]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2011 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | * | |
28 | */ | |
29 | /*- | |
30 | * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org> | |
31 | * All rights reserved. | |
32 | * | |
33 | * Redistribution and use in source and binary forms, with or without | |
34 | * modification, are permitted provided that the following conditions | |
35 | * are met: | |
36 | * 1. Redistributions of source code must retain the above copyright | |
37 | * notice, this list of conditions and the following disclaimer. | |
38 | * 2. Redistributions in binary form must reproduce the above copyright | |
39 | * notice, this list of conditions and the following disclaimer in the | |
40 | * documentation and/or other materials provided with the distribution. | |
41 | * | |
42 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND | |
43 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
44 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
45 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | |
46 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
47 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
48 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
49 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
50 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
51 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
52 | * SUCH DAMAGE. | |
53 | */ | |
54 | /* | |
55 | * @(#)kern_event.c 1.0 (3/31/2000) | |
56 | */ | |
57 | #include <stdint.h> | |
58 | ||
59 | #include <sys/param.h> | |
60 | #include <sys/systm.h> | |
61 | #include <sys/filedesc.h> | |
62 | #include <sys/kernel.h> | |
63 | #include <sys/proc_internal.h> | |
64 | #include <sys/kauth.h> | |
65 | #include <sys/malloc.h> | |
66 | #include <sys/unistd.h> | |
67 | #include <sys/file_internal.h> | |
68 | #include <sys/fcntl.h> | |
69 | #include <sys/select.h> | |
70 | #include <sys/queue.h> | |
71 | #include <sys/event.h> | |
72 | #include <sys/eventvar.h> | |
73 | #include <sys/protosw.h> | |
74 | #include <sys/socket.h> | |
75 | #include <sys/socketvar.h> | |
76 | #include <sys/stat.h> | |
77 | #include <sys/sysctl.h> | |
78 | #include <sys/uio.h> | |
79 | #include <sys/sysproto.h> | |
80 | #include <sys/user.h> | |
81 | #include <sys/vnode_internal.h> | |
82 | #include <string.h> | |
83 | #include <sys/proc_info.h> | |
84 | ||
85 | #include <kern/lock.h> | |
86 | #include <kern/clock.h> | |
87 | #include <kern/thread_call.h> | |
88 | #include <kern/sched_prim.h> | |
89 | #include <kern/zalloc.h> | |
90 | #include <kern/assert.h> | |
91 | ||
92 | #include <libkern/libkern.h> | |
93 | #include "net/net_str_id.h" | |
94 | ||
95 | #include <mach/task.h> | |
96 | ||
97 | #if VM_PRESSURE_EVENTS | |
98 | #include <kern/vm_pressure.h> | |
99 | #endif | |
100 | ||
101 | MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system"); | |
102 | ||
103 | #define KQ_EVENT NULL | |
104 | ||
105 | static inline void kqlock(struct kqueue *kq); | |
106 | static inline void kqunlock(struct kqueue *kq); | |
107 | ||
108 | static int kqlock2knoteuse(struct kqueue *kq, struct knote *kn); | |
109 | static int kqlock2knoteusewait(struct kqueue *kq, struct knote *kn); | |
110 | static int kqlock2knotedrop(struct kqueue *kq, struct knote *kn); | |
111 | static int knoteuse2kqlock(struct kqueue *kq, struct knote *kn); | |
112 | ||
113 | static void kqueue_wakeup(struct kqueue *kq, int closed); | |
114 | static int kqueue_read(struct fileproc *fp, struct uio *uio, | |
115 | int flags, vfs_context_t ctx); | |
116 | static int kqueue_write(struct fileproc *fp, struct uio *uio, | |
117 | int flags, vfs_context_t ctx); | |
118 | static int kqueue_ioctl(struct fileproc *fp, u_long com, caddr_t data, | |
119 | vfs_context_t ctx); | |
120 | static int kqueue_select(struct fileproc *fp, int which, void *wql, | |
121 | vfs_context_t ctx); | |
122 | static int kqueue_close(struct fileglob *fg, vfs_context_t ctx); | |
123 | static int kqueue_kqfilter(struct fileproc *fp, struct knote *kn, vfs_context_t ctx); | |
124 | static int kqueue_drain(struct fileproc *fp, vfs_context_t ctx); | |
125 | extern int kqueue_stat(struct fileproc *fp, void *ub, int isstat64, vfs_context_t ctx); | |
126 | ||
127 | static struct fileops kqueueops = { | |
128 | .fo_read = kqueue_read, | |
129 | .fo_write = kqueue_write, | |
130 | .fo_ioctl = kqueue_ioctl, | |
131 | .fo_select = kqueue_select, | |
132 | .fo_close = kqueue_close, | |
133 | .fo_kqfilter = kqueue_kqfilter, | |
134 | .fo_drain = kqueue_drain, | |
135 | }; | |
136 | ||
137 | static int kevent_internal(struct proc *p, int iskev64, user_addr_t changelist, | |
138 | int nchanges, user_addr_t eventlist, int nevents, int fd, | |
139 | user_addr_t utimeout, unsigned int flags, int32_t *retval); | |
140 | static int kevent_copyin(user_addr_t *addrp, struct kevent64_s *kevp, struct proc *p, int iskev64); | |
141 | static int kevent_copyout(struct kevent64_s *kevp, user_addr_t *addrp, struct proc *p, int iskev64); | |
142 | char * kevent_description(struct kevent64_s *kevp, char *s, size_t n); | |
143 | ||
144 | static int kevent_callback(struct kqueue *kq, struct kevent64_s *kevp, void *data); | |
145 | static void kevent_continue(struct kqueue *kq, void *data, int error); | |
146 | static void kqueue_scan_continue(void *contp, wait_result_t wait_result); | |
147 | static int kqueue_process(struct kqueue *kq, kevent_callback_t callback, | |
148 | void *data, int *countp, struct proc *p); | |
149 | static int kqueue_begin_processing(struct kqueue *kq); | |
150 | static void kqueue_end_processing(struct kqueue *kq); | |
151 | static int knote_process(struct knote *kn, kevent_callback_t callback, | |
152 | void *data, struct kqtailq *inprocessp, struct proc *p); | |
153 | static void knote_put(struct knote *kn); | |
154 | static int knote_fdpattach(struct knote *kn, struct filedesc *fdp, struct proc *p); | |
155 | static void knote_drop(struct knote *kn, struct proc *p); | |
156 | static void knote_activate(struct knote *kn, int); | |
157 | static void knote_deactivate(struct knote *kn); | |
158 | static void knote_enqueue(struct knote *kn); | |
159 | static void knote_dequeue(struct knote *kn); | |
160 | static struct knote *knote_alloc(void); | |
161 | static void knote_free(struct knote *kn); | |
162 | ||
163 | static int filt_fileattach(struct knote *kn); | |
164 | static struct filterops file_filtops = { | |
165 | .f_isfd = 1, | |
166 | .f_attach = filt_fileattach, | |
167 | }; | |
168 | ||
169 | static void filt_kqdetach(struct knote *kn); | |
170 | static int filt_kqueue(struct knote *kn, long hint); | |
171 | static struct filterops kqread_filtops = { | |
172 | .f_isfd = 1, | |
173 | .f_detach = filt_kqdetach, | |
174 | .f_event = filt_kqueue, | |
175 | }; | |
176 | ||
177 | /* | |
178 | * placeholder for not-yet-implemented filters | |
179 | */ | |
180 | static int filt_badattach(struct knote *kn); | |
181 | static struct filterops bad_filtops = { | |
182 | .f_attach = filt_badattach, | |
183 | }; | |
184 | ||
185 | static int filt_procattach(struct knote *kn); | |
186 | static void filt_procdetach(struct knote *kn); | |
187 | static int filt_proc(struct knote *kn, long hint); | |
188 | static struct filterops proc_filtops = { | |
189 | .f_attach = filt_procattach, | |
190 | .f_detach = filt_procdetach, | |
191 | .f_event = filt_proc, | |
192 | }; | |
193 | ||
194 | #if VM_PRESSURE_EVENTS | |
195 | static int filt_vmattach(struct knote *kn); | |
196 | static void filt_vmdetach(struct knote *kn); | |
197 | static int filt_vm(struct knote *kn, long hint); | |
198 | static struct filterops vm_filtops = { | |
199 | .f_attach = filt_vmattach, | |
200 | .f_detach = filt_vmdetach, | |
201 | .f_event = filt_vm, | |
202 | }; | |
203 | #endif /* VM_PRESSURE_EVENTS */ | |
204 | ||
205 | extern struct filterops fs_filtops; | |
206 | ||
207 | extern struct filterops sig_filtops; | |
208 | ||
209 | /* Timer filter */ | |
210 | static int filt_timerattach(struct knote *kn); | |
211 | static void filt_timerdetach(struct knote *kn); | |
212 | static int filt_timer(struct knote *kn, long hint); | |
213 | static void filt_timertouch(struct knote *kn, struct kevent64_s *kev, | |
214 | long type); | |
215 | static struct filterops timer_filtops = { | |
216 | .f_attach = filt_timerattach, | |
217 | .f_detach = filt_timerdetach, | |
218 | .f_event = filt_timer, | |
219 | .f_touch = filt_timertouch, | |
220 | }; | |
221 | ||
222 | /* Helpers */ | |
223 | ||
224 | static void filt_timerexpire(void *knx, void *param1); | |
225 | static int filt_timervalidate(struct knote *kn); | |
226 | static void filt_timerupdate(struct knote *kn); | |
227 | static void filt_timercancel(struct knote *kn); | |
228 | ||
229 | #define TIMER_RUNNING 0x1 | |
230 | #define TIMER_CANCELWAIT 0x2 | |
231 | ||
232 | static lck_mtx_t _filt_timerlock; | |
233 | static void filt_timerlock(void); | |
234 | static void filt_timerunlock(void); | |
235 | ||
236 | static zone_t knote_zone; | |
237 | ||
238 | #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask)) | |
239 | ||
240 | #if 0 | |
241 | extern struct filterops aio_filtops; | |
242 | #endif | |
243 | ||
244 | /* Mach portset filter */ | |
245 | extern struct filterops machport_filtops; | |
246 | ||
247 | /* User filter */ | |
248 | static int filt_userattach(struct knote *kn); | |
249 | static void filt_userdetach(struct knote *kn); | |
250 | static int filt_user(struct knote *kn, long hint); | |
251 | static void filt_usertouch(struct knote *kn, struct kevent64_s *kev, | |
252 | long type); | |
253 | static struct filterops user_filtops = { | |
254 | .f_attach = filt_userattach, | |
255 | .f_detach = filt_userdetach, | |
256 | .f_event = filt_user, | |
257 | .f_touch = filt_usertouch, | |
258 | }; | |
259 | ||
260 | /* | |
261 | * Table for for all system-defined filters. | |
262 | */ | |
263 | static struct filterops *sysfilt_ops[] = { | |
264 | &file_filtops, /* EVFILT_READ */ | |
265 | &file_filtops, /* EVFILT_WRITE */ | |
266 | #if 0 | |
267 | &aio_filtops, /* EVFILT_AIO */ | |
268 | #else | |
269 | &bad_filtops, /* EVFILT_AIO */ | |
270 | #endif | |
271 | &file_filtops, /* EVFILT_VNODE */ | |
272 | &proc_filtops, /* EVFILT_PROC */ | |
273 | &sig_filtops, /* EVFILT_SIGNAL */ | |
274 | &timer_filtops, /* EVFILT_TIMER */ | |
275 | &machport_filtops, /* EVFILT_MACHPORT */ | |
276 | &fs_filtops, /* EVFILT_FS */ | |
277 | &user_filtops, /* EVFILT_USER */ | |
278 | &bad_filtops, /* unused */ | |
279 | #if VM_PRESSURE_EVENTS | |
280 | &vm_filtops, /* EVFILT_VM */ | |
281 | #else | |
282 | &bad_filtops, /* EVFILT_VM */ | |
283 | #endif | |
284 | &file_filtops, /* EVFILT_SOCK */ | |
285 | }; | |
286 | ||
287 | /* | |
288 | * kqueue/note lock attributes and implementations | |
289 | * | |
290 | * kqueues have locks, while knotes have use counts | |
291 | * Most of the knote state is guarded by the object lock. | |
292 | * the knote "inuse" count and status use the kqueue lock. | |
293 | */ | |
294 | lck_grp_attr_t * kq_lck_grp_attr; | |
295 | lck_grp_t * kq_lck_grp; | |
296 | lck_attr_t * kq_lck_attr; | |
297 | ||
298 | static inline void | |
299 | kqlock(struct kqueue *kq) | |
300 | { | |
301 | lck_spin_lock(&kq->kq_lock); | |
302 | } | |
303 | ||
304 | static inline void | |
305 | kqunlock(struct kqueue *kq) | |
306 | { | |
307 | lck_spin_unlock(&kq->kq_lock); | |
308 | } | |
309 | ||
310 | /* | |
311 | * Convert a kq lock to a knote use referece. | |
312 | * | |
313 | * If the knote is being dropped, we can't get | |
314 | * a use reference, so just return with it | |
315 | * still locked. | |
316 | * | |
317 | * - kq locked at entry | |
318 | * - unlock on exit if we get the use reference | |
319 | */ | |
320 | static int | |
321 | kqlock2knoteuse(struct kqueue *kq, struct knote *kn) | |
322 | { | |
323 | if (kn->kn_status & KN_DROPPING) | |
324 | return 0; | |
325 | kn->kn_inuse++; | |
326 | kqunlock(kq); | |
327 | return 1; | |
328 | } | |
329 | ||
330 | /* | |
331 | * Convert a kq lock to a knote use referece, | |
332 | * but wait for attach and drop events to complete. | |
333 | * | |
334 | * If the knote is being dropped, we can't get | |
335 | * a use reference, so just return with it | |
336 | * still locked. | |
337 | * | |
338 | * - kq locked at entry | |
339 | * - kq always unlocked on exit | |
340 | */ | |
341 | static int | |
342 | kqlock2knoteusewait(struct kqueue *kq, struct knote *kn) | |
343 | { | |
344 | if ((kn->kn_status & (KN_DROPPING | KN_ATTACHING)) != 0) { | |
345 | kn->kn_status |= KN_USEWAIT; | |
346 | wait_queue_assert_wait((wait_queue_t)kq->kq_wqs, &kn->kn_status, THREAD_UNINT, 0); | |
347 | kqunlock(kq); | |
348 | thread_block(THREAD_CONTINUE_NULL); | |
349 | return 0; | |
350 | } | |
351 | kn->kn_inuse++; | |
352 | kqunlock(kq); | |
353 | return 1; | |
354 | } | |
355 | ||
356 | ||
357 | /* | |
358 | * Convert from a knote use reference back to kq lock. | |
359 | * | |
360 | * Drop a use reference and wake any waiters if | |
361 | * this is the last one. | |
362 | * | |
363 | * The exit return indicates if the knote is | |
364 | * still alive - but the kqueue lock is taken | |
365 | * unconditionally. | |
366 | */ | |
367 | static int | |
368 | knoteuse2kqlock(struct kqueue *kq, struct knote *kn) | |
369 | { | |
370 | kqlock(kq); | |
371 | if (--kn->kn_inuse == 0) { | |
372 | if ((kn->kn_status & KN_ATTACHING) != 0) { | |
373 | kn->kn_status &= ~KN_ATTACHING; | |
374 | } | |
375 | if ((kn->kn_status & KN_USEWAIT) != 0) { | |
376 | kn->kn_status &= ~KN_USEWAIT; | |
377 | wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, &kn->kn_status, THREAD_AWAKENED); | |
378 | } | |
379 | } | |
380 | return ((kn->kn_status & KN_DROPPING) == 0); | |
381 | } | |
382 | ||
383 | /* | |
384 | * Convert a kq lock to a knote drop referece. | |
385 | * | |
386 | * If the knote is in use, wait for the use count | |
387 | * to subside. We first mark our intention to drop | |
388 | * it - keeping other users from "piling on." | |
389 | * If we are too late, we have to wait for the | |
390 | * other drop to complete. | |
391 | * | |
392 | * - kq locked at entry | |
393 | * - always unlocked on exit. | |
394 | * - caller can't hold any locks that would prevent | |
395 | * the other dropper from completing. | |
396 | */ | |
397 | static int | |
398 | kqlock2knotedrop(struct kqueue *kq, struct knote *kn) | |
399 | { | |
400 | int oktodrop; | |
401 | ||
402 | oktodrop = ((kn->kn_status & (KN_DROPPING | KN_ATTACHING)) == 0); | |
403 | kn->kn_status |= KN_DROPPING; | |
404 | if (oktodrop) { | |
405 | if (kn->kn_inuse == 0) { | |
406 | kqunlock(kq); | |
407 | return oktodrop; | |
408 | } | |
409 | } | |
410 | kn->kn_status |= KN_USEWAIT; | |
411 | wait_queue_assert_wait((wait_queue_t)kq->kq_wqs, &kn->kn_status, THREAD_UNINT, 0); | |
412 | kqunlock(kq); | |
413 | thread_block(THREAD_CONTINUE_NULL); | |
414 | return oktodrop; | |
415 | } | |
416 | ||
417 | /* | |
418 | * Release a knote use count reference. | |
419 | */ | |
420 | static void | |
421 | knote_put(struct knote *kn) | |
422 | { | |
423 | struct kqueue *kq = kn->kn_kq; | |
424 | ||
425 | kqlock(kq); | |
426 | if (--kn->kn_inuse == 0) { | |
427 | if ((kn->kn_status & KN_USEWAIT) != 0) { | |
428 | kn->kn_status &= ~KN_USEWAIT; | |
429 | wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, &kn->kn_status, THREAD_AWAKENED); | |
430 | } | |
431 | } | |
432 | kqunlock(kq); | |
433 | } | |
434 | ||
435 | static int | |
436 | filt_fileattach(struct knote *kn) | |
437 | { | |
438 | ||
439 | return (fo_kqfilter(kn->kn_fp, kn, vfs_context_current())); | |
440 | } | |
441 | ||
442 | #define f_flag f_fglob->fg_flag | |
443 | #define f_type f_fglob->fg_type | |
444 | #define f_msgcount f_fglob->fg_msgcount | |
445 | #define f_cred f_fglob->fg_cred | |
446 | #define f_ops f_fglob->fg_ops | |
447 | #define f_offset f_fglob->fg_offset | |
448 | #define f_data f_fglob->fg_data | |
449 | ||
450 | static void | |
451 | filt_kqdetach(struct knote *kn) | |
452 | { | |
453 | struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data; | |
454 | ||
455 | kqlock(kq); | |
456 | KNOTE_DETACH(&kq->kq_sel.si_note, kn); | |
457 | kqunlock(kq); | |
458 | } | |
459 | ||
460 | /*ARGSUSED*/ | |
461 | static int | |
462 | filt_kqueue(struct knote *kn, __unused long hint) | |
463 | { | |
464 | struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data; | |
465 | ||
466 | kn->kn_data = kq->kq_count; | |
467 | return (kn->kn_data > 0); | |
468 | } | |
469 | ||
470 | static int | |
471 | filt_procattach(struct knote *kn) | |
472 | { | |
473 | struct proc *p; | |
474 | ||
475 | assert(PID_MAX < NOTE_PDATAMASK); | |
476 | ||
477 | if ((kn->kn_sfflags & (NOTE_TRACK | NOTE_TRACKERR | NOTE_CHILD)) != 0) | |
478 | return(ENOTSUP); | |
479 | ||
480 | p = proc_find(kn->kn_id); | |
481 | if (p == NULL) { | |
482 | return (ESRCH); | |
483 | } | |
484 | ||
485 | const int NoteExitStatusBits = NOTE_EXIT | NOTE_EXITSTATUS; | |
486 | ||
487 | if ((kn->kn_sfflags & NoteExitStatusBits) == NoteExitStatusBits) | |
488 | do { | |
489 | pid_t selfpid = proc_selfpid(); | |
490 | ||
491 | if (p->p_ppid == selfpid) | |
492 | break; /* parent => ok */ | |
493 | ||
494 | if ((p->p_lflag & P_LTRACED) != 0 && | |
495 | (p->p_oppid == selfpid)) | |
496 | break; /* parent-in-waiting => ok */ | |
497 | ||
498 | proc_rele(p); | |
499 | return (EACCES); | |
500 | } while (0); | |
501 | ||
502 | proc_klist_lock(); | |
503 | ||
504 | kn->kn_flags |= EV_CLEAR; /* automatically set */ | |
505 | kn->kn_ptr.p_proc = p; /* store the proc handle */ | |
506 | ||
507 | KNOTE_ATTACH(&p->p_klist, kn); | |
508 | ||
509 | proc_klist_unlock(); | |
510 | ||
511 | proc_rele(p); | |
512 | ||
513 | return (0); | |
514 | } | |
515 | ||
516 | /* | |
517 | * The knote may be attached to a different process, which may exit, | |
518 | * leaving nothing for the knote to be attached to. In that case, | |
519 | * the pointer to the process will have already been nulled out. | |
520 | */ | |
521 | static void | |
522 | filt_procdetach(struct knote *kn) | |
523 | { | |
524 | struct proc *p; | |
525 | ||
526 | proc_klist_lock(); | |
527 | ||
528 | p = kn->kn_ptr.p_proc; | |
529 | if (p != PROC_NULL) { | |
530 | kn->kn_ptr.p_proc = PROC_NULL; | |
531 | KNOTE_DETACH(&p->p_klist, kn); | |
532 | } | |
533 | ||
534 | proc_klist_unlock(); | |
535 | } | |
536 | ||
537 | static int | |
538 | filt_proc(struct knote *kn, long hint) | |
539 | { | |
540 | /* hint is 0 when called from above */ | |
541 | if (hint != 0) { | |
542 | u_int event; | |
543 | ||
544 | /* ALWAYS CALLED WITH proc_klist_lock when (hint != 0) */ | |
545 | ||
546 | /* | |
547 | * mask off extra data | |
548 | */ | |
549 | event = (u_int)hint & NOTE_PCTRLMASK; | |
550 | ||
551 | /* | |
552 | * termination lifecycle events can happen while a debugger | |
553 | * has reparented a process, in which case notifications | |
554 | * should be quashed except to the tracing parent. When | |
555 | * the debugger reaps the child (either via wait4(2) or | |
556 | * process exit), the child will be reparented to the original | |
557 | * parent and these knotes re-fired. | |
558 | */ | |
559 | if (event & NOTE_EXIT) { | |
560 | if ((kn->kn_ptr.p_proc->p_oppid != 0) | |
561 | && (kn->kn_kq->kq_p->p_pid != kn->kn_ptr.p_proc->p_ppid)) { | |
562 | /* | |
563 | * This knote is not for the current ptrace(2) parent, ignore. | |
564 | */ | |
565 | return 0; | |
566 | } | |
567 | } | |
568 | ||
569 | /* | |
570 | * if the user is interested in this event, record it. | |
571 | */ | |
572 | if (kn->kn_sfflags & event) | |
573 | kn->kn_fflags |= event; | |
574 | ||
575 | if (event == NOTE_REAP || (event == NOTE_EXIT && !(kn->kn_sfflags & NOTE_REAP))) { | |
576 | kn->kn_flags |= (EV_EOF | EV_ONESHOT); | |
577 | } | |
578 | if ((event == NOTE_EXIT) && ((kn->kn_sfflags & NOTE_EXITSTATUS) != 0)) { | |
579 | kn->kn_fflags |= NOTE_EXITSTATUS; | |
580 | kn->kn_data = (hint & NOTE_PDATAMASK); | |
581 | } | |
582 | if ((event == NOTE_RESOURCEEND) && ((kn->kn_sfflags & NOTE_RESOURCEEND) != 0)) { | |
583 | kn->kn_fflags |= NOTE_RESOURCEEND; | |
584 | kn->kn_data = (hint & NOTE_PDATAMASK); | |
585 | } | |
586 | #if CONFIG_EMBEDDED | |
587 | /* If the event is one of the APPSTATE events,remove the rest */ | |
588 | if (((event & NOTE_APPALLSTATES) != 0) && ((kn->kn_sfflags & NOTE_APPALLSTATES) != 0)) { | |
589 | /* only one state at a time */ | |
590 | kn->kn_fflags &= ~NOTE_APPALLSTATES; | |
591 | kn->kn_fflags |= event; | |
592 | } | |
593 | #endif /* CONFIG_EMBEDDED */ | |
594 | } | |
595 | ||
596 | /* atomic check, no locking need when called from above */ | |
597 | return (kn->kn_fflags != 0); | |
598 | } | |
599 | ||
600 | #if VM_PRESSURE_EVENTS | |
601 | /* | |
602 | * Virtual memory kevents | |
603 | * | |
604 | * author: Matt Jacobson [matthew_jacobson@apple.com] | |
605 | */ | |
606 | ||
607 | static int | |
608 | filt_vmattach(struct knote *kn) | |
609 | { | |
610 | /* | |
611 | * The note will be cleared once the information has been flushed to the client. | |
612 | * If there is still pressure, we will be re-alerted. | |
613 | */ | |
614 | kn->kn_flags |= EV_CLEAR; | |
615 | ||
616 | return vm_knote_register(kn); | |
617 | } | |
618 | ||
619 | static void | |
620 | filt_vmdetach(struct knote *kn) | |
621 | { | |
622 | vm_knote_unregister(kn); | |
623 | } | |
624 | ||
625 | static int | |
626 | filt_vm(struct knote *kn, long hint) | |
627 | { | |
628 | /* hint == 0 means this is just an alive? check (always true) */ | |
629 | if (hint != 0) { | |
630 | const pid_t pid = (pid_t)hint; | |
631 | if ((kn->kn_sfflags & NOTE_VM_PRESSURE) && (kn->kn_kq->kq_p->p_pid == pid)) { | |
632 | kn->kn_fflags |= NOTE_VM_PRESSURE; | |
633 | } | |
634 | } | |
635 | ||
636 | return (kn->kn_fflags != 0); | |
637 | } | |
638 | #endif /* VM_PRESSURE_EVENTS */ | |
639 | ||
640 | /* | |
641 | * filt_timervalidate - process data from user | |
642 | * | |
643 | * Converts to either interval or deadline format. | |
644 | * | |
645 | * The saved-data field in the knote contains the | |
646 | * time value. The saved filter-flags indicates | |
647 | * the unit of measurement. | |
648 | * | |
649 | * After validation, either the saved-data field | |
650 | * contains the interval in absolute time, or ext[0] | |
651 | * contains the expected deadline. If that deadline | |
652 | * is in the past, ext[0] is 0. | |
653 | * | |
654 | * Returns EINVAL for unrecognized units of time. | |
655 | * | |
656 | * Timer filter lock is held. | |
657 | * | |
658 | */ | |
659 | static int | |
660 | filt_timervalidate(struct knote *kn) | |
661 | { | |
662 | uint64_t multiplier; | |
663 | uint64_t raw; | |
664 | ||
665 | switch (kn->kn_sfflags & (NOTE_SECONDS|NOTE_USECONDS|NOTE_NSECONDS)) { | |
666 | case NOTE_SECONDS: | |
667 | multiplier = NSEC_PER_SEC; | |
668 | break; | |
669 | case NOTE_USECONDS: | |
670 | multiplier = NSEC_PER_USEC; | |
671 | break; | |
672 | case NOTE_NSECONDS: | |
673 | multiplier = 1; | |
674 | break; | |
675 | case 0: /* milliseconds (default) */ | |
676 | multiplier = NSEC_PER_SEC / 1000; | |
677 | break; | |
678 | default: | |
679 | return EINVAL; | |
680 | } | |
681 | ||
682 | nanoseconds_to_absolutetime((uint64_t)kn->kn_sdata * multiplier, &raw); | |
683 | ||
684 | kn->kn_ext[0] = 0; | |
685 | kn->kn_sdata = 0; | |
686 | ||
687 | if (kn->kn_sfflags & NOTE_ABSOLUTE) { | |
688 | clock_sec_t seconds; | |
689 | clock_nsec_t nanoseconds; | |
690 | uint64_t now; | |
691 | ||
692 | clock_get_calendar_nanotime(&seconds, &nanoseconds); | |
693 | nanoseconds_to_absolutetime((uint64_t)seconds * NSEC_PER_SEC + | |
694 | nanoseconds, &now); | |
695 | ||
696 | if (raw < now) { | |
697 | /* time has already passed */ | |
698 | kn->kn_ext[0] = 0; | |
699 | } else { | |
700 | raw -= now; | |
701 | clock_absolutetime_interval_to_deadline(raw, | |
702 | &kn->kn_ext[0]); | |
703 | } | |
704 | } else { | |
705 | kn->kn_sdata = raw; | |
706 | } | |
707 | ||
708 | return 0; | |
709 | } | |
710 | ||
711 | /* | |
712 | * filt_timerupdate - compute the next deadline | |
713 | * | |
714 | * Repeating timers store their interval in kn_sdata. Absolute | |
715 | * timers have already calculated the deadline, stored in ext[0]. | |
716 | * | |
717 | * On return, the next deadline (or zero if no deadline is needed) | |
718 | * is stored in kn_ext[0]. | |
719 | * | |
720 | * Timer filter lock is held. | |
721 | */ | |
722 | static void | |
723 | filt_timerupdate(struct knote *kn) | |
724 | { | |
725 | /* if there's no interval, deadline is just in kn_ext[0] */ | |
726 | if (kn->kn_sdata == 0) | |
727 | return; | |
728 | ||
729 | /* if timer hasn't fired before, fire in interval nsecs */ | |
730 | if (kn->kn_ext[0] == 0) { | |
731 | clock_absolutetime_interval_to_deadline(kn->kn_sdata, | |
732 | &kn->kn_ext[0]); | |
733 | } else { | |
734 | /* | |
735 | * If timer has fired before, schedule the next pop | |
736 | * relative to the last intended deadline. | |
737 | * | |
738 | * We could check for whether the deadline has expired, | |
739 | * but the thread call layer can handle that. | |
740 | */ | |
741 | kn->kn_ext[0] += kn->kn_sdata; | |
742 | } | |
743 | } | |
744 | ||
745 | /* | |
746 | * filt_timerexpire - the timer callout routine | |
747 | * | |
748 | * Just propagate the timer event into the knote | |
749 | * filter routine (by going through the knote | |
750 | * synchronization point). Pass a hint to | |
751 | * indicate this is a real event, not just a | |
752 | * query from above. | |
753 | */ | |
754 | static void | |
755 | filt_timerexpire(void *knx, __unused void *spare) | |
756 | { | |
757 | struct klist timer_list; | |
758 | struct knote *kn = knx; | |
759 | ||
760 | filt_timerlock(); | |
761 | ||
762 | kn->kn_hookid &= ~TIMER_RUNNING; | |
763 | ||
764 | /* no "object" for timers, so fake a list */ | |
765 | SLIST_INIT(&timer_list); | |
766 | SLIST_INSERT_HEAD(&timer_list, kn, kn_selnext); | |
767 | KNOTE(&timer_list, 1); | |
768 | ||
769 | /* if someone is waiting for timer to pop */ | |
770 | if (kn->kn_hookid & TIMER_CANCELWAIT) { | |
771 | struct kqueue *kq = kn->kn_kq; | |
772 | wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, &kn->kn_hook, | |
773 | THREAD_AWAKENED); | |
774 | } | |
775 | ||
776 | filt_timerunlock(); | |
777 | } | |
778 | ||
779 | /* | |
780 | * Cancel a running timer (or wait for the pop). | |
781 | * Timer filter lock is held. | |
782 | */ | |
783 | static void | |
784 | filt_timercancel(struct knote *kn) | |
785 | { | |
786 | struct kqueue *kq = kn->kn_kq; | |
787 | thread_call_t callout = kn->kn_hook; | |
788 | boolean_t cancelled; | |
789 | ||
790 | if (kn->kn_hookid & TIMER_RUNNING) { | |
791 | /* cancel the callout if we can */ | |
792 | cancelled = thread_call_cancel(callout); | |
793 | if (cancelled) { | |
794 | kn->kn_hookid &= ~TIMER_RUNNING; | |
795 | } else { | |
796 | /* we have to wait for the expire routine. */ | |
797 | kn->kn_hookid |= TIMER_CANCELWAIT; | |
798 | wait_queue_assert_wait((wait_queue_t)kq->kq_wqs, | |
799 | &kn->kn_hook, THREAD_UNINT, 0); | |
800 | filt_timerunlock(); | |
801 | thread_block(THREAD_CONTINUE_NULL); | |
802 | filt_timerlock(); | |
803 | assert((kn->kn_hookid & TIMER_RUNNING) == 0); | |
804 | } | |
805 | } | |
806 | } | |
807 | ||
808 | /* | |
809 | * Allocate a thread call for the knote's lifetime, and kick off the timer. | |
810 | */ | |
811 | static int | |
812 | filt_timerattach(struct knote *kn) | |
813 | { | |
814 | thread_call_t callout; | |
815 | int error; | |
816 | ||
817 | callout = thread_call_allocate(filt_timerexpire, kn); | |
818 | if (NULL == callout) | |
819 | return (ENOMEM); | |
820 | ||
821 | filt_timerlock(); | |
822 | error = filt_timervalidate(kn); | |
823 | if (error) { | |
824 | filt_timerunlock(); | |
825 | return (error); | |
826 | } | |
827 | ||
828 | kn->kn_hook = (void*)callout; | |
829 | kn->kn_hookid = 0; | |
830 | ||
831 | /* absolute=EV_ONESHOT */ | |
832 | if (kn->kn_sfflags & NOTE_ABSOLUTE) | |
833 | kn->kn_flags |= EV_ONESHOT; | |
834 | ||
835 | filt_timerupdate(kn); | |
836 | if (kn->kn_ext[0]) { | |
837 | kn->kn_flags |= EV_CLEAR; | |
838 | thread_call_enter_delayed(callout, kn->kn_ext[0]); | |
839 | kn->kn_hookid |= TIMER_RUNNING; | |
840 | } else { | |
841 | /* fake immediate */ | |
842 | kn->kn_data = 1; | |
843 | } | |
844 | ||
845 | filt_timerunlock(); | |
846 | return (0); | |
847 | } | |
848 | ||
849 | /* | |
850 | * Shut down the timer if it's running, and free the callout. | |
851 | */ | |
852 | static void | |
853 | filt_timerdetach(struct knote *kn) | |
854 | { | |
855 | thread_call_t callout; | |
856 | ||
857 | filt_timerlock(); | |
858 | ||
859 | callout = (thread_call_t)kn->kn_hook; | |
860 | filt_timercancel(kn); | |
861 | ||
862 | filt_timerunlock(); | |
863 | ||
864 | thread_call_free(callout); | |
865 | } | |
866 | ||
867 | ||
868 | ||
869 | static int | |
870 | filt_timer(struct knote *kn, long hint) | |
871 | { | |
872 | int result; | |
873 | ||
874 | if (hint) { | |
875 | /* real timer pop -- timer lock held by filt_timerexpire */ | |
876 | ||
877 | kn->kn_data++; | |
878 | ||
879 | if (((kn->kn_hookid & TIMER_CANCELWAIT) == 0) && | |
880 | ((kn->kn_flags & EV_ONESHOT) == 0)) { | |
881 | ||
882 | /* evaluate next time to fire */ | |
883 | filt_timerupdate(kn); | |
884 | ||
885 | if (kn->kn_ext[0]) { | |
886 | /* keep the callout and re-arm */ | |
887 | thread_call_enter_delayed(kn->kn_hook, | |
888 | kn->kn_ext[0]); | |
889 | kn->kn_hookid |= TIMER_RUNNING; | |
890 | } | |
891 | } | |
892 | ||
893 | return 1; | |
894 | } | |
895 | ||
896 | /* user-query */ | |
897 | filt_timerlock(); | |
898 | ||
899 | result = (kn->kn_data != 0); | |
900 | ||
901 | filt_timerunlock(); | |
902 | return result; | |
903 | } | |
904 | ||
905 | ||
906 | /* | |
907 | * filt_timertouch - update knote with new user input | |
908 | * | |
909 | * Cancel and restart the timer based on new user data. When | |
910 | * the user picks up a knote, clear the count of how many timer | |
911 | * pops have gone off (in kn_data). | |
912 | */ | |
913 | static void | |
914 | filt_timertouch(struct knote *kn, struct kevent64_s *kev, long type) | |
915 | { | |
916 | int error; | |
917 | filt_timerlock(); | |
918 | ||
919 | switch (type) { | |
920 | case EVENT_REGISTER: | |
921 | /* cancel current call */ | |
922 | filt_timercancel(kn); | |
923 | ||
924 | /* recalculate deadline */ | |
925 | kn->kn_sdata = kev->data; | |
926 | kn->kn_sfflags = kev->fflags; | |
927 | ||
928 | error = filt_timervalidate(kn); | |
929 | if (error) { | |
930 | /* no way to report error, so mark it in the knote */ | |
931 | kn->kn_flags |= EV_ERROR; | |
932 | kn->kn_data = error; | |
933 | break; | |
934 | } | |
935 | ||
936 | /* start timer if necessary */ | |
937 | filt_timerupdate(kn); | |
938 | if (kn->kn_ext[0]) { | |
939 | thread_call_enter_delayed(kn->kn_hook, kn->kn_ext[0]); | |
940 | kn->kn_hookid |= TIMER_RUNNING; | |
941 | } else { | |
942 | /* pretend the timer has fired */ | |
943 | kn->kn_data = 1; | |
944 | } | |
945 | ||
946 | break; | |
947 | ||
948 | case EVENT_PROCESS: | |
949 | /* reset the timer pop count in kn_data */ | |
950 | *kev = kn->kn_kevent; | |
951 | kev->ext[0] = 0; | |
952 | kn->kn_data = 0; | |
953 | if (kn->kn_flags & EV_CLEAR) | |
954 | kn->kn_fflags = 0; | |
955 | break; | |
956 | default: | |
957 | panic("filt_timertouch() - invalid type (%ld)", type); | |
958 | break; | |
959 | } | |
960 | ||
961 | filt_timerunlock(); | |
962 | } | |
963 | ||
964 | static void | |
965 | filt_timerlock(void) | |
966 | { | |
967 | lck_mtx_lock(&_filt_timerlock); | |
968 | } | |
969 | ||
970 | static void | |
971 | filt_timerunlock(void) | |
972 | { | |
973 | lck_mtx_unlock(&_filt_timerlock); | |
974 | } | |
975 | ||
976 | static int | |
977 | filt_userattach(struct knote *kn) | |
978 | { | |
979 | /* EVFILT_USER knotes are not attached to anything in the kernel */ | |
980 | kn->kn_hook = NULL; | |
981 | if (kn->kn_fflags & NOTE_TRIGGER) { | |
982 | kn->kn_hookid = 1; | |
983 | } else { | |
984 | kn->kn_hookid = 0; | |
985 | } | |
986 | return 0; | |
987 | } | |
988 | ||
989 | static void | |
990 | filt_userdetach(__unused struct knote *kn) | |
991 | { | |
992 | /* EVFILT_USER knotes are not attached to anything in the kernel */ | |
993 | } | |
994 | ||
995 | static int | |
996 | filt_user(struct knote *kn, __unused long hint) | |
997 | { | |
998 | return kn->kn_hookid; | |
999 | } | |
1000 | ||
1001 | static void | |
1002 | filt_usertouch(struct knote *kn, struct kevent64_s *kev, long type) | |
1003 | { | |
1004 | uint32_t ffctrl; | |
1005 | switch (type) { | |
1006 | case EVENT_REGISTER: | |
1007 | if (kev->fflags & NOTE_TRIGGER) { | |
1008 | kn->kn_hookid = 1; | |
1009 | } | |
1010 | ||
1011 | ffctrl = kev->fflags & NOTE_FFCTRLMASK; | |
1012 | kev->fflags &= NOTE_FFLAGSMASK; | |
1013 | switch (ffctrl) { | |
1014 | case NOTE_FFNOP: | |
1015 | break; | |
1016 | case NOTE_FFAND: | |
1017 | OSBitAndAtomic(kev->fflags, &kn->kn_sfflags); | |
1018 | break; | |
1019 | case NOTE_FFOR: | |
1020 | OSBitOrAtomic(kev->fflags, &kn->kn_sfflags); | |
1021 | break; | |
1022 | case NOTE_FFCOPY: | |
1023 | kn->kn_sfflags = kev->fflags; | |
1024 | break; | |
1025 | } | |
1026 | kn->kn_sdata = kev->data; | |
1027 | break; | |
1028 | case EVENT_PROCESS: | |
1029 | *kev = kn->kn_kevent; | |
1030 | kev->fflags = (volatile UInt32)kn->kn_sfflags; | |
1031 | kev->data = kn->kn_sdata; | |
1032 | if (kn->kn_flags & EV_CLEAR) { | |
1033 | kn->kn_hookid = 0; | |
1034 | kn->kn_data = 0; | |
1035 | kn->kn_fflags = 0; | |
1036 | } | |
1037 | break; | |
1038 | default: | |
1039 | panic("filt_usertouch() - invalid type (%ld)", type); | |
1040 | break; | |
1041 | } | |
1042 | } | |
1043 | ||
1044 | /* | |
1045 | * JMM - placeholder for not-yet-implemented filters | |
1046 | */ | |
1047 | static int | |
1048 | filt_badattach(__unused struct knote *kn) | |
1049 | { | |
1050 | return(ENOTSUP); | |
1051 | } | |
1052 | ||
1053 | ||
1054 | struct kqueue * | |
1055 | kqueue_alloc(struct proc *p) | |
1056 | { | |
1057 | struct filedesc *fdp = p->p_fd; | |
1058 | struct kqueue *kq; | |
1059 | ||
1060 | MALLOC_ZONE(kq, struct kqueue *, sizeof(struct kqueue), M_KQUEUE, M_WAITOK); | |
1061 | if (kq != NULL) { | |
1062 | wait_queue_set_t wqs; | |
1063 | ||
1064 | wqs = wait_queue_set_alloc(SYNC_POLICY_FIFO | SYNC_POLICY_PREPOST); | |
1065 | if (wqs != NULL) { | |
1066 | bzero(kq, sizeof(struct kqueue)); | |
1067 | lck_spin_init(&kq->kq_lock, kq_lck_grp, kq_lck_attr); | |
1068 | TAILQ_INIT(&kq->kq_head); | |
1069 | kq->kq_wqs = wqs; | |
1070 | kq->kq_p = p; | |
1071 | } else { | |
1072 | FREE_ZONE(kq, sizeof(struct kqueue), M_KQUEUE); | |
1073 | } | |
1074 | } | |
1075 | ||
1076 | if (fdp->fd_knlistsize < 0) { | |
1077 | proc_fdlock(p); | |
1078 | if (fdp->fd_knlistsize < 0) | |
1079 | fdp->fd_knlistsize = 0; /* this process has had a kq */ | |
1080 | proc_fdunlock(p); | |
1081 | } | |
1082 | ||
1083 | return kq; | |
1084 | } | |
1085 | ||
1086 | ||
1087 | /* | |
1088 | * kqueue_dealloc - detach all knotes from a kqueue and free it | |
1089 | * | |
1090 | * We walk each list looking for knotes referencing this | |
1091 | * this kqueue. If we find one, we try to drop it. But | |
1092 | * if we fail to get a drop reference, that will wait | |
1093 | * until it is dropped. So, we can just restart again | |
1094 | * safe in the assumption that the list will eventually | |
1095 | * not contain any more references to this kqueue (either | |
1096 | * we dropped them all, or someone else did). | |
1097 | * | |
1098 | * Assumes no new events are being added to the kqueue. | |
1099 | * Nothing locked on entry or exit. | |
1100 | */ | |
1101 | void | |
1102 | kqueue_dealloc(struct kqueue *kq) | |
1103 | { | |
1104 | struct proc *p = kq->kq_p; | |
1105 | struct filedesc *fdp = p->p_fd; | |
1106 | struct knote *kn; | |
1107 | int i; | |
1108 | ||
1109 | proc_fdlock(p); | |
1110 | for (i = 0; i < fdp->fd_knlistsize; i++) { | |
1111 | kn = SLIST_FIRST(&fdp->fd_knlist[i]); | |
1112 | while (kn != NULL) { | |
1113 | if (kq == kn->kn_kq) { | |
1114 | kqlock(kq); | |
1115 | proc_fdunlock(p); | |
1116 | /* drop it ourselves or wait */ | |
1117 | if (kqlock2knotedrop(kq, kn)) { | |
1118 | kn->kn_fop->f_detach(kn); | |
1119 | knote_drop(kn, p); | |
1120 | } | |
1121 | proc_fdlock(p); | |
1122 | /* start over at beginning of list */ | |
1123 | kn = SLIST_FIRST(&fdp->fd_knlist[i]); | |
1124 | continue; | |
1125 | } | |
1126 | kn = SLIST_NEXT(kn, kn_link); | |
1127 | } | |
1128 | } | |
1129 | if (fdp->fd_knhashmask != 0) { | |
1130 | for (i = 0; i < (int)fdp->fd_knhashmask + 1; i++) { | |
1131 | kn = SLIST_FIRST(&fdp->fd_knhash[i]); | |
1132 | while (kn != NULL) { | |
1133 | if (kq == kn->kn_kq) { | |
1134 | kqlock(kq); | |
1135 | proc_fdunlock(p); | |
1136 | /* drop it ourselves or wait */ | |
1137 | if (kqlock2knotedrop(kq, kn)) { | |
1138 | kn->kn_fop->f_detach(kn); | |
1139 | knote_drop(kn, p); | |
1140 | } | |
1141 | proc_fdlock(p); | |
1142 | /* start over at beginning of list */ | |
1143 | kn = SLIST_FIRST(&fdp->fd_knhash[i]); | |
1144 | continue; | |
1145 | } | |
1146 | kn = SLIST_NEXT(kn, kn_link); | |
1147 | } | |
1148 | } | |
1149 | } | |
1150 | proc_fdunlock(p); | |
1151 | ||
1152 | /* | |
1153 | * before freeing the wait queue set for this kqueue, | |
1154 | * make sure it is unlinked from all its containing (select) sets. | |
1155 | */ | |
1156 | wait_queue_unlink_all((wait_queue_t)kq->kq_wqs); | |
1157 | wait_queue_set_free(kq->kq_wqs); | |
1158 | lck_spin_destroy(&kq->kq_lock, kq_lck_grp); | |
1159 | FREE_ZONE(kq, sizeof(struct kqueue), M_KQUEUE); | |
1160 | } | |
1161 | ||
1162 | int | |
1163 | kqueue(struct proc *p, __unused struct kqueue_args *uap, int32_t *retval) | |
1164 | { | |
1165 | struct kqueue *kq; | |
1166 | struct fileproc *fp; | |
1167 | int fd, error; | |
1168 | ||
1169 | error = falloc(p, &fp, &fd, vfs_context_current()); | |
1170 | if (error) { | |
1171 | return (error); | |
1172 | } | |
1173 | ||
1174 | kq = kqueue_alloc(p); | |
1175 | if (kq == NULL) { | |
1176 | fp_free(p, fd, fp); | |
1177 | return (ENOMEM); | |
1178 | } | |
1179 | ||
1180 | fp->f_flag = FREAD | FWRITE; | |
1181 | fp->f_type = DTYPE_KQUEUE; | |
1182 | fp->f_ops = &kqueueops; | |
1183 | fp->f_data = (caddr_t)kq; | |
1184 | ||
1185 | proc_fdlock(p); | |
1186 | procfdtbl_releasefd(p, fd, NULL); | |
1187 | fp_drop(p, fd, fp, 1); | |
1188 | proc_fdunlock(p); | |
1189 | ||
1190 | *retval = fd; | |
1191 | return (error); | |
1192 | } | |
1193 | ||
1194 | static int | |
1195 | kevent_copyin(user_addr_t *addrp, struct kevent64_s *kevp, struct proc *p, int iskev64) | |
1196 | { | |
1197 | int advance; | |
1198 | int error; | |
1199 | ||
1200 | if (iskev64) { | |
1201 | advance = sizeof(struct kevent64_s); | |
1202 | error = copyin(*addrp, (caddr_t)kevp, advance); | |
1203 | } else if (IS_64BIT_PROCESS(p)) { | |
1204 | struct user64_kevent kev64; | |
1205 | bzero(kevp, sizeof(struct kevent64_s)); | |
1206 | ||
1207 | advance = sizeof(kev64); | |
1208 | error = copyin(*addrp, (caddr_t)&kev64, advance); | |
1209 | if (error) | |
1210 | return error; | |
1211 | kevp->ident = kev64.ident; | |
1212 | kevp->filter = kev64.filter; | |
1213 | kevp->flags = kev64.flags; | |
1214 | kevp->fflags = kev64.fflags; | |
1215 | kevp->data = kev64.data; | |
1216 | kevp->udata = kev64.udata; | |
1217 | } else { | |
1218 | struct user32_kevent kev32; | |
1219 | bzero(kevp, sizeof(struct kevent64_s)); | |
1220 | ||
1221 | advance = sizeof(kev32); | |
1222 | error = copyin(*addrp, (caddr_t)&kev32, advance); | |
1223 | if (error) | |
1224 | return error; | |
1225 | kevp->ident = (uintptr_t)kev32.ident; | |
1226 | kevp->filter = kev32.filter; | |
1227 | kevp->flags = kev32.flags; | |
1228 | kevp->fflags = kev32.fflags; | |
1229 | kevp->data = (intptr_t)kev32.data; | |
1230 | kevp->udata = CAST_USER_ADDR_T(kev32.udata); | |
1231 | } | |
1232 | if (!error) | |
1233 | *addrp += advance; | |
1234 | return error; | |
1235 | } | |
1236 | ||
1237 | static int | |
1238 | kevent_copyout(struct kevent64_s *kevp, user_addr_t *addrp, struct proc *p, int iskev64) | |
1239 | { | |
1240 | int advance; | |
1241 | int error; | |
1242 | ||
1243 | if (iskev64) { | |
1244 | advance = sizeof(struct kevent64_s); | |
1245 | error = copyout((caddr_t)kevp, *addrp, advance); | |
1246 | } else if (IS_64BIT_PROCESS(p)) { | |
1247 | struct user64_kevent kev64; | |
1248 | ||
1249 | /* | |
1250 | * deal with the special case of a user-supplied | |
1251 | * value of (uintptr_t)-1. | |
1252 | */ | |
1253 | kev64.ident = (kevp->ident == (uintptr_t)-1) ? | |
1254 | (uint64_t)-1LL : (uint64_t)kevp->ident; | |
1255 | ||
1256 | kev64.filter = kevp->filter; | |
1257 | kev64.flags = kevp->flags; | |
1258 | kev64.fflags = kevp->fflags; | |
1259 | kev64.data = (int64_t) kevp->data; | |
1260 | kev64.udata = kevp->udata; | |
1261 | advance = sizeof(kev64); | |
1262 | error = copyout((caddr_t)&kev64, *addrp, advance); | |
1263 | } else { | |
1264 | struct user32_kevent kev32; | |
1265 | ||
1266 | kev32.ident = (uint32_t)kevp->ident; | |
1267 | kev32.filter = kevp->filter; | |
1268 | kev32.flags = kevp->flags; | |
1269 | kev32.fflags = kevp->fflags; | |
1270 | kev32.data = (int32_t)kevp->data; | |
1271 | kev32.udata = kevp->udata; | |
1272 | advance = sizeof(kev32); | |
1273 | error = copyout((caddr_t)&kev32, *addrp, advance); | |
1274 | } | |
1275 | if (!error) | |
1276 | *addrp += advance; | |
1277 | return error; | |
1278 | } | |
1279 | ||
1280 | /* | |
1281 | * kevent_continue - continue a kevent syscall after blocking | |
1282 | * | |
1283 | * assume we inherit a use count on the kq fileglob. | |
1284 | */ | |
1285 | ||
1286 | static void | |
1287 | kevent_continue(__unused struct kqueue *kq, void *data, int error) | |
1288 | { | |
1289 | struct _kevent *cont_args; | |
1290 | struct fileproc *fp; | |
1291 | int32_t *retval; | |
1292 | int noutputs; | |
1293 | int fd; | |
1294 | struct proc *p = current_proc(); | |
1295 | ||
1296 | cont_args = (struct _kevent *)data; | |
1297 | noutputs = cont_args->eventout; | |
1298 | retval = cont_args->retval; | |
1299 | fd = cont_args->fd; | |
1300 | fp = cont_args->fp; | |
1301 | ||
1302 | fp_drop(p, fd, fp, 0); | |
1303 | ||
1304 | /* don't restart after signals... */ | |
1305 | if (error == ERESTART) | |
1306 | error = EINTR; | |
1307 | else if (error == EWOULDBLOCK) | |
1308 | error = 0; | |
1309 | if (error == 0) | |
1310 | *retval = noutputs; | |
1311 | unix_syscall_return(error); | |
1312 | } | |
1313 | ||
1314 | /* | |
1315 | * kevent - [syscall] register and wait for kernel events | |
1316 | * | |
1317 | */ | |
1318 | int | |
1319 | kevent(struct proc *p, struct kevent_args *uap, int32_t *retval) | |
1320 | { | |
1321 | return kevent_internal(p, | |
1322 | 0, | |
1323 | uap->changelist, | |
1324 | uap->nchanges, | |
1325 | uap->eventlist, | |
1326 | uap->nevents, | |
1327 | uap->fd, | |
1328 | uap->timeout, | |
1329 | 0, /* no flags from old kevent() call */ | |
1330 | retval); | |
1331 | } | |
1332 | ||
1333 | int | |
1334 | kevent64(struct proc *p, struct kevent64_args *uap, int32_t *retval) | |
1335 | { | |
1336 | return kevent_internal(p, | |
1337 | 1, | |
1338 | uap->changelist, | |
1339 | uap->nchanges, | |
1340 | uap->eventlist, | |
1341 | uap->nevents, | |
1342 | uap->fd, | |
1343 | uap->timeout, | |
1344 | uap->flags, | |
1345 | retval); | |
1346 | } | |
1347 | ||
1348 | static int | |
1349 | kevent_internal(struct proc *p, int iskev64, user_addr_t changelist, | |
1350 | int nchanges, user_addr_t ueventlist, int nevents, int fd, | |
1351 | user_addr_t utimeout, __unused unsigned int flags, | |
1352 | int32_t *retval) | |
1353 | { | |
1354 | struct _kevent *cont_args; | |
1355 | uthread_t ut; | |
1356 | struct kqueue *kq; | |
1357 | struct fileproc *fp; | |
1358 | struct kevent64_s kev; | |
1359 | int error, noutputs; | |
1360 | struct timeval atv; | |
1361 | ||
1362 | /* convert timeout to absolute - if we have one */ | |
1363 | if (utimeout != USER_ADDR_NULL) { | |
1364 | struct timeval rtv; | |
1365 | if (IS_64BIT_PROCESS(p)) { | |
1366 | struct user64_timespec ts; | |
1367 | error = copyin(utimeout, &ts, sizeof(ts)); | |
1368 | if ((ts.tv_sec & 0xFFFFFFFF00000000ull) != 0) | |
1369 | error = EINVAL; | |
1370 | else | |
1371 | TIMESPEC_TO_TIMEVAL(&rtv, &ts); | |
1372 | } else { | |
1373 | struct user32_timespec ts; | |
1374 | error = copyin(utimeout, &ts, sizeof(ts)); | |
1375 | TIMESPEC_TO_TIMEVAL(&rtv, &ts); | |
1376 | } | |
1377 | if (error) | |
1378 | return error; | |
1379 | if (itimerfix(&rtv)) | |
1380 | return EINVAL; | |
1381 | getmicrouptime(&atv); | |
1382 | timevaladd(&atv, &rtv); | |
1383 | } else { | |
1384 | atv.tv_sec = 0; | |
1385 | atv.tv_usec = 0; | |
1386 | } | |
1387 | ||
1388 | /* get a usecount for the kq itself */ | |
1389 | if ((error = fp_getfkq(p, fd, &fp, &kq)) != 0) | |
1390 | return(error); | |
1391 | ||
1392 | /* each kq should only be used for events of one type */ | |
1393 | kqlock(kq); | |
1394 | if (kq->kq_state & (KQ_KEV32 | KQ_KEV64)) { | |
1395 | if (((iskev64 && (kq->kq_state & KQ_KEV32)) || | |
1396 | (!iskev64 && (kq->kq_state & KQ_KEV64)))) { | |
1397 | error = EINVAL; | |
1398 | kqunlock(kq); | |
1399 | goto errorout; | |
1400 | } | |
1401 | } else { | |
1402 | kq->kq_state |= (iskev64 ? KQ_KEV64 : KQ_KEV32); | |
1403 | } | |
1404 | kqunlock(kq); | |
1405 | ||
1406 | /* register all the change requests the user provided... */ | |
1407 | noutputs = 0; | |
1408 | while (nchanges > 0 && error == 0) { | |
1409 | error = kevent_copyin(&changelist, &kev, p, iskev64); | |
1410 | if (error) | |
1411 | break; | |
1412 | ||
1413 | kev.flags &= ~EV_SYSFLAGS; | |
1414 | error = kevent_register(kq, &kev, p); | |
1415 | if ((error || (kev.flags & EV_RECEIPT)) && nevents > 0) { | |
1416 | kev.flags = EV_ERROR; | |
1417 | kev.data = error; | |
1418 | error = kevent_copyout(&kev, &ueventlist, p, iskev64); | |
1419 | if (error == 0) { | |
1420 | nevents--; | |
1421 | noutputs++; | |
1422 | } | |
1423 | } | |
1424 | nchanges--; | |
1425 | } | |
1426 | ||
1427 | /* store the continuation/completion data in the uthread */ | |
1428 | ut = (uthread_t)get_bsdthread_info(current_thread()); | |
1429 | cont_args = &ut->uu_kevent.ss_kevent; | |
1430 | cont_args->fp = fp; | |
1431 | cont_args->fd = fd; | |
1432 | cont_args->retval = retval; | |
1433 | cont_args->eventlist = ueventlist; | |
1434 | cont_args->eventcount = nevents; | |
1435 | cont_args->eventout = noutputs; | |
1436 | cont_args->eventsize = iskev64; | |
1437 | ||
1438 | if (nevents > 0 && noutputs == 0 && error == 0) | |
1439 | error = kqueue_scan(kq, kevent_callback, | |
1440 | kevent_continue, cont_args, | |
1441 | &atv, p); | |
1442 | kevent_continue(kq, cont_args, error); | |
1443 | ||
1444 | errorout: | |
1445 | fp_drop(p, fd, fp, 0); | |
1446 | return error; | |
1447 | } | |
1448 | ||
1449 | ||
1450 | /* | |
1451 | * kevent_callback - callback for each individual event | |
1452 | * | |
1453 | * called with nothing locked | |
1454 | * caller holds a reference on the kqueue | |
1455 | */ | |
1456 | ||
1457 | static int | |
1458 | kevent_callback(__unused struct kqueue *kq, struct kevent64_s *kevp, | |
1459 | void *data) | |
1460 | { | |
1461 | struct _kevent *cont_args; | |
1462 | int error; | |
1463 | int iskev64; | |
1464 | ||
1465 | cont_args = (struct _kevent *)data; | |
1466 | assert(cont_args->eventout < cont_args->eventcount); | |
1467 | ||
1468 | iskev64 = cont_args->eventsize; | |
1469 | ||
1470 | /* | |
1471 | * Copy out the appropriate amount of event data for this user. | |
1472 | */ | |
1473 | error = kevent_copyout(kevp, &cont_args->eventlist, current_proc(), iskev64); | |
1474 | ||
1475 | /* | |
1476 | * If there isn't space for additional events, return | |
1477 | * a harmless error to stop the processing here | |
1478 | */ | |
1479 | if (error == 0 && ++cont_args->eventout == cont_args->eventcount) | |
1480 | error = EWOULDBLOCK; | |
1481 | return error; | |
1482 | } | |
1483 | ||
1484 | /* | |
1485 | * kevent_description - format a description of a kevent for diagnostic output | |
1486 | * | |
1487 | * called with a 128-byte string buffer | |
1488 | */ | |
1489 | ||
1490 | char * | |
1491 | kevent_description(struct kevent64_s *kevp, char *s, size_t n) | |
1492 | { | |
1493 | snprintf(s, n, | |
1494 | "kevent=" | |
1495 | "{.ident=%#llx, .filter=%d, .flags=%#x, .fflags=%#x, .data=%#llx, .udata=%#llx, .ext[0]=%#llx, .ext[1]=%#llx}", | |
1496 | kevp->ident, | |
1497 | kevp->filter, | |
1498 | kevp->flags, | |
1499 | kevp->fflags, | |
1500 | kevp->data, | |
1501 | kevp->udata, | |
1502 | kevp->ext[0], | |
1503 | kevp->ext[1]); | |
1504 | return s; | |
1505 | } | |
1506 | ||
1507 | /* | |
1508 | * kevent_register - add a new event to a kqueue | |
1509 | * | |
1510 | * Creates a mapping between the event source and | |
1511 | * the kqueue via a knote data structure. | |
1512 | * | |
1513 | * Because many/most the event sources are file | |
1514 | * descriptor related, the knote is linked off | |
1515 | * the filedescriptor table for quick access. | |
1516 | * | |
1517 | * called with nothing locked | |
1518 | * caller holds a reference on the kqueue | |
1519 | */ | |
1520 | ||
1521 | int | |
1522 | kevent_register(struct kqueue *kq, struct kevent64_s *kev, __unused struct proc *ctxp) | |
1523 | { | |
1524 | struct proc *p = kq->kq_p; | |
1525 | struct filedesc *fdp = p->p_fd; | |
1526 | struct filterops *fops; | |
1527 | struct fileproc *fp = NULL; | |
1528 | struct knote *kn = NULL; | |
1529 | int error = 0; | |
1530 | ||
1531 | if (kev->filter < 0) { | |
1532 | if (kev->filter + EVFILT_SYSCOUNT < 0) | |
1533 | return (EINVAL); | |
1534 | fops = sysfilt_ops[~kev->filter]; /* to 0-base index */ | |
1535 | } else { | |
1536 | /* | |
1537 | * XXX | |
1538 | * filter attach routine is responsible for insuring that | |
1539 | * the identifier can be attached to it. | |
1540 | */ | |
1541 | printf("unknown filter: %d\n", kev->filter); | |
1542 | return (EINVAL); | |
1543 | } | |
1544 | ||
1545 | restart: | |
1546 | /* this iocount needs to be dropped if it is not registered */ | |
1547 | proc_fdlock(p); | |
1548 | if (fops->f_isfd && (error = fp_lookup(p, kev->ident, &fp, 1)) != 0) { | |
1549 | proc_fdunlock(p); | |
1550 | return(error); | |
1551 | } | |
1552 | ||
1553 | if (fops->f_isfd) { | |
1554 | /* fd-based knotes are linked off the fd table */ | |
1555 | if (kev->ident < (u_int)fdp->fd_knlistsize) { | |
1556 | SLIST_FOREACH(kn, &fdp->fd_knlist[kev->ident], kn_link) | |
1557 | if (kq == kn->kn_kq && | |
1558 | kev->filter == kn->kn_filter) | |
1559 | break; | |
1560 | } | |
1561 | } else { | |
1562 | /* hash non-fd knotes here too */ | |
1563 | if (fdp->fd_knhashmask != 0) { | |
1564 | struct klist *list; | |
1565 | ||
1566 | list = &fdp->fd_knhash[ | |
1567 | KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)]; | |
1568 | SLIST_FOREACH(kn, list, kn_link) | |
1569 | if (kev->ident == kn->kn_id && | |
1570 | kq == kn->kn_kq && | |
1571 | kev->filter == kn->kn_filter) | |
1572 | break; | |
1573 | } | |
1574 | } | |
1575 | ||
1576 | /* | |
1577 | * kn now contains the matching knote, or NULL if no match | |
1578 | */ | |
1579 | if (kn == NULL) { | |
1580 | if ((kev->flags & (EV_ADD|EV_DELETE)) == EV_ADD) { | |
1581 | kn = knote_alloc(); | |
1582 | if (kn == NULL) { | |
1583 | proc_fdunlock(p); | |
1584 | error = ENOMEM; | |
1585 | goto done; | |
1586 | } | |
1587 | kn->kn_fp = fp; | |
1588 | kn->kn_kq = kq; | |
1589 | kn->kn_tq = &kq->kq_head; | |
1590 | kn->kn_fop = fops; | |
1591 | kn->kn_sfflags = kev->fflags; | |
1592 | kn->kn_sdata = kev->data; | |
1593 | kev->fflags = 0; | |
1594 | kev->data = 0; | |
1595 | kn->kn_kevent = *kev; | |
1596 | kn->kn_inuse = 1; /* for f_attach() */ | |
1597 | kn->kn_status = KN_ATTACHING; | |
1598 | ||
1599 | /* before anyone can find it */ | |
1600 | if (kev->flags & EV_DISABLE) | |
1601 | kn->kn_status |= KN_DISABLED; | |
1602 | ||
1603 | error = knote_fdpattach(kn, fdp, p); | |
1604 | proc_fdunlock(p); | |
1605 | ||
1606 | if (error) { | |
1607 | knote_free(kn); | |
1608 | goto done; | |
1609 | } | |
1610 | ||
1611 | /* | |
1612 | * apply reference count to knote structure, and | |
1613 | * do not release it at the end of this routine. | |
1614 | */ | |
1615 | fp = NULL; | |
1616 | ||
1617 | error = fops->f_attach(kn); | |
1618 | ||
1619 | kqlock(kq); | |
1620 | ||
1621 | if (error != 0) { | |
1622 | /* | |
1623 | * Failed to attach correctly, so drop. | |
1624 | * All other possible users/droppers | |
1625 | * have deferred to us. | |
1626 | */ | |
1627 | kn->kn_status |= KN_DROPPING; | |
1628 | kqunlock(kq); | |
1629 | knote_drop(kn, p); | |
1630 | goto done; | |
1631 | } else if (kn->kn_status & KN_DROPPING) { | |
1632 | /* | |
1633 | * Attach succeeded, but someone else | |
1634 | * deferred their drop - now we have | |
1635 | * to do it for them (after detaching). | |
1636 | */ | |
1637 | kqunlock(kq); | |
1638 | kn->kn_fop->f_detach(kn); | |
1639 | knote_drop(kn, p); | |
1640 | goto done; | |
1641 | } | |
1642 | kn->kn_status &= ~KN_ATTACHING; | |
1643 | kqunlock(kq); | |
1644 | } else { | |
1645 | proc_fdunlock(p); | |
1646 | error = ENOENT; | |
1647 | goto done; | |
1648 | } | |
1649 | } else { | |
1650 | /* existing knote - get kqueue lock */ | |
1651 | kqlock(kq); | |
1652 | proc_fdunlock(p); | |
1653 | ||
1654 | if (kev->flags & EV_DELETE) { | |
1655 | knote_dequeue(kn); | |
1656 | kn->kn_status |= KN_DISABLED; | |
1657 | if (kqlock2knotedrop(kq, kn)) { | |
1658 | kn->kn_fop->f_detach(kn); | |
1659 | knote_drop(kn, p); | |
1660 | } | |
1661 | goto done; | |
1662 | } | |
1663 | ||
1664 | /* update status flags for existing knote */ | |
1665 | if (kev->flags & EV_DISABLE) { | |
1666 | knote_dequeue(kn); | |
1667 | kn->kn_status |= KN_DISABLED; | |
1668 | } else if (kev->flags & EV_ENABLE) { | |
1669 | kn->kn_status &= ~KN_DISABLED; | |
1670 | if (kn->kn_status & KN_ACTIVE) | |
1671 | knote_enqueue(kn); | |
1672 | } | |
1673 | ||
1674 | /* | |
1675 | * The user may change some filter values after the | |
1676 | * initial EV_ADD, but doing so will not reset any | |
1677 | * filter which have already been triggered. | |
1678 | */ | |
1679 | kn->kn_kevent.udata = kev->udata; | |
1680 | if (fops->f_isfd || fops->f_touch == NULL) { | |
1681 | kn->kn_sfflags = kev->fflags; | |
1682 | kn->kn_sdata = kev->data; | |
1683 | } | |
1684 | ||
1685 | /* | |
1686 | * If somebody is in the middle of dropping this | |
1687 | * knote - go find/insert a new one. But we have | |
1688 | * wait for this one to go away first. Attaches | |
1689 | * running in parallel may also drop/modify the | |
1690 | * knote. Wait for those to complete as well and | |
1691 | * then start over if we encounter one. | |
1692 | */ | |
1693 | if (!kqlock2knoteusewait(kq, kn)) { | |
1694 | /* kqueue, proc_fdlock both unlocked */ | |
1695 | goto restart; | |
1696 | } | |
1697 | ||
1698 | /* | |
1699 | * Call touch routine to notify filter of changes | |
1700 | * in filter values. | |
1701 | */ | |
1702 | if (!fops->f_isfd && fops->f_touch != NULL) | |
1703 | fops->f_touch(kn, kev, EVENT_REGISTER); | |
1704 | } | |
1705 | /* still have use ref on knote */ | |
1706 | ||
1707 | /* | |
1708 | * If the knote is not marked to always stay enqueued, | |
1709 | * invoke the filter routine to see if it should be | |
1710 | * enqueued now. | |
1711 | */ | |
1712 | if ((kn->kn_status & KN_STAYQUEUED) == 0 && kn->kn_fop->f_event(kn, 0)) { | |
1713 | if (knoteuse2kqlock(kq, kn)) | |
1714 | knote_activate(kn, 1); | |
1715 | kqunlock(kq); | |
1716 | } else { | |
1717 | knote_put(kn); | |
1718 | } | |
1719 | ||
1720 | done: | |
1721 | if (fp != NULL) | |
1722 | fp_drop(p, kev->ident, fp, 0); | |
1723 | return (error); | |
1724 | } | |
1725 | ||
1726 | ||
1727 | /* | |
1728 | * knote_process - process a triggered event | |
1729 | * | |
1730 | * Validate that it is really still a triggered event | |
1731 | * by calling the filter routines (if necessary). Hold | |
1732 | * a use reference on the knote to avoid it being detached. | |
1733 | * If it is still considered triggered, invoke the callback | |
1734 | * routine provided and move it to the provided inprocess | |
1735 | * queue. | |
1736 | * | |
1737 | * caller holds a reference on the kqueue. | |
1738 | * kqueue locked on entry and exit - but may be dropped | |
1739 | */ | |
1740 | static int | |
1741 | knote_process(struct knote *kn, | |
1742 | kevent_callback_t callback, | |
1743 | void *data, | |
1744 | struct kqtailq *inprocessp, | |
1745 | struct proc *p) | |
1746 | { | |
1747 | struct kqueue *kq = kn->kn_kq; | |
1748 | struct kevent64_s kev; | |
1749 | int touch; | |
1750 | int result; | |
1751 | int error; | |
1752 | ||
1753 | /* | |
1754 | * Determine the kevent state we want to return. | |
1755 | * | |
1756 | * Some event states need to be revalidated before returning | |
1757 | * them, others we take the snapshot at the time the event | |
1758 | * was enqueued. | |
1759 | * | |
1760 | * Events with non-NULL f_touch operations must be touched. | |
1761 | * Triggered events must fill in kev for the callback. | |
1762 | * | |
1763 | * Convert our lock to a use-count and call the event's | |
1764 | * filter routine(s) to update. | |
1765 | */ | |
1766 | if ((kn->kn_status & KN_DISABLED) != 0) { | |
1767 | result = 0; | |
1768 | touch = 0; | |
1769 | } else { | |
1770 | int revalidate; | |
1771 | ||
1772 | result = 1; | |
1773 | revalidate = ((kn->kn_status & KN_STAYQUEUED) != 0 || | |
1774 | (kn->kn_flags & EV_ONESHOT) == 0); | |
1775 | touch = (!kn->kn_fop->f_isfd && kn->kn_fop->f_touch != NULL); | |
1776 | ||
1777 | if (revalidate || touch) { | |
1778 | if (revalidate) | |
1779 | knote_deactivate(kn); | |
1780 | ||
1781 | /* call the filter/touch routines with just a ref */ | |
1782 | if (kqlock2knoteuse(kq, kn)) { | |
1783 | ||
1784 | /* if we have to revalidate, call the filter */ | |
1785 | if (revalidate) { | |
1786 | result = kn->kn_fop->f_event(kn, 0); | |
1787 | } | |
1788 | ||
1789 | /* capture the kevent data - using touch if specified */ | |
1790 | if (result && touch) { | |
1791 | kn->kn_fop->f_touch(kn, &kev, EVENT_PROCESS); | |
1792 | } | |
1793 | ||
1794 | /* convert back to a kqlock - bail if the knote went away */ | |
1795 | if (!knoteuse2kqlock(kq, kn)) { | |
1796 | return EJUSTRETURN; | |
1797 | } else if (result) { | |
1798 | /* if revalidated as alive, make sure it's active */ | |
1799 | if (!(kn->kn_status & KN_ACTIVE)) { | |
1800 | knote_activate(kn, 0); | |
1801 | } | |
1802 | ||
1803 | /* capture all events that occurred during filter */ | |
1804 | if (!touch) { | |
1805 | kev = kn->kn_kevent; | |
1806 | } | |
1807 | ||
1808 | } else if ((kn->kn_status & KN_STAYQUEUED) == 0) { | |
1809 | /* was already dequeued, so just bail on this one */ | |
1810 | return EJUSTRETURN; | |
1811 | } | |
1812 | } else { | |
1813 | return EJUSTRETURN; | |
1814 | } | |
1815 | } else { | |
1816 | kev = kn->kn_kevent; | |
1817 | } | |
1818 | } | |
1819 | ||
1820 | /* move knote onto inprocess queue */ | |
1821 | assert(kn->kn_tq == &kq->kq_head); | |
1822 | TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe); | |
1823 | kn->kn_tq = inprocessp; | |
1824 | TAILQ_INSERT_TAIL(inprocessp, kn, kn_tqe); | |
1825 | ||
1826 | /* | |
1827 | * Determine how to dispatch the knote for future event handling. | |
1828 | * not-fired: just return (do not callout). | |
1829 | * One-shot: deactivate it. | |
1830 | * Clear: deactivate and clear the state. | |
1831 | * Dispatch: don't clear state, just deactivate it and mark it disabled. | |
1832 | * All others: just leave where they are. | |
1833 | */ | |
1834 | ||
1835 | if (result == 0) { | |
1836 | return EJUSTRETURN; | |
1837 | } else if ((kn->kn_flags & EV_ONESHOT) != 0) { | |
1838 | knote_deactivate(kn); | |
1839 | if (kqlock2knotedrop(kq, kn)) { | |
1840 | kn->kn_fop->f_detach(kn); | |
1841 | knote_drop(kn, p); | |
1842 | } | |
1843 | } else if ((kn->kn_flags & (EV_CLEAR | EV_DISPATCH)) != 0) { | |
1844 | if ((kn->kn_flags & EV_DISPATCH) != 0) { | |
1845 | /* deactivate and disable all dispatch knotes */ | |
1846 | knote_deactivate(kn); | |
1847 | kn->kn_status |= KN_DISABLED; | |
1848 | } else if (!touch || kn->kn_fflags == 0) { | |
1849 | /* only deactivate if nothing since the touch */ | |
1850 | knote_deactivate(kn); | |
1851 | } | |
1852 | if (!touch && (kn->kn_flags & EV_CLEAR) != 0) { | |
1853 | /* manually clear non-touch knotes */ | |
1854 | kn->kn_data = 0; | |
1855 | kn->kn_fflags = 0; | |
1856 | } | |
1857 | kqunlock(kq); | |
1858 | } else { | |
1859 | /* | |
1860 | * leave on inprocess queue. We'll | |
1861 | * move all the remaining ones back | |
1862 | * the kq queue and wakeup any | |
1863 | * waiters when we are done. | |
1864 | */ | |
1865 | kqunlock(kq); | |
1866 | } | |
1867 | ||
1868 | /* callback to handle each event as we find it */ | |
1869 | error = (callback)(kq, &kev, data); | |
1870 | ||
1871 | kqlock(kq); | |
1872 | return error; | |
1873 | } | |
1874 | ||
1875 | /* | |
1876 | * Return 0 to indicate that processing should proceed, | |
1877 | * -1 if there is nothing to process. | |
1878 | * | |
1879 | * Called with kqueue locked and returns the same way, | |
1880 | * but may drop lock temporarily. | |
1881 | */ | |
1882 | static int | |
1883 | kqueue_begin_processing(struct kqueue *kq) | |
1884 | { | |
1885 | for (;;) { | |
1886 | if (kq->kq_count == 0) { | |
1887 | return -1; | |
1888 | } | |
1889 | ||
1890 | /* if someone else is processing the queue, wait */ | |
1891 | if (kq->kq_nprocess != 0) { | |
1892 | wait_queue_assert_wait((wait_queue_t)kq->kq_wqs, &kq->kq_nprocess, THREAD_UNINT, 0); | |
1893 | kq->kq_state |= KQ_PROCWAIT; | |
1894 | kqunlock(kq); | |
1895 | thread_block(THREAD_CONTINUE_NULL); | |
1896 | kqlock(kq); | |
1897 | } else { | |
1898 | kq->kq_nprocess = 1; | |
1899 | return 0; | |
1900 | } | |
1901 | } | |
1902 | } | |
1903 | ||
1904 | /* | |
1905 | * Called with kqueue lock held. | |
1906 | */ | |
1907 | static void | |
1908 | kqueue_end_processing(struct kqueue *kq) | |
1909 | { | |
1910 | kq->kq_nprocess = 0; | |
1911 | if (kq->kq_state & KQ_PROCWAIT) { | |
1912 | kq->kq_state &= ~KQ_PROCWAIT; | |
1913 | wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, &kq->kq_nprocess, THREAD_AWAKENED); | |
1914 | } | |
1915 | } | |
1916 | ||
1917 | /* | |
1918 | * kqueue_process - process the triggered events in a kqueue | |
1919 | * | |
1920 | * Walk the queued knotes and validate that they are | |
1921 | * really still triggered events by calling the filter | |
1922 | * routines (if necessary). Hold a use reference on | |
1923 | * the knote to avoid it being detached. For each event | |
1924 | * that is still considered triggered, invoke the | |
1925 | * callback routine provided. | |
1926 | * | |
1927 | * caller holds a reference on the kqueue. | |
1928 | * kqueue locked on entry and exit - but may be dropped | |
1929 | * kqueue list locked (held for duration of call) | |
1930 | */ | |
1931 | ||
1932 | static int | |
1933 | kqueue_process(struct kqueue *kq, | |
1934 | kevent_callback_t callback, | |
1935 | void *data, | |
1936 | int *countp, | |
1937 | struct proc *p) | |
1938 | { | |
1939 | struct kqtailq inprocess; | |
1940 | struct knote *kn; | |
1941 | int nevents; | |
1942 | int error; | |
1943 | ||
1944 | TAILQ_INIT(&inprocess); | |
1945 | ||
1946 | if (kqueue_begin_processing(kq) == -1) { | |
1947 | *countp = 0; | |
1948 | /* Nothing to process */ | |
1949 | return 0; | |
1950 | } | |
1951 | ||
1952 | /* | |
1953 | * Clear any pre-posted status from previous runs, so we only | |
1954 | * detect events that occur during this run. | |
1955 | */ | |
1956 | wait_queue_sub_clearrefs(kq->kq_wqs); | |
1957 | ||
1958 | /* | |
1959 | * loop through the enqueued knotes, processing each one and | |
1960 | * revalidating those that need it. As they are processed, | |
1961 | * they get moved to the inprocess queue (so the loop can end). | |
1962 | */ | |
1963 | error = 0; | |
1964 | nevents = 0; | |
1965 | ||
1966 | while (error == 0 && | |
1967 | (kn = TAILQ_FIRST(&kq->kq_head)) != NULL) { | |
1968 | error = knote_process(kn, callback, data, &inprocess, p); | |
1969 | if (error == EJUSTRETURN) | |
1970 | error = 0; | |
1971 | else | |
1972 | nevents++; | |
1973 | } | |
1974 | ||
1975 | /* | |
1976 | * With the kqueue still locked, move any knotes | |
1977 | * remaining on the inprocess queue back to the | |
1978 | * kq's queue and wake up any waiters. | |
1979 | */ | |
1980 | while ((kn = TAILQ_FIRST(&inprocess)) != NULL) { | |
1981 | assert(kn->kn_tq == &inprocess); | |
1982 | TAILQ_REMOVE(&inprocess, kn, kn_tqe); | |
1983 | kn->kn_tq = &kq->kq_head; | |
1984 | TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe); | |
1985 | } | |
1986 | ||
1987 | kqueue_end_processing(kq); | |
1988 | ||
1989 | *countp = nevents; | |
1990 | return error; | |
1991 | } | |
1992 | ||
1993 | ||
1994 | static void | |
1995 | kqueue_scan_continue(void *data, wait_result_t wait_result) | |
1996 | { | |
1997 | thread_t self = current_thread(); | |
1998 | uthread_t ut = (uthread_t)get_bsdthread_info(self); | |
1999 | struct _kqueue_scan * cont_args = &ut->uu_kevent.ss_kqueue_scan; | |
2000 | struct kqueue *kq = (struct kqueue *)data; | |
2001 | int error; | |
2002 | int count; | |
2003 | ||
2004 | /* convert the (previous) wait_result to a proper error */ | |
2005 | switch (wait_result) { | |
2006 | case THREAD_AWAKENED: | |
2007 | kqlock(kq); | |
2008 | error = kqueue_process(kq, cont_args->call, cont_args, &count, current_proc()); | |
2009 | if (error == 0 && count == 0) { | |
2010 | wait_queue_assert_wait((wait_queue_t)kq->kq_wqs, KQ_EVENT, | |
2011 | THREAD_ABORTSAFE, cont_args->deadline); | |
2012 | kq->kq_state |= KQ_SLEEP; | |
2013 | kqunlock(kq); | |
2014 | thread_block_parameter(kqueue_scan_continue, kq); | |
2015 | /* NOTREACHED */ | |
2016 | } | |
2017 | kqunlock(kq); | |
2018 | break; | |
2019 | case THREAD_TIMED_OUT: | |
2020 | error = EWOULDBLOCK; | |
2021 | break; | |
2022 | case THREAD_INTERRUPTED: | |
2023 | error = EINTR; | |
2024 | break; | |
2025 | default: | |
2026 | panic("kevent_scan_cont() - invalid wait_result (%d)", wait_result); | |
2027 | error = 0; | |
2028 | } | |
2029 | ||
2030 | /* call the continuation with the results */ | |
2031 | assert(cont_args->cont != NULL); | |
2032 | (cont_args->cont)(kq, cont_args->data, error); | |
2033 | } | |
2034 | ||
2035 | ||
2036 | /* | |
2037 | * kqueue_scan - scan and wait for events in a kqueue | |
2038 | * | |
2039 | * Process the triggered events in a kqueue. | |
2040 | * | |
2041 | * If there are no events triggered arrange to | |
2042 | * wait for them. If the caller provided a | |
2043 | * continuation routine, then kevent_scan will | |
2044 | * also. | |
2045 | * | |
2046 | * The callback routine must be valid. | |
2047 | * The caller must hold a use-count reference on the kq. | |
2048 | */ | |
2049 | ||
2050 | int | |
2051 | kqueue_scan(struct kqueue *kq, | |
2052 | kevent_callback_t callback, | |
2053 | kqueue_continue_t continuation, | |
2054 | void *data, | |
2055 | struct timeval *atvp, | |
2056 | struct proc *p) | |
2057 | { | |
2058 | thread_continue_t cont = THREAD_CONTINUE_NULL; | |
2059 | uint64_t deadline; | |
2060 | int error; | |
2061 | int first; | |
2062 | ||
2063 | assert(callback != NULL); | |
2064 | ||
2065 | first = 1; | |
2066 | for (;;) { | |
2067 | wait_result_t wait_result; | |
2068 | int count; | |
2069 | ||
2070 | /* | |
2071 | * Make a pass through the kq to find events already | |
2072 | * triggered. | |
2073 | */ | |
2074 | kqlock(kq); | |
2075 | error = kqueue_process(kq, callback, data, &count, p); | |
2076 | if (error || count) | |
2077 | break; /* lock still held */ | |
2078 | ||
2079 | /* looks like we have to consider blocking */ | |
2080 | if (first) { | |
2081 | first = 0; | |
2082 | /* convert the timeout to a deadline once */ | |
2083 | if (atvp->tv_sec || atvp->tv_usec) { | |
2084 | uint64_t now; | |
2085 | ||
2086 | clock_get_uptime(&now); | |
2087 | nanoseconds_to_absolutetime((uint64_t)atvp->tv_sec * NSEC_PER_SEC + | |
2088 | atvp->tv_usec * NSEC_PER_USEC, | |
2089 | &deadline); | |
2090 | if (now >= deadline) { | |
2091 | /* non-blocking call */ | |
2092 | error = EWOULDBLOCK; | |
2093 | break; /* lock still held */ | |
2094 | } | |
2095 | deadline -= now; | |
2096 | clock_absolutetime_interval_to_deadline(deadline, &deadline); | |
2097 | } else { | |
2098 | deadline = 0; /* block forever */ | |
2099 | } | |
2100 | ||
2101 | if (continuation) { | |
2102 | uthread_t ut = (uthread_t)get_bsdthread_info(current_thread()); | |
2103 | struct _kqueue_scan *cont_args = &ut->uu_kevent.ss_kqueue_scan; | |
2104 | ||
2105 | cont_args->call = callback; | |
2106 | cont_args->cont = continuation; | |
2107 | cont_args->deadline = deadline; | |
2108 | cont_args->data = data; | |
2109 | cont = kqueue_scan_continue; | |
2110 | } | |
2111 | } | |
2112 | ||
2113 | /* go ahead and wait */ | |
2114 | wait_queue_assert_wait((wait_queue_t)kq->kq_wqs, KQ_EVENT, THREAD_ABORTSAFE, deadline); | |
2115 | kq->kq_state |= KQ_SLEEP; | |
2116 | kqunlock(kq); | |
2117 | wait_result = thread_block_parameter(cont, kq); | |
2118 | /* NOTREACHED if (continuation != NULL) */ | |
2119 | ||
2120 | switch (wait_result) { | |
2121 | case THREAD_AWAKENED: | |
2122 | continue; | |
2123 | case THREAD_TIMED_OUT: | |
2124 | return EWOULDBLOCK; | |
2125 | case THREAD_INTERRUPTED: | |
2126 | return EINTR; | |
2127 | default: | |
2128 | panic("kevent_scan - bad wait_result (%d)", | |
2129 | wait_result); | |
2130 | error = 0; | |
2131 | } | |
2132 | } | |
2133 | kqunlock(kq); | |
2134 | return error; | |
2135 | } | |
2136 | ||
2137 | ||
2138 | /* | |
2139 | * XXX | |
2140 | * This could be expanded to call kqueue_scan, if desired. | |
2141 | */ | |
2142 | /*ARGSUSED*/ | |
2143 | static int | |
2144 | kqueue_read(__unused struct fileproc *fp, | |
2145 | __unused struct uio *uio, | |
2146 | __unused int flags, | |
2147 | __unused vfs_context_t ctx) | |
2148 | { | |
2149 | return (ENXIO); | |
2150 | } | |
2151 | ||
2152 | /*ARGSUSED*/ | |
2153 | static int | |
2154 | kqueue_write(__unused struct fileproc *fp, | |
2155 | __unused struct uio *uio, | |
2156 | __unused int flags, | |
2157 | __unused vfs_context_t ctx) | |
2158 | { | |
2159 | return (ENXIO); | |
2160 | } | |
2161 | ||
2162 | /*ARGSUSED*/ | |
2163 | static int | |
2164 | kqueue_ioctl(__unused struct fileproc *fp, | |
2165 | __unused u_long com, | |
2166 | __unused caddr_t data, | |
2167 | __unused vfs_context_t ctx) | |
2168 | { | |
2169 | return (ENOTTY); | |
2170 | } | |
2171 | ||
2172 | /*ARGSUSED*/ | |
2173 | static int | |
2174 | kqueue_select(struct fileproc *fp, int which, void *wql, __unused vfs_context_t ctx) | |
2175 | { | |
2176 | struct kqueue *kq = (struct kqueue *)fp->f_data; | |
2177 | struct knote *kn; | |
2178 | struct kqtailq inprocessq; | |
2179 | int retnum = 0; | |
2180 | ||
2181 | if (which != FREAD) | |
2182 | return 0; | |
2183 | ||
2184 | TAILQ_INIT(&inprocessq); | |
2185 | ||
2186 | kqlock(kq); | |
2187 | /* | |
2188 | * If this is the first pass, link the wait queue associated with the | |
2189 | * the kqueue onto the wait queue set for the select(). Normally we | |
2190 | * use selrecord() for this, but it uses the wait queue within the | |
2191 | * selinfo structure and we need to use the main one for the kqueue to | |
2192 | * catch events from KN_STAYQUEUED sources. So we do the linkage manually. | |
2193 | * (The select() call will unlink them when it ends). | |
2194 | */ | |
2195 | if (wql != NULL) { | |
2196 | thread_t cur_act = current_thread(); | |
2197 | struct uthread * ut = get_bsdthread_info(cur_act); | |
2198 | ||
2199 | kq->kq_state |= KQ_SEL; | |
2200 | wait_queue_link_noalloc((wait_queue_t)kq->kq_wqs, ut->uu_wqset, | |
2201 | (wait_queue_link_t)wql); | |
2202 | } | |
2203 | ||
2204 | if (kqueue_begin_processing(kq) == -1) { | |
2205 | kqunlock(kq); | |
2206 | return 0; | |
2207 | } | |
2208 | ||
2209 | if (kq->kq_count != 0) { | |
2210 | /* | |
2211 | * there is something queued - but it might be a | |
2212 | * KN_STAYQUEUED knote, which may or may not have | |
2213 | * any events pending. So, we have to walk the | |
2214 | * list of knotes to see, and peek at the stay- | |
2215 | * queued ones to be really sure. | |
2216 | */ | |
2217 | while ((kn = (struct knote*)TAILQ_FIRST(&kq->kq_head)) != NULL) { | |
2218 | if ((kn->kn_status & KN_STAYQUEUED) == 0) { | |
2219 | retnum = 1; | |
2220 | goto out; | |
2221 | } | |
2222 | ||
2223 | TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe); | |
2224 | TAILQ_INSERT_TAIL(&inprocessq, kn, kn_tqe); | |
2225 | ||
2226 | if (kqlock2knoteuse(kq, kn)) { | |
2227 | unsigned peek; | |
2228 | ||
2229 | peek = kn->kn_fop->f_peek(kn); | |
2230 | if (knoteuse2kqlock(kq, kn)) { | |
2231 | if (peek > 0) { | |
2232 | retnum = 1; | |
2233 | goto out; | |
2234 | } | |
2235 | } else { | |
2236 | retnum = 0; | |
2237 | } | |
2238 | } | |
2239 | } | |
2240 | } | |
2241 | ||
2242 | out: | |
2243 | /* Return knotes to active queue */ | |
2244 | while ((kn = TAILQ_FIRST(&inprocessq)) != NULL) { | |
2245 | TAILQ_REMOVE(&inprocessq, kn, kn_tqe); | |
2246 | kn->kn_tq = &kq->kq_head; | |
2247 | TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe); | |
2248 | } | |
2249 | ||
2250 | kqueue_end_processing(kq); | |
2251 | kqunlock(kq); | |
2252 | return retnum; | |
2253 | } | |
2254 | ||
2255 | /* | |
2256 | * kqueue_close - | |
2257 | */ | |
2258 | /*ARGSUSED*/ | |
2259 | static int | |
2260 | kqueue_close(struct fileglob *fg, __unused vfs_context_t ctx) | |
2261 | { | |
2262 | struct kqueue *kq = (struct kqueue *)fg->fg_data; | |
2263 | ||
2264 | kqueue_dealloc(kq); | |
2265 | fg->fg_data = NULL; | |
2266 | return (0); | |
2267 | } | |
2268 | ||
2269 | /*ARGSUSED*/ | |
2270 | /* | |
2271 | * The callers has taken a use-count reference on this kqueue and will donate it | |
2272 | * to the kqueue we are being added to. This keeps the kqueue from closing until | |
2273 | * that relationship is torn down. | |
2274 | */ | |
2275 | static int | |
2276 | kqueue_kqfilter(__unused struct fileproc *fp, struct knote *kn, __unused vfs_context_t ctx) | |
2277 | { | |
2278 | struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data; | |
2279 | struct kqueue *parentkq = kn->kn_kq; | |
2280 | ||
2281 | if (parentkq == kq || | |
2282 | kn->kn_filter != EVFILT_READ) | |
2283 | return (1); | |
2284 | ||
2285 | /* | |
2286 | * We have to avoid creating a cycle when nesting kqueues | |
2287 | * inside another. Rather than trying to walk the whole | |
2288 | * potential DAG of nested kqueues, we just use a simple | |
2289 | * ceiling protocol. When a kqueue is inserted into another, | |
2290 | * we check that the (future) parent is not already nested | |
2291 | * into another kqueue at a lower level than the potenial | |
2292 | * child (because it could indicate a cycle). If that test | |
2293 | * passes, we just mark the nesting levels accordingly. | |
2294 | */ | |
2295 | ||
2296 | kqlock(parentkq); | |
2297 | if (parentkq->kq_level > 0 && | |
2298 | parentkq->kq_level < kq->kq_level) | |
2299 | { | |
2300 | kqunlock(parentkq); | |
2301 | return (1); | |
2302 | } else { | |
2303 | /* set parent level appropriately */ | |
2304 | if (parentkq->kq_level == 0) | |
2305 | parentkq->kq_level = 2; | |
2306 | if (parentkq->kq_level < kq->kq_level + 1) | |
2307 | parentkq->kq_level = kq->kq_level + 1; | |
2308 | kqunlock(parentkq); | |
2309 | ||
2310 | kn->kn_fop = &kqread_filtops; | |
2311 | kqlock(kq); | |
2312 | KNOTE_ATTACH(&kq->kq_sel.si_note, kn); | |
2313 | /* indicate nesting in child, if needed */ | |
2314 | if (kq->kq_level == 0) | |
2315 | kq->kq_level = 1; | |
2316 | kqunlock(kq); | |
2317 | return (0); | |
2318 | } | |
2319 | } | |
2320 | ||
2321 | /* | |
2322 | * kqueue_drain - called when kq is closed | |
2323 | */ | |
2324 | /*ARGSUSED*/ | |
2325 | static int | |
2326 | kqueue_drain(struct fileproc *fp, __unused vfs_context_t ctx) | |
2327 | { | |
2328 | struct kqueue *kq = (struct kqueue *)fp->f_fglob->fg_data; | |
2329 | kqlock(kq); | |
2330 | kqueue_wakeup(kq, 1); | |
2331 | kqunlock(kq); | |
2332 | return 0; | |
2333 | } | |
2334 | ||
2335 | /*ARGSUSED*/ | |
2336 | int | |
2337 | kqueue_stat(struct fileproc *fp, void *ub, int isstat64, __unused vfs_context_t ctx) | |
2338 | { | |
2339 | ||
2340 | struct kqueue *kq = (struct kqueue *)fp->f_data; | |
2341 | if (isstat64 != 0) { | |
2342 | struct stat64 *sb64 = (struct stat64 *)ub; | |
2343 | ||
2344 | bzero((void *)sb64, sizeof(*sb64)); | |
2345 | sb64->st_size = kq->kq_count; | |
2346 | if (kq->kq_state & KQ_KEV64) | |
2347 | sb64->st_blksize = sizeof(struct kevent64_s); | |
2348 | else | |
2349 | sb64->st_blksize = sizeof(struct kevent); | |
2350 | sb64->st_mode = S_IFIFO; | |
2351 | } else { | |
2352 | struct stat *sb = (struct stat *)ub; | |
2353 | ||
2354 | bzero((void *)sb, sizeof(*sb)); | |
2355 | sb->st_size = kq->kq_count; | |
2356 | if (kq->kq_state & KQ_KEV64) | |
2357 | sb->st_blksize = sizeof(struct kevent64_s); | |
2358 | else | |
2359 | sb->st_blksize = sizeof(struct kevent); | |
2360 | sb->st_mode = S_IFIFO; | |
2361 | } | |
2362 | ||
2363 | return (0); | |
2364 | } | |
2365 | ||
2366 | /* | |
2367 | * Called with the kqueue locked | |
2368 | */ | |
2369 | static void | |
2370 | kqueue_wakeup(struct kqueue *kq, int closed) | |
2371 | { | |
2372 | if ((kq->kq_state & (KQ_SLEEP | KQ_SEL)) != 0 || kq->kq_nprocess > 0) { | |
2373 | kq->kq_state &= ~(KQ_SLEEP | KQ_SEL); | |
2374 | wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, KQ_EVENT, | |
2375 | (closed) ? THREAD_INTERRUPTED : THREAD_AWAKENED); | |
2376 | } | |
2377 | } | |
2378 | ||
2379 | void | |
2380 | klist_init(struct klist *list) | |
2381 | { | |
2382 | SLIST_INIT(list); | |
2383 | } | |
2384 | ||
2385 | ||
2386 | /* | |
2387 | * Query/Post each knote in the object's list | |
2388 | * | |
2389 | * The object lock protects the list. It is assumed | |
2390 | * that the filter/event routine for the object can | |
2391 | * determine that the object is already locked (via | |
2392 | * the hint) and not deadlock itself. | |
2393 | * | |
2394 | * The object lock should also hold off pending | |
2395 | * detach/drop operations. But we'll prevent it here | |
2396 | * too - just in case. | |
2397 | */ | |
2398 | void | |
2399 | knote(struct klist *list, long hint) | |
2400 | { | |
2401 | struct knote *kn; | |
2402 | ||
2403 | SLIST_FOREACH(kn, list, kn_selnext) { | |
2404 | struct kqueue *kq = kn->kn_kq; | |
2405 | ||
2406 | kqlock(kq); | |
2407 | if (kqlock2knoteuse(kq, kn)) { | |
2408 | int result; | |
2409 | ||
2410 | /* call the event with only a use count */ | |
2411 | result = kn->kn_fop->f_event(kn, hint); | |
2412 | ||
2413 | /* if its not going away and triggered */ | |
2414 | if (knoteuse2kqlock(kq, kn) && result) | |
2415 | knote_activate(kn, 1); | |
2416 | /* lock held again */ | |
2417 | } | |
2418 | kqunlock(kq); | |
2419 | } | |
2420 | } | |
2421 | ||
2422 | /* | |
2423 | * attach a knote to the specified list. Return true if this is the first entry. | |
2424 | * The list is protected by whatever lock the object it is associated with uses. | |
2425 | */ | |
2426 | int | |
2427 | knote_attach(struct klist *list, struct knote *kn) | |
2428 | { | |
2429 | int ret = SLIST_EMPTY(list); | |
2430 | SLIST_INSERT_HEAD(list, kn, kn_selnext); | |
2431 | return ret; | |
2432 | } | |
2433 | ||
2434 | /* | |
2435 | * detach a knote from the specified list. Return true if that was the last entry. | |
2436 | * The list is protected by whatever lock the object it is associated with uses. | |
2437 | */ | |
2438 | int | |
2439 | knote_detach(struct klist *list, struct knote *kn) | |
2440 | { | |
2441 | SLIST_REMOVE(list, kn, knote, kn_selnext); | |
2442 | return SLIST_EMPTY(list); | |
2443 | } | |
2444 | ||
2445 | /* | |
2446 | * For a given knote, link a provided wait queue directly with the kqueue. | |
2447 | * Wakeups will happen via recursive wait queue support. But nothing will move | |
2448 | * the knote to the active list at wakeup (nothing calls knote()). Instead, | |
2449 | * we permanently enqueue them here. | |
2450 | * | |
2451 | * kqueue and knote references are held by caller. | |
2452 | * | |
2453 | * caller provides the wait queue link structure. | |
2454 | */ | |
2455 | int | |
2456 | knote_link_wait_queue(struct knote *kn, struct wait_queue *wq, wait_queue_link_t wql) | |
2457 | { | |
2458 | struct kqueue *kq = kn->kn_kq; | |
2459 | kern_return_t kr; | |
2460 | ||
2461 | kr = wait_queue_link_noalloc(wq, kq->kq_wqs, wql); | |
2462 | if (kr == KERN_SUCCESS) { | |
2463 | knote_markstayqueued(kn); | |
2464 | return 0; | |
2465 | } else { | |
2466 | return EINVAL; | |
2467 | } | |
2468 | } | |
2469 | ||
2470 | /* | |
2471 | * Unlink the provided wait queue from the kqueue associated with a knote. | |
2472 | * Also remove it from the magic list of directly attached knotes. | |
2473 | * | |
2474 | * Note that the unlink may have already happened from the other side, so | |
2475 | * ignore any failures to unlink and just remove it from the kqueue list. | |
2476 | * | |
2477 | * On success, caller is responsible for the link structure | |
2478 | */ | |
2479 | int | |
2480 | knote_unlink_wait_queue(struct knote *kn, struct wait_queue *wq, wait_queue_link_t *wqlp) | |
2481 | { | |
2482 | struct kqueue *kq = kn->kn_kq; | |
2483 | kern_return_t kr; | |
2484 | ||
2485 | kr = wait_queue_unlink_nofree(wq, kq->kq_wqs, wqlp); | |
2486 | kqlock(kq); | |
2487 | kn->kn_status &= ~KN_STAYQUEUED; | |
2488 | knote_dequeue(kn); | |
2489 | kqunlock(kq); | |
2490 | return (kr != KERN_SUCCESS) ? EINVAL : 0; | |
2491 | } | |
2492 | ||
2493 | /* | |
2494 | * remove all knotes referencing a specified fd | |
2495 | * | |
2496 | * Essentially an inlined knote_remove & knote_drop | |
2497 | * when we know for sure that the thing is a file | |
2498 | * | |
2499 | * Entered with the proc_fd lock already held. | |
2500 | * It returns the same way, but may drop it temporarily. | |
2501 | */ | |
2502 | void | |
2503 | knote_fdclose(struct proc *p, int fd) | |
2504 | { | |
2505 | struct filedesc *fdp = p->p_fd; | |
2506 | struct klist *list; | |
2507 | struct knote *kn; | |
2508 | ||
2509 | list = &fdp->fd_knlist[fd]; | |
2510 | while ((kn = SLIST_FIRST(list)) != NULL) { | |
2511 | struct kqueue *kq = kn->kn_kq; | |
2512 | ||
2513 | if (kq->kq_p != p) | |
2514 | panic("knote_fdclose: proc mismatch (kq->kq_p=%p != p=%p)", kq->kq_p, p); | |
2515 | ||
2516 | kqlock(kq); | |
2517 | proc_fdunlock(p); | |
2518 | ||
2519 | /* | |
2520 | * Convert the lock to a drop ref. | |
2521 | * If we get it, go ahead and drop it. | |
2522 | * Otherwise, we waited for it to | |
2523 | * be dropped by the other guy, so | |
2524 | * it is safe to move on in the list. | |
2525 | */ | |
2526 | if (kqlock2knotedrop(kq, kn)) { | |
2527 | kn->kn_fop->f_detach(kn); | |
2528 | knote_drop(kn, p); | |
2529 | } | |
2530 | ||
2531 | proc_fdlock(p); | |
2532 | ||
2533 | /* the fd tables may have changed - start over */ | |
2534 | list = &fdp->fd_knlist[fd]; | |
2535 | } | |
2536 | } | |
2537 | ||
2538 | /* proc_fdlock held on entry (and exit) */ | |
2539 | static int | |
2540 | knote_fdpattach(struct knote *kn, struct filedesc *fdp, struct proc *p) | |
2541 | { | |
2542 | struct klist *list = NULL; | |
2543 | ||
2544 | if (! kn->kn_fop->f_isfd) { | |
2545 | if (fdp->fd_knhashmask == 0) | |
2546 | fdp->fd_knhash = hashinit(CONFIG_KN_HASHSIZE, M_KQUEUE, | |
2547 | &fdp->fd_knhashmask); | |
2548 | list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)]; | |
2549 | } else { | |
2550 | if ((u_int)fdp->fd_knlistsize <= kn->kn_id) { | |
2551 | u_int size = 0; | |
2552 | ||
2553 | if (kn->kn_id >= (uint64_t)p->p_rlimit[RLIMIT_NOFILE].rlim_cur | |
2554 | || kn->kn_id >= (uint64_t)maxfiles) | |
2555 | return (EINVAL); | |
2556 | ||
2557 | /* have to grow the fd_knlist */ | |
2558 | size = fdp->fd_knlistsize; | |
2559 | while (size <= kn->kn_id) | |
2560 | size += KQEXTENT; | |
2561 | ||
2562 | if (size >= (UINT_MAX/sizeof(struct klist *))) | |
2563 | return (EINVAL); | |
2564 | ||
2565 | MALLOC(list, struct klist *, | |
2566 | size * sizeof(struct klist *), M_KQUEUE, M_WAITOK); | |
2567 | if (list == NULL) | |
2568 | return (ENOMEM); | |
2569 | ||
2570 | bcopy((caddr_t)fdp->fd_knlist, (caddr_t)list, | |
2571 | fdp->fd_knlistsize * sizeof(struct klist *)); | |
2572 | bzero((caddr_t)list + | |
2573 | fdp->fd_knlistsize * sizeof(struct klist *), | |
2574 | (size - fdp->fd_knlistsize) * sizeof(struct klist *)); | |
2575 | FREE(fdp->fd_knlist, M_KQUEUE); | |
2576 | fdp->fd_knlist = list; | |
2577 | fdp->fd_knlistsize = size; | |
2578 | } | |
2579 | list = &fdp->fd_knlist[kn->kn_id]; | |
2580 | } | |
2581 | SLIST_INSERT_HEAD(list, kn, kn_link); | |
2582 | return (0); | |
2583 | } | |
2584 | ||
2585 | ||
2586 | ||
2587 | /* | |
2588 | * should be called at spl == 0, since we don't want to hold spl | |
2589 | * while calling fdrop and free. | |
2590 | */ | |
2591 | static void | |
2592 | knote_drop(struct knote *kn, __unused struct proc *ctxp) | |
2593 | { | |
2594 | struct kqueue *kq = kn->kn_kq; | |
2595 | struct proc *p = kq->kq_p; | |
2596 | struct filedesc *fdp = p->p_fd; | |
2597 | struct klist *list; | |
2598 | int needswakeup; | |
2599 | ||
2600 | proc_fdlock(p); | |
2601 | if (kn->kn_fop->f_isfd) | |
2602 | list = &fdp->fd_knlist[kn->kn_id]; | |
2603 | else | |
2604 | list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)]; | |
2605 | ||
2606 | SLIST_REMOVE(list, kn, knote, kn_link); | |
2607 | kqlock(kq); | |
2608 | knote_dequeue(kn); | |
2609 | needswakeup = (kn->kn_status & KN_USEWAIT); | |
2610 | kqunlock(kq); | |
2611 | proc_fdunlock(p); | |
2612 | ||
2613 | if (needswakeup) | |
2614 | wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, &kn->kn_status, THREAD_AWAKENED); | |
2615 | ||
2616 | if (kn->kn_fop->f_isfd) | |
2617 | fp_drop(p, kn->kn_id, kn->kn_fp, 0); | |
2618 | ||
2619 | knote_free(kn); | |
2620 | } | |
2621 | ||
2622 | /* called with kqueue lock held */ | |
2623 | static void | |
2624 | knote_activate(struct knote *kn, int propagate) | |
2625 | { | |
2626 | struct kqueue *kq = kn->kn_kq; | |
2627 | ||
2628 | kn->kn_status |= KN_ACTIVE; | |
2629 | knote_enqueue(kn); | |
2630 | kqueue_wakeup(kq, 0); | |
2631 | ||
2632 | /* this is a real event: wake up the parent kq, too */ | |
2633 | if (propagate) | |
2634 | KNOTE(&kq->kq_sel.si_note, 0); | |
2635 | } | |
2636 | ||
2637 | /* called with kqueue lock held */ | |
2638 | static void | |
2639 | knote_deactivate(struct knote *kn) | |
2640 | { | |
2641 | kn->kn_status &= ~KN_ACTIVE; | |
2642 | knote_dequeue(kn); | |
2643 | } | |
2644 | ||
2645 | /* called with kqueue lock held */ | |
2646 | static void | |
2647 | knote_enqueue(struct knote *kn) | |
2648 | { | |
2649 | if ((kn->kn_status & (KN_QUEUED | KN_STAYQUEUED)) == KN_STAYQUEUED || | |
2650 | (kn->kn_status & (KN_QUEUED | KN_STAYQUEUED | KN_DISABLED)) == 0) { | |
2651 | struct kqtailq *tq = kn->kn_tq; | |
2652 | struct kqueue *kq = kn->kn_kq; | |
2653 | ||
2654 | TAILQ_INSERT_TAIL(tq, kn, kn_tqe); | |
2655 | kn->kn_status |= KN_QUEUED; | |
2656 | kq->kq_count++; | |
2657 | } | |
2658 | } | |
2659 | ||
2660 | /* called with kqueue lock held */ | |
2661 | static void | |
2662 | knote_dequeue(struct knote *kn) | |
2663 | { | |
2664 | struct kqueue *kq = kn->kn_kq; | |
2665 | ||
2666 | if ((kn->kn_status & (KN_QUEUED | KN_STAYQUEUED)) == KN_QUEUED) { | |
2667 | struct kqtailq *tq = kn->kn_tq; | |
2668 | ||
2669 | TAILQ_REMOVE(tq, kn, kn_tqe); | |
2670 | kn->kn_tq = &kq->kq_head; | |
2671 | kn->kn_status &= ~KN_QUEUED; | |
2672 | kq->kq_count--; | |
2673 | } | |
2674 | } | |
2675 | ||
2676 | void | |
2677 | knote_init(void) | |
2678 | { | |
2679 | knote_zone = zinit(sizeof(struct knote), 8192*sizeof(struct knote), 8192, "knote zone"); | |
2680 | ||
2681 | /* allocate kq lock group attribute and group */ | |
2682 | kq_lck_grp_attr= lck_grp_attr_alloc_init(); | |
2683 | ||
2684 | kq_lck_grp = lck_grp_alloc_init("kqueue", kq_lck_grp_attr); | |
2685 | ||
2686 | /* Allocate kq lock attribute */ | |
2687 | kq_lck_attr = lck_attr_alloc_init(); | |
2688 | ||
2689 | /* Initialize the timer filter lock */ | |
2690 | lck_mtx_init(&_filt_timerlock, kq_lck_grp, kq_lck_attr); | |
2691 | ||
2692 | #if VM_PRESSURE_EVENTS | |
2693 | /* Initialize the vm pressure list lock */ | |
2694 | vm_pressure_init(kq_lck_grp, kq_lck_attr); | |
2695 | #endif | |
2696 | } | |
2697 | SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL) | |
2698 | ||
2699 | static struct knote * | |
2700 | knote_alloc(void) | |
2701 | { | |
2702 | return ((struct knote *)zalloc(knote_zone)); | |
2703 | } | |
2704 | ||
2705 | static void | |
2706 | knote_free(struct knote *kn) | |
2707 | { | |
2708 | zfree(knote_zone, kn); | |
2709 | } | |
2710 | ||
2711 | #if SOCKETS | |
2712 | #include <sys/param.h> | |
2713 | #include <sys/socket.h> | |
2714 | #include <sys/protosw.h> | |
2715 | #include <sys/domain.h> | |
2716 | #include <sys/mbuf.h> | |
2717 | #include <sys/kern_event.h> | |
2718 | #include <sys/malloc.h> | |
2719 | #include <sys/sys_domain.h> | |
2720 | #include <sys/syslog.h> | |
2721 | ||
2722 | ||
2723 | static int kev_attach(struct socket *so, int proto, struct proc *p); | |
2724 | static int kev_detach(struct socket *so); | |
2725 | static int kev_control(struct socket *so, u_long cmd, caddr_t data, struct ifnet *ifp, struct proc *p); | |
2726 | ||
2727 | struct pr_usrreqs event_usrreqs = { | |
2728 | pru_abort_notsupp, pru_accept_notsupp, kev_attach, pru_bind_notsupp, pru_connect_notsupp, | |
2729 | pru_connect2_notsupp, kev_control, kev_detach, pru_disconnect_notsupp, | |
2730 | pru_listen_notsupp, pru_peeraddr_notsupp, pru_rcvd_notsupp, pru_rcvoob_notsupp, | |
2731 | pru_send_notsupp, pru_sense_null, pru_shutdown_notsupp, pru_sockaddr_notsupp, | |
2732 | pru_sosend_notsupp, soreceive, pru_sopoll_notsupp | |
2733 | }; | |
2734 | ||
2735 | struct protosw eventsw[] = { | |
2736 | { | |
2737 | .pr_type = SOCK_RAW, | |
2738 | .pr_domain = &systemdomain, | |
2739 | .pr_protocol = SYSPROTO_EVENT, | |
2740 | .pr_flags = PR_ATOMIC, | |
2741 | .pr_usrreqs = &event_usrreqs, | |
2742 | } | |
2743 | }; | |
2744 | ||
2745 | static | |
2746 | struct kern_event_head kern_event_head; | |
2747 | ||
2748 | static u_int32_t static_event_id = 0; | |
2749 | struct domain *sysdom = &systemdomain; | |
2750 | static lck_mtx_t *sys_mtx; | |
2751 | ||
2752 | /* | |
2753 | * Install the protosw's for the NKE manager. Invoked at | |
2754 | * extension load time | |
2755 | */ | |
2756 | int | |
2757 | kern_event_init(void) | |
2758 | { | |
2759 | int retval; | |
2760 | ||
2761 | if ((retval = net_add_proto(eventsw, &systemdomain)) != 0) { | |
2762 | log(LOG_WARNING, "Can't install kernel events protocol (%d)\n", retval); | |
2763 | return(retval); | |
2764 | } | |
2765 | ||
2766 | /* | |
2767 | * Use the domain mutex for all system event sockets | |
2768 | */ | |
2769 | sys_mtx = sysdom->dom_mtx; | |
2770 | ||
2771 | return(KERN_SUCCESS); | |
2772 | } | |
2773 | ||
2774 | static int | |
2775 | kev_attach(struct socket *so, __unused int proto, __unused struct proc *p) | |
2776 | { | |
2777 | int error; | |
2778 | struct kern_event_pcb *ev_pcb; | |
2779 | ||
2780 | error = soreserve(so, KEV_SNDSPACE, KEV_RECVSPACE); | |
2781 | if (error) | |
2782 | return error; | |
2783 | ||
2784 | MALLOC(ev_pcb, struct kern_event_pcb *, sizeof(struct kern_event_pcb), M_PCB, M_WAITOK); | |
2785 | if (ev_pcb == 0) | |
2786 | return ENOBUFS; | |
2787 | ||
2788 | ev_pcb->ev_socket = so; | |
2789 | ev_pcb->vendor_code_filter = 0xffffffff; | |
2790 | ||
2791 | so->so_pcb = (caddr_t) ev_pcb; | |
2792 | lck_mtx_lock(sys_mtx); | |
2793 | LIST_INSERT_HEAD(&kern_event_head, ev_pcb, ev_link); | |
2794 | lck_mtx_unlock(sys_mtx); | |
2795 | ||
2796 | return 0; | |
2797 | } | |
2798 | ||
2799 | ||
2800 | static int | |
2801 | kev_detach(struct socket *so) | |
2802 | { | |
2803 | struct kern_event_pcb *ev_pcb = (struct kern_event_pcb *) so->so_pcb; | |
2804 | ||
2805 | if (ev_pcb != 0) { | |
2806 | LIST_REMOVE(ev_pcb, ev_link); | |
2807 | FREE(ev_pcb, M_PCB); | |
2808 | so->so_pcb = 0; | |
2809 | so->so_flags |= SOF_PCBCLEARING; | |
2810 | } | |
2811 | ||
2812 | return 0; | |
2813 | } | |
2814 | ||
2815 | /* | |
2816 | * For now, kev_vendor_code and mbuf_tags use the same | |
2817 | * mechanism. | |
2818 | */ | |
2819 | ||
2820 | errno_t kev_vendor_code_find( | |
2821 | const char *string, | |
2822 | u_int32_t *out_vendor_code) | |
2823 | { | |
2824 | if (strlen(string) >= KEV_VENDOR_CODE_MAX_STR_LEN) { | |
2825 | return EINVAL; | |
2826 | } | |
2827 | return net_str_id_find_internal(string, out_vendor_code, NSI_VENDOR_CODE, 1); | |
2828 | } | |
2829 | ||
2830 | errno_t kev_msg_post(struct kev_msg *event_msg) | |
2831 | { | |
2832 | mbuf_tag_id_t min_vendor, max_vendor; | |
2833 | ||
2834 | net_str_id_first_last(&min_vendor, &max_vendor, NSI_VENDOR_CODE); | |
2835 | ||
2836 | if (event_msg == NULL) | |
2837 | return EINVAL; | |
2838 | ||
2839 | /* Limit third parties to posting events for registered vendor codes only */ | |
2840 | if (event_msg->vendor_code < min_vendor || | |
2841 | event_msg->vendor_code > max_vendor) | |
2842 | { | |
2843 | return EINVAL; | |
2844 | } | |
2845 | ||
2846 | return kev_post_msg(event_msg); | |
2847 | } | |
2848 | ||
2849 | ||
2850 | int kev_post_msg(struct kev_msg *event_msg) | |
2851 | { | |
2852 | struct mbuf *m, *m2; | |
2853 | struct kern_event_pcb *ev_pcb; | |
2854 | struct kern_event_msg *ev; | |
2855 | char *tmp; | |
2856 | u_int32_t total_size; | |
2857 | int i; | |
2858 | ||
2859 | /* Verify the message is small enough to fit in one mbuf w/o cluster */ | |
2860 | total_size = KEV_MSG_HEADER_SIZE; | |
2861 | ||
2862 | for (i = 0; i < 5; i++) { | |
2863 | if (event_msg->dv[i].data_length == 0) | |
2864 | break; | |
2865 | total_size += event_msg->dv[i].data_length; | |
2866 | } | |
2867 | ||
2868 | if (total_size > MLEN) { | |
2869 | return EMSGSIZE; | |
2870 | } | |
2871 | ||
2872 | m = m_get(M_DONTWAIT, MT_DATA); | |
2873 | if (m == 0) | |
2874 | return ENOBUFS; | |
2875 | ||
2876 | ev = mtod(m, struct kern_event_msg *); | |
2877 | total_size = KEV_MSG_HEADER_SIZE; | |
2878 | ||
2879 | tmp = (char *) &ev->event_data[0]; | |
2880 | for (i = 0; i < 5; i++) { | |
2881 | if (event_msg->dv[i].data_length == 0) | |
2882 | break; | |
2883 | ||
2884 | total_size += event_msg->dv[i].data_length; | |
2885 | bcopy(event_msg->dv[i].data_ptr, tmp, | |
2886 | event_msg->dv[i].data_length); | |
2887 | tmp += event_msg->dv[i].data_length; | |
2888 | } | |
2889 | ||
2890 | ev->id = ++static_event_id; | |
2891 | ev->total_size = total_size; | |
2892 | ev->vendor_code = event_msg->vendor_code; | |
2893 | ev->kev_class = event_msg->kev_class; | |
2894 | ev->kev_subclass = event_msg->kev_subclass; | |
2895 | ev->event_code = event_msg->event_code; | |
2896 | ||
2897 | m->m_len = total_size; | |
2898 | lck_mtx_lock(sys_mtx); | |
2899 | for (ev_pcb = LIST_FIRST(&kern_event_head); | |
2900 | ev_pcb; | |
2901 | ev_pcb = LIST_NEXT(ev_pcb, ev_link)) { | |
2902 | ||
2903 | if (ev_pcb->vendor_code_filter != KEV_ANY_VENDOR) { | |
2904 | if (ev_pcb->vendor_code_filter != ev->vendor_code) | |
2905 | continue; | |
2906 | ||
2907 | if (ev_pcb->class_filter != KEV_ANY_CLASS) { | |
2908 | if (ev_pcb->class_filter != ev->kev_class) | |
2909 | continue; | |
2910 | ||
2911 | if ((ev_pcb->subclass_filter != KEV_ANY_SUBCLASS) && | |
2912 | (ev_pcb->subclass_filter != ev->kev_subclass)) | |
2913 | continue; | |
2914 | } | |
2915 | } | |
2916 | ||
2917 | m2 = m_copym(m, 0, m->m_len, M_NOWAIT); | |
2918 | if (m2 == 0) { | |
2919 | m_free(m); | |
2920 | lck_mtx_unlock(sys_mtx); | |
2921 | return ENOBUFS; | |
2922 | } | |
2923 | /* the socket is already locked because we hold the sys_mtx here */ | |
2924 | if (sbappendrecord(&ev_pcb->ev_socket->so_rcv, m2)) | |
2925 | sorwakeup(ev_pcb->ev_socket); | |
2926 | } | |
2927 | ||
2928 | m_free(m); | |
2929 | lck_mtx_unlock(sys_mtx); | |
2930 | return 0; | |
2931 | } | |
2932 | ||
2933 | static int | |
2934 | kev_control(struct socket *so, | |
2935 | u_long cmd, | |
2936 | caddr_t data, | |
2937 | __unused struct ifnet *ifp, | |
2938 | __unused struct proc *p) | |
2939 | { | |
2940 | struct kev_request *kev_req = (struct kev_request *) data; | |
2941 | struct kern_event_pcb *ev_pcb; | |
2942 | struct kev_vendor_code *kev_vendor; | |
2943 | u_int32_t *id_value = (u_int32_t *) data; | |
2944 | ||
2945 | ||
2946 | switch (cmd) { | |
2947 | ||
2948 | case SIOCGKEVID: | |
2949 | *id_value = static_event_id; | |
2950 | break; | |
2951 | ||
2952 | case SIOCSKEVFILT: | |
2953 | ev_pcb = (struct kern_event_pcb *) so->so_pcb; | |
2954 | ev_pcb->vendor_code_filter = kev_req->vendor_code; | |
2955 | ev_pcb->class_filter = kev_req->kev_class; | |
2956 | ev_pcb->subclass_filter = kev_req->kev_subclass; | |
2957 | break; | |
2958 | ||
2959 | case SIOCGKEVFILT: | |
2960 | ev_pcb = (struct kern_event_pcb *) so->so_pcb; | |
2961 | kev_req->vendor_code = ev_pcb->vendor_code_filter; | |
2962 | kev_req->kev_class = ev_pcb->class_filter; | |
2963 | kev_req->kev_subclass = ev_pcb->subclass_filter; | |
2964 | break; | |
2965 | ||
2966 | case SIOCGKEVVENDOR: | |
2967 | kev_vendor = (struct kev_vendor_code*)data; | |
2968 | ||
2969 | /* Make sure string is NULL terminated */ | |
2970 | kev_vendor->vendor_string[KEV_VENDOR_CODE_MAX_STR_LEN-1] = 0; | |
2971 | ||
2972 | return net_str_id_find_internal(kev_vendor->vendor_string, | |
2973 | &kev_vendor->vendor_code, NSI_VENDOR_CODE, 0); | |
2974 | ||
2975 | default: | |
2976 | return ENOTSUP; | |
2977 | } | |
2978 | ||
2979 | return 0; | |
2980 | } | |
2981 | ||
2982 | #endif /* SOCKETS */ | |
2983 | ||
2984 | ||
2985 | int | |
2986 | fill_kqueueinfo(struct kqueue *kq, struct kqueue_info * kinfo) | |
2987 | { | |
2988 | struct vinfo_stat * st; | |
2989 | ||
2990 | /* No need for the funnel as fd is kept alive */ | |
2991 | ||
2992 | st = &kinfo->kq_stat; | |
2993 | ||
2994 | st->vst_size = kq->kq_count; | |
2995 | if (kq->kq_state & KQ_KEV64) | |
2996 | st->vst_blksize = sizeof(struct kevent64_s); | |
2997 | else | |
2998 | st->vst_blksize = sizeof(struct kevent); | |
2999 | st->vst_mode = S_IFIFO; | |
3000 | if (kq->kq_state & KQ_SEL) | |
3001 | kinfo->kq_state |= PROC_KQUEUE_SELECT; | |
3002 | if (kq->kq_state & KQ_SLEEP) | |
3003 | kinfo->kq_state |= PROC_KQUEUE_SLEEP; | |
3004 | ||
3005 | return(0); | |
3006 | } | |
3007 | ||
3008 | ||
3009 | void | |
3010 | knote_markstayqueued(struct knote *kn) | |
3011 | { | |
3012 | kqlock(kn->kn_kq); | |
3013 | kn->kn_status |= KN_STAYQUEUED; | |
3014 | knote_enqueue(kn); | |
3015 | kqunlock(kn->kn_kq); | |
3016 | } |