]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2014 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | /* | |
57 | */ | |
58 | /* | |
59 | * File: vm/vm_pageout.c | |
60 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |
61 | * Date: 1985 | |
62 | * | |
63 | * The proverbial page-out daemon. | |
64 | */ | |
65 | ||
66 | #include <stdint.h> | |
67 | ||
68 | #include <debug.h> | |
69 | #include <mach_pagemap.h> | |
70 | #include <mach_cluster_stats.h> | |
71 | ||
72 | #include <mach/mach_types.h> | |
73 | #include <mach/memory_object.h> | |
74 | #include <mach/memory_object_default.h> | |
75 | #include <mach/memory_object_control_server.h> | |
76 | #include <mach/mach_host_server.h> | |
77 | #include <mach/upl.h> | |
78 | #include <mach/vm_map.h> | |
79 | #include <mach/vm_param.h> | |
80 | #include <mach/vm_statistics.h> | |
81 | #include <mach/sdt.h> | |
82 | ||
83 | #include <kern/kern_types.h> | |
84 | #include <kern/counters.h> | |
85 | #include <kern/host_statistics.h> | |
86 | #include <kern/machine.h> | |
87 | #include <kern/misc_protos.h> | |
88 | #include <kern/sched.h> | |
89 | #include <kern/thread.h> | |
90 | #include <kern/xpr.h> | |
91 | #include <kern/kalloc.h> | |
92 | ||
93 | #include <machine/vm_tuning.h> | |
94 | #include <machine/commpage.h> | |
95 | ||
96 | #include <vm/pmap.h> | |
97 | #include <vm/vm_compressor_pager.h> | |
98 | #include <vm/vm_fault.h> | |
99 | #include <vm/vm_map.h> | |
100 | #include <vm/vm_object.h> | |
101 | #include <vm/vm_page.h> | |
102 | #include <vm/vm_pageout.h> | |
103 | #include <vm/vm_protos.h> /* must be last */ | |
104 | #include <vm/memory_object.h> | |
105 | #include <vm/vm_purgeable_internal.h> | |
106 | #include <vm/vm_shared_region.h> | |
107 | #include <vm/vm_compressor.h> | |
108 | ||
109 | #if CONFIG_PHANTOM_CACHE | |
110 | #include <vm/vm_phantom_cache.h> | |
111 | #endif | |
112 | /* | |
113 | * ENCRYPTED SWAP: | |
114 | */ | |
115 | #include <libkern/crypto/aes.h> | |
116 | extern u_int32_t random(void); /* from <libkern/libkern.h> */ | |
117 | ||
118 | extern int cs_debug; | |
119 | ||
120 | #if UPL_DEBUG | |
121 | #include <libkern/OSDebug.h> | |
122 | #endif | |
123 | ||
124 | extern void m_drain(void); | |
125 | ||
126 | #if VM_PRESSURE_EVENTS | |
127 | extern unsigned int memorystatus_available_pages; | |
128 | extern unsigned int memorystatus_available_pages_pressure; | |
129 | extern unsigned int memorystatus_available_pages_critical; | |
130 | extern unsigned int memorystatus_frozen_count; | |
131 | extern unsigned int memorystatus_suspended_count; | |
132 | ||
133 | extern vm_pressure_level_t memorystatus_vm_pressure_level; | |
134 | int memorystatus_purge_on_warning = 2; | |
135 | int memorystatus_purge_on_urgent = 5; | |
136 | int memorystatus_purge_on_critical = 8; | |
137 | ||
138 | void vm_pressure_response(void); | |
139 | boolean_t vm_pressure_thread_running = FALSE; | |
140 | extern void consider_vm_pressure_events(void); | |
141 | ||
142 | #define MEMORYSTATUS_SUSPENDED_THRESHOLD 4 | |
143 | #endif /* VM_PRESSURE_EVENTS */ | |
144 | ||
145 | boolean_t vm_pressure_changed = FALSE; | |
146 | ||
147 | #ifndef VM_PAGEOUT_BURST_ACTIVE_THROTTLE /* maximum iterations of the active queue to move pages to inactive */ | |
148 | #define VM_PAGEOUT_BURST_ACTIVE_THROTTLE 100 | |
149 | #endif | |
150 | ||
151 | #ifndef VM_PAGEOUT_BURST_INACTIVE_THROTTLE /* maximum iterations of the inactive queue w/o stealing/cleaning a page */ | |
152 | #define VM_PAGEOUT_BURST_INACTIVE_THROTTLE 4096 | |
153 | #endif | |
154 | ||
155 | #ifndef VM_PAGEOUT_DEADLOCK_RELIEF | |
156 | #define VM_PAGEOUT_DEADLOCK_RELIEF 100 /* number of pages to move to break deadlock */ | |
157 | #endif | |
158 | ||
159 | #ifndef VM_PAGEOUT_INACTIVE_RELIEF | |
160 | #define VM_PAGEOUT_INACTIVE_RELIEF 50 /* minimum number of pages to move to the inactive q */ | |
161 | #endif | |
162 | ||
163 | #ifndef VM_PAGE_LAUNDRY_MAX | |
164 | #define VM_PAGE_LAUNDRY_MAX 128UL /* maximum pageouts on a given pageout queue */ | |
165 | #endif /* VM_PAGEOUT_LAUNDRY_MAX */ | |
166 | ||
167 | #ifndef VM_PAGEOUT_BURST_WAIT | |
168 | #define VM_PAGEOUT_BURST_WAIT 10 /* milliseconds */ | |
169 | #endif /* VM_PAGEOUT_BURST_WAIT */ | |
170 | ||
171 | #ifndef VM_PAGEOUT_EMPTY_WAIT | |
172 | #define VM_PAGEOUT_EMPTY_WAIT 200 /* milliseconds */ | |
173 | #endif /* VM_PAGEOUT_EMPTY_WAIT */ | |
174 | ||
175 | #ifndef VM_PAGEOUT_DEADLOCK_WAIT | |
176 | #define VM_PAGEOUT_DEADLOCK_WAIT 300 /* milliseconds */ | |
177 | #endif /* VM_PAGEOUT_DEADLOCK_WAIT */ | |
178 | ||
179 | #ifndef VM_PAGEOUT_IDLE_WAIT | |
180 | #define VM_PAGEOUT_IDLE_WAIT 10 /* milliseconds */ | |
181 | #endif /* VM_PAGEOUT_IDLE_WAIT */ | |
182 | ||
183 | #ifndef VM_PAGEOUT_SWAP_WAIT | |
184 | #define VM_PAGEOUT_SWAP_WAIT 50 /* milliseconds */ | |
185 | #endif /* VM_PAGEOUT_SWAP_WAIT */ | |
186 | ||
187 | #ifndef VM_PAGEOUT_PRESSURE_PAGES_CONSIDERED | |
188 | #define VM_PAGEOUT_PRESSURE_PAGES_CONSIDERED 1000 /* maximum pages considered before we issue a pressure event */ | |
189 | #endif /* VM_PAGEOUT_PRESSURE_PAGES_CONSIDERED */ | |
190 | ||
191 | #ifndef VM_PAGEOUT_PRESSURE_EVENT_MONITOR_SECS | |
192 | #define VM_PAGEOUT_PRESSURE_EVENT_MONITOR_SECS 5 /* seconds */ | |
193 | #endif /* VM_PAGEOUT_PRESSURE_EVENT_MONITOR_SECS */ | |
194 | ||
195 | unsigned int vm_page_speculative_q_age_ms = VM_PAGE_SPECULATIVE_Q_AGE_MS; | |
196 | unsigned int vm_page_speculative_percentage = 5; | |
197 | ||
198 | #ifndef VM_PAGE_SPECULATIVE_TARGET | |
199 | #define VM_PAGE_SPECULATIVE_TARGET(total) ((total) * 1 / (100 / vm_page_speculative_percentage)) | |
200 | #endif /* VM_PAGE_SPECULATIVE_TARGET */ | |
201 | ||
202 | ||
203 | #ifndef VM_PAGE_INACTIVE_HEALTHY_LIMIT | |
204 | #define VM_PAGE_INACTIVE_HEALTHY_LIMIT(total) ((total) * 1 / 200) | |
205 | #endif /* VM_PAGE_INACTIVE_HEALTHY_LIMIT */ | |
206 | ||
207 | ||
208 | /* | |
209 | * To obtain a reasonable LRU approximation, the inactive queue | |
210 | * needs to be large enough to give pages on it a chance to be | |
211 | * referenced a second time. This macro defines the fraction | |
212 | * of active+inactive pages that should be inactive. | |
213 | * The pageout daemon uses it to update vm_page_inactive_target. | |
214 | * | |
215 | * If vm_page_free_count falls below vm_page_free_target and | |
216 | * vm_page_inactive_count is below vm_page_inactive_target, | |
217 | * then the pageout daemon starts running. | |
218 | */ | |
219 | ||
220 | #ifndef VM_PAGE_INACTIVE_TARGET | |
221 | #define VM_PAGE_INACTIVE_TARGET(avail) ((avail) * 1 / 2) | |
222 | #endif /* VM_PAGE_INACTIVE_TARGET */ | |
223 | ||
224 | /* | |
225 | * Once the pageout daemon starts running, it keeps going | |
226 | * until vm_page_free_count meets or exceeds vm_page_free_target. | |
227 | */ | |
228 | ||
229 | #ifndef VM_PAGE_FREE_TARGET | |
230 | #define VM_PAGE_FREE_TARGET(free) (15 + (free) / 80) | |
231 | #endif /* VM_PAGE_FREE_TARGET */ | |
232 | ||
233 | ||
234 | /* | |
235 | * The pageout daemon always starts running once vm_page_free_count | |
236 | * falls below vm_page_free_min. | |
237 | */ | |
238 | ||
239 | #ifndef VM_PAGE_FREE_MIN | |
240 | #define VM_PAGE_FREE_MIN(free) (10 + (free) / 100) | |
241 | #endif /* VM_PAGE_FREE_MIN */ | |
242 | ||
243 | #define VM_PAGE_FREE_RESERVED_LIMIT 1700 | |
244 | #define VM_PAGE_FREE_MIN_LIMIT 3500 | |
245 | #define VM_PAGE_FREE_TARGET_LIMIT 4000 | |
246 | ||
247 | /* | |
248 | * When vm_page_free_count falls below vm_page_free_reserved, | |
249 | * only vm-privileged threads can allocate pages. vm-privilege | |
250 | * allows the pageout daemon and default pager (and any other | |
251 | * associated threads needed for default pageout) to continue | |
252 | * operation by dipping into the reserved pool of pages. | |
253 | */ | |
254 | ||
255 | #ifndef VM_PAGE_FREE_RESERVED | |
256 | #define VM_PAGE_FREE_RESERVED(n) \ | |
257 | ((unsigned) (6 * VM_PAGE_LAUNDRY_MAX) + (n)) | |
258 | #endif /* VM_PAGE_FREE_RESERVED */ | |
259 | ||
260 | /* | |
261 | * When we dequeue pages from the inactive list, they are | |
262 | * reactivated (ie, put back on the active queue) if referenced. | |
263 | * However, it is possible to starve the free list if other | |
264 | * processors are referencing pages faster than we can turn off | |
265 | * the referenced bit. So we limit the number of reactivations | |
266 | * we will make per call of vm_pageout_scan(). | |
267 | */ | |
268 | #define VM_PAGE_REACTIVATE_LIMIT_MAX 20000 | |
269 | #ifndef VM_PAGE_REACTIVATE_LIMIT | |
270 | #define VM_PAGE_REACTIVATE_LIMIT(avail) (MAX((avail) * 1 / 20,VM_PAGE_REACTIVATE_LIMIT_MAX)) | |
271 | #endif /* VM_PAGE_REACTIVATE_LIMIT */ | |
272 | #define VM_PAGEOUT_INACTIVE_FORCE_RECLAIM 1000 | |
273 | ||
274 | ||
275 | extern boolean_t hibernate_cleaning_in_progress; | |
276 | ||
277 | /* | |
278 | * Exported variable used to broadcast the activation of the pageout scan | |
279 | * Working Set uses this to throttle its use of pmap removes. In this | |
280 | * way, code which runs within memory in an uncontested context does | |
281 | * not keep encountering soft faults. | |
282 | */ | |
283 | ||
284 | unsigned int vm_pageout_scan_event_counter = 0; | |
285 | ||
286 | /* | |
287 | * Forward declarations for internal routines. | |
288 | */ | |
289 | struct cq { | |
290 | struct vm_pageout_queue *q; | |
291 | void *current_chead; | |
292 | char *scratch_buf; | |
293 | int id; | |
294 | }; | |
295 | #define MAX_COMPRESSOR_THREAD_COUNT 8 | |
296 | ||
297 | struct cq ciq[MAX_COMPRESSOR_THREAD_COUNT]; | |
298 | ||
299 | void *vm_pageout_immediate_chead; | |
300 | char *vm_pageout_immediate_scratch_buf; | |
301 | ||
302 | ||
303 | #if VM_PRESSURE_EVENTS | |
304 | void vm_pressure_thread(void); | |
305 | ||
306 | boolean_t VM_PRESSURE_NORMAL_TO_WARNING(void); | |
307 | boolean_t VM_PRESSURE_WARNING_TO_CRITICAL(void); | |
308 | ||
309 | boolean_t VM_PRESSURE_WARNING_TO_NORMAL(void); | |
310 | boolean_t VM_PRESSURE_CRITICAL_TO_WARNING(void); | |
311 | #endif | |
312 | static void vm_pageout_garbage_collect(int); | |
313 | static void vm_pageout_iothread_continue(struct vm_pageout_queue *); | |
314 | static void vm_pageout_iothread_external(void); | |
315 | static void vm_pageout_iothread_internal(struct cq *cq); | |
316 | static void vm_pageout_adjust_io_throttles(struct vm_pageout_queue *, struct vm_pageout_queue *, boolean_t); | |
317 | ||
318 | extern void vm_pageout_continue(void); | |
319 | extern void vm_pageout_scan(void); | |
320 | ||
321 | static void vm_pageout_immediate(vm_page_t, boolean_t); | |
322 | boolean_t vm_compressor_immediate_preferred = FALSE; | |
323 | boolean_t vm_compressor_immediate_preferred_override = FALSE; | |
324 | boolean_t vm_restricted_to_single_processor = FALSE; | |
325 | static boolean_t vm_pageout_waiter = FALSE; | |
326 | static boolean_t vm_pageout_running = FALSE; | |
327 | ||
328 | ||
329 | static thread_t vm_pageout_external_iothread = THREAD_NULL; | |
330 | static thread_t vm_pageout_internal_iothread = THREAD_NULL; | |
331 | ||
332 | unsigned int vm_pageout_reserved_internal = 0; | |
333 | unsigned int vm_pageout_reserved_really = 0; | |
334 | ||
335 | unsigned int vm_pageout_swap_wait = 0; | |
336 | unsigned int vm_pageout_idle_wait = 0; /* milliseconds */ | |
337 | unsigned int vm_pageout_empty_wait = 0; /* milliseconds */ | |
338 | unsigned int vm_pageout_burst_wait = 0; /* milliseconds */ | |
339 | unsigned int vm_pageout_deadlock_wait = 0; /* milliseconds */ | |
340 | unsigned int vm_pageout_deadlock_relief = 0; | |
341 | unsigned int vm_pageout_inactive_relief = 0; | |
342 | unsigned int vm_pageout_burst_active_throttle = 0; | |
343 | unsigned int vm_pageout_burst_inactive_throttle = 0; | |
344 | ||
345 | int vm_upl_wait_for_pages = 0; | |
346 | ||
347 | ||
348 | /* | |
349 | * These variables record the pageout daemon's actions: | |
350 | * how many pages it looks at and what happens to those pages. | |
351 | * No locking needed because only one thread modifies the variables. | |
352 | */ | |
353 | ||
354 | unsigned int vm_pageout_active = 0; /* debugging */ | |
355 | unsigned int vm_pageout_inactive = 0; /* debugging */ | |
356 | unsigned int vm_pageout_inactive_throttled = 0; /* debugging */ | |
357 | unsigned int vm_pageout_inactive_forced = 0; /* debugging */ | |
358 | unsigned int vm_pageout_inactive_nolock = 0; /* debugging */ | |
359 | unsigned int vm_pageout_inactive_avoid = 0; /* debugging */ | |
360 | unsigned int vm_pageout_inactive_busy = 0; /* debugging */ | |
361 | unsigned int vm_pageout_inactive_error = 0; /* debugging */ | |
362 | unsigned int vm_pageout_inactive_absent = 0; /* debugging */ | |
363 | unsigned int vm_pageout_inactive_notalive = 0; /* debugging */ | |
364 | unsigned int vm_pageout_inactive_used = 0; /* debugging */ | |
365 | unsigned int vm_pageout_cache_evicted = 0; /* debugging */ | |
366 | unsigned int vm_pageout_inactive_clean = 0; /* debugging */ | |
367 | unsigned int vm_pageout_speculative_clean = 0; /* debugging */ | |
368 | ||
369 | unsigned int vm_pageout_freed_from_cleaned = 0; | |
370 | unsigned int vm_pageout_freed_from_speculative = 0; | |
371 | unsigned int vm_pageout_freed_from_inactive_clean = 0; | |
372 | ||
373 | unsigned int vm_pageout_enqueued_cleaned_from_inactive_clean = 0; | |
374 | unsigned int vm_pageout_enqueued_cleaned_from_inactive_dirty = 0; | |
375 | ||
376 | unsigned int vm_pageout_cleaned_reclaimed = 0; /* debugging; how many cleaned pages are reclaimed by the pageout scan */ | |
377 | unsigned int vm_pageout_cleaned_reactivated = 0; /* debugging; how many cleaned pages are found to be referenced on pageout (and are therefore reactivated) */ | |
378 | unsigned int vm_pageout_cleaned_reference_reactivated = 0; | |
379 | unsigned int vm_pageout_cleaned_volatile_reactivated = 0; | |
380 | unsigned int vm_pageout_cleaned_fault_reactivated = 0; | |
381 | unsigned int vm_pageout_cleaned_commit_reactivated = 0; /* debugging; how many cleaned pages are found to be referenced on commit (and are therefore reactivated) */ | |
382 | unsigned int vm_pageout_cleaned_busy = 0; | |
383 | unsigned int vm_pageout_cleaned_nolock = 0; | |
384 | ||
385 | unsigned int vm_pageout_inactive_dirty_internal = 0; /* debugging */ | |
386 | unsigned int vm_pageout_inactive_dirty_external = 0; /* debugging */ | |
387 | unsigned int vm_pageout_inactive_deactivated = 0; /* debugging */ | |
388 | unsigned int vm_pageout_inactive_anonymous = 0; /* debugging */ | |
389 | unsigned int vm_pageout_dirty_no_pager = 0; /* debugging */ | |
390 | unsigned int vm_pageout_purged_objects = 0; /* used for sysctl vm stats */ | |
391 | unsigned int vm_stat_discard = 0; /* debugging */ | |
392 | unsigned int vm_stat_discard_sent = 0; /* debugging */ | |
393 | unsigned int vm_stat_discard_failure = 0; /* debugging */ | |
394 | unsigned int vm_stat_discard_throttle = 0; /* debugging */ | |
395 | unsigned int vm_pageout_reactivation_limit_exceeded = 0; /* debugging */ | |
396 | unsigned int vm_pageout_catch_ups = 0; /* debugging */ | |
397 | unsigned int vm_pageout_inactive_force_reclaim = 0; /* debugging */ | |
398 | ||
399 | unsigned int vm_pageout_scan_reclaimed_throttled = 0; | |
400 | unsigned int vm_pageout_scan_active_throttled = 0; | |
401 | unsigned int vm_pageout_scan_inactive_throttled_internal = 0; | |
402 | unsigned int vm_pageout_scan_inactive_throttled_external = 0; | |
403 | unsigned int vm_pageout_scan_throttle = 0; /* debugging */ | |
404 | unsigned int vm_pageout_scan_burst_throttle = 0; /* debugging */ | |
405 | unsigned int vm_pageout_scan_empty_throttle = 0; /* debugging */ | |
406 | unsigned int vm_pageout_scan_swap_throttle = 0; /* debugging */ | |
407 | unsigned int vm_pageout_scan_deadlock_detected = 0; /* debugging */ | |
408 | unsigned int vm_pageout_scan_active_throttle_success = 0; /* debugging */ | |
409 | unsigned int vm_pageout_scan_inactive_throttle_success = 0; /* debugging */ | |
410 | unsigned int vm_pageout_inactive_external_forced_jetsam_count = 0; /* debugging */ | |
411 | unsigned int vm_pageout_scan_throttle_deferred = 0; /* debugging */ | |
412 | unsigned int vm_pageout_scan_yield_unthrottled = 0; /* debugging */ | |
413 | unsigned int vm_page_speculative_count_drifts = 0; | |
414 | unsigned int vm_page_speculative_count_drift_max = 0; | |
415 | ||
416 | ||
417 | /* | |
418 | * Backing store throttle when BS is exhausted | |
419 | */ | |
420 | unsigned int vm_backing_store_low = 0; | |
421 | ||
422 | unsigned int vm_pageout_out_of_line = 0; | |
423 | unsigned int vm_pageout_in_place = 0; | |
424 | ||
425 | unsigned int vm_page_steal_pageout_page = 0; | |
426 | ||
427 | /* | |
428 | * ENCRYPTED SWAP: | |
429 | * counters and statistics... | |
430 | */ | |
431 | unsigned long vm_page_decrypt_counter = 0; | |
432 | unsigned long vm_page_decrypt_for_upl_counter = 0; | |
433 | unsigned long vm_page_encrypt_counter = 0; | |
434 | unsigned long vm_page_encrypt_abort_counter = 0; | |
435 | unsigned long vm_page_encrypt_already_encrypted_counter = 0; | |
436 | boolean_t vm_pages_encrypted = FALSE; /* are there encrypted pages ? */ | |
437 | ||
438 | struct vm_pageout_queue vm_pageout_queue_internal; | |
439 | struct vm_pageout_queue vm_pageout_queue_external; | |
440 | ||
441 | unsigned int vm_page_speculative_target = 0; | |
442 | ||
443 | vm_object_t vm_pageout_scan_wants_object = VM_OBJECT_NULL; | |
444 | ||
445 | boolean_t (* volatile consider_buffer_cache_collect)(int) = NULL; | |
446 | ||
447 | #if DEVELOPMENT || DEBUG | |
448 | unsigned long vm_cs_validated_resets = 0; | |
449 | #endif | |
450 | ||
451 | int vm_debug_events = 0; | |
452 | ||
453 | #if CONFIG_MEMORYSTATUS | |
454 | #if !CONFIG_JETSAM | |
455 | extern boolean_t memorystatus_idle_exit_from_VM(void); | |
456 | #endif | |
457 | extern boolean_t memorystatus_kill_on_VM_page_shortage(boolean_t async); | |
458 | extern void memorystatus_on_pageout_scan_end(void); | |
459 | #endif | |
460 | ||
461 | /* | |
462 | * Routine: vm_backing_store_disable | |
463 | * Purpose: | |
464 | * Suspend non-privileged threads wishing to extend | |
465 | * backing store when we are low on backing store | |
466 | * (Synchronized by caller) | |
467 | */ | |
468 | void | |
469 | vm_backing_store_disable( | |
470 | boolean_t disable) | |
471 | { | |
472 | if(disable) { | |
473 | vm_backing_store_low = 1; | |
474 | } else { | |
475 | if(vm_backing_store_low) { | |
476 | vm_backing_store_low = 0; | |
477 | thread_wakeup((event_t) &vm_backing_store_low); | |
478 | } | |
479 | } | |
480 | } | |
481 | ||
482 | ||
483 | #if MACH_CLUSTER_STATS | |
484 | unsigned long vm_pageout_cluster_dirtied = 0; | |
485 | unsigned long vm_pageout_cluster_cleaned = 0; | |
486 | unsigned long vm_pageout_cluster_collisions = 0; | |
487 | unsigned long vm_pageout_cluster_clusters = 0; | |
488 | unsigned long vm_pageout_cluster_conversions = 0; | |
489 | unsigned long vm_pageout_target_collisions = 0; | |
490 | unsigned long vm_pageout_target_page_dirtied = 0; | |
491 | unsigned long vm_pageout_target_page_freed = 0; | |
492 | #define CLUSTER_STAT(clause) clause | |
493 | #else /* MACH_CLUSTER_STATS */ | |
494 | #define CLUSTER_STAT(clause) | |
495 | #endif /* MACH_CLUSTER_STATS */ | |
496 | ||
497 | /* | |
498 | * Routine: vm_pageout_object_terminate | |
499 | * Purpose: | |
500 | * Destroy the pageout_object, and perform all of the | |
501 | * required cleanup actions. | |
502 | * | |
503 | * In/Out conditions: | |
504 | * The object must be locked, and will be returned locked. | |
505 | */ | |
506 | void | |
507 | vm_pageout_object_terminate( | |
508 | vm_object_t object) | |
509 | { | |
510 | vm_object_t shadow_object; | |
511 | ||
512 | /* | |
513 | * Deal with the deallocation (last reference) of a pageout object | |
514 | * (used for cleaning-in-place) by dropping the paging references/ | |
515 | * freeing pages in the original object. | |
516 | */ | |
517 | ||
518 | assert(object->pageout); | |
519 | shadow_object = object->shadow; | |
520 | vm_object_lock(shadow_object); | |
521 | ||
522 | while (!queue_empty(&object->memq)) { | |
523 | vm_page_t p, m; | |
524 | vm_object_offset_t offset; | |
525 | ||
526 | p = (vm_page_t) queue_first(&object->memq); | |
527 | ||
528 | assert(p->private); | |
529 | assert(p->pageout); | |
530 | p->pageout = FALSE; | |
531 | assert(!p->cleaning); | |
532 | assert(!p->laundry); | |
533 | ||
534 | offset = p->offset; | |
535 | VM_PAGE_FREE(p); | |
536 | p = VM_PAGE_NULL; | |
537 | ||
538 | m = vm_page_lookup(shadow_object, | |
539 | offset + object->vo_shadow_offset); | |
540 | ||
541 | if(m == VM_PAGE_NULL) | |
542 | continue; | |
543 | ||
544 | assert((m->dirty) || (m->precious) || | |
545 | (m->busy && m->cleaning)); | |
546 | ||
547 | /* | |
548 | * Handle the trusted pager throttle. | |
549 | * Also decrement the burst throttle (if external). | |
550 | */ | |
551 | vm_page_lock_queues(); | |
552 | if (m->pageout_queue) | |
553 | vm_pageout_throttle_up(m); | |
554 | ||
555 | /* | |
556 | * Handle the "target" page(s). These pages are to be freed if | |
557 | * successfully cleaned. Target pages are always busy, and are | |
558 | * wired exactly once. The initial target pages are not mapped, | |
559 | * (so cannot be referenced or modified) but converted target | |
560 | * pages may have been modified between the selection as an | |
561 | * adjacent page and conversion to a target. | |
562 | */ | |
563 | if (m->pageout) { | |
564 | assert(m->busy); | |
565 | assert(m->wire_count == 1); | |
566 | m->cleaning = FALSE; | |
567 | m->encrypted_cleaning = FALSE; | |
568 | m->pageout = FALSE; | |
569 | #if MACH_CLUSTER_STATS | |
570 | if (m->wanted) vm_pageout_target_collisions++; | |
571 | #endif | |
572 | /* | |
573 | * Revoke all access to the page. Since the object is | |
574 | * locked, and the page is busy, this prevents the page | |
575 | * from being dirtied after the pmap_disconnect() call | |
576 | * returns. | |
577 | * | |
578 | * Since the page is left "dirty" but "not modifed", we | |
579 | * can detect whether the page was redirtied during | |
580 | * pageout by checking the modify state. | |
581 | */ | |
582 | if (pmap_disconnect(m->phys_page) & VM_MEM_MODIFIED) { | |
583 | SET_PAGE_DIRTY(m, FALSE); | |
584 | } else { | |
585 | m->dirty = FALSE; | |
586 | } | |
587 | ||
588 | if (m->dirty) { | |
589 | CLUSTER_STAT(vm_pageout_target_page_dirtied++;) | |
590 | vm_page_unwire(m, TRUE); /* reactivates */ | |
591 | VM_STAT_INCR(reactivations); | |
592 | PAGE_WAKEUP_DONE(m); | |
593 | } else { | |
594 | CLUSTER_STAT(vm_pageout_target_page_freed++;) | |
595 | vm_page_free(m);/* clears busy, etc. */ | |
596 | } | |
597 | vm_page_unlock_queues(); | |
598 | continue; | |
599 | } | |
600 | /* | |
601 | * Handle the "adjacent" pages. These pages were cleaned in | |
602 | * place, and should be left alone. | |
603 | * If prep_pin_count is nonzero, then someone is using the | |
604 | * page, so make it active. | |
605 | */ | |
606 | if (!m->active && !m->inactive && !m->throttled && !m->private) { | |
607 | if (m->reference) | |
608 | vm_page_activate(m); | |
609 | else | |
610 | vm_page_deactivate(m); | |
611 | } | |
612 | if (m->overwriting) { | |
613 | /* | |
614 | * the (COPY_OUT_FROM == FALSE) request_page_list case | |
615 | */ | |
616 | if (m->busy) { | |
617 | /* | |
618 | * We do not re-set m->dirty ! | |
619 | * The page was busy so no extraneous activity | |
620 | * could have occurred. COPY_INTO is a read into the | |
621 | * new pages. CLEAN_IN_PLACE does actually write | |
622 | * out the pages but handling outside of this code | |
623 | * will take care of resetting dirty. We clear the | |
624 | * modify however for the Programmed I/O case. | |
625 | */ | |
626 | pmap_clear_modify(m->phys_page); | |
627 | ||
628 | m->busy = FALSE; | |
629 | m->absent = FALSE; | |
630 | } else { | |
631 | /* | |
632 | * alternate (COPY_OUT_FROM == FALSE) request_page_list case | |
633 | * Occurs when the original page was wired | |
634 | * at the time of the list request | |
635 | */ | |
636 | assert(VM_PAGE_WIRED(m)); | |
637 | vm_page_unwire(m, TRUE); /* reactivates */ | |
638 | } | |
639 | m->overwriting = FALSE; | |
640 | } else { | |
641 | /* | |
642 | * Set the dirty state according to whether or not the page was | |
643 | * modified during the pageout. Note that we purposefully do | |
644 | * NOT call pmap_clear_modify since the page is still mapped. | |
645 | * If the page were to be dirtied between the 2 calls, this | |
646 | * this fact would be lost. This code is only necessary to | |
647 | * maintain statistics, since the pmap module is always | |
648 | * consulted if m->dirty is false. | |
649 | */ | |
650 | #if MACH_CLUSTER_STATS | |
651 | m->dirty = pmap_is_modified(m->phys_page); | |
652 | ||
653 | if (m->dirty) vm_pageout_cluster_dirtied++; | |
654 | else vm_pageout_cluster_cleaned++; | |
655 | if (m->wanted) vm_pageout_cluster_collisions++; | |
656 | #else | |
657 | m->dirty = FALSE; | |
658 | #endif | |
659 | } | |
660 | if (m->encrypted_cleaning == TRUE) { | |
661 | m->encrypted_cleaning = FALSE; | |
662 | m->busy = FALSE; | |
663 | } | |
664 | m->cleaning = FALSE; | |
665 | ||
666 | /* | |
667 | * Wakeup any thread waiting for the page to be un-cleaning. | |
668 | */ | |
669 | PAGE_WAKEUP(m); | |
670 | vm_page_unlock_queues(); | |
671 | } | |
672 | /* | |
673 | * Account for the paging reference taken in vm_paging_object_allocate. | |
674 | */ | |
675 | vm_object_activity_end(shadow_object); | |
676 | vm_object_unlock(shadow_object); | |
677 | ||
678 | assert(object->ref_count == 0); | |
679 | assert(object->paging_in_progress == 0); | |
680 | assert(object->activity_in_progress == 0); | |
681 | assert(object->resident_page_count == 0); | |
682 | return; | |
683 | } | |
684 | ||
685 | /* | |
686 | * Routine: vm_pageclean_setup | |
687 | * | |
688 | * Purpose: setup a page to be cleaned (made non-dirty), but not | |
689 | * necessarily flushed from the VM page cache. | |
690 | * This is accomplished by cleaning in place. | |
691 | * | |
692 | * The page must not be busy, and new_object | |
693 | * must be locked. | |
694 | * | |
695 | */ | |
696 | static void | |
697 | vm_pageclean_setup( | |
698 | vm_page_t m, | |
699 | vm_page_t new_m, | |
700 | vm_object_t new_object, | |
701 | vm_object_offset_t new_offset) | |
702 | { | |
703 | assert(!m->busy); | |
704 | #if 0 | |
705 | assert(!m->cleaning); | |
706 | #endif | |
707 | ||
708 | XPR(XPR_VM_PAGEOUT, | |
709 | "vm_pageclean_setup, obj 0x%X off 0x%X page 0x%X new 0x%X new_off 0x%X\n", | |
710 | m->object, m->offset, m, | |
711 | new_m, new_offset); | |
712 | ||
713 | pmap_clear_modify(m->phys_page); | |
714 | ||
715 | /* | |
716 | * Mark original page as cleaning in place. | |
717 | */ | |
718 | m->cleaning = TRUE; | |
719 | SET_PAGE_DIRTY(m, FALSE); | |
720 | m->precious = FALSE; | |
721 | ||
722 | /* | |
723 | * Convert the fictitious page to a private shadow of | |
724 | * the real page. | |
725 | */ | |
726 | assert(new_m->fictitious); | |
727 | assert(new_m->phys_page == vm_page_fictitious_addr); | |
728 | new_m->fictitious = FALSE; | |
729 | new_m->private = TRUE; | |
730 | new_m->pageout = TRUE; | |
731 | new_m->phys_page = m->phys_page; | |
732 | ||
733 | vm_page_lockspin_queues(); | |
734 | vm_page_wire(new_m, VM_KERN_MEMORY_NONE, TRUE); | |
735 | vm_page_unlock_queues(); | |
736 | ||
737 | vm_page_insert_wired(new_m, new_object, new_offset, VM_KERN_MEMORY_NONE); | |
738 | assert(!new_m->wanted); | |
739 | new_m->busy = FALSE; | |
740 | } | |
741 | ||
742 | /* | |
743 | * Routine: vm_pageout_initialize_page | |
744 | * Purpose: | |
745 | * Causes the specified page to be initialized in | |
746 | * the appropriate memory object. This routine is used to push | |
747 | * pages into a copy-object when they are modified in the | |
748 | * permanent object. | |
749 | * | |
750 | * The page is moved to a temporary object and paged out. | |
751 | * | |
752 | * In/out conditions: | |
753 | * The page in question must not be on any pageout queues. | |
754 | * The object to which it belongs must be locked. | |
755 | * The page must be busy, but not hold a paging reference. | |
756 | * | |
757 | * Implementation: | |
758 | * Move this page to a completely new object. | |
759 | */ | |
760 | void | |
761 | vm_pageout_initialize_page( | |
762 | vm_page_t m) | |
763 | { | |
764 | vm_object_t object; | |
765 | vm_object_offset_t paging_offset; | |
766 | memory_object_t pager; | |
767 | ||
768 | XPR(XPR_VM_PAGEOUT, | |
769 | "vm_pageout_initialize_page, page 0x%X\n", | |
770 | m, 0, 0, 0, 0); | |
771 | assert(m->busy); | |
772 | ||
773 | /* | |
774 | * Verify that we really want to clean this page | |
775 | */ | |
776 | assert(!m->absent); | |
777 | assert(!m->error); | |
778 | assert(m->dirty); | |
779 | ||
780 | /* | |
781 | * Create a paging reference to let us play with the object. | |
782 | */ | |
783 | object = m->object; | |
784 | paging_offset = m->offset + object->paging_offset; | |
785 | ||
786 | if (m->absent || m->error || m->restart || (!m->dirty && !m->precious)) { | |
787 | VM_PAGE_FREE(m); | |
788 | panic("reservation without pageout?"); /* alan */ | |
789 | vm_object_unlock(object); | |
790 | ||
791 | return; | |
792 | } | |
793 | ||
794 | /* | |
795 | * If there's no pager, then we can't clean the page. This should | |
796 | * never happen since this should be a copy object and therefore not | |
797 | * an external object, so the pager should always be there. | |
798 | */ | |
799 | ||
800 | pager = object->pager; | |
801 | ||
802 | if (pager == MEMORY_OBJECT_NULL) { | |
803 | VM_PAGE_FREE(m); | |
804 | panic("missing pager for copy object"); | |
805 | return; | |
806 | } | |
807 | ||
808 | /* | |
809 | * set the page for future call to vm_fault_list_request | |
810 | */ | |
811 | pmap_clear_modify(m->phys_page); | |
812 | SET_PAGE_DIRTY(m, FALSE); | |
813 | m->pageout = TRUE; | |
814 | ||
815 | /* | |
816 | * keep the object from collapsing or terminating | |
817 | */ | |
818 | vm_object_paging_begin(object); | |
819 | vm_object_unlock(object); | |
820 | ||
821 | /* | |
822 | * Write the data to its pager. | |
823 | * Note that the data is passed by naming the new object, | |
824 | * not a virtual address; the pager interface has been | |
825 | * manipulated to use the "internal memory" data type. | |
826 | * [The object reference from its allocation is donated | |
827 | * to the eventual recipient.] | |
828 | */ | |
829 | memory_object_data_initialize(pager, paging_offset, PAGE_SIZE); | |
830 | ||
831 | vm_object_lock(object); | |
832 | vm_object_paging_end(object); | |
833 | } | |
834 | ||
835 | #if MACH_CLUSTER_STATS | |
836 | #define MAXCLUSTERPAGES 16 | |
837 | struct { | |
838 | unsigned long pages_in_cluster; | |
839 | unsigned long pages_at_higher_offsets; | |
840 | unsigned long pages_at_lower_offsets; | |
841 | } cluster_stats[MAXCLUSTERPAGES]; | |
842 | #endif /* MACH_CLUSTER_STATS */ | |
843 | ||
844 | ||
845 | /* | |
846 | * vm_pageout_cluster: | |
847 | * | |
848 | * Given a page, queue it to the appropriate I/O thread, | |
849 | * which will page it out and attempt to clean adjacent pages | |
850 | * in the same operation. | |
851 | * | |
852 | * The object and queues must be locked. We will take a | |
853 | * paging reference to prevent deallocation or collapse when we | |
854 | * release the object lock back at the call site. The I/O thread | |
855 | * is responsible for consuming this reference | |
856 | * | |
857 | * The page must not be on any pageout queue. | |
858 | */ | |
859 | ||
860 | int | |
861 | vm_pageout_cluster(vm_page_t m, boolean_t pageout, boolean_t immediate_ok, boolean_t keep_object_locked) | |
862 | { | |
863 | vm_object_t object = m->object; | |
864 | struct vm_pageout_queue *q; | |
865 | ||
866 | ||
867 | XPR(XPR_VM_PAGEOUT, | |
868 | "vm_pageout_cluster, object 0x%X offset 0x%X page 0x%X\n", | |
869 | object, m->offset, m, 0, 0); | |
870 | ||
871 | VM_PAGE_CHECK(m); | |
872 | #if DEBUG | |
873 | lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
874 | #endif | |
875 | vm_object_lock_assert_exclusive(object); | |
876 | ||
877 | /* | |
878 | * Only a certain kind of page is appreciated here. | |
879 | */ | |
880 | assert((m->dirty || m->precious) && (!VM_PAGE_WIRED(m))); | |
881 | assert(!m->cleaning && !m->pageout && !m->laundry); | |
882 | #ifndef CONFIG_FREEZE | |
883 | assert(!m->inactive && !m->active); | |
884 | assert(!m->throttled); | |
885 | #endif | |
886 | ||
887 | /* | |
888 | * protect the object from collapse or termination | |
889 | */ | |
890 | vm_object_activity_begin(object); | |
891 | ||
892 | m->pageout = pageout; | |
893 | ||
894 | if (object->internal == TRUE) { | |
895 | if (COMPRESSED_PAGER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE) { | |
896 | m->busy = TRUE; | |
897 | ||
898 | if (vm_compressor_immediate_preferred == TRUE && immediate_ok == TRUE) { | |
899 | if (keep_object_locked == FALSE) | |
900 | vm_object_unlock(object); | |
901 | vm_page_unlock_queues(); | |
902 | ||
903 | vm_pageout_immediate(m, keep_object_locked); | |
904 | ||
905 | return (1); | |
906 | } | |
907 | } | |
908 | q = &vm_pageout_queue_internal; | |
909 | } else | |
910 | q = &vm_pageout_queue_external; | |
911 | ||
912 | /* | |
913 | * pgo_laundry count is tied to the laundry bit | |
914 | */ | |
915 | m->laundry = TRUE; | |
916 | q->pgo_laundry++; | |
917 | ||
918 | m->pageout_queue = TRUE; | |
919 | queue_enter(&q->pgo_pending, m, vm_page_t, pageq); | |
920 | ||
921 | if (q->pgo_idle == TRUE) { | |
922 | q->pgo_idle = FALSE; | |
923 | thread_wakeup((event_t) &q->pgo_pending); | |
924 | } | |
925 | VM_PAGE_CHECK(m); | |
926 | ||
927 | return (0); | |
928 | } | |
929 | ||
930 | ||
931 | unsigned long vm_pageout_throttle_up_count = 0; | |
932 | ||
933 | /* | |
934 | * A page is back from laundry or we are stealing it back from | |
935 | * the laundering state. See if there are some pages waiting to | |
936 | * go to laundry and if we can let some of them go now. | |
937 | * | |
938 | * Object and page queues must be locked. | |
939 | */ | |
940 | void | |
941 | vm_pageout_throttle_up( | |
942 | vm_page_t m) | |
943 | { | |
944 | struct vm_pageout_queue *q; | |
945 | ||
946 | assert(m->object != VM_OBJECT_NULL); | |
947 | assert(m->object != kernel_object); | |
948 | ||
949 | #if DEBUG | |
950 | lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
951 | vm_object_lock_assert_exclusive(m->object); | |
952 | #endif | |
953 | ||
954 | vm_pageout_throttle_up_count++; | |
955 | ||
956 | if (m->object->internal == TRUE) | |
957 | q = &vm_pageout_queue_internal; | |
958 | else | |
959 | q = &vm_pageout_queue_external; | |
960 | ||
961 | if (m->pageout_queue == TRUE) { | |
962 | ||
963 | queue_remove(&q->pgo_pending, m, vm_page_t, pageq); | |
964 | m->pageout_queue = FALSE; | |
965 | ||
966 | m->pageq.next = NULL; | |
967 | m->pageq.prev = NULL; | |
968 | ||
969 | vm_object_activity_end(m->object); | |
970 | } | |
971 | if (m->laundry == TRUE) { | |
972 | ||
973 | m->laundry = FALSE; | |
974 | q->pgo_laundry--; | |
975 | ||
976 | if (q->pgo_throttled == TRUE) { | |
977 | q->pgo_throttled = FALSE; | |
978 | thread_wakeup((event_t) &q->pgo_laundry); | |
979 | } | |
980 | if (q->pgo_draining == TRUE && q->pgo_laundry == 0) { | |
981 | q->pgo_draining = FALSE; | |
982 | thread_wakeup((event_t) (&q->pgo_laundry+1)); | |
983 | } | |
984 | } | |
985 | } | |
986 | ||
987 | ||
988 | static void | |
989 | vm_pageout_throttle_up_batch( | |
990 | struct vm_pageout_queue *q, | |
991 | int batch_cnt) | |
992 | { | |
993 | #if DEBUG | |
994 | lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
995 | #endif | |
996 | ||
997 | vm_pageout_throttle_up_count += batch_cnt; | |
998 | ||
999 | q->pgo_laundry -= batch_cnt; | |
1000 | ||
1001 | if (q->pgo_throttled == TRUE) { | |
1002 | q->pgo_throttled = FALSE; | |
1003 | thread_wakeup((event_t) &q->pgo_laundry); | |
1004 | } | |
1005 | if (q->pgo_draining == TRUE && q->pgo_laundry == 0) { | |
1006 | q->pgo_draining = FALSE; | |
1007 | thread_wakeup((event_t) (&q->pgo_laundry+1)); | |
1008 | } | |
1009 | } | |
1010 | ||
1011 | ||
1012 | ||
1013 | /* | |
1014 | * VM memory pressure monitoring. | |
1015 | * | |
1016 | * vm_pageout_scan() keeps track of the number of pages it considers and | |
1017 | * reclaims, in the currently active vm_pageout_stat[vm_pageout_stat_now]. | |
1018 | * | |
1019 | * compute_memory_pressure() is called every second from compute_averages() | |
1020 | * and moves "vm_pageout_stat_now" forward, to start accumulating the number | |
1021 | * of recalimed pages in a new vm_pageout_stat[] bucket. | |
1022 | * | |
1023 | * mach_vm_pressure_monitor() collects past statistics about memory pressure. | |
1024 | * The caller provides the number of seconds ("nsecs") worth of statistics | |
1025 | * it wants, up to 30 seconds. | |
1026 | * It computes the number of pages reclaimed in the past "nsecs" seconds and | |
1027 | * also returns the number of pages the system still needs to reclaim at this | |
1028 | * moment in time. | |
1029 | */ | |
1030 | #define VM_PAGEOUT_STAT_SIZE 31 | |
1031 | struct vm_pageout_stat { | |
1032 | unsigned int considered; | |
1033 | unsigned int reclaimed; | |
1034 | } vm_pageout_stats[VM_PAGEOUT_STAT_SIZE] = {{0,0}, }; | |
1035 | unsigned int vm_pageout_stat_now = 0; | |
1036 | unsigned int vm_memory_pressure = 0; | |
1037 | ||
1038 | #define VM_PAGEOUT_STAT_BEFORE(i) \ | |
1039 | (((i) == 0) ? VM_PAGEOUT_STAT_SIZE - 1 : (i) - 1) | |
1040 | #define VM_PAGEOUT_STAT_AFTER(i) \ | |
1041 | (((i) == VM_PAGEOUT_STAT_SIZE - 1) ? 0 : (i) + 1) | |
1042 | ||
1043 | #if VM_PAGE_BUCKETS_CHECK | |
1044 | int vm_page_buckets_check_interval = 10; /* in seconds */ | |
1045 | #endif /* VM_PAGE_BUCKETS_CHECK */ | |
1046 | ||
1047 | /* | |
1048 | * Called from compute_averages(). | |
1049 | */ | |
1050 | void | |
1051 | compute_memory_pressure( | |
1052 | __unused void *arg) | |
1053 | { | |
1054 | unsigned int vm_pageout_next; | |
1055 | ||
1056 | #if VM_PAGE_BUCKETS_CHECK | |
1057 | /* check the consistency of VM page buckets at regular interval */ | |
1058 | static int counter = 0; | |
1059 | if ((++counter % vm_page_buckets_check_interval) == 0) { | |
1060 | vm_page_buckets_check(); | |
1061 | } | |
1062 | #endif /* VM_PAGE_BUCKETS_CHECK */ | |
1063 | ||
1064 | vm_memory_pressure = | |
1065 | vm_pageout_stats[VM_PAGEOUT_STAT_BEFORE(vm_pageout_stat_now)].reclaimed; | |
1066 | ||
1067 | commpage_set_memory_pressure( vm_memory_pressure ); | |
1068 | ||
1069 | /* move "now" forward */ | |
1070 | vm_pageout_next = VM_PAGEOUT_STAT_AFTER(vm_pageout_stat_now); | |
1071 | vm_pageout_stats[vm_pageout_next].considered = 0; | |
1072 | vm_pageout_stats[vm_pageout_next].reclaimed = 0; | |
1073 | vm_pageout_stat_now = vm_pageout_next; | |
1074 | } | |
1075 | ||
1076 | ||
1077 | /* | |
1078 | * IMPORTANT | |
1079 | * mach_vm_ctl_page_free_wanted() is called indirectly, via | |
1080 | * mach_vm_pressure_monitor(), when taking a stackshot. Therefore, | |
1081 | * it must be safe in the restricted stackshot context. Locks and/or | |
1082 | * blocking are not allowable. | |
1083 | */ | |
1084 | unsigned int | |
1085 | mach_vm_ctl_page_free_wanted(void) | |
1086 | { | |
1087 | unsigned int page_free_target, page_free_count, page_free_wanted; | |
1088 | ||
1089 | page_free_target = vm_page_free_target; | |
1090 | page_free_count = vm_page_free_count; | |
1091 | if (page_free_target > page_free_count) { | |
1092 | page_free_wanted = page_free_target - page_free_count; | |
1093 | } else { | |
1094 | page_free_wanted = 0; | |
1095 | } | |
1096 | ||
1097 | return page_free_wanted; | |
1098 | } | |
1099 | ||
1100 | ||
1101 | /* | |
1102 | * IMPORTANT: | |
1103 | * mach_vm_pressure_monitor() is called when taking a stackshot, with | |
1104 | * wait_for_pressure FALSE, so that code path must remain safe in the | |
1105 | * restricted stackshot context. No blocking or locks are allowable. | |
1106 | * on that code path. | |
1107 | */ | |
1108 | ||
1109 | kern_return_t | |
1110 | mach_vm_pressure_monitor( | |
1111 | boolean_t wait_for_pressure, | |
1112 | unsigned int nsecs_monitored, | |
1113 | unsigned int *pages_reclaimed_p, | |
1114 | unsigned int *pages_wanted_p) | |
1115 | { | |
1116 | wait_result_t wr; | |
1117 | unsigned int vm_pageout_then, vm_pageout_now; | |
1118 | unsigned int pages_reclaimed; | |
1119 | ||
1120 | /* | |
1121 | * We don't take the vm_page_queue_lock here because we don't want | |
1122 | * vm_pressure_monitor() to get in the way of the vm_pageout_scan() | |
1123 | * thread when it's trying to reclaim memory. We don't need fully | |
1124 | * accurate monitoring anyway... | |
1125 | */ | |
1126 | ||
1127 | if (wait_for_pressure) { | |
1128 | /* wait until there's memory pressure */ | |
1129 | while (vm_page_free_count >= vm_page_free_target) { | |
1130 | wr = assert_wait((event_t) &vm_page_free_wanted, | |
1131 | THREAD_INTERRUPTIBLE); | |
1132 | if (wr == THREAD_WAITING) { | |
1133 | wr = thread_block(THREAD_CONTINUE_NULL); | |
1134 | } | |
1135 | if (wr == THREAD_INTERRUPTED) { | |
1136 | return KERN_ABORTED; | |
1137 | } | |
1138 | if (wr == THREAD_AWAKENED) { | |
1139 | /* | |
1140 | * The memory pressure might have already | |
1141 | * been relieved but let's not block again | |
1142 | * and let's report that there was memory | |
1143 | * pressure at some point. | |
1144 | */ | |
1145 | break; | |
1146 | } | |
1147 | } | |
1148 | } | |
1149 | ||
1150 | /* provide the number of pages the system wants to reclaim */ | |
1151 | if (pages_wanted_p != NULL) { | |
1152 | *pages_wanted_p = mach_vm_ctl_page_free_wanted(); | |
1153 | } | |
1154 | ||
1155 | if (pages_reclaimed_p == NULL) { | |
1156 | return KERN_SUCCESS; | |
1157 | } | |
1158 | ||
1159 | /* provide number of pages reclaimed in the last "nsecs_monitored" */ | |
1160 | do { | |
1161 | vm_pageout_now = vm_pageout_stat_now; | |
1162 | pages_reclaimed = 0; | |
1163 | for (vm_pageout_then = | |
1164 | VM_PAGEOUT_STAT_BEFORE(vm_pageout_now); | |
1165 | vm_pageout_then != vm_pageout_now && | |
1166 | nsecs_monitored-- != 0; | |
1167 | vm_pageout_then = | |
1168 | VM_PAGEOUT_STAT_BEFORE(vm_pageout_then)) { | |
1169 | pages_reclaimed += vm_pageout_stats[vm_pageout_then].reclaimed; | |
1170 | } | |
1171 | } while (vm_pageout_now != vm_pageout_stat_now); | |
1172 | *pages_reclaimed_p = pages_reclaimed; | |
1173 | ||
1174 | return KERN_SUCCESS; | |
1175 | } | |
1176 | ||
1177 | ||
1178 | ||
1179 | static void | |
1180 | vm_pageout_page_queue(queue_head_t *, int); | |
1181 | ||
1182 | /* | |
1183 | * condition variable used to make sure there is | |
1184 | * only a single sweep going on at a time | |
1185 | */ | |
1186 | boolean_t vm_pageout_anonymous_pages_active = FALSE; | |
1187 | ||
1188 | ||
1189 | void | |
1190 | vm_pageout_anonymous_pages() | |
1191 | { | |
1192 | if (COMPRESSED_PAGER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE) { | |
1193 | ||
1194 | vm_page_lock_queues(); | |
1195 | ||
1196 | if (vm_pageout_anonymous_pages_active == TRUE) { | |
1197 | vm_page_unlock_queues(); | |
1198 | return; | |
1199 | } | |
1200 | vm_pageout_anonymous_pages_active = TRUE; | |
1201 | vm_page_unlock_queues(); | |
1202 | ||
1203 | vm_pageout_page_queue(&vm_page_queue_throttled, vm_page_throttled_count); | |
1204 | vm_pageout_page_queue(&vm_page_queue_anonymous, vm_page_anonymous_count); | |
1205 | vm_pageout_page_queue(&vm_page_queue_active, vm_page_active_count); | |
1206 | ||
1207 | vm_consider_swapping(); | |
1208 | ||
1209 | vm_page_lock_queues(); | |
1210 | vm_pageout_anonymous_pages_active = FALSE; | |
1211 | vm_page_unlock_queues(); | |
1212 | } | |
1213 | } | |
1214 | ||
1215 | ||
1216 | void | |
1217 | vm_pageout_page_queue(queue_head_t *q, int qcount) | |
1218 | { | |
1219 | vm_page_t m; | |
1220 | vm_object_t t_object = NULL; | |
1221 | vm_object_t l_object = NULL; | |
1222 | vm_object_t m_object = NULL; | |
1223 | int delayed_unlock = 0; | |
1224 | int try_failed_count = 0; | |
1225 | int refmod_state; | |
1226 | int pmap_options; | |
1227 | struct vm_pageout_queue *iq; | |
1228 | ||
1229 | ||
1230 | iq = &vm_pageout_queue_internal; | |
1231 | ||
1232 | vm_page_lock_queues(); | |
1233 | ||
1234 | while (qcount && !queue_empty(q)) { | |
1235 | ||
1236 | lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
1237 | ||
1238 | if (VM_PAGE_Q_THROTTLED(iq)) { | |
1239 | ||
1240 | if (l_object != NULL) { | |
1241 | vm_object_unlock(l_object); | |
1242 | l_object = NULL; | |
1243 | } | |
1244 | iq->pgo_draining = TRUE; | |
1245 | ||
1246 | assert_wait((event_t) (&iq->pgo_laundry + 1), THREAD_INTERRUPTIBLE); | |
1247 | vm_page_unlock_queues(); | |
1248 | ||
1249 | thread_block(THREAD_CONTINUE_NULL); | |
1250 | ||
1251 | vm_page_lock_queues(); | |
1252 | delayed_unlock = 0; | |
1253 | continue; | |
1254 | } | |
1255 | m = (vm_page_t) queue_first(q); | |
1256 | m_object = m->object; | |
1257 | ||
1258 | /* | |
1259 | * check to see if we currently are working | |
1260 | * with the same object... if so, we've | |
1261 | * already got the lock | |
1262 | */ | |
1263 | if (m_object != l_object) { | |
1264 | if ( !m_object->internal) | |
1265 | goto reenter_pg_on_q; | |
1266 | ||
1267 | /* | |
1268 | * the object associated with candidate page is | |
1269 | * different from the one we were just working | |
1270 | * with... dump the lock if we still own it | |
1271 | */ | |
1272 | if (l_object != NULL) { | |
1273 | vm_object_unlock(l_object); | |
1274 | l_object = NULL; | |
1275 | } | |
1276 | if (m_object != t_object) | |
1277 | try_failed_count = 0; | |
1278 | ||
1279 | /* | |
1280 | * Try to lock object; since we've alread got the | |
1281 | * page queues lock, we can only 'try' for this one. | |
1282 | * if the 'try' fails, we need to do a mutex_pause | |
1283 | * to allow the owner of the object lock a chance to | |
1284 | * run... | |
1285 | */ | |
1286 | if ( !vm_object_lock_try_scan(m_object)) { | |
1287 | ||
1288 | if (try_failed_count > 20) { | |
1289 | goto reenter_pg_on_q; | |
1290 | } | |
1291 | vm_page_unlock_queues(); | |
1292 | mutex_pause(try_failed_count++); | |
1293 | vm_page_lock_queues(); | |
1294 | delayed_unlock = 0; | |
1295 | ||
1296 | t_object = m_object; | |
1297 | continue; | |
1298 | } | |
1299 | l_object = m_object; | |
1300 | } | |
1301 | if ( !m_object->alive || m->encrypted_cleaning || m->cleaning || m->laundry || m->busy || m->absent || m->error || m->pageout) { | |
1302 | /* | |
1303 | * page is not to be cleaned | |
1304 | * put it back on the head of its queue | |
1305 | */ | |
1306 | goto reenter_pg_on_q; | |
1307 | } | |
1308 | if (m->reference == FALSE && m->pmapped == TRUE) { | |
1309 | refmod_state = pmap_get_refmod(m->phys_page); | |
1310 | ||
1311 | if (refmod_state & VM_MEM_REFERENCED) | |
1312 | m->reference = TRUE; | |
1313 | if (refmod_state & VM_MEM_MODIFIED) { | |
1314 | SET_PAGE_DIRTY(m, FALSE); | |
1315 | } | |
1316 | } | |
1317 | if (m->reference == TRUE) { | |
1318 | m->reference = FALSE; | |
1319 | pmap_clear_refmod_options(m->phys_page, VM_MEM_REFERENCED, PMAP_OPTIONS_NOFLUSH, (void *)NULL); | |
1320 | goto reenter_pg_on_q; | |
1321 | } | |
1322 | if (m->pmapped == TRUE) { | |
1323 | if (m->dirty || m->precious) { | |
1324 | pmap_options = PMAP_OPTIONS_COMPRESSOR; | |
1325 | } else { | |
1326 | pmap_options = PMAP_OPTIONS_COMPRESSOR_IFF_MODIFIED; | |
1327 | } | |
1328 | refmod_state = pmap_disconnect_options(m->phys_page, pmap_options, NULL); | |
1329 | if (refmod_state & VM_MEM_MODIFIED) { | |
1330 | SET_PAGE_DIRTY(m, FALSE); | |
1331 | } | |
1332 | } | |
1333 | if ( !m->dirty && !m->precious) { | |
1334 | vm_page_unlock_queues(); | |
1335 | VM_PAGE_FREE(m); | |
1336 | vm_page_lock_queues(); | |
1337 | delayed_unlock = 0; | |
1338 | ||
1339 | goto next_pg; | |
1340 | } | |
1341 | if (!m_object->pager_initialized || m_object->pager == MEMORY_OBJECT_NULL) { | |
1342 | ||
1343 | if (!m_object->pager_initialized) { | |
1344 | ||
1345 | vm_page_unlock_queues(); | |
1346 | ||
1347 | vm_object_collapse(m_object, (vm_object_offset_t) 0, TRUE); | |
1348 | ||
1349 | if (!m_object->pager_initialized) | |
1350 | vm_object_compressor_pager_create(m_object); | |
1351 | ||
1352 | vm_page_lock_queues(); | |
1353 | delayed_unlock = 0; | |
1354 | } | |
1355 | if (!m_object->pager_initialized || m_object->pager == MEMORY_OBJECT_NULL) | |
1356 | goto reenter_pg_on_q; | |
1357 | /* | |
1358 | * vm_object_compressor_pager_create will drop the object lock | |
1359 | * which means 'm' may no longer be valid to use | |
1360 | */ | |
1361 | continue; | |
1362 | } | |
1363 | /* | |
1364 | * we've already factored out pages in the laundry which | |
1365 | * means this page can't be on the pageout queue so it's | |
1366 | * safe to do the vm_page_queues_remove | |
1367 | */ | |
1368 | assert(!m->pageout_queue); | |
1369 | ||
1370 | vm_page_queues_remove(m); | |
1371 | ||
1372 | lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED); | |
1373 | ||
1374 | vm_pageout_cluster(m, TRUE, FALSE, FALSE); | |
1375 | ||
1376 | goto next_pg; | |
1377 | ||
1378 | reenter_pg_on_q: | |
1379 | queue_remove(q, m, vm_page_t, pageq); | |
1380 | queue_enter(q, m, vm_page_t, pageq); | |
1381 | next_pg: | |
1382 | qcount--; | |
1383 | try_failed_count = 0; | |
1384 | ||
1385 | if (delayed_unlock++ > 128) { | |
1386 | ||
1387 | if (l_object != NULL) { | |
1388 | vm_object_unlock(l_object); | |
1389 | l_object = NULL; | |
1390 | } | |
1391 | lck_mtx_yield(&vm_page_queue_lock); | |
1392 | delayed_unlock = 0; | |
1393 | } | |
1394 | } | |
1395 | if (l_object != NULL) { | |
1396 | vm_object_unlock(l_object); | |
1397 | l_object = NULL; | |
1398 | } | |
1399 | vm_page_unlock_queues(); | |
1400 | } | |
1401 | ||
1402 | ||
1403 | ||
1404 | /* | |
1405 | * function in BSD to apply I/O throttle to the pageout thread | |
1406 | */ | |
1407 | extern void vm_pageout_io_throttle(void); | |
1408 | ||
1409 | /* | |
1410 | * Page States: Used below to maintain the page state | |
1411 | * before it's removed from it's Q. This saved state | |
1412 | * helps us do the right accounting in certain cases | |
1413 | */ | |
1414 | #define PAGE_STATE_SPECULATIVE 1 | |
1415 | #define PAGE_STATE_ANONYMOUS 2 | |
1416 | #define PAGE_STATE_INACTIVE 3 | |
1417 | #define PAGE_STATE_INACTIVE_FIRST 4 | |
1418 | #define PAGE_STATE_CLEAN 5 | |
1419 | ||
1420 | ||
1421 | #define VM_PAGEOUT_SCAN_HANDLE_REUSABLE_PAGE(m) \ | |
1422 | MACRO_BEGIN \ | |
1423 | /* \ | |
1424 | * If a "reusable" page somehow made it back into \ | |
1425 | * the active queue, it's been re-used and is not \ | |
1426 | * quite re-usable. \ | |
1427 | * If the VM object was "all_reusable", consider it \ | |
1428 | * as "all re-used" instead of converting it to \ | |
1429 | * "partially re-used", which could be expensive. \ | |
1430 | */ \ | |
1431 | if ((m)->reusable || \ | |
1432 | (m)->object->all_reusable) { \ | |
1433 | vm_object_reuse_pages((m)->object, \ | |
1434 | (m)->offset, \ | |
1435 | (m)->offset + PAGE_SIZE_64, \ | |
1436 | FALSE); \ | |
1437 | } \ | |
1438 | MACRO_END | |
1439 | ||
1440 | ||
1441 | #define VM_PAGEOUT_DELAYED_UNLOCK_LIMIT 64 | |
1442 | #define VM_PAGEOUT_DELAYED_UNLOCK_LIMIT_MAX 1024 | |
1443 | ||
1444 | #define FCS_IDLE 0 | |
1445 | #define FCS_DELAYED 1 | |
1446 | #define FCS_DEADLOCK_DETECTED 2 | |
1447 | ||
1448 | struct flow_control { | |
1449 | int state; | |
1450 | mach_timespec_t ts; | |
1451 | }; | |
1452 | ||
1453 | uint32_t vm_pageout_considered_page = 0; | |
1454 | uint32_t vm_page_filecache_min = 0; | |
1455 | ||
1456 | #define ANONS_GRABBED_LIMIT 2 | |
1457 | ||
1458 | /* | |
1459 | * vm_pageout_scan does the dirty work for the pageout daemon. | |
1460 | * It returns with both vm_page_queue_free_lock and vm_page_queue_lock | |
1461 | * held and vm_page_free_wanted == 0. | |
1462 | */ | |
1463 | void | |
1464 | vm_pageout_scan(void) | |
1465 | { | |
1466 | unsigned int loop_count = 0; | |
1467 | unsigned int inactive_burst_count = 0; | |
1468 | unsigned int active_burst_count = 0; | |
1469 | unsigned int reactivated_this_call; | |
1470 | unsigned int reactivate_limit; | |
1471 | vm_page_t local_freeq = NULL; | |
1472 | int local_freed = 0; | |
1473 | int delayed_unlock; | |
1474 | int delayed_unlock_limit = 0; | |
1475 | int refmod_state = 0; | |
1476 | int vm_pageout_deadlock_target = 0; | |
1477 | struct vm_pageout_queue *iq; | |
1478 | struct vm_pageout_queue *eq; | |
1479 | struct vm_speculative_age_q *sq; | |
1480 | struct flow_control flow_control = { 0, { 0, 0 } }; | |
1481 | boolean_t inactive_throttled = FALSE; | |
1482 | boolean_t try_failed; | |
1483 | mach_timespec_t ts; | |
1484 | unsigned int msecs = 0; | |
1485 | vm_object_t object; | |
1486 | vm_object_t last_object_tried; | |
1487 | uint32_t catch_up_count = 0; | |
1488 | uint32_t inactive_reclaim_run; | |
1489 | boolean_t forced_reclaim; | |
1490 | boolean_t exceeded_burst_throttle; | |
1491 | boolean_t grab_anonymous = FALSE; | |
1492 | boolean_t force_anonymous = FALSE; | |
1493 | int anons_grabbed = 0; | |
1494 | int page_prev_state = 0; | |
1495 | int cache_evict_throttle = 0; | |
1496 | uint32_t vm_pageout_inactive_external_forced_reactivate_limit = 0; | |
1497 | int force_purge = 0; | |
1498 | #define DELAY_SPECULATIVE_AGE 1000 | |
1499 | int delay_speculative_age = 0; | |
1500 | ||
1501 | #if VM_PRESSURE_EVENTS | |
1502 | vm_pressure_level_t pressure_level; | |
1503 | #endif /* VM_PRESSURE_EVENTS */ | |
1504 | ||
1505 | VM_DEBUG_CONSTANT_EVENT(vm_pageout_scan, VM_PAGEOUT_SCAN, DBG_FUNC_START, | |
1506 | vm_pageout_speculative_clean, vm_pageout_inactive_clean, | |
1507 | vm_pageout_inactive_dirty_internal, vm_pageout_inactive_dirty_external); | |
1508 | ||
1509 | flow_control.state = FCS_IDLE; | |
1510 | iq = &vm_pageout_queue_internal; | |
1511 | eq = &vm_pageout_queue_external; | |
1512 | sq = &vm_page_queue_speculative[VM_PAGE_SPECULATIVE_AGED_Q]; | |
1513 | ||
1514 | ||
1515 | XPR(XPR_VM_PAGEOUT, "vm_pageout_scan\n", 0, 0, 0, 0, 0); | |
1516 | ||
1517 | ||
1518 | vm_page_lock_queues(); | |
1519 | delayed_unlock = 1; /* must be nonzero if Qs are locked, 0 if unlocked */ | |
1520 | ||
1521 | /* | |
1522 | * Calculate the max number of referenced pages on the inactive | |
1523 | * queue that we will reactivate. | |
1524 | */ | |
1525 | reactivated_this_call = 0; | |
1526 | reactivate_limit = VM_PAGE_REACTIVATE_LIMIT(vm_page_active_count + | |
1527 | vm_page_inactive_count); | |
1528 | inactive_reclaim_run = 0; | |
1529 | ||
1530 | vm_pageout_inactive_external_forced_reactivate_limit = vm_page_active_count + vm_page_inactive_count; | |
1531 | ||
1532 | /* | |
1533 | * We want to gradually dribble pages from the active queue | |
1534 | * to the inactive queue. If we let the inactive queue get | |
1535 | * very small, and then suddenly dump many pages into it, | |
1536 | * those pages won't get a sufficient chance to be referenced | |
1537 | * before we start taking them from the inactive queue. | |
1538 | * | |
1539 | * We must limit the rate at which we send pages to the pagers | |
1540 | * so that we don't tie up too many pages in the I/O queues. | |
1541 | * We implement a throttling mechanism using the laundry count | |
1542 | * to limit the number of pages outstanding to the default | |
1543 | * and external pagers. We can bypass the throttles and look | |
1544 | * for clean pages if the pageout queues don't drain in a timely | |
1545 | * fashion since this may indicate that the pageout paths are | |
1546 | * stalled waiting for memory, which only we can provide. | |
1547 | */ | |
1548 | ||
1549 | ||
1550 | Restart: | |
1551 | assert(delayed_unlock!=0); | |
1552 | ||
1553 | /* | |
1554 | * Recalculate vm_page_inactivate_target. | |
1555 | */ | |
1556 | vm_page_inactive_target = VM_PAGE_INACTIVE_TARGET(vm_page_active_count + | |
1557 | vm_page_inactive_count + | |
1558 | vm_page_speculative_count); | |
1559 | ||
1560 | vm_page_anonymous_min = vm_page_inactive_target / 20; | |
1561 | ||
1562 | ||
1563 | /* | |
1564 | * don't want to wake the pageout_scan thread up everytime we fall below | |
1565 | * the targets... set a low water mark at 0.25% below the target | |
1566 | */ | |
1567 | vm_page_inactive_min = vm_page_inactive_target - (vm_page_inactive_target / 400); | |
1568 | ||
1569 | if (vm_page_speculative_percentage > 50) | |
1570 | vm_page_speculative_percentage = 50; | |
1571 | else if (vm_page_speculative_percentage <= 0) | |
1572 | vm_page_speculative_percentage = 1; | |
1573 | ||
1574 | vm_page_speculative_target = VM_PAGE_SPECULATIVE_TARGET(vm_page_active_count + | |
1575 | vm_page_inactive_count); | |
1576 | ||
1577 | object = NULL; | |
1578 | last_object_tried = NULL; | |
1579 | try_failed = FALSE; | |
1580 | ||
1581 | if ((vm_page_inactive_count + vm_page_speculative_count) < VM_PAGE_INACTIVE_HEALTHY_LIMIT(vm_page_active_count)) | |
1582 | catch_up_count = vm_page_inactive_count + vm_page_speculative_count; | |
1583 | else | |
1584 | catch_up_count = 0; | |
1585 | ||
1586 | for (;;) { | |
1587 | vm_page_t m; | |
1588 | ||
1589 | DTRACE_VM2(rev, int, 1, (uint64_t *), NULL); | |
1590 | ||
1591 | assert(delayed_unlock); | |
1592 | ||
1593 | if (vm_upl_wait_for_pages < 0) | |
1594 | vm_upl_wait_for_pages = 0; | |
1595 | ||
1596 | delayed_unlock_limit = VM_PAGEOUT_DELAYED_UNLOCK_LIMIT + vm_upl_wait_for_pages; | |
1597 | ||
1598 | if (delayed_unlock_limit > VM_PAGEOUT_DELAYED_UNLOCK_LIMIT_MAX) | |
1599 | delayed_unlock_limit = VM_PAGEOUT_DELAYED_UNLOCK_LIMIT_MAX; | |
1600 | ||
1601 | /* | |
1602 | * Move pages from active to inactive if we're below the target | |
1603 | */ | |
1604 | /* if we are trying to make clean, we need to make sure we actually have inactive - mj */ | |
1605 | if ((vm_page_inactive_count + vm_page_speculative_count) >= vm_page_inactive_target) | |
1606 | goto done_moving_active_pages; | |
1607 | ||
1608 | if (object != NULL) { | |
1609 | vm_object_unlock(object); | |
1610 | object = NULL; | |
1611 | vm_pageout_scan_wants_object = VM_OBJECT_NULL; | |
1612 | } | |
1613 | /* | |
1614 | * Don't sweep through active queue more than the throttle | |
1615 | * which should be kept relatively low | |
1616 | */ | |
1617 | active_burst_count = MIN(vm_pageout_burst_active_throttle, vm_page_active_count); | |
1618 | ||
1619 | VM_DEBUG_EVENT(vm_pageout_balance, VM_PAGEOUT_BALANCE, DBG_FUNC_START, | |
1620 | vm_pageout_inactive, vm_pageout_inactive_used, vm_page_free_count, local_freed); | |
1621 | ||
1622 | VM_DEBUG_EVENT(vm_pageout_balance, VM_PAGEOUT_BALANCE, DBG_FUNC_NONE, | |
1623 | vm_pageout_speculative_clean, vm_pageout_inactive_clean, | |
1624 | vm_pageout_inactive_dirty_internal, vm_pageout_inactive_dirty_external); | |
1625 | memoryshot(VM_PAGEOUT_BALANCE, DBG_FUNC_START); | |
1626 | ||
1627 | ||
1628 | while (!queue_empty(&vm_page_queue_active) && active_burst_count--) { | |
1629 | ||
1630 | vm_pageout_active++; | |
1631 | ||
1632 | m = (vm_page_t) queue_first(&vm_page_queue_active); | |
1633 | ||
1634 | assert(m->active && !m->inactive); | |
1635 | assert(!m->laundry); | |
1636 | assert(m->object != kernel_object); | |
1637 | assert(m->phys_page != vm_page_guard_addr); | |
1638 | ||
1639 | DTRACE_VM2(scan, int, 1, (uint64_t *), NULL); | |
1640 | ||
1641 | /* | |
1642 | * by not passing in a pmap_flush_context we will forgo any TLB flushing, local or otherwise... | |
1643 | * | |
1644 | * a TLB flush isn't really needed here since at worst we'll miss the reference bit being | |
1645 | * updated in the PTE if a remote processor still has this mapping cached in its TLB when the | |
1646 | * new reference happens. If no futher references happen on the page after that remote TLB flushes | |
1647 | * we'll see a clean, non-referenced page when it eventually gets pulled out of the inactive queue | |
1648 | * by pageout_scan, which is just fine since the last reference would have happened quite far | |
1649 | * in the past (TLB caches don't hang around for very long), and of course could just as easily | |
1650 | * have happened before we moved the page | |
1651 | */ | |
1652 | pmap_clear_refmod_options(m->phys_page, VM_MEM_REFERENCED, PMAP_OPTIONS_NOFLUSH, (void *)NULL); | |
1653 | ||
1654 | /* | |
1655 | * The page might be absent or busy, | |
1656 | * but vm_page_deactivate can handle that. | |
1657 | * FALSE indicates that we don't want a H/W clear reference | |
1658 | */ | |
1659 | vm_page_deactivate_internal(m, FALSE); | |
1660 | ||
1661 | if (delayed_unlock++ > delayed_unlock_limit) { | |
1662 | ||
1663 | if (local_freeq) { | |
1664 | vm_page_unlock_queues(); | |
1665 | ||
1666 | VM_DEBUG_EVENT(vm_pageout_freelist, VM_PAGEOUT_FREELIST, DBG_FUNC_START, | |
1667 | vm_page_free_count, local_freed, delayed_unlock_limit, 1); | |
1668 | ||
1669 | vm_page_free_list(local_freeq, TRUE); | |
1670 | ||
1671 | VM_DEBUG_EVENT(vm_pageout_freelist, VM_PAGEOUT_FREELIST, DBG_FUNC_END, | |
1672 | vm_page_free_count, 0, 0, 1); | |
1673 | ||
1674 | local_freeq = NULL; | |
1675 | local_freed = 0; | |
1676 | vm_page_lock_queues(); | |
1677 | } else { | |
1678 | lck_mtx_yield(&vm_page_queue_lock); | |
1679 | } | |
1680 | ||
1681 | delayed_unlock = 1; | |
1682 | ||
1683 | /* | |
1684 | * continue the while loop processing | |
1685 | * the active queue... need to hold | |
1686 | * the page queues lock | |
1687 | */ | |
1688 | } | |
1689 | } | |
1690 | ||
1691 | VM_DEBUG_EVENT(vm_pageout_balance, VM_PAGEOUT_BALANCE, DBG_FUNC_END, | |
1692 | vm_page_active_count, vm_page_inactive_count, vm_page_speculative_count, vm_page_inactive_target); | |
1693 | memoryshot(VM_PAGEOUT_BALANCE, DBG_FUNC_END); | |
1694 | ||
1695 | /********************************************************************** | |
1696 | * above this point we're playing with the active queue | |
1697 | * below this point we're playing with the throttling mechanisms | |
1698 | * and the inactive queue | |
1699 | **********************************************************************/ | |
1700 | ||
1701 | done_moving_active_pages: | |
1702 | ||
1703 | if (vm_page_free_count + local_freed >= vm_page_free_target) { | |
1704 | if (object != NULL) { | |
1705 | vm_object_unlock(object); | |
1706 | object = NULL; | |
1707 | } | |
1708 | vm_pageout_scan_wants_object = VM_OBJECT_NULL; | |
1709 | ||
1710 | vm_page_unlock_queues(); | |
1711 | ||
1712 | if (local_freeq) { | |
1713 | ||
1714 | VM_DEBUG_EVENT(vm_pageout_freelist, VM_PAGEOUT_FREELIST, DBG_FUNC_START, | |
1715 | vm_page_free_count, local_freed, delayed_unlock_limit, 2); | |
1716 | ||
1717 | vm_page_free_list(local_freeq, TRUE); | |
1718 | ||
1719 | VM_DEBUG_EVENT(vm_pageout_freelist, VM_PAGEOUT_FREELIST, DBG_FUNC_END, | |
1720 | vm_page_free_count, local_freed, 0, 2); | |
1721 | ||
1722 | local_freeq = NULL; | |
1723 | local_freed = 0; | |
1724 | } | |
1725 | vm_consider_waking_compactor_swapper(); | |
1726 | ||
1727 | vm_page_lock_queues(); | |
1728 | ||
1729 | /* | |
1730 | * make sure the pageout I/O threads are running | |
1731 | * throttled in case there are still requests | |
1732 | * in the laundry... since we have met our targets | |
1733 | * we don't need the laundry to be cleaned in a timely | |
1734 | * fashion... so let's avoid interfering with foreground | |
1735 | * activity | |
1736 | */ | |
1737 | vm_pageout_adjust_io_throttles(iq, eq, TRUE); | |
1738 | ||
1739 | /* | |
1740 | * recalculate vm_page_inactivate_target | |
1741 | */ | |
1742 | vm_page_inactive_target = VM_PAGE_INACTIVE_TARGET(vm_page_active_count + | |
1743 | vm_page_inactive_count + | |
1744 | vm_page_speculative_count); | |
1745 | if (((vm_page_inactive_count + vm_page_speculative_count) < vm_page_inactive_target) && | |
1746 | !queue_empty(&vm_page_queue_active)) { | |
1747 | /* | |
1748 | * inactive target still not met... keep going | |
1749 | * until we get the queues balanced... | |
1750 | */ | |
1751 | continue; | |
1752 | } | |
1753 | lck_mtx_lock(&vm_page_queue_free_lock); | |
1754 | ||
1755 | if ((vm_page_free_count >= vm_page_free_target) && | |
1756 | (vm_page_free_wanted == 0) && (vm_page_free_wanted_privileged == 0)) { | |
1757 | /* | |
1758 | * done - we have met our target *and* | |
1759 | * there is no one waiting for a page. | |
1760 | */ | |
1761 | return_from_scan: | |
1762 | assert(vm_pageout_scan_wants_object == VM_OBJECT_NULL); | |
1763 | ||
1764 | VM_DEBUG_CONSTANT_EVENT(vm_pageout_scan, VM_PAGEOUT_SCAN, DBG_FUNC_NONE, | |
1765 | vm_pageout_inactive, vm_pageout_inactive_used, 0, 0); | |
1766 | VM_DEBUG_CONSTANT_EVENT(vm_pageout_scan, VM_PAGEOUT_SCAN, DBG_FUNC_END, | |
1767 | vm_pageout_speculative_clean, vm_pageout_inactive_clean, | |
1768 | vm_pageout_inactive_dirty_internal, vm_pageout_inactive_dirty_external); | |
1769 | ||
1770 | return; | |
1771 | } | |
1772 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
1773 | } | |
1774 | ||
1775 | /* | |
1776 | * Before anything, we check if we have any ripe volatile | |
1777 | * objects around. If so, try to purge the first object. | |
1778 | * If the purge fails, fall through to reclaim a page instead. | |
1779 | * If the purge succeeds, go back to the top and reevalute | |
1780 | * the new memory situation. | |
1781 | */ | |
1782 | ||
1783 | assert (available_for_purge>=0); | |
1784 | force_purge = 0; /* no force-purging */ | |
1785 | ||
1786 | #if VM_PRESSURE_EVENTS | |
1787 | pressure_level = memorystatus_vm_pressure_level; | |
1788 | ||
1789 | if (pressure_level > kVMPressureNormal) { | |
1790 | ||
1791 | if (pressure_level >= kVMPressureCritical) { | |
1792 | force_purge = memorystatus_purge_on_critical; | |
1793 | } else if (pressure_level >= kVMPressureUrgent) { | |
1794 | force_purge = memorystatus_purge_on_urgent; | |
1795 | } else if (pressure_level >= kVMPressureWarning) { | |
1796 | force_purge = memorystatus_purge_on_warning; | |
1797 | } | |
1798 | } | |
1799 | #endif /* VM_PRESSURE_EVENTS */ | |
1800 | ||
1801 | if (available_for_purge || force_purge) { | |
1802 | ||
1803 | if (object != NULL) { | |
1804 | vm_object_unlock(object); | |
1805 | object = NULL; | |
1806 | } | |
1807 | ||
1808 | memoryshot(VM_PAGEOUT_PURGEONE, DBG_FUNC_START); | |
1809 | ||
1810 | VM_DEBUG_EVENT(vm_pageout_purgeone, VM_PAGEOUT_PURGEONE, DBG_FUNC_START, vm_page_free_count, 0, 0, 0); | |
1811 | if (vm_purgeable_object_purge_one(force_purge, C_DONT_BLOCK)) { | |
1812 | vm_pageout_purged_objects++; | |
1813 | VM_DEBUG_EVENT(vm_pageout_purgeone, VM_PAGEOUT_PURGEONE, DBG_FUNC_END, vm_page_free_count, 0, 0, 0); | |
1814 | memoryshot(VM_PAGEOUT_PURGEONE, DBG_FUNC_END); | |
1815 | continue; | |
1816 | } | |
1817 | VM_DEBUG_EVENT(vm_pageout_purgeone, VM_PAGEOUT_PURGEONE, DBG_FUNC_END, 0, 0, 0, -1); | |
1818 | memoryshot(VM_PAGEOUT_PURGEONE, DBG_FUNC_END); | |
1819 | } | |
1820 | ||
1821 | if (queue_empty(&sq->age_q) && vm_page_speculative_count) { | |
1822 | /* | |
1823 | * try to pull pages from the aging bins... | |
1824 | * see vm_page.h for an explanation of how | |
1825 | * this mechanism works | |
1826 | */ | |
1827 | struct vm_speculative_age_q *aq; | |
1828 | boolean_t can_steal = FALSE; | |
1829 | int num_scanned_queues; | |
1830 | ||
1831 | aq = &vm_page_queue_speculative[speculative_steal_index]; | |
1832 | ||
1833 | num_scanned_queues = 0; | |
1834 | while (queue_empty(&aq->age_q) && | |
1835 | num_scanned_queues++ != VM_PAGE_MAX_SPECULATIVE_AGE_Q) { | |
1836 | ||
1837 | speculative_steal_index++; | |
1838 | ||
1839 | if (speculative_steal_index > VM_PAGE_MAX_SPECULATIVE_AGE_Q) | |
1840 | speculative_steal_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q; | |
1841 | ||
1842 | aq = &vm_page_queue_speculative[speculative_steal_index]; | |
1843 | } | |
1844 | ||
1845 | if (num_scanned_queues == VM_PAGE_MAX_SPECULATIVE_AGE_Q + 1) { | |
1846 | /* | |
1847 | * XXX We've scanned all the speculative | |
1848 | * queues but still haven't found one | |
1849 | * that is not empty, even though | |
1850 | * vm_page_speculative_count is not 0. | |
1851 | * | |
1852 | * report the anomaly... | |
1853 | */ | |
1854 | printf("vm_pageout_scan: " | |
1855 | "all speculative queues empty " | |
1856 | "but count=%d. Re-adjusting.\n", | |
1857 | vm_page_speculative_count); | |
1858 | if (vm_page_speculative_count > vm_page_speculative_count_drift_max) | |
1859 | vm_page_speculative_count_drift_max = vm_page_speculative_count; | |
1860 | vm_page_speculative_count_drifts++; | |
1861 | #if 6553678 | |
1862 | Debugger("vm_pageout_scan: no speculative pages"); | |
1863 | #endif | |
1864 | /* readjust... */ | |
1865 | vm_page_speculative_count = 0; | |
1866 | /* ... and continue */ | |
1867 | continue; | |
1868 | } | |
1869 | ||
1870 | if (vm_page_speculative_count > vm_page_speculative_target) | |
1871 | can_steal = TRUE; | |
1872 | else { | |
1873 | if (!delay_speculative_age) { | |
1874 | mach_timespec_t ts_fully_aged; | |
1875 | ||
1876 | ts_fully_aged.tv_sec = (VM_PAGE_MAX_SPECULATIVE_AGE_Q * vm_page_speculative_q_age_ms) / 1000; | |
1877 | ts_fully_aged.tv_nsec = ((VM_PAGE_MAX_SPECULATIVE_AGE_Q * vm_page_speculative_q_age_ms) % 1000) | |
1878 | * 1000 * NSEC_PER_USEC; | |
1879 | ||
1880 | ADD_MACH_TIMESPEC(&ts_fully_aged, &aq->age_ts); | |
1881 | ||
1882 | clock_sec_t sec; | |
1883 | clock_nsec_t nsec; | |
1884 | clock_get_system_nanotime(&sec, &nsec); | |
1885 | ts.tv_sec = (unsigned int) sec; | |
1886 | ts.tv_nsec = nsec; | |
1887 | ||
1888 | if (CMP_MACH_TIMESPEC(&ts, &ts_fully_aged) >= 0) | |
1889 | can_steal = TRUE; | |
1890 | else | |
1891 | delay_speculative_age++; | |
1892 | } else { | |
1893 | delay_speculative_age++; | |
1894 | if (delay_speculative_age == DELAY_SPECULATIVE_AGE) | |
1895 | delay_speculative_age = 0; | |
1896 | } | |
1897 | } | |
1898 | if (can_steal == TRUE) | |
1899 | vm_page_speculate_ageit(aq); | |
1900 | } | |
1901 | if (queue_empty(&sq->age_q) && cache_evict_throttle == 0) { | |
1902 | int pages_evicted; | |
1903 | ||
1904 | if (object != NULL) { | |
1905 | vm_object_unlock(object); | |
1906 | object = NULL; | |
1907 | } | |
1908 | pages_evicted = vm_object_cache_evict(100, 10); | |
1909 | ||
1910 | if (pages_evicted) { | |
1911 | ||
1912 | vm_pageout_cache_evicted += pages_evicted; | |
1913 | ||
1914 | VM_DEBUG_EVENT(vm_pageout_cache_evict, VM_PAGEOUT_CACHE_EVICT, DBG_FUNC_NONE, | |
1915 | vm_page_free_count, pages_evicted, vm_pageout_cache_evicted, 0); | |
1916 | memoryshot(VM_PAGEOUT_CACHE_EVICT, DBG_FUNC_NONE); | |
1917 | ||
1918 | /* | |
1919 | * we just freed up to 100 pages, | |
1920 | * so go back to the top of the main loop | |
1921 | * and re-evaulate the memory situation | |
1922 | */ | |
1923 | continue; | |
1924 | } else | |
1925 | cache_evict_throttle = 100; | |
1926 | } | |
1927 | if (cache_evict_throttle) | |
1928 | cache_evict_throttle--; | |
1929 | ||
1930 | #if CONFIG_JETSAM | |
1931 | /* | |
1932 | * don't let the filecache_min fall below 15% of available memory | |
1933 | * on systems with an active compressor that isn't nearing its | |
1934 | * limits w/r to accepting new data | |
1935 | * | |
1936 | * on systems w/o the compressor/swapper, the filecache is always | |
1937 | * a very large percentage of the AVAILABLE_NON_COMPRESSED_MEMORY | |
1938 | * since most (if not all) of the anonymous pages are in the | |
1939 | * throttled queue (which isn't counted as available) which | |
1940 | * effectively disables this filter | |
1941 | */ | |
1942 | if (vm_compressor_low_on_space()) | |
1943 | vm_page_filecache_min = 0; | |
1944 | else | |
1945 | vm_page_filecache_min = (AVAILABLE_NON_COMPRESSED_MEMORY / 7); | |
1946 | #else | |
1947 | /* | |
1948 | * don't let the filecache_min fall below 33% of available memory... | |
1949 | */ | |
1950 | vm_page_filecache_min = (AVAILABLE_NON_COMPRESSED_MEMORY / 3); | |
1951 | #endif | |
1952 | ||
1953 | exceeded_burst_throttle = FALSE; | |
1954 | /* | |
1955 | * Sometimes we have to pause: | |
1956 | * 1) No inactive pages - nothing to do. | |
1957 | * 2) Loop control - no acceptable pages found on the inactive queue | |
1958 | * within the last vm_pageout_burst_inactive_throttle iterations | |
1959 | * 3) Flow control - default pageout queue is full | |
1960 | */ | |
1961 | if (queue_empty(&vm_page_queue_inactive) && queue_empty(&vm_page_queue_anonymous) && queue_empty(&sq->age_q)) { | |
1962 | vm_pageout_scan_empty_throttle++; | |
1963 | msecs = vm_pageout_empty_wait; | |
1964 | goto vm_pageout_scan_delay; | |
1965 | ||
1966 | } else if (inactive_burst_count >= | |
1967 | MIN(vm_pageout_burst_inactive_throttle, | |
1968 | (vm_page_inactive_count + | |
1969 | vm_page_speculative_count))) { | |
1970 | vm_pageout_scan_burst_throttle++; | |
1971 | msecs = vm_pageout_burst_wait; | |
1972 | ||
1973 | exceeded_burst_throttle = TRUE; | |
1974 | goto vm_pageout_scan_delay; | |
1975 | ||
1976 | } else if (vm_page_free_count > (vm_page_free_reserved / 4) && | |
1977 | VM_PAGEOUT_SCAN_NEEDS_TO_THROTTLE()) { | |
1978 | vm_pageout_scan_swap_throttle++; | |
1979 | msecs = vm_pageout_swap_wait; | |
1980 | goto vm_pageout_scan_delay; | |
1981 | ||
1982 | } else if (VM_PAGE_Q_THROTTLED(iq) && | |
1983 | VM_DYNAMIC_PAGING_ENABLED(memory_manager_default)) { | |
1984 | clock_sec_t sec; | |
1985 | clock_nsec_t nsec; | |
1986 | ||
1987 | switch (flow_control.state) { | |
1988 | ||
1989 | case FCS_IDLE: | |
1990 | if ((vm_page_free_count + local_freed) < vm_page_free_target) { | |
1991 | ||
1992 | if (object != NULL) { | |
1993 | vm_object_unlock(object); | |
1994 | object = NULL; | |
1995 | } | |
1996 | vm_pageout_scan_wants_object = VM_OBJECT_NULL; | |
1997 | ||
1998 | vm_page_unlock_queues(); | |
1999 | ||
2000 | if (local_freeq) { | |
2001 | ||
2002 | VM_DEBUG_EVENT(vm_pageout_freelist, VM_PAGEOUT_FREELIST, DBG_FUNC_START, | |
2003 | vm_page_free_count, local_freed, delayed_unlock_limit, 3); | |
2004 | ||
2005 | vm_page_free_list(local_freeq, TRUE); | |
2006 | ||
2007 | VM_DEBUG_EVENT(vm_pageout_freelist, VM_PAGEOUT_FREELIST, DBG_FUNC_END, | |
2008 | vm_page_free_count, local_freed, 0, 3); | |
2009 | ||
2010 | local_freeq = NULL; | |
2011 | local_freed = 0; | |
2012 | } | |
2013 | thread_yield_internal(1); | |
2014 | ||
2015 | vm_page_lock_queues(); | |
2016 | ||
2017 | if (!VM_PAGE_Q_THROTTLED(iq)) { | |
2018 | vm_pageout_scan_yield_unthrottled++; | |
2019 | continue; | |
2020 | } | |
2021 | if (vm_page_pageable_external_count > vm_page_filecache_min && !queue_empty(&vm_page_queue_inactive)) { | |
2022 | anons_grabbed = ANONS_GRABBED_LIMIT; | |
2023 | vm_pageout_scan_throttle_deferred++; | |
2024 | goto consider_inactive; | |
2025 | } | |
2026 | if (((vm_page_inactive_count + vm_page_speculative_count) < vm_page_inactive_target) && vm_page_active_count) | |
2027 | continue; | |
2028 | } | |
2029 | reset_deadlock_timer: | |
2030 | ts.tv_sec = vm_pageout_deadlock_wait / 1000; | |
2031 | ts.tv_nsec = (vm_pageout_deadlock_wait % 1000) * 1000 * NSEC_PER_USEC; | |
2032 | clock_get_system_nanotime(&sec, &nsec); | |
2033 | flow_control.ts.tv_sec = (unsigned int) sec; | |
2034 | flow_control.ts.tv_nsec = nsec; | |
2035 | ADD_MACH_TIMESPEC(&flow_control.ts, &ts); | |
2036 | ||
2037 | flow_control.state = FCS_DELAYED; | |
2038 | msecs = vm_pageout_deadlock_wait; | |
2039 | ||
2040 | break; | |
2041 | ||
2042 | case FCS_DELAYED: | |
2043 | clock_get_system_nanotime(&sec, &nsec); | |
2044 | ts.tv_sec = (unsigned int) sec; | |
2045 | ts.tv_nsec = nsec; | |
2046 | ||
2047 | if (CMP_MACH_TIMESPEC(&ts, &flow_control.ts) >= 0) { | |
2048 | /* | |
2049 | * the pageout thread for the default pager is potentially | |
2050 | * deadlocked since the | |
2051 | * default pager queue has been throttled for more than the | |
2052 | * allowable time... we need to move some clean pages or dirty | |
2053 | * pages belonging to the external pagers if they aren't throttled | |
2054 | * vm_page_free_wanted represents the number of threads currently | |
2055 | * blocked waiting for pages... we'll move one page for each of | |
2056 | * these plus a fixed amount to break the logjam... once we're done | |
2057 | * moving this number of pages, we'll re-enter the FSC_DELAYED state | |
2058 | * with a new timeout target since we have no way of knowing | |
2059 | * whether we've broken the deadlock except through observation | |
2060 | * of the queue associated with the default pager... we need to | |
2061 | * stop moving pages and allow the system to run to see what | |
2062 | * state it settles into. | |
2063 | */ | |
2064 | vm_pageout_deadlock_target = vm_pageout_deadlock_relief + vm_page_free_wanted + vm_page_free_wanted_privileged; | |
2065 | vm_pageout_scan_deadlock_detected++; | |
2066 | flow_control.state = FCS_DEADLOCK_DETECTED; | |
2067 | thread_wakeup((event_t) &vm_pageout_garbage_collect); | |
2068 | goto consider_inactive; | |
2069 | } | |
2070 | /* | |
2071 | * just resniff instead of trying | |
2072 | * to compute a new delay time... we're going to be | |
2073 | * awakened immediately upon a laundry completion, | |
2074 | * so we won't wait any longer than necessary | |
2075 | */ | |
2076 | msecs = vm_pageout_idle_wait; | |
2077 | break; | |
2078 | ||
2079 | case FCS_DEADLOCK_DETECTED: | |
2080 | if (vm_pageout_deadlock_target) | |
2081 | goto consider_inactive; | |
2082 | goto reset_deadlock_timer; | |
2083 | ||
2084 | } | |
2085 | vm_pageout_scan_delay: | |
2086 | if (object != NULL) { | |
2087 | vm_object_unlock(object); | |
2088 | object = NULL; | |
2089 | } | |
2090 | vm_pageout_scan_wants_object = VM_OBJECT_NULL; | |
2091 | ||
2092 | vm_page_unlock_queues(); | |
2093 | ||
2094 | if (local_freeq) { | |
2095 | ||
2096 | VM_DEBUG_EVENT(vm_pageout_freelist, VM_PAGEOUT_FREELIST, DBG_FUNC_START, | |
2097 | vm_page_free_count, local_freed, delayed_unlock_limit, 3); | |
2098 | ||
2099 | vm_page_free_list(local_freeq, TRUE); | |
2100 | ||
2101 | VM_DEBUG_EVENT(vm_pageout_freelist, VM_PAGEOUT_FREELIST, DBG_FUNC_END, | |
2102 | vm_page_free_count, local_freed, 0, 3); | |
2103 | ||
2104 | local_freeq = NULL; | |
2105 | local_freed = 0; | |
2106 | } | |
2107 | vm_consider_waking_compactor_swapper(); | |
2108 | ||
2109 | vm_page_lock_queues(); | |
2110 | ||
2111 | if (flow_control.state == FCS_DELAYED && | |
2112 | !VM_PAGE_Q_THROTTLED(iq)) { | |
2113 | flow_control.state = FCS_IDLE; | |
2114 | goto consider_inactive; | |
2115 | } | |
2116 | ||
2117 | if (vm_page_free_count >= vm_page_free_target) { | |
2118 | /* | |
2119 | * we're here because | |
2120 | * 1) someone else freed up some pages while we had | |
2121 | * the queues unlocked above | |
2122 | * and we've hit one of the 3 conditions that | |
2123 | * cause us to pause the pageout scan thread | |
2124 | * | |
2125 | * since we already have enough free pages, | |
2126 | * let's avoid stalling and return normally | |
2127 | * | |
2128 | * before we return, make sure the pageout I/O threads | |
2129 | * are running throttled in case there are still requests | |
2130 | * in the laundry... since we have enough free pages | |
2131 | * we don't need the laundry to be cleaned in a timely | |
2132 | * fashion... so let's avoid interfering with foreground | |
2133 | * activity | |
2134 | * | |
2135 | * we don't want to hold vm_page_queue_free_lock when | |
2136 | * calling vm_pageout_adjust_io_throttles (since it | |
2137 | * may cause other locks to be taken), we do the intitial | |
2138 | * check outside of the lock. Once we take the lock, | |
2139 | * we recheck the condition since it may have changed. | |
2140 | * if it has, no problem, we will make the threads | |
2141 | * non-throttled before actually blocking | |
2142 | */ | |
2143 | vm_pageout_adjust_io_throttles(iq, eq, TRUE); | |
2144 | } | |
2145 | lck_mtx_lock(&vm_page_queue_free_lock); | |
2146 | ||
2147 | if (vm_page_free_count >= vm_page_free_target && | |
2148 | (vm_page_free_wanted == 0) && (vm_page_free_wanted_privileged == 0)) { | |
2149 | goto return_from_scan; | |
2150 | } | |
2151 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
2152 | ||
2153 | if ((vm_page_free_count + vm_page_cleaned_count) < vm_page_free_target) { | |
2154 | /* | |
2155 | * we're most likely about to block due to one of | |
2156 | * the 3 conditions that cause vm_pageout_scan to | |
2157 | * not be able to make forward progress w/r | |
2158 | * to providing new pages to the free queue, | |
2159 | * so unthrottle the I/O threads in case we | |
2160 | * have laundry to be cleaned... it needs | |
2161 | * to be completed ASAP. | |
2162 | * | |
2163 | * even if we don't block, we want the io threads | |
2164 | * running unthrottled since the sum of free + | |
2165 | * clean pages is still under our free target | |
2166 | */ | |
2167 | vm_pageout_adjust_io_throttles(iq, eq, FALSE); | |
2168 | } | |
2169 | if (vm_page_cleaned_count > 0 && exceeded_burst_throttle == FALSE) { | |
2170 | /* | |
2171 | * if we get here we're below our free target and | |
2172 | * we're stalling due to a full laundry queue or | |
2173 | * we don't have any inactive pages other then | |
2174 | * those in the clean queue... | |
2175 | * however, we have pages on the clean queue that | |
2176 | * can be moved to the free queue, so let's not | |
2177 | * stall the pageout scan | |
2178 | */ | |
2179 | flow_control.state = FCS_IDLE; | |
2180 | goto consider_inactive; | |
2181 | } | |
2182 | VM_CHECK_MEMORYSTATUS; | |
2183 | ||
2184 | if (flow_control.state != FCS_IDLE) | |
2185 | vm_pageout_scan_throttle++; | |
2186 | iq->pgo_throttled = TRUE; | |
2187 | ||
2188 | assert_wait_timeout((event_t) &iq->pgo_laundry, THREAD_INTERRUPTIBLE, msecs, 1000*NSEC_PER_USEC); | |
2189 | counter(c_vm_pageout_scan_block++); | |
2190 | ||
2191 | vm_page_unlock_queues(); | |
2192 | ||
2193 | assert(vm_pageout_scan_wants_object == VM_OBJECT_NULL); | |
2194 | ||
2195 | VM_DEBUG_EVENT(vm_pageout_thread_block, VM_PAGEOUT_THREAD_BLOCK, DBG_FUNC_START, | |
2196 | iq->pgo_laundry, iq->pgo_maxlaundry, msecs, 0); | |
2197 | memoryshot(VM_PAGEOUT_THREAD_BLOCK, DBG_FUNC_START); | |
2198 | ||
2199 | thread_block(THREAD_CONTINUE_NULL); | |
2200 | ||
2201 | VM_DEBUG_EVENT(vm_pageout_thread_block, VM_PAGEOUT_THREAD_BLOCK, DBG_FUNC_END, | |
2202 | iq->pgo_laundry, iq->pgo_maxlaundry, msecs, 0); | |
2203 | memoryshot(VM_PAGEOUT_THREAD_BLOCK, DBG_FUNC_END); | |
2204 | ||
2205 | vm_page_lock_queues(); | |
2206 | delayed_unlock = 1; | |
2207 | ||
2208 | iq->pgo_throttled = FALSE; | |
2209 | ||
2210 | if (loop_count >= vm_page_inactive_count) | |
2211 | loop_count = 0; | |
2212 | inactive_burst_count = 0; | |
2213 | ||
2214 | goto Restart; | |
2215 | /*NOTREACHED*/ | |
2216 | } | |
2217 | ||
2218 | ||
2219 | flow_control.state = FCS_IDLE; | |
2220 | consider_inactive: | |
2221 | vm_pageout_inactive_external_forced_reactivate_limit = MIN((vm_page_active_count + vm_page_inactive_count), | |
2222 | vm_pageout_inactive_external_forced_reactivate_limit); | |
2223 | loop_count++; | |
2224 | inactive_burst_count++; | |
2225 | vm_pageout_inactive++; | |
2226 | ||
2227 | ||
2228 | /* | |
2229 | * Choose a victim. | |
2230 | */ | |
2231 | while (1) { | |
2232 | uint32_t inactive_external_count; | |
2233 | ||
2234 | m = NULL; | |
2235 | ||
2236 | if (VM_DYNAMIC_PAGING_ENABLED(memory_manager_default)) { | |
2237 | assert(vm_page_throttled_count == 0); | |
2238 | assert(queue_empty(&vm_page_queue_throttled)); | |
2239 | } | |
2240 | /* | |
2241 | * The most eligible pages are ones we paged in speculatively, | |
2242 | * but which have not yet been touched. | |
2243 | */ | |
2244 | if (!queue_empty(&sq->age_q) && force_anonymous == FALSE) { | |
2245 | m = (vm_page_t) queue_first(&sq->age_q); | |
2246 | ||
2247 | page_prev_state = PAGE_STATE_SPECULATIVE; | |
2248 | ||
2249 | break; | |
2250 | } | |
2251 | /* | |
2252 | * Try a clean-queue inactive page. | |
2253 | */ | |
2254 | if (!queue_empty(&vm_page_queue_cleaned)) { | |
2255 | m = (vm_page_t) queue_first(&vm_page_queue_cleaned); | |
2256 | ||
2257 | page_prev_state = PAGE_STATE_CLEAN; | |
2258 | ||
2259 | break; | |
2260 | } | |
2261 | ||
2262 | grab_anonymous = (vm_page_anonymous_count > vm_page_anonymous_min); | |
2263 | inactive_external_count = vm_page_inactive_count - vm_page_anonymous_count; | |
2264 | ||
2265 | if ((vm_page_pageable_external_count < vm_page_filecache_min || force_anonymous == TRUE) || | |
2266 | ((inactive_external_count < vm_page_anonymous_count) && (inactive_external_count < (vm_page_pageable_external_count / 3)))) { | |
2267 | grab_anonymous = TRUE; | |
2268 | anons_grabbed = 0; | |
2269 | } | |
2270 | ||
2271 | if (grab_anonymous == FALSE || anons_grabbed >= ANONS_GRABBED_LIMIT || queue_empty(&vm_page_queue_anonymous)) { | |
2272 | ||
2273 | if ( !queue_empty(&vm_page_queue_inactive) ) { | |
2274 | m = (vm_page_t) queue_first(&vm_page_queue_inactive); | |
2275 | ||
2276 | page_prev_state = PAGE_STATE_INACTIVE; | |
2277 | anons_grabbed = 0; | |
2278 | ||
2279 | if (vm_page_pageable_external_count < vm_page_filecache_min) { | |
2280 | if ((++reactivated_this_call % 100)) | |
2281 | goto must_activate_page; | |
2282 | /* | |
2283 | * steal 1% of the file backed pages even if | |
2284 | * we are under the limit that has been set | |
2285 | * for a healthy filecache | |
2286 | */ | |
2287 | } | |
2288 | break; | |
2289 | } | |
2290 | } | |
2291 | if ( !queue_empty(&vm_page_queue_anonymous) ) { | |
2292 | m = (vm_page_t) queue_first(&vm_page_queue_anonymous); | |
2293 | ||
2294 | page_prev_state = PAGE_STATE_ANONYMOUS; | |
2295 | anons_grabbed++; | |
2296 | ||
2297 | break; | |
2298 | } | |
2299 | ||
2300 | /* | |
2301 | * if we've gotten here, we have no victim page. | |
2302 | * if making clean, free the local freed list and return. | |
2303 | * if making free, check to see if we've finished balancing the queues | |
2304 | * yet, if we haven't just continue, else panic | |
2305 | */ | |
2306 | vm_page_unlock_queues(); | |
2307 | ||
2308 | if (object != NULL) { | |
2309 | vm_object_unlock(object); | |
2310 | object = NULL; | |
2311 | } | |
2312 | vm_pageout_scan_wants_object = VM_OBJECT_NULL; | |
2313 | ||
2314 | if (local_freeq) { | |
2315 | VM_DEBUG_EVENT(vm_pageout_freelist, VM_PAGEOUT_FREELIST, DBG_FUNC_START, | |
2316 | vm_page_free_count, local_freed, delayed_unlock_limit, 5); | |
2317 | ||
2318 | vm_page_free_list(local_freeq, TRUE); | |
2319 | ||
2320 | VM_DEBUG_EVENT(vm_pageout_freelist, VM_PAGEOUT_FREELIST, DBG_FUNC_END, | |
2321 | vm_page_free_count, local_freed, 0, 5); | |
2322 | ||
2323 | local_freeq = NULL; | |
2324 | local_freed = 0; | |
2325 | } | |
2326 | vm_page_lock_queues(); | |
2327 | delayed_unlock = 1; | |
2328 | ||
2329 | force_anonymous = FALSE; | |
2330 | ||
2331 | if ((vm_page_inactive_count + vm_page_speculative_count) < vm_page_inactive_target) | |
2332 | goto Restart; | |
2333 | ||
2334 | if (!queue_empty(&sq->age_q)) | |
2335 | goto Restart; | |
2336 | ||
2337 | panic("vm_pageout: no victim"); | |
2338 | ||
2339 | /* NOTREACHED */ | |
2340 | } | |
2341 | force_anonymous = FALSE; | |
2342 | ||
2343 | /* | |
2344 | * we just found this page on one of our queues... | |
2345 | * it can't also be on the pageout queue, so safe | |
2346 | * to call vm_page_queues_remove | |
2347 | */ | |
2348 | assert(!m->pageout_queue); | |
2349 | ||
2350 | vm_page_queues_remove(m); | |
2351 | ||
2352 | assert(!m->laundry); | |
2353 | assert(!m->private); | |
2354 | assert(!m->fictitious); | |
2355 | assert(m->object != kernel_object); | |
2356 | assert(m->phys_page != vm_page_guard_addr); | |
2357 | ||
2358 | ||
2359 | if (page_prev_state != PAGE_STATE_SPECULATIVE) | |
2360 | vm_pageout_stats[vm_pageout_stat_now].considered++; | |
2361 | ||
2362 | DTRACE_VM2(scan, int, 1, (uint64_t *), NULL); | |
2363 | ||
2364 | /* | |
2365 | * check to see if we currently are working | |
2366 | * with the same object... if so, we've | |
2367 | * already got the lock | |
2368 | */ | |
2369 | if (m->object != object) { | |
2370 | /* | |
2371 | * the object associated with candidate page is | |
2372 | * different from the one we were just working | |
2373 | * with... dump the lock if we still own it | |
2374 | */ | |
2375 | if (object != NULL) { | |
2376 | vm_object_unlock(object); | |
2377 | object = NULL; | |
2378 | vm_pageout_scan_wants_object = VM_OBJECT_NULL; | |
2379 | } | |
2380 | /* | |
2381 | * Try to lock object; since we've alread got the | |
2382 | * page queues lock, we can only 'try' for this one. | |
2383 | * if the 'try' fails, we need to do a mutex_pause | |
2384 | * to allow the owner of the object lock a chance to | |
2385 | * run... otherwise, we're likely to trip over this | |
2386 | * object in the same state as we work our way through | |
2387 | * the queue... clumps of pages associated with the same | |
2388 | * object are fairly typical on the inactive and active queues | |
2389 | */ | |
2390 | if (!vm_object_lock_try_scan(m->object)) { | |
2391 | vm_page_t m_want = NULL; | |
2392 | ||
2393 | vm_pageout_inactive_nolock++; | |
2394 | ||
2395 | if (page_prev_state == PAGE_STATE_CLEAN) | |
2396 | vm_pageout_cleaned_nolock++; | |
2397 | ||
2398 | if (page_prev_state == PAGE_STATE_SPECULATIVE) | |
2399 | page_prev_state = PAGE_STATE_INACTIVE_FIRST; | |
2400 | ||
2401 | pmap_clear_reference(m->phys_page); | |
2402 | m->reference = FALSE; | |
2403 | ||
2404 | /* | |
2405 | * m->object must be stable since we hold the page queues lock... | |
2406 | * we can update the scan_collisions field sans the object lock | |
2407 | * since it is a separate field and this is the only spot that does | |
2408 | * a read-modify-write operation and it is never executed concurrently... | |
2409 | * we can asynchronously set this field to 0 when creating a UPL, so it | |
2410 | * is possible for the value to be a bit non-determistic, but that's ok | |
2411 | * since it's only used as a hint | |
2412 | */ | |
2413 | m->object->scan_collisions = 1; | |
2414 | ||
2415 | if ( !queue_empty(&sq->age_q) ) | |
2416 | m_want = (vm_page_t) queue_first(&sq->age_q); | |
2417 | else if ( !queue_empty(&vm_page_queue_cleaned)) | |
2418 | m_want = (vm_page_t) queue_first(&vm_page_queue_cleaned); | |
2419 | else if (anons_grabbed >= ANONS_GRABBED_LIMIT || queue_empty(&vm_page_queue_anonymous)) | |
2420 | m_want = (vm_page_t) queue_first(&vm_page_queue_inactive); | |
2421 | else if ( !queue_empty(&vm_page_queue_anonymous)) | |
2422 | m_want = (vm_page_t) queue_first(&vm_page_queue_anonymous); | |
2423 | ||
2424 | /* | |
2425 | * this is the next object we're going to be interested in | |
2426 | * try to make sure its available after the mutex_yield | |
2427 | * returns control | |
2428 | */ | |
2429 | if (m_want) | |
2430 | vm_pageout_scan_wants_object = m_want->object; | |
2431 | ||
2432 | /* | |
2433 | * force us to dump any collected free pages | |
2434 | * and to pause before moving on | |
2435 | */ | |
2436 | try_failed = TRUE; | |
2437 | ||
2438 | goto requeue_page; | |
2439 | } | |
2440 | object = m->object; | |
2441 | vm_pageout_scan_wants_object = VM_OBJECT_NULL; | |
2442 | ||
2443 | try_failed = FALSE; | |
2444 | } | |
2445 | if (catch_up_count) | |
2446 | catch_up_count--; | |
2447 | ||
2448 | if (m->busy) { | |
2449 | if (m->encrypted_cleaning) { | |
2450 | /* | |
2451 | * ENCRYPTED SWAP: | |
2452 | * if this page has already been picked up as | |
2453 | * part of a page-out cluster, it will be busy | |
2454 | * because it is being encrypted (see | |
2455 | * vm_object_upl_request()). But we still | |
2456 | * want to demote it from "clean-in-place" | |
2457 | * (aka "adjacent") to "clean-and-free" (aka | |
2458 | * "target"), so let's ignore its "busy" bit | |
2459 | * here and proceed to check for "cleaning" a | |
2460 | * little bit below... | |
2461 | * | |
2462 | * CAUTION CAUTION: | |
2463 | * A "busy" page should still be left alone for | |
2464 | * most purposes, so we have to be very careful | |
2465 | * not to process that page too much. | |
2466 | */ | |
2467 | assert(m->cleaning); | |
2468 | goto consider_inactive_page; | |
2469 | } | |
2470 | ||
2471 | /* | |
2472 | * Somebody is already playing with this page. | |
2473 | * Put it back on the appropriate queue | |
2474 | * | |
2475 | */ | |
2476 | vm_pageout_inactive_busy++; | |
2477 | ||
2478 | if (page_prev_state == PAGE_STATE_CLEAN) | |
2479 | vm_pageout_cleaned_busy++; | |
2480 | ||
2481 | requeue_page: | |
2482 | switch (page_prev_state) { | |
2483 | ||
2484 | case PAGE_STATE_SPECULATIVE: | |
2485 | case PAGE_STATE_ANONYMOUS: | |
2486 | case PAGE_STATE_CLEAN: | |
2487 | case PAGE_STATE_INACTIVE: | |
2488 | vm_page_enqueue_inactive(m, FALSE); | |
2489 | break; | |
2490 | ||
2491 | case PAGE_STATE_INACTIVE_FIRST: | |
2492 | vm_page_enqueue_inactive(m, TRUE); | |
2493 | break; | |
2494 | } | |
2495 | goto done_with_inactivepage; | |
2496 | } | |
2497 | ||
2498 | ||
2499 | /* | |
2500 | * If it's absent, in error or the object is no longer alive, | |
2501 | * we can reclaim the page... in the no longer alive case, | |
2502 | * there are 2 states the page can be in that preclude us | |
2503 | * from reclaiming it - busy or cleaning - that we've already | |
2504 | * dealt with | |
2505 | */ | |
2506 | if (m->absent || m->error || !object->alive) { | |
2507 | ||
2508 | if (m->absent) | |
2509 | vm_pageout_inactive_absent++; | |
2510 | else if (!object->alive) | |
2511 | vm_pageout_inactive_notalive++; | |
2512 | else | |
2513 | vm_pageout_inactive_error++; | |
2514 | reclaim_page: | |
2515 | if (vm_pageout_deadlock_target) { | |
2516 | vm_pageout_scan_inactive_throttle_success++; | |
2517 | vm_pageout_deadlock_target--; | |
2518 | } | |
2519 | ||
2520 | DTRACE_VM2(dfree, int, 1, (uint64_t *), NULL); | |
2521 | ||
2522 | if (object->internal) { | |
2523 | DTRACE_VM2(anonfree, int, 1, (uint64_t *), NULL); | |
2524 | } else { | |
2525 | DTRACE_VM2(fsfree, int, 1, (uint64_t *), NULL); | |
2526 | } | |
2527 | assert(!m->cleaning); | |
2528 | assert(!m->laundry); | |
2529 | ||
2530 | m->busy = TRUE; | |
2531 | ||
2532 | /* | |
2533 | * remove page from object here since we're already | |
2534 | * behind the object lock... defer the rest of the work | |
2535 | * we'd normally do in vm_page_free_prepare_object | |
2536 | * until 'vm_page_free_list' is called | |
2537 | */ | |
2538 | if (m->tabled) | |
2539 | vm_page_remove(m, TRUE); | |
2540 | ||
2541 | assert(m->pageq.next == NULL && | |
2542 | m->pageq.prev == NULL); | |
2543 | m->pageq.next = (queue_entry_t)local_freeq; | |
2544 | local_freeq = m; | |
2545 | local_freed++; | |
2546 | ||
2547 | if (page_prev_state == PAGE_STATE_SPECULATIVE) | |
2548 | vm_pageout_freed_from_speculative++; | |
2549 | else if (page_prev_state == PAGE_STATE_CLEAN) | |
2550 | vm_pageout_freed_from_cleaned++; | |
2551 | else | |
2552 | vm_pageout_freed_from_inactive_clean++; | |
2553 | ||
2554 | if (page_prev_state != PAGE_STATE_SPECULATIVE) | |
2555 | vm_pageout_stats[vm_pageout_stat_now].reclaimed++; | |
2556 | ||
2557 | inactive_burst_count = 0; | |
2558 | goto done_with_inactivepage; | |
2559 | } | |
2560 | /* | |
2561 | * If the object is empty, the page must be reclaimed even | |
2562 | * if dirty or used. | |
2563 | * If the page belongs to a volatile object, we stick it back | |
2564 | * on. | |
2565 | */ | |
2566 | if (object->copy == VM_OBJECT_NULL) { | |
2567 | if (object->purgable == VM_PURGABLE_EMPTY) { | |
2568 | if (m->pmapped == TRUE) { | |
2569 | /* unmap the page */ | |
2570 | refmod_state = pmap_disconnect(m->phys_page); | |
2571 | if (refmod_state & VM_MEM_MODIFIED) { | |
2572 | SET_PAGE_DIRTY(m, FALSE); | |
2573 | } | |
2574 | } | |
2575 | if (m->dirty || m->precious) { | |
2576 | /* we saved the cost of cleaning this page ! */ | |
2577 | vm_page_purged_count++; | |
2578 | } | |
2579 | goto reclaim_page; | |
2580 | } | |
2581 | ||
2582 | if (COMPRESSED_PAGER_IS_ACTIVE) { | |
2583 | /* | |
2584 | * With the VM compressor, the cost of | |
2585 | * reclaiming a page is much lower (no I/O), | |
2586 | * so if we find a "volatile" page, it's better | |
2587 | * to let it get compressed rather than letting | |
2588 | * it occupy a full page until it gets purged. | |
2589 | * So no need to check for "volatile" here. | |
2590 | */ | |
2591 | } else if (object->purgable == VM_PURGABLE_VOLATILE) { | |
2592 | /* | |
2593 | * Avoid cleaning a "volatile" page which might | |
2594 | * be purged soon. | |
2595 | */ | |
2596 | ||
2597 | /* if it's wired, we can't put it on our queue */ | |
2598 | assert(!VM_PAGE_WIRED(m)); | |
2599 | ||
2600 | /* just stick it back on! */ | |
2601 | reactivated_this_call++; | |
2602 | ||
2603 | if (page_prev_state == PAGE_STATE_CLEAN) | |
2604 | vm_pageout_cleaned_volatile_reactivated++; | |
2605 | ||
2606 | goto reactivate_page; | |
2607 | } | |
2608 | } | |
2609 | ||
2610 | consider_inactive_page: | |
2611 | if (m->busy) { | |
2612 | /* | |
2613 | * CAUTION CAUTION: | |
2614 | * A "busy" page should always be left alone, except... | |
2615 | */ | |
2616 | if (m->cleaning && m->encrypted_cleaning) { | |
2617 | /* | |
2618 | * ENCRYPTED_SWAP: | |
2619 | * We could get here with a "busy" page | |
2620 | * if it's being encrypted during a | |
2621 | * "clean-in-place" operation. We'll deal | |
2622 | * with it right away by testing if it has been | |
2623 | * referenced and either reactivating it or | |
2624 | * promoting it from "clean-in-place" to | |
2625 | * "clean-and-free". | |
2626 | */ | |
2627 | } else { | |
2628 | panic("\"busy\" page considered for pageout\n"); | |
2629 | } | |
2630 | } | |
2631 | ||
2632 | /* | |
2633 | * If it's being used, reactivate. | |
2634 | * (Fictitious pages are either busy or absent.) | |
2635 | * First, update the reference and dirty bits | |
2636 | * to make sure the page is unreferenced. | |
2637 | */ | |
2638 | refmod_state = -1; | |
2639 | ||
2640 | if (m->reference == FALSE && m->pmapped == TRUE) { | |
2641 | refmod_state = pmap_get_refmod(m->phys_page); | |
2642 | ||
2643 | if (refmod_state & VM_MEM_REFERENCED) | |
2644 | m->reference = TRUE; | |
2645 | if (refmod_state & VM_MEM_MODIFIED) { | |
2646 | SET_PAGE_DIRTY(m, FALSE); | |
2647 | } | |
2648 | } | |
2649 | ||
2650 | /* | |
2651 | * if (m->cleaning && !m->pageout) | |
2652 | * If already cleaning this page in place and it hasn't | |
2653 | * been recently referenced, just pull off the queue. | |
2654 | * We can leave the page mapped, and upl_commit_range | |
2655 | * will put it on the clean queue. | |
2656 | * | |
2657 | * note: if m->encrypted_cleaning == TRUE, then | |
2658 | * m->cleaning == TRUE | |
2659 | * and we'll handle it here | |
2660 | * | |
2661 | * if (m->pageout && !m->cleaning) | |
2662 | * an msync INVALIDATE is in progress... | |
2663 | * this page has been marked for destruction | |
2664 | * after it has been cleaned, | |
2665 | * but not yet gathered into a UPL | |
2666 | * where 'cleaning' will be set... | |
2667 | * just leave it off the paging queues | |
2668 | * | |
2669 | * if (m->pageout && m->clenaing) | |
2670 | * an msync INVALIDATE is in progress | |
2671 | * and the UPL has already gathered this page... | |
2672 | * just leave it off the paging queues | |
2673 | */ | |
2674 | ||
2675 | /* | |
2676 | * page with m->pageout and still on the queues means that an | |
2677 | * MS_INVALIDATE is in progress on this page... leave it alone | |
2678 | */ | |
2679 | if (m->pageout) { | |
2680 | goto done_with_inactivepage; | |
2681 | } | |
2682 | ||
2683 | /* if cleaning, reactivate if referenced. otherwise, just pull off queue */ | |
2684 | if (m->cleaning) { | |
2685 | if (m->reference == TRUE) { | |
2686 | reactivated_this_call++; | |
2687 | goto reactivate_page; | |
2688 | } else { | |
2689 | goto done_with_inactivepage; | |
2690 | } | |
2691 | } | |
2692 | ||
2693 | if (m->reference || m->dirty) { | |
2694 | /* deal with a rogue "reusable" page */ | |
2695 | VM_PAGEOUT_SCAN_HANDLE_REUSABLE_PAGE(m); | |
2696 | } | |
2697 | ||
2698 | if (!m->no_cache && | |
2699 | (m->reference || | |
2700 | (m->xpmapped && !object->internal && (vm_page_xpmapped_external_count < (vm_page_external_count / 4))))) { | |
2701 | /* | |
2702 | * The page we pulled off the inactive list has | |
2703 | * been referenced. It is possible for other | |
2704 | * processors to be touching pages faster than we | |
2705 | * can clear the referenced bit and traverse the | |
2706 | * inactive queue, so we limit the number of | |
2707 | * reactivations. | |
2708 | */ | |
2709 | if (++reactivated_this_call >= reactivate_limit) { | |
2710 | vm_pageout_reactivation_limit_exceeded++; | |
2711 | } else if (catch_up_count) { | |
2712 | vm_pageout_catch_ups++; | |
2713 | } else if (++inactive_reclaim_run >= VM_PAGEOUT_INACTIVE_FORCE_RECLAIM) { | |
2714 | vm_pageout_inactive_force_reclaim++; | |
2715 | } else { | |
2716 | uint32_t isinuse; | |
2717 | ||
2718 | if (page_prev_state == PAGE_STATE_CLEAN) | |
2719 | vm_pageout_cleaned_reference_reactivated++; | |
2720 | ||
2721 | reactivate_page: | |
2722 | if ( !object->internal && object->pager != MEMORY_OBJECT_NULL && | |
2723 | vnode_pager_get_isinuse(object->pager, &isinuse) == KERN_SUCCESS && !isinuse) { | |
2724 | /* | |
2725 | * no explict mappings of this object exist | |
2726 | * and it's not open via the filesystem | |
2727 | */ | |
2728 | vm_page_deactivate(m); | |
2729 | vm_pageout_inactive_deactivated++; | |
2730 | } else { | |
2731 | must_activate_page: | |
2732 | /* | |
2733 | * The page was/is being used, so put back on active list. | |
2734 | */ | |
2735 | vm_page_activate(m); | |
2736 | VM_STAT_INCR(reactivations); | |
2737 | inactive_burst_count = 0; | |
2738 | } | |
2739 | ||
2740 | if (page_prev_state == PAGE_STATE_CLEAN) | |
2741 | vm_pageout_cleaned_reactivated++; | |
2742 | ||
2743 | vm_pageout_inactive_used++; | |
2744 | ||
2745 | goto done_with_inactivepage; | |
2746 | } | |
2747 | /* | |
2748 | * Make sure we call pmap_get_refmod() if it | |
2749 | * wasn't already called just above, to update | |
2750 | * the dirty bit. | |
2751 | */ | |
2752 | if ((refmod_state == -1) && !m->dirty && m->pmapped) { | |
2753 | refmod_state = pmap_get_refmod(m->phys_page); | |
2754 | if (refmod_state & VM_MEM_MODIFIED) { | |
2755 | SET_PAGE_DIRTY(m, FALSE); | |
2756 | } | |
2757 | } | |
2758 | forced_reclaim = TRUE; | |
2759 | } else { | |
2760 | forced_reclaim = FALSE; | |
2761 | } | |
2762 | ||
2763 | XPR(XPR_VM_PAGEOUT, | |
2764 | "vm_pageout_scan, replace object 0x%X offset 0x%X page 0x%X\n", | |
2765 | object, m->offset, m, 0,0); | |
2766 | ||
2767 | /* | |
2768 | * we've got a candidate page to steal... | |
2769 | * | |
2770 | * m->dirty is up to date courtesy of the | |
2771 | * preceding check for m->reference... if | |
2772 | * we get here, then m->reference had to be | |
2773 | * FALSE (or possibly "reactivate_limit" was | |
2774 | * exceeded), but in either case we called | |
2775 | * pmap_get_refmod() and updated both | |
2776 | * m->reference and m->dirty | |
2777 | * | |
2778 | * if it's dirty or precious we need to | |
2779 | * see if the target queue is throtttled | |
2780 | * it if is, we need to skip over it by moving it back | |
2781 | * to the end of the inactive queue | |
2782 | */ | |
2783 | ||
2784 | inactive_throttled = FALSE; | |
2785 | ||
2786 | if (m->dirty || m->precious) { | |
2787 | if (object->internal) { | |
2788 | if (VM_PAGE_Q_THROTTLED(iq)) | |
2789 | inactive_throttled = TRUE; | |
2790 | } else if (VM_PAGE_Q_THROTTLED(eq)) { | |
2791 | inactive_throttled = TRUE; | |
2792 | } | |
2793 | } | |
2794 | throttle_inactive: | |
2795 | if (!VM_DYNAMIC_PAGING_ENABLED(memory_manager_default) && | |
2796 | object->internal && m->dirty && | |
2797 | (object->purgable == VM_PURGABLE_DENY || | |
2798 | object->purgable == VM_PURGABLE_NONVOLATILE || | |
2799 | object->purgable == VM_PURGABLE_VOLATILE)) { | |
2800 | vm_page_check_pageable_safe(m); | |
2801 | queue_enter(&vm_page_queue_throttled, m, | |
2802 | vm_page_t, pageq); | |
2803 | m->throttled = TRUE; | |
2804 | vm_page_throttled_count++; | |
2805 | ||
2806 | vm_pageout_scan_reclaimed_throttled++; | |
2807 | ||
2808 | inactive_burst_count = 0; | |
2809 | goto done_with_inactivepage; | |
2810 | } | |
2811 | if (inactive_throttled == TRUE) { | |
2812 | ||
2813 | if (object->internal == FALSE) { | |
2814 | /* | |
2815 | * we need to break up the following potential deadlock case... | |
2816 | * a) The external pageout thread is stuck on the truncate lock for a file that is being extended i.e. written. | |
2817 | * b) The thread doing the writing is waiting for pages while holding the truncate lock | |
2818 | * c) Most of the pages in the inactive queue belong to this file. | |
2819 | * | |
2820 | * we are potentially in this deadlock because... | |
2821 | * a) the external pageout queue is throttled | |
2822 | * b) we're done with the active queue and moved on to the inactive queue | |
2823 | * c) we've got a dirty external page | |
2824 | * | |
2825 | * since we don't know the reason for the external pageout queue being throttled we | |
2826 | * must suspect that we are deadlocked, so move the current page onto the active queue | |
2827 | * in an effort to cause a page from the active queue to 'age' to the inactive queue | |
2828 | * | |
2829 | * if we don't have jetsam configured (i.e. we have a dynamic pager), set | |
2830 | * 'force_anonymous' to TRUE to cause us to grab a page from the cleaned/anonymous | |
2831 | * pool the next time we select a victim page... if we can make enough new free pages, | |
2832 | * the deadlock will break, the external pageout queue will empty and it will no longer | |
2833 | * be throttled | |
2834 | * | |
2835 | * if we have jestam configured, keep a count of the pages reactivated this way so | |
2836 | * that we can try to find clean pages in the active/inactive queues before | |
2837 | * deciding to jetsam a process | |
2838 | */ | |
2839 | vm_pageout_scan_inactive_throttled_external++; | |
2840 | ||
2841 | vm_page_check_pageable_safe(m); | |
2842 | queue_enter(&vm_page_queue_active, m, vm_page_t, pageq); | |
2843 | m->active = TRUE; | |
2844 | vm_page_active_count++; | |
2845 | vm_page_pageable_external_count++; | |
2846 | ||
2847 | vm_pageout_adjust_io_throttles(iq, eq, FALSE); | |
2848 | ||
2849 | #if CONFIG_MEMORYSTATUS && CONFIG_JETSAM | |
2850 | vm_pageout_inactive_external_forced_reactivate_limit--; | |
2851 | ||
2852 | if (vm_pageout_inactive_external_forced_reactivate_limit <= 0) { | |
2853 | vm_pageout_inactive_external_forced_reactivate_limit = vm_page_active_count + vm_page_inactive_count; | |
2854 | /* | |
2855 | * Possible deadlock scenario so request jetsam action | |
2856 | */ | |
2857 | assert(object); | |
2858 | vm_object_unlock(object); | |
2859 | object = VM_OBJECT_NULL; | |
2860 | vm_page_unlock_queues(); | |
2861 | ||
2862 | VM_DEBUG_CONSTANT_EVENT(vm_pageout_jetsam, VM_PAGEOUT_JETSAM, DBG_FUNC_START, | |
2863 | vm_page_active_count, vm_page_inactive_count, vm_page_free_count, vm_page_free_count); | |
2864 | ||
2865 | /* Kill first suitable process */ | |
2866 | if (memorystatus_kill_on_VM_page_shortage(FALSE) == FALSE) { | |
2867 | panic("vm_pageout_scan: Jetsam request failed\n"); | |
2868 | } | |
2869 | ||
2870 | VM_DEBUG_CONSTANT_EVENT(vm_pageout_jetsam, VM_PAGEOUT_JETSAM, DBG_FUNC_END, 0, 0, 0, 0); | |
2871 | ||
2872 | vm_pageout_inactive_external_forced_jetsam_count++; | |
2873 | vm_page_lock_queues(); | |
2874 | delayed_unlock = 1; | |
2875 | } | |
2876 | #else /* CONFIG_MEMORYSTATUS && CONFIG_JETSAM */ | |
2877 | force_anonymous = TRUE; | |
2878 | #endif | |
2879 | inactive_burst_count = 0; | |
2880 | goto done_with_inactivepage; | |
2881 | } else { | |
2882 | if (page_prev_state == PAGE_STATE_SPECULATIVE) | |
2883 | page_prev_state = PAGE_STATE_INACTIVE; | |
2884 | ||
2885 | vm_pageout_scan_inactive_throttled_internal++; | |
2886 | ||
2887 | goto must_activate_page; | |
2888 | } | |
2889 | } | |
2890 | ||
2891 | /* | |
2892 | * we've got a page that we can steal... | |
2893 | * eliminate all mappings and make sure | |
2894 | * we have the up-to-date modified state | |
2895 | * | |
2896 | * if we need to do a pmap_disconnect then we | |
2897 | * need to re-evaluate m->dirty since the pmap_disconnect | |
2898 | * provides the true state atomically... the | |
2899 | * page was still mapped up to the pmap_disconnect | |
2900 | * and may have been dirtied at the last microsecond | |
2901 | * | |
2902 | * Note that if 'pmapped' is FALSE then the page is not | |
2903 | * and has not been in any map, so there is no point calling | |
2904 | * pmap_disconnect(). m->dirty could have been set in anticipation | |
2905 | * of likely usage of the page. | |
2906 | */ | |
2907 | if (m->pmapped == TRUE) { | |
2908 | int pmap_options; | |
2909 | ||
2910 | /* | |
2911 | * Don't count this page as going into the compressor | |
2912 | * if any of these are true: | |
2913 | * 1) We have the dynamic pager i.e. no compressed pager | |
2914 | * 2) Freezer enabled device with a freezer file to | |
2915 | * hold the app data i.e. no compressed pager | |
2916 | * 3) Freezer enabled device with compressed pager | |
2917 | * backend (exclusive use) i.e. most of the VM system | |
2918 | * (including vm_pageout_scan) has no knowledge of | |
2919 | * the compressor | |
2920 | * 4) This page belongs to a file and hence will not be | |
2921 | * sent into the compressor | |
2922 | */ | |
2923 | if (DEFAULT_PAGER_IS_ACTIVE || | |
2924 | DEFAULT_FREEZER_IS_ACTIVE || | |
2925 | DEFAULT_FREEZER_COMPRESSED_PAGER_IS_SWAPLESS || | |
2926 | object->internal == FALSE) { | |
2927 | pmap_options = 0; | |
2928 | } else if (m->dirty || m->precious) { | |
2929 | /* | |
2930 | * VM knows that this page is dirty (or | |
2931 | * precious) and needs to be compressed | |
2932 | * rather than freed. | |
2933 | * Tell the pmap layer to count this page | |
2934 | * as "compressed". | |
2935 | */ | |
2936 | pmap_options = PMAP_OPTIONS_COMPRESSOR; | |
2937 | } else { | |
2938 | /* | |
2939 | * VM does not know if the page needs to | |
2940 | * be preserved but the pmap layer might tell | |
2941 | * us if any mapping has "modified" it. | |
2942 | * Let's the pmap layer to count this page | |
2943 | * as compressed if and only if it has been | |
2944 | * modified. | |
2945 | */ | |
2946 | pmap_options = | |
2947 | PMAP_OPTIONS_COMPRESSOR_IFF_MODIFIED; | |
2948 | } | |
2949 | refmod_state = pmap_disconnect_options(m->phys_page, | |
2950 | pmap_options, | |
2951 | NULL); | |
2952 | if (refmod_state & VM_MEM_MODIFIED) { | |
2953 | SET_PAGE_DIRTY(m, FALSE); | |
2954 | } | |
2955 | } | |
2956 | /* | |
2957 | * reset our count of pages that have been reclaimed | |
2958 | * since the last page was 'stolen' | |
2959 | */ | |
2960 | inactive_reclaim_run = 0; | |
2961 | ||
2962 | /* | |
2963 | * If it's clean and not precious, we can free the page. | |
2964 | */ | |
2965 | if (!m->dirty && !m->precious) { | |
2966 | ||
2967 | if (page_prev_state == PAGE_STATE_SPECULATIVE) | |
2968 | vm_pageout_speculative_clean++; | |
2969 | else { | |
2970 | if (page_prev_state == PAGE_STATE_ANONYMOUS) | |
2971 | vm_pageout_inactive_anonymous++; | |
2972 | else if (page_prev_state == PAGE_STATE_CLEAN) | |
2973 | vm_pageout_cleaned_reclaimed++; | |
2974 | ||
2975 | vm_pageout_inactive_clean++; | |
2976 | } | |
2977 | ||
2978 | /* | |
2979 | * OK, at this point we have found a page we are going to free. | |
2980 | */ | |
2981 | #if CONFIG_PHANTOM_CACHE | |
2982 | if (!object->internal) | |
2983 | vm_phantom_cache_add_ghost(m); | |
2984 | #endif | |
2985 | goto reclaim_page; | |
2986 | } | |
2987 | ||
2988 | /* | |
2989 | * The page may have been dirtied since the last check | |
2990 | * for a throttled target queue (which may have been skipped | |
2991 | * if the page was clean then). With the dirty page | |
2992 | * disconnected here, we can make one final check. | |
2993 | */ | |
2994 | if (object->internal) { | |
2995 | if (VM_PAGE_Q_THROTTLED(iq)) | |
2996 | inactive_throttled = TRUE; | |
2997 | } else if (VM_PAGE_Q_THROTTLED(eq)) { | |
2998 | inactive_throttled = TRUE; | |
2999 | } | |
3000 | ||
3001 | if (inactive_throttled == TRUE) | |
3002 | goto throttle_inactive; | |
3003 | ||
3004 | #if VM_PRESSURE_EVENTS | |
3005 | #if CONFIG_JETSAM | |
3006 | ||
3007 | /* | |
3008 | * If Jetsam is enabled, then the sending | |
3009 | * of memory pressure notifications is handled | |
3010 | * from the same thread that takes care of high-water | |
3011 | * and other jetsams i.e. the memorystatus_thread. | |
3012 | */ | |
3013 | ||
3014 | #else /* CONFIG_JETSAM */ | |
3015 | ||
3016 | vm_pressure_response(); | |
3017 | ||
3018 | #endif /* CONFIG_JETSAM */ | |
3019 | #endif /* VM_PRESSURE_EVENTS */ | |
3020 | ||
3021 | if (page_prev_state == PAGE_STATE_ANONYMOUS) | |
3022 | vm_pageout_inactive_anonymous++; | |
3023 | if (object->internal) | |
3024 | vm_pageout_inactive_dirty_internal++; | |
3025 | else | |
3026 | vm_pageout_inactive_dirty_external++; | |
3027 | ||
3028 | /* | |
3029 | * do NOT set the pageout bit! | |
3030 | * sure, we might need free pages, but this page is going to take time to become free | |
3031 | * anyway, so we may as well put it on the clean queue first and take it from there later | |
3032 | * if necessary. that way, we'll ensure we don't free up too much. -mj | |
3033 | */ | |
3034 | vm_pageout_cluster(m, FALSE, FALSE, FALSE); | |
3035 | ||
3036 | done_with_inactivepage: | |
3037 | ||
3038 | if (delayed_unlock++ > delayed_unlock_limit || try_failed == TRUE) { | |
3039 | boolean_t need_delay = TRUE; | |
3040 | ||
3041 | if (object != NULL) { | |
3042 | vm_pageout_scan_wants_object = VM_OBJECT_NULL; | |
3043 | vm_object_unlock(object); | |
3044 | object = NULL; | |
3045 | } | |
3046 | vm_page_unlock_queues(); | |
3047 | ||
3048 | if (local_freeq) { | |
3049 | ||
3050 | VM_DEBUG_EVENT(vm_pageout_freelist, VM_PAGEOUT_FREELIST, DBG_FUNC_START, | |
3051 | vm_page_free_count, local_freed, delayed_unlock_limit, 4); | |
3052 | ||
3053 | vm_page_free_list(local_freeq, TRUE); | |
3054 | ||
3055 | VM_DEBUG_EVENT(vm_pageout_freelist, VM_PAGEOUT_FREELIST, DBG_FUNC_END, | |
3056 | vm_page_free_count, local_freed, 0, 4); | |
3057 | ||
3058 | local_freeq = NULL; | |
3059 | local_freed = 0; | |
3060 | need_delay = FALSE; | |
3061 | } | |
3062 | vm_consider_waking_compactor_swapper(); | |
3063 | ||
3064 | vm_page_lock_queues(); | |
3065 | ||
3066 | if (need_delay == TRUE) | |
3067 | lck_mtx_yield(&vm_page_queue_lock); | |
3068 | ||
3069 | delayed_unlock = 1; | |
3070 | } | |
3071 | vm_pageout_considered_page++; | |
3072 | ||
3073 | /* | |
3074 | * back to top of pageout scan loop | |
3075 | */ | |
3076 | } | |
3077 | } | |
3078 | ||
3079 | ||
3080 | int vm_page_free_count_init; | |
3081 | ||
3082 | void | |
3083 | vm_page_free_reserve( | |
3084 | int pages) | |
3085 | { | |
3086 | int free_after_reserve; | |
3087 | ||
3088 | if (COMPRESSED_PAGER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE) { | |
3089 | ||
3090 | if ((vm_page_free_reserved + pages + COMPRESSOR_FREE_RESERVED_LIMIT) >= (VM_PAGE_FREE_RESERVED_LIMIT + COMPRESSOR_FREE_RESERVED_LIMIT)) | |
3091 | vm_page_free_reserved = VM_PAGE_FREE_RESERVED_LIMIT + COMPRESSOR_FREE_RESERVED_LIMIT; | |
3092 | else | |
3093 | vm_page_free_reserved += (pages + COMPRESSOR_FREE_RESERVED_LIMIT); | |
3094 | ||
3095 | } else { | |
3096 | if ((vm_page_free_reserved + pages) >= VM_PAGE_FREE_RESERVED_LIMIT) | |
3097 | vm_page_free_reserved = VM_PAGE_FREE_RESERVED_LIMIT; | |
3098 | else | |
3099 | vm_page_free_reserved += pages; | |
3100 | } | |
3101 | free_after_reserve = vm_page_free_count_init - vm_page_free_reserved; | |
3102 | ||
3103 | vm_page_free_min = vm_page_free_reserved + | |
3104 | VM_PAGE_FREE_MIN(free_after_reserve); | |
3105 | ||
3106 | if (vm_page_free_min > VM_PAGE_FREE_MIN_LIMIT) | |
3107 | vm_page_free_min = VM_PAGE_FREE_MIN_LIMIT; | |
3108 | ||
3109 | vm_page_free_target = vm_page_free_reserved + | |
3110 | VM_PAGE_FREE_TARGET(free_after_reserve); | |
3111 | ||
3112 | if (vm_page_free_target > VM_PAGE_FREE_TARGET_LIMIT) | |
3113 | vm_page_free_target = VM_PAGE_FREE_TARGET_LIMIT; | |
3114 | ||
3115 | if (vm_page_free_target < vm_page_free_min + 5) | |
3116 | vm_page_free_target = vm_page_free_min + 5; | |
3117 | ||
3118 | vm_page_throttle_limit = vm_page_free_target - (vm_page_free_target / 2); | |
3119 | } | |
3120 | ||
3121 | /* | |
3122 | * vm_pageout is the high level pageout daemon. | |
3123 | */ | |
3124 | ||
3125 | void | |
3126 | vm_pageout_continue(void) | |
3127 | { | |
3128 | DTRACE_VM2(pgrrun, int, 1, (uint64_t *), NULL); | |
3129 | vm_pageout_scan_event_counter++; | |
3130 | ||
3131 | lck_mtx_lock(&vm_page_queue_free_lock); | |
3132 | vm_pageout_running = TRUE; | |
3133 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
3134 | ||
3135 | vm_pageout_scan(); | |
3136 | /* | |
3137 | * we hold both the vm_page_queue_free_lock | |
3138 | * and the vm_page_queues_lock at this point | |
3139 | */ | |
3140 | assert(vm_page_free_wanted == 0); | |
3141 | assert(vm_page_free_wanted_privileged == 0); | |
3142 | assert_wait((event_t) &vm_page_free_wanted, THREAD_UNINT); | |
3143 | ||
3144 | vm_pageout_running = FALSE; | |
3145 | if (vm_pageout_waiter) { | |
3146 | vm_pageout_waiter = FALSE; | |
3147 | thread_wakeup((event_t)&vm_pageout_waiter); | |
3148 | } | |
3149 | ||
3150 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
3151 | vm_page_unlock_queues(); | |
3152 | ||
3153 | counter(c_vm_pageout_block++); | |
3154 | thread_block((thread_continue_t)vm_pageout_continue); | |
3155 | /*NOTREACHED*/ | |
3156 | } | |
3157 | ||
3158 | kern_return_t | |
3159 | vm_pageout_wait(uint64_t deadline) | |
3160 | { | |
3161 | kern_return_t kr; | |
3162 | ||
3163 | lck_mtx_lock(&vm_page_queue_free_lock); | |
3164 | for (kr = KERN_SUCCESS; vm_pageout_running && (KERN_SUCCESS == kr); ) { | |
3165 | vm_pageout_waiter = TRUE; | |
3166 | if (THREAD_AWAKENED != lck_mtx_sleep_deadline( | |
3167 | &vm_page_queue_free_lock, LCK_SLEEP_DEFAULT, | |
3168 | (event_t) &vm_pageout_waiter, THREAD_UNINT, deadline)) { | |
3169 | kr = KERN_OPERATION_TIMED_OUT; | |
3170 | } | |
3171 | } | |
3172 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
3173 | ||
3174 | return (kr); | |
3175 | } | |
3176 | ||
3177 | ||
3178 | #ifdef FAKE_DEADLOCK | |
3179 | ||
3180 | #define FAKE_COUNT 5000 | |
3181 | ||
3182 | int internal_count = 0; | |
3183 | int fake_deadlock = 0; | |
3184 | ||
3185 | #endif | |
3186 | ||
3187 | static void | |
3188 | vm_pageout_iothread_continue(struct vm_pageout_queue *q) | |
3189 | { | |
3190 | vm_page_t m = NULL; | |
3191 | vm_object_t object; | |
3192 | vm_object_offset_t offset; | |
3193 | memory_object_t pager; | |
3194 | thread_t self = current_thread(); | |
3195 | ||
3196 | if ((vm_pageout_internal_iothread != THREAD_NULL) | |
3197 | && (self == vm_pageout_external_iothread ) | |
3198 | && (self->options & TH_OPT_VMPRIV)) | |
3199 | self->options &= ~TH_OPT_VMPRIV; | |
3200 | ||
3201 | vm_page_lockspin_queues(); | |
3202 | ||
3203 | while ( !queue_empty(&q->pgo_pending) ) { | |
3204 | ||
3205 | q->pgo_busy = TRUE; | |
3206 | queue_remove_first(&q->pgo_pending, m, vm_page_t, pageq); | |
3207 | if (m->object->object_slid) { | |
3208 | panic("slid page %p not allowed on this path\n", m); | |
3209 | } | |
3210 | VM_PAGE_CHECK(m); | |
3211 | m->pageout_queue = FALSE; | |
3212 | m->pageq.next = NULL; | |
3213 | m->pageq.prev = NULL; | |
3214 | ||
3215 | /* | |
3216 | * grab a snapshot of the object and offset this | |
3217 | * page is tabled in so that we can relookup this | |
3218 | * page after we've taken the object lock - these | |
3219 | * fields are stable while we hold the page queues lock | |
3220 | * but as soon as we drop it, there is nothing to keep | |
3221 | * this page in this object... we hold an activity_in_progress | |
3222 | * on this object which will keep it from terminating | |
3223 | */ | |
3224 | object = m->object; | |
3225 | offset = m->offset; | |
3226 | ||
3227 | vm_page_unlock_queues(); | |
3228 | ||
3229 | #ifdef FAKE_DEADLOCK | |
3230 | if (q == &vm_pageout_queue_internal) { | |
3231 | vm_offset_t addr; | |
3232 | int pg_count; | |
3233 | ||
3234 | internal_count++; | |
3235 | ||
3236 | if ((internal_count == FAKE_COUNT)) { | |
3237 | ||
3238 | pg_count = vm_page_free_count + vm_page_free_reserved; | |
3239 | ||
3240 | if (kmem_alloc(kernel_map, &addr, PAGE_SIZE * pg_count) == KERN_SUCCESS) { | |
3241 | kmem_free(kernel_map, addr, PAGE_SIZE * pg_count); | |
3242 | } | |
3243 | internal_count = 0; | |
3244 | fake_deadlock++; | |
3245 | } | |
3246 | } | |
3247 | #endif | |
3248 | vm_object_lock(object); | |
3249 | ||
3250 | m = vm_page_lookup(object, offset); | |
3251 | ||
3252 | if (m == NULL || | |
3253 | m->busy || m->cleaning || m->pageout_queue || !m->laundry) { | |
3254 | /* | |
3255 | * it's either the same page that someone else has | |
3256 | * started cleaning (or it's finished cleaning or | |
3257 | * been put back on the pageout queue), or | |
3258 | * the page has been freed or we have found a | |
3259 | * new page at this offset... in all of these cases | |
3260 | * we merely need to release the activity_in_progress | |
3261 | * we took when we put the page on the pageout queue | |
3262 | */ | |
3263 | vm_object_activity_end(object); | |
3264 | vm_object_unlock(object); | |
3265 | ||
3266 | vm_page_lockspin_queues(); | |
3267 | continue; | |
3268 | } | |
3269 | if (!object->pager_initialized) { | |
3270 | ||
3271 | /* | |
3272 | * If there is no memory object for the page, create | |
3273 | * one and hand it to the default pager. | |
3274 | */ | |
3275 | ||
3276 | if (!object->pager_initialized) | |
3277 | vm_object_collapse(object, | |
3278 | (vm_object_offset_t) 0, | |
3279 | TRUE); | |
3280 | if (!object->pager_initialized) | |
3281 | vm_object_pager_create(object); | |
3282 | if (!object->pager_initialized) { | |
3283 | /* | |
3284 | * Still no pager for the object. | |
3285 | * Reactivate the page. | |
3286 | * | |
3287 | * Should only happen if there is no | |
3288 | * default pager. | |
3289 | */ | |
3290 | m->pageout = FALSE; | |
3291 | ||
3292 | vm_page_lockspin_queues(); | |
3293 | ||
3294 | vm_pageout_throttle_up(m); | |
3295 | vm_page_activate(m); | |
3296 | vm_pageout_dirty_no_pager++; | |
3297 | ||
3298 | vm_page_unlock_queues(); | |
3299 | ||
3300 | /* | |
3301 | * And we are done with it. | |
3302 | */ | |
3303 | vm_object_activity_end(object); | |
3304 | vm_object_unlock(object); | |
3305 | ||
3306 | vm_page_lockspin_queues(); | |
3307 | continue; | |
3308 | } | |
3309 | } | |
3310 | pager = object->pager; | |
3311 | ||
3312 | if (pager == MEMORY_OBJECT_NULL) { | |
3313 | /* | |
3314 | * This pager has been destroyed by either | |
3315 | * memory_object_destroy or vm_object_destroy, and | |
3316 | * so there is nowhere for the page to go. | |
3317 | */ | |
3318 | if (m->pageout) { | |
3319 | /* | |
3320 | * Just free the page... VM_PAGE_FREE takes | |
3321 | * care of cleaning up all the state... | |
3322 | * including doing the vm_pageout_throttle_up | |
3323 | */ | |
3324 | VM_PAGE_FREE(m); | |
3325 | } else { | |
3326 | vm_page_lockspin_queues(); | |
3327 | ||
3328 | vm_pageout_throttle_up(m); | |
3329 | vm_page_activate(m); | |
3330 | ||
3331 | vm_page_unlock_queues(); | |
3332 | ||
3333 | /* | |
3334 | * And we are done with it. | |
3335 | */ | |
3336 | } | |
3337 | vm_object_activity_end(object); | |
3338 | vm_object_unlock(object); | |
3339 | ||
3340 | vm_page_lockspin_queues(); | |
3341 | continue; | |
3342 | } | |
3343 | #if 0 | |
3344 | /* | |
3345 | * we don't hold the page queue lock | |
3346 | * so this check isn't safe to make | |
3347 | */ | |
3348 | VM_PAGE_CHECK(m); | |
3349 | #endif | |
3350 | /* | |
3351 | * give back the activity_in_progress reference we | |
3352 | * took when we queued up this page and replace it | |
3353 | * it with a paging_in_progress reference that will | |
3354 | * also hold the paging offset from changing and | |
3355 | * prevent the object from terminating | |
3356 | */ | |
3357 | vm_object_activity_end(object); | |
3358 | vm_object_paging_begin(object); | |
3359 | vm_object_unlock(object); | |
3360 | ||
3361 | /* | |
3362 | * Send the data to the pager. | |
3363 | * any pageout clustering happens there | |
3364 | */ | |
3365 | memory_object_data_return(pager, | |
3366 | m->offset + object->paging_offset, | |
3367 | PAGE_SIZE, | |
3368 | NULL, | |
3369 | NULL, | |
3370 | FALSE, | |
3371 | FALSE, | |
3372 | 0); | |
3373 | ||
3374 | vm_object_lock(object); | |
3375 | vm_object_paging_end(object); | |
3376 | vm_object_unlock(object); | |
3377 | ||
3378 | vm_pageout_io_throttle(); | |
3379 | ||
3380 | vm_page_lockspin_queues(); | |
3381 | } | |
3382 | q->pgo_busy = FALSE; | |
3383 | q->pgo_idle = TRUE; | |
3384 | ||
3385 | assert_wait((event_t) &q->pgo_pending, THREAD_UNINT); | |
3386 | vm_page_unlock_queues(); | |
3387 | ||
3388 | thread_block_parameter((thread_continue_t)vm_pageout_iothread_continue, (void *) q); | |
3389 | /*NOTREACHED*/ | |
3390 | } | |
3391 | ||
3392 | ||
3393 | static void | |
3394 | vm_pageout_iothread_external_continue(struct vm_pageout_queue *q) | |
3395 | { | |
3396 | vm_page_t m = NULL; | |
3397 | vm_object_t object; | |
3398 | vm_object_offset_t offset; | |
3399 | memory_object_t pager; | |
3400 | ||
3401 | ||
3402 | if (vm_pageout_internal_iothread != THREAD_NULL) | |
3403 | current_thread()->options &= ~TH_OPT_VMPRIV; | |
3404 | ||
3405 | vm_page_lockspin_queues(); | |
3406 | ||
3407 | while ( !queue_empty(&q->pgo_pending) ) { | |
3408 | ||
3409 | q->pgo_busy = TRUE; | |
3410 | queue_remove_first(&q->pgo_pending, m, vm_page_t, pageq); | |
3411 | if (m->object->object_slid) { | |
3412 | panic("slid page %p not allowed on this path\n", m); | |
3413 | } | |
3414 | VM_PAGE_CHECK(m); | |
3415 | m->pageout_queue = FALSE; | |
3416 | m->pageq.next = NULL; | |
3417 | m->pageq.prev = NULL; | |
3418 | ||
3419 | /* | |
3420 | * grab a snapshot of the object and offset this | |
3421 | * page is tabled in so that we can relookup this | |
3422 | * page after we've taken the object lock - these | |
3423 | * fields are stable while we hold the page queues lock | |
3424 | * but as soon as we drop it, there is nothing to keep | |
3425 | * this page in this object... we hold an activity_in_progress | |
3426 | * on this object which will keep it from terminating | |
3427 | */ | |
3428 | object = m->object; | |
3429 | offset = m->offset; | |
3430 | ||
3431 | vm_page_unlock_queues(); | |
3432 | ||
3433 | vm_object_lock(object); | |
3434 | ||
3435 | m = vm_page_lookup(object, offset); | |
3436 | ||
3437 | if (m == NULL || | |
3438 | m->busy || m->cleaning || m->pageout_queue || !m->laundry) { | |
3439 | /* | |
3440 | * it's either the same page that someone else has | |
3441 | * started cleaning (or it's finished cleaning or | |
3442 | * been put back on the pageout queue), or | |
3443 | * the page has been freed or we have found a | |
3444 | * new page at this offset... in all of these cases | |
3445 | * we merely need to release the activity_in_progress | |
3446 | * we took when we put the page on the pageout queue | |
3447 | */ | |
3448 | vm_object_activity_end(object); | |
3449 | vm_object_unlock(object); | |
3450 | ||
3451 | vm_page_lockspin_queues(); | |
3452 | continue; | |
3453 | } | |
3454 | pager = object->pager; | |
3455 | ||
3456 | if (pager == MEMORY_OBJECT_NULL) { | |
3457 | /* | |
3458 | * This pager has been destroyed by either | |
3459 | * memory_object_destroy or vm_object_destroy, and | |
3460 | * so there is nowhere for the page to go. | |
3461 | */ | |
3462 | if (m->pageout) { | |
3463 | /* | |
3464 | * Just free the page... VM_PAGE_FREE takes | |
3465 | * care of cleaning up all the state... | |
3466 | * including doing the vm_pageout_throttle_up | |
3467 | */ | |
3468 | VM_PAGE_FREE(m); | |
3469 | } else { | |
3470 | vm_page_lockspin_queues(); | |
3471 | ||
3472 | vm_pageout_throttle_up(m); | |
3473 | vm_page_activate(m); | |
3474 | ||
3475 | vm_page_unlock_queues(); | |
3476 | ||
3477 | /* | |
3478 | * And we are done with it. | |
3479 | */ | |
3480 | } | |
3481 | vm_object_activity_end(object); | |
3482 | vm_object_unlock(object); | |
3483 | ||
3484 | vm_page_lockspin_queues(); | |
3485 | continue; | |
3486 | } | |
3487 | #if 0 | |
3488 | /* | |
3489 | * we don't hold the page queue lock | |
3490 | * so this check isn't safe to make | |
3491 | */ | |
3492 | VM_PAGE_CHECK(m); | |
3493 | #endif | |
3494 | /* | |
3495 | * give back the activity_in_progress reference we | |
3496 | * took when we queued up this page and replace it | |
3497 | * it with a paging_in_progress reference that will | |
3498 | * also hold the paging offset from changing and | |
3499 | * prevent the object from terminating | |
3500 | */ | |
3501 | vm_object_activity_end(object); | |
3502 | vm_object_paging_begin(object); | |
3503 | vm_object_unlock(object); | |
3504 | ||
3505 | /* | |
3506 | * Send the data to the pager. | |
3507 | * any pageout clustering happens there | |
3508 | */ | |
3509 | memory_object_data_return(pager, | |
3510 | m->offset + object->paging_offset, | |
3511 | PAGE_SIZE, | |
3512 | NULL, | |
3513 | NULL, | |
3514 | FALSE, | |
3515 | FALSE, | |
3516 | 0); | |
3517 | ||
3518 | vm_object_lock(object); | |
3519 | vm_object_paging_end(object); | |
3520 | vm_object_unlock(object); | |
3521 | ||
3522 | vm_pageout_io_throttle(); | |
3523 | ||
3524 | vm_page_lockspin_queues(); | |
3525 | } | |
3526 | q->pgo_busy = FALSE; | |
3527 | q->pgo_idle = TRUE; | |
3528 | ||
3529 | assert_wait((event_t) &q->pgo_pending, THREAD_UNINT); | |
3530 | vm_page_unlock_queues(); | |
3531 | ||
3532 | thread_block_parameter((thread_continue_t)vm_pageout_iothread_external_continue, (void *) q); | |
3533 | /*NOTREACHED*/ | |
3534 | } | |
3535 | ||
3536 | ||
3537 | uint32_t vm_compressor_failed; | |
3538 | ||
3539 | #define MAX_FREE_BATCH 32 | |
3540 | ||
3541 | static void | |
3542 | vm_pageout_iothread_internal_continue(struct cq *cq) | |
3543 | { | |
3544 | struct vm_pageout_queue *q; | |
3545 | vm_page_t m = NULL; | |
3546 | boolean_t pgo_draining; | |
3547 | vm_page_t local_q; | |
3548 | int local_cnt; | |
3549 | vm_page_t local_freeq = NULL; | |
3550 | int local_freed = 0; | |
3551 | int local_batch_size; | |
3552 | ||
3553 | ||
3554 | KERNEL_DEBUG(0xe040000c | DBG_FUNC_END, 0, 0, 0, 0, 0); | |
3555 | ||
3556 | q = cq->q; | |
3557 | local_batch_size = q->pgo_maxlaundry / (vm_compressor_thread_count * 2); | |
3558 | ||
3559 | #if RECORD_THE_COMPRESSED_DATA | |
3560 | if (q->pgo_laundry) | |
3561 | c_compressed_record_init(); | |
3562 | #endif | |
3563 | while (TRUE) { | |
3564 | int pages_left_on_q = 0; | |
3565 | ||
3566 | local_cnt = 0; | |
3567 | local_q = NULL; | |
3568 | ||
3569 | KERNEL_DEBUG(0xe0400014 | DBG_FUNC_START, 0, 0, 0, 0, 0); | |
3570 | ||
3571 | vm_page_lock_queues(); | |
3572 | ||
3573 | KERNEL_DEBUG(0xe0400014 | DBG_FUNC_END, 0, 0, 0, 0, 0); | |
3574 | ||
3575 | KERNEL_DEBUG(0xe0400018 | DBG_FUNC_START, q->pgo_laundry, 0, 0, 0, 0); | |
3576 | ||
3577 | while ( !queue_empty(&q->pgo_pending) && local_cnt < local_batch_size) { | |
3578 | ||
3579 | queue_remove_first(&q->pgo_pending, m, vm_page_t, pageq); | |
3580 | ||
3581 | VM_PAGE_CHECK(m); | |
3582 | ||
3583 | m->pageout_queue = FALSE; | |
3584 | m->pageq.prev = NULL; | |
3585 | ||
3586 | m->pageq.next = (queue_entry_t)local_q; | |
3587 | local_q = m; | |
3588 | local_cnt++; | |
3589 | } | |
3590 | if (local_q == NULL) | |
3591 | break; | |
3592 | ||
3593 | q->pgo_busy = TRUE; | |
3594 | ||
3595 | if ((pgo_draining = q->pgo_draining) == FALSE) { | |
3596 | vm_pageout_throttle_up_batch(q, local_cnt); | |
3597 | pages_left_on_q = q->pgo_laundry; | |
3598 | } else | |
3599 | pages_left_on_q = q->pgo_laundry - local_cnt; | |
3600 | ||
3601 | vm_page_unlock_queues(); | |
3602 | ||
3603 | #if !RECORD_THE_COMPRESSED_DATA | |
3604 | if (pages_left_on_q >= local_batch_size && cq->id < (vm_compressor_thread_count - 1)) | |
3605 | thread_wakeup((event_t) ((uintptr_t)&q->pgo_pending + cq->id + 1)); | |
3606 | #endif | |
3607 | KERNEL_DEBUG(0xe0400018 | DBG_FUNC_END, q->pgo_laundry, 0, 0, 0, 0); | |
3608 | ||
3609 | while (local_q) { | |
3610 | ||
3611 | KERNEL_DEBUG(0xe0400024 | DBG_FUNC_START, local_cnt, 0, 0, 0, 0); | |
3612 | ||
3613 | m = local_q; | |
3614 | local_q = (vm_page_t)m->pageq.next; | |
3615 | m->pageq.next = NULL; | |
3616 | ||
3617 | if (vm_pageout_compress_page(&cq->current_chead, cq->scratch_buf, m, FALSE) == KERN_SUCCESS) { | |
3618 | ||
3619 | m->pageq.next = (queue_entry_t)local_freeq; | |
3620 | local_freeq = m; | |
3621 | local_freed++; | |
3622 | ||
3623 | if (local_freed >= MAX_FREE_BATCH) { | |
3624 | ||
3625 | vm_page_free_list(local_freeq, TRUE); | |
3626 | local_freeq = NULL; | |
3627 | local_freed = 0; | |
3628 | } | |
3629 | } | |
3630 | #if !CONFIG_JETSAM | |
3631 | while (vm_page_free_count < COMPRESSOR_FREE_RESERVED_LIMIT) { | |
3632 | kern_return_t wait_result; | |
3633 | int need_wakeup = 0; | |
3634 | ||
3635 | if (local_freeq) { | |
3636 | vm_page_free_list(local_freeq, TRUE); | |
3637 | ||
3638 | local_freeq = NULL; | |
3639 | local_freed = 0; | |
3640 | ||
3641 | continue; | |
3642 | } | |
3643 | lck_mtx_lock_spin(&vm_page_queue_free_lock); | |
3644 | ||
3645 | if (vm_page_free_count < COMPRESSOR_FREE_RESERVED_LIMIT) { | |
3646 | ||
3647 | if (vm_page_free_wanted_privileged++ == 0) | |
3648 | need_wakeup = 1; | |
3649 | wait_result = assert_wait((event_t)&vm_page_free_wanted_privileged, THREAD_UNINT); | |
3650 | ||
3651 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
3652 | ||
3653 | if (need_wakeup) | |
3654 | thread_wakeup((event_t)&vm_page_free_wanted); | |
3655 | ||
3656 | if (wait_result == THREAD_WAITING) | |
3657 | ||
3658 | thread_block(THREAD_CONTINUE_NULL); | |
3659 | } else | |
3660 | lck_mtx_unlock(&vm_page_queue_free_lock); | |
3661 | } | |
3662 | #endif | |
3663 | } | |
3664 | if (local_freeq) { | |
3665 | vm_page_free_list(local_freeq, TRUE); | |
3666 | ||
3667 | local_freeq = NULL; | |
3668 | local_freed = 0; | |
3669 | } | |
3670 | if (pgo_draining == TRUE) { | |
3671 | vm_page_lockspin_queues(); | |
3672 | vm_pageout_throttle_up_batch(q, local_cnt); | |
3673 | vm_page_unlock_queues(); | |
3674 | } | |
3675 | } | |
3676 | KERNEL_DEBUG(0xe040000c | DBG_FUNC_START, 0, 0, 0, 0, 0); | |
3677 | ||
3678 | /* | |
3679 | * queue lock is held and our q is empty | |
3680 | */ | |
3681 | q->pgo_busy = FALSE; | |
3682 | q->pgo_idle = TRUE; | |
3683 | ||
3684 | assert_wait((event_t) ((uintptr_t)&q->pgo_pending + cq->id), THREAD_UNINT); | |
3685 | vm_page_unlock_queues(); | |
3686 | ||
3687 | KERNEL_DEBUG(0xe0400018 | DBG_FUNC_END, 0, 0, 0, 0, 0); | |
3688 | ||
3689 | thread_block_parameter((thread_continue_t)vm_pageout_iothread_internal_continue, (void *) cq); | |
3690 | /*NOTREACHED*/ | |
3691 | } | |
3692 | ||
3693 | ||
3694 | ||
3695 | static void | |
3696 | vm_pageout_immediate(vm_page_t m, boolean_t object_locked_by_caller) | |
3697 | { | |
3698 | assert(vm_pageout_immediate_scratch_buf); | |
3699 | ||
3700 | if (vm_pageout_compress_page(&vm_pageout_immediate_chead, vm_pageout_immediate_scratch_buf, m, object_locked_by_caller) == KERN_SUCCESS) { | |
3701 | ||
3702 | vm_page_free_prepare_object(m, TRUE); | |
3703 | vm_page_release(m); | |
3704 | } | |
3705 | } | |
3706 | ||
3707 | ||
3708 | kern_return_t | |
3709 | vm_pageout_compress_page(void **current_chead, char *scratch_buf, vm_page_t m, boolean_t object_locked_by_caller) | |
3710 | { | |
3711 | vm_object_t object; | |
3712 | memory_object_t pager; | |
3713 | int compressed_count_delta; | |
3714 | kern_return_t retval; | |
3715 | ||
3716 | if (m->object->object_slid) { | |
3717 | panic("slid page %p not allowed on this path\n", m); | |
3718 | } | |
3719 | ||
3720 | object = m->object; | |
3721 | pager = object->pager; | |
3722 | ||
3723 | if (object_locked_by_caller == FALSE && (!object->pager_initialized || pager == MEMORY_OBJECT_NULL)) { | |
3724 | ||
3725 | KERNEL_DEBUG(0xe0400010 | DBG_FUNC_START, object, pager, 0, 0, 0); | |
3726 | ||
3727 | vm_object_lock(object); | |
3728 | ||
3729 | /* | |
3730 | * If there is no memory object for the page, create | |
3731 | * one and hand it to the compression pager. | |
3732 | */ | |
3733 | ||
3734 | if (!object->pager_initialized) | |
3735 | vm_object_collapse(object, (vm_object_offset_t) 0, TRUE); | |
3736 | if (!object->pager_initialized) | |
3737 | vm_object_compressor_pager_create(object); | |
3738 | ||
3739 | if (!object->pager_initialized) { | |
3740 | /* | |
3741 | * Still no pager for the object. | |
3742 | * Reactivate the page. | |
3743 | * | |
3744 | * Should only happen if there is no | |
3745 | * compression pager | |
3746 | */ | |
3747 | m->pageout = FALSE; | |
3748 | m->laundry = FALSE; | |
3749 | PAGE_WAKEUP_DONE(m); | |
3750 | ||
3751 | vm_page_lockspin_queues(); | |
3752 | vm_page_activate(m); | |
3753 | vm_pageout_dirty_no_pager++; | |
3754 | vm_page_unlock_queues(); | |
3755 | ||
3756 | /* | |
3757 | * And we are done with it. | |
3758 | */ | |
3759 | vm_object_activity_end(object); | |
3760 | vm_object_unlock(object); | |
3761 | ||
3762 | return KERN_FAILURE; | |
3763 | } | |
3764 | pager = object->pager; | |
3765 | ||
3766 | if (pager == MEMORY_OBJECT_NULL) { | |
3767 | /* | |
3768 | * This pager has been destroyed by either | |
3769 | * memory_object_destroy or vm_object_destroy, and | |
3770 | * so there is nowhere for the page to go. | |
3771 | */ | |
3772 | if (m->pageout) { | |
3773 | /* | |
3774 | * Just free the page... VM_PAGE_FREE takes | |
3775 | * care of cleaning up all the state... | |
3776 | * including doing the vm_pageout_throttle_up | |
3777 | */ | |
3778 | VM_PAGE_FREE(m); | |
3779 | } else { | |
3780 | m->laundry = FALSE; | |
3781 | PAGE_WAKEUP_DONE(m); | |
3782 | ||
3783 | vm_page_lockspin_queues(); | |
3784 | vm_page_activate(m); | |
3785 | vm_page_unlock_queues(); | |
3786 | ||
3787 | /* | |
3788 | * And we are done with it. | |
3789 | */ | |
3790 | } | |
3791 | vm_object_activity_end(object); | |
3792 | vm_object_unlock(object); | |
3793 | ||
3794 | return KERN_FAILURE; | |
3795 | } | |
3796 | vm_object_unlock(object); | |
3797 | ||
3798 | KERNEL_DEBUG(0xe0400010 | DBG_FUNC_END, object, pager, 0, 0, 0); | |
3799 | } | |
3800 | assert(object->pager_initialized && pager != MEMORY_OBJECT_NULL); | |
3801 | ||
3802 | if (object_locked_by_caller == FALSE) | |
3803 | assert(object->activity_in_progress > 0); | |
3804 | ||
3805 | retval = vm_compressor_pager_put( | |
3806 | pager, | |
3807 | m->offset + object->paging_offset, | |
3808 | m->phys_page, | |
3809 | current_chead, | |
3810 | scratch_buf, | |
3811 | &compressed_count_delta); | |
3812 | ||
3813 | if (object_locked_by_caller == FALSE) { | |
3814 | vm_object_lock(object); | |
3815 | ||
3816 | assert(object->activity_in_progress > 0); | |
3817 | assert(m->object == object); | |
3818 | } | |
3819 | ||
3820 | vm_compressor_pager_count(pager, | |
3821 | compressed_count_delta, | |
3822 | FALSE, /* shared_lock */ | |
3823 | object); | |
3824 | ||
3825 | m->laundry = FALSE; | |
3826 | m->pageout = FALSE; | |
3827 | ||
3828 | if (retval == KERN_SUCCESS) { | |
3829 | /* | |
3830 | * If the object is purgeable, its owner's | |
3831 | * purgeable ledgers will be updated in | |
3832 | * vm_page_remove() but the page still | |
3833 | * contributes to the owner's memory footprint, | |
3834 | * so account for it as such. | |
3835 | */ | |
3836 | if (object->purgable != VM_PURGABLE_DENY && | |
3837 | object->vo_purgeable_owner != NULL) { | |
3838 | /* one more compressed purgeable page */ | |
3839 | vm_purgeable_compressed_update(object, | |
3840 | +1); | |
3841 | } | |
3842 | VM_STAT_INCR(compressions); | |
3843 | ||
3844 | if (m->tabled) | |
3845 | vm_page_remove(m, TRUE); | |
3846 | ||
3847 | } else { | |
3848 | PAGE_WAKEUP_DONE(m); | |
3849 | ||
3850 | vm_page_lockspin_queues(); | |
3851 | ||
3852 | vm_page_activate(m); | |
3853 | vm_compressor_failed++; | |
3854 | ||
3855 | vm_page_unlock_queues(); | |
3856 | } | |
3857 | if (object_locked_by_caller == FALSE) { | |
3858 | vm_object_activity_end(object); | |
3859 | vm_object_unlock(object); | |
3860 | } | |
3861 | return retval; | |
3862 | } | |
3863 | ||
3864 | ||
3865 | static void | |
3866 | vm_pageout_adjust_io_throttles(struct vm_pageout_queue *iq, struct vm_pageout_queue *eq, boolean_t req_lowpriority) | |
3867 | { | |
3868 | uint32_t policy; | |
3869 | boolean_t set_iq = FALSE; | |
3870 | boolean_t set_eq = FALSE; | |
3871 | ||
3872 | if (hibernate_cleaning_in_progress == TRUE) | |
3873 | req_lowpriority = FALSE; | |
3874 | ||
3875 | if ((DEFAULT_PAGER_IS_ACTIVE || DEFAULT_FREEZER_IS_ACTIVE) && iq->pgo_inited == TRUE && iq->pgo_lowpriority != req_lowpriority) | |
3876 | set_iq = TRUE; | |
3877 | ||
3878 | if (eq->pgo_inited == TRUE && eq->pgo_lowpriority != req_lowpriority) | |
3879 | set_eq = TRUE; | |
3880 | ||
3881 | if (set_iq == TRUE || set_eq == TRUE) { | |
3882 | ||
3883 | vm_page_unlock_queues(); | |
3884 | ||
3885 | if (req_lowpriority == TRUE) { | |
3886 | policy = THROTTLE_LEVEL_PAGEOUT_THROTTLED; | |
3887 | DTRACE_VM(laundrythrottle); | |
3888 | } else { | |
3889 | policy = THROTTLE_LEVEL_PAGEOUT_UNTHROTTLED; | |
3890 | DTRACE_VM(laundryunthrottle); | |
3891 | } | |
3892 | if (set_iq == TRUE) { | |
3893 | proc_set_task_policy_thread(kernel_task, iq->pgo_tid, TASK_POLICY_EXTERNAL, TASK_POLICY_IO, policy); | |
3894 | ||
3895 | iq->pgo_lowpriority = req_lowpriority; | |
3896 | } | |
3897 | if (set_eq == TRUE) { | |
3898 | proc_set_task_policy_thread(kernel_task, eq->pgo_tid, TASK_POLICY_EXTERNAL, TASK_POLICY_IO, policy); | |
3899 | ||
3900 | eq->pgo_lowpriority = req_lowpriority; | |
3901 | } | |
3902 | vm_page_lock_queues(); | |
3903 | } | |
3904 | } | |
3905 | ||
3906 | ||
3907 | static void | |
3908 | vm_pageout_iothread_external(void) | |
3909 | { | |
3910 | thread_t self = current_thread(); | |
3911 | ||
3912 | self->options |= TH_OPT_VMPRIV; | |
3913 | ||
3914 | DTRACE_VM2(laundrythrottle, int, 1, (uint64_t *), NULL); | |
3915 | ||
3916 | proc_set_task_policy_thread(kernel_task, self->thread_id, TASK_POLICY_EXTERNAL, | |
3917 | TASK_POLICY_IO, THROTTLE_LEVEL_PAGEOUT_THROTTLED); | |
3918 | ||
3919 | vm_page_lock_queues(); | |
3920 | ||
3921 | vm_pageout_queue_external.pgo_tid = self->thread_id; | |
3922 | vm_pageout_queue_external.pgo_lowpriority = TRUE; | |
3923 | vm_pageout_queue_external.pgo_inited = TRUE; | |
3924 | ||
3925 | vm_page_unlock_queues(); | |
3926 | ||
3927 | if (COMPRESSED_PAGER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE) | |
3928 | vm_pageout_iothread_external_continue(&vm_pageout_queue_external); | |
3929 | else | |
3930 | vm_pageout_iothread_continue(&vm_pageout_queue_external); | |
3931 | ||
3932 | /*NOTREACHED*/ | |
3933 | } | |
3934 | ||
3935 | ||
3936 | static void | |
3937 | vm_pageout_iothread_internal(struct cq *cq) | |
3938 | { | |
3939 | thread_t self = current_thread(); | |
3940 | ||
3941 | self->options |= TH_OPT_VMPRIV; | |
3942 | ||
3943 | if (DEFAULT_PAGER_IS_ACTIVE || DEFAULT_FREEZER_IS_ACTIVE) { | |
3944 | DTRACE_VM2(laundrythrottle, int, 1, (uint64_t *), NULL); | |
3945 | ||
3946 | proc_set_task_policy_thread(kernel_task, self->thread_id, TASK_POLICY_EXTERNAL, | |
3947 | TASK_POLICY_IO, THROTTLE_LEVEL_PAGEOUT_THROTTLED); | |
3948 | } | |
3949 | vm_page_lock_queues(); | |
3950 | ||
3951 | vm_pageout_queue_internal.pgo_tid = self->thread_id; | |
3952 | vm_pageout_queue_internal.pgo_lowpriority = TRUE; | |
3953 | vm_pageout_queue_internal.pgo_inited = TRUE; | |
3954 | ||
3955 | vm_page_unlock_queues(); | |
3956 | ||
3957 | if (COMPRESSED_PAGER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE) { | |
3958 | ||
3959 | if (vm_restricted_to_single_processor == TRUE) | |
3960 | thread_vm_bind_group_add(); | |
3961 | ||
3962 | vm_pageout_iothread_internal_continue(cq); | |
3963 | } else | |
3964 | vm_pageout_iothread_continue(&vm_pageout_queue_internal); | |
3965 | ||
3966 | /*NOTREACHED*/ | |
3967 | } | |
3968 | ||
3969 | kern_return_t | |
3970 | vm_set_buffer_cleanup_callout(boolean_t (*func)(int)) | |
3971 | { | |
3972 | if (OSCompareAndSwapPtr(NULL, func, (void * volatile *) &consider_buffer_cache_collect)) { | |
3973 | return KERN_SUCCESS; | |
3974 | } else { | |
3975 | return KERN_FAILURE; /* Already set */ | |
3976 | } | |
3977 | } | |
3978 | ||
3979 | extern boolean_t memorystatus_manual_testing_on; | |
3980 | extern unsigned int memorystatus_level; | |
3981 | ||
3982 | ||
3983 | #if VM_PRESSURE_EVENTS | |
3984 | ||
3985 | boolean_t vm_pressure_events_enabled = FALSE; | |
3986 | ||
3987 | void | |
3988 | vm_pressure_response(void) | |
3989 | { | |
3990 | ||
3991 | vm_pressure_level_t old_level = kVMPressureNormal; | |
3992 | int new_level = -1; | |
3993 | ||
3994 | uint64_t available_memory = 0; | |
3995 | ||
3996 | if (vm_pressure_events_enabled == FALSE) | |
3997 | return; | |
3998 | ||
3999 | ||
4000 | available_memory = (((uint64_t) AVAILABLE_NON_COMPRESSED_MEMORY) * 100); | |
4001 | ||
4002 | ||
4003 | memorystatus_level = (unsigned int) (available_memory / atop_64(max_mem)); | |
4004 | ||
4005 | if (memorystatus_manual_testing_on) { | |
4006 | return; | |
4007 | } | |
4008 | ||
4009 | old_level = memorystatus_vm_pressure_level; | |
4010 | ||
4011 | switch (memorystatus_vm_pressure_level) { | |
4012 | ||
4013 | case kVMPressureNormal: | |
4014 | { | |
4015 | if (VM_PRESSURE_WARNING_TO_CRITICAL()) { | |
4016 | new_level = kVMPressureCritical; | |
4017 | } else if (VM_PRESSURE_NORMAL_TO_WARNING()) { | |
4018 | new_level = kVMPressureWarning; | |
4019 | } | |
4020 | break; | |
4021 | } | |
4022 | ||
4023 | case kVMPressureWarning: | |
4024 | case kVMPressureUrgent: | |
4025 | { | |
4026 | if (VM_PRESSURE_WARNING_TO_NORMAL()) { | |
4027 | new_level = kVMPressureNormal; | |
4028 | } else if (VM_PRESSURE_WARNING_TO_CRITICAL()) { | |
4029 | new_level = kVMPressureCritical; | |
4030 | } | |
4031 | break; | |
4032 | } | |
4033 | ||
4034 | case kVMPressureCritical: | |
4035 | { | |
4036 | if (VM_PRESSURE_WARNING_TO_NORMAL()) { | |
4037 | new_level = kVMPressureNormal; | |
4038 | } else if (VM_PRESSURE_CRITICAL_TO_WARNING()) { | |
4039 | new_level = kVMPressureWarning; | |
4040 | } | |
4041 | break; | |
4042 | } | |
4043 | ||
4044 | default: | |
4045 | return; | |
4046 | } | |
4047 | ||
4048 | if (new_level != -1) { | |
4049 | memorystatus_vm_pressure_level = (vm_pressure_level_t) new_level; | |
4050 | ||
4051 | if ((memorystatus_vm_pressure_level != kVMPressureNormal) || (old_level != new_level)) { | |
4052 | if (vm_pressure_thread_running == FALSE) { | |
4053 | thread_wakeup(&vm_pressure_thread); | |
4054 | } | |
4055 | ||
4056 | if (old_level != new_level) { | |
4057 | thread_wakeup(&vm_pressure_changed); | |
4058 | } | |
4059 | } | |
4060 | } | |
4061 | ||
4062 | } | |
4063 | #endif /* VM_PRESSURE_EVENTS */ | |
4064 | ||
4065 | kern_return_t | |
4066 | mach_vm_pressure_level_monitor(__unused boolean_t wait_for_pressure, __unused unsigned int *pressure_level) { | |
4067 | ||
4068 | #if !VM_PRESSURE_EVENTS | |
4069 | ||
4070 | return KERN_FAILURE; | |
4071 | ||
4072 | #else /* VM_PRESSURE_EVENTS */ | |
4073 | ||
4074 | kern_return_t kr = KERN_SUCCESS; | |
4075 | ||
4076 | if (pressure_level != NULL) { | |
4077 | ||
4078 | vm_pressure_level_t old_level = memorystatus_vm_pressure_level; | |
4079 | ||
4080 | if (wait_for_pressure == TRUE) { | |
4081 | wait_result_t wr = 0; | |
4082 | ||
4083 | while (old_level == *pressure_level) { | |
4084 | wr = assert_wait((event_t) &vm_pressure_changed, | |
4085 | THREAD_INTERRUPTIBLE); | |
4086 | if (wr == THREAD_WAITING) { | |
4087 | wr = thread_block(THREAD_CONTINUE_NULL); | |
4088 | } | |
4089 | if (wr == THREAD_INTERRUPTED) { | |
4090 | return KERN_ABORTED; | |
4091 | } | |
4092 | if (wr == THREAD_AWAKENED) { | |
4093 | ||
4094 | old_level = memorystatus_vm_pressure_level; | |
4095 | ||
4096 | if (old_level != *pressure_level) { | |
4097 | break; | |
4098 | } | |
4099 | } | |
4100 | } | |
4101 | } | |
4102 | ||
4103 | *pressure_level = old_level; | |
4104 | kr = KERN_SUCCESS; | |
4105 | } else { | |
4106 | kr = KERN_INVALID_ARGUMENT; | |
4107 | } | |
4108 | ||
4109 | return kr; | |
4110 | #endif /* VM_PRESSURE_EVENTS */ | |
4111 | } | |
4112 | ||
4113 | #if VM_PRESSURE_EVENTS | |
4114 | void | |
4115 | vm_pressure_thread(void) { | |
4116 | static boolean_t thread_initialized = FALSE; | |
4117 | ||
4118 | if (thread_initialized == TRUE) { | |
4119 | vm_pressure_thread_running = TRUE; | |
4120 | consider_vm_pressure_events(); | |
4121 | vm_pressure_thread_running = FALSE; | |
4122 | } | |
4123 | ||
4124 | thread_initialized = TRUE; | |
4125 | assert_wait((event_t) &vm_pressure_thread, THREAD_UNINT); | |
4126 | thread_block((thread_continue_t)vm_pressure_thread); | |
4127 | } | |
4128 | #endif /* VM_PRESSURE_EVENTS */ | |
4129 | ||
4130 | ||
4131 | uint32_t vm_pageout_considered_page_last = 0; | |
4132 | ||
4133 | /* | |
4134 | * called once per-second via "compute_averages" | |
4135 | */ | |
4136 | void | |
4137 | compute_pageout_gc_throttle() | |
4138 | { | |
4139 | if (vm_pageout_considered_page != vm_pageout_considered_page_last) { | |
4140 | ||
4141 | vm_pageout_considered_page_last = vm_pageout_considered_page; | |
4142 | ||
4143 | thread_wakeup((event_t) &vm_pageout_garbage_collect); | |
4144 | } | |
4145 | } | |
4146 | ||
4147 | ||
4148 | static void | |
4149 | vm_pageout_garbage_collect(int collect) | |
4150 | { | |
4151 | ||
4152 | if (collect) { | |
4153 | boolean_t buf_large_zfree = FALSE; | |
4154 | boolean_t first_try = TRUE; | |
4155 | ||
4156 | stack_collect(); | |
4157 | ||
4158 | consider_machine_collect(); | |
4159 | m_drain(); | |
4160 | ||
4161 | do { | |
4162 | if (consider_buffer_cache_collect != NULL) { | |
4163 | buf_large_zfree = (*consider_buffer_cache_collect)(0); | |
4164 | } | |
4165 | if (first_try == TRUE || buf_large_zfree == TRUE) { | |
4166 | /* | |
4167 | * consider_zone_gc should be last, because the other operations | |
4168 | * might return memory to zones. | |
4169 | */ | |
4170 | consider_zone_gc(buf_large_zfree); | |
4171 | } | |
4172 | first_try = FALSE; | |
4173 | ||
4174 | } while (buf_large_zfree == TRUE && vm_page_free_count < vm_page_free_target); | |
4175 | ||
4176 | consider_machine_adjust(); | |
4177 | } | |
4178 | assert_wait((event_t) &vm_pageout_garbage_collect, THREAD_UNINT); | |
4179 | ||
4180 | thread_block_parameter((thread_continue_t) vm_pageout_garbage_collect, (void *)1); | |
4181 | /*NOTREACHED*/ | |
4182 | } | |
4183 | ||
4184 | ||
4185 | void vm_pageout_reinit_tuneables(void); | |
4186 | ||
4187 | void | |
4188 | vm_pageout_reinit_tuneables(void) | |
4189 | { | |
4190 | ||
4191 | vm_compressor_minorcompact_threshold_divisor = 18; | |
4192 | vm_compressor_majorcompact_threshold_divisor = 22; | |
4193 | vm_compressor_unthrottle_threshold_divisor = 32; | |
4194 | } | |
4195 | ||
4196 | ||
4197 | #if VM_PAGE_BUCKETS_CHECK | |
4198 | #if VM_PAGE_FAKE_BUCKETS | |
4199 | extern vm_map_offset_t vm_page_fake_buckets_start, vm_page_fake_buckets_end; | |
4200 | #endif /* VM_PAGE_FAKE_BUCKETS */ | |
4201 | #endif /* VM_PAGE_BUCKETS_CHECK */ | |
4202 | ||
4203 | #define FBDP_TEST_COLLAPSE_COMPRESSOR 0 | |
4204 | #if FBDP_TEST_COLLAPSE_COMPRESSOR | |
4205 | extern boolean_t vm_object_collapse_compressor_allowed; | |
4206 | #include <IOKit/IOLib.h> | |
4207 | #endif /* FBDP_TEST_COLLAPSE_COMPRESSOR */ | |
4208 | ||
4209 | #define FBDP_TEST_WIRE_AND_EXTRACT 0 | |
4210 | #if FBDP_TEST_WIRE_AND_EXTRACT | |
4211 | extern ledger_template_t task_ledger_template; | |
4212 | #include <mach/mach_vm.h> | |
4213 | extern ppnum_t vm_map_get_phys_page(vm_map_t map, | |
4214 | vm_offset_t offset); | |
4215 | #endif /* FBDP_TEST_WIRE_AND_EXTRACT */ | |
4216 | ||
4217 | ||
4218 | void | |
4219 | vm_set_restrictions() | |
4220 | { | |
4221 | host_basic_info_data_t hinfo; | |
4222 | mach_msg_type_number_t count = HOST_BASIC_INFO_COUNT; | |
4223 | ||
4224 | #define BSD_HOST 1 | |
4225 | host_info((host_t)BSD_HOST, HOST_BASIC_INFO, (host_info_t)&hinfo, &count); | |
4226 | ||
4227 | assert(hinfo.max_cpus > 0); | |
4228 | ||
4229 | if (hinfo.max_cpus <= 3) { | |
4230 | /* | |
4231 | * on systems with a limited number of CPUS, bind the | |
4232 | * 4 major threads that can free memory and that tend to use | |
4233 | * a fair bit of CPU under pressured conditions to a single processor. | |
4234 | * This insures that these threads don't hog all of the available CPUs | |
4235 | * (important for camera launch), while allowing them to run independently | |
4236 | * w/r to locks... the 4 threads are | |
4237 | * vm_pageout_scan, vm_pageout_iothread_internal (compressor), | |
4238 | * vm_compressor_swap_trigger_thread (minor and major compactions), | |
4239 | * memorystatus_thread (jetsams). | |
4240 | * | |
4241 | * the first time the thread is run, it is responsible for checking the | |
4242 | * state of vm_restricted_to_single_processor, and if TRUE it calls | |
4243 | * thread_bind_master... someday this should be replaced with a group | |
4244 | * scheduling mechanism and KPI. | |
4245 | */ | |
4246 | vm_restricted_to_single_processor = TRUE; | |
4247 | } | |
4248 | } | |
4249 | ||
4250 | ||
4251 | void | |
4252 | vm_pageout(void) | |
4253 | { | |
4254 | thread_t self = current_thread(); | |
4255 | thread_t thread; | |
4256 | kern_return_t result; | |
4257 | spl_t s; | |
4258 | ||
4259 | /* | |
4260 | * Set thread privileges. | |
4261 | */ | |
4262 | s = splsched(); | |
4263 | ||
4264 | thread_lock(self); | |
4265 | self->options |= TH_OPT_VMPRIV; | |
4266 | sched_set_thread_base_priority(self, BASEPRI_PREEMPT - 1); | |
4267 | thread_unlock(self); | |
4268 | ||
4269 | if (!self->reserved_stack) | |
4270 | self->reserved_stack = self->kernel_stack; | |
4271 | ||
4272 | if (vm_restricted_to_single_processor == TRUE) | |
4273 | thread_vm_bind_group_add(); | |
4274 | ||
4275 | splx(s); | |
4276 | ||
4277 | /* | |
4278 | * Initialize some paging parameters. | |
4279 | */ | |
4280 | ||
4281 | if (vm_pageout_swap_wait == 0) | |
4282 | vm_pageout_swap_wait = VM_PAGEOUT_SWAP_WAIT; | |
4283 | ||
4284 | if (vm_pageout_idle_wait == 0) | |
4285 | vm_pageout_idle_wait = VM_PAGEOUT_IDLE_WAIT; | |
4286 | ||
4287 | if (vm_pageout_burst_wait == 0) | |
4288 | vm_pageout_burst_wait = VM_PAGEOUT_BURST_WAIT; | |
4289 | ||
4290 | if (vm_pageout_empty_wait == 0) | |
4291 | vm_pageout_empty_wait = VM_PAGEOUT_EMPTY_WAIT; | |
4292 | ||
4293 | if (vm_pageout_deadlock_wait == 0) | |
4294 | vm_pageout_deadlock_wait = VM_PAGEOUT_DEADLOCK_WAIT; | |
4295 | ||
4296 | if (vm_pageout_deadlock_relief == 0) | |
4297 | vm_pageout_deadlock_relief = VM_PAGEOUT_DEADLOCK_RELIEF; | |
4298 | ||
4299 | if (vm_pageout_inactive_relief == 0) | |
4300 | vm_pageout_inactive_relief = VM_PAGEOUT_INACTIVE_RELIEF; | |
4301 | ||
4302 | if (vm_pageout_burst_active_throttle == 0) | |
4303 | vm_pageout_burst_active_throttle = VM_PAGEOUT_BURST_ACTIVE_THROTTLE; | |
4304 | ||
4305 | if (vm_pageout_burst_inactive_throttle == 0) | |
4306 | vm_pageout_burst_inactive_throttle = VM_PAGEOUT_BURST_INACTIVE_THROTTLE; | |
4307 | ||
4308 | /* | |
4309 | * Set kernel task to low backing store privileged | |
4310 | * status | |
4311 | */ | |
4312 | task_lock(kernel_task); | |
4313 | kernel_task->priv_flags |= VM_BACKING_STORE_PRIV; | |
4314 | task_unlock(kernel_task); | |
4315 | ||
4316 | vm_page_free_count_init = vm_page_free_count; | |
4317 | ||
4318 | /* | |
4319 | * even if we've already called vm_page_free_reserve | |
4320 | * call it again here to insure that the targets are | |
4321 | * accurately calculated (it uses vm_page_free_count_init) | |
4322 | * calling it with an arg of 0 will not change the reserve | |
4323 | * but will re-calculate free_min and free_target | |
4324 | */ | |
4325 | if (vm_page_free_reserved < VM_PAGE_FREE_RESERVED(processor_count)) { | |
4326 | vm_page_free_reserve((VM_PAGE_FREE_RESERVED(processor_count)) - vm_page_free_reserved); | |
4327 | } else | |
4328 | vm_page_free_reserve(0); | |
4329 | ||
4330 | ||
4331 | queue_init(&vm_pageout_queue_external.pgo_pending); | |
4332 | vm_pageout_queue_external.pgo_maxlaundry = VM_PAGE_LAUNDRY_MAX; | |
4333 | vm_pageout_queue_external.pgo_laundry = 0; | |
4334 | vm_pageout_queue_external.pgo_idle = FALSE; | |
4335 | vm_pageout_queue_external.pgo_busy = FALSE; | |
4336 | vm_pageout_queue_external.pgo_throttled = FALSE; | |
4337 | vm_pageout_queue_external.pgo_draining = FALSE; | |
4338 | vm_pageout_queue_external.pgo_lowpriority = FALSE; | |
4339 | vm_pageout_queue_external.pgo_tid = -1; | |
4340 | vm_pageout_queue_external.pgo_inited = FALSE; | |
4341 | ||
4342 | queue_init(&vm_pageout_queue_internal.pgo_pending); | |
4343 | vm_pageout_queue_internal.pgo_maxlaundry = 0; | |
4344 | vm_pageout_queue_internal.pgo_laundry = 0; | |
4345 | vm_pageout_queue_internal.pgo_idle = FALSE; | |
4346 | vm_pageout_queue_internal.pgo_busy = FALSE; | |
4347 | vm_pageout_queue_internal.pgo_throttled = FALSE; | |
4348 | vm_pageout_queue_internal.pgo_draining = FALSE; | |
4349 | vm_pageout_queue_internal.pgo_lowpriority = FALSE; | |
4350 | vm_pageout_queue_internal.pgo_tid = -1; | |
4351 | vm_pageout_queue_internal.pgo_inited = FALSE; | |
4352 | ||
4353 | /* internal pageout thread started when default pager registered first time */ | |
4354 | /* external pageout and garbage collection threads started here */ | |
4355 | ||
4356 | result = kernel_thread_start_priority((thread_continue_t)vm_pageout_iothread_external, NULL, | |
4357 | BASEPRI_PREEMPT - 1, | |
4358 | &vm_pageout_external_iothread); | |
4359 | if (result != KERN_SUCCESS) | |
4360 | panic("vm_pageout_iothread_external: create failed"); | |
4361 | ||
4362 | thread_deallocate(vm_pageout_external_iothread); | |
4363 | ||
4364 | result = kernel_thread_start_priority((thread_continue_t)vm_pageout_garbage_collect, NULL, | |
4365 | BASEPRI_DEFAULT, | |
4366 | &thread); | |
4367 | if (result != KERN_SUCCESS) | |
4368 | panic("vm_pageout_garbage_collect: create failed"); | |
4369 | ||
4370 | thread_deallocate(thread); | |
4371 | ||
4372 | #if VM_PRESSURE_EVENTS | |
4373 | result = kernel_thread_start_priority((thread_continue_t)vm_pressure_thread, NULL, | |
4374 | BASEPRI_DEFAULT, | |
4375 | &thread); | |
4376 | ||
4377 | if (result != KERN_SUCCESS) | |
4378 | panic("vm_pressure_thread: create failed"); | |
4379 | ||
4380 | thread_deallocate(thread); | |
4381 | #endif | |
4382 | ||
4383 | vm_object_reaper_init(); | |
4384 | ||
4385 | if (COMPRESSED_PAGER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE) | |
4386 | vm_compressor_pager_init(); | |
4387 | ||
4388 | #if VM_PRESSURE_EVENTS | |
4389 | vm_pressure_events_enabled = TRUE; | |
4390 | #endif /* VM_PRESSURE_EVENTS */ | |
4391 | ||
4392 | #if CONFIG_PHANTOM_CACHE | |
4393 | vm_phantom_cache_init(); | |
4394 | #endif | |
4395 | #if VM_PAGE_BUCKETS_CHECK | |
4396 | #if VM_PAGE_FAKE_BUCKETS | |
4397 | printf("**** DEBUG: protecting fake buckets [0x%llx:0x%llx]\n", | |
4398 | (uint64_t) vm_page_fake_buckets_start, | |
4399 | (uint64_t) vm_page_fake_buckets_end); | |
4400 | pmap_protect(kernel_pmap, | |
4401 | vm_page_fake_buckets_start, | |
4402 | vm_page_fake_buckets_end, | |
4403 | VM_PROT_READ); | |
4404 | // *(char *) vm_page_fake_buckets_start = 'x'; /* panic! */ | |
4405 | #endif /* VM_PAGE_FAKE_BUCKETