBG_CODE(DBG_NETTCP, 0) | |
154 | #define DBG_LAYER_END NETDBG_CODE(DBG_NETTCP, 2) | |
155 | #define DBG_FNC_TCP_INPUT NETDBG_CODE(DBG_NETTCP, (3 << 8)) | |
156 | #define DBG_FNC_TCP_NEWCONN NETDBG_CODE(DBG_NETTCP, (7 << 8)) | |
157 | ||
158 | #define TCP_RTT_HISTORY_EXPIRE_TIME (60 * TCP_RETRANSHZ) | |
159 | #define TCP_RECV_THROTTLE_WIN (5 * TCP_RETRANSHZ) | |
160 | #define TCP_STRETCHACK_ENABLE_PKTCNT 2000 | |
161 | ||
162 | struct tcpstat tcpstat; | |
163 | ||
164 | static int log_in_vain = 0; | |
165 | SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, | |
166 | CTLFLAG_RW | CTLFLAG_LOCKED, &log_in_vain, 0, | |
167 | "Log all incoming TCP connections"); | |
168 | ||
169 | static int blackhole = 0; | |
170 | SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, | |
171 | CTLFLAG_RW | CTLFLAG_LOCKED, &blackhole, 0, | |
172 | "Do not send RST when dropping refused connections"); | |
173 | ||
174 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, delayed_ack, | |
175 | CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_delack_enabled, 3, | |
176 | "Delay ACK to try and piggyback it onto a data packet"); | |
177 | ||
178 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, tcp_lq_overflow, | |
179 | CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_lq_overflow, 1, | |
180 | "Listen Queue Overflow"); | |
181 | ||
182 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, recvbg, CTLFLAG_RW | CTLFLAG_LOCKED, | |
183 | int, tcp_recv_bg, 0, "Receive background"); | |
184 | ||
185 | #if TCP_DROP_SYNFIN | |
186 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, drop_synfin, | |
187 | CTLFLAG_RW | CTLFLAG_LOCKED, static int, drop_synfin, 1, | |
188 | "Drop TCP packets with SYN+FIN set"); | |
189 | #endif | |
190 | ||
191 | SYSCTL_NODE(_net_inet_tcp, OID_AUTO, reass, CTLFLAG_RW|CTLFLAG_LOCKED, 0, | |
192 | "TCP Segment Reassembly Queue"); | |
193 | ||
194 | static int tcp_reass_overflows = 0; | |
195 | SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, overflows, | |
196 | CTLFLAG_RD | CTLFLAG_LOCKED, &tcp_reass_overflows, 0, | |
197 | "Global number of TCP Segment Reassembly Queue Overflows"); | |
198 | ||
199 | ||
200 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, slowlink_wsize, CTLFLAG_RW | CTLFLAG_LOCKED, | |
201 | __private_extern__ int, slowlink_wsize, 8192, | |
202 | "Maximum advertised window size for slowlink"); | |
203 | ||
204 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, maxseg_unacked, | |
205 | CTLFLAG_RW | CTLFLAG_LOCKED, int, maxseg_unacked, 8, | |
206 | "Maximum number of outstanding segments left unacked"); | |
207 | ||
208 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, rfc3465, CTLFLAG_RW | CTLFLAG_LOCKED, | |
209 | int, tcp_do_rfc3465, 1, ""); | |
210 | ||
211 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, rfc3465_lim2, | |
212 | CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_do_rfc3465_lim2, 1, | |
213 | "Appropriate bytes counting w/ L=2*SMSS"); | |
214 | ||
215 | int rtt_samples_per_slot = 20; | |
216 | ||
217 | int tcp_acc_iaj_high_thresh = ACC_IAJ_HIGH_THRESH; | |
218 | u_int32_t tcp_autorcvbuf_inc_shift = 3; | |
219 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, recv_allowed_iaj, | |
220 | CTLFLAG_RW | CTLFLAG_LOCKED, int, tcp_allowed_iaj, ALLOWED_IAJ, | |
221 | "Allowed inter-packet arrival jiter"); | |
222 | #if (DEVELOPMENT || DEBUG) | |
223 | SYSCTL_INT(_net_inet_tcp, OID_AUTO, acc_iaj_high_thresh, | |
224 | CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_acc_iaj_high_thresh, 0, | |
225 | "Used in calculating maximum accumulated IAJ"); | |
226 | ||
227 | SYSCTL_INT(_net_inet_tcp, OID_AUTO, autorcvbufincshift, | |
228 | CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_autorcvbuf_inc_shift, 0, | |
229 | "Shift for increment in receive socket buffer size"); | |
230 | #endif /* (DEVELOPMENT || DEBUG) */ | |
231 | ||
232 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, doautorcvbuf, | |
233 | CTLFLAG_RW | CTLFLAG_LOCKED, u_int32_t, tcp_do_autorcvbuf, 1, | |
234 | "Enable automatic socket buffer tuning"); | |
235 | ||
236 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, autorcvbufmax, | |
237 | CTLFLAG_RW | CTLFLAG_LOCKED, u_int32_t, tcp_autorcvbuf_max, 512 * 1024, | |
238 | "Maximum receive socket buffer size"); | |
239 | ||
240 | u_int32_t tcp_autorcvbuf_max_ca = 512 * 1024; | |
241 | #if (DEBUG || DEVELOPMENT) | |
242 | SYSCTL_INT(_net_inet_tcp, OID_AUTO, autorcvbufmaxca, | |
243 | CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_autorcvbuf_max_ca, 0, | |
244 | "Maximum receive socket buffer size"); | |
245 | #endif /* (DEBUG || DEVELOPMENT) */ | |
246 | ||
247 | #if CONFIG_EMBEDDED | |
248 | int sw_lro = 1; | |
249 | #else | |
250 | int sw_lro = 0; | |
251 | #endif /* !CONFIG_EMBEDDED */ | |
252 | SYSCTL_INT(_net_inet_tcp, OID_AUTO, lro, CTLFLAG_RW | CTLFLAG_LOCKED, | |
253 | &sw_lro, 0, "Used to coalesce TCP packets"); | |
254 | ||
255 | int lrodebug = 0; | |
256 | SYSCTL_INT(_net_inet_tcp, OID_AUTO, lrodbg, | |
257 | CTLFLAG_RW | CTLFLAG_LOCKED, &lrodebug, 0, | |
258 | "Used to debug SW LRO"); | |
259 | ||
260 | int lro_start = 4; | |
261 | SYSCTL_INT(_net_inet_tcp, OID_AUTO, lro_startcnt, | |
262 | CTLFLAG_RW | CTLFLAG_LOCKED, &lro_start, 0, | |
263 | "Segments for starting LRO computed as power of 2"); | |
264 | ||
265 | int limited_txmt = 1; | |
266 | int early_rexmt = 1; | |
267 | int sack_ackadv = 1; | |
268 | int tcp_dsack_enable = 1; | |
269 | ||
270 | #if (DEVELOPMENT || DEBUG) | |
271 | SYSCTL_INT(_net_inet_tcp, OID_AUTO, limited_transmit, | |
272 | CTLFLAG_RW | CTLFLAG_LOCKED, &limited_txmt, 0, | |
273 | "Enable limited transmit"); | |
274 | ||
275 | SYSCTL_INT(_net_inet_tcp, OID_AUTO, early_rexmt, | |
276 | CTLFLAG_RW | CTLFLAG_LOCKED, &early_rexmt, 0, | |
277 | "Enable Early Retransmit"); | |
278 | ||
279 | SYSCTL_INT(_net_inet_tcp, OID_AUTO, sack_ackadv, | |
280 | CTLFLAG_RW | CTLFLAG_LOCKED, &sack_ackadv, 0, | |
281 | "Use SACK with cumulative ack advancement as a dupack"); | |
282 | ||
283 | SYSCTL_INT(_net_inet_tcp, OID_AUTO, dsack_enable, | |
284 | CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_dsack_enable, 0, | |
285 | "use DSACK TCP option to report duplicate segments"); | |
286 | ||
287 | #endif /* (DEVELOPMENT || DEBUG) */ | |
288 | int tcp_disable_access_to_stats = 1; | |
289 | SYSCTL_INT(_net_inet_tcp, OID_AUTO, disable_access_to_stats, | |
290 | CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_disable_access_to_stats, 0, | |
291 | "Disable access to tcpstat"); | |
292 | ||
293 | ||
294 | extern int tcp_TCPTV_MIN; | |
295 | extern int tcp_acc_iaj_high; | |
296 | extern int tcp_acc_iaj_react_limit; | |
297 | ||
298 | int tcprexmtthresh = 3; | |
299 | ||
300 | u_int32_t tcp_now; | |
301 | struct timeval tcp_uptime; /* uptime when tcp_now was last updated */ | |
302 | lck_spin_t *tcp_uptime_lock; /* Used to sychronize updates to tcp_now */ | |
303 | ||
304 | struct inpcbhead tcb; | |
305 | #define tcb6 tcb /* for KAME src sync over BSD*'s */ | |
306 | struct inpcbinfo tcbinfo; | |
307 | ||
308 | static void tcp_dooptions(struct tcpcb *, u_char *, int, struct tcphdr *, | |
309 | struct tcpopt *); | |
310 | static void tcp_finalize_options(struct tcpcb *, struct tcpopt *, unsigned int); | |
311 | static void tcp_pulloutofband(struct socket *, | |
312 | struct tcphdr *, struct mbuf *, int); | |
313 | static int tcp_reass(struct tcpcb *, struct tcphdr *, int *, struct mbuf *, | |
314 | struct ifnet *); | |
315 | static void tcp_xmit_timer(struct tcpcb *, int, u_int32_t, tcp_seq); | |
316 | static inline unsigned int tcp_maxmtu(struct rtentry *); | |
317 | static inline int tcp_stretch_ack_enable(struct tcpcb *tp, int thflags); | |
318 | static inline void tcp_adaptive_rwtimo_check(struct tcpcb *, int); | |
319 | ||
320 | #if TRAFFIC_MGT | |
321 | static inline void update_iaj_state(struct tcpcb *tp, uint32_t tlen, | |
322 | int reset_size); | |
323 | void compute_iaj(struct tcpcb *tp, int nlropkts, int lro_delay_factor); | |
324 | static void compute_iaj_meat(struct tcpcb *tp, uint32_t cur_iaj); | |
325 | #endif /* TRAFFIC_MGT */ | |
326 | ||
327 | #if INET6 | |
328 | static inline unsigned int tcp_maxmtu6(struct rtentry *); | |
329 | #endif | |
330 | ||
331 | unsigned int get_maxmtu(struct rtentry *); | |
332 | ||
333 | static void tcp_sbrcv_grow(struct tcpcb *tp, struct sockbuf *sb, | |
334 | struct tcpopt *to, u_int32_t tlen, u_int32_t rcvbuf_max); | |
335 | void tcp_sbrcv_trim(struct tcpcb *tp, struct sockbuf *sb); | |
336 | static void tcp_sbsnd_trim(struct sockbuf *sbsnd); | |
337 | static inline void tcp_sbrcv_tstmp_check(struct tcpcb *tp); | |
338 | static inline void tcp_sbrcv_reserve(struct tcpcb *tp, struct sockbuf *sb, | |
339 | u_int32_t newsize, u_int32_t idealsize, u_int32_t rcvbuf_max); | |
340 | static void tcp_bad_rexmt_restore_state(struct tcpcb *tp, struct tcphdr *th); | |
341 | static void tcp_compute_rtt(struct tcpcb *tp, struct tcpopt *to, | |
342 | struct tcphdr *th); | |
343 | static void tcp_early_rexmt_check(struct tcpcb *tp, struct tcphdr *th); | |
344 | static void tcp_bad_rexmt_check(struct tcpcb *tp, struct tcphdr *th, | |
345 | struct tcpopt *to); | |
346 | /* | |
347 | * Constants used for resizing receive socket buffer | |
348 | * when timestamps are not supported | |
349 | */ | |
350 | #define TCPTV_RCVNOTS_QUANTUM 100 | |
351 | #define TCP_RCVNOTS_BYTELEVEL 204800 | |
352 | ||
353 | /* | |
354 | * Constants used for limiting early retransmits | |
355 | * to 10 per minute. | |
356 | */ | |
357 | #define TCP_EARLY_REXMT_WIN (60 * TCP_RETRANSHZ) /* 60 seconds */ | |
358 | #define TCP_EARLY_REXMT_LIMIT 10 | |
359 | ||
360 | extern void ipfwsyslog( int level, const char *format,...); | |
361 | extern int fw_verbose; | |
362 | ||
363 | #if IPFIREWALL | |
364 | extern void ipfw_stealth_stats_incr_tcp(void); | |
365 | ||
366 | #define log_in_vain_log( a ) { \ | |
367 | if ( (log_in_vain == 3 ) && (fw_verbose == 2)) { /* Apple logging, log to ipfw.log */ \ | |
368 | ipfwsyslog a ; \ | |
369 | } else if ( (log_in_vain == 4 ) && (fw_verbose == 2)) { \ | |
370 | ipfw_stealth_stats_incr_tcp(); \ | |
371 | } \ | |
372 | else log a ; \ | |
373 | } | |
374 | #else | |
375 | #define log_in_vain_log( a ) { log a; } | |
376 | #endif | |
377 | ||
378 | int tcp_rcvunackwin = TCPTV_UNACKWIN; | |
379 | int tcp_maxrcvidle = TCPTV_MAXRCVIDLE; | |
380 | SYSCTL_SKMEM_TCP_INT(OID_AUTO, rcvsspktcnt, CTLFLAG_RW | CTLFLAG_LOCKED, | |
381 | int, tcp_rcvsspktcnt, TCP_RCV_SS_PKTCOUNT, "packets to be seen before receiver stretches acks"); | |
382 | ||
383 | #define DELAY_ACK(tp, th) \ | |
384 | (CC_ALGO(tp)->delay_ack != NULL && CC_ALGO(tp)->delay_ack(tp, th)) | |
385 | ||
386 | static int tcp_dropdropablreq(struct socket *head); | |
387 | static void tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th); | |
388 | static void update_base_rtt(struct tcpcb *tp, uint32_t rtt); | |
389 | void tcp_set_background_cc(struct socket *so); | |
390 | void tcp_set_foreground_cc(struct socket *so); | |
391 | static void tcp_set_new_cc(struct socket *so, uint16_t cc_index); | |
392 | static void tcp_bwmeas_check(struct tcpcb *tp); | |
393 | ||
394 | #if TRAFFIC_MGT | |
395 | void | |
396 | reset_acc_iaj(struct tcpcb *tp) | |
397 | { | |
398 | tp->acc_iaj = 0; | |
399 | CLEAR_IAJ_STATE(tp); | |
400 | } | |
401 | ||
402 | static inline void | |
403 | update_iaj_state(struct tcpcb *tp, uint32_t size, int rst_size) | |
404 | { | |
405 | if (rst_size > 0) | |
406 | tp->iaj_size = 0; | |
407 | if (tp->iaj_size == 0 || size >= tp->iaj_size) { | |
408 | tp->iaj_size = size; | |
409 | tp->iaj_rcv_ts = tcp_now; | |
410 | tp->iaj_small_pkt = 0; | |
411 | } | |
412 | } | |
413 | ||
414 | /* For every 32 bit unsigned integer(v), this function will find the | |
415 | * largest integer n such that (n*n <= v). This takes at most 16 iterations | |
416 | * irrespective of the value of v and does not involve multiplications. | |
417 | */ | |
418 | static inline int | |
419 | isqrt(unsigned int val) | |
420 | { | |
421 | unsigned int sqrt_cache[11] = {0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100}; | |
422 | unsigned int temp, g=0, b=0x8000, bshft=15; | |
423 | if ( val <= 100) { | |
424 | for (g = 0; g <= 10; ++g) { | |
425 | if (sqrt_cache[g] > val) { | |
426 | g--; | |
427 | break; | |
428 | } else if (sqrt_cache[g] == val) { | |
429 | break; | |
430 | } | |
431 | } | |
432 | } else { | |
433 | do { | |
434 | temp = (((g << 1) + b) << (bshft--)); | |
435 | if (val >= temp) { | |
436 | g += b; | |
437 | val -= temp; | |
438 | } | |
439 | b >>= 1; | |
440 | } while ( b > 0 && val > 0); | |
441 | } | |
442 | return(g); | |
443 | } | |
444 | ||
445 | /* | |
446 | * With LRO, roughly estimate the inter arrival time between | |
447 | * each sub coalesced packet as an average. Count the delay | |
448 | * cur_iaj to be the delay between the last packet received | |
449 | * and the first packet of the LRO stream. Due to round off errors | |
450 | * cur_iaj may be the same as lro_delay_factor. Averaging has | |
451 | * round off errors too. lro_delay_factor may be close to 0 | |
452 | * in steady state leading to lower values fed to compute_iaj_meat. | |
453 | */ | |
454 | void | |
455 | compute_iaj(struct tcpcb *tp, int nlropkts, int lro_delay_factor) | |
456 | { | |
457 | uint32_t cur_iaj = tcp_now - tp->iaj_rcv_ts; | |
458 | uint32_t timediff = 0; | |
459 | ||
460 | if (cur_iaj >= lro_delay_factor) { | |
461 | cur_iaj = cur_iaj - lro_delay_factor; | |
462 | } | |
463 | ||
464 | compute_iaj_meat(tp, cur_iaj); | |
465 | ||
466 | if (nlropkts <= 1) | |
467 | return; | |
468 | ||
469 | nlropkts--; | |
470 | ||
471 | timediff = lro_delay_factor/nlropkts; | |
472 | ||
473 | while (nlropkts > 0) | |
474 | { | |
475 | compute_iaj_meat(tp, timediff); | |
476 | nlropkts--; | |
477 | } | |
478 | } | |
479 | ||
480 | static | |
481 | void compute_iaj_meat(struct tcpcb *tp, uint32_t cur_iaj) | |
482 | { | |
483 | /* When accumulated IAJ reaches MAX_ACC_IAJ in milliseconds, | |
484 | * throttle the receive window to a minimum of MIN_IAJ_WIN packets | |
485 | */ | |
486 | #define MAX_ACC_IAJ (tcp_acc_iaj_high_thresh + tcp_acc_iaj_react_limit) | |
487 | #define IAJ_DIV_SHIFT 4 | |
488 | #define IAJ_ROUNDUP_CONST (1 << (IAJ_DIV_SHIFT - 1)) | |
489 | ||
490 | uint32_t allowed_iaj, acc_iaj = 0; | |
491 | ||
492 | uint32_t mean, temp; | |
493 | int32_t cur_iaj_dev; | |
494 | ||
495 | cur_iaj_dev = (cur_iaj - tp->avg_iaj); | |
496 | ||
497 | /* Allow a jitter of "allowed_iaj" milliseconds. Some connections | |
498 | * may have a constant jitter more than that. We detect this by | |
499 | * using standard deviation. | |
500 | */ | |
501 | allowed_iaj = tp->avg_iaj + tp->std_dev_iaj; | |
502 | if (allowed_iaj < tcp_allowed_iaj) | |
503 | allowed_iaj = tcp_allowed_iaj; | |
504 | ||
505 | /* Initially when the connection starts, the senders congestion | |
506 | * window is small. During this period we avoid throttling a | |
507 | * connection because we do not have a good starting point for | |
508 | * allowed_iaj. IAJ_IGNORE_PKTCNT is used to quietly gloss over | |
509 | * the first few packets. | |
510 | */ | |
511 | if (tp->iaj_pktcnt > IAJ_IGNORE_PKTCNT) { | |
512 | if ( cur_iaj <= allowed_iaj ) { | |
513 | if (tp->acc_iaj >= 2) | |
514 | acc_iaj = tp->acc_iaj - 2; | |
515 | else | |
516 | acc_iaj = 0; | |
517 | ||
518 | } else { | |
519 | acc_iaj = tp->acc_iaj + (cur_iaj - allowed_iaj); | |
520 | } | |
521 | ||
522 | if (acc_iaj > MAX_ACC_IAJ) | |
523 | acc_iaj = MAX_ACC_IAJ; | |
524 | tp->acc_iaj = acc_iaj; | |
525 | } | |
526 | ||
527 | /* Compute weighted average where the history has a weight of | |
528 | * 15 out of 16 and the current value has a weight of 1 out of 16. | |
529 | * This will make the short-term measurements have more weight. | |
530 | * | |
531 | * The addition of 8 will help to round-up the value | |
532 | * instead of round-down | |
533 | */ | |
534 | tp->avg_iaj = (((tp->avg_iaj << IAJ_DIV_SHIFT) - tp->avg_iaj) | |
535 | + cur_iaj + IAJ_ROUNDUP_CONST) >> IAJ_DIV_SHIFT; | |
536 | ||
537 | /* Compute Root-mean-square of deviation where mean is a weighted | |
538 | * average as described above. | |
539 | */ | |
540 | temp = tp->std_dev_iaj * tp->std_dev_iaj; | |
541 | mean = (((temp << IAJ_DIV_SHIFT) - temp) | |
542 | + (cur_iaj_dev * cur_iaj_dev) | |
543 | + IAJ_ROUNDUP_CONST) >> IAJ_DIV_SHIFT; | |
544 | ||
545 | tp->std_dev_iaj = isqrt(mean); | |
546 | ||
547 | DTRACE_TCP3(iaj, struct tcpcb *, tp, uint32_t, cur_iaj, | |
548 | uint32_t, allowed_iaj); | |
549 | ||
550 | return; | |
551 | } | |
552 | #endif /* TRAFFIC_MGT */ | |
553 | ||
554 | /* Check if enough amount of data has been acknowledged since | |
555 | * bw measurement was started | |
556 | */ | |
557 | static void | |
558 | tcp_bwmeas_check(struct tcpcb *tp) | |
559 | { | |
560 | int32_t bw_meas_bytes; | |
561 | uint32_t bw, bytes, elapsed_time; | |
562 | ||
563 | if (SEQ_LEQ(tp->snd_una, tp->t_bwmeas->bw_start)) | |
564 | return; | |
565 | ||
566 | bw_meas_bytes = tp->snd_una - tp->t_bwmeas->bw_start; | |
567 | if ((tp->t_flagsext & TF_BWMEAS_INPROGRESS) && | |
568 | bw_meas_bytes >= (int32_t)(tp->t_bwmeas->bw_size)) { | |
569 | bytes = bw_meas_bytes; | |
570 | elapsed_time = tcp_now - tp->t_bwmeas->bw_ts; | |
571 | if (elapsed_time > 0) { | |
572 | bw = bytes / elapsed_time; | |
573 | if ( bw > 0) { | |
574 | if (tp->t_bwmeas->bw_sndbw > 0) { | |
575 | tp->t_bwmeas->bw_sndbw = | |
576 | (((tp->t_bwmeas->bw_sndbw << 3) | |
577 | - tp->t_bwmeas->bw_sndbw) | |
578 | + bw) >> 3; | |
579 | } else { | |
580 | tp->t_bwmeas->bw_sndbw = bw; | |
581 | } | |
582 | ||
583 | /* Store the maximum value */ | |
584 | if (tp->t_bwmeas->bw_sndbw_max == 0) { | |
585 | tp->t_bwmeas->bw_sndbw_max = | |
586 | tp->t_bwmeas->bw_sndbw; | |
587 | } else { | |
588 | tp->t_bwmeas->bw_sndbw_max = | |
589 | max(tp->t_bwmeas->bw_sndbw, | |
590 | tp->t_bwmeas->bw_sndbw_max); | |
591 | } | |
592 | } | |
593 | } | |
594 | tp->t_flagsext &= ~(TF_BWMEAS_INPROGRESS); | |
595 | } | |
596 | } | |
597 | ||
598 | static int | |
599 | tcp_reass(struct tcpcb *tp, struct tcphdr *th, int *tlenp, struct mbuf *m, | |
600 | struct ifnet *ifp) | |
601 | { | |
602 | struct tseg_qent *q; | |
603 | struct tseg_qent *p = NULL; | |
604 | struct tseg_qent *nq; | |
605 | struct tseg_qent *te = NULL; | |
606 | struct inpcb *inp = tp->t_inpcb; | |
607 | struct socket *so = inp->inp_socket; | |
608 | int flags = 0; | |
609 | int dowakeup = 0; | |
610 | struct mbuf *oodata = NULL; | |
611 | int copy_oodata = 0; | |
612 | u_int16_t qlimit; | |
613 | boolean_t cell = IFNET_IS_CELLULAR(ifp); | |
614 | boolean_t wifi = (!cell && IFNET_IS_WIFI(ifp)); | |
615 | boolean_t wired = (!wifi && IFNET_IS_WIRED(ifp)); | |
616 | boolean_t dsack_set = FALSE; | |
617 | ||
618 | /* | |
619 | * Call with th==0 after become established to | |
620 | * force pre-ESTABLISHED data up to user socket. | |
621 | */ | |
622 | if (th == NULL) | |
623 | goto present; | |
624 | ||
625 | /* | |
626 | * If the reassembly queue already has entries or if we are going | |
627 | * to add a new one, then the connection has reached a loss state. | |
628 | * Reset the stretch-ack algorithm at this point. | |
629 | */ | |
630 | tcp_reset_stretch_ack(tp); | |
631 | ||
632 | #if TRAFFIC_MGT | |
633 | if (tp->acc_iaj > 0) | |
634 | reset_acc_iaj(tp); | |
635 | #endif /* TRAFFIC_MGT */ | |
636 | ||
637 | /* | |
638 | * Limit the number of segments in the reassembly queue to prevent | |
639 | * holding on to too many segments (and thus running out of mbufs). | |
640 | * Make sure to let the missing segment through which caused this | |
641 | * queue. Always keep one global queue entry spare to be able to | |
642 | * process the missing segment. | |
643 | */ | |
644 | qlimit = min(max(100, so->so_rcv.sb_hiwat >> 10), | |
645 | (TCP_AUTORCVBUF_MAX(ifp) >> 10)); | |
646 | if (th->th_seq != tp->rcv_nxt && | |
647 | (tp->t_reassqlen + 1) >= qlimit) { | |
648 | tcp_reass_overflows++; | |
649 | tcpstat.tcps_rcvmemdrop++; | |
650 | m_freem(m); | |
651 | *tlenp = 0; | |
652 | return (0); | |
653 | } | |
654 | ||
655 | /* Allocate a new queue entry. If we can't, just drop the pkt. XXX */ | |
656 | te = (struct tseg_qent *) zalloc(tcp_reass_zone); | |
657 | if (te == NULL) { | |
658 | tcpstat.tcps_rcvmemdrop++; | |
659 | m_freem(m); | |
660 | return (0); | |
661 | } | |
662 | tp->t_reassqlen++; | |
663 | ||
664 | /* | |
665 | * Find a segment which begins after this one does. | |
666 | */ | |
667 | LIST_FOREACH(q, &tp->t_segq, tqe_q) { | |
668 | if (SEQ_GT(q->tqe_th->th_seq, th->th_seq)) | |
669 | break; | |
670 | p = q; | |
671 | } | |
672 | ||
673 | /* | |
674 | * If there is a preceding segment, it may provide some of | |
675 | * our data already. If so, drop the data from the incoming | |
676 | * segment. If it provides all of our data, drop us. | |
677 | */ | |
678 | if (p != NULL) { | |
679 | int i; | |
680 | /* conversion to int (in i) handles seq wraparound */ | |
681 | i = p->tqe_th->th_seq + p->tqe_len - th->th_seq; | |
682 | if (i > 0) { | |
683 | if (TCP_DSACK_ENABLED(tp) && i > 1) { | |
684 | /* | |
685 | * Note duplicate data sequnce numbers | |
686 | * to report in DSACK option | |
687 | */ | |
688 | tp->t_dsack_lseq = th->th_seq; | |
689 | tp->t_dsack_rseq = th->th_seq + | |
690 | min(i, *tlenp); | |
691 | ||
692 | /* | |
693 | * Report only the first part of partial/ | |
694 | * non-contiguous duplicate sequence space | |
695 | */ | |
696 | dsack_set = TRUE; | |
697 | } | |
698 | if (i >= *tlenp) { | |
699 | tcpstat.tcps_rcvduppack++; | |
700 | tcpstat.tcps_rcvdupbyte += *tlenp; | |
701 | if (nstat_collect) { | |
702 | nstat_route_rx(inp->inp_route.ro_rt, | |
703 | 1, *tlenp, | |
704 | NSTAT_RX_FLAG_DUPLICATE); | |
705 | INP_ADD_STAT(inp, cell, wifi, wired, | |
706 | rxpackets, 1); | |
707 | INP_ADD_STAT(inp, cell, wifi, wired, | |
708 | rxbytes, *tlenp); | |
709 | tp->t_stat.rxduplicatebytes += *tlenp; | |
710 | inp_set_activity_bitmap(inp); | |
711 | } | |
712 | m_freem(m); | |
713 | zfree(tcp_reass_zone, te); | |
714 | te = NULL; | |
715 | tp->t_reassqlen--; | |
716 | /* | |
717 | * Try to present any queued data | |
718 | * at the left window edge to the user. | |
719 | * This is needed after the 3-WHS | |
720 | * completes. | |
721 | */ | |
722 | goto present; | |
723 | } | |
724 | m_adj(m, i); | |
725 | *tlenp -= i; | |
726 | th->th_seq += i; | |
727 | } | |
728 | } | |
729 | tp->t_rcvoopack++; | |
730 | tcpstat.tcps_rcvoopack++; | |
731 | tcpstat.tcps_rcvoobyte += *tlenp; | |
732 | if (nstat_collect) { | |
733 | nstat_route_rx(inp->inp_route.ro_rt, 1, *tlenp, | |
734 | NSTAT_RX_FLAG_OUT_OF_ORDER); | |
735 | INP_ADD_STAT(inp, cell, wifi, wired, rxpackets, 1); | |
736 | INP_ADD_STAT(inp, cell, wifi, wired, rxbytes, *tlenp); | |
737 | tp->t_stat.rxoutoforderbytes += *tlenp; | |
738 | inp_set_activity_bitmap(inp); | |
739 | } | |
740 | ||
741 | /* | |
742 | * While we overlap succeeding segments trim them or, | |
743 | * if they are completely covered, dequeue them. | |
744 | */ | |
745 | while (q) { | |
746 | int i = (th->th_seq + *tlenp) - q->tqe_th->th_seq; | |
747 | if (i <= 0) | |
748 | break; | |
749 | ||
750 | /* | |
751 | * Report only the first part of partial/non-contiguous | |
752 | * duplicate segment in dsack option. The variable | |
753 | * dsack_set will be true if a previous entry has some of | |
754 | * the duplicate sequence space. | |
755 | */ | |
756 | if (TCP_DSACK_ENABLED(tp) && i > 1 && !dsack_set) { | |
757 | if (tp->t_dsack_lseq == 0) { | |
758 | tp->t_dsack_lseq = q->tqe_th->th_seq; | |
759 | tp->t_dsack_rseq = | |
760 | tp->t_dsack_lseq + min(i, q->tqe_len); | |
761 | } else { | |
762 | /* | |
763 | * this segment overlaps data in multple | |
764 | * entries in the reassembly queue, move | |
765 | * the right sequence number further. | |
766 | */ | |
767 | tp->t_dsack_rseq = | |
768 | tp->t_dsack_rseq + min(i, q->tqe_len); | |
769 | } | |
770 | } | |
771 | if (i < q->tqe_len) { | |
772 | q->tqe_th->th_seq += i; | |
773 | q->tqe_len -= i; | |
774 | m_adj(q->tqe_m, i); | |
775 | break; | |
776 | } | |
777 | ||
778 | nq = LIST_NEXT(q, tqe_q); | |
779 | LIST_REMOVE(q, tqe_q); | |
780 | m_freem(q->tqe_m); | |
781 | zfree(tcp_reass_zone, q); | |
782 | tp->t_reassqlen--; | |
783 | q = nq; | |
784 | } | |
785 | ||
786 | /* Insert the new segment queue entry into place. */ | |
787 | te->tqe_m = m; | |
788 | te->tqe_th = th; | |
789 | te->tqe_len = *tlenp; | |
790 | ||
791 | if (p == NULL) { | |
792 | LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q); | |
793 | } else { | |
794 | LIST_INSERT_AFTER(p, te, tqe_q); | |
795 | } | |
796 | ||
797 | /* | |
798 | * New out-of-order data exists, and is pointed to by | |
799 | * queue entry te. Set copy_oodata to 1 so out-of-order data | |
800 | * can be copied off to sockbuf after in-order data | |
801 | * is copied off. | |
802 | */ | |
803 | if (!(so->so_state & SS_CANTRCVMORE)) | |
804 | copy_oodata = 1; | |
805 | ||
806 | present: | |
807 | /* | |
808 | * Present data to user, advancing rcv_nxt through | |
809 | * completed sequence space. | |
810 | */ | |
811 | if (!TCPS_HAVEESTABLISHED(tp->t_state)) | |
812 | return (0); | |
813 | q = LIST_FIRST(&tp->t_segq); | |
814 | if (!q || q->tqe_th->th_seq != tp->rcv_nxt) { | |
815 | /* Stop using LRO once out of order packets arrive */ | |
816 | if (tp->t_flagsext & TF_LRO_OFFLOADED) { | |
817 | tcp_lro_remove_state(inp->inp_laddr, inp->inp_faddr, | |
818 | th->th_dport, th->th_sport); | |
819 | tp->t_flagsext &= ~TF_LRO_OFFLOADED; | |
820 | } | |
821 | ||
822 | /* | |
823 | * continue processing if out-of-order data | |
824 | * can be delivered | |
825 | */ | |
826 | if (q && (so->so_flags & SOF_ENABLE_MSGS)) | |
827 | goto msg_unordered_delivery; | |
828 | ||
829 | return (0); | |
830 | } | |
831 | ||
832 | /* | |
833 | * If there is already another thread doing reassembly for this | |
834 | * connection, it is better to let it finish the job -- | |
835 | * (radar 16316196) | |
836 | */ | |
837 | if (tp->t_flagsext & TF_REASS_INPROG) | |
838 | return (0); | |
839 | ||
840 | tp->t_flagsext |= TF_REASS_INPROG; | |
841 | /* lost packet was recovered, so ooo data can be returned */ | |
842 | tcpstat.tcps_recovered_pkts++; | |
843 | ||
844 | do { | |
845 | tp->rcv_nxt += q->tqe_len; | |
846 | flags = q->tqe_th->th_flags & TH_FIN; | |
847 | LIST_REMOVE(q, tqe_q); | |
848 | if (so->so_state & SS_CANTRCVMORE) { | |
849 | m_freem(q->tqe_m); | |
850 | } else { | |
851 | so_recv_data_stat(so, q->tqe_m, 0); /* XXXX */ | |
852 | if (so->so_flags & SOF_ENABLE_MSGS) { | |
853 | /* | |
854 | * Append the inorder data as a message to the | |
855 | * receive socket buffer. Also check to see if | |
856 | * the data we are about to deliver is the same | |
857 | * data that we wanted to pass up to the user | |
858 | * out of order. If so, reset copy_oodata -- | |
859 | * the received data filled a gap, and | |
860 | * is now in order! | |
861 | */ | |
862 | if (q == te) | |
863 | copy_oodata = 0; | |
864 | } | |
865 | if (sbappendstream_rcvdemux(so, q->tqe_m, | |
866 | q->tqe_th->th_seq - (tp->irs + 1), 0)) | |
867 | dowakeup = 1; | |
868 | if (tp->t_flagsext & TF_LRO_OFFLOADED) { | |
869 | tcp_update_lro_seq(tp->rcv_nxt, | |
870 | inp->inp_laddr, inp->inp_faddr, | |
871 | th->th_dport, th->th_sport); | |
872 | } | |
873 | } | |
874 | zfree(tcp_reass_zone, q); | |
875 | tp->t_reassqlen--; | |
876 | q = LIST_FIRST(&tp->t_segq); | |
877 | } while (q && q->tqe_th->th_seq == tp->rcv_nxt); | |
878 | tp->t_flagsext &= ~TF_REASS_INPROG; | |
879 | ||
880 | #if INET6 | |
881 | if ((inp->inp_vflag & INP_IPV6) != 0) { | |
882 | ||
883 | KERNEL_DEBUG(DBG_LAYER_BEG, | |
884 | ((inp->inp_fport << 16) | inp->inp_lport), | |
885 | (((inp->in6p_laddr.s6_addr16[0] & 0xffff) << 16) | | |
886 | (inp->in6p_faddr.s6_addr16[0] & 0xffff)), | |
887 | 0,0,0); | |
888 | } | |
889 | else | |
890 | #endif | |
891 | { | |
892 | KERNEL_DEBUG(DBG_LAYER_BEG, | |
893 | ((inp->inp_fport << 16) | inp->inp_lport), | |
894 | (((inp->inp_laddr.s_addr & 0xffff) << 16) | | |
895 | (inp->inp_faddr.s_addr & 0xffff)), | |
896 | 0,0,0); | |
897 | } | |
898 | ||
899 | msg_unordered_delivery: | |
900 | /* Deliver out-of-order data as a message */ | |
901 | if (te && (so->so_flags & SOF_ENABLE_MSGS) && copy_oodata && te->tqe_len) { | |
902 | /* | |
903 | * make a copy of the mbuf to be delivered up to | |
904 | * the user, and add it to the sockbuf | |
905 | */ | |
906 | oodata = m_copym(te->tqe_m, 0, M_COPYALL, M_DONTWAIT); | |
907 | if (oodata != NULL) { | |
908 | if (sbappendmsgstream_rcv(&so->so_rcv, oodata, | |
909 | te->tqe_th->th_seq - (tp->irs + 1), 1)) { | |
910 | dowakeup = 1; | |
911 | tcpstat.tcps_msg_unopkts++; | |
912 | } else { | |
913 | tcpstat.tcps_msg_unoappendfail++; | |
914 | } | |
915 | } | |
916 | } | |
917 | ||
918 | if (dowakeup) | |
919 | sorwakeup(so); /* done with socket lock held */ | |
920 | return (flags); | |
921 | } | |
922 | ||
923 | /* | |
924 | * Reduce congestion window -- used when ECN is seen or when a tail loss | |
925 | * probe recovers the last packet. | |
926 | */ | |
927 | static void | |
928 | tcp_reduce_congestion_window( | |
929 | struct tcpcb *tp) | |
930 | { | |
931 | /* | |
932 | * If the current tcp cc module has | |
933 | * defined a hook for tasks to run | |
934 | * before entering FR, call it | |
935 | */ | |
936 | if (CC_ALGO(tp)->pre_fr != NULL) | |
937 | CC_ALGO(tp)->pre_fr(tp); | |
938 | ENTER_FASTRECOVERY(tp); | |
939 | if (tp->t_flags & TF_SENTFIN) | |
940 | tp->snd_recover = tp->snd_max - 1; | |
941 | else | |
942 | tp->snd_recover = tp->snd_max; | |
943 | tp->t_timer[TCPT_REXMT] = 0; | |
944 | tp->t_timer[TCPT_PTO] = 0; | |
945 | tp->t_rtttime = 0; | |
946 | if (tp->t_flagsext & TF_CWND_NONVALIDATED) { | |
947 | tcp_cc_adjust_nonvalidated_cwnd(tp); | |
948 | } else { | |
949 | tp->snd_cwnd = tp->snd_ssthresh + | |
950 | tp->t_maxseg * tcprexmtthresh; | |
951 | } | |
952 | } | |
953 | ||
954 | /* | |
955 | * This function is called upon reception of data on a socket. It's purpose is | |
956 | * to handle the adaptive keepalive timers that monitor whether the connection | |
957 | * is making progress. First the adaptive read-timer, second the TFO probe-timer. | |
958 | * | |
959 | * The application wants to get an event if there is a stall during read. | |
960 | * Set the initial keepalive timeout to be equal to twice RTO. | |
961 | * | |
962 | * If the outgoing interface is in marginal conditions, we need to | |
963 | * enable read probes for that too. | |
964 | */ | |
965 | static inline void | |
966 | tcp_adaptive_rwtimo_check(struct tcpcb *tp, int tlen) | |
967 | { | |
968 | struct ifnet *outifp = tp->t_inpcb->inp_last_outifp; | |
969 | ||
970 | if ((tp->t_adaptive_rtimo > 0 || | |
971 | (outifp != NULL && | |
972 | (outifp->if_eflags & IFEF_PROBE_CONNECTIVITY))) | |
973 | && tlen > 0 && | |
974 | tp->t_state == TCPS_ESTABLISHED) { | |
975 | tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp, | |
976 | (TCP_REXMTVAL(tp) << 1)); | |
977 | tp->t_flagsext |= TF_DETECT_READSTALL; | |
978 | tp->t_rtimo_probes = 0; | |
979 | } | |
980 | } | |
981 | ||
982 | inline void | |
983 | tcp_keepalive_reset(struct tcpcb *tp) | |
984 | { | |
985 | tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp, | |
986 | TCP_CONN_KEEPIDLE(tp)); | |
987 | tp->t_flagsext &= ~(TF_DETECT_READSTALL); | |
988 | tp->t_rtimo_probes = 0; | |
989 | } | |
990 | ||
991 | /* | |
992 | * TCP input routine, follows pages 65-76 of the | |
993 | * protocol specification dated September, 1981 very closely. | |
994 | */ | |
995 | #if INET6 | |
996 | int | |
997 | tcp6_input(struct mbuf **mp, int *offp, int proto) | |
998 | { | |
999 | #pragma unused(proto) | |
1000 | struct mbuf *m = *mp; | |
1001 | uint32_t ia6_flags; | |
1002 | struct ifnet *ifp = m->m_pkthdr.rcvif; | |
1003 | ||
1004 | IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), return IPPROTO_DONE); | |
1005 | ||
1006 | /* Expect 32-bit aligned data pointer on strict-align platforms */ | |
1007 | MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m); | |
1008 | ||
1009 | /* | |
1010 | * draft-itojun-ipv6-tcp-to-anycast | |
1011 | * better place to put this in? | |
1012 | */ | |
1013 | if (ip6_getdstifaddr_info(m, NULL, &ia6_flags) == 0) { | |
1014 | if (ia6_flags & IN6_IFF_ANYCAST) { | |
1015 | struct ip6_hdr *ip6; | |
1016 | ||
1017 | ip6 = mtod(m, struct ip6_hdr *); | |
1018 | icmp6_error(m, ICMP6_DST_UNREACH, | |
1019 | ICMP6_DST_UNREACH_ADDR, | |
1020 | (caddr_t)&ip6->ip6_dst - (caddr_t)ip6); | |
1021 | ||
1022 | IF_TCP_STATINC(ifp, icmp6unreach); | |
1023 | ||
1024 | return (IPPROTO_DONE); | |
1025 | } | |
1026 | } | |
1027 | ||
1028 | tcp_input(m, *offp); | |
1029 | return (IPPROTO_DONE); | |
1030 | } | |
1031 | #endif | |
1032 | ||
1033 | /* Depending on the usage of mbuf space in the system, this function | |
1034 | * will return true or false. This is used to determine if a socket | |
1035 | * buffer can take more memory from the system for auto-tuning or not. | |
1036 | */ | |
1037 | u_int8_t | |
1038 | tcp_cansbgrow(struct sockbuf *sb) | |
1039 | { | |
1040 | /* Calculate the host level space limit in terms of MSIZE buffers. | |
1041 | * We can use a maximum of half of the available mbuf space for | |
1042 | * socket buffers. | |
1043 | */ | |
1044 | u_int32_t mblim = ((nmbclusters >> 1) << (MCLSHIFT - MSIZESHIFT)); | |
1045 | ||
1046 | /* Calculate per sb limit in terms of bytes. We optimize this limit | |
1047 | * for upto 16 socket buffers. | |
1048 | */ | |
1049 | ||
1050 | u_int32_t sbspacelim = ((nmbclusters >> 4) << MCLSHIFT); | |
1051 | ||
1052 | if ((total_sbmb_cnt < mblim) && | |
1053 | (sb->sb_hiwat < sbspacelim)) { | |
1054 | return(1); | |
1055 | } else { | |
1056 | OSIncrementAtomic64(&sbmb_limreached); | |
1057 | } | |
1058 | return(0); | |
1059 | } | |
1060 | ||
1061 | static void | |
1062 | tcp_sbrcv_reserve(struct tcpcb *tp, struct sockbuf *sbrcv, | |
1063 | u_int32_t newsize, u_int32_t idealsize, u_int32_t rcvbuf_max) | |
1064 | { | |
1065 | /* newsize should not exceed max */ | |
1066 | newsize = min(newsize, rcvbuf_max); | |
1067 | ||
1068 | /* The receive window scale negotiated at the | |
1069 | * beginning of the connection will also set a | |
1070 | * limit on the socket buffer size | |
1071 | */ | |
1072 | newsize = min(newsize, TCP_MAXWIN << tp->rcv_scale); | |
1073 | ||
1074 | /* Set new socket buffer size */ | |
1075 | if (newsize > sbrcv->sb_hiwat && | |
1076 | (sbreserve(sbrcv, newsize) == 1)) { | |
1077 | sbrcv->sb_idealsize = min(max(sbrcv->sb_idealsize, | |
1078 | (idealsize != 0) ? idealsize : newsize), rcvbuf_max); | |
1079 | ||
1080 | /* Again check the limit set by the advertised | |
1081 | * window scale | |
1082 | */ | |
1083 | sbrcv->sb_idealsize = min(sbrcv->sb_idealsize, | |
1084 | TCP_MAXWIN << tp->rcv_scale); | |
1085 | } | |
1086 | } | |
1087 | ||
1088 | /* | |
1089 | * This function is used to grow a receive socket buffer. It | |
1090 | * will take into account system-level memory usage and the | |
1091 | * bandwidth available on the link to make a decision. | |
1092 | */ | |
1093 | static void | |
1094 | tcp_sbrcv_grow(struct tcpcb *tp, struct sockbuf *sbrcv, | |
1095 | struct tcpopt *to, u_int32_t pktlen, u_int32_t rcvbuf_max) | |
1096 | { | |
1097 | struct socket *so = sbrcv->sb_so; | |
1098 | ||
1099 | /* | |
1100 | * Do not grow the receive socket buffer if | |
1101 | * - auto resizing is disabled, globally or on this socket | |
1102 | * - the high water mark already reached the maximum | |
1103 | * - the stream is in background and receive side is being | |
1104 | * throttled | |
1105 | * - if there are segments in reassembly queue indicating loss, | |
1106 | * do not need to increase recv window during recovery as more | |
1107 | * data is not going to be sent. A duplicate ack sent during | |
1108 | * recovery should not change the receive window | |
1109 | */ | |
1110 | if (tcp_do_autorcvbuf == 0 || | |
1111 | (sbrcv->sb_flags & SB_AUTOSIZE) == 0 || | |
1112 | tcp_cansbgrow(sbrcv) == 0 || | |
1113 | sbrcv->sb_hiwat >= rcvbuf_max || | |
1114 | (tp->t_flagsext & TF_RECV_THROTTLE) || | |
1115 | (so->so_flags1 & SOF1_EXTEND_BK_IDLE_WANTED) || | |
1116 | !LIST_EMPTY(&tp->t_segq)) { | |
1117 | /* Can not resize the socket buffer, just return */ | |
1118 | goto out; | |
1119 | } | |
1120 | ||
1121 | if (TSTMP_GT(tcp_now, | |
1122 | tp->rfbuf_ts + TCPTV_RCVBUFIDLE)) { | |
1123 | /* If there has been an idle period in the | |
1124 | * connection, just restart the measurement | |
1125 | */ | |
1126 | goto out; | |
1127 | } | |
1128 | ||
1129 | if (!TSTMP_SUPPORTED(tp)) { | |
1130 | /* | |
1131 | * Timestamp option is not supported on this connection. | |
1132 | * If the connection reached a state to indicate that | |
1133 | * the receive socket buffer needs to grow, increase | |
1134 | * the high water mark. | |
1135 | */ | |
1136 | if (TSTMP_GEQ(tcp_now, | |
1137 | tp->rfbuf_ts + TCPTV_RCVNOTS_QUANTUM)) { | |
1138 | if (tp->rfbuf_cnt >= TCP_RCVNOTS_BYTELEVEL) { | |
1139 | tcp_sbrcv_reserve(tp, sbrcv, | |
1140 | tcp_autorcvbuf_max, 0, | |
1141 | tcp_autorcvbuf_max); | |
1142 | } | |
1143 | goto out; | |
1144 | } else { | |
1145 | tp->rfbuf_cnt += pktlen; | |
1146 | return; | |
1147 | } | |
1148 | } else if (to->to_tsecr != 0) { | |
1149 | /* | |
1150 | * If the timestamp shows that one RTT has | |
1151 | * completed, we can stop counting the | |
1152 | * bytes. Here we consider increasing | |
1153 | * the socket buffer if the bandwidth measured in | |
1154 | * last rtt, is more than half of sb_hiwat, this will | |
1155 | * help to scale the buffer according to the bandwidth | |
1156 | * on the link. | |
1157 | */ | |
1158 | if (TSTMP_GEQ(to->to_tsecr, tp->rfbuf_ts)) { | |
1159 | if (tp->rfbuf_cnt > (sbrcv->sb_hiwat - | |
1160 | (sbrcv->sb_hiwat >> 1))) { | |
1161 | int32_t rcvbuf_inc, min_incr; | |
1162 | /* | |
1163 | * Increment the receive window by a | |
1164 | * multiple of maximum sized segments. | |
1165 | * This will prevent a connection from | |
1166 | * sending smaller segments on wire if it | |
1167 | * is limited by the receive window. | |
1168 | * | |
1169 | * Set the ideal size based on current | |
1170 | * bandwidth measurements. We set the | |
1171 | * ideal size on receive socket buffer to | |
1172 | * be twice the bandwidth delay product. | |
1173 | */ | |
1174 | rcvbuf_inc = (tp->rfbuf_cnt << 1) | |
1175 | - sbrcv->sb_hiwat; | |
1176 | ||
1177 | /* | |
1178 | * Make the increment equal to 8 segments | |
1179 | * at least | |
1180 | */ | |
1181 | min_incr = tp->t_maxseg << tcp_autorcvbuf_inc_shift; | |
1182 | if (rcvbuf_inc < min_incr) | |
1183 | rcvbuf_inc = min_incr; | |
1184 | ||
1185 | rcvbuf_inc = | |
1186 | (rcvbuf_inc / tp->t_maxseg) * tp->t_maxseg; | |
1187 | tcp_sbrcv_reserve(tp, sbrcv, | |
1188 | sbrcv->sb_hiwat + rcvbuf_inc, | |
1189 | (tp->rfbuf_cnt * 2), rcvbuf_max); | |
1190 | } | |
1191 | /* Measure instantaneous receive bandwidth */ | |
1192 | if (tp->t_bwmeas != NULL && tp->rfbuf_cnt > 0 && | |
1193 | TSTMP_GT(tcp_now, tp->rfbuf_ts)) { | |
1194 | u_int32_t rcv_bw; | |
1195 | rcv_bw = tp->rfbuf_cnt / | |
1196 | (int)(tcp_now - tp->rfbuf_ts); | |
1197 | if (tp->t_bwmeas->bw_rcvbw_max == 0) { | |
1198 | tp->t_bwmeas->bw_rcvbw_max = rcv_bw; | |
1199 | } else { | |
1200 | tp->t_bwmeas->bw_rcvbw_max = max( | |
1201 | tp->t_bwmeas->bw_rcvbw_max, rcv_bw); | |
1202 | } | |
1203 | } | |
1204 | goto out; | |
1205 | } else { | |
1206 | tp->rfbuf_cnt += pktlen; | |
1207 | return; | |
1208 | } | |
1209 | } | |
1210 | out: | |
1211 | /* Restart the measurement */ | |
1212 | tp->rfbuf_ts = 0; | |
1213 | tp->rfbuf_cnt = 0; | |
1214 | return; | |
1215 | } | |
1216 | ||
1217 | /* This function will trim the excess space added to the socket buffer | |
1218 | * to help a slow-reading app. The ideal-size of a socket buffer depends | |
1219 | * on the link bandwidth or it is set by an application and we aim to | |
1220 | * reach that size. | |
1221 | */ | |
1222 | void | |
1223 | tcp_sbrcv_trim(struct tcpcb *tp, struct sockbuf *sbrcv) | |
1224 | { | |
1225 | if (tcp_do_autorcvbuf == 1 && sbrcv->sb_idealsize > 0 && | |
1226 | sbrcv->sb_hiwat > sbrcv->sb_idealsize) { | |
1227 | int32_t trim; | |
1228 | /* compute the difference between ideal and current sizes */ | |
1229 | u_int32_t diff = sbrcv->sb_hiwat - sbrcv->sb_idealsize; | |
1230 | ||
1231 | /* Compute the maximum advertised window for | |
1232 | * this connection. | |
1233 | */ | |
1234 | u_int32_t advwin = tp->rcv_adv - tp->rcv_nxt; | |
1235 | ||
1236 | /* How much can we trim the receive socket buffer? | |
1237 | * 1. it can not be trimmed beyond the max rcv win advertised | |
1238 | * 2. if possible, leave 1/16 of bandwidth*delay to | |
1239 | * avoid closing the win completely | |
1240 | */ | |
1241 | u_int32_t leave = max(advwin, (sbrcv->sb_idealsize >> 4)); | |
1242 | ||
1243 | /* Sometimes leave can be zero, in that case leave at least | |
1244 | * a few segments worth of space. | |
1245 | */ | |
1246 | if (leave == 0) | |
1247 | leave = tp->t_maxseg << tcp_autorcvbuf_inc_shift; | |
1248 | ||
1249 | trim = sbrcv->sb_hiwat - (sbrcv->sb_cc + leave); | |
1250 | trim = imin(trim, (int32_t)diff); | |
1251 | ||
1252 | if (trim > 0) | |
1253 | sbreserve(sbrcv, (sbrcv->sb_hiwat - trim)); | |
1254 | } | |
1255 | } | |
1256 | ||
1257 | /* We may need to trim the send socket buffer size for two reasons: | |
1258 | * 1. if the rtt seen on the connection is climbing up, we do not | |
1259 | * want to fill the buffers any more. | |
1260 | * 2. if the congestion win on the socket backed off, there is no need | |
1261 | * to hold more mbufs for that connection than what the cwnd will allow. | |
1262 | */ | |
1263 | void | |
1264 | tcp_sbsnd_trim(struct sockbuf *sbsnd) | |
1265 | { | |
1266 | if (tcp_do_autosendbuf == 1 && | |
1267 | ((sbsnd->sb_flags & (SB_AUTOSIZE | SB_TRIM)) == | |
1268 | (SB_AUTOSIZE | SB_TRIM)) && | |
1269 | (sbsnd->sb_idealsize > 0) && | |
1270 | (sbsnd->sb_hiwat > sbsnd->sb_idealsize)) { | |
1271 | u_int32_t trim = 0; | |
1272 | if (sbsnd->sb_cc <= sbsnd->sb_idealsize) { | |
1273 | trim = sbsnd->sb_hiwat - sbsnd->sb_idealsize; | |
1274 | } else { | |
1275 | trim = sbsnd->sb_hiwat - sbsnd->sb_cc; | |
1276 | } | |
1277 | sbreserve(sbsnd, (sbsnd->sb_hiwat - trim)); | |
1278 | } | |
1279 | if (sbsnd->sb_hiwat <= sbsnd->sb_idealsize) | |
1280 | sbsnd->sb_flags &= ~(SB_TRIM); | |
1281 | } | |
1282 | ||
1283 | /* | |
1284 | * If timestamp option was not negotiated on this connection | |
1285 | * and this connection is on the receiving side of a stream | |
1286 | * then we can not measure the delay on the link accurately. | |
1287 | * Instead of enabling automatic receive socket buffer | |
1288 | * resizing, just give more space to the receive socket buffer. | |
1289 | */ | |
1290 | static inline void | |
1291 | tcp_sbrcv_tstmp_check(struct tcpcb *tp) | |
1292 | { | |
1293 | struct socket *so = tp->t_inpcb->inp_socket; | |
1294 | u_int32_t newsize = 2 * tcp_recvspace; | |
1295 | struct sockbuf *sbrcv = &so->so_rcv; | |
1296 | ||
1297 | if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP)) != | |
1298 | (TF_REQ_TSTMP | TF_RCVD_TSTMP) && | |
1299 | (sbrcv->sb_flags & SB_AUTOSIZE) != 0) { | |
1300 | tcp_sbrcv_reserve(tp, sbrcv, newsize, 0, newsize); | |
1301 | } | |
1302 | } | |
1303 | ||
1304 | /* A receiver will evaluate the flow of packets on a connection | |
1305 | * to see if it can reduce ack traffic. The receiver will start | |
1306 | * stretching acks if all of the following conditions are met: | |
1307 | * 1. tcp_delack_enabled is set to 3 | |
1308 | * 2. If the bytes received in the last 100ms is greater than a threshold | |
1309 | * defined by maxseg_unacked | |
1310 | * 3. If the connection has not been idle for tcp_maxrcvidle period. | |
1311 | * 4. If the connection has seen enough packets to let the slow-start | |
1312 | * finish after connection establishment or after some packet loss. | |
1313 | * | |
1314 | * The receiver will stop stretching acks if there is congestion/reordering | |
1315 | * as indicated by packets on reassembly queue or an ECN. If the delayed-ack | |
1316 | * timer fires while stretching acks, it means that the packet flow has gone | |
1317 | * below the threshold defined by maxseg_unacked and the receiver will stop | |
1318 | * stretching acks. The receiver gets no indication when slow-start is completed | |
1319 | * or when the connection reaches an idle state. That is why we use | |
1320 | * tcp_rcvsspktcnt to cover slow-start and tcp_maxrcvidle to identify idle | |
1321 | * state. | |
1322 | */ | |
1323 | static inline int | |
1324 | tcp_stretch_ack_enable(struct tcpcb *tp, int thflags) | |
1325 | { | |
1326 | if (tp->rcv_by_unackwin >= (maxseg_unacked * tp->t_maxseg) && | |
1327 | TSTMP_GEQ(tp->rcv_unackwin, tcp_now)) | |
1328 | tp->t_flags |= TF_STREAMING_ON; | |
1329 | else | |
1330 | tp->t_flags &= ~TF_STREAMING_ON; | |
1331 | ||
1332 | /* If there has been an idle time, reset streaming detection */ | |
1333 | if (TSTMP_GT(tcp_now, tp->rcv_unackwin + tcp_maxrcvidle)) | |
1334 | tp->t_flags &= ~TF_STREAMING_ON; | |
1335 | ||
1336 | /* | |
1337 | * If there are flags other than TH_ACK set, reset streaming | |
1338 | * detection | |
1339 | */ | |
1340 | if (thflags & ~TH_ACK) | |
1341 | tp->t_flags &= ~TF_STREAMING_ON; | |
1342 | ||
1343 | if (tp->t_flagsext & TF_DISABLE_STRETCHACK) { | |
1344 | if (tp->rcv_nostrack_pkts >= TCP_STRETCHACK_ENABLE_PKTCNT) { | |
1345 | tp->t_flagsext &= ~TF_DISABLE_STRETCHACK; | |
1346 | tp->rcv_nostrack_pkts = 0; | |
1347 | tp->rcv_nostrack_ts = 0; | |
1348 | } else { | |
1349 | tp->rcv_nostrack_pkts++; | |
1350 | } | |
1351 | } | |
1352 | ||
1353 | if (!(tp->t_flagsext & (TF_NOSTRETCHACK|TF_DISABLE_STRETCHACK)) && | |
1354 | (tp->t_flags & TF_STREAMING_ON) && | |
1355 | (!(tp->t_flagsext & TF_RCVUNACK_WAITSS) || | |
1356 | (tp->rcv_waitforss >= tcp_rcvsspktcnt))) { | |
1357 | return(1); | |
1358 | } | |
1359 | ||
1360 | return(0); | |
1361 | } | |
1362 | ||
1363 | /* | |
1364 | * Reset the state related to stretch-ack algorithm. This will make | |
1365 | * the receiver generate an ack every other packet. The receiver | |
1366 | * will start re-evaluating the rate at which packets come to decide | |
1367 | * if it can benefit by lowering the ack traffic. | |
1368 | */ | |
1369 | void | |
1370 | tcp_reset_stretch_ack(struct tcpcb *tp) | |
1371 | { | |
1372 | tp->t_flags &= ~(TF_STRETCHACK|TF_STREAMING_ON); | |
1373 | tp->rcv_by_unackwin = 0; | |
1374 | tp->rcv_unackwin = tcp_now + tcp_rcvunackwin; | |
1375 | ||
1376 | /* | |
1377 | * When there is packet loss or packet re-ordering or CWR due to | |
1378 | * ECN, the sender's congestion window is reduced. In these states, | |
1379 | * generate an ack for every other packet for some time to allow | |
1380 | * the sender's congestion window to grow. | |
1381 | */ | |
1382 | tp->t_flagsext |= TF_RCVUNACK_WAITSS; | |
1383 | tp->rcv_waitforss = 0; | |
1384 | } | |
1385 | ||
1386 | /* | |
1387 | * The last packet was a retransmission, check if this ack | |
1388 | * indicates that the retransmission was spurious. | |
1389 | * | |
1390 | * If the connection supports timestamps, we could use it to | |
1391 | * detect if the last retransmit was not needed. Otherwise, | |
1392 | * we check if the ACK arrived within RTT/2 window, then it | |
1393 | * was a mistake to do the retransmit in the first place. | |
1394 | * | |
1395 | * This function will return 1 if it is a spurious retransmit, | |
1396 | * 0 otherwise. | |
1397 | */ | |
1398 | int | |
1399 | tcp_detect_bad_rexmt(struct tcpcb *tp, struct tcphdr *th, | |
1400 | struct tcpopt *to, u_int32_t rxtime) | |
1401 | { | |
1402 | int32_t tdiff, bad_rexmt_win; | |
1403 | bad_rexmt_win = (tp->t_srtt >> (TCP_RTT_SHIFT + 1)); | |
1404 | ||
1405 | /* If the ack has ECN CE bit, then cwnd has to be adjusted */ | |
1406 | if (TCP_ECN_ENABLED(tp) && (th->th_flags & TH_ECE)) | |
1407 | return (0); | |
1408 | if (TSTMP_SUPPORTED(tp)) { | |
1409 | if (rxtime > 0 && (to->to_flags & TOF_TS) | |
1410 | && to->to_tsecr != 0 | |
1411 | && TSTMP_LT(to->to_tsecr, rxtime)) | |
1412 | return (1); | |
1413 | } else { | |
1414 | if ((tp->t_rxtshift == 1 | |
1415 | || (tp->t_flagsext & TF_SENT_TLPROBE)) | |
1416 | && rxtime > 0) { | |
1417 | tdiff = (int32_t)(tcp_now - rxtime); | |
1418 | if (tdiff < bad_rexmt_win) | |
1419 | return(1); | |
1420 | } | |
1421 | } | |
1422 | return(0); | |
1423 | } | |
1424 | ||
1425 | ||
1426 | /* | |
1427 | * Restore congestion window state if a spurious timeout | |
1428 | * was detected. | |
1429 | */ | |
1430 | static void | |
1431 | tcp_bad_rexmt_restore_state(struct tcpcb *tp, struct tcphdr *th) | |
1432 | { | |
1433 | if (TSTMP_SUPPORTED(tp)) { | |
1434 | u_int32_t fsize, acked; | |
1435 | fsize = tp->snd_max - th->th_ack; | |
1436 | acked = BYTES_ACKED(th, tp); | |
1437 | ||
1438 | /* | |
1439 | * Implement bad retransmit recovery as | |
1440 | * described in RFC 4015. | |
1441 | */ | |
1442 | tp->snd_ssthresh = tp->snd_ssthresh_prev; | |
1443 | ||
1444 | /* Initialize cwnd to the initial window */ | |
1445 | if (CC_ALGO(tp)->cwnd_init != NULL) | |
1446 | CC_ALGO(tp)->cwnd_init(tp); | |
1447 | ||
1448 | tp->snd_cwnd = fsize + min(acked, tp->snd_cwnd); | |
1449 | ||
1450 | } else { | |
1451 | tp->snd_cwnd = tp->snd_cwnd_prev; | |
1452 | tp->snd_ssthresh = tp->snd_ssthresh_prev; | |
1453 | if (tp->t_flags & TF_WASFRECOVERY) | |
1454 | ENTER_FASTRECOVERY(tp); | |
1455 | ||
1456 | /* Do not use the loss flight size in this case */ | |
1457 | tp->t_lossflightsize = 0; | |
1458 | } | |
1459 | tp->snd_cwnd = max(tp->snd_cwnd, TCP_CC_CWND_INIT_BYTES); | |
1460 | tp->snd_recover = tp->snd_recover_prev; | |
1461 | tp->snd_nxt = tp->snd_max; | |
1462 | ||
1463 | /* Fix send socket buffer to reflect the change in cwnd */ | |
1464 | tcp_bad_rexmt_fix_sndbuf(tp); | |
1465 | ||
1466 | /* | |
1467 | * This RTT might reflect the extra delay induced | |
1468 | * by the network. Skip using this sample for RTO | |
1469 | * calculation and mark the connection so we can | |
1470 | * recompute RTT when the next eligible sample is | |
1471 | * found. | |
1472 | */ | |
1473 | tp->t_flagsext |= TF_RECOMPUTE_RTT; | |
1474 | tp->t_badrexmt_time = tcp_now; | |
1475 | tp->t_rtttime = 0; | |
1476 | } | |
1477 | ||
1478 | /* | |
1479 | * If the previous packet was sent in retransmission timer, and it was | |
1480 | * not needed, then restore the congestion window to the state before that | |
1481 | * transmission. | |
1482 | * | |
1483 | * If the last packet was sent in tail loss probe timeout, check if that | |
1484 | * recovered the last packet. If so, that will indicate a real loss and | |
1485 | * the congestion window needs to be lowered. | |
1486 | */ | |
1487 | static void | |
1488 | tcp_bad_rexmt_check(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to) | |
1489 | { | |
1490 | if (tp->t_rxtshift > 0 && | |
1491 | tcp_detect_bad_rexmt(tp, th, to, tp->t_rxtstart)) { | |
1492 | ++tcpstat.tcps_sndrexmitbad; | |
1493 | tcp_bad_rexmt_restore_state(tp, th); | |
1494 | tcp_ccdbg_trace(tp, th, TCP_CC_BAD_REXMT_RECOVERY); | |
1495 | } else if ((tp->t_flagsext & TF_SENT_TLPROBE) | |
1496 | && tp->t_tlphighrxt > 0 | |
1497 | && SEQ_GEQ(th->th_ack, tp->t_tlphighrxt) | |
1498 | && !tcp_detect_bad_rexmt(tp, th, to, tp->t_tlpstart)) { | |
1499 | /* | |
1500 | * check DSACK information also to make sure that | |
1501 | * the TLP was indeed needed | |
1502 | */ | |
1503 | if (tcp_rxtseg_dsack_for_tlp(tp)) { | |
1504 | /* | |
1505 | * received a DSACK to indicate that TLP was | |
1506 | * not needed | |
1507 | */ | |
1508 | tcp_rxtseg_clean(tp); | |
1509 | goto out; | |
1510 | } | |
1511 | ||
1512 | /* | |
1513 | * The tail loss probe recovered the last packet and | |
1514 | * we need to adjust the congestion window to take | |
1515 | * this loss into account. | |
1516 | */ | |
1517 | ++tcpstat.tcps_tlp_recoverlastpkt; | |
1518 | if (!IN_FASTRECOVERY(tp)) { | |
1519 | tcp_reduce_congestion_window(tp); | |
1520 | EXIT_FASTRECOVERY(tp); | |
1521 | } | |
1522 | tcp_ccdbg_trace(tp, th, TCP_CC_TLP_RECOVER_LASTPACKET); | |
1523 | } else if (tcp_rxtseg_detect_bad_rexmt(tp, th->th_ack)) { | |
1524 | /* | |
1525 | * All of the retransmitted segments were duplicated, this | |
1526 | * can be an indication of bad fast retransmit. | |
1527 | */ | |
1528 | tcpstat.tcps_dsack_badrexmt++; | |
1529 | tcp_bad_rexmt_restore_state(tp, th); | |
1530 | tcp_ccdbg_trace(tp, th, TCP_CC_DSACK_BAD_REXMT); | |
1531 | tcp_rxtseg_clean(tp); | |
1532 | } | |
1533 | out: | |
1534 | tp->t_flagsext &= ~(TF_SENT_TLPROBE); | |
1535 | tp->t_tlphighrxt = 0; | |
1536 | tp->t_tlpstart = 0; | |
1537 | ||
1538 | /* | |
1539 | * check if the latest ack was for a segment sent during PMTU | |
1540 | * blackhole detection. If the timestamp on the ack is before | |
1541 | * PMTU blackhole detection, then revert the size of the max | |
1542 | * segment to previous size. | |
1543 | */ | |
1544 | if (tp->t_rxtshift > 0 && (tp->t_flags & TF_BLACKHOLE) && | |
1545 | tp->t_pmtud_start_ts > 0 && TSTMP_SUPPORTED(tp)) { | |
1546 | if ((to->to_flags & TOF_TS) && to->to_tsecr != 0 | |
1547 | && TSTMP_LT(to->to_tsecr, tp->t_pmtud_start_ts)) { | |
1548 | tcp_pmtud_revert_segment_size(tp); | |
1549 | } | |
1550 | } | |
1551 | if (tp->t_pmtud_start_ts > 0) | |
1552 | tp->t_pmtud_start_ts = 0; | |
1553 | } | |
1554 | ||
1555 | /* | |
1556 | * Check if early retransmit can be attempted according to RFC 5827. | |
1557 | * | |
1558 | * If packet reordering is detected on a connection, fast recovery will | |
1559 | * be delayed until it is clear that the packet was lost and not reordered. | |
1560 | * But reordering detection is done only when SACK is enabled. | |
1561 | * | |
1562 | * On connections that do not support SACK, there is a limit on the number | |
1563 | * of early retransmits that can be done per minute. This limit is needed | |
1564 | * to make sure that too many packets are not retransmitted when there is | |
1565 | * packet reordering. | |
1566 | */ | |
1567 | static void | |
1568 | tcp_early_rexmt_check (struct tcpcb *tp, struct tcphdr *th) | |
1569 | { | |
1570 | u_int32_t obytes, snd_off; | |
1571 | int32_t snd_len; | |
1572 | struct socket *so = tp->t_inpcb->inp_socket; | |
1573 | ||
1574 | if (early_rexmt && (SACK_ENABLED(tp) || | |
1575 | tp->t_early_rexmt_count < TCP_EARLY_REXMT_LIMIT) && | |
1576 | SEQ_GT(tp->snd_max, tp->snd_una) && | |
1577 | (tp->t_dupacks == 1 || | |
1578 | (SACK_ENABLED(tp) && | |
1579 | !TAILQ_EMPTY(&tp->snd_holes)))) { | |
1580 | /* | |
1581 | * If there are only a few outstanding | |
1582 | * segments on the connection, we might need | |
1583 | * to lower the retransmit threshold. This | |
1584 | * will allow us to do Early Retransmit as | |
1585 | * described in RFC 5827. | |
1586 | */ | |
1587 | if (SACK_ENABLED(tp) && | |
1588 | !TAILQ_EMPTY(&tp->snd_holes)) { | |
1589 | obytes = (tp->snd_max - tp->snd_fack) + | |
1590 | tp->sackhint.sack_bytes_rexmit; | |
1591 | } else { | |
1592 | obytes = (tp->snd_max - tp->snd_una); | |
1593 | } | |
1594 | ||
1595 | /* | |
1596 | * In order to lower retransmit threshold the | |
1597 | * following two conditions must be met. | |
1598 | * 1. the amount of outstanding data is less | |
1599 | * than 4*SMSS bytes | |
1600 | * 2. there is no unsent data ready for | |
1601 | * transmission or the advertised window | |
1602 | * will limit sending new segments. | |
1603 | */ | |
1604 | snd_off = tp->snd_max - tp->snd_una; | |
1605 | snd_len = min(so->so_snd.sb_cc, tp->snd_wnd) - snd_off; | |
1606 | if (obytes < (tp->t_maxseg << 2) && | |
1607 | snd_len <= 0) { | |
1608 | u_int32_t osegs; | |
1609 | ||
1610 | osegs = obytes / tp->t_maxseg; | |
1611 | if ((osegs * tp->t_maxseg) < obytes) | |
1612 | osegs++; | |
1613 | ||
1614 | /* | |
1615 | * Since the connection might have already | |
1616 | * received some dupacks, we add them to | |
1617 | * to the outstanding segments count to get | |
1618 | * the correct retransmit threshold. | |
1619 | * | |
1620 | * By checking for early retransmit after | |
1621 | * receiving some duplicate acks when SACK | |
1622 | * is supported, the connection will | |
1623 | * enter fast recovery even if multiple | |
1624 | * segments are lost in the same window. | |
1625 | */ | |
1626 | osegs += tp->t_dupacks; | |
1627 | if (osegs < 4) { | |
1628 | tp->t_rexmtthresh = | |
1629 | ((osegs - 1) > 1) ? (osegs - 1) : 1; | |
1630 | tp->t_rexmtthresh = | |
1631 | min(tp->t_rexmtthresh, tcprexmtthresh); | |
1632 | tp->t_rexmtthresh = | |
1633 | max(tp->t_rexmtthresh, tp->t_dupacks); | |
1634 | ||
1635 | if (tp->t_early_rexmt_count == 0) | |
1636 | tp->t_early_rexmt_win = tcp_now; | |
1637 | ||
1638 | if (tp->t_flagsext & TF_SENT_TLPROBE) { | |
1639 | tcpstat.tcps_tlp_recovery++; | |
1640 | tcp_ccdbg_trace(tp, th, | |
1641 | TCP_CC_TLP_RECOVERY); | |
1642 | } else { | |
1643 | tcpstat.tcps_early_rexmt++; | |
1644 | tp->t_early_rexmt_count++; | |
1645 | tcp_ccdbg_trace(tp, th, | |
1646 | TCP_CC_EARLY_RETRANSMIT); | |
1647 | } | |
1648 | } | |
1649 | } | |
1650 | } | |
1651 | ||
1652 | /* | |
1653 | * If we ever sent a TLP probe, the acknowledgement will trigger | |
1654 | * early retransmit because the value of snd_fack will be close | |
1655 | * to snd_max. This will take care of adjustments to the | |
1656 | * congestion window. So we can reset TF_SENT_PROBE flag. | |
1657 | */ | |
1658 | tp->t_flagsext &= ~(TF_SENT_TLPROBE); | |
1659 | tp->t_tlphighrxt = 0; | |
1660 | tp->t_tlpstart = 0; | |
1661 | } | |
1662 | ||
1663 | static boolean_t | |
1664 | tcp_tfo_syn(struct tcpcb *tp, struct tcpopt *to) | |
1665 | { | |
1666 | u_char out[CCAES_BLOCK_SIZE]; | |
1667 | unsigned char len; | |
1668 | ||
1669 | if (!(to->to_flags & (TOF_TFO | TOF_TFOREQ)) || | |
1670 | !(tcp_fastopen & TCP_FASTOPEN_SERVER)) | |
1671 | return (FALSE); | |
1672 | ||
1673 | if ((to->to_flags & TOF_TFOREQ)) { | |
1674 | tp->t_tfo_flags |= TFO_F_OFFER_COOKIE; | |
1675 | ||
1676 | tp->t_tfo_stats |= TFO_S_COOKIEREQ_RECV; | |
1677 | tcpstat.tcps_tfo_cookie_req_rcv++; | |
1678 | return (FALSE); | |
1679 | } | |
1680 | ||
1681 | /* Ok, then it must be an offered cookie. We need to check that ... */ | |
1682 | tcp_tfo_gen_cookie(tp->t_inpcb, out, sizeof(out)); | |
1683 | ||
1684 | len = *to->to_tfo - TCPOLEN_FASTOPEN_REQ; | |
1685 | to->to_tfo++; | |
1686 | if (memcmp(out, to->to_tfo, len)) { | |
1687 | /* Cookies are different! Let's return and offer a new cookie */ | |
1688 | tp->t_tfo_flags |= TFO_F_OFFER_COOKIE; | |
1689 | ||
1690 | tp->t_tfo_stats |= TFO_S_COOKIE_INVALID; | |
1691 | tcpstat.tcps_tfo_cookie_invalid++; | |
1692 | return (FALSE); | |
1693 | } | |
1694 | ||
1695 | if (OSIncrementAtomic(&tcp_tfo_halfcnt) >= tcp_tfo_backlog) { | |
1696 | /* Need to decrement again as we just increased it... */ | |
1697 | OSDecrementAtomic(&tcp_tfo_halfcnt); | |
1698 | return (FALSE); | |
1699 | } | |
1700 | ||
1701 | tp->t_tfo_flags |= TFO_F_COOKIE_VALID; | |
1702 | ||
1703 | tp->t_tfo_stats |= TFO_S_SYNDATA_RCV; | |
1704 | tcpstat.tcps_tfo_syn_data_rcv++; | |
1705 | ||
1706 | return (TRUE); | |
1707 | } | |
1708 | ||
1709 | static void | |
1710 | tcp_tfo_synack(struct tcpcb *tp, struct tcpopt *to) | |
1711 | { | |
1712 | if (to->to_flags & TOF_TFO) { | |
1713 | unsigned char len = *to->to_tfo - TCPOLEN_FASTOPEN_REQ; | |
1714 | ||
1715 | /* | |
1716 | * If this happens, things have gone terribly wrong. len should | |
1717 | * have been checked in tcp_dooptions. | |
1718 | */ | |
1719 | VERIFY(len <= TFO_COOKIE_LEN_MAX); | |
1720 | ||
1721 | to->to_tfo++; | |
1722 | ||
1723 | tcp_cache_set_cookie(tp, to->to_tfo, len); | |
1724 | tcp_heuristic_tfo_success(tp); | |
1725 | ||
1726 | tp->t_tfo_stats |= TFO_S_COOKIE_RCV; | |
1727 | tcpstat.tcps_tfo_cookie_rcv++; | |
1728 | if (tp->t_tfo_flags & TFO_F_COOKIE_SENT) { | |
1729 | tcpstat.tcps_tfo_cookie_wrong++; | |
1730 | tp->t_tfo_stats |= TFO_S_COOKIE_WRONG; | |
1731 | } | |
1732 | } else { | |
1733 | /* | |
1734 | * Thus, no cookie in the response, but we either asked for one | |
1735 | * or sent SYN+DATA. Now, we need to check whether we had to | |
1736 | * rexmit the SYN. If that's the case, it's better to start | |
1737 | * backing of TFO-cookie requests. | |
1738 | */ | |
1739 | if (tp->t_tfo_flags & TFO_F_SYN_LOSS) { | |
1740 | tp->t_tfo_stats |= TFO_S_SYN_LOSS; | |
1741 | tcpstat.tcps_tfo_syn_loss++; | |
1742 | ||
1743 | tcp_heuristic_tfo_loss(tp); | |
1744 | } else { | |
1745 | if (tp->t_tfo_flags & TFO_F_COOKIE_REQ) { | |
1746 | tp->t_tfo_stats |= TFO_S_NO_COOKIE_RCV; | |
1747 | tcpstat.tcps_tfo_no_cookie_rcv++; | |
1748 | } | |
1749 | ||
1750 | tcp_heuristic_tfo_success(tp); | |
1751 | } | |
1752 | } | |
1753 | } | |
1754 | ||
1755 | static void | |
1756 | tcp_tfo_rcv_probe(struct tcpcb *tp, int tlen) | |
1757 | { | |
1758 | if (tlen != 0) | |
1759 | return; | |
1760 | ||
1761 | tp->t_tfo_probe_state = TFO_PROBE_PROBING; | |
1762 | ||
1763 | /* | |
1764 | * We send the probe out rather quickly (after one RTO). It does not | |
1765 | * really hurt that much, it's only one additional segment on the wire. | |
1766 | */ | |
1767 | tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp, (TCP_REXMTVAL(tp))); | |
1768 | } | |
1769 | ||
1770 | static void | |
1771 | tcp_tfo_rcv_data(struct tcpcb *tp) | |
1772 | { | |
1773 | /* Transition from PROBING to NONE as data has been received */ | |
1774 | if (tp->t_tfo_probe_state >= TFO_PROBE_PROBING) | |
1775 | tp->t_tfo_probe_state = TFO_PROBE_NONE; | |
1776 | } | |
1777 | ||
1778 | static void | |
1779 | tcp_tfo_rcv_ack(struct tcpcb *tp, struct tcphdr *th) | |
1780 | { | |
1781 | if (tp->t_tfo_probe_state == TFO_PROBE_PROBING && | |
1782 | tp->t_tfo_probes > 0) { | |
1783 | if (th->th_seq == tp->rcv_nxt) { | |
1784 | /* No hole, so stop probing */ | |
1785 | tp->t_tfo_probe_state = TFO_PROBE_NONE; | |
1786 | } else if (SEQ_GT(th->th_seq, tp->rcv_nxt)) { | |
1787 | /* There is a hole! Wait a bit for data... */ | |
1788 | tp->t_tfo_probe_state = TFO_PROBE_WAIT_DATA; | |
1789 | tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp, | |
1790 | TCP_REXMTVAL(tp)); | |
1791 | } | |
1792 | } | |
1793 | } | |
1794 | ||
1795 | /* | |
1796 | * Update snd_wnd information. | |
1797 | */ | |
1798 | static inline bool | |
1799 | tcp_update_window(struct tcpcb *tp, int thflags, struct tcphdr * th, | |
1800 | u_int32_t tiwin, int tlen) | |
1801 | { | |
1802 | /* Don't look at the window if there is no ACK flag */ | |
1803 | if ((thflags & TH_ACK) && | |
1804 | (SEQ_LT(tp->snd_wl1, th->th_seq) || | |
1805 | (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) || | |
1806 | (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) { | |
1807 | /* keep track of pure window updates */ | |
1808 | if (tlen == 0 && | |
1809 | tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd) | |
1810 | tcpstat.tcps_rcvwinupd++; | |
1811 | tp->snd_wnd = tiwin; | |
1812 | tp->snd_wl1 = th->th_seq; | |
1813 | tp->snd_wl2 = th->th_ack; | |
1814 | if (tp->snd_wnd > tp->max_sndwnd) | |
1815 | tp->max_sndwnd = tp->snd_wnd; | |
1816 | ||
1817 | if (tp->t_inpcb->inp_socket->so_flags & SOF_MP_SUBFLOW) | |
1818 | mptcp_update_window_fallback(tp); | |
1819 | return (true); | |
1820 | } | |
1821 | return (false); | |
1822 | } | |
1823 | ||
1824 | void | |
1825 | tcp_input(struct mbuf *m, int off0) | |
1826 | { | |
1827 | struct tcphdr *th; | |
1828 | struct ip *ip = NULL; | |
1829 | struct inpcb *inp; | |
1830 | u_char *optp = NULL; | |
1831 | int optlen = 0; | |
1832 | int tlen, off; | |
1833 | int drop_hdrlen; | |
1834 | struct tcpcb *tp = 0; | |
1835 | int thflags; | |
1836 | struct socket *so = 0; | |
1837 | int todrop, acked, ourfinisacked, needoutput = 0; | |
1838 | struct in_addr laddr; | |
1839 | #if INET6 | |
1840 | struct in6_addr laddr6; | |
1841 | #endif | |
1842 | int dropsocket = 0; | |
1843 | int iss = 0, nosock = 0; | |
1844 | u_int32_t tiwin, sack_bytes_acked = 0; | |
1845 | struct tcpopt to; /* options in this segment */ | |
1846 | #if TCPDEBUG | |
1847 | short ostate = 0; | |
1848 | #endif | |
1849 | #if IPFIREWALL | |
1850 | struct sockaddr_in *next_hop = NULL; | |
1851 | struct m_tag *fwd_tag; | |
1852 | #endif /* IPFIREWALL */ | |
1853 | u_char ip_ecn = IPTOS_ECN_NOTECT; | |
1854 | unsigned int ifscope; | |
1855 | uint8_t isconnected, isdisconnected; | |
1856 | struct ifnet *ifp = m->m_pkthdr.rcvif; | |
1857 | int pktf_sw_lro_pkt = (m->m_pkthdr.pkt_flags & PKTF_SW_LRO_PKT) ? 1 : 0; | |
1858 | int nlropkts = (pktf_sw_lro_pkt == 1) ? m->m_pkthdr.lro_npkts : 1; | |
1859 | int turnoff_lro = 0, win; | |
1860 | #if MPTCP | |
1861 | struct mptcb *mp_tp = NULL; | |
1862 | #endif /* MPTCP */ | |
1863 | boolean_t cell = IFNET_IS_CELLULAR(ifp); | |
1864 | boolean_t wifi = (!cell && IFNET_IS_WIFI(ifp)); | |
1865 | boolean_t wired = (!wifi && IFNET_IS_WIRED(ifp)); | |
1866 | boolean_t recvd_dsack = FALSE; | |
1867 | struct tcp_respond_args tra; | |
1868 | ||
1869 | #define TCP_INC_VAR(stat, npkts) do { \ | |
1870 | stat += npkts; \ | |
1871 | } while (0) | |
1872 | ||
1873 | TCP_INC_VAR(tcpstat.tcps_rcvtotal, nlropkts); | |
1874 | #if IPFIREWALL | |
1875 | /* Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. */ | |
1876 | if (!SLIST_EMPTY(&m->m_pkthdr.tags)) { | |
1877 | fwd_tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID, | |
1878 | KERNEL_TAG_TYPE_IPFORWARD, NULL); | |
1879 | } else { | |
1880 | fwd_tag = NULL; | |
1881 | } | |
1882 | if (fwd_tag != NULL) { | |
1883 | struct ip_fwd_tag *ipfwd_tag = | |
1884 | (struct ip_fwd_tag *)(fwd_tag+1); | |
1885 | ||
1886 | next_hop = ipfwd_tag->next_hop; | |
1887 | m_tag_delete(m, fwd_tag); | |
1888 | } | |
1889 | #endif /* IPFIREWALL */ | |
1890 | ||
1891 | #if INET6 | |
1892 | struct ip6_hdr *ip6 = NULL; | |
1893 | int isipv6; | |
1894 | #endif /* INET6 */ | |
1895 | int rstreason; /* For badport_bandlim accounting purposes */ | |
1896 | struct proc *proc0=current_proc(); | |
1897 | ||
1898 | KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_START,0,0,0,0,0); | |
1899 | ||
1900 | #if INET6 | |
1901 | isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0; | |
1902 | #endif | |
1903 | bzero((char *)&to, sizeof(to)); | |
1904 | ||
1905 | #if INET6 | |
1906 | if (isipv6) { | |
1907 | /* | |
1908 | * Expect 32-bit aligned data pointer on | |
1909 | * strict-align platforms | |
1910 | */ | |
1911 | MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m); | |
1912 | ||
1913 | /* IP6_EXTHDR_CHECK() is already done at tcp6_input() */ | |
1914 | ip6 = mtod(m, struct ip6_hdr *); | |
1915 | tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0; | |
1916 | th = (struct tcphdr *)(void *)((caddr_t)ip6 + off0); | |
1917 | ||
1918 | if (tcp_input_checksum(AF_INET6, m, th, off0, tlen)) | |
1919 | goto dropnosock; | |
1920 | ||
1921 | KERNEL_DEBUG(DBG_LAYER_BEG, ((th->th_dport << 16) | th->th_sport), | |
1922 | (((ip6->ip6_src.s6_addr16[0]) << 16) | (ip6->ip6_dst.s6_addr16[0])), | |
1923 | th->th_seq, th->th_ack, th->th_win); | |
1924 | /* | |
1925 | * Be proactive about unspecified IPv6 address in source. | |
1926 | * As we use all-zero to indicate unbounded/unconnected pcb, | |
1927 | * unspecified IPv6 address can be used to confuse us. | |
1928 | * | |
1929 | * Note that packets with unspecified IPv6 destination is | |
1930 | * already dropped in ip6_input. | |
1931 | */ | |
1932 | if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) { | |
1933 | /* XXX stat */ | |
1934 | IF_TCP_STATINC(ifp, unspecv6); | |
1935 | goto dropnosock; | |
1936 | } | |
1937 | DTRACE_TCP5(receive, struct mbuf *, m, struct inpcb *, NULL, | |
1938 | struct ip6_hdr *, ip6, struct tcpcb *, NULL, | |
1939 | struct tcphdr *, th); | |
1940 | ||
1941 | ip_ecn = (ntohl(ip6->ip6_flow) >> 20) & IPTOS_ECN_MASK; | |
1942 | } else | |
1943 | #endif /* INET6 */ | |
1944 | { | |
1945 | /* | |
1946 | * Get IP and TCP header together in first mbuf. | |
1947 | * Note: IP leaves IP header in first mbuf. | |
1948 | */ | |
1949 | if (off0 > sizeof (struct ip)) { | |
1950 | ip_stripoptions(m); | |
1951 | off0 = sizeof(struct ip); | |
1952 | } | |
1953 | if (m->m_len < sizeof (struct tcpiphdr)) { | |
1954 | if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) { | |
1955 | tcpstat.tcps_rcvshort++; | |
1956 | return; | |
1957 | } | |
1958 | } | |
1959 | ||
1960 | /* Expect 32-bit aligned data pointer on strict-align platforms */ | |
1961 | MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m); | |
1962 | ||
1963 | ip = mtod(m, struct ip *); | |
1964 | th = (struct tcphdr *)(void *)((caddr_t)ip + off0); | |
1965 | tlen = ip->ip_len; | |
1966 | ||
1967 | if (tcp_input_checksum(AF_INET, m, th, off0, tlen)) | |
1968 | goto dropnosock; | |
1969 | ||
1970 | #if INET6 | |
1971 | /* Re-initialization for later version check */ | |
1972 | ip->ip_v = IPVERSION; | |
1973 | #endif | |
1974 | ip_ecn = (ip->ip_tos & IPTOS_ECN_MASK); | |
1975 | ||
1976 | DTRACE_TCP5(receive, struct mbuf *, m, struct inpcb *, NULL, | |
1977 | struct ip *, ip, struct tcpcb *, NULL, struct tcphdr *, th); | |
1978 | ||
1979 | KERNEL_DEBUG(DBG_LAYER_BEG, ((th->th_dport << 16) | th->th_sport), | |
1980 | (((ip->ip_src.s_addr & 0xffff) << 16) | (ip->ip_dst.s_addr & 0xffff)), | |
1981 | th->th_seq, th->th_ack, th->th_win); | |
1982 | ||
1983 | } | |
1984 | ||
1985 | /* | |
1986 | * Check that TCP offset makes sense, | |
1987 | * pull out TCP options and adjust length. | |
1988 | */ | |
1989 | off = th->th_off << 2; | |
1990 | if (off < sizeof (struct tcphdr) || off > tlen) { | |
1991 | tcpstat.tcps_rcvbadoff++; | |
1992 | IF_TCP_STATINC(ifp, badformat); | |
1993 | goto dropnosock; | |
1994 | } | |
1995 | tlen -= off; /* tlen is used instead of ti->ti_len */ | |
1996 | if (off > sizeof (struct tcphdr)) { | |
1997 | #if INET6 | |
1998 | if (isipv6) { | |
1999 | IP6_EXTHDR_CHECK(m, off0, off, return); | |
2000 | ip6 = mtod(m, struct ip6_hdr *); | |
2001 | th = (struct tcphdr *)(void *)((caddr_t)ip6 + off0); | |
2002 | } else | |
2003 | #endif /* INET6 */ | |
2004 | { | |
2005 | if (m->m_len < sizeof(struct ip) + off) { | |
2006 | if ((m = m_pullup(m, sizeof (struct ip) + off)) == 0) { | |
2007 | tcpstat.tcps_rcvshort++; | |
2008 | return; | |
2009 | } | |
2010 | ip = mtod(m, struct ip *); | |
2011 | th = (struct tcphdr *)(void *)((caddr_t)ip + off0); | |
2012 | } | |
2013 | } | |
2014 | optlen = off - sizeof (struct tcphdr); | |
2015 | optp = (u_char *)(th + 1); | |
2016 | /* | |
2017 | * Do quick retrieval of timestamp options ("options | |
2018 | * prediction?"). If timestamp is the only option and it's | |
2019 | * formatted as recommended in RFC 1323 appendix A, we | |
2020 | * quickly get the values now and not bother calling | |
2021 | * tcp_dooptions(), etc. | |
2022 | */ | |
2023 | if ((optlen == TCPOLEN_TSTAMP_APPA || | |
2024 | (optlen > TCPOLEN_TSTAMP_APPA && | |
2025 | optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) && | |
2026 | *(u_int32_t *)(void *)optp == htonl(TCPOPT_TSTAMP_HDR) && | |
2027 | (th->th_flags & TH_SYN) == 0) { | |
2028 | to.to_flags |= TOF_TS; | |
2029 | to.to_tsval = ntohl(*(u_int32_t *)(void *)(optp + 4)); | |
2030 | to.to_tsecr = ntohl(*(u_int32_t *)(void *)(optp + 8)); | |
2031 | optp = NULL; /* we've parsed the options */ | |
2032 | } | |
2033 | } | |
2034 | thflags = th->th_flags; | |
2035 | ||
2036 | #if TCP_DROP_SYNFIN | |
2037 | /* | |
2038 | * If the drop_synfin option is enabled, drop all packets with | |
2039 | * both the SYN and FIN bits set. This prevents e.g. nmap from | |
2040 | * identifying the TCP/IP stack. | |
2041 | * | |
2042 | * This is a violation of the TCP specification. | |
2043 | */ | |
2044 | if (drop_synfin && (thflags & (TH_SYN|TH_FIN)) == (TH_SYN|TH_FIN)) { | |
2045 | IF_TCP_STATINC(ifp, synfin); | |
2046 | goto dropnosock; | |
2047 | } | |
2048 | #endif | |
2049 | ||
2050 | /* | |
2051 | * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options, | |
2052 | * until after ip6_savecontrol() is called and before other functions | |
2053 | * which don't want those proto headers. | |
2054 | * Because ip6_savecontrol() is going to parse the mbuf to | |
2055 | * search for data to be passed up to user-land, it wants mbuf | |
2056 | * parameters to be unchanged. | |
2057 | */ | |
2058 | drop_hdrlen = off0 + off; | |
2059 | ||
2060 | /* Since this is an entry point for input processing of tcp packets, we | |
2061 | * can update the tcp clock here. | |
2062 | */ | |
2063 | calculate_tcp_clock(); | |
2064 | ||
2065 | /* | |
2066 | * Record the interface where this segment arrived on; this does not | |
2067 | * affect normal data output (for non-detached TCP) as it provides a | |
2068 | * hint about which route and interface to use for sending in the | |
2069 | * absence of a PCB, when scoped routing (and thus source interface | |
2070 | * selection) are enabled. | |
2071 | */ | |
2072 | if ((m->m_pkthdr.pkt_flags & PKTF_LOOP) || m->m_pkthdr.rcvif == NULL) | |
2073 | ifscope = IFSCOPE_NONE; | |
2074 | else | |
2075 | ifscope = m->m_pkthdr.rcvif->if_index; | |
2076 | ||
2077 | /* | |
2078 | * Convert TCP protocol specific fields to host format. | |
2079 | */ | |
2080 | ||
2081 | #if BYTE_ORDER != BIG_ENDIAN | |
2082 | NTOHL(th->th_seq); | |
2083 | NTOHL(th->th_ack); | |
2084 | NTOHS(th->th_win); | |
2085 | NTOHS(th->th_urp); | |
2086 | #endif | |
2087 | ||
2088 | /* | |
2089 | * Locate pcb for segment. | |
2090 | */ | |
2091 | findpcb: | |
2092 | ||
2093 | isconnected = FALSE; | |
2094 | isdisconnected = FALSE; | |
2095 | ||
2096 | #if IPFIREWALL_FORWARD | |
2097 | if (next_hop != NULL | |
2098 | #if INET6 | |
2099 | && isipv6 == 0 /* IPv6 support is not yet */ | |
2100 | #endif /* INET6 */ | |
2101 | ) { | |
2102 | /* | |
2103 | * Diverted. Pretend to be the destination. | |
2104 | * already got one like this? | |
2105 | */ | |
2106 | inp = in_pcblookup_hash(&tcbinfo, ip->ip_src, th->th_sport, | |
2107 | ip->ip_dst, th->th_dport, 0, m->m_pkthdr.rcvif); | |
2108 | if (!inp) { | |
2109 | /* | |
2110 | * No, then it's new. Try find the ambushing socket | |
2111 | */ | |
2112 | if (!next_hop->sin_port) { | |
2113 | inp = in_pcblookup_hash(&tcbinfo, ip->ip_src, | |
2114 | th->th_sport, next_hop->sin_addr, | |
2115 | th->th_dport, 1, m->m_pkthdr.rcvif); | |
2116 | } else { | |
2117 | inp = in_pcblookup_hash(&tcbinfo, | |
2118 | ip->ip_src, th->th_sport, | |
2119 | next_hop->sin_addr, | |
2120 | ntohs(next_hop->sin_port), 1, | |
2121 | m->m_pkthdr.rcvif); | |
2122 | } | |
2123 | } | |
2124 | } else | |
2125 | #endif /* IPFIREWALL_FORWARD */ | |
2126 | { | |
2127 | #if INET6 | |
2128 | if (isipv6) | |
2129 | inp = in6_pcblookup_hash(&tcbinfo, &ip6->ip6_src, th->th_sport, | |
2130 | &ip6->ip6_dst, th->th_dport, 1, | |
2131 | m->m_pkthdr.rcvif); | |
2132 | else | |
2133 | #endif /* INET6 */ | |
2134 | inp = in_pcblookup_hash(&tcbinfo, ip->ip_src, th->th_sport, | |
2135 | ip->ip_dst, th->th_dport, 1, m->m_pkthdr.rcvif); | |
2136 | } | |
2137 | ||
2138 | /* | |
2139 | * Use the interface scope information from the PCB for outbound | |
2140 | * segments. If the PCB isn't present and if scoped routing is | |
2141 | * enabled, tcp_respond will use the scope of the interface where | |
2142 | * the segment arrived on. | |
2143 | */ | |
2144 | if (inp != NULL && (inp->inp_flags & INP_BOUND_IF)) | |
2145 | ifscope = inp->inp_boundifp->if_index; | |
2146 | ||
2147 | /* | |
2148 | * If the state is CLOSED (i.e., TCB does not exist) then | |
2149 | * all data in the incoming segment is discarded. | |
2150 | * If the TCB exists but is in CLOSED state, it is embryonic, | |
2151 | * but should either do a listen or a connect soon. | |
2152 | */ | |
2153 | if (inp == NULL) { | |
2154 | if (log_in_vain) { | |
2155 | #if INET6 | |
2156 | char dbuf[MAX_IPv6_STR_LEN], sbuf[MAX_IPv6_STR_LEN]; | |
2157 | #else /* INET6 */ | |
2158 | char dbuf[MAX_IPv4_STR_LEN], sbuf[MAX_IPv4_STR_LEN]; | |
2159 | #endif /* INET6 */ | |
2160 | ||
2161 | #if INET6 | |
2162 | if (isipv6) { | |
2163 | inet_ntop(AF_INET6, &ip6->ip6_dst, dbuf, sizeof(dbuf)); | |
2164 | inet_ntop(AF_INET6, &ip6->ip6_src, sbuf, sizeof(sbuf)); | |
2165 | } else | |
2166 | #endif | |
2167 | { | |
2168 | inet_ntop(AF_INET, &ip->ip_dst, dbuf, sizeof(dbuf)); | |
2169 | inet_ntop(AF_INET, &ip->ip_src, sbuf, sizeof(sbuf)); | |
2170 | } | |
2171 | switch (log_in_vain) { | |
2172 | case 1: | |
2173 | if(thflags & TH_SYN) | |
2174 | log(LOG_INFO, | |
2175 | "Connection attempt to TCP %s:%d from %s:%d\n", | |
2176 | dbuf, ntohs(th->th_dport), | |
2177 | sbuf, | |
2178 | ntohs(th->th_sport)); | |
2179 | break; | |
2180 | case 2: | |
2181 | log(LOG_INFO, | |
2182 | "Connection attempt to TCP %s:%d from %s:%d flags:0x%x\n", | |
2183 | dbuf, ntohs(th->th_dport), sbuf, | |
2184 | ntohs(th->th_sport), thflags); | |
2185 | break; | |
2186 | case 3: | |
2187 | case 4: | |
2188 | if ((thflags & TH_SYN) && !(thflags & TH_ACK) && | |
2189 | !(m->m_flags & (M_BCAST | M_MCAST)) && | |
2190 | #if INET6 | |
2191 | ((isipv6 && !IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) || | |
2192 | (!isipv6 && ip->ip_dst.s_addr != ip->ip_src.s_addr)) | |
2193 | #else | |
2194 | ip->ip_dst.s_addr != ip->ip_src.s_addr | |
2195 | #endif | |
2196 | ) | |
2197 | log_in_vain_log((LOG_INFO, | |
2198 | "Stealth Mode connection attempt to TCP %s:%d from %s:%d\n", | |
2199 | dbuf, ntohs(th->th_dport), | |
2200 | sbuf, | |
2201 | ntohs(th->th_sport))); | |
2202 | break; | |
2203 | default: | |
2204 | break; | |
2205 | } | |
2206 | } | |
2207 | if (blackhole) { | |
2208 | if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type != IFT_LOOP) | |
2209 | ||
2210 | switch (blackhole) { | |
2211 | case 1: | |
2212 | if (thflags & TH_SYN) | |
2213 | goto dropnosock; | |
2214 | break; | |
2215 | case 2: | |
2216 | goto dropnosock; | |
2217 | default: | |
2218 | goto dropnosock; | |
2219 | } | |
2220 | } | |
2221 | rstreason = BANDLIM_RST_CLOSEDPORT; | |
2222 | IF_TCP_STATINC(ifp, noconnnolist); | |
2223 | goto dropwithresetnosock; | |
2224 | } | |
2225 | so = inp->inp_socket; | |
2226 | if (so == NULL) { | |
2227 | /* This case shouldn't happen as the socket shouldn't be null | |
2228 | * if inp_state isn't set to INPCB_STATE_DEAD | |
2229 | * But just in case, we pretend we didn't find the socket if we hit this case | |
2230 | * as this isn't cause for a panic (the socket might be leaked however)... | |
2231 | */ | |
2232 | inp = NULL; | |
2233 | #if TEMPDEBUG | |
2234 | printf("tcp_input: no more socket for inp=%x. This shouldn't happen\n", inp); | |
2235 | #endif | |
2236 | goto dropnosock; | |
2237 | } | |
2238 | ||
2239 | socket_lock(so, 1); | |
2240 | if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) { | |
2241 | socket_unlock(so, 1); | |
2242 | inp = NULL; // pretend we didn't find it | |
2243 | goto dropnosock; | |
2244 | } | |
2245 | ||
2246 | #if NECP | |
2247 | if (so->so_state & SS_ISCONNECTED) { | |
2248 | // Connected TCP sockets have a fully-bound local and remote, | |
2249 | // so the policy check doesn't need to override addresses | |
2250 | if (!necp_socket_is_allowed_to_send_recv(inp, NULL, NULL)) { | |
2251 | IF_TCP_STATINC(ifp, badformat); | |
2252 | goto drop; | |
2253 | } | |
2254 | } else { | |
2255 | #if INET6 | |
2256 | if (isipv6) { | |
2257 | if (!necp_socket_is_allowed_to_send_recv_v6(inp, | |
2258 | th->th_dport, th->th_sport, &ip6->ip6_dst, | |
2259 | &ip6->ip6_src, ifp, NULL, NULL)) { | |
2260 | IF_TCP_STATINC(ifp, badformat); | |
2261 | goto drop; | |
2262 | } | |
2263 | } else | |
2264 | #endif | |
2265 | { | |
2266 | if (!necp_socket_is_allowed_to_send_recv_v4(inp, | |
2267 | th->th_dport, th->th_sport, &ip->ip_dst, &ip->ip_src, | |
2268 | ifp, NULL, NULL)) { | |
2269 | IF_TCP_STATINC(ifp, badformat); | |
2270 | goto drop; | |
2271 | } | |
2272 | } | |
2273 | } | |
2274 | #endif /* NECP */ | |
2275 | ||
2276 | tp = intotcpcb(inp); | |
2277 | if (tp == 0) { | |
2278 | rstreason = BANDLIM_RST_CLOSEDPORT; | |
2279 | IF_TCP_STATINC(ifp, noconnlist); | |
2280 | goto dropwithreset; | |
2281 | } | |
2282 | if (tp->t_state == TCPS_CLOSED) | |
2283 | goto drop; | |
2284 | ||
2285 | /* Unscale the window into a 32-bit value. */ | |
2286 | if ((thflags & TH_SYN) == 0) | |
2287 | tiwin = th->th_win << tp->snd_scale; | |
2288 | else | |
2289 | tiwin = th->th_win; | |
2290 | ||
2291 | #if CONFIG_MACF_NET | |
2292 | if (mac_inpcb_check_deliver(inp, m, AF_INET, SOCK_STREAM)) | |
2293 | goto drop; | |
2294 | #endif | |
2295 | ||
2296 | /* Avoid processing packets while closing a listen socket */ | |
2297 | if (tp->t_state == TCPS_LISTEN && | |
2298 | (so->so_options & SO_ACCEPTCONN) == 0) | |
2299 | goto drop; | |
2300 | ||
2301 | if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) { | |
2302 | #if TCPDEBUG | |
2303 | if (so->so_options & SO_DEBUG) { | |
2304 | ostate = tp->t_state; | |
2305 | #if INET6 | |
2306 | if (isipv6) | |
2307 | bcopy((char *)ip6, (char *)tcp_saveipgen, | |
2308 | sizeof(*ip6)); | |
2309 | else | |
2310 | #endif /* INET6 */ | |
2311 | bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip)); | |
2312 | tcp_savetcp = *th; | |
2313 | } | |
2314 | #endif | |
2315 | if (so->so_options & SO_ACCEPTCONN) { | |
2316 | struct tcpcb *tp0 = tp; | |
2317 | struct socket *so2; | |
2318 | struct socket *oso; | |
2319 | struct sockaddr_storage from; | |
2320 | #if INET6 | |
2321 | struct inpcb *oinp = sotoinpcb(so); | |
2322 | #endif /* INET6 */ | |
2323 | struct ifnet *head_ifscope; | |
2324 | unsigned int head_nocell, head_recvanyif, | |
2325 | head_noexpensive, head_awdl_unrestricted, | |
2326 | head_intcoproc_allowed; | |
2327 | ||
2328 | /* Get listener's bound-to-interface, if any */ | |
2329 | head_ifscope = (inp->inp_flags & INP_BOUND_IF) ? | |
2330 | inp->inp_boundifp : NULL; | |
2331 | /* Get listener's no-cellular information, if any */ | |
2332 | head_nocell = INP_NO_CELLULAR(inp); | |
2333 | /* Get listener's recv-any-interface, if any */ | |
2334 | head_recvanyif = (inp->inp_flags & INP_RECV_ANYIF); | |
2335 | /* Get listener's no-expensive information, if any */ | |
2336 | head_noexpensive = INP_NO_EXPENSIVE(inp); | |
2337 | head_awdl_unrestricted = INP_AWDL_UNRESTRICTED(inp); | |
2338 | head_intcoproc_allowed = INP_INTCOPROC_ALLOWED(inp); | |
2339 | ||
2340 | /* | |
2341 | * If the state is LISTEN then ignore segment if it contains an RST. | |
2342 | * If the segment contains an ACK then it is bad and send a RST. | |
2343 | * If it does not contain a SYN then it is not interesting; drop it. | |
2344 | * If it is from this socket, drop it, it must be forged. | |
2345 | */ | |
2346 | if ((thflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) { | |
2347 | IF_TCP_STATINC(ifp, listbadsyn); | |
2348 | ||
2349 | if (thflags & TH_RST) { | |
2350 | goto drop; | |
2351 | } | |
2352 | if (thflags & TH_ACK) { | |
2353 | tp = NULL; | |
2354 | tcpstat.tcps_badsyn++; | |
2355 | rstreason = BANDLIM_RST_OPENPORT; | |
2356 | goto dropwithreset; | |
2357 | } | |
2358 | ||
2359 | /* We come here if there is no SYN set */ | |
2360 | tcpstat.tcps_badsyn++; | |
2361 | goto drop; | |
2362 | } | |
2363 | KERNEL_DEBUG(DBG_FNC_TCP_NEWCONN | DBG_FUNC_START,0,0,0,0,0); | |
2364 | if (th->th_dport == th->th_sport) { | |
2365 | #if INET6 | |
2366 | if (isipv6) { | |
2367 | if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, | |
2368 | &ip6->ip6_src)) | |
2369 | goto drop; | |
2370 | } else | |
2371 | #endif /* INET6 */ | |
2372 | if (ip->ip_dst.s_addr == ip->ip_src.s_addr) | |
2373 | goto drop; | |
2374 | } | |
2375 | /* | |
2376 | * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN | |
2377 | * in_broadcast() should never return true on a received | |
2378 | * packet with M_BCAST not set. | |
2379 | * | |
2380 | * Packets with a multicast source address should also | |
2381 | * be discarded. | |
2382 | */ | |
2383 | if (m->m_flags & (M_BCAST|M_MCAST)) | |
2384 | goto drop; | |
2385 | #if INET6 | |
2386 | if (isipv6) { | |
2387 | if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) || | |
2388 | IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) | |
2389 | goto drop; | |
2390 | } else | |
2391 | #endif | |
2392 | if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || | |
2393 | IN_MULTICAST(ntohl(ip->ip_src.s_addr)) || | |
2394 | ip->ip_src.s_addr == htonl(INADDR_BROADCAST) || | |
2395 | in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) | |
2396 | goto drop; | |
2397 | ||
2398 | ||
2399 | #if INET6 | |
2400 | /* | |
2401 | * If deprecated address is forbidden, | |
2402 | * we do not accept SYN to deprecated interface | |
2403 | * address to prevent any new inbound connection from | |
2404 | * getting established. | |
2405 | * When we do not accept SYN, we send a TCP RST, | |
2406 | * with deprecated source address (instead of dropping | |
2407 | * it). We compromise it as it is much better for peer | |
2408 | * to send a RST, and RST will be the final packet | |
2409 | * for the exchange. | |
2410 | * | |
2411 | * If we do not forbid deprecated addresses, we accept | |
2412 | * the SYN packet. RFC 4862 forbids dropping SYN in | |
2413 | * this case. | |
2414 | */ | |
2415 | if (isipv6 && !ip6_use_deprecated) { | |
2416 | uint32_t ia6_flags; | |
2417 | ||
2418 | if (ip6_getdstifaddr_info(m, NULL, | |
2419 | &ia6_flags) == 0) { | |
2420 | if (ia6_flags & IN6_IFF_DEPRECATED) { | |
2421 | tp = NULL; | |
2422 | rstreason = BANDLIM_RST_OPENPORT; | |
2423 | IF_TCP_STATINC(ifp, deprecate6); | |
2424 | goto dropwithreset; | |
2425 | } | |
2426 | } | |
2427 | } | |
2428 | #endif | |
2429 | if (so->so_filt) { | |
2430 | #if INET6 | |
2431 | if (isipv6) { | |
2432 | struct sockaddr_in6 *sin6 = (struct sockaddr_in6*)&from; | |
2433 | ||
2434 | sin6->sin6_len = sizeof(*sin6); | |
2435 | sin6->sin6_family = AF_INET6; | |
2436 | sin6->sin6_port = th->th_sport; | |
2437 | sin6->sin6_flowinfo = 0; | |
2438 | sin6->sin6_addr = ip6->ip6_src; | |
2439 | sin6->sin6_scope_id = 0; | |
2440 | } | |
2441 | else | |
2442 | #endif | |
2443 | { | |
2444 | struct sockaddr_in *sin = (struct sockaddr_in*)&from; | |
2445 | ||
2446 | sin->sin_len = sizeof(*sin); | |
2447 | sin->sin_family = AF_INET; | |
2448 | sin->sin_port = th->th_sport; | |
2449 | sin->sin_addr = ip->ip_src; | |
2450 | } | |
2451 | so2 = sonewconn(so, 0, (struct sockaddr*)&from); | |
2452 | } else { | |
2453 | so2 = sonewconn(so, 0, NULL); | |
2454 | } | |
2455 | if (so2 == 0) { | |
2456 | tcpstat.tcps_listendrop++; | |
2457 | if (tcp_dropdropablreq(so)) { | |
2458 | if (so->so_filt) | |
2459 | so2 = sonewconn(so, 0, (struct sockaddr*)&from); | |
2460 | else | |
2461 | so2 = sonewconn(so, 0, NULL); | |
2462 | } | |
2463 | if (!so2) | |
2464 | goto drop; | |
2465 | } | |
2466 | ||
2467 | /* Point "inp" and "tp" in tandem to new socket */ | |
2468 | inp = (struct inpcb *)so2->so_pcb; | |
2469 | tp = intotcpcb(inp); | |
2470 | ||
2471 | oso = so; | |
2472 | socket_unlock(so, 0); /* Unlock but keep a reference on listener for now */ | |
2473 | ||
2474 | so = so2; | |
2475 | socket_lock(so, 1); | |
2476 | /* | |
2477 | * Mark socket as temporary until we're | |
2478 | * committed to keeping it. The code at | |
2479 | * ``drop'' and ``dropwithreset'' check the | |
2480 | * flag dropsocket to see if the temporary | |
2481 | * socket created here should be discarded. | |
2482 | * We mark the socket as discardable until | |
2483 | * we're committed to it below in TCPS_LISTEN. | |
2484 | * There are some error conditions in which we | |
2485 | * have to drop the temporary socket. | |
2486 | */ | |
2487 | dropsocket++; | |
2488 | /* | |
2489 | * Inherit INP_BOUND_IF from listener; testing if | |
2490 | * head_ifscope is non-NULL is sufficient, since it | |
2491 | * can only be set to a non-zero value earlier if | |
2492 | * the listener has such a flag set. | |
2493 | */ | |
2494 | if (head_ifscope != NULL) { | |
2495 | inp->inp_flags |= INP_BOUND_IF; | |
2496 | inp->inp_boundifp = head_ifscope; | |
2497 | } else { | |
2498 | inp->inp_flags &= ~INP_BOUND_IF; | |
2499 | } | |
2500 | /* | |
2501 | * Inherit restrictions from listener. | |
2502 | */ | |
2503 | if (head_nocell) | |
2504 | inp_set_nocellular(inp); | |
2505 | if (head_noexpensive) | |
2506 | inp_set_noexpensive(inp); | |
2507 | if (head_awdl_unrestricted) | |
2508 | inp_set_awdl_unrestricted(inp); | |
2509 | if (head_intcoproc_allowed) | |
2510 | inp_set_intcoproc_allowed(inp); | |
2511 | /* | |
2512 | * Inherit {IN,IN6}_RECV_ANYIF from listener. | |
2513 | */ | |
2514 | if (head_recvanyif) | |
2515 | inp->inp_flags |= INP_RECV_ANYIF; | |
2516 | else | |
2517 | inp->inp_flags &= ~INP_RECV_ANYIF; | |
2518 | #if INET6 | |
2519 | if (isipv6) | |
2520 | inp->in6p_laddr = ip6->ip6_dst; | |
2521 | else { | |
2522 | inp->inp_vflag &= ~INP_IPV6; | |
2523 | inp->inp_vflag |= INP_IPV4; | |
2524 | #endif /* INET6 */ | |
2525 | inp->inp_laddr = ip->ip_dst; | |
2526 | #if INET6 | |
2527 | } | |
2528 | #endif /* INET6 */ | |
2529 | inp->inp_lport = th->th_dport; | |
2530 | if (in_pcbinshash(inp, 0) != 0) { | |
2531 | /* | |
2532 | * Undo the assignments above if we failed to | |
2533 | * put the PCB on the hash lists. | |
2534 | */ | |
2535 | #if INET6 | |
2536 | if (isipv6) | |
2537 | inp->in6p_laddr = in6addr_any; | |
2538 | else | |
2539 | #endif /* INET6 */ | |
2540 | inp->inp_laddr.s_addr = INADDR_ANY; | |
2541 | inp->inp_lport = 0; | |
2542 | socket_lock(oso, 0); /* release ref on parent */ | |
2543 | socket_unlock(oso, 1); | |
2544 | goto drop; | |
2545 | } | |
2546 | #if INET6 | |
2547 | if (isipv6) { | |
2548 | /* | |
2549 | * Inherit socket options from the listening | |
2550 | * socket. | |
2551 | * Note that in6p_inputopts are not (even | |
2552 | * should not be) copied, since it stores | |
2553 | * previously received options and is used to | |
2554 | * detect if each new option is different than | |
2555 | * the previous one and hence should be passed | |
2556 | * to a user. | |
2557 | * If we copied in6p_inputopts, a user would | |
2558 | * not be able to receive options just after | |
2559 | * calling the accept system call. | |
2560 | */ | |
2561 | inp->inp_flags |= | |
2562 | oinp->inp_flags & INP_CONTROLOPTS; | |
2563 | if (oinp->in6p_outputopts) | |
2564 | inp->in6p_outputopts = | |
2565 | ip6_copypktopts(oinp->in6p_outputopts, | |
2566 | M_NOWAIT); | |
2567 | } else | |
2568 | #endif /* INET6 */ | |
2569 | { | |
2570 | inp->inp_options = ip_srcroute(); | |
2571 | inp->inp_ip_tos = oinp->inp_ip_tos; | |
2572 | } | |
2573 | socket_lock(oso, 0); | |
2574 | #if IPSEC | |
2575 | /* copy old policy into new socket's */ | |
2576 | if (sotoinpcb(oso)->inp_sp) | |
2577 | { | |
2578 | int error = 0; | |
2579 | /* Is it a security hole here to silently fail to copy the policy? */ | |
2580 | if (inp->inp_sp != NULL) | |
2581 | error = ipsec_init_policy(so, &inp->inp_sp); | |
2582 | if (error != 0 || ipsec_copy_policy(sotoinpcb(oso)->inp_sp, inp->inp_sp)) | |
2583 | printf("tcp_input: could not copy policy\n"); | |
2584 | } | |
2585 | #endif | |
2586 | /* inherit states from the listener */ | |
2587 | DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp, | |
2588 | struct tcpcb *, tp, int32_t, TCPS_LISTEN); | |
2589 | tp->t_state = TCPS_LISTEN; | |
2590 | tp->t_flags |= tp0->t_flags & (TF_NOPUSH|TF_NOOPT|TF_NODELAY); | |
2591 | tp->t_flagsext |= (tp0->t_flagsext & (TF_RXTFINDROP|TF_NOTIMEWAIT|TF_FASTOPEN)); | |
2592 | tp->t_keepinit = tp0->t_keepinit; | |
2593 | tp->t_keepcnt = tp0->t_keepcnt; | |
2594 | tp->t_keepintvl = tp0->t_keepintvl; | |
2595 | tp->t_adaptive_wtimo = tp0->t_adaptive_wtimo; | |
2596 | tp->t_adaptive_rtimo = tp0->t_adaptive_rtimo; | |
2597 | tp->t_inpcb->inp_ip_ttl = tp0->t_inpcb->inp_ip_ttl; | |
2598 | if ((so->so_flags & SOF_NOTSENT_LOWAT) != 0) | |
2599 | tp->t_notsent_lowat = tp0->t_notsent_lowat; | |
2600 | tp->t_inpcb->inp_flags2 |= | |
2601 | tp0->t_inpcb->inp_flags2 & INP2_KEEPALIVE_OFFLOAD; | |
2602 | ||
2603 | /* now drop the reference on the listener */ | |
2604 | socket_unlock(oso, 1); | |
2605 | ||
2606 | tcp_set_max_rwinscale(tp, so, TCP_AUTORCVBUF_MAX(ifp)); | |
2607 | ||
2608 | KERNEL_DEBUG(DBG_FNC_TCP_NEWCONN | DBG_FUNC_END,0,0,0,0,0); | |
2609 | } | |
2610 | } | |
2611 | socket_lock_assert_owned(so); | |
2612 | ||
2613 | if (tp->t_state == TCPS_ESTABLISHED && tlen > 0) { | |
2614 | /* | |
2615 | * Evaluate the rate of arrival of packets to see if the | |
2616 | * receiver can reduce the ack traffic. The algorithm to | |
2617 | * stretch acks will be enabled if the connection meets | |
2618 | * certain criteria defined in tcp_stretch_ack_enable function. | |
2619 | */ | |
2620 | if ((tp->t_flagsext & TF_RCVUNACK_WAITSS) != 0) { | |
2621 | TCP_INC_VAR(tp->rcv_waitforss, nlropkts); | |
2622 | } | |
2623 | if (tcp_stretch_ack_enable(tp, thflags)) { | |
2624 | tp->t_flags |= TF_STRETCHACK; | |
2625 | tp->t_flagsext &= ~(TF_RCVUNACK_WAITSS); | |
2626 | tp->rcv_waitforss = 0; | |
2627 | } else { | |
2628 | tp->t_flags &= ~(TF_STRETCHACK); | |
2629 | } | |
2630 | if (TSTMP_GT(tp->rcv_unackwin, tcp_now)) { | |
2631 | tp->rcv_by_unackwin += (tlen + off); | |
2632 | } else { | |
2633 | tp->rcv_unackwin = tcp_now + tcp_rcvunackwin; | |
2634 | tp->rcv_by_unackwin = tlen + off; | |
2635 | } | |
2636 | } | |
2637 | ||
2638 | /* | |
2639 | * Keep track of how many bytes were received in the LRO packet | |
2640 | */ | |
2641 | if ((pktf_sw_lro_pkt) && (nlropkts > 2)) { | |
2642 | tp->t_lropktlen += tlen; | |
2643 | } | |
2644 | /* | |
2645 | * Explicit Congestion Notification - Flag that we need to send ECT if | |
2646 | * + The IP Congestion experienced flag was set. | |
2647 | * + Socket is in established state | |
2648 | * + We negotiated ECN in the TCP setup | |
2649 | * + This isn't a pure ack (tlen > 0) | |
2650 | * + The data is in the valid window | |
2651 | * | |
2652 | * TE_SENDECE will be cleared when we receive a packet with TH_CWR set. | |
2653 | */ | |
2654 | if (ip_ecn == IPTOS_ECN_CE && tp->t_state == TCPS_ESTABLISHED && | |
2655 | TCP_ECN_ENABLED(tp) && tlen > 0 && | |
2656 | SEQ_GEQ(th->th_seq, tp->last_ack_sent) && | |
2657 | SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) { | |
2658 | tp->t_ecn_recv_ce++; | |
2659 | tcpstat.tcps_ecn_recv_ce++; | |
2660 | INP_INC_IFNET_STAT(inp, ecn_recv_ce); | |
2661 | /* Mark this connection as it received CE from network */ | |
2662 | tp->ecn_flags |= TE_RECV_ECN_CE; | |
2663 | tp->ecn_flags |= TE_SENDECE; | |
2664 | } | |
2665 | ||
2666 | /* | |
2667 | * Clear TE_SENDECE if TH_CWR is set. This is harmless, so we don't | |
2668 | * bother doing extensive checks for state and whatnot. | |
2669 | */ | |
2670 | if (thflags & TH_CWR) { | |
2671 | tp->ecn_flags &= ~TE_SENDECE; | |
2672 | tp->t_ecn_recv_cwr++; | |
2673 | } | |
2674 | ||
2675 | /* | |
2676 | * If we received an explicit notification of congestion in | |
2677 | * ip tos ecn bits or by the CWR bit in TCP header flags, reset | |
2678 | * the ack-strteching state. We need to handle ECN notification if | |
2679 | * an ECN setup SYN was sent even once. | |
2680 | */ | |
2681 | if (tp->t_state == TCPS_ESTABLISHED | |
2682 | && (tp->ecn_flags & TE_SETUPSENT) | |
2683 | && (ip_ecn == IPTOS_ECN_CE || (thflags & TH_CWR))) { | |
2684 | tcp_reset_stretch_ack(tp); | |
2685 | CLEAR_IAJ_STATE(tp); | |
2686 | } | |
2687 | ||
2688 | if (ip_ecn == IPTOS_ECN_CE && tp->t_state == TCPS_ESTABLISHED && | |
2689 | !TCP_ECN_ENABLED(tp) && !(tp->ecn_flags & TE_CEHEURI_SET)) { | |
2690 | tcpstat.tcps_ecn_fallback_ce++; | |
2691 | tcp_heuristic_ecn_aggressive(tp); | |
2692 | tp->ecn_flags |= TE_CEHEURI_SET; | |
2693 | } | |
2694 | ||
2695 | if (tp->t_state == TCPS_ESTABLISHED && TCP_ECN_ENABLED(tp) && | |
2696 | ip_ecn == IPTOS_ECN_CE && !(tp->ecn_flags & TE_CEHEURI_SET)) { | |
2697 | if (inp->inp_stat->rxpackets < ECN_MIN_CE_PROBES) { | |
2698 | tp->t_ecn_recv_ce_pkt++; | |
2699 | } else if (tp->t_ecn_recv_ce_pkt > ECN_MAX_CE_RATIO) { | |
2700 | tcpstat.tcps_ecn_fallback_ce++; | |
2701 | tcp_heuristic_ecn_aggressive(tp); | |
2702 | tp->ecn_flags |= TE_CEHEURI_SET; | |
2703 | INP_INC_IFNET_STAT(inp,ecn_fallback_ce); | |
2704 | } else { | |
2705 | /* We tracked the first ECN_MIN_CE_PROBES segments, we | |
2706 | * now know that the path is good. | |
2707 | */ | |
2708 | tp->ecn_flags |= TE_CEHEURI_SET; | |
2709 | } | |
2710 | } | |
2711 | ||
2712 | /* | |
2713 | * Try to determine if we are receiving a packet after a long time. | |
2714 | * Use our own approximation of idletime to roughly measure remote | |
2715 | * end's idle time. Since slowstart is used after an idle period | |
2716 | * we want to avoid doing LRO if the remote end is not up to date | |
2717 | * on initial window support and starts with 1 or 2 packets as its IW. | |
2718 | */ | |
2719 | if (sw_lro && (tp->t_flagsext & TF_LRO_OFFLOADED) && | |
2720 | ((tcp_now - tp->t_rcvtime) >= (TCP_IDLETIMEOUT(tp)))) { | |
2721 | turnoff_lro = 1; | |
2722 | } | |
2723 | ||
2724 | /* Update rcvtime as a new segment was received on the connection */ | |
2725 | tp->t_rcvtime = tcp_now; | |
2726 | ||
2727 | /* | |
2728 | * Segment received on connection. | |
2729 | * Reset idle time and keep-alive timer. | |
2730 | */ | |
2731 | if (TCPS_HAVEESTABLISHED(tp->t_state)) { | |
2732 | tcp_keepalive_reset(tp); | |
2733 | ||
2734 | if (tp->t_mpsub) | |
2735 | mptcp_reset_keepalive(tp); | |
2736 | } | |
2737 | ||
2738 | /* | |
2739 | * Process options if not in LISTEN state, | |
2740 | * else do it below (after getting remote address). | |
2741 | */ | |
2742 | if (tp->t_state != TCPS_LISTEN && optp) { | |
2743 | tcp_dooptions(tp, optp, optlen, th, &to); | |
2744 | #if MPTCP | |
2745 | if (mptcp_input_preproc(tp, m, drop_hdrlen) != 0) { | |
2746 | tp->t_flags |= TF_ACKNOW; | |
2747 | (void) tcp_output(tp); | |
2748 | tcp_check_timer_state(tp); | |
2749 | socket_unlock(so, 1); | |
2750 | KERNEL_DEBUG(DBG_FNC_TCP_INPUT | | |
2751 | DBG_FUNC_END,0,0,0,0,0); | |
2752 | return; | |
2753 | } | |
2754 | #endif /* MPTCP */ | |
2755 | } | |
2756 | if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) { | |
2757 | if (!(thflags & TH_ACK) || | |
2758 | (SEQ_GT(th->th_ack, tp->iss) && | |
2759 | SEQ_LEQ(th->th_ack, tp->snd_max))) | |
2760 | tcp_finalize_options(tp, &to, ifscope); | |
2761 | } | |
2762 | ||
2763 | #if TRAFFIC_MGT | |
2764 | /* | |
2765 | * Compute inter-packet arrival jitter. According to RFC 3550, | |
2766 | * inter-packet arrival jitter is defined as the difference in | |
2767 | * packet spacing at the receiver compared to the sender for a | |
2768 | * pair of packets. When two packets of maximum segment size come | |
2769 | * one after the other with consecutive sequence numbers, we | |
2770 | * consider them as packets sent together at the sender and use | |
2771 | * them as a pair to compute inter-packet arrival jitter. This | |
2772 | * metric indicates the delay induced by the network components due | |
2773 | * to queuing in edge/access routers. | |
2774 | */ | |
2775 | if (tp->t_state == TCPS_ESTABLISHED && | |
2776 | (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK|TH_ECE|TH_PUSH)) == TH_ACK && | |
2777 | ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) && | |
2778 | ((to.to_flags & TOF_TS) == 0 || | |
2779 | TSTMP_GEQ(to.to_tsval, tp->ts_recent)) && | |
2780 | th->th_seq == tp->rcv_nxt && LIST_EMPTY(&tp->t_segq)) { | |
2781 | int seg_size = tlen; | |
2782 | if (tp->iaj_pktcnt <= IAJ_IGNORE_PKTCNT) { | |
2783 | TCP_INC_VAR(tp->iaj_pktcnt, nlropkts); | |
2784 | } | |
2785 | ||
2786 | if (m->m_pkthdr.pkt_flags & PKTF_SW_LRO_PKT) { | |
2787 | seg_size = m->m_pkthdr.lro_pktlen; | |
2788 | } | |
2789 | if ( tp->iaj_size == 0 || seg_size > tp->iaj_size || | |
2790 | (seg_size == tp->iaj_size && tp->iaj_rcv_ts == 0)) { | |
2791 | /* | |
2792 | * State related to inter-arrival jitter is | |
2793 | * uninitialized or we are trying to find a good | |
2794 | * first packet to start computing the metric | |
2795 | */ | |
2796 | update_iaj_state(tp, seg_size, 0); | |
2797 | } else { | |
2798 | if (seg_size == tp->iaj_size) { | |
2799 | /* | |
2800 | * Compute inter-arrival jitter taking | |
2801 | * this packet as the second packet | |
2802 | */ | |
2803 | if (pktf_sw_lro_pkt) | |
2804 | compute_iaj(tp, nlropkts, | |
2805 | m->m_pkthdr.lro_elapsed); | |
2806 | else | |
2807 | compute_iaj(tp, 1, 0); | |
2808 | } | |
2809 | if (seg_size < tp->iaj_size) { | |
2810 | /* | |
2811 | * There is a smaller packet in the stream. | |
2812 | * Some times the maximum size supported | |
2813 | * on a path can change if there is a new | |
2814 | * link with smaller MTU. The receiver will | |
2815 | * not know about this change. If there | |
2816 | * are too many packets smaller than | |
2817 | * iaj_size, we try to learn the iaj_size | |
2818 | * again. | |
2819 | */ | |
2820 | TCP_INC_VAR(tp->iaj_small_pkt, nlropkts); | |
2821 | if (tp->iaj_small_pkt > RESET_IAJ_SIZE_THRESH) { | |
2822 | update_iaj_state(tp, seg_size, 1); | |
2823 | } else { | |
2824 | CLEAR_IAJ_STATE(tp); | |
2825 | } | |
2826 | } else { | |
2827 | update_iaj_state(tp, seg_size, 0); | |
2828 | } | |
2829 | } | |
2830 | } else { | |
2831 | CLEAR_IAJ_STATE(tp); | |
2832 | } | |
2833 | #endif /* TRAFFIC_MGT */ | |
2834 | ||
2835 | /* | |
2836 | * Header prediction: check for the two common cases | |
2837 | * of a uni-directional data xfer. If the packet has | |
2838 | * no control flags, is in-sequence, the window didn't | |
2839 | * change and we're not retransmitting, it's a | |
2840 | * candidate. If the length is zero and the ack moved | |
2841 | * forward, we're the sender side of the xfer. Just | |
2842 | * free the data acked & wake any higher level process | |
2843 | * that was blocked waiting for space. If the length | |
2844 | * is non-zero and the ack didn't move, we're the | |
2845 | * receiver side. If we're getting packets in-order | |
2846 | * (the reassembly queue is empty), add the data to | |
2847 | * the socket buffer and note that we need a delayed ack. | |
2848 | * Make sure that the hidden state-flags are also off. | |
2849 | * Since we check for TCPS_ESTABLISHED above, it can only | |
2850 | * be TH_NEEDSYN. | |
2851 | */ | |
2852 | if (tp->t_state == TCPS_ESTABLISHED && | |
2853 | (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK|TH_ECE|TH_CWR)) == TH_ACK && | |
2854 | ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) && | |
2855 | ((to.to_flags & TOF_TS) == 0 || | |
2856 | TSTMP_GEQ(to.to_tsval, tp->ts_recent)) && | |
2857 | th->th_seq == tp->rcv_nxt && | |
2858 | tiwin && tiwin == tp->snd_wnd && | |
2859 | tp->snd_nxt == tp->snd_max) { | |
2860 | ||
2861 | /* | |
2862 | * If last ACK falls within this segment's sequence numbers, | |
2863 | * record the timestamp. | |
2864 | * NOTE that the test is modified according to the latest | |
2865 | * proposal of the tcplw@cray.com list (Braden 1993/04/26). | |
2866 | */ | |
2867 | if ((to.to_flags & TOF_TS) != 0 && | |
2868 | SEQ_LEQ(th->th_seq, tp->last_ack_sent)) { | |
2869 | tp->ts_recent_age = tcp_now; | |
2870 | tp->ts_recent = to.to_tsval; | |
2871 | } | |
2872 | ||
2873 | if (tlen == 0) { | |
2874 | if (SEQ_GT(th->th_ack, tp->snd_una) && | |
2875 | SEQ_LEQ(th->th_ack, tp->snd_max) && | |
2876 | tp->snd_cwnd >= tp->snd_ssthresh && | |
2877 | (!IN_FASTRECOVERY(tp) && | |
2878 | ((!(SACK_ENABLED(tp)) && | |
2879 | tp->t_dupacks < tp->t_rexmtthresh) || | |
2880 | (SACK_ENABLED(tp) && to.to_nsacks == 0 && | |
2881 | TAILQ_EMPTY(&tp->snd_holes))))) { | |
2882 | /* | |
2883 | * this is a pure ack for outstanding data. | |
2884 | */ | |
2885 | ++tcpstat.tcps_predack; | |
2886 | ||
2887 | tcp_bad_rexmt_check(tp, th, &to); | |
2888 | ||
2889 | /* Recalculate the RTT */ | |
2890 | tcp_compute_rtt(tp, &to, th); | |
2891 | ||
2892 | VERIFY(SEQ_GEQ(th->th_ack, tp->snd_una)); | |
2893 | acked = BYTES_ACKED(th, tp); | |
2894 | tcpstat.tcps_rcvackpack++; | |
2895 | tcpstat.tcps_rcvackbyte += acked; | |
2896 | ||
2897 | /* | |
2898 | * Handle an ack that is in sequence during | |
2899 | * congestion avoidance phase. The | |
2900 | * calculations in this function | |
2901 | * assume that snd_una is not updated yet. | |
2902 | */ | |
2903 | if (CC_ALGO(tp)->congestion_avd != NULL) | |
2904 | CC_ALGO(tp)->congestion_avd(tp, th); | |
2905 | tcp_ccdbg_trace(tp, th, TCP_CC_INSEQ_ACK_RCVD); | |
2906 | sbdrop(&so->so_snd, acked); | |
2907 | if (so->so_flags & SOF_ENABLE_MSGS) { | |
2908 | VERIFY(acked <= so->so_msg_state->msg_serial_bytes); | |
2909 | so->so_msg_state->msg_serial_bytes -= acked; | |
2910 | } | |
2911 | tcp_sbsnd_trim(&so->so_snd); | |
2912 | ||
2913 | if (SEQ_GT(tp->snd_una, tp->snd_recover) && | |
2914 | SEQ_LEQ(th->th_ack, tp->snd_recover)) | |
2915 | tp->snd_recover = th->th_ack - 1; | |
2916 | tp->snd_una = th->th_ack; | |
2917 | ||
2918 | TCP_RESET_REXMT_STATE(tp); | |
2919 | ||
2920 | /* | |
2921 | * pull snd_wl2 up to prevent seq wrap relative | |
2922 | * to th_ack. | |
2923 | */ | |
2924 | tp->snd_wl2 = th->th_ack; | |
2925 | ||
2926 | if (tp->t_dupacks > 0) { | |
2927 | tp->t_dupacks = 0; | |
2928 | tp->t_rexmtthresh = tcprexmtthresh; | |
2929 | } | |
2930 | ||
2931 | m_freem(m); | |
2932 | ||
2933 | /* | |
2934 | * If all outstanding data are acked, stop | |
2935 | * retransmit timer, otherwise restart timer | |
2936 | * using current (possibly backed-off) value. | |
2937 | * If process is waiting for space, | |
2938 | * wakeup/selwakeup/signal. If data | |
2939 | * are ready to send, let tcp_output | |
2940 | * decide between more output or persist. | |
2941 | */ | |
2942 | if (tp->snd_una == tp->snd_max) { | |
2943 | tp->t_timer[TCPT_REXMT] = 0; | |
2944 | tp->t_timer[TCPT_PTO] = 0; | |
2945 | } else if (tp->t_timer[TCPT_PERSIST] == 0) { | |
2946 | tp->t_timer[TCPT_REXMT] = | |
2947 | OFFSET_FROM_START(tp, | |
2948 | tp->t_rxtcur); | |
2949 | } | |
2950 | if (!SLIST_EMPTY(&tp->t_rxt_segments) && | |
2951 | !TCP_DSACK_SEQ_IN_WINDOW(tp, | |
2952 | tp->t_dsack_lastuna, tp->snd_una)) | |
2953 | tcp_rxtseg_clean(tp); | |
2954 | ||
2955 | if ((tp->t_flagsext & TF_MEASURESNDBW) != 0 && | |
2956 | tp->t_bwmeas != NULL) | |
2957 | tcp_bwmeas_check(tp); | |
2958 | ||
2959 | sowwakeup(so); /* has to be done with socket lock held */ | |
2960 | if (!SLIST_EMPTY(&tp->t_notify_ack)) | |
2961 | tcp_notify_acknowledgement(tp, so); | |
2962 | ||
2963 | if ((so->so_snd.sb_cc) || (tp->t_flags & TF_ACKNOW)) { | |
2964 | (void) tcp_output(tp); | |
2965 | } | |
2966 | ||
2967 | tcp_tfo_rcv_ack(tp, th); | |
2968 | ||
2969 | tcp_check_timer_state(tp); | |
2970 | socket_unlock(so, 1); | |
2971 | KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END,0,0,0,0,0); | |
2972 | return; | |
2973 | } | |
2974 | } else if (th->th_ack == tp->snd_una && | |
2975 | LIST_EMPTY(&tp->t_segq) && | |
2976 | tlen <= tcp_sbspace(tp)) { | |
2977 | /* | |
2978 | * this is a pure, in-sequence data packet | |
2979 | * with nothing on the reassembly queue and | |
2980 | * we have enough buffer space to take it. | |
2981 | */ | |
2982 | ||
2983 | /* | |
2984 | * If this is a connection in steady state, start | |
2985 | * coalescing packets belonging to this flow. | |
2986 | */ | |
2987 | if (turnoff_lro) { | |
2988 | tcp_lro_remove_state(tp->t_inpcb->inp_laddr, | |
2989 | tp->t_inpcb->inp_faddr, | |
2990 | tp->t_inpcb->inp_lport, | |
2991 | tp->t_inpcb->inp_fport); | |
2992 | tp->t_flagsext &= ~TF_LRO_OFFLOADED; | |
2993 | tp->t_idleat = tp->rcv_nxt; | |
2994 | } else if (sw_lro && !pktf_sw_lro_pkt && !isipv6 && | |
2995 | (so->so_flags & SOF_USELRO) && | |
2996 | !IFNET_IS_CELLULAR(m->m_pkthdr.rcvif) && | |
2997 | (m->m_pkthdr.rcvif->if_type != IFT_LOOP) && | |
2998 | ((th->th_seq - tp->irs) > | |
2999 | (tp->t_maxseg << lro_start)) && | |
3000 | ((tp->t_idleat == 0) || ((th->th_seq - | |
3001 | tp->t_idleat) > (tp->t_maxseg << lro_start)))) { | |
3002 | tp->t_flagsext |= TF_LRO_OFFLOADED; | |
3003 | tcp_start_coalescing(ip, th, tlen); | |
3004 | tp->t_idleat = 0; | |
3005 | } | |
3006 | ||
3007 | /* Clean receiver SACK report if present */ | |
3008 | if (SACK_ENABLED(tp) && tp->rcv_numsacks) | |
3009 | tcp_clean_sackreport(tp); | |
3010 | ++tcpstat.tcps_preddat; | |
3011 | tp->rcv_nxt += tlen; | |
3012 | /* | |
3013 | * Pull snd_wl1 up to prevent seq wrap relative to | |
3014 | * th_seq. | |
3015 | */ | |
3016 | tp->snd_wl1 = th->th_seq; | |
3017 | /* | |
3018 | * Pull rcv_up up to prevent seq wrap relative to | |
3019 | * rcv_nxt. | |
3020 | */ | |
3021 | tp->rcv_up = tp->rcv_nxt; | |
3022 | TCP_INC_VAR(tcpstat.tcps_rcvpack, nlropkts); | |
3023 | tcpstat.tcps_rcvbyte += tlen; | |
3024 | if (nstat_collect) { | |
3025 | if (m->m_pkthdr.pkt_flags & PKTF_SW_LRO_PKT) { | |
3026 | INP_ADD_STAT(inp, cell, wifi, wired, | |
3027 | rxpackets, m->m_pkthdr.lro_npkts); | |
3028 | } else { | |
3029 | INP_ADD_STAT(inp, cell, wifi, wired, | |
3030 | rxpackets, 1); | |
3031 | } | |
3032 | INP_ADD_STAT(inp, cell, wifi, wired,rxbytes, | |
3033 | tlen); | |
3034 | inp_set_activity_bitmap(inp); | |
3035 | } | |
3036 | ||
3037 | /* | |
3038 | * Calculate the RTT on the receiver only if the | |
3039 | * connection is in streaming mode and the last | |
3040 | * packet was not an end-of-write | |
3041 | */ | |
3042 | if (tp->t_flags & TF_STREAMING_ON) | |
3043 | tcp_compute_rtt(tp, &to, th); | |
3044 | ||
3045 | tcp_sbrcv_grow(tp, &so->so_rcv, &to, tlen, | |
3046 | TCP_AUTORCVBUF_MAX(ifp)); | |
3047 | ||
3048 | /* | |
3049 | * Add data to socket buffer. | |
3050 | */ | |
3051 | so_recv_data_stat(so, m, 0); | |
3052 | m_adj(m, drop_hdrlen); /* delayed header drop */ | |
3053 | ||
3054 | /* | |
3055 | * If message delivery (SOF_ENABLE_MSGS) is enabled on | |
3056 | * this socket, deliver the packet received as an | |
3057 | * in-order message with sequence number attached to it. | |
3058 | */ | |
3059 | if (sbappendstream_rcvdemux(so, m, | |
3060 | th->th_seq - (tp->irs + 1), 0)) { | |
3061 | sorwakeup(so); | |
3062 | } | |
3063 | #if INET6 | |
3064 | if (isipv6) { | |
3065 | KERNEL_DEBUG(DBG_LAYER_END, ((th->th_dport << 16) | th->th_sport), | |
3066 | (((ip6->ip6_src.s6_addr16[0]) << 16) | (ip6->ip6_dst.s6_addr16[0])), | |
3067 | th->th_seq, th->th_ack, th->th_win); | |
3068 | } | |
3069 | else | |
3070 | #endif | |
3071 | { | |
3072 | KERNEL_DEBUG(DBG_LAYER_END, ((th->th_dport << 16) | th->th_sport), | |
3073 | (((ip->ip_src.s_addr & 0xffff) << 16) | (ip->ip_dst.s_addr & 0xffff)), | |
3074 | th->th_seq, th->th_ack, th->th_win); | |
3075 | } | |
3076 | TCP_INC_VAR(tp->t_unacksegs, nlropkts); | |
3077 | if (DELAY_ACK(tp, th)) { | |
3078 | if ((tp->t_flags & TF_DELACK) == 0) { | |
3079 | tp->t_flags |= TF_DELACK; | |
3080 | tp->t_timer[TCPT_DELACK] = OFFSET_FROM_START(tp, tcp_delack); | |
3081 | } | |
3082 | } else { | |
3083 | tp->t_flags |= TF_ACKNOW; | |
3084 | tcp_output(tp); | |
3085 | } | |
3086 | ||
3087 | tcp_adaptive_rwtimo_check(tp, tlen); | |
3088 | ||
3089 | if (tlen > 0) | |
3090 | tcp_tfo_rcv_data(tp); | |
3091 | ||
3092 | tcp_check_timer_state(tp); | |
3093 | socket_unlock(so, 1); | |
3094 | KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END,0,0,0,0,0); | |
3095 | return; | |
3096 | } | |
3097 | } | |
3098 | ||
3099 | /* | |
3100 | * Calculate amount of space in receive window, | |
3101 | * and then do TCP input processing. | |
3102 | * Receive window is amount of space in rcv queue, | |
3103 | * but not less than advertised window. | |
3104 | */ | |
3105 | socket_lock_assert_owned(so); | |
3106 | win = tcp_sbspace(tp); | |
3107 | if (win < 0) | |
3108 | win = 0; | |
3109 | else { /* clip rcv window to 4K for modems */ | |
3110 | if (tp->t_flags & TF_SLOWLINK && slowlink_wsize > 0) | |
3111 | win = min(win, slowlink_wsize); | |
3112 | } | |
3113 | tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt)); | |
3114 | #if MPTCP | |
3115 | /* | |
3116 | * Ensure that the subflow receive window isn't greater | |
3117 | * than the connection level receive window. | |
3118 | */ | |
3119 | if ((tp->t_mpflags & TMPF_MPTCP_TRUE) && | |
3120 | (mp_tp = tptomptp(tp))) { | |
3121 | mpte_lock_assert_held(mp_tp->mpt_mpte); | |
3122 | if (tp->rcv_wnd > mp_tp->mpt_rcvwnd) { | |
3123 | tp->rcv_wnd = imax(mp_tp->mpt_rcvwnd, (int)(tp->rcv_adv - tp->rcv_nxt)); | |
3124 | tcpstat.tcps_mp_reducedwin++; | |
3125 | } | |
3126 | } | |
3127 | #endif /* MPTCP */ | |
3128 | ||
3129 | switch (tp->t_state) { | |
3130 | ||
3131 | /* | |
3132 | * Initialize tp->rcv_nxt, and tp->irs, select an initial | |
3133 | * tp->iss, and send a segment: | |
3134 | * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK> | |
3135 | * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss. | |
3136 | * Fill in remote peer address fields if not previously specified. | |
3137 | * Enter SYN_RECEIVED state, and process any other fields of this | |
3138 | * segment in this state. | |
3139 | */ | |
3140 | case TCPS_LISTEN: { | |
3141 | struct sockaddr_in *sin; | |
3142 | #if INET6 | |
3143 | struct sockaddr_in6 *sin6; | |
3144 | #endif | |
3145 | ||
3146 | socket_lock_assert_owned(so); | |
3147 | #if INET6 | |
3148 | if (isipv6) { | |
3149 | MALLOC(sin6, struct sockaddr_in6 *, sizeof *sin6, | |
3150 | M_SONAME, M_NOWAIT); | |
3151 | if (sin6 == NULL) | |
3152 | goto drop; | |
3153 | bzero(sin6, sizeof(*sin6)); | |
3154 | sin6->sin6_family = AF_INET6; | |
3155 | sin6->sin6_len = sizeof(*sin6); | |
3156 | sin6->sin6_addr = ip6->ip6_src; | |
3157 | sin6->sin6_port = th->th_sport; | |
3158 | laddr6 = inp->in6p_laddr; | |
3159 | if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) | |
3160 | inp->in6p_laddr = ip6->ip6_dst; | |
3161 | if (in6_pcbconnect(inp, (struct sockaddr *)sin6, | |
3162 | proc0)) { | |
3163 | inp->in6p_laddr = laddr6; | |
3164 | FREE(sin6, M_SONAME); | |
3165 | goto drop; | |
3166 | } | |
3167 | FREE(sin6, M_SONAME); | |
3168 | } else | |
3169 | #endif | |
3170 | { | |
3171 | socket_lock_assert_owned(so); | |
3172 | MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME, | |
3173 | M_NOWAIT); | |
3174 | if (sin == NULL) | |
3175 | goto drop; | |
3176 | sin->sin_family = AF_INET; | |
3177 | sin->sin_len = sizeof(*sin); | |
3178 | sin->sin_addr = ip->ip_src; | |
3179 | sin->sin_port = th->th_sport; | |
3180 | bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero)); | |
3181 | laddr = inp->inp_laddr; | |
3182 | if (inp->inp_laddr.s_addr == INADDR_ANY) | |
3183 | inp->inp_laddr = ip->ip_dst; | |
3184 | if (in_pcbconnect(inp, (struct sockaddr *)sin, proc0, | |
3185 | IFSCOPE_NONE, NULL)) { | |
3186 | inp->inp_laddr = laddr; | |
3187 | FREE(sin, M_SONAME); | |
3188 | goto drop; | |
3189 | } | |
3190 | FREE(sin, M_SONAME); | |
3191 | } | |
3192 | ||
3193 | tcp_dooptions(tp, optp, optlen, th, &to); | |
3194 | tcp_finalize_options(tp, &to, ifscope); | |
3195 | ||
3196 | if (tfo_enabled(tp) && tcp_tfo_syn(tp, &to)) | |
3197 | isconnected = TRUE; | |
3198 | ||
3199 | if (iss) | |
3200 | tp->iss = iss; | |
3201 | else { | |
3202 | tp->iss = tcp_new_isn(tp); | |
3203 | } | |
3204 | tp->irs = th->th_seq; | |
3205 | tcp_sendseqinit(tp); | |
3206 | tcp_rcvseqinit(tp); | |
3207 | tp->snd_recover = tp->snd_una; | |
3208 | /* | |
3209 | * Initialization of the tcpcb for transaction; | |
3210 | * set SND.WND = SEG.WND, | |
3211 | * initialize CCsend and CCrecv. | |
3212 | */ | |
3213 | tp->snd_wnd = tiwin; /* initial send-window */ | |
3214 | tp->t_flags |= TF_ACKNOW; | |
3215 | tp->t_unacksegs = 0; | |
3216 | DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp, | |
3217 | struct tcpcb *, tp, int32_t, TCPS_SYN_RECEIVED); | |
3218 | tp->t_state = TCPS_SYN_RECEIVED; | |
3219 | tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp, | |
3220 | TCP_CONN_KEEPINIT(tp)); | |
3221 | dropsocket = 0; /* committed to socket */ | |
3222 | ||
3223 | if (inp->inp_flowhash == 0) | |
3224 | inp->inp_flowhash = inp_calc_flowhash(inp); | |
3225 | #if INET6 | |
3226 | /* update flowinfo - RFC 6437 */ | |
3227 | if (inp->inp_flow == 0 && | |
3228 | inp->in6p_flags & IN6P_AUTOFLOWLABEL) { | |
3229 | inp->inp_flow &= ~IPV6_FLOWLABEL_MASK; | |
3230 | inp->inp_flow |= | |
3231 | (htonl(inp->inp_flowhash) & IPV6_FLOWLABEL_MASK); | |
3232 | } | |
3233 | #endif /* INET6 */ | |
3234 | ||
3235 | /* reset the incomp processing flag */ | |
3236 | so->so_flags &= ~(SOF_INCOMP_INPROGRESS); | |
3237 | tcpstat.tcps_accepts++; | |
3238 | if ((thflags & (TH_ECE | TH_CWR)) == (TH_ECE | TH_CWR)) { | |
3239 | /* ECN-setup SYN */ | |
3240 | tp->ecn_flags |= (TE_SETUPRECEIVED | TE_SENDIPECT); | |
3241 | } | |
3242 | ||
3243 | goto trimthenstep6; | |
3244 | } | |
3245 | ||
3246 | /* | |
3247 | * If the state is SYN_RECEIVED and the seg contains an ACK, | |
3248 | * but not for our SYN/ACK, send a RST. | |
3249 | */ | |
3250 | case TCPS_SYN_RECEIVED: | |
3251 | if ((thflags & TH_ACK) && | |
3252 | (SEQ_LEQ(th->th_ack, tp->snd_una) || | |
3253 | SEQ_GT(th->th_ack, tp->snd_max))) { | |
3254 | rstreason = BANDLIM_RST_OPENPORT; | |
3255 | IF_TCP_STATINC(ifp, ooopacket); | |
3256 | goto dropwithreset; | |
3257 | } | |
3258 | ||
3259 | /* | |
3260 | * In SYN_RECEIVED state, if we recv some SYNS with | |
3261 | * window scale and others without, window scaling should | |
3262 | * be disabled. Otherwise the window advertised will be | |
3263 | * lower if we assume scaling and the other end does not. | |
3264 | */ | |
3265 | if ((thflags & TH_SYN) && | |
3266 | (tp->irs == th->th_seq) && | |
3267 | !(to.to_flags & TOF_SCALE)) | |
3268 | tp->t_flags &= ~TF_RCVD_SCALE; | |
3269 | break; | |
3270 | ||
3271 | /* | |
3272 | * If the state is SYN_SENT: | |
3273 | * if seg contains an ACK, but not for our SYN, drop the input. | |
3274 | * if seg contains a RST, then drop the connection. | |
3275 | * if seg does not contain SYN, then drop it. | |
3276 | * Otherwise this is an acceptable SYN segment | |
3277 | * initialize tp->rcv_nxt and tp->irs | |
3278 | * if seg contains ack then advance tp->snd_una | |
3279 | * if SYN has been acked change to ESTABLISHED else SYN_RCVD state | |
3280 | * arrange for segment to be acked (eventually) | |
3281 | * continue processing rest of data/controls, beginning with URG | |
3282 | */ | |
3283 | case TCPS_SYN_SENT: | |
3284 | if ((thflags & TH_ACK) && | |
3285 | (SEQ_LEQ(th->th_ack, tp->iss) || | |
3286 | SEQ_GT(th->th_ack, tp->snd_max))) { | |
3287 | rstreason = BANDLIM_UNLIMITED; | |
3288 | IF_TCP_STATINC(ifp, ooopacket); | |
3289 | goto dropwithreset; | |
3290 | } | |
3291 | if (thflags & TH_RST) { | |
3292 | if ((thflags & TH_ACK) != 0) { | |
3293 | if (tfo_enabled(tp)) | |
3294 | tcp_heuristic_tfo_rst(tp); | |
3295 | if ((tp->ecn_flags & (TE_SETUPSENT | TE_RCVD_SYN_RST)) == TE_SETUPSENT) { | |
3296 | /* | |
3297 | * On local connections, send | |
3298 | * non-ECN syn one time before | |
3299 | * dropping the connection | |
3300 | */ | |
3301 | if (tp->t_flags & TF_LOCAL) { | |
3302 | tp->ecn_flags |= TE_RCVD_SYN_RST; | |
3303 | goto drop; | |
3304 | } else { | |
3305 | tcp_heuristic_ecn_synrst(tp); | |
3306 | } | |
3307 | } | |
3308 | soevent(so, | |
3309 | (SO_FILT_HINT_LOCKED | | |
3310 | SO_FILT_HINT_CONNRESET)); | |
3311 | tp = tcp_drop(tp, ECONNREFUSED); | |
3312 | postevent(so, 0, EV_RESET); | |
3313 | } | |
3314 | goto drop; | |
3315 | } | |
3316 | if ((thflags & TH_SYN) == 0) | |
3317 | goto drop; | |
3318 | tp->snd_wnd = th->th_win; /* initial send window */ | |
3319 | ||
3320 | tp->irs = th->th_seq; | |
3321 | tcp_rcvseqinit(tp); | |
3322 | if (thflags & TH_ACK) { | |
3323 | tcpstat.tcps_connects++; | |
3324 | ||
3325 | if ((thflags & (TH_ECE | TH_CWR)) == (TH_ECE)) { | |
3326 | /* ECN-setup SYN-ACK */ | |
3327 | tp->ecn_flags |= TE_SETUPRECEIVED; | |
3328 | if (TCP_ECN_ENABLED(tp)) { | |
3329 | tcp_heuristic_ecn_success(tp); | |
3330 | tcpstat.tcps_ecn_client_success++; | |
3331 | } | |
3332 | } else { | |
3333 | if (tp->ecn_flags & TE_SETUPSENT && | |
3334 | tp->t_rxtshift == 0) { | |
3335 | tcp_heuristic_ecn_success(tp); | |
3336 | tcpstat.tcps_ecn_not_supported++; | |
3337 | } | |
3338 | if (tp->ecn_flags & TE_SETUPSENT && | |
3339 | tp->t_rxtshift > 0) | |
3340 | tcp_heuristic_ecn_loss(tp); | |
3341 | ||
3342 | /* non-ECN-setup SYN-ACK */ | |
3343 | tp->ecn_flags &= ~TE_SENDIPECT; | |
3344 | } | |
3345 | ||
3346 | #if CONFIG_MACF_NET && CONFIG_MACF_SOCKET | |
3347 | /* XXXMAC: recursive lock: SOCK_LOCK(so); */ | |
3348 | mac_socketpeer_label_associate_mbuf(m, so); | |
3349 | /* XXXMAC: SOCK_UNLOCK(so); */ | |
3350 | #endif | |
3351 | /* Do window scaling on this connection? */ | |
3352 | if (TCP_WINDOW_SCALE_ENABLED(tp)) { | |
3353 | tp->snd_scale = tp->requested_s_scale; | |
3354 | tp->rcv_scale = tp->request_r_scale; | |
3355 | } | |
3356 | ||
3357 | tp->rcv_adv += min(tp->rcv_wnd, TCP_MAXWIN << tp->rcv_scale); | |
3358 | tp->snd_una++; /* SYN is acked */ | |
3359 | if (SEQ_LT(tp->snd_nxt, tp->snd_una)) | |
3360 | tp->snd_nxt = tp->snd_una; | |
3361 | ||
3362 | /* | |
3363 | * We have sent more in the SYN than what is being | |
3364 | * acked. (e.g., TFO) | |
3365 | * We should restart the sending from what the receiver | |
3366 | * has acknowledged immediately. | |
3367 | */ | |
3368 | if (SEQ_GT(tp->snd_nxt, th->th_ack)) { | |
3369 | /* | |
3370 | * rdar://problem/33214601 | |
3371 | * There is a middlebox that acks all but one | |
3372 | * byte and still drops the data. | |
3373 | */ | |
3374 | if ((tp->t_tfo_stats & TFO_S_SYN_DATA_SENT) && | |
3375 | tp->snd_max == th->th_ack + 1 && | |
3376 | tp->snd_max > tp->snd_una + 1) { | |
3377 | tcp_heuristic_tfo_middlebox(tp); | |
3378 | ||
3379 | so->so_error = ENODATA; | |
3380 | ||
3381 | tp->t_tfo_stats |= TFO_S_ONE_BYTE_PROXY; | |
3382 | } | |
3383 | ||
3384 | tp->snd_max = tp->snd_nxt = th->th_ack; | |
3385 | } | |
3386 | ||
3387 | /* | |
3388 | * If there's data, delay ACK; if there's also a FIN | |
3389 | * ACKNOW will be turned on later. | |
3390 | */ | |
3391 | TCP_INC_VAR(tp->t_unacksegs, nlropkts); | |
3392 | if (DELAY_ACK(tp, th) && tlen != 0 ) { | |
3393 | if ((tp->t_flags & TF_DELACK) == 0) { | |
3394 | tp->t_flags |= TF_DELACK; | |
3395 | tp->t_timer[TCPT_DELACK] = OFFSET_FROM_START(tp, tcp_delack); | |
3396 | } | |
3397 | } | |
3398 | else { | |
3399 | tp->t_flags |= TF_ACKNOW; | |
3400 | } | |
3401 | /* | |
3402 | * Received <SYN,ACK> in SYN_SENT[*] state. | |
3403 | * Transitions: | |
3404 | * SYN_SENT --> ESTABLISHED | |
3405 | * SYN_SENT* --> FIN_WAIT_1 | |
3406 | */ | |
3407 | tp->t_starttime = tcp_now; | |
3408 | tcp_sbrcv_tstmp_check(tp); | |
3409 | if (tp->t_flags & TF_NEEDFIN) { | |
3410 | DTRACE_TCP4(state__change, void, NULL, | |
3411 | struct inpcb *, inp, | |
3412 | struct tcpcb *, tp, int32_t, | |
3413 | TCPS_FIN_WAIT_1); | |
3414 | tp->t_state = TCPS_FIN_WAIT_1; | |
3415 | tp->t_flags &= ~TF_NEEDFIN; | |
3416 | thflags &= ~TH_SYN; | |
3417 | } else { | |
3418 | DTRACE_TCP4(state__change, void, NULL, | |
3419 | struct inpcb *, inp, struct tcpcb *, | |
3420 | tp, int32_t, TCPS_ESTABLISHED); | |
3421 | tp->t_state = TCPS_ESTABLISHED; | |
3422 | tp->t_timer[TCPT_KEEP] = | |
3423 | OFFSET_FROM_START(tp, | |
3424 | TCP_CONN_KEEPIDLE(tp)); | |
3425 | if (nstat_collect) | |
3426 | nstat_route_connect_success( | |
3427 | inp->inp_route.ro_rt); | |
3428 | /* | |
3429 | * The SYN is acknowledged but una is not | |
3430 | * updated yet. So pass the value of | |
3431 | * ack to compute sndbytes correctly | |
3432 | */ | |
3433 | inp_count_sndbytes(inp, th->th_ack); | |
3434 | } | |
3435 | #if MPTCP | |
3436 | /* | |
3437 | * Do not send the connect notification for additional | |
3438 | * subflows until ACK for 3-way handshake arrives. | |
3439 | */ | |
3440 | if ((!(tp->t_mpflags & TMPF_MPTCP_TRUE)) && | |
3441 | (tp->t_mpflags & TMPF_SENT_JOIN)) { | |
3442 | isconnected = FALSE; | |
3443 | } else | |
3444 | #endif /* MPTCP */ | |
3445 | isconnected = TRUE; | |
3446 | ||
3447 | if ((tp->t_tfo_flags & (TFO_F_COOKIE_REQ | TFO_F_COOKIE_SENT)) || | |
3448 | (tp->t_tfo_stats & TFO_S_SYN_DATA_SENT)) { | |
3449 | tcp_tfo_synack(tp, &to); | |
3450 | ||
3451 | if ((tp->t_tfo_stats & TFO_S_SYN_DATA_SENT) && | |
3452 | SEQ_LT(tp->snd_una, th->th_ack)) { | |
3453 | tp->t_tfo_stats |= TFO_S_SYN_DATA_ACKED; | |
3454 | tcpstat.tcps_tfo_syn_data_acked++; | |
3455 | #if MPTCP | |
3456 | if (so->so_flags & SOF_MP_SUBFLOW) | |
3457 | so->so_flags1 |= SOF1_TFO_REWIND; | |
3458 | #endif | |
3459 | tcp_tfo_rcv_probe(tp, tlen); | |
3460 | } | |
3461 | } | |
3462 | } else { | |
3463 | /* | |
3464 | * Received initial SYN in SYN-SENT[*] state => simul- | |
3465 | * taneous open. If segment contains CC option and there is | |
3466 | * a cached CC, apply TAO test; if it succeeds, connection is | |
3467 | * half-synchronized. Otherwise, do 3-way handshake: | |
3468 | * SYN-SENT -> SYN-RECEIVED | |
3469 | * SYN-SENT* -> SYN-RECEIVED* | |
3470 | */ | |
3471 | tp->t_flags |= TF_ACKNOW; | |
3472 | tp->t_timer[TCPT_REXMT] = 0; | |
3473 | DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp, | |
3474 | struct tcpcb *, tp, int32_t, TCPS_SYN_RECEIVED); | |
3475 | tp->t_state = TCPS_SYN_RECEIVED; | |
3476 | ||
3477 | /* | |
3478 | * During simultaneous open, TFO should not be used. | |
3479 | * So, we disable it here, to prevent that data gets | |
3480 | * sent on the SYN/ACK. | |
3481 | */ | |
3482 | tcp_disable_tfo(tp); | |
3483 | } | |
3484 | ||
3485 | trimthenstep6: | |
3486 | /* | |
3487 | * Advance th->th_seq to correspond to first data byte. | |
3488 | * If data, trim to stay within window, | |
3489 | * dropping FIN if necessary. | |
3490 | */ | |
3491 | th->th_seq++; | |
3492 | if (tlen > tp->rcv_wnd) { | |
3493 | todrop = tlen - tp->rcv_wnd; | |
3494 | m_adj(m, -todrop); | |
3495 | tlen = tp->rcv_wnd; | |
3496 | thflags &= ~TH_FIN; | |
3497 | tcpstat.tcps_rcvpackafterwin++; | |
3498 | tcpstat.tcps_rcvbyteafterwin += todrop; | |
3499 | } | |
3500 | tp->snd_wl1 = th->th_seq - 1; | |
3501 | tp->rcv_up = th->th_seq; | |
3502 | /* | |
3503 | * Client side of transaction: already sent SYN and data. | |
3504 | * If the remote host used T/TCP to validate the SYN, | |
3505 | * our data will be ACK'd; if so, enter normal data segment | |
3506 | * processing in the middle of step 5, ack processing. | |
3507 | * Otherwise, goto step 6. | |
3508 | */ | |
3509 | if (thflags & TH_ACK) | |
3510 | goto process_ACK; | |
3511 | goto step6; | |
3512 | /* | |
3513 | * If the state is LAST_ACK or CLOSING or TIME_WAIT: | |
3514 | * do normal processing. | |
3515 | * | |
3516 | * NB: Leftover from RFC1644 T/TCP. Cases to be reused later. | |
3517 | */ | |
3518 | case TCPS_LAST_ACK: | |
3519 | case TCPS_CLOSING: | |
3520 | case TCPS_TIME_WAIT: | |
3521 | break; /* continue normal processing */ | |
3522 | ||
3523 | /* Received a SYN while connection is already established. | |
3524 | * This is a "half open connection and other anomalies" described | |
3525 | * in RFC793 page 34, send an ACK so the remote reset the connection | |
3526 | * or recovers by adjusting its sequence numberering | |
3527 | */ | |
3528 | case TCPS_ESTABLISHED: | |
3529 | if (thflags & TH_SYN) | |
3530 | goto dropafterack; | |
3531 | break; | |
3532 | } | |
3533 | ||
3534 | /* | |
3535 | * States other than LISTEN or SYN_SENT. | |
3536 | * First check the RST flag and sequence number since reset segments | |
3537 | * are exempt from the timestamp and connection count tests. This | |
3538 | * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix | |
3539 | * below which allowed reset segments in half the sequence space | |
3540 | * to fall though and be processed (which gives forged reset | |
3541 | * segments with a random sequence number a 50 percent chance of | |
3542 | * killing a connection). | |
3543 | * Then check timestamp, if present. | |
3544 | * Then check the connection count, if present. | |
3545 | * Then check that at least some bytes of segment are within | |
3546 | * receive window. If segment begins before rcv_nxt, | |
3547 | * drop leading data (and SYN); if nothing left, just ack. | |
3548 | * | |
3549 | * | |
3550 | * If the RST bit is set, check the sequence number to see | |
3551 | * if this is a valid reset segment. | |
3552 | * RFC 793 page 37: | |
3553 | * In all states except SYN-SENT, all reset (RST) segments | |
3554 | * are validated by checking their SEQ-fields. A reset is | |
3555 | * valid if its sequence number is in the window. | |
3556 | * Note: this does not take into account delayed ACKs, so | |
3557 | * we should test against last_ack_sent instead of rcv_nxt. | |
3558 | * The sequence number in the reset segment is normally an | |
3559 | * echo of our outgoing acknowlegement numbers, but some hosts | |
3560 | * send a reset with the sequence number at the rightmost edge | |
3561 | * of our receive window, and we have to handle this case. | |
3562 | * Note 2: Paul Watson's paper "Slipping in the Window" has shown | |
3563 | * that brute force RST attacks are possible. To combat this, | |
3564 | * we use a much stricter check while in the ESTABLISHED state, | |
3565 | * only accepting RSTs where the sequence number is equal to | |
3566 | * last_ack_sent. In all other states (the states in which a | |
3567 | * RST is more likely), the more permissive check is used. | |
3568 | * If we have multiple segments in flight, the intial reset | |
3569 | * segment sequence numbers will be to the left of last_ack_sent, | |
3570 | * but they will eventually catch up. | |
3571 | * In any case, it never made sense to trim reset segments to | |
3572 | * fit the receive window since RFC 1122 says: | |
3573 | * 4.2.2.12 RST Segment: RFC-793 Section 3.4 | |
3574 | * | |
3575 | * A TCP SHOULD allow a received RST segment to include data. | |
3576 | * | |
3577 | * DISCUSSION | |
3578 | * It has been suggested that a RST segment could contain | |
3579 | * ASCII text that encoded and explained the cause of the | |
3580 | * RST. No standard has yet been established for such | |
3581 | * data. | |
3582 | * | |
3583 | * If the reset segment passes the sequence number test examine | |
3584 | * the state: | |
3585 | * SYN_RECEIVED STATE: | |
3586 | * If passive open, return to LISTEN state. | |
3587 | * If active open, inform user that connection was refused. | |
3588 | * ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES: | |
3589 | * Inform user that connection was reset, and close tcb. | |
3590 | * CLOSING, LAST_ACK STATES: | |
3591 | * Close the tcb. | |
3592 | * TIME_WAIT STATE: | |
3593 | * Drop the segment - see Stevens, vol. 2, p. 964 and | |
3594 | * RFC 1337. | |
3595 | * | |
3596 | * Radar 4803931: Allows for the case where we ACKed the FIN but | |
3597 | * there is already a RST in flight from the peer. | |
3598 | * In that case, accept the RST for non-established | |
3599 | * state if it's one off from last_ack_sent. | |
3600 | ||
3601 | */ | |
3602 | if (thflags & TH_RST) { | |
3603 | if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) && | |
3604 | SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) || | |
3605 | (tp->rcv_wnd == 0 && | |
3606 | ((tp->last_ack_sent == th->th_seq) || | |
3607 | ((tp->last_ack_sent -1) == th->th_seq)))) { | |
3608 | switch (tp->t_state) { | |
3609 | ||
3610 | case TCPS_SYN_RECEIVED: | |
3611 | IF_TCP_STATINC(ifp, rstinsynrcv); | |
3612 | so->so_error = ECONNREFUSED; | |
3613 | goto close; | |
3614 | ||
3615 | case TCPS_ESTABLISHED: | |
3616 | if (tp->last_ack_sent != th->th_seq) { | |
3617 | tcpstat.tcps_badrst++; | |
3618 | goto drop; | |
3619 | } | |
3620 | if (TCP_ECN_ENABLED(tp) && | |
3621 | tp->snd_una == tp->iss + 1 && | |
3622 | SEQ_GT(tp->snd_max, tp->snd_una)) { | |
3623 | /* | |
3624 | * If the first data packet on an | |
3625 | * ECN connection, receives a RST | |
3626 | * increment the heuristic | |
3627 | */ | |
3628 | tcp_heuristic_ecn_droprst(tp); | |
3629 | } | |
3630 | case TCPS_FIN_WAIT_1: | |
3631 | case TCPS_CLOSE_WAIT: | |
3632 | /* | |
3633 | Drop through ... | |
3634 | */ | |
3635 | case TCPS_FIN_WAIT_2: | |
3636 | so->so_error = ECONNRESET; | |
3637 | close: | |
3638 | postevent(so, 0, EV_RESET); | |
3639 | soevent(so, | |
3640 | (SO_FILT_HINT_LOCKED | | |
3641 | SO_FILT_HINT_CONNRESET)); | |
3642 | ||
3643 | tcpstat.tcps_drops++; | |
3644 | tp = tcp_close(tp); | |
3645 | break; | |
3646 | ||
3647 | case TCPS_CLOSING: | |
3648 | case TCPS_LAST_ACK: | |
3649 | tp = tcp_close(tp); | |
3650 | break; | |
3651 | ||
3652 | case TCPS_TIME_WAIT: | |
3653 | break; | |
3654 | } | |
3655 | } | |
3656 | goto drop; | |
3657 | } | |
3658 | ||
3659 | /* | |
3660 | * RFC 1323 PAWS: If we have a timestamp reply on this segment | |
3661 | * and it's less than ts_recent, drop it. | |
3662 | */ | |
3663 | if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent && | |
3664 | TSTMP_LT(to.to_tsval, tp->ts_recent)) { | |
3665 | ||
3666 | /* Check to see if ts_recent is over 24 days old. */ | |
3667 | if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) { | |
3668 | /* | |
3669 | * Invalidate ts_recent. If this segment updates | |
3670 | * ts_recent, the age will be reset later and ts_recent | |
3671 | * will get a valid value. If it does not, setting | |
3672 | * ts_recent to zero will at least satisfy the | |
3673 | * requirement that zero be placed in the timestamp | |
3674 | * echo reply when ts_recent isn't valid. The | |
3675 | * age isn't reset until we get a valid ts_recent | |
3676 | * because we don't want out-of-order segments to be | |
3677 | * dropped when ts_recent is old. | |
3678 | */ | |
3679 | tp->ts_recent = 0; | |
3680 | } else { | |
3681 | tcpstat.tcps_rcvduppack++; | |
3682 | tcpstat.tcps_rcvdupbyte += tlen; | |
3683 | tp->t_pawsdrop++; | |
3684 | tcpstat.tcps_pawsdrop++; | |
3685 | ||
3686 | /* | |
3687 | * PAWS-drop when ECN is being used? That indicates | |
3688 | * that ECT-marked packets take a different path, with | |
3689 | * different congestion-characteristics. | |
3690 | * | |
3691 | * Only fallback when we did send less than 2GB as PAWS | |
3692 | * really has no reason to kick in earlier. | |
3693 | */ | |
3694 | if (TCP_ECN_ENABLED(tp) && | |
3695 | inp->inp_stat->rxbytes < 2147483648) { | |
3696 | INP_INC_IFNET_STAT(inp, ecn_fallback_reorder); | |
3697 | tcpstat.tcps_ecn_fallback_reorder++; | |
3698 | tcp_heuristic_ecn_aggressive(tp); | |
3699 | } | |
3700 | ||
3701 | if (nstat_collect) { | |
3702 | nstat_route_rx(tp->t_inpcb->inp_route.ro_rt, | |
3703 | 1, tlen, NSTAT_RX_FLAG_DUPLICATE); | |
3704 | INP_ADD_STAT(inp, cell, wifi, wired, | |
3705 | rxpackets, 1); | |
3706 | INP_ADD_STAT(inp, cell, wifi, wired, | |
3707 | rxbytes, tlen); | |
3708 | tp->t_stat.rxduplicatebytes += tlen; | |
3709 | inp_set_activity_bitmap(inp); | |
3710 | } | |
3711 | if (tlen > 0) | |
3712 | goto dropafterack; | |
3713 | goto drop; | |
3714 | } | |
3715 | } | |
3716 | ||
3717 | /* | |
3718 | * In the SYN-RECEIVED state, validate that the packet belongs to | |
3719 | * this connection before trimming the data to fit the receive | |
3720 | * window. Check the sequence number versus IRS since we know | |
3721 | * the sequence numbers haven't wrapped. This is a partial fix | |
3722 | * for the "LAND" DoS attack. | |
3723 | */ | |
3724 | if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) { | |
3725 | rstreason = BANDLIM_RST_OPENPORT; | |
3726 | IF_TCP_STATINC(ifp, dospacket); | |
3727 | goto dropwithreset; | |
3728 | } | |
3729 | ||
3730 | todrop = tp->rcv_nxt - th->th_seq; | |
3731 | if (todrop > 0) { | |
3732 | if (thflags & TH_SYN) { | |
3733 | thflags &= ~TH_SYN; | |
3734 | th->th_seq++; | |
3735 | if (th->th_urp > 1) | |
3736 | th->th_urp--; | |
3737 | else | |
3738 | thflags &= ~TH_URG; | |
3739 | todrop--; | |
3740 | } | |
3741 | /* | |
3742 | * Following if statement from Stevens, vol. 2, p. 960. | |
3743 | */ | |
3744 | if (todrop > tlen | |
3745 | || (todrop == tlen && (thflags & TH_FIN) == 0)) { | |
3746 | /* | |
3747 | * Any valid FIN must be to the left of the window. | |
3748 | * At this point the FIN must be a duplicate or out | |
3749 | * of sequence; drop it. | |
3750 | */ | |
3751 | thflags &= ~TH_FIN; | |
3752 | ||
3753 | /* | |
3754 | * Send an ACK to resynchronize and drop any data. | |
3755 | * But keep on processing for RST or ACK. | |
3756 | */ | |
3757 | tp->t_flags |= TF_ACKNOW; | |
3758 | if (todrop == 1) { | |
3759 | /* This could be a keepalive */ | |
3760 | soevent(so, SO_FILT_HINT_LOCKED | | |
3761 | SO_FILT_HINT_KEEPALIVE); | |
3762 | } | |
3763 | todrop = tlen; | |
3764 | tcpstat.tcps_rcvduppack++; | |
3765 | tcpstat.tcps_rcvdupbyte += todrop; | |
3766 | } else { | |
3767 | tcpstat.tcps_rcvpartduppack++; | |
3768 | tcpstat.tcps_rcvpartdupbyte += todrop; | |
3769 | } | |
3770 | ||
3771 | if (TCP_DSACK_ENABLED(tp) && todrop > 1) { | |
3772 | /* | |
3773 | * Note the duplicate data sequence space so that | |
3774 | * it can be reported in DSACK option. | |
3775 | */ | |
3776 | tp->t_dsack_lseq = th->th_seq; | |
3777 | tp->t_dsack_rseq = th->th_seq + todrop; | |
3778 | tp->t_flags |= TF_ACKNOW; | |
3779 | } | |
3780 | if (nstat_collect) { | |
3781 | nstat_route_rx(tp->t_inpcb->inp_route.ro_rt, 1, | |
3782 | todrop, NSTAT_RX_FLAG_DUPLICATE); | |
3783 | INP_ADD_STAT(inp, cell, wifi, wired, rxpackets, 1); | |
3784 | INP_ADD_STAT(inp, cell, wifi, wired, rxbytes, todrop); | |
3785 | tp->t_stat.rxduplicatebytes += todrop; | |
3786 | inp_set_activity_bitmap(inp); | |
3787 | } | |
3788 | drop_hdrlen += todrop; /* drop from the top afterwards */ | |
3789 | th->th_seq += todrop; | |
3790 | tlen -= todrop; | |
3791 | if (th->th_urp > todrop) | |
3792 | th->th_urp -= todrop; | |
3793 | else { | |
3794 | thflags &= ~TH_URG; | |
3795 | th->th_urp = 0; | |
3796 | } | |
3797 | } | |
3798 | ||
3799 | /* | |
3800 | * If new data are received on a connection after the user | |
3801 | * processes are gone, then RST the other end. | |
3802 | * Send also a RST when we received a data segment after we've | |
3803 | * sent our FIN when the socket is defunct. | |
3804 | * Note that an MPTCP subflow socket would have SS_NOFDREF set | |
3805 | * by default. So, if it's an MPTCP-subflow we rather check the | |
3806 | * MPTCP-level's socket state for SS_NOFDREF. | |
3807 | */ | |
3808 | if (tlen) { | |
3809 | boolean_t close_it = FALSE; | |
3810 | ||
3811 | if (!(so->so_flags & SOF_MP_SUBFLOW) && (so->so_state & SS_NOFDREF) && | |
3812 | tp->t_state > TCPS_CLOSE_WAIT) | |
3813 | close_it = TRUE; | |
3814 | ||
3815 | if ((so->so_flags & SOF_MP_SUBFLOW) && (mptetoso(tptomptp(tp)->mpt_mpte)->so_state & SS_NOFDREF) && | |
3816 | tp->t_state > TCPS_CLOSE_WAIT) | |
3817 | close_it = TRUE; | |
3818 | ||
3819 | if ((so->so_flags & SOF_DEFUNCT) && tp->t_state > TCPS_FIN_WAIT_1) | |
3820 | close_it = TRUE; | |
3821 | ||
3822 | if (close_it) { | |
3823 | tp = tcp_close(tp); | |
3824 | tcpstat.tcps_rcvafterclose++; | |
3825 | rstreason = BANDLIM_UNLIMITED; | |
3826 | IF_TCP_STATINC(ifp, cleanup); | |
3827 | goto dropwithreset; | |
3828 | } | |
3829 | } | |
3830 | ||
3831 | /* | |
3832 | * If segment ends after window, drop trailing data | |
3833 | * (and PUSH and FIN); if nothing left, just ACK. | |
3834 | */ | |
3835 | todrop = (th->th_seq+tlen) - (tp->rcv_nxt+tp->rcv_wnd); | |
3836 | if (todrop > 0) { | |
3837 | tcpstat.tcps_rcvpackafterwin++; | |
3838 | if (todrop >= tlen) { | |
3839 | tcpstat.tcps_rcvbyteafterwin += tlen; | |
3840 | /* | |
3841 | * If a new connection request is received | |
3842 | * while in TIME_WAIT, drop the old connection | |
3843 | * and start over if the sequence numbers | |
3844 | * are above the previous ones. | |
3845 | */ | |
3846 | if (thflags & TH_SYN && | |
3847 | tp->t_state == TCPS_TIME_WAIT && | |
3848 | SEQ_GT(th->th_seq, tp->rcv_nxt)) { | |
3849 | iss = tcp_new_isn(tp); | |
3850 | tp = tcp_close(tp); | |
3851 | socket_unlock(so, 1); | |
3852 | goto findpcb; | |
3853 | } | |
3854 | /* | |
3855 | * If window is closed can only take segments at | |
3856 | * window edge, and have to drop data and PUSH from | |
3857 | * incoming segments. Continue processing, but | |
3858 | * remember to ack. Otherwise, drop segment | |
3859 | * and ack. | |
3860 | */ | |
3861 | if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) { | |
3862 | tp->t_flags |= TF_ACKNOW; | |
3863 | tcpstat.tcps_rcvwinprobe++; | |
3864 | } else | |
3865 | goto dropafterack; | |
3866 | } else | |
3867 | tcpstat.tcps_rcvbyteafterwin += todrop; | |
3868 | m_adj(m, -todrop); | |
3869 | tlen -= todrop; | |
3870 | thflags &= ~(TH_PUSH|TH_FIN); | |
3871 | } | |
3872 | ||
3873 | /* | |
3874 | * If last ACK falls within this segment's sequence numbers, | |
3875 | * record its timestamp. | |
3876 | * NOTE: | |
3877 | * 1) That the test incorporates suggestions from the latest | |
3878 | * proposal of the tcplw@cray.com list (Braden 1993/04/26). | |
3879 | * 2) That updating only on newer timestamps interferes with | |
3880 | * our earlier PAWS tests, so this check should be solely | |
3881 | * predicated on the sequence space of this segment. | |
3882 | * 3) That we modify the segment boundary check to be | |
3883 | * Last.ACK.Sent <= SEG.SEQ + SEG.Len | |
3884 | * instead of RFC1323's | |
3885 | * Last.ACK.Sent < SEG.SEQ + SEG.Len, | |
3886 | * This modified check allows us to overcome RFC1323's | |
3887 | * limitations as described in Stevens TCP/IP Illustrated | |
3888 | * Vol. 2 p.869. In such cases, we can still calculate the | |
3889 | * RTT correctly when RCV.NXT == Last.ACK.Sent. | |
3890 | */ | |
3891 | if ((to.to_flags & TOF_TS) != 0 && | |
3892 | SEQ_LEQ(th->th_seq, tp->last_ack_sent) && | |
3893 | SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen + | |
3894 | ((thflags & (TH_SYN|TH_FIN)) != 0))) { | |
3895 | tp->ts_recent_age = tcp_now; | |
3896 | tp->ts_recent = to.to_tsval; | |
3897 | } | |
3898 | ||
3899 | /* | |
3900 | * If a SYN is in the window, then this is an | |
3901 | * error and we send an RST and drop the connection. | |
3902 | */ | |
3903 | if (thflags & TH_SYN) { | |
3904 | tp = tcp_drop(tp, ECONNRESET); | |
3905 | rstreason = BANDLIM_UNLIMITED; | |
3906 | postevent(so, 0, EV_RESET); | |
3907 | IF_TCP_STATINC(ifp, synwindow); | |
3908 | goto dropwithreset; | |
3909 | } | |
3910 | ||
3911 | /* | |
3912 | * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN | |
3913 | * flag is on (half-synchronized state), then queue data for | |
3914 | * later processing; else drop segment and return. | |
3915 | */ | |
3916 | if ((thflags & TH_ACK) == 0) { | |
3917 | if (tp->t_state == TCPS_SYN_RECEIVED || | |
3918 | (tp->t_flags & TF_NEEDSYN)) { | |
3919 | if ((tfo_enabled(tp))) { | |
3920 | /* | |
3921 | * So, we received a valid segment while in | |
3922 | * SYN-RECEIVED (TF_NEEDSYN is actually never | |
3923 | * set, so this is dead code). | |
3924 | * As this cannot be an RST (see that if a bit | |
3925 | * higher), and it does not have the ACK-flag | |
3926 | * set, we want to retransmit the SYN/ACK. | |
3927 | * Thus, we have to reset snd_nxt to snd_una to | |
3928 | * trigger the going back to sending of the | |
3929 | * SYN/ACK. This is more consistent with the | |
3930 | * behavior of tcp_output(), which expects | |
3931 | * to send the segment that is pointed to by | |
3932 | * snd_nxt. | |
3933 | */ | |
3934 | tp->snd_nxt = tp->snd_una; | |
3935 | ||
3936 | /* | |
3937 | * We need to make absolutely sure that we are | |
3938 | * going to reply upon a duplicate SYN-segment. | |
3939 | */ | |
3940 | if (th->th_flags & TH_SYN) | |
3941 | needoutput = 1; | |
3942 | } | |
3943 | ||
3944 | goto step6; | |
3945 | } else if (tp->t_flags & TF_ACKNOW) | |
3946 | goto dropafterack; | |
3947 | else | |
3948 | goto drop; | |
3949 | } | |
3950 | ||
3951 | /* | |
3952 | * Ack processing. | |
3953 | */ | |
3954 | ||
3955 | switch (tp->t_state) { | |
3956 | ||
3957 | /* | |
3958 | * In SYN_RECEIVED state, the ack ACKs our SYN, so enter | |
3959 | * ESTABLISHED state and continue processing. | |
3960 | * The ACK was checked above. | |
3961 | */ | |
3962 | case TCPS_SYN_RECEIVED: | |
3963 | ||
3964 | tcpstat.tcps_connects++; | |
3965 | ||
3966 | /* Do window scaling? */ | |
3967 | if (TCP_WINDOW_SCALE_ENABLED(tp)) { | |
3968 | tp->snd_scale = tp->requested_s_scale; | |
3969 | tp->rcv_scale = tp->request_r_scale; | |
3970 | tp->snd_wnd = th->th_win << tp->snd_scale; | |
3971 | tiwin = tp->snd_wnd; | |
3972 | } | |
3973 | /* | |
3974 | * Make transitions: | |
3975 | * SYN-RECEIVED -> ESTABLISHED | |
3976 | * SYN-RECEIVED* -> FIN-WAIT-1 | |
3977 | */ | |
3978 | tp->t_starttime = tcp_now; | |
3979 | tcp_sbrcv_tstmp_check(tp); | |
3980 | if (tp->t_flags & TF_NEEDFIN) { | |
3981 | DTRACE_TCP4(state__change, void, NULL, | |
3982 | struct inpcb *, inp, | |
3983 | struct tcpcb *, tp, int32_t, TCPS_FIN_WAIT_1); | |
3984 | tp->t_state = TCPS_FIN_WAIT_1; | |
3985 | tp->t_flags &= ~TF_NEEDFIN; | |
3986 | } else { | |
3987 | DTRACE_TCP4(state__change, void, NULL, | |
3988 | struct inpcb *, inp, | |
3989 | struct tcpcb *, tp, int32_t, TCPS_ESTABLISHED); | |
3990 | tp->t_state = TCPS_ESTABLISHED; | |
3991 | tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp, | |
3992 | TCP_CONN_KEEPIDLE(tp)); | |
3993 | if (nstat_collect) | |
3994 | nstat_route_connect_success( | |
3995 | tp->t_inpcb->inp_route.ro_rt); | |
3996 | /* | |
3997 | * The SYN is acknowledged but una is not updated | |
3998 | * yet. So pass the value of ack to compute | |
3999 | * sndbytes correctly | |
4000 | */ | |
4001 | inp_count_sndbytes(inp, th->th_ack); | |
4002 | } | |
4003 | /* | |
4004 | * If segment contains data or ACK, will call tcp_reass() | |
4005 | * later; if not, do so now to pass queued data to user. | |
4006 | */ | |
4007 | if (tlen == 0 && (thflags & TH_FIN) == 0) | |
4008 | (void) tcp_reass(tp, (struct tcphdr *)0, &tlen, | |
4009 | NULL, ifp); | |
4010 | tp->snd_wl1 = th->th_seq - 1; | |
4011 | ||
4012 | #if MPTCP | |
4013 | /* | |
4014 | * Do not send the connect notification for additional subflows | |
4015 | * until ACK for 3-way handshake arrives. | |
4016 | */ | |
4017 | if ((!(tp->t_mpflags & TMPF_MPTCP_TRUE)) && | |
4018 | (tp->t_mpflags & TMPF_SENT_JOIN)) { | |
4019 | isconnected = FALSE; | |
4020 | } else | |
4021 | #endif /* MPTCP */ | |
4022 | isconnected = TRUE; | |
4023 | if ((tp->t_tfo_flags & TFO_F_COOKIE_VALID)) { | |
4024 | /* Done this when receiving the SYN */ | |
4025 | isconnected = FALSE; | |
4026 | ||
4027 | OSDecrementAtomic(&tcp_tfo_halfcnt); | |
4028 | ||
4029 | /* Panic if something has gone terribly wrong. */ | |
4030 | VERIFY(tcp_tfo_halfcnt >= 0); | |
4031 | ||
4032 | tp->t_tfo_flags &= ~TFO_F_COOKIE_VALID; | |
4033 | } | |
4034 | ||
4035 | /* | |
4036 | * In case there is data in the send-queue (e.g., TFO is being | |
4037 | * used, or connectx+data has been done), then if we would | |
4038 | * "FALLTHROUGH", we would handle this ACK as if data has been | |
4039 | * acknowledged. But, we have to prevent this. And this | |
4040 | * can be prevented by increasing snd_una by 1, so that the | |
4041 | * SYN is not considered as data (snd_una++ is actually also | |
4042 | * done in SYN_SENT-state as part of the regular TCP stack). | |
4043 | * | |
4044 | * In case there is data on this ack as well, the data will be | |
4045 | * handled by the label "dodata" right after step6. | |
4046 | */ | |
4047 | if (so->so_snd.sb_cc) { | |
4048 | tp->snd_una++; /* SYN is acked */ | |
4049 | if (SEQ_LT(tp->snd_nxt, tp->snd_una)) | |
4050 | tp->snd_nxt = tp->snd_una; | |
4051 | ||
4052 | /* | |
4053 | * No duplicate-ACK handling is needed. So, we | |
4054 | * directly advance to processing the ACK (aka, | |
4055 | * updating the RTT estimation,...) | |
4056 | * | |
4057 | * But, we first need to handle eventual SACKs, | |
4058 | * because TFO will start sending data with the | |
4059 | * SYN/ACK, so it might be that the client | |
4060 | * includes a SACK with its ACK. | |
4061 | */ | |
4062 | if (SACK_ENABLED(tp) && | |
4063 | (to.to_nsacks > 0 || | |
4064 | !TAILQ_EMPTY(&tp->snd_holes))) | |
4065 | tcp_sack_doack(tp, &to, th, | |
4066 | &sack_bytes_acked); | |
4067 | ||
4068 | goto process_ACK; | |
4069 | } | |
4070 | ||
4071 | /* FALLTHROUGH */ | |
4072 | ||
4073 | /* | |
4074 | * In ESTABLISHED state: drop duplicate ACKs; ACK out of range | |
4075 | * ACKs. If the ack is in the range | |
4076 | * tp->snd_una < th->th_ack <= tp->snd_max | |
4077 | * then advance tp->snd_una to th->th_ack and drop | |
4078 | * data from the retransmission queue. If this ACK reflects | |
4079 | * more up to date window information we update our window information. | |
4080 | */ | |
4081 | case TCPS_ESTABLISHED: | |
4082 | case TCPS_FIN_WAIT_1: | |
4083 | case TCPS_FIN_WAIT_2: | |
4084 | case TCPS_CLOSE_WAIT: | |
4085 | case TCPS_CLOSING: | |
4086 | case TCPS_LAST_ACK: | |
4087 | case TCPS_TIME_WAIT: | |
4088 | if (SEQ_GT(th->th_ack, tp->snd_max)) { | |
4089 | tcpstat.tcps_rcvacktoomuch++; | |
4090 | goto dropafterack; | |
4091 | } | |
4092 | if (SACK_ENABLED(tp) && to.to_nsacks > 0) { | |
4093 | recvd_dsack = tcp_sack_process_dsack(tp, &to, th); | |
4094 | /* | |
4095 | * If DSACK is received and this packet has no | |
4096 | * other SACK information, it can be dropped. | |
4097 | * We do not want to treat it as a duplicate ack. | |
4098 | */ | |
4099 | if (recvd_dsack && | |
4100 | SEQ_LEQ(th->th_ack, tp->snd_una) && | |
4101 | to.to_nsacks == 0) { | |
4102 | tcp_bad_rexmt_check(tp, th, &to); | |
4103 | goto drop; | |
4104 | } | |
4105 | } | |
4106 | ||
4107 | if (SACK_ENABLED(tp) && | |
4108 | (to.to_nsacks > 0 || !TAILQ_EMPTY(&tp->snd_holes))) | |
4109 | tcp_sack_doack(tp, &to, th, &sack_bytes_acked); | |
4110 | ||
4111 | #if MPTCP | |
4112 | if (tp->t_mpuna && SEQ_GEQ(th->th_ack, tp->t_mpuna)) { | |
4113 | if (tp->t_mpflags & TMPF_PREESTABLISHED) { | |
4114 | /* MP TCP establishment succeeded */ | |
4115 | tp->t_mpuna = 0; | |
4116 | if (tp->t_mpflags & TMPF_JOINED_FLOW) { | |
4117 | if (tp->t_mpflags & TMPF_SENT_JOIN) { | |
4118 | tp->t_mpflags &= | |
4119 | ~TMPF_PREESTABLISHED; | |
4120 | tp->t_mpflags |= | |
4121 | TMPF_MPTCP_TRUE; | |
4122 | so->so_flags |= SOF_MPTCP_TRUE; | |
4123 | mptcplog((LOG_DEBUG, "MPTCP " | |
4124 | "Sockets: %s \n",__func__), | |
4125 | MPTCP_SOCKET_DBG, | |
4126 | MPTCP_LOGLVL_LOG); | |
4127 | ||
4128 | tp->t_timer[TCPT_JACK_RXMT] = 0; | |
4129 | tp->t_mprxtshift = 0; | |
4130 | isconnected = TRUE; | |
4131 | } else { | |
4132 | isconnected = FALSE; | |
4133 | } | |
4134 | } else { | |
4135 | isconnected = TRUE; | |
4136 | } | |
4137 | } | |
4138 | } | |
4139 | #endif /* MPTCP */ | |
4140 | ||
4141 | tcp_tfo_rcv_ack(tp, th); | |
4142 | ||
4143 | /* | |
4144 | * If we have outstanding data (other than | |
4145 | * a window probe), this is a completely | |
4146 | * duplicate ack and the ack is the biggest we've seen. | |
4147 | * | |
4148 | * Need to accommodate a change in window on duplicate acks | |
4149 | * to allow operating systems that update window during | |
4150 | * recovery with SACK | |
4151 | */ | |
4152 | if (SEQ_LEQ(th->th_ack, tp->snd_una)) { | |
4153 | if (tlen == 0 && (tiwin == tp->snd_wnd || | |
4154 | (to.to_nsacks > 0 && sack_bytes_acked > 0))) { | |
4155 | /* | |
4156 | * If both ends send FIN at the same time, | |
4157 | * then the ack will be a duplicate ack | |
4158 | * but we have to process the FIN. Check | |
4159 | * for this condition and process the FIN | |
4160 | * instead of the dupack | |
4161 | */ | |
4162 | if ((thflags & TH_FIN) && | |
4163 | !TCPS_HAVERCVDFIN(tp->t_state)) | |
4164 | break; | |
4165 | process_dupack: | |
4166 | #if MPTCP | |
4167 | /* | |
4168 | * MPTCP options that are ignored must | |
4169 | * not be treated as duplicate ACKs. | |
4170 | */ | |
4171 | if (to.to_flags & TOF_MPTCP) { | |
4172 | goto drop; | |
4173 | } | |
4174 | ||
4175 | if ((isconnected) && (tp->t_mpflags & TMPF_JOINED_FLOW)) { | |
4176 | mptcplog((LOG_DEBUG, "MPTCP " | |
4177 | "Sockets: bypass ack recovery\n"), | |
4178 | MPTCP_SOCKET_DBG, | |
4179 | MPTCP_LOGLVL_VERBOSE); | |
4180 | break; | |
4181 | } | |
4182 | #endif /* MPTCP */ | |
4183 | /* | |
4184 | * If a duplicate acknowledgement was seen | |
4185 | * after ECN, it indicates packet loss in | |
4186 | * addition to ECN. Reset INRECOVERY flag | |
4187 | * so that we can process partial acks | |
4188 | * correctly | |
4189 | */ | |
4190 | if (tp->ecn_flags & TE_INRECOVERY) | |
4191 | tp->ecn_flags &= ~TE_INRECOVERY; | |
4192 | ||
4193 | tcpstat.tcps_rcvdupack++; | |
4194 | ++tp->t_dupacks; | |
4195 | ||
4196 | /* | |
4197 | * Check if we need to reset the limit on | |
4198 | * early retransmit | |
4199 | */ | |
4200 | if (tp->t_early_rexmt_count > 0 && | |
4201 | TSTMP_GEQ(tcp_now, | |
4202 | (tp->t_early_rexmt_win + | |
4203 | TCP_EARLY_REXMT_WIN))) | |
4204 | tp->t_early_rexmt_count = 0; | |
4205 | ||
4206 | /* | |
4207 | * Is early retransmit needed? We check for | |
4208 | * this when the connection is waiting for | |
4209 | * duplicate acks to enter fast recovery. | |
4210 | */ | |
4211 | if (!IN_FASTRECOVERY(tp)) | |
4212 | tcp_early_rexmt_check(tp, th); | |
4213 | ||
4214 | /* | |
4215 | * If we've seen exactly rexmt threshold | |
4216 | * of duplicate acks, assume a packet | |
4217 | * has been dropped and retransmit it. | |
4218 | * Kludge snd_nxt & the congestion | |
4219 | * window so we send only this one | |
4220 | * packet. | |
4221 | * | |
4222 | * We know we're losing at the current | |
4223 | * window size so do congestion avoidance | |
4224 | * (set ssthresh to half the current window | |
4225 | * and pull our congestion window back to | |
4226 | * the new ssthresh). | |
4227 | * | |
4228 | * Dup acks mean that packets have left the | |
4229 | * network (they're now cached at the receiver) | |
4230 | * so bump cwnd by the amount in the receiver | |
4231 | * to keep a constant cwnd packets in the | |
4232 | * network. | |
4233 | */ | |
4234 | if (tp->t_timer[TCPT_REXMT] == 0 || | |
4235 | (th->th_ack != tp->snd_una | |
4236 | && sack_bytes_acked == 0)) { | |
4237 | tp->t_dupacks = 0; | |
4238 | tp->t_rexmtthresh = tcprexmtthresh; | |
4239 | } else if (tp->t_dupacks > tp->t_rexmtthresh || | |
4240 | IN_FASTRECOVERY(tp)) { | |
4241 | ||
4242 | /* | |
4243 | * If this connection was seeing packet | |
4244 | * reordering, then recovery might be | |
4245 | * delayed to disambiguate between | |
4246 | * reordering and loss | |
4247 | */ | |
4248 | if (SACK_ENABLED(tp) && !IN_FASTRECOVERY(tp) && | |
4249 | (tp->t_flagsext & | |
4250 | (TF_PKTS_REORDERED|TF_DELAY_RECOVERY)) == | |
4251 | (TF_PKTS_REORDERED|TF_DELAY_RECOVERY)) { | |
4252 | /* | |
4253 | * Since the SACK information is already | |
4254 | * updated, this ACK will be dropped | |
4255 | */ | |
4256 | break; | |
4257 | } | |
4258 | ||
4259 | if (SACK_ENABLED(tp) | |
4260 | && IN_FASTRECOVERY(tp)) { | |
4261 | int awnd; | |
4262 | ||
4263 | /* | |
4264 | * Compute the amount of data in flight first. | |
4265 | * We can inject new data into the pipe iff | |
4266 | * we have less than 1/2 the original window's | |
4267 | * worth of data in flight. | |
4268 | */ | |
4269 | awnd = (tp->snd_nxt - tp->snd_fack) + | |
4270 | tp->sackhint.sack_bytes_rexmit; | |
4271 | if (awnd < tp->snd_ssthresh) { | |
4272 | tp->snd_cwnd += tp->t_maxseg; | |
4273 | if (tp->snd_cwnd > tp->snd_ssthresh) | |
4274 | tp->snd_cwnd = tp->snd_ssthresh; | |
4275 | } | |
4276 | } else { | |
4277 | tp->snd_cwnd += tp->t_maxseg; | |
4278 | } | |
4279 | ||
4280 | /* Process any window updates */ | |
4281 | if (tiwin > tp->snd_wnd) | |
4282 | tcp_update_window(tp, thflags, | |
4283 | th, tiwin, tlen); | |
4284 | tcp_ccdbg_trace(tp, th, | |
4285 | TCP_CC_IN_FASTRECOVERY); | |
4286 | ||
4287 | (void) tcp_output(tp); | |
4288 | ||
4289 | goto drop; | |
4290 | } else if (tp->t_dupacks == tp->t_rexmtthresh) { | |
4291 | tcp_seq onxt = tp->snd_nxt; | |
4292 | ||
4293 | /* | |
4294 | * If we're doing sack, check to | |
4295 | * see if we're already in sack | |
4296 | * recovery. If we're not doing sack, | |
4297 | * check to see if we're in newreno | |
4298 | * recovery. | |
4299 | */ | |
4300 | if (SACK_ENABLED(tp)) { | |
4301 | if (IN_FASTRECOVERY(tp)) { | |
4302 | tp->t_dupacks = 0; | |
4303 | break; | |
4304 | } else if (tp->t_flagsext & TF_DELAY_RECOVERY) { | |
4305 | break; | |
4306 | } | |
4307 | } else { | |
4308 | if (SEQ_LEQ(th->th_ack, | |
4309 | tp->snd_recover)) { | |
4310 | tp->t_dupacks = 0; | |
4311 | break; | |
4312 | } | |
4313 | } | |
4314 | if (tp->t_flags & TF_SENTFIN) | |
4315 | tp->snd_recover = tp->snd_max - 1; | |
4316 | else | |
4317 | tp->snd_recover = tp->snd_max; | |
4318 | tp->t_timer[TCPT_PTO] = 0; | |
4319 | tp->t_rtttime = 0; | |
4320 | ||
4321 | /* | |
4322 | * If the connection has seen pkt | |
4323 | * reordering, delay recovery until | |
4324 | * it is clear that the packet | |
4325 | * was lost. | |
4326 | */ | |
4327 | if (SACK_ENABLED(tp) && | |
4328 | (tp->t_flagsext & | |
4329 | (TF_PKTS_REORDERED|TF_DELAY_RECOVERY)) | |
4330 | == TF_PKTS_REORDERED && | |
4331 | !IN_FASTRECOVERY(tp) && | |
4332 | tp->t_reorderwin > 0 && | |
4333 | (tp->t_state == TCPS_ESTABLISHED || | |
4334 | tp->t_state == TCPS_FIN_WAIT_1)) { | |
4335 | tp->t_timer[TCPT_DELAYFR] = | |
4336 | OFFSET_FROM_START(tp, | |
4337 | tp->t_reorderwin); | |
4338 | tp->t_flagsext |= TF_DELAY_RECOVERY; | |
4339 | tcpstat.tcps_delay_recovery++; | |
4340 | tcp_ccdbg_trace(tp, th, | |
4341 | TCP_CC_DELAY_FASTRECOVERY); | |
4342 | break; | |
4343 | } | |
4344 | ||
4345 | tcp_rexmt_save_state(tp); | |
4346 | /* | |
4347 | * If the current tcp cc module has | |
4348 | * defined a hook for tasks to run | |
4349 | * before entering FR, call it | |
4350 | */ | |
4351 | if (CC_ALGO(tp)->pre_fr != NULL) | |
4352 | CC_ALGO(tp)->pre_fr(tp); | |
4353 | ENTER_FASTRECOVERY(tp); | |
4354 | tp->t_timer[TCPT_REXMT] = 0; | |
4355 | if (TCP_ECN_ENABLED(tp)) | |
4356 | tp->ecn_flags |= TE_SENDCWR; | |
4357 | ||
4358 | if (SACK_ENABLED(tp)) { | |
4359 | tcpstat.tcps_sack_recovery_episode++; | |
4360 | tp->t_sack_recovery_episode++; | |
4361 | tp->sack_newdata = tp->snd_nxt; | |
4362 | tp->snd_cwnd = tp->t_maxseg; | |
4363 | tp->t_flagsext &= | |
4364 | ~TF_CWND_NONVALIDATED; | |
4365 | ||
4366 | /* Process any window updates */ | |
4367 | if (tiwin > tp->snd_wnd) | |
4368 | tcp_update_window( | |
4369 | tp, thflags, | |
4370 | th, tiwin, tlen); | |
4371 | ||
4372 | tcp_ccdbg_trace(tp, th, | |
4373 | TCP_CC_ENTER_FASTRECOVERY); | |
4374 | (void) tcp_output(tp); | |
4375 | goto drop; | |
4376 | } | |
4377 | tp->snd_nxt = th->th_ack; | |
4378 | tp->snd_cwnd = tp->t_maxseg; | |
4379 | ||
4380 | /* Process any window updates */ | |
4381 | if (tiwin > tp->snd_wnd) | |
4382 | tcp_update_window(tp, | |
4383 | thflags, | |
4384 | th, tiwin, tlen); | |
4385 | ||
4386 | (void) tcp_output(tp); | |
4387 | if (tp->t_flagsext & TF_CWND_NONVALIDATED) { | |
4388 | tcp_cc_adjust_nonvalidated_cwnd(tp); | |
4389 | } else { | |
4390 | tp->snd_cwnd = tp->snd_ssthresh + | |
4391 | tp->t_maxseg * tp->t_dupacks; | |
4392 | } | |
4393 | if (SEQ_GT(onxt, tp->snd_nxt)) | |
4394 | tp->snd_nxt = onxt; | |
4395 | ||
4396 | tcp_ccdbg_trace(tp, th, | |
4397 | TCP_CC_ENTER_FASTRECOVERY); | |
4398 | goto drop; | |
4399 | } else if (limited_txmt && | |
4400 | ALLOW_LIMITED_TRANSMIT(tp) && | |
4401 | (!(SACK_ENABLED(tp)) || sack_bytes_acked > 0) && | |
4402 | (so->so_snd.sb_cc - (tp->snd_max - tp->snd_una)) > 0) { | |
4403 | u_int32_t incr = (tp->t_maxseg * tp->t_dupacks); | |
4404 | ||
4405 | /* Use Limited Transmit algorithm on the first two | |
4406 | * duplicate acks when there is new data to transmit | |
4407 | */ | |
4408 | tp->snd_cwnd += incr; | |
4409 | tcpstat.tcps_limited_txt++; | |
4410 | (void) tcp_output(tp); | |
4411 | ||
4412 | tcp_ccdbg_trace(tp, th, TCP_CC_LIMITED_TRANSMIT); | |
4413 | ||
4414 | /* Reset snd_cwnd back to normal */ | |
4415 | tp->snd_cwnd -= incr; | |
4416 | } | |
4417 | } | |
4418 | break; | |
4419 | } | |
4420 | /* | |
4421 | * If the congestion window was inflated to account | |
4422 | * for the other side's cached packets, retract it. | |
4423 | */ | |
4424 | if (IN_FASTRECOVERY(tp)) { | |
4425 | if (SEQ_LT(th->th_ack, tp->snd_recover)) { | |
4426 | /* | |
4427 | * If we received an ECE and entered | |
4428 | * recovery, the subsequent ACKs should | |
4429 | * not be treated as partial acks. | |
4430 | */ | |
4431 | if (tp->ecn_flags & TE_INRECOVERY) | |
4432 | goto process_ACK; | |
4433 | ||
4434 | if (SACK_ENABLED(tp)) | |
4435 | tcp_sack_partialack(tp, th); | |
4436 | else | |
4437 | tcp_newreno_partial_ack(tp, th); | |
4438 | tcp_ccdbg_trace(tp, th, TCP_CC_PARTIAL_ACK); | |
4439 | } else { | |
4440 | EXIT_FASTRECOVERY(tp); | |
4441 | if (CC_ALGO(tp)->post_fr != NULL) | |
4442 | CC_ALGO(tp)->post_fr(tp, th); | |
4443 | tp->t_pipeack = 0; | |
4444 | tcp_clear_pipeack_state(tp); | |
4445 | tcp_ccdbg_trace(tp, th, | |
4446 | TCP_CC_EXIT_FASTRECOVERY); | |
4447 | } | |
4448 | } else if ((tp->t_flagsext & | |
4449 | (TF_PKTS_REORDERED|TF_DELAY_RECOVERY)) | |
4450 | == (TF_PKTS_REORDERED|TF_DELAY_RECOVERY)) { | |
4451 | /* | |
4452 | * If the ack acknowledges upto snd_recover or if | |
4453 | * it acknowledges all the snd holes, exit | |
4454 | * recovery and cancel the timer. Otherwise, | |
4455 | * this is a partial ack. Wait for recovery timer | |
4456 | * to enter recovery. The snd_holes have already | |
4457 | * been updated. | |
4458 | */ | |
4459 | if (SEQ_GEQ(th->th_ack, tp->snd_recover) || | |
4460 | TAILQ_EMPTY(&tp->snd_holes)) { | |
4461 | tp->t_timer[TCPT_DELAYFR] = 0; | |
4462 | tp->t_flagsext &= ~TF_DELAY_RECOVERY; | |
4463 | EXIT_FASTRECOVERY(tp); | |
4464 | tcp_ccdbg_trace(tp, th, | |
4465 | TCP_CC_EXIT_FASTRECOVERY); | |
4466 | } | |
4467 | } else { | |
4468 | /* | |
4469 | * We were not in fast recovery. Reset the | |
4470 | * duplicate ack counter. | |
4471 | */ | |
4472 | tp->t_dupacks = 0; | |
4473 | tp->t_rexmtthresh = tcprexmtthresh; | |
4474 | } | |
4475 | ||
4476 | ||
4477 | /* | |
4478 | * If we reach this point, ACK is not a duplicate, | |
4479 | * i.e., it ACKs something we sent. | |
4480 | */ | |
4481 | if (tp->t_flags & TF_NEEDSYN) { | |
4482 | /* | |
4483 | * T/TCP: Connection was half-synchronized, and our | |
4484 | * SYN has been ACK'd (so connection is now fully | |
4485 | * synchronized). Go to non-starred state, | |
4486 | * increment snd_una for ACK of SYN, and check if | |
4487 | * we can do window scaling. | |
4488 | */ | |
4489 | tp->t_flags &= ~TF_NEEDSYN; | |
4490 | tp->snd_una++; | |
4491 | /* Do window scaling? */ | |
4492 | if (TCP_WINDOW_SCALE_ENABLED(tp)) { | |
4493 | tp->snd_scale = tp->requested_s_scale; | |
4494 | tp->rcv_scale = tp->request_r_scale; | |
4495 | } | |
4496 | } | |
4497 | ||
4498 | process_ACK: | |
4499 | VERIFY(SEQ_GEQ(th->th_ack, tp->snd_una)); | |
4500 | acked = BYTES_ACKED(th, tp); | |
4501 | tcpstat.tcps_rcvackpack++; | |
4502 | tcpstat.tcps_rcvackbyte += acked; | |
4503 | ||
4504 | /* | |
4505 | * If the last packet was a retransmit, make sure | |
4506 | * it was not spurious. | |
4507 | * | |
4508 | * This will also take care of congestion window | |
4509 | * adjustment if a last packet was recovered due to a | |
4510 | * tail loss probe. | |
4511 | */ | |
4512 | tcp_bad_rexmt_check(tp, th, &to); | |
4513 | ||
4514 | /* Recalculate the RTT */ | |
4515 | tcp_compute_rtt(tp, &to, th); | |
4516 | ||
4517 | /* | |
4518 | * If all outstanding data is acked, stop retransmit | |
4519 | * timer and remember to restart (more output or persist). | |
4520 | * If there is more data to be acked, restart retransmit | |
4521 | * timer, using current (possibly backed-off) value. | |
4522 | */ | |
4523 | TCP_RESET_REXMT_STATE(tp); | |
4524 | TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), | |
4525 | tp->t_rttmin, TCPTV_REXMTMAX, | |
4526 | TCP_ADD_REXMTSLOP(tp)); | |
4527 | if (th->th_ack == tp->snd_max) { | |
4528 | tp->t_timer[TCPT_REXMT] = 0; | |
4529 | tp->t_timer[TCPT_PTO] = 0; | |
4530 | needoutput = 1; | |
4531 | } else if (tp->t_timer[TCPT_PERSIST] == 0) | |
4532 | tp->t_timer[TCPT_REXMT] = OFFSET_FROM_START(tp, | |
4533 | tp->t_rxtcur); | |
4534 | ||
4535 | /* | |
4536 | * If no data (only SYN) was ACK'd, skip rest of ACK | |
4537 | * processing. | |
4538 | */ | |
4539 | if (acked == 0) | |
4540 | goto step6; | |
4541 | ||
4542 | /* | |
4543 | * When outgoing data has been acked (except the SYN+data), we | |
4544 | * mark this connection as "sending good" for TFO. | |
4545 | */ | |
4546 | if ((tp->t_tfo_stats & TFO_S_SYN_DATA_SENT) && | |
4547 | !(tp->t_tfo_flags & TFO_F_NO_SNDPROBING) && | |
4548 | !(th->th_flags & TH_SYN)) | |
4549 | tp->t_tfo_flags |= TFO_F_NO_SNDPROBING; | |
4550 | ||
4551 | /* | |
4552 | * If TH_ECE is received, make sure that ECN is enabled | |
4553 | * on that connection and we have sent ECT on data packets. | |
4554 | */ | |
4555 | if ((thflags & TH_ECE) != 0 && TCP_ECN_ENABLED(tp) && | |
4556 | (tp->ecn_flags & TE_SENDIPECT)) { | |
4557 | /* | |
4558 | * Reduce the congestion window if we haven't | |
4559 | * done so. | |
4560 | */ | |
4561 | if (!IN_FASTRECOVERY(tp)) { | |
4562 | tcp_reduce_congestion_window(tp); | |
4563 | tp->ecn_flags |= (TE_INRECOVERY|TE_SENDCWR); | |
4564 | /* | |
4565 | * Also note that the connection received | |
4566 | * ECE atleast once | |
4567 | */ | |
4568 | tp->ecn_flags |= TE_RECV_ECN_ECE; | |
4569 | INP_INC_IFNET_STAT(inp, ecn_recv_ece); | |
4570 | tcpstat.tcps_ecn_recv_ece++; | |
4571 | tcp_ccdbg_trace(tp, th, TCP_CC_ECN_RCVD); | |
4572 | } | |
4573 | } | |
4574 | ||
4575 | /* | |
4576 | * When new data is acked, open the congestion window. | |
4577 | * The specifics of how this is achieved are up to the | |
4578 | * congestion control algorithm in use for this connection. | |
4579 | * | |
4580 | * The calculations in this function assume that snd_una is | |
4581 | * not updated yet. | |
4582 | */ | |
4583 | if (!IN_FASTRECOVERY(tp)) { | |
4584 | if (CC_ALGO(tp)->ack_rcvd != NULL) | |
4585 | CC_ALGO(tp)->ack_rcvd(tp, th); | |
4586 | tcp_ccdbg_trace(tp, th, TCP_CC_ACK_RCVD); | |
4587 | } | |
4588 | if (acked > so->so_snd.sb_cc) { | |
4589 | tp->snd_wnd -= so->so_snd.sb_cc; | |
4590 | sbdrop(&so->so_snd, (int)so->so_snd.sb_cc); | |
4591 | if (so->so_flags & SOF_ENABLE_MSGS) { | |
4592 | so->so_msg_state->msg_serial_bytes -= | |
4593 | (int)so->so_snd.sb_cc; | |
4594 | } | |
4595 | ourfinisacked = 1; | |
4596 | } else { | |
4597 | sbdrop(&so->so_snd, acked); | |
4598 | if (so->so_flags & SOF_ENABLE_MSGS) { | |
4599 | so->so_msg_state->msg_serial_bytes -= | |
4600 | acked; | |
4601 | } | |
4602 | tcp_sbsnd_trim(&so->so_snd); | |
4603 | tp->snd_wnd -= acked; | |
4604 | ourfinisacked = 0; | |
4605 | } | |
4606 | /* detect una wraparound */ | |
4607 | if ( !IN_FASTRECOVERY(tp) && | |
4608 | SEQ_GT(tp->snd_una, tp->snd_recover) && | |
4609 | SEQ_LEQ(th->th_ack, tp->snd_recover)) | |
4610 | tp->snd_recover = th->th_ack - 1; | |
4611 | ||
4612 | if (IN_FASTRECOVERY(tp) && | |
4613 | SEQ_GEQ(th->th_ack, tp->snd_recover)) | |
4614 | EXIT_FASTRECOVERY(tp); | |
4615 | ||
4616 | tp->snd_una = th->th_ack; | |
4617 | ||
4618 | if (SACK_ENABLED(tp)) { | |
4619 | if (SEQ_GT(tp->snd_una, tp->snd_recover)) | |
4620 | tp->snd_recover = tp->snd_una; | |
4621 | } | |
4622 | if (SEQ_LT(tp->snd_nxt, tp->snd_una)) | |
4623 | tp->snd_nxt = tp->snd_una; | |
4624 | if (!SLIST_EMPTY(&tp->t_rxt_segments) && | |
4625 | !TCP_DSACK_SEQ_IN_WINDOW(tp, tp->t_dsack_lastuna, | |
4626 | tp->snd_una)) | |
4627 | tcp_rxtseg_clean(tp); | |
4628 | if ((tp->t_flagsext & TF_MEASURESNDBW) != 0 && | |
4629 | tp->t_bwmeas != NULL) | |
4630 | tcp_bwmeas_check(tp); | |
4631 | ||
4632 | /* | |
4633 | * sowwakeup must happen after snd_una, et al. are | |
4634 | * updated so that the sequence numbers are in sync with | |
4635 | * so_snd | |
4636 | */ | |
4637 | sowwakeup(so); | |
4638 | ||
4639 | if (!SLIST_EMPTY(&tp->t_notify_ack)) | |
4640 | tcp_notify_acknowledgement(tp, so); | |
4641 | ||
4642 | switch (tp->t_state) { | |
4643 | ||
4644 | /* | |
4645 | * In FIN_WAIT_1 STATE in addition to the processing | |
4646 | * for the ESTABLISHED state if our FIN is now acknowledged | |
4647 | * then enter FIN_WAIT_2. | |
4648 | */ | |
4649 | case TCPS_FIN_WAIT_1: | |
4650 | if (ourfinisacked) { | |
4651 | /* | |
4652 | * If we can't receive any more | |
4653 | * data, then closing user can proceed. | |
4654 | * Starting the TCPT_2MSL timer is contrary to the | |
4655 | * specification, but if we don't get a FIN | |
4656 | * we'll hang forever. | |
4657 | */ | |
4658 | if (so->so_state & SS_CANTRCVMORE) { | |
4659 | tp->t_timer[TCPT_2MSL] = OFFSET_FROM_START(tp, | |
4660 | TCP_CONN_MAXIDLE(tp)); | |
4661 | isconnected = FALSE; | |
4662 | isdisconnected = TRUE; | |
4663 | } | |
4664 | DTRACE_TCP4(state__change, void, NULL, | |
4665 | struct inpcb *, inp, | |
4666 | struct tcpcb *, tp, | |
4667 | int32_t, TCPS_FIN_WAIT_2); | |
4668 | tp->t_state = TCPS_FIN_WAIT_2; | |
4669 | /* fall through and make sure we also recognize | |
4670 | * data ACKed with the FIN | |
4671 | */ | |
4672 | } | |
4673 | break; | |
4674 | ||
4675 | /* | |
4676 | * In CLOSING STATE in addition to the processing for | |
4677 | * the ESTABLISHED state if the ACK acknowledges our FIN | |
4678 | * then enter the TIME-WAIT state, otherwise ignore | |
4679 | * the segment. | |
4680 | */ | |
4681 | case TCPS_CLOSING: | |
4682 | if (ourfinisacked) { | |
4683 | DTRACE_TCP4(state__change, void, NULL, | |
4684 | struct inpcb *, inp, | |
4685 | struct tcpcb *, tp, | |
4686 | int32_t, TCPS_TIME_WAIT); | |
4687 | tp->t_state = TCPS_TIME_WAIT; | |
4688 | tcp_canceltimers(tp); | |
4689 | if (tp->t_flagsext & TF_NOTIMEWAIT) { | |
4690 | tp->t_flags |= TF_CLOSING; | |
4691 | } else { | |
4692 | add_to_time_wait(tp, 2 * tcp_msl); | |
4693 | } | |
4694 | isconnected = FALSE; | |
4695 | isdisconnected = TRUE; | |
4696 | } | |
4697 | break; | |
4698 | ||
4699 | /* | |
4700 | * In LAST_ACK, we may still be waiting for data to drain | |
4701 | * and/or to be acked, as well as for the ack of our FIN. | |
4702 | * If our FIN is now acknowledged, delete the TCB, | |
4703 | * enter the closed state and return. | |
4704 | */ | |
4705 | case TCPS_LAST_ACK: | |
4706 | if (ourfinisacked) { | |
4707 | tp = tcp_close(tp); | |
4708 | goto drop; | |
4709 | } | |
4710 | break; | |
4711 | ||
4712 | /* | |
4713 | * In TIME_WAIT state the only thing that should arrive | |
4714 | * is a retransmission of the remote FIN. Acknowledge | |
4715 | * it and restart the finack timer. | |
4716 | */ | |
4717 | case TCPS_TIME_WAIT: | |
4718 | add_to_time_wait(tp, 2 * tcp_msl); | |
4719 | goto dropafterack; | |
4720 | } | |
4721 | ||
4722 | /* | |
4723 | * If there is a SACK option on the ACK and we | |
4724 | * haven't seen any duplicate acks before, count | |
4725 | * it as a duplicate ack even if the cumulative | |
4726 | * ack is advanced. If the receiver delayed an | |
4727 | * ack and detected loss afterwards, then the ack | |
4728 | * will advance cumulative ack and will also have | |
4729 | * a SACK option. So counting it as one duplicate | |
4730 | * ack is ok. | |
4731 | */ | |
4732 | if (sack_ackadv == 1 && | |
4733 | tp->t_state == TCPS_ESTABLISHED && | |
4734 | SACK_ENABLED(tp) && sack_bytes_acked > 0 && | |
4735 | to.to_nsacks > 0 && tp->t_dupacks == 0 && | |
4736 | SEQ_LEQ(th->th_ack, tp->snd_una) && tlen == 0 && | |
4737 | !(tp->t_flagsext & TF_PKTS_REORDERED)) { | |
4738 | tcpstat.tcps_sack_ackadv++; | |
4739 | goto process_dupack; | |
4740 | } | |
4741 | } | |
4742 | ||
4743 | step6: | |
4744 | /* | |
4745 | * Update window information. | |
4746 | */ | |
4747 | if (tcp_update_window(tp, thflags, th, tiwin, tlen)) | |
4748 | needoutput = 1; | |
4749 | ||
4750 | /* | |
4751 | * Process segments with URG. | |
4752 | */ | |
4753 | if ((thflags & TH_URG) && th->th_urp && | |
4754 | TCPS_HAVERCVDFIN(tp->t_state) == 0) { | |
4755 | /* | |
4756 | * This is a kludge, but if we receive and accept | |
4757 | * random urgent pointers, we'll crash in | |
4758 | * soreceive. It's hard to imagine someone | |
4759 | * actually wanting to send this much urgent data. | |
4760 | */ | |
4761 | if (th->th_urp + so->so_rcv.sb_cc > sb_max) { | |
4762 | th->th_urp = 0; /* XXX */ | |
4763 | thflags &= ~TH_URG; /* XXX */ | |
4764 | goto dodata; /* XXX */ | |
4765 | } | |
4766 | /* | |
4767 | * If this segment advances the known urgent pointer, | |
4768 | * then mark the data stream. This should not happen | |
4769 | * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since | |
4770 | * a FIN has been received from the remote side. | |
4771 | * In these states we ignore the URG. | |
4772 | * | |
4773 | * According to RFC961 (Assigned Protocols), | |
4774 | * the urgent pointer points to the last octet | |
4775 | * of urgent data. We continue, however, | |
4776 | * to consider it to indicate the first octet | |
4777 | * of data past the urgent section as the original | |
4778 | * spec states (in one of two places). | |
4779 | */ | |
4780 | if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) { | |
4781 | tp->rcv_up = th->th_seq + th->th_urp; | |
4782 | so->so_oobmark = so->so_rcv.sb_cc + | |
4783 | (tp->rcv_up - tp->rcv_nxt) - 1; | |
4784 | if (so->so_oobmark == 0) { | |
4785 | so->so_state |= SS_RCVATMARK; | |
4786 | postevent(so, 0, EV_OOB); | |
4787 | } | |
4788 | sohasoutofband(so); | |
4789 | tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA); | |
4790 | } | |
4791 | /* | |
4792 | * Remove out of band data so doesn't get presented to user. | |
4793 | * This can happen independent of advancing the URG pointer, | |
4794 | * but if two URG's are pending at once, some out-of-band | |
4795 | * data may creep in... ick. | |
4796 | */ | |
4797 | if (th->th_urp <= (u_int32_t)tlen | |
4798 | #if SO_OOBINLINE | |
4799 | && (so->so_options & SO_OOBINLINE) == 0 | |
4800 | #endif | |
4801 | ) | |
4802 | tcp_pulloutofband(so, th, m, | |
4803 | drop_hdrlen); /* hdr drop is delayed */ | |
4804 | } else { | |
4805 | /* | |
4806 | * If no out of band data is expected, | |
4807 | * pull receive urgent pointer along | |
4808 | * with the receive window. | |
4809 | */ | |
4810 | if (SEQ_GT(tp->rcv_nxt, tp->rcv_up)) | |
4811 | tp->rcv_up = tp->rcv_nxt; | |
4812 | } | |
4813 | dodata: | |
4814 | ||
4815 | /* Set socket's connect or disconnect state correcly before doing data. | |
4816 | * The following might unlock the socket if there is an upcall or a socket | |
4817 | * filter. | |
4818 | */ | |
4819 | if (isconnected) { | |
4820 | soisconnected(so); | |
4821 | } else if (isdisconnected) { | |
4822 | soisdisconnected(so); | |
4823 | } | |
4824 | ||
4825 | /* Let's check the state of pcb just to make sure that it did not get closed | |
4826 | * when we unlocked above | |
4827 | */ | |
4828 | if (inp->inp_state == INPCB_STATE_DEAD) { | |
4829 | /* Just drop the packet that we are processing and return */ | |
4830 | goto drop; | |
4831 | } | |
4832 | ||
4833 | /* | |
4834 | * Process the segment text, merging it into the TCP sequencing queue, | |
4835 | * and arranging for acknowledgment of receipt if necessary. | |
4836 | * This process logically involves adjusting tp->rcv_wnd as data | |
4837 | * is presented to the user (this happens in tcp_usrreq.c, | |
4838 | * case PRU_RCVD). If a FIN has already been received on this | |
4839 | * connection then we just ignore the text. | |
4840 | * | |
4841 | * If we are in SYN-received state and got a valid TFO cookie, we want | |
4842 | * to process the data. | |
4843 | */ | |
4844 | if ((tlen || (thflags & TH_FIN)) && | |
4845 | TCPS_HAVERCVDFIN(tp->t_state) == 0 && | |
4846 | (TCPS_HAVEESTABLISHED(tp->t_state) || | |
4847 | (tp->t_state == TCPS_SYN_RECEIVED && | |
4848 | (tp->t_tfo_flags & TFO_F_COOKIE_VALID)))) { | |
4849 | tcp_seq save_start = th->th_seq; | |
4850 | tcp_seq save_end = th->th_seq + tlen; | |
4851 | m_adj(m, drop_hdrlen); /* delayed header drop */ | |
4852 | /* | |
4853 | * Insert segment which includes th into TCP reassembly queue | |
4854 | * with control block tp. Set thflags to whether reassembly now | |
4855 | * includes a segment with FIN. This handles the common case | |
4856 | * inline (segment is the next to be received on an established | |
4857 | * connection, and the queue is empty), avoiding linkage into | |
4858 | * and removal from the queue and repetition of various | |
4859 | * conversions. | |
4860 | * Set DELACK for segments received in order, but ack | |
4861 | * immediately when segments are out of order (so | |
4862 | * fast retransmit can work). | |
4863 | */ | |
4864 | if (th->th_seq == tp->rcv_nxt && LIST_EMPTY(&tp->t_segq)) { | |
4865 | TCP_INC_VAR(tp->t_unacksegs, nlropkts); | |
4866 | /* | |
4867 | * Calculate the RTT on the receiver only if the | |
4868 | * connection is in streaming mode and the last | |
4869 | * packet was not an end-of-write | |
4870 | */ | |
4871 | if (tp->t_flags & TF_STREAMING_ON) | |
4872 | tcp_compute_rtt(tp, &to, th); | |
4873 | ||
4874 | if (DELAY_ACK(tp, th) && | |
4875 | ((tp->t_flags & TF_ACKNOW) == 0) ) { | |
4876 | if ((tp->t_flags & TF_DELACK) == 0) { | |
4877 | tp->t_flags |= TF_DELACK; | |
4878 | tp->t_timer[TCPT_DELACK] = | |
4879 | OFFSET_FROM_START(tp, tcp_delack); | |
4880 | } | |
4881 | } | |
4882 | else { | |
4883 | tp->t_flags |= TF_ACKNOW; | |
4884 | } | |
4885 | tp->rcv_nxt += tlen; | |
4886 | thflags = th->th_flags & TH_FIN; | |
4887 | TCP_INC_VAR(tcpstat.tcps_rcvpack, nlropkts); | |
4888 | tcpstat.tcps_rcvbyte += tlen; | |
4889 | if (nstat_collect) { | |
4890 | if (m->m_pkthdr.pkt_flags & PKTF_SW_LRO_PKT) { | |
4891 | INP_ADD_STAT(inp, cell, wifi, wired, | |
4892 | rxpackets, m->m_pkthdr.lro_npkts); | |
4893 | } else { | |
4894 | INP_ADD_STAT(inp, cell, wifi, wired, | |
4895 | rxpackets, 1); | |
4896 | } | |
4897 | INP_ADD_STAT(inp, cell, wifi, wired, | |
4898 | rxbytes, tlen); | |
4899 | inp_set_activity_bitmap(inp); | |
4900 | } | |
4901 | tcp_sbrcv_grow(tp, &so->so_rcv, &to, tlen, | |
4902 | TCP_AUTORCVBUF_MAX(ifp)); | |
4903 | so_recv_data_stat(so, m, drop_hdrlen); | |
4904 | ||
4905 | if (sbappendstream_rcvdemux(so, m, | |
4906 | th->th_seq - (tp->irs + 1), 0)) { | |
4907 | sorwakeup(so); | |
4908 | } | |
4909 | } else { | |
4910 | thflags = tcp_reass(tp, th, &tlen, m, ifp); | |
4911 | tp->t_flags |= TF_ACKNOW; | |
4912 | } | |
4913 | ||
4914 | if ((tlen > 0 || (th->th_flags & TH_FIN)) && SACK_ENABLED(tp)) { | |
4915 | if (th->th_flags & TH_FIN) | |
4916 | save_end++; | |
4917 | tcp_update_sack_list(tp, save_start, save_end); | |
4918 | } | |
4919 | ||
4920 | tcp_adaptive_rwtimo_check(tp, tlen); | |
4921 | ||
4922 | if (tlen > 0) | |
4923 | tcp_tfo_rcv_data(tp); | |
4924 | ||
4925 | if (tp->t_flags & TF_DELACK) | |
4926 | { | |
4927 | #if INET6 | |
4928 | if (isipv6) { | |
4929 | KERNEL_DEBUG(DBG_LAYER_END, ((th->th_dport << 16) | th->th_sport), | |
4930 | (((ip6->ip6_src.s6_addr16[0]) << 16) | (ip6->ip6_dst.s6_addr16[0])), | |
4931 | th->th_seq, th->th_ack, th->th_win); | |
4932 | } | |
4933 | else | |
4934 | #endif | |
4935 | { | |
4936 | KERNEL_DEBUG(DBG_LAYER_END, ((th->th_dport << 16) | th->th_sport), | |
4937 | (((ip->ip_src.s_addr & 0xffff) << 16) | (ip->ip_dst.s_addr & 0xffff)), | |
4938 | th->th_seq, th->th_ack, th->th_win); | |
4939 | } | |
4940 | ||
4941 | } | |
4942 | } else { | |
4943 | m_freem(m); | |
4944 | thflags &= ~TH_FIN; | |
4945 | } | |
4946 | ||
4947 | /* | |
4948 | * If FIN is received ACK the FIN and let the user know | |
4949 | * that the connection is closing. | |
4950 | */ | |
4951 | if (thflags & TH_FIN) { | |
4952 | if (TCPS_HAVERCVDFIN(tp->t_state) == 0) { | |
4953 | socantrcvmore(so); | |
4954 | postevent(so, 0, EV_FIN); | |
4955 | /* | |
4956 | * If connection is half-synchronized | |
4957 | * (ie NEEDSYN flag on) then delay ACK, | |
4958 | * so it may be piggybacked when SYN is sent. | |
4959 | * Otherwise, since we received a FIN then no | |
4960 | * more input can be expected, send ACK now. | |
4961 | */ | |
4962 | TCP_INC_VAR(tp->t_unacksegs, nlropkts); | |
4963 | if (DELAY_ACK(tp, th) && (tp->t_flags & TF_NEEDSYN)) { | |
4964 | if ((tp->t_flags & TF_DELACK) == 0) { | |
4965 | tp->t_flags |= TF_DELACK; | |
4966 | tp->t_timer[TCPT_DELACK] = OFFSET_FROM_START(tp, tcp_delack); | |
4967 | } | |
4968 | } else { | |
4969 | tp->t_flags |= TF_ACKNOW; | |
4970 | } | |
4971 | tp->rcv_nxt++; | |
4972 | } | |
4973 | switch (tp->t_state) { | |
4974 | ||
4975 | /* | |
4976 | * In SYN_RECEIVED and ESTABLISHED STATES | |
4977 | * enter the CLOSE_WAIT state. | |
4978 | */ | |
4979 | case TCPS_SYN_RECEIVED: | |
4980 | tp->t_starttime = tcp_now; | |
4981 | case TCPS_ESTABLISHED: | |
4982 | DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp, | |
4983 | struct tcpcb *, tp, int32_t, TCPS_CLOSE_WAIT); | |
4984 | tp->t_state = TCPS_CLOSE_WAIT; | |
4985 | break; | |
4986 | ||
4987 | /* | |
4988 | * If still in FIN_WAIT_1 STATE FIN has not been acked so | |
4989 | * enter the CLOSING state. | |
4990 | */ | |
4991 | case TCPS_FIN_WAIT_1: | |
4992 | DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp, | |
4993 | struct tcpcb *, tp, int32_t, TCPS_CLOSING); | |
4994 | tp->t_state = TCPS_CLOSING; | |
4995 | break; | |
4996 | ||
4997 | /* | |
4998 | * In FIN_WAIT_2 state enter the TIME_WAIT state, | |
4999 | * starting the time-wait timer, turning off the other | |
5000 | * standard timers. | |
5001 | */ | |
5002 | case TCPS_FIN_WAIT_2: | |
5003 | DTRACE_TCP4(state__change, void, NULL, | |
5004 | struct inpcb *, inp, | |
5005 | struct tcpcb *, tp, | |
5006 | int32_t, TCPS_TIME_WAIT); | |
5007 | tp->t_state = TCPS_TIME_WAIT; | |
5008 | tcp_canceltimers(tp); | |
5009 | tp->t_flags |= TF_ACKNOW; | |
5010 | if (tp->t_flagsext & TF_NOTIMEWAIT) { | |
5011 | tp->t_flags |= TF_CLOSING; | |
5012 | } else { | |
5013 | add_to_time_wait(tp, 2 * tcp_msl); | |
5014 | } | |
5015 | soisdisconnected(so); | |
5016 | break; | |
5017 | ||
5018 | /* | |
5019 | * In TIME_WAIT state restart the 2 MSL time_wait timer. | |
5020 | */ | |
5021 | case TCPS_TIME_WAIT: | |
5022 | add_to_time_wait(tp, 2 * tcp_msl); | |
5023 | break; | |
5024 | } | |
5025 | } | |
5026 | #if TCPDEBUG | |
5027 | if (so->so_options & SO_DEBUG) | |
5028 | tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen, | |
5029 | &tcp_savetcp, 0); | |
5030 | #endif | |
5031 | ||
5032 | /* | |
5033 | * Return any desired output. | |
5034 | */ | |
5035 | if (needoutput || (tp->t_flags & TF_ACKNOW)) { | |
5036 | (void) tcp_output(tp); | |
5037 | } | |
5038 | ||
5039 | tcp_check_timer_state(tp); | |
5040 | ||
5041 | ||
5042 | socket_unlock(so, 1); | |
5043 | KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END,0,0,0,0,0); | |
5044 | return; | |
5045 | ||
5046 | dropafterack: | |
5047 | /* | |
5048 | * Generate an ACK dropping incoming segment if it occupies | |
5049 | * sequence space, where the ACK reflects our state. | |
5050 | * | |
5051 | * We can now skip the test for the RST flag since all | |
5052 | * paths to this code happen after packets containing | |
5053 | * RST have been dropped. | |
5054 | * | |
5055 | * In the SYN-RECEIVED state, don't send an ACK unless the | |
5056 | * segment we received passes the SYN-RECEIVED ACK test. | |
5057 | * If it fails send a RST. This breaks the loop in the | |
5058 | * "LAND" DoS attack, and also prevents an ACK storm | |
5059 | * between two listening ports that have been sent forged | |
5060 | * SYN segments, each with the source address of the other. | |
5061 | */ | |
5062 | if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) && | |
5063 | (SEQ_GT(tp->snd_una, th->th_ack) || | |
5064 | SEQ_GT(th->th_ack, tp->snd_max)) ) { | |
5065 | rstreason = BANDLIM_RST_OPENPORT; | |
5066 | IF_TCP_STATINC(ifp, dospacket); | |
5067 | goto dropwithreset; | |
5068 | } | |
5069 | #if TCPDEBUG | |
5070 | if (so->so_options & SO_DEBUG) | |
5071 | tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen, | |
5072 | &tcp_savetcp, 0); | |
5073 | #endif | |
5074 | m_freem(m); | |
5075 | tp->t_flags |= TF_ACKNOW; | |
5076 | (void) tcp_output(tp); | |
5077 | ||
5078 | /* Don't need to check timer state as we should have done it during tcp_output */ | |
5079 | socket_unlock(so, 1); | |
5080 | KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END,0,0,0,0,0); | |
5081 | return; | |
5082 | dropwithresetnosock: | |
5083 | nosock = 1; | |
5084 | dropwithreset: | |
5085 | /* | |
5086 | * Generate a RST, dropping incoming segment. | |
5087 | * Make ACK acceptable to originator of segment. | |
5088 | * Don't bother to respond if destination was broadcast/multicast. | |
5089 | */ | |
5090 | if ((thflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST)) | |
5091 | goto drop; | |
5092 | #if INET6 | |
5093 | if (isipv6) { | |
5094 | if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) || | |
5095 | IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) | |
5096 | goto drop; | |
5097 | } else | |
5098 | #endif /* INET6 */ | |
5099 | if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || | |
5100 | IN_MULTICAST(ntohl(ip->ip_src.s_addr)) || | |
5101 | ip->ip_src.s_addr == htonl(INADDR_BROADCAST) || | |
5102 | in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) | |
5103 | goto drop; | |
5104 | /* IPv6 anycast check is done at tcp6_input() */ | |
5105 | ||
5106 | /* | |
5107 | * Perform bandwidth limiting. | |
5108 | */ | |
5109 | #if ICMP_BANDLIM | |
5110 | if (badport_bandlim(rstreason) < 0) | |
5111 | goto drop; | |
5112 | #endif | |
5113 | ||
5114 | #if TCPDEBUG | |
5115 | if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG)) | |
5116 | tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen, | |
5117 | &tcp_savetcp, 0); | |
5118 | #endif | |
5119 | bzero(&tra, sizeof(tra)); | |
5120 | tra.ifscope = ifscope; | |
5121 | tra.awdl_unrestricted = 1; | |
5122 | tra.intcoproc_allowed = 1; | |
5123 | if (thflags & TH_ACK) | |
5124 | /* mtod() below is safe as long as hdr dropping is delayed */ | |
5125 | tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack, | |
5126 | TH_RST, &tra); | |
5127 | else { | |
5128 | if (thflags & TH_SYN) | |
5129 | tlen++; | |
5130 | /* mtod() below is safe as long as hdr dropping is delayed */ | |
5131 | tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen, | |
5132 | (tcp_seq)0, TH_RST|TH_ACK, &tra); | |
5133 | } | |
5134 | /* destroy temporarily created socket */ | |
5135 | if (dropsocket) { | |
5136 | (void) soabort(so); | |
5137 | socket_unlock(so, 1); | |
5138 | } else if ((inp != NULL) && (nosock == 0)) { | |
5139 | socket_unlock(so, 1); | |
5140 | } | |
5141 | KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END,0,0,0,0,0); | |
5142 | return; | |
5143 | dropnosock: | |
5144 | nosock = 1; | |
5145 | drop: | |
5146 | /* | |
5147 | * Drop space held by incoming segment and return. | |
5148 | */ | |
5149 | #if TCPDEBUG | |
5150 | if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG)) | |
5151 | tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen, | |
5152 | &tcp_savetcp, 0); | |
5153 | #endif | |
5154 | m_freem(m); | |
5155 | /* destroy temporarily created socket */ | |
5156 | if (dropsocket) { | |
5157 | (void) soabort(so); | |
5158 | socket_unlock(so, 1); | |
5159 | } | |
5160 | else if (nosock == 0) { | |
5161 | socket_unlock(so, 1); | |
5162 | } | |
5163 | KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END,0,0,0,0,0); | |
5164 | return; | |
5165 | } | |
5166 | ||
5167 | /* | |
5168 | * Parse TCP options and place in tcpopt. | |
5169 | */ | |
5170 | static void | |
5171 | tcp_dooptions(struct tcpcb *tp, u_char *cp, int cnt, struct tcphdr *th, | |
5172 | struct tcpopt *to) | |
5173 | { | |
5174 | u_short mss = 0; | |
5175 | int opt, optlen; | |
5176 | ||
5177 | for (; cnt > 0; cnt -= optlen, cp += optlen) { | |
5178 | opt = cp[0]; | |
5179 | if (opt == TCPOPT_EOL) | |
5180 | break; | |
5181 | if (opt == TCPOPT_NOP) | |
5182 | optlen = 1; | |
5183 | else { | |
5184 | if (cnt < 2) | |
5185 | break; | |
5186 | optlen = cp[1]; | |
5187 | if (optlen < 2 || optlen > cnt) | |
5188 | break; | |
5189 | } | |
5190 | switch (opt) { | |
5191 | ||
5192 | default: | |
5193 | continue; | |
5194 | ||
5195 | case TCPOPT_MAXSEG: | |
5196 | if (optlen != TCPOLEN_MAXSEG) | |
5197 | continue; | |
5198 | if (!(th->th_flags & TH_SYN)) | |
5199 | continue; | |
5200 | bcopy((char *) cp + 2, (char *) &mss, sizeof(mss)); | |
5201 | NTOHS(mss); | |
5202 | to->to_mss = mss; | |
5203 | to->to_flags |= TOF_MSS; | |
5204 | break; | |
5205 | ||
5206 | case TCPOPT_WINDOW: | |
5207 | if (optlen != TCPOLEN_WINDOW) | |
5208 | continue; | |
5209 | if (!(th->th_flags & TH_SYN)) | |
5210 | continue; | |
5211 | to->to_flags |= TOF_SCALE; | |
5212 | to->to_requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT); | |
5213 | break; | |
5214 | ||
5215 | case TCPOPT_TIMESTAMP: | |
5216 | if (optlen != TCPOLEN_TIMESTAMP) | |
5217 | continue; | |
5218 | to->to_flags |= TOF_TS; | |
5219 | bcopy((char *)cp + 2, | |
5220 | (char *)&to->to_tsval, sizeof(to->to_tsval)); | |
5221 | NTOHL(to->to_tsval); | |
5222 | bcopy((char *)cp + 6, | |
5223 | (char *)&to->to_tsecr, sizeof(to->to_tsecr)); | |
5224 | NTOHL(to->to_tsecr); | |
5225 | /* Re-enable sending Timestamps if we received them */ | |
5226 | if (!(tp->t_flags & TF_REQ_TSTMP) && | |
5227 | tcp_do_rfc1323 == 1) | |
5228 | tp->t_flags |= TF_REQ_TSTMP; | |
5229 | break; | |
5230 | case TCPOPT_SACK_PERMITTED: | |
5231 | if (!tcp_do_sack || | |
5232 | optlen != TCPOLEN_SACK_PERMITTED) | |
5233 | continue; | |
5234 | if (th->th_flags & TH_SYN) | |
5235 | to->to_flags |= TOF_SACK; | |
5236 | break; | |
5237 | case TCPOPT_SACK: | |
5238 | if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0) | |
5239 | continue; | |
5240 | to->to_nsacks = (optlen - 2) / TCPOLEN_SACK; | |
5241 | to->to_sacks = cp + 2; | |
5242 | tcpstat.tcps_sack_rcv_blocks++; | |
5243 | ||
5244 | break; | |
5245 | case TCPOPT_FASTOPEN: | |
5246 | if (optlen == TCPOLEN_FASTOPEN_REQ) { | |
5247 | if (tp->t_state != TCPS_LISTEN) | |
5248 | continue; | |
5249 | ||
5250 | to->to_flags |= TOF_TFOREQ; | |
5251 | } else { | |
5252 | if (optlen < TCPOLEN_FASTOPEN_REQ || | |
5253 | (optlen - TCPOLEN_FASTOPEN_REQ) > TFO_COOKIE_LEN_MAX || | |
5254 | (optlen - TCPOLEN_FASTOPEN_REQ) < TFO_COOKIE_LEN_MIN) | |
5255 | continue; | |
5256 | if (tp->t_state != TCPS_LISTEN && | |
5257 | tp->t_state != TCPS_SYN_SENT) | |
5258 | continue; | |
5259 | ||
5260 | to->to_flags |= TOF_TFO; | |
5261 | to->to_tfo = cp + 1; | |
5262 | } | |
5263 | ||
5264 | break; | |
5265 | #if MPTCP | |
5266 | case TCPOPT_MULTIPATH: | |
5267 | tcp_do_mptcp_options(tp, cp, th, to, optlen); | |
5268 | break; | |
5269 | #endif /* MPTCP */ | |
5270 | } | |
5271 | } | |
5272 | } | |
5273 | ||
5274 | static void | |
5275 | tcp_finalize_options(struct tcpcb *tp, struct tcpopt *to, unsigned int ifscope) | |
5276 | { | |
5277 | if (to->to_flags & TOF_TS) { | |
5278 | tp->t_flags |= TF_RCVD_TSTMP; | |
5279 | tp->ts_recent = to->to_tsval; | |
5280 | tp->ts_recent_age = tcp_now; | |
5281 | ||
5282 | } | |
5283 | if (to->to_flags & TOF_MSS) | |
5284 | tcp_mss(tp, to->to_mss, ifscope); | |
5285 | if (SACK_ENABLED(tp)) { | |
5286 | if (!(to->to_flags & TOF_SACK)) | |
5287 | tp->t_flagsext &= ~(TF_SACK_ENABLE); | |
5288 | else | |
5289 | tp->t_flags |= TF_SACK_PERMIT; | |
5290 | } | |
5291 | if (to->to_flags & TOF_SCALE) { | |
5292 | tp->t_flags |= TF_RCVD_SCALE; | |
5293 | tp->requested_s_scale = to->to_requested_s_scale; | |
5294 | ||
5295 | /* Re-enable window scaling, if the option is received */ | |
5296 | if (tp->request_r_scale > 0) | |
5297 | tp->t_flags |= TF_REQ_SCALE; | |
5298 | } | |
5299 | } | |
5300 | ||
5301 | /* | |
5302 | * Pull out of band byte out of a segment so | |
5303 | * it doesn't appear in the user's data queue. | |
5304 | * It is still reflected in the segment length for | |
5305 | * sequencing purposes. | |
5306 | * | |
5307 | * @param off delayed to be droped hdrlen | |
5308 | */ | |
5309 | static void | |
5310 | tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m, int off) | |
5311 | { | |
5312 | int cnt = off + th->th_urp - 1; | |
5313 | ||
5314 | while (cnt >= 0) { | |
5315 | if (m->m_len > cnt) { | |
5316 | char *cp = mtod(m, caddr_t) + cnt; | |
5317 | struct tcpcb *tp = sototcpcb(so); | |
5318 | ||
5319 | tp->t_iobc = *cp; | |
5320 | tp->t_oobflags |= TCPOOB_HAVEDATA; | |
5321 | bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1)); | |
5322 | m->m_len--; | |
5323 | if (m->m_flags & M_PKTHDR) | |
5324 | m->m_pkthdr.len--; | |
5325 | return; | |
5326 | } | |
5327 | cnt -= m->m_len; | |
5328 | m = m->m_next; | |
5329 | if (m == 0) | |
5330 | break; | |
5331 | } | |
5332 | panic("tcp_pulloutofband"); | |
5333 | } | |
5334 | ||
5335 | uint32_t | |
5336 | get_base_rtt(struct tcpcb *tp) | |
5337 | { | |
5338 | struct rtentry *rt = tp->t_inpcb->inp_route.ro_rt; | |
5339 | return ((rt == NULL) ? 0 : rt->rtt_min); | |
5340 | } | |
5341 | ||
5342 | /* Each value of RTT base represents the minimum RTT seen in a minute. | |
5343 | * We keep upto N_RTT_BASE minutes worth of history. | |
5344 | */ | |
5345 | void | |
5346 | update_base_rtt(struct tcpcb *tp, uint32_t rtt) | |
5347 | { | |
5348 | u_int32_t base_rtt, i; | |
5349 | struct rtentry *rt; | |
5350 | ||
5351 | if ((rt = tp->t_inpcb->inp_route.ro_rt) == NULL) | |
5352 | return; | |
5353 | if (rt->rtt_expire_ts == 0) { | |
5354 | RT_LOCK_SPIN(rt); | |
5355 | if (rt->rtt_expire_ts != 0) { | |
5356 | RT_UNLOCK(rt); | |
5357 | goto update; | |
5358 | } | |
5359 | rt->rtt_expire_ts = tcp_now; | |
5360 | rt->rtt_index = 0; | |
5361 | rt->rtt_hist[0] = rtt; | |
5362 | rt->rtt_min = rtt; | |
5363 | RT_UNLOCK(rt); | |
5364 | return; | |
5365 | } | |
5366 | update: | |
5367 | #if TRAFFIC_MGT | |
5368 | /* | |
5369 | * If the recv side is being throttled, check if the | |
5370 | * current RTT is closer to the base RTT seen in | |
5371 | * first (recent) two slots. If so, unthrottle the stream. | |
5372 | */ | |
5373 | if ((tp->t_flagsext & TF_RECV_THROTTLE) && | |
5374 | (int)(tcp_now - tp->t_recv_throttle_ts) >= TCP_RECV_THROTTLE_WIN) { | |
5375 | base_rtt = rt->rtt_min; | |
5376 | if (tp->t_rttcur <= (base_rtt + target_qdelay)) { | |
5377 | tp->t_flagsext &= ~TF_RECV_THROTTLE; | |
5378 | tp->t_recv_throttle_ts = 0; | |
5379 | } | |
5380 | } | |
5381 | #endif /* TRAFFIC_MGT */ | |
5382 | if ((int)(tcp_now - rt->rtt_expire_ts) >= | |
5383 | TCP_RTT_HISTORY_EXPIRE_TIME) { | |
5384 | RT_LOCK_SPIN(rt); | |
5385 | /* check the condition again to avoid race */ | |
5386 | if ((int)(tcp_now - rt->rtt_expire_ts) >= | |
5387 | TCP_RTT_HISTORY_EXPIRE_TIME) { | |
5388 | rt->rtt_index++; | |
5389 | if (rt->rtt_index >= NRTT_HIST) | |
5390 | rt->rtt_index = 0; | |
5391 | rt->rtt_hist[rt->rtt_index] = rtt; | |
5392 | rt->rtt_expire_ts = tcp_now; | |
5393 | } else { | |
5394 | rt->rtt_hist[rt->rtt_index] = | |
5395 | min(rt->rtt_hist[rt->rtt_index], rtt); | |
5396 | } | |
5397 | /* forget the old value and update minimum */ | |
5398 | rt->rtt_min = 0; | |
5399 | for (i = 0; i < NRTT_HIST; ++i) { | |
5400 | if (rt->rtt_hist[i] != 0 && | |
5401 | (rt->rtt_min == 0 || | |
5402 | rt->rtt_hist[i] < rt->rtt_min)) | |
5403 | rt->rtt_min = rt->rtt_hist[i]; | |
5404 | } | |
5405 | RT_UNLOCK(rt); | |
5406 | } else { | |
5407 | rt->rtt_hist[rt->rtt_index] = | |
5408 | min(rt->rtt_hist[rt->rtt_index], rtt); | |
5409 | if (rt->rtt_min == 0) | |
5410 | rt->rtt_min = rtt; | |
5411 | else | |
5412 | rt->rtt_min = min(rt->rtt_min, rtt); | |
5413 | } | |
5414 | } | |
5415 | ||
5416 | /* | |
5417 | * If we have a timestamp reply, update smoothed RTT. If no timestamp is | |
5418 | * present but transmit timer is running and timed sequence number was | |
5419 | * acked, update smoothed RTT. | |
5420 | * | |
5421 | * If timestamps are supported, a receiver can update RTT even if | |
5422 | * there is no outstanding data. | |
5423 | * | |
5424 | * Some boxes send broken timestamp replies during the SYN+ACK phase, | |
5425 | * ignore timestamps of 0or we could calculate a huge RTT and blow up | |
5426 | * the retransmit timer. | |
5427 | */ | |
5428 | static void | |
5429 | tcp_compute_rtt(struct tcpcb *tp, struct tcpopt *to, struct tcphdr *th) | |
5430 | { | |
5431 | int rtt = 0; | |
5432 | VERIFY(to != NULL && th != NULL); | |
5433 | if (tp->t_rtttime != 0 && SEQ_GT(th->th_ack, tp->t_rtseq)) { | |
5434 | u_int32_t pipe_ack_val; | |
5435 | rtt = tcp_now - tp->t_rtttime; | |
5436 | /* | |
5437 | * Compute pipe ack -- the amount of data acknowledged | |
5438 | * in the last RTT | |
5439 | */ | |
5440 | if (SEQ_GT(th->th_ack, tp->t_pipeack_lastuna)) { | |
5441 | pipe_ack_val = th->th_ack - tp->t_pipeack_lastuna; | |
5442 | /* Update the sample */ | |
5443 | tp->t_pipeack_sample[tp->t_pipeack_ind++] = | |
5444 | pipe_ack_val; | |
5445 | tp->t_pipeack_ind %= TCP_PIPEACK_SAMPLE_COUNT; | |
5446 | ||
5447 | /* Compute the max of the pipeack samples */ | |
5448 | pipe_ack_val = tcp_get_max_pipeack(tp); | |
5449 | tp->t_pipeack = (pipe_ack_val > | |
5450 | TCP_CC_CWND_INIT_BYTES) ? | |
5451 | pipe_ack_val : 0; | |
5452 | } | |
5453 | /* start another measurement */ | |
5454 | tp->t_rtttime = 0; | |
5455 | } | |
5456 | if (((to->to_flags & TOF_TS) != 0) && | |
5457 | (to->to_tsecr != 0) && | |
5458 | TSTMP_GEQ(tcp_now, to->to_tsecr)) { | |
5459 | tcp_xmit_timer(tp, (tcp_now - to->to_tsecr), | |
5460 | to->to_tsecr, th->th_ack); | |
5461 | } else if (rtt > 0) { | |
5462 | tcp_xmit_timer(tp, rtt, 0, th->th_ack); | |
5463 | } | |
5464 | } | |
5465 | ||
5466 | /* | |
5467 | * Collect new round-trip time estimate and update averages and | |
5468 | * current timeout. | |
5469 | */ | |
5470 | static void | |
5471 | tcp_xmit_timer(struct tcpcb *tp, int rtt, | |
5472 | u_int32_t tsecr, tcp_seq th_ack) | |
5473 | { | |
5474 | int delta; | |
5475 | ||
5476 | /* | |
5477 | * On AWDL interface, the initial RTT measurement on SYN | |
5478 | * can be wrong due to peer caching. Avoid the first RTT | |
5479 | * measurement as it might skew up the RTO. | |
5480 | * <rdar://problem/28739046> | |
5481 | */ | |
5482 | if (tp->t_inpcb->inp_last_outifp != NULL && | |
5483 | (tp->t_inpcb->inp_last_outifp->if_eflags & IFEF_AWDL) && | |
5484 | th_ack == tp->iss + 1) | |
5485 | return; | |
5486 | ||
5487 | if (tp->t_flagsext & TF_RECOMPUTE_RTT) { | |
5488 | if (SEQ_GT(th_ack, tp->snd_una) && | |
5489 | SEQ_LEQ(th_ack, tp->snd_max) && | |
5490 | (tsecr == 0 || | |
5491 | TSTMP_GEQ(tsecr, tp->t_badrexmt_time))) { | |
5492 | /* | |
5493 | * We received a new ACk after a | |
5494 | * spurious timeout. Adapt retransmission | |
5495 | * timer as described in rfc 4015. | |
5496 | */ | |
5497 | tp->t_flagsext &= ~(TF_RECOMPUTE_RTT); | |
5498 | tp->t_badrexmt_time = 0; | |
5499 | tp->t_srtt = max(tp->t_srtt_prev, rtt); | |
5500 | tp->t_srtt = tp->t_srtt << TCP_RTT_SHIFT; | |
5501 | tp->t_rttvar = max(tp->t_rttvar_prev, (rtt >> 1)); | |
5502 | tp->t_rttvar = tp->t_rttvar << TCP_RTTVAR_SHIFT; | |
5503 | ||
5504 | if (tp->t_rttbest > (tp->t_srtt + tp->t_rttvar)) | |
5505 | tp->t_rttbest = tp->t_srtt + tp->t_rttvar; | |
5506 | ||
5507 | goto compute_rto; | |
5508 | } else { | |
5509 | return; | |
5510 | } | |
5511 | } | |
5512 | ||
5513 | tcpstat.tcps_rttupdated++; | |
5514 | tp->t_rttupdated++; | |
5515 | ||
5516 | if (rtt > 0) { | |
5517 | tp->t_rttcur = rtt; | |
5518 | update_base_rtt(tp, rtt); | |
5519 | } | |
5520 | ||
5521 | if (tp->t_srtt != 0) { | |
5522 | /* | |
5523 | * srtt is stored as fixed point with 5 bits after the | |
5524 | * binary point (i.e., scaled by 32). The following magic | |
5525 | * is equivalent to the smoothing algorithm in rfc793 with | |
5526 | * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed | |
5527 | * point). | |
5528 | * | |
5529 | * Freebsd adjusts rtt to origin 0 by subtracting 1 | |
5530 | * from the provided rtt value. This was required because | |
5531 | * of the way t_rtttime was initiailised to 1 before. | |
5532 | * Since we changed t_rtttime to be based on | |
5533 | * tcp_now, this extra adjustment is not needed. | |
5534 | */ | |
5535 | delta = (rtt << TCP_DELTA_SHIFT) | |
5536 | - (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT)); | |
5537 | ||
5538 | if ((tp->t_srtt += delta) <= 0) | |
5539 | tp->t_srtt = 1; | |
5540 | ||
5541 | /* | |
5542 | * We accumulate a smoothed rtt variance (actually, a | |
5543 | * smoothed mean difference), then set the retransmit | |
5544 | * timer to smoothed rtt + 4 times the smoothed variance. | |
5545 | * rttvar is stored as fixed point with 4 bits after the | |
5546 | * binary point (scaled by 16). The following is | |
5547 | * equivalent to rfc793 smoothing with an alpha of .75 | |
5548 | * (rttvar = rttvar*3/4 + |delta| / 4). This replaces | |
5549 | * rfc793's wired-in beta. | |
5550 | */ | |
5551 | if (delta < 0) | |
5552 | delta = -delta; | |
5553 | delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT); | |
5554 | if ((tp->t_rttvar += delta) <= 0) | |
5555 | tp->t_rttvar = 1; | |
5556 | if (tp->t_rttbest == 0 || | |
5557 | tp->t_rttbest > (tp->t_srtt + tp->t_rttvar)) | |
5558 | tp->t_rttbest = tp->t_srtt + tp->t_rttvar; | |
5559 | } else { | |
5560 | /* | |
5561 | * No rtt measurement yet - use the unsmoothed rtt. | |
5562 | * Set the variance to half the rtt (so our first | |
5563 | * retransmit happens at 3*rtt). | |
5564 | */ | |
5565 | tp->t_srtt = rtt << TCP_RTT_SHIFT; | |
5566 | tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1); | |
5567 | } | |
5568 | ||
5569 | compute_rto: | |
5570 | nstat_route_rtt(tp->t_inpcb->inp_route.ro_rt, tp->t_srtt, | |
5571 | tp->t_rttvar); | |
5572 | ||
5573 | /* | |
5574 | * the retransmit should happen at rtt + 4 * rttvar. | |
5575 | * Because of the way we do the smoothing, srtt and rttvar | |
5576 | * will each average +1/2 tick of bias. When we compute | |
5577 | * the retransmit timer, we want 1/2 tick of rounding and | |
5578 | * 1 extra tick because of +-1/2 tick uncertainty in the | |
5579 | * firing of the timer. The bias will give us exactly the | |
5580 | * 1.5 tick we need. But, because the bias is | |
5581 | * statistical, we have to test that we don't drop below | |
5582 | * the minimum feasible timer (which is 2 ticks). | |
5583 | */ | |
5584 | TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), | |
5585 | max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX, | |
5586 | TCP_ADD_REXMTSLOP(tp)); | |
5587 | ||
5588 | /* | |
5589 | * We received an ack for a packet that wasn't retransmitted; | |
5590 | * it is probably safe to discard any error indications we've | |
5591 | * received recently. This isn't quite right, but close enough | |
5592 | * for now (a route might have failed after we sent a segment, | |
5593 | * and the return path might not be symmetrical). | |
5594 | */ | |
5595 | tp->t_softerror = 0; | |
5596 | } | |
5597 | ||
5598 | static inline unsigned int | |
5599 | tcp_maxmtu(struct rtentry *rt) | |
5600 | { | |
5601 | unsigned int maxmtu; | |
5602 | ||
5603 | RT_LOCK_ASSERT_HELD(rt); | |
5604 | if (rt->rt_rmx.rmx_mtu == 0) | |
5605 | maxmtu = rt->rt_ifp->if_mtu; | |
5606 | else | |
5607 | maxmtu = MIN(rt->rt_rmx.rmx_mtu, rt->rt_ifp->if_mtu); | |
5608 | ||
5609 | return (maxmtu); | |
5610 | } | |
5611 | ||
5612 | #if INET6 | |
5613 | static inline unsigned int | |
5614 | tcp_maxmtu6(struct rtentry *rt) | |
5615 | { | |
5616 | unsigned int maxmtu; | |
5617 | struct nd_ifinfo *ndi = NULL; | |
5618 | ||
5619 | RT_LOCK_ASSERT_HELD(rt); | |
5620 | if ((ndi = ND_IFINFO(rt->rt_ifp)) != NULL && !ndi->initialized) | |
5621 | ndi = NULL; | |
5622 | if (ndi != NULL) | |
5623 | lck_mtx_lock(&ndi->lock); | |
5624 | if (rt->rt_rmx.rmx_mtu == 0) | |
5625 | maxmtu = IN6_LINKMTU(rt->rt_ifp); | |
5626 | else | |
5627 | maxmtu = MIN(rt->rt_rmx.rmx_mtu, IN6_LINKMTU(rt->rt_ifp)); | |
5628 | if (ndi != NULL) | |
5629 | lck_mtx_unlock(&ndi->lock); | |
5630 | ||
5631 | return (maxmtu); | |
5632 | } | |
5633 | #endif | |
5634 | ||
5635 | unsigned int | |
5636 | get_maxmtu(struct rtentry *rt) | |
5637 | { | |
5638 | unsigned int maxmtu = 0; | |
5639 | ||
5640 | RT_LOCK_ASSERT_NOTHELD(rt); | |
5641 | ||
5642 | RT_LOCK(rt); | |
5643 | ||
5644 | if (rt_key(rt)->sa_family == AF_INET6) { | |
5645 | maxmtu = tcp_maxmtu6(rt); | |
5646 | } else { | |
5647 | maxmtu = tcp_maxmtu(rt); | |
5648 | } | |
5649 | ||
5650 | RT_UNLOCK(rt); | |
5651 | ||
5652 | return (maxmtu); | |
5653 | } | |
5654 | ||
5655 | /* | |
5656 | * Determine a reasonable value for maxseg size. | |
5657 | * If the route is known, check route for mtu. | |
5658 | * If none, use an mss that can be handled on the outgoing | |
5659 | * interface without forcing IP to fragment; if bigger than | |
5660 | * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES | |
5661 | * to utilize large mbufs. If no route is found, route has no mtu, | |
5662 | * or the destination isn't local, use a default, hopefully conservative | |
5663 | * size (usually 512 or the default IP max size, but no more than the mtu | |
5664 | * of the interface), as we can't discover anything about intervening | |
5665 | * gateways or networks. We also initialize the congestion/slow start | |
5666 | * window. While looking at the routing entry, we also initialize | |
5667 | * other path-dependent parameters from pre-set or cached values | |
5668 | * in the routing entry. | |
5669 | * | |
5670 | * Also take into account the space needed for options that we | |
5671 | * send regularly. Make maxseg shorter by that amount to assure | |
5672 | * that we can send maxseg amount of data even when the options | |
5673 | * are present. Store the upper limit of the length of options plus | |
5674 | * data in maxopd. | |
5675 | * | |
5676 | * NOTE that this routine is only called when we process an incoming | |
5677 | * segment, for outgoing segments only tcp_mssopt is called. | |
5678 | * | |
5679 | */ | |
5680 | void | |
5681 | tcp_mss(struct tcpcb *tp, int offer, unsigned int input_ifscope) | |
5682 | { | |
5683 | struct rtentry *rt; | |
5684 | struct ifnet *ifp; | |
5685 | int rtt, mss; | |
5686 | u_int32_t bufsize; | |
5687 | struct inpcb *inp; | |
5688 | struct socket *so; | |
5689 | struct rmxp_tao *taop; | |
5690 | int origoffer = offer; | |
5691 | u_int32_t sb_max_corrected; | |
5692 | int isnetlocal = 0; | |
5693 | #if INET6 | |
5694 | int isipv6; | |
5695 | int min_protoh; | |
5696 | #endif | |
5697 | ||
5698 | inp = tp->t_inpcb; | |
5699 | #if INET6 | |
5700 | isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0; | |
5701 | min_protoh = isipv6 ? sizeof (struct ip6_hdr) + sizeof (struct tcphdr) | |
5702 | : sizeof (struct tcpiphdr); | |
5703 | #else | |
5704 | #define min_protoh (sizeof (struct tcpiphdr)) | |
5705 | #endif | |
5706 | ||
5707 | #if INET6 | |
5708 | if (isipv6) { | |
5709 | rt = tcp_rtlookup6(inp, input_ifscope); | |
5710 | } | |
5711 | else | |
5712 | #endif /* INET6 */ | |
5713 | { | |
5714 | rt = tcp_rtlookup(inp, input_ifscope); | |
5715 | } | |
5716 | isnetlocal = (tp->t_flags & TF_LOCAL); | |
5717 | ||
5718 | if (rt == NULL) { | |
5719 | tp->t_maxopd = tp->t_maxseg = | |
5720 | #if INET6 | |
5721 | isipv6 ? tcp_v6mssdflt : | |
5722 | #endif /* INET6 */ | |
5723 | tcp_mssdflt; | |
5724 | return; | |
5725 | } | |
5726 | ifp = rt->rt_ifp; | |
5727 | /* | |
5728 | * Slower link window correction: | |
5729 | * If a value is specificied for slowlink_wsize use it for | |
5730 | * PPP links believed to be on a serial modem (speed <128Kbps). | |
5731 | * Excludes 9600bps as it is the default value adversized | |
5732 | * by pseudo-devices over ppp. | |
5733 | */ | |
5734 | if (ifp->if_type == IFT_PPP && slowlink_wsize > 0 && | |
5735 | ifp->if_baudrate > 9600 && ifp->if_baudrate <= 128000) { | |
5736 | tp->t_flags |= TF_SLOWLINK; | |
5737 | } | |
5738 | so = inp->inp_socket; | |
5739 | ||
5740 | taop = rmx_taop(rt->rt_rmx); | |
5741 | /* | |
5742 | * Offer == -1 means that we didn't receive SYN yet, | |
5743 | * use cached value in that case; | |
5744 | */ | |
5745 | if (offer == -1) | |
5746 | offer = taop->tao_mssopt; | |
5747 | /* | |
5748 | * Offer == 0 means that there was no MSS on the SYN segment, | |
5749 | * in this case we use tcp_mssdflt. | |
5750 | */ | |
5751 | if (offer == 0) | |
5752 | offer = | |
5753 | #if INET6 | |
5754 | isipv6 ? tcp_v6mssdflt : | |
5755 | #endif /* INET6 */ | |
5756 | tcp_mssdflt; | |
5757 | else { | |
5758 | /* | |
5759 | * Prevent DoS attack with too small MSS. Round up | |
5760 | * to at least minmss. | |
5761 | */ | |
5762 | offer = max(offer, tcp_minmss); | |
5763 | /* | |
5764 | * Sanity check: make sure that maxopd will be large | |
5765 | * enough to allow some data on segments even is the | |
5766 | * all the option space is used (40bytes). Otherwise | |
5767 | * funny things may happen in tcp_output. | |
5768 | */ | |
5769 | offer = max(offer, 64); | |
5770 | } | |
5771 | taop->tao_mssopt = offer; | |
5772 | ||
5773 | /* | |
5774 | * While we're here, check if there's an initial rtt | |
5775 | * or rttvar. Convert from the route-table units | |
5776 | * to scaled multiples of the slow timeout timer. | |
5777 | */ | |
5778 | if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt) != 0) { | |
5779 | tcp_getrt_rtt(tp, rt); | |
5780 | } else { | |
5781 | tp->t_rttmin = isnetlocal ? tcp_TCPTV_MIN : TCPTV_REXMTMIN; | |
5782 | } | |
5783 | ||
5784 | #if INET6 | |
5785 | mss = (isipv6 ? tcp_maxmtu6(rt) : tcp_maxmtu(rt)); | |
5786 | #else | |
5787 | mss = tcp_maxmtu(rt); | |
5788 | #endif | |
5789 | ||
5790 | #if NECP | |
5791 | // At this point, the mss is just the MTU. Adjust if necessary. | |
5792 | mss = necp_socket_get_effective_mtu(inp, mss); | |
5793 | #endif /* NECP */ | |
5794 | ||
5795 | mss -= min_protoh; | |
5796 | ||
5797 | if (rt->rt_rmx.rmx_mtu == 0) { | |
5798 | #if INET6 | |
5799 | if (isipv6) { | |
5800 | if (!isnetlocal) | |
5801 | mss = min(mss, tcp_v6mssdflt); | |
5802 | } else | |
5803 | #endif /* INET6 */ | |
5804 | if (!isnetlocal) | |
5805 | mss = min(mss, tcp_mssdflt); | |
5806 | } | |
5807 | ||
5808 | mss = min(mss, offer); | |
5809 | /* | |
5810 | * maxopd stores the maximum length of data AND options | |
5811 | * in a segment; maxseg is the amount of data in a normal | |
5812 | * segment. We need to store this value (maxopd) apart | |
5813 | * from maxseg, because now every segment carries options | |
5814 | * and thus we normally have somewhat less data in segments. | |
5815 | */ | |
5816 | tp->t_maxopd = mss; | |
5817 | ||
5818 | /* | |
5819 | * origoffer==-1 indicates, that no segments were received yet. | |
5820 | * In this case we just guess. | |
5821 | */ | |
5822 | if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP && | |
5823 | (origoffer == -1 || | |
5824 | (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)) | |
5825 | mss -= TCPOLEN_TSTAMP_APPA; | |
5826 | ||
5827 | #if MPTCP | |
5828 | mss -= mptcp_adj_mss(tp, FALSE); | |
5829 | #endif /* MPTCP */ | |
5830 | tp->t_maxseg = mss; | |
5831 | ||
5832 | /* | |
5833 | * Calculate corrected value for sb_max; ensure to upgrade the | |
5834 | * numerator for large sb_max values else it will overflow. | |
5835 | */ | |
5836 | sb_max_corrected = (sb_max * (u_int64_t)MCLBYTES) / (MSIZE + MCLBYTES); | |
5837 | ||
5838 | /* | |
5839 | * If there's a pipesize (ie loopback), change the socket | |
5840 | * buffer to that size only if it's bigger than the current | |
5841 | * sockbuf size. Make the socket buffers an integral | |
5842 | * number of mss units; if the mss is larger than | |
5843 | * the socket buffer, decrease the mss. | |
5844 | */ | |
5845 | #if RTV_SPIPE | |
5846 | bufsize = rt->rt_rmx.rmx_sendpipe; | |
5847 | if (bufsize < so->so_snd.sb_hiwat) | |
5848 | #endif | |
5849 | bufsize = so->so_snd.sb_hiwat; | |
5850 | if (bufsize < mss) | |
5851 | mss = bufsize; | |
5852 | else { | |
5853 | bufsize = (((bufsize + (u_int64_t)mss - 1) / (u_int64_t)mss) * (u_int64_t)mss); | |
5854 | if (bufsize > sb_max_corrected) | |
5855 | bufsize = sb_max_corrected; | |
5856 | (void)sbreserve(&so->so_snd, bufsize); | |
5857 | } | |
5858 | tp->t_maxseg = mss; | |
5859 | ||
5860 | /* | |
5861 | * Update MSS using recommendation from link status report. This is | |
5862 | * temporary | |
5863 | */ | |
5864 | tcp_update_mss_locked(so, ifp); | |
5865 | ||
5866 | #if RTV_RPIPE | |
5867 | bufsize = rt->rt_rmx.rmx_recvpipe; | |
5868 | if (bufsize < so->so_rcv.sb_hiwat) | |
5869 | #endif | |
5870 | bufsize = so->so_rcv.sb_hiwat; | |
5871 | if (bufsize > mss) { | |
5872 | bufsize = (((bufsize + (u_int64_t)mss - 1) / (u_int64_t)mss) * (u_int64_t)mss); | |
5873 | if (bufsize > sb_max_corrected) | |
5874 | bufsize = sb_max_corrected; | |
5875 | (void)sbreserve(&so->so_rcv, bufsize); | |
5876 | } | |
5877 | ||
5878 | set_tcp_stream_priority(so); | |
5879 | ||
5880 | if (rt->rt_rmx.rmx_ssthresh) { | |
5881 | /* | |
5882 | * There's some sort of gateway or interface | |
5883 | * buffer limit on the path. Use this to set | |
5884 | * slow-start threshold, but set the threshold to | |
5885 | * no less than 2*mss. | |
5886 | */ | |
5887 | tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh); | |
5888 | tcpstat.tcps_usedssthresh++; | |
5889 | } else { | |
5890 | tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT; | |
5891 | } | |
5892 | ||
5893 | /* | |
5894 | * Set the slow-start flight size depending on whether this | |
5895 | * is a local network or not. | |
5896 | */ | |
5897 | if (CC_ALGO(tp)->cwnd_init != NULL) | |
5898 | CC_ALGO(tp)->cwnd_init(tp); | |
5899 | ||
5900 | tcp_ccdbg_trace(tp, NULL, TCP_CC_CWND_INIT); | |
5901 | ||
5902 | /* Route locked during lookup above */ | |
5903 | RT_UNLOCK(rt); | |
5904 | } | |
5905 | ||
5906 | /* | |
5907 | * Determine the MSS option to send on an outgoing SYN. | |
5908 | */ | |
5909 | int | |
5910 | tcp_mssopt(struct tcpcb *tp) | |
5911 | { | |
5912 | struct rtentry *rt; | |
5913 | int mss; | |
5914 | #if INET6 | |
5915 | int isipv6; | |
5916 | int min_protoh; | |
5917 | #endif | |
5918 | ||
5919 | #if INET6 | |
5920 | isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) ? 1 : 0; | |
5921 | min_protoh = isipv6 ? sizeof (struct ip6_hdr) + sizeof (struct tcphdr) | |
5922 | : sizeof (struct tcpiphdr); | |
5923 | #else | |
5924 | #define min_protoh (sizeof (struct tcpiphdr)) | |
5925 | #endif | |
5926 | ||
5927 | #if INET6 | |
5928 | if (isipv6) | |
5929 | rt = tcp_rtlookup6(tp->t_inpcb, IFSCOPE_NONE); | |
5930 | else | |
5931 | #endif /* INET6 */ | |
5932 | rt = tcp_rtlookup(tp->t_inpcb, IFSCOPE_NONE); | |
5933 | if (rt == NULL) { | |
5934 | return ( | |
5935 | #if INET6 | |
5936 | isipv6 ? tcp_v6mssdflt : | |
5937 | #endif /* INET6 */ | |
5938 | tcp_mssdflt); | |
5939 | } | |
5940 | /* | |
5941 | * Slower link window correction: | |
5942 | * If a value is specificied for slowlink_wsize use it for PPP links | |
5943 | * believed to be on a serial modem (speed <128Kbps). Excludes 9600bps as | |
5944 | * it is the default value adversized by pseudo-devices over ppp. | |
5945 | */ | |
5946 | if (rt->rt_ifp->if_type == IFT_PPP && slowlink_wsize > 0 && | |
5947 | rt->rt_ifp->if_baudrate > 9600 && rt->rt_ifp->if_baudrate <= 128000) { | |
5948 | tp->t_flags |= TF_SLOWLINK; | |
5949 | } | |
5950 | ||
5951 | #if INET6 | |
5952 | mss = (isipv6 ? tcp_maxmtu6(rt) : tcp_maxmtu(rt)); | |
5953 | #else | |
5954 | mss = tcp_maxmtu(rt); | |
5955 | #endif | |
5956 | /* Route locked during lookup above */ | |
5957 | RT_UNLOCK(rt); | |
5958 | ||
5959 | #if NECP | |
5960 | // At this point, the mss is just the MTU. Adjust if necessary. | |
5961 | mss = necp_socket_get_effective_mtu(tp->t_inpcb, mss); | |
5962 | #endif /* NECP */ | |
5963 | ||
5964 | return (mss - min_protoh); | |
5965 | } | |
5966 | ||
5967 | /* | |
5968 | * On a partial ack arrives, force the retransmission of the | |
5969 | * next unacknowledged segment. Do not clear tp->t_dupacks. | |
5970 | * By setting snd_nxt to th_ack, this forces retransmission timer to | |
5971 | * be started again. | |
5972 | */ | |
5973 | static void | |
5974 | tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th) | |
5975 | { | |
5976 | tcp_seq onxt = tp->snd_nxt; | |
5977 | u_int32_t ocwnd = tp->snd_cwnd; | |
5978 | tp->t_timer[TCPT_REXMT] = 0; | |
5979 | tp->t_timer[TCPT_PTO] = 0; | |
5980 | tp->t_rtttime = 0; | |
5981 | tp->snd_nxt = th->th_ack; | |
5982 | /* | |
5983 | * Set snd_cwnd to one segment beyond acknowledged offset | |
5984 | * (tp->snd_una has not yet been updated when this function | |
5985 | * is called) | |
5986 | */ | |
5987 | tp->snd_cwnd = tp->t_maxseg + BYTES_ACKED(th, tp); | |
5988 | tp->t_flags |= TF_ACKNOW; | |
5989 | (void) tcp_output(tp); | |
5990 | tp->snd_cwnd = ocwnd; | |
5991 | if (SEQ_GT(onxt, tp->snd_nxt)) | |
5992 | tp->snd_nxt = onxt; | |
5993 | /* | |
5994 | * Partial window deflation. Relies on fact that tp->snd_una | |
5995 | * not updated yet. | |
5996 | */ | |
5997 | if (tp->snd_cwnd > BYTES_ACKED(th, tp)) | |
5998 | tp->snd_cwnd -= BYTES_ACKED(th, tp); | |
5999 | else | |
6000 | tp->snd_cwnd = 0; | |
6001 | tp->snd_cwnd += tp->t_maxseg; | |
6002 | } | |
6003 | ||
6004 | /* | |
6005 | * Drop a random TCP connection that hasn't been serviced yet and | |
6006 | * is eligible for discard. There is a one in qlen chance that | |
6007 | * we will return a null, saying that there are no dropable | |
6008 | * requests. In this case, the protocol specific code should drop | |
6009 | * the new request. This insures fairness. | |
6010 | * | |
6011 | * The listening TCP socket "head" must be locked | |
6012 | */ | |
6013 | static int | |
6014 | tcp_dropdropablreq(struct socket *head) | |
6015 | { | |
6016 | struct socket *so, *sonext; | |
6017 | unsigned int i, j, qlen; | |
6018 | static u_int32_t rnd = 0; | |
6019 | static u_int64_t old_runtime; | |
6020 | static unsigned int cur_cnt, old_cnt; | |
6021 | u_int64_t now_sec; | |
6022 | struct inpcb *inp = NULL; | |
6023 | struct tcpcb *tp; | |
6024 | ||
6025 | if ((head->so_options & SO_ACCEPTCONN) == 0) | |
6026 | return (0); | |
6027 | ||
6028 | if (TAILQ_EMPTY(&head->so_incomp)) | |
6029 | return (0); | |
6030 | ||
6031 | so_acquire_accept_list(head, NULL); | |
6032 | socket_unlock(head, 0); | |
6033 | ||
6034 | /* | |
6035 | * Check if there is any socket in the incomp queue | |
6036 | * that is closed because of a reset from the peer and is | |
6037 | * waiting to be garbage collected. If so, pick that as | |
6038 | * the victim | |
6039 | */ | |
6040 | TAILQ_FOREACH_SAFE(so, &head->so_incomp, so_list, sonext) { | |
6041 | inp = sotoinpcb(so); | |
6042 | tp = intotcpcb(inp); | |
6043 | if (tp != NULL && tp->t_state == TCPS_CLOSED && | |
6044 | so->so_head != NULL && | |
6045 | (so->so_state & (SS_INCOMP|SS_CANTSENDMORE|SS_CANTRCVMORE)) == | |
6046 | (SS_INCOMP|SS_CANTSENDMORE|SS_CANTRCVMORE)) { | |
6047 | /* | |
6048 | * The listen socket is already locked but we | |
6049 | * can lock this socket here without lock ordering | |
6050 | * issues because it is in the incomp queue and | |
6051 | * is not visible to others. | |
6052 | */ | |
6053 | if (socket_try_lock(so)) { | |
6054 | so->so_usecount++; | |
6055 | goto found_victim; | |
6056 | } else { | |
6057 | continue; | |
6058 | } | |
6059 | } | |
6060 | } | |
6061 | ||
6062 | so = TAILQ_FIRST(&head->so_incomp); | |
6063 | ||
6064 | now_sec = net_uptime(); | |
6065 | if ((i = (now_sec - old_runtime)) != 0) { | |
6066 | old_runtime = now_sec; | |
6067 | old_cnt = cur_cnt / i; | |
6068 | cur_cnt = 0; | |
6069 | } | |
6070 | ||
6071 | qlen = head->so_incqlen; | |
6072 | if (rnd == 0) | |
6073 | rnd = RandomULong(); | |
6074 | ||
6075 | if (++cur_cnt > qlen || old_cnt > qlen) { | |
6076 | rnd = (314159 * rnd + 66329) & 0xffff; | |
6077 | j = ((qlen + 1) * rnd) >> 16; | |
6078 | ||
6079 | while (j-- && so) | |
6080 | so = TAILQ_NEXT(so, so_list); | |
6081 | } | |
6082 | /* Find a connection that is not already closing (or being served) */ | |
6083 | while (so) { | |
6084 | inp = (struct inpcb *)so->so_pcb; | |
6085 | ||
6086 | sonext = TAILQ_NEXT(so, so_list); | |
6087 | ||
6088 | if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) != WNT_STOPUSING) { | |
6089 | /* | |
6090 | * Avoid the issue of a socket being accepted | |
6091 | * by one input thread and being dropped by | |
6092 | * another input thread. If we can't get a hold | |
6093 | * on this mutex, then grab the next socket in | |
6094 | * line. | |
6095 | */ | |
6096 | if (socket_try_lock(so)) { | |
6097 | so->so_usecount++; | |
6098 | if ((so->so_usecount == 2) && | |
6099 | (so->so_state & SS_INCOMP) && | |
6100 | !(so->so_flags & SOF_INCOMP_INPROGRESS)) { | |
6101 | break; | |
6102 | } else { | |
6103 | /* | |
6104 | * don't use if being accepted or | |
6105 | * used in any other way | |
6106 | */ | |
6107 | in_pcb_checkstate(inp, WNT_RELEASE, 1); | |
6108 | socket_unlock(so, 1); | |
6109 | } | |
6110 | } else { | |
6111 | /* | |
6112 | * do not try to lock the inp in | |
6113 | * in_pcb_checkstate because the lock | |
6114 | * is already held in some other thread. | |
6115 | * Only drop the inp_wntcnt reference. | |
6116 | */ | |
6117 | in_pcb_checkstate(inp, WNT_RELEASE, 1); | |
6118 | } | |
6119 | } | |
6120 | so = sonext; | |
6121 | } | |
6122 | if (so == NULL) { | |
6123 | socket_lock(head, 0); | |
6124 | so_release_accept_list(head); | |
6125 | return (0); | |
6126 | } | |
6127 | ||
6128 | /* Makes sure socket is still in the right state to be discarded */ | |
6129 | ||
6130 | if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) { | |
6131 | socket_unlock(so, 1); | |
6132 | socket_lock(head, 0); | |
6133 | so_release_accept_list(head); | |
6134 | return (0); | |
6135 | } | |
6136 | ||
6137 | found_victim: | |
6138 | if (so->so_usecount != 2 || !(so->so_state & SS_INCOMP)) { | |
6139 | /* do not discard: that socket is being accepted */ | |
6140 | socket_unlock(so, 1); | |
6141 | socket_lock(head, 0); | |
6142 | so_release_accept_list(head); | |
6143 | return (0); | |
6144 | } | |
6145 | ||
6146 | socket_lock(head, 0); | |
6147 | TAILQ_REMOVE(&head->so_incomp, so, so_list); | |
6148 | head->so_incqlen--; | |
6149 | head->so_qlen--; | |
6150 | so->so_state &= ~SS_INCOMP; | |
6151 | so->so_flags |= SOF_OVERFLOW; | |
6152 | so->so_head = NULL; | |
6153 | so_release_accept_list(head); | |
6154 | socket_unlock(head, 0); | |
6155 | ||
6156 | socket_lock_assert_owned(so); | |
6157 | tp = sototcpcb(so); | |
6158 | ||
6159 | tcp_close(tp); | |
6160 | if (inp->inp_wantcnt > 0 && inp->inp_wantcnt != WNT_STOPUSING) { | |
6161 | /* | |
6162 | * Some one has a wantcnt on this pcb. Since WNT_ACQUIRE | |
6163 | * doesn't require a lock, it could have happened while | |
6164 | * we are holding the lock. This pcb will have to | |
6165 | * be garbage collected later. | |
6166 | * Release the reference held for so_incomp queue | |
6167 | */ | |
6168 | VERIFY(so->so_usecount > 0); | |
6169 | so->so_usecount--; | |
6170 | socket_unlock(so, 1); | |
6171 | } else { | |
6172 | /* | |
6173 | * Unlock this socket and leave the reference on. | |
6174 | * We need to acquire the pcbinfo lock in order to | |
6175 | * fully dispose it off | |
6176 | */ | |
6177 | socket_unlock(so, 0); | |
6178 | ||
6179 | lck_rw_lock_exclusive(tcbinfo.ipi_lock); | |
6180 | ||
6181 | socket_lock(so, 0); | |
6182 | /* Release the reference held for so_incomp queue */ | |
6183 | VERIFY(so->so_usecount > 0); | |
6184 | so->so_usecount--; | |
6185 | ||
6186 | if (so->so_usecount != 1 || | |
6187 | (inp->inp_wantcnt > 0 && | |
6188 | inp->inp_wantcnt != WNT_STOPUSING)) { | |
6189 | /* | |
6190 | * There is an extra wantcount or usecount | |
6191 | * that must have been added when the socket | |
6192 | * was unlocked. This socket will have to be | |
6193 | * garbage collected later | |
6194 | */ | |
6195 | socket_unlock(so, 1); | |
6196 | } else { | |
6197 | /* Drop the reference held for this function */ | |
6198 | VERIFY(so->so_usecount > 0); | |
6199 | so->so_usecount--; | |
6200 | ||
6201 | in_pcbdispose(inp); | |
6202 | } | |
6203 | lck_rw_done(tcbinfo.ipi_lock); | |
6204 | } | |
6205 | tcpstat.tcps_drops++; | |
6206 | ||
6207 | socket_lock(head, 0); | |
6208 | return(1); | |
6209 | } | |
6210 | ||
6211 | /* Set background congestion control on a socket */ | |
6212 | void | |
6213 | tcp_set_background_cc(struct socket *so) | |
6214 | { | |
6215 | tcp_set_new_cc(so, TCP_CC_ALGO_BACKGROUND_INDEX); | |
6216 | } | |
6217 | ||
6218 | /* Set foreground congestion control on a socket */ | |
6219 | void | |
6220 | tcp_set_foreground_cc(struct socket *so) | |
6221 | { | |
6222 | if (tcp_use_newreno) | |
6223 | tcp_set_new_cc(so, TCP_CC_ALGO_NEWRENO_INDEX); | |
6224 | else | |
6225 | tcp_set_new_cc(so, TCP_CC_ALGO_CUBIC_INDEX); | |
6226 | } | |
6227 | ||
6228 | static void | |
6229 | tcp_set_new_cc(struct socket *so, uint16_t cc_index) | |
6230 | { | |
6231 | struct inpcb *inp = sotoinpcb(so); | |
6232 | struct tcpcb *tp = intotcpcb(inp); | |
6233 | u_char old_cc_index = 0; | |
6234 | if (tp->tcp_cc_index != cc_index) { | |
6235 | ||
6236 | old_cc_index = tp->tcp_cc_index; | |
6237 | ||
6238 | if (CC_ALGO(tp)->cleanup != NULL) | |
6239 | CC_ALGO(tp)->cleanup(tp); | |
6240 | tp->tcp_cc_index = cc_index; | |
6241 | ||
6242 | tcp_cc_allocate_state(tp); | |
6243 | ||
6244 | if (CC_ALGO(tp)->switch_to != NULL) | |
6245 | CC_ALGO(tp)->switch_to(tp, old_cc_index); | |
6246 | ||
6247 | tcp_ccdbg_trace(tp, NULL, TCP_CC_CHANGE_ALGO); | |
6248 | } | |
6249 | } | |
6250 | ||
6251 | void | |
6252 | tcp_set_recv_bg(struct socket *so) | |
6253 | { | |
6254 | if (!IS_TCP_RECV_BG(so)) | |
6255 | so->so_flags1 |= SOF1_TRAFFIC_MGT_TCP_RECVBG; | |
6256 | ||
6257 | /* Unset Large Receive Offload on background sockets */ | |
6258 | so_set_lro(so, SO_TC_BK); | |
6259 | } | |
6260 | ||
6261 | void | |
6262 | tcp_clear_recv_bg(struct socket *so) | |
6263 | { | |
6264 | if (IS_TCP_RECV_BG(so)) | |
6265 | so->so_flags1 &= ~(SOF1_TRAFFIC_MGT_TCP_RECVBG); | |
6266 | ||
6267 | /* | |
6268 | * Set/unset use of Large Receive Offload depending on | |
6269 | * the traffic class | |
6270 | */ | |
6271 | so_set_lro(so, so->so_traffic_class); | |
6272 | } | |
6273 | ||
6274 | void | |
6275 | inp_fc_unthrottle_tcp(struct inpcb *inp) | |
6276 | { | |
6277 | struct tcpcb *tp = inp->inp_ppcb; | |
6278 | /* | |
6279 | * Back off the slow-start threshold and enter | |
6280 | * congestion avoidance phase | |
6281 | */ | |
6282 | if (CC_ALGO(tp)->pre_fr != NULL) | |
6283 | CC_ALGO(tp)->pre_fr(tp); | |
6284 | ||
6285 | tp->snd_cwnd = tp->snd_ssthresh; | |
6286 | tp->t_flagsext &= ~TF_CWND_NONVALIDATED; | |
6287 | /* | |
6288 | * Restart counting for ABC as we changed the | |
6289 | * congestion window just now. | |
6290 | */ | |
6291 | tp->t_bytes_acked = 0; | |
6292 | ||
6293 | /* Reset retransmit shift as we know that the reason | |
6294 | * for delay in sending a packet is due to flow | |
6295 | * control on the outgoing interface. There is no need | |
6296 | * to backoff retransmit timer. | |
6297 | */ | |
6298 | TCP_RESET_REXMT_STATE(tp); | |
6299 | ||
6300 | /* | |
6301 | * Start the output stream again. Since we are | |
6302 | * not retransmitting data, do not reset the | |
6303 | * retransmit timer or rtt calculation. | |
6304 | */ | |
6305 | tcp_output(tp); | |
6306 | } | |
6307 | ||
6308 | static int | |
6309 | tcp_getstat SYSCTL_HANDLER_ARGS | |
6310 | { | |
6311 | #pragma unused(oidp, arg1, arg2) | |
6312 | ||
6313 | int error; | |
6314 | struct tcpstat *stat; | |
6315 | stat = &tcpstat; | |
6316 | #if !CONFIG_EMBEDDED | |
6317 | proc_t caller = PROC_NULL; | |
6318 | proc_t caller_parent = PROC_NULL; | |
6319 | char command_name[MAXCOMLEN + 1] = ""; | |
6320 | char parent_name[MAXCOMLEN + 1] = ""; | |
6321 | struct tcpstat zero_stat; | |
6322 | if ((caller = proc_self()) != PROC_NULL) { | |
6323 | /* get process name */ | |
6324 | strlcpy(command_name, caller->p_comm, sizeof(command_name)); | |
6325 | ||
6326 | /* get parent process name if possible */ | |
6327 | if ((caller_parent = proc_find(caller->p_ppid)) != PROC_NULL) { | |
6328 | strlcpy(parent_name, caller_parent->p_comm, | |
6329 | sizeof(parent_name)); | |
6330 | proc_rele(caller_parent); | |
6331 | } | |
6332 | ||
6333 | if ((escape_str(command_name, strlen(command_name), | |
6334 | sizeof(command_name)) == 0) && | |
6335 | (escape_str(parent_name, strlen(parent_name), | |
6336 | sizeof(parent_name)) == 0)) { | |
6337 | kern_asl_msg(LOG_DEBUG, "messagetracer", | |
6338 | 5, | |
6339 | "com.apple.message.domain", | |
6340 | "com.apple.kernel.tcpstat", /* 1 */ | |
6341 | "com.apple.message.signature", | |
6342 | "tcpstat", /* 2 */ | |
6343 | "com.apple.message.signature2", command_name, /* 3 */ | |
6344 | "com.apple.message.signature3", parent_name, /* 4 */ | |
6345 | "com.apple.message.summarize", "YES", /* 5 */ | |
6346 | NULL); | |
6347 | } | |
6348 | } | |
6349 | if (caller != PROC_NULL) | |
6350 | proc_rele(caller); | |
6351 | if (tcp_disable_access_to_stats && | |
6352 | !kauth_cred_issuser(kauth_cred_get())) { | |
6353 | bzero(&zero_stat, sizeof(zero_stat)); | |
6354 | stat = &zero_stat; | |
6355 | } | |
6356 | ||
6357 | #endif /* !CONFIG_EMBEDDED */ | |
6358 | ||
6359 | if (req->oldptr == 0) { | |
6360 | req->oldlen= (size_t)sizeof(struct tcpstat); | |
6361 | } | |
6362 | ||
6363 | error = SYSCTL_OUT(req, stat, MIN(sizeof (tcpstat), req->oldlen)); | |
6364 | ||
6365 | return (error); | |
6366 | ||
6367 | } | |
6368 | ||
6369 | /* | |
6370 | * Checksum extended TCP header and data. | |
6371 | */ | |
6372 | int | |
6373 | tcp_input_checksum(int af, struct mbuf *m, struct tcphdr *th, int off, int tlen) | |
6374 | { | |
6375 | struct ifnet *ifp = m->m_pkthdr.rcvif; | |
6376 | ||
6377 | switch (af) { | |
6378 | case AF_INET: { | |
6379 | struct ip *ip = mtod(m, struct ip *); | |
6380 | struct ipovly *ipov = (struct ipovly *)ip; | |
6381 | ||
6382 | if (m->m_pkthdr.pkt_flags & PKTF_SW_LRO_DID_CSUM) | |
6383 | return (0); | |
6384 | ||
6385 | /* ip_stripoptions() must have been called before we get here */ | |
6386 | ASSERT((ip->ip_hl << 2) == sizeof (*ip)); | |
6387 | ||
6388 | if ((hwcksum_rx || (ifp->if_flags & IFF_LOOPBACK) || | |
6389 | (m->m_pkthdr.pkt_flags & PKTF_LOOP)) && | |
6390 | (m->m_pkthdr.csum_flags & CSUM_DATA_VALID)) { | |
6391 | if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { | |
6392 | th->th_sum = m->m_pkthdr.csum_rx_val; | |
6393 | } else { | |
6394 | uint32_t sum = m->m_pkthdr.csum_rx_val; | |
6395 | uint32_t start = m->m_pkthdr.csum_rx_start; | |
6396 | int32_t trailer = (m_pktlen(m) - (off + tlen)); | |
6397 | ||
6398 | /* | |
6399 | * Perform 1's complement adjustment of octets | |
6400 | * that got included/excluded in the hardware- | |
6401 | * calculated checksum value. Ignore cases | |
6402 | * where the value already includes the entire | |
6403 | * IP header span, as the sum for those octets | |
6404 | * would already be 0 by the time we get here; | |
6405 | * IP has already performed its header checksum | |
6406 | * checks. If we do need to adjust, restore | |
6407 | * the original fields in the IP header when | |
6408 | * computing the adjustment value. Also take | |
6409 | * care of any trailing bytes and subtract out | |
6410 | * their partial sum. | |
6411 | */ | |
6412 | ASSERT(trailer >= 0); | |
6413 | if ((m->m_pkthdr.csum_flags & CSUM_PARTIAL) && | |
6414 | ((start != 0 && start != off) || trailer)) { | |
6415 | uint32_t swbytes = (uint32_t)trailer; | |
6416 | ||
6417 | if (start < off) { | |
6418 | ip->ip_len += sizeof (*ip); | |
6419 | #if BYTE_ORDER != BIG_ENDIAN | |
6420 | HTONS(ip->ip_len); | |
6421 | HTONS(ip->ip_off); | |
6422 | #endif /* BYTE_ORDER != BIG_ENDIAN */ | |
6423 | } | |
6424 | /* callee folds in sum */ | |
6425 | sum = m_adj_sum16(m, start, off, | |
6426 | tlen, sum); | |
6427 | if (off > start) | |
6428 | swbytes += (off - start); | |
6429 | else | |
6430 | swbytes += (start - off); | |
6431 | ||
6432 | if (start < off) { | |
6433 | #if BYTE_ORDER != BIG_ENDIAN | |
6434 | NTOHS(ip->ip_off); | |
6435 | NTOHS(ip->ip_len); | |
6436 | #endif /* BYTE_ORDER != BIG_ENDIAN */ | |
6437 | ip->ip_len -= sizeof (*ip); | |
6438 | } | |
6439 | ||
6440 | if (swbytes != 0) | |
6441 | tcp_in_cksum_stats(swbytes); | |
6442 | if (trailer != 0) | |
6443 | m_adj(m, -trailer); | |
6444 | } | |
6445 | ||
6446 | /* callee folds in sum */ | |
6447 | th->th_sum = in_pseudo(ip->ip_src.s_addr, | |
6448 | ip->ip_dst.s_addr, | |
6449 | sum + htonl(tlen + IPPROTO_TCP)); | |
6450 | } | |
6451 | th->th_sum ^= 0xffff; | |
6452 | } else { | |
6453 | uint16_t ip_sum; | |
6454 | int len; | |
6455 | char b[9]; | |
6456 | ||
6457 | bcopy(ipov->ih_x1, b, sizeof (ipov->ih_x1)); | |
6458 | bzero(ipov->ih_x1, sizeof (ipov->ih_x1)); | |
6459 | ip_sum = ipov->ih_len; | |
6460 | ipov->ih_len = (u_short)tlen; | |
6461 | #if BYTE_ORDER != BIG_ENDIAN | |
6462 | HTONS(ipov->ih_len); | |
6463 | #endif | |
6464 | len = sizeof (struct ip) + tlen; | |
6465 | th->th_sum = in_cksum(m, len); | |
6466 | bcopy(b, ipov->ih_x1, sizeof (ipov->ih_x1)); | |
6467 | ipov->ih_len = ip_sum; | |
6468 | ||
6469 | tcp_in_cksum_stats(len); | |
6470 | } | |
6471 | break; | |
6472 | } | |
6473 | #if INET6 | |
6474 | case AF_INET6: { | |
6475 | struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *); | |
6476 | ||
6477 | if (m->m_pkthdr.pkt_flags & PKTF_SW_LRO_DID_CSUM) | |
6478 | return (0); | |
6479 | ||
6480 | if ((hwcksum_rx || (ifp->if_flags & IFF_LOOPBACK) || | |
6481 | (m->m_pkthdr.pkt_flags & PKTF_LOOP)) && | |
6482 | (m->m_pkthdr.csum_flags & CSUM_DATA_VALID)) { | |
6483 | if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { | |
6484 | th->th_sum = m->m_pkthdr.csum_rx_val; | |
6485 | } else { | |
6486 | uint32_t sum = m->m_pkthdr.csum_rx_val; | |
6487 | uint32_t start = m->m_pkthdr.csum_rx_start; | |
6488 | int32_t trailer = (m_pktlen(m) - (off + tlen)); | |
6489 | ||
6490 | /* | |
6491 | * Perform 1's complement adjustment of octets | |
6492 | * that got included/excluded in the hardware- | |
6493 | * calculated checksum value. Also take care | |
6494 | * of any trailing bytes and subtract out their | |
6495 | * partial sum. | |
6496 | */ | |
6497 | ASSERT(trailer >= 0); | |
6498 | if ((m->m_pkthdr.csum_flags & CSUM_PARTIAL) && | |
6499 | (start != off || trailer != 0)) { | |
6500 | uint16_t s = 0, d = 0; | |
6501 | uint32_t swbytes = (uint32_t)trailer; | |
6502 | ||
6503 | if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) { | |
6504 | s = ip6->ip6_src.s6_addr16[1]; | |
6505 | ip6->ip6_src.s6_addr16[1] = 0 ; | |
6506 | } | |
6507 | if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) { | |
6508 | d = ip6->ip6_dst.s6_addr16[1]; | |
6509 | ip6->ip6_dst.s6_addr16[1] = 0; | |
6510 | } | |
6511 | ||
6512 | /* callee folds in sum */ | |
6513 | sum = m_adj_sum16(m, start, off, | |
6514 | tlen, sum); | |
6515 | if (off > start) | |
6516 | swbytes += (off - start); | |
6517 | else | |
6518 | swbytes += (start - off); | |
6519 | ||
6520 | if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) | |
6521 | ip6->ip6_src.s6_addr16[1] = s; | |
6522 | if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) | |
6523 | ip6->ip6_dst.s6_addr16[1] = d; | |
6524 | ||
6525 | if (swbytes != 0) | |
6526 | tcp_in6_cksum_stats(swbytes); | |
6527 | if (trailer != 0) | |
6528 | m_adj(m, -trailer); | |
6529 | } | |
6530 | ||
6531 | th->th_sum = in6_pseudo( | |
6532 | &ip6->ip6_src, &ip6->ip6_dst, | |
6533 | sum + htonl(tlen + IPPROTO_TCP)); | |
6534 | } | |
6535 | th->th_sum ^= 0xffff; | |
6536 | } else { | |
6537 | tcp_in6_cksum_stats(tlen); | |
6538 | th->th_sum = in6_cksum(m, IPPROTO_TCP, off, tlen); | |
6539 | } | |
6540 | break; | |
6541 | } | |
6542 | #endif /* INET6 */ | |
6543 | default: | |
6544 | VERIFY(0); | |
6545 | /* NOTREACHED */ | |
6546 | } | |
6547 | ||
6548 | if (th->th_sum != 0) { | |
6549 | tcpstat.tcps_rcvbadsum++; | |
6550 | IF_TCP_STATINC(ifp, badformat); | |
6551 | return (-1); | |
6552 | } | |
6553 | ||
6554 | return (0); | |
6555 | } | |
6556 | ||
6557 | SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, | |
6558 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, tcp_getstat, | |
6559 | "S,tcpstat", "TCP statistics (struct tcpstat, netinet/tcp_var.h)"); | |
6560 | ||
6561 | static int | |
6562 | sysctl_rexmtthresh SYSCTL_HANDLER_ARGS | |
6563 | { | |
6564 | #pragma unused(arg1, arg2) | |
6565 | ||
6566 | int error, val = tcprexmtthresh; | |
6567 | ||
6568 | error = sysctl_handle_int(oidp, &val, 0, req); | |
6569 | if (error || !req->newptr) | |
6570 | return (error); | |
6571 | ||
6572 | /* | |
6573 | * Constrain the number of duplicate ACKs | |
6574 | * to consider for TCP fast retransmit | |
6575 | * to either 2 or 3 | |
6576 | */ | |
6577 | ||
6578 | if (val < 2 || val > 3) | |
6579 | return (EINVAL); | |
6580 | ||
6581 | tcprexmtthresh = val; | |
6582 | ||
6583 | return (0); | |
6584 | } | |
6585 | ||
6586 | SYSCTL_PROC(_net_inet_tcp, OID_AUTO, rexmt_thresh, CTLTYPE_INT | CTLFLAG_RW | | |
6587 | CTLFLAG_LOCKED, &tcprexmtthresh, 0, &sysctl_rexmtthresh, "I", | |
6588 | "Duplicate ACK Threshold for Fast Retransmit"); |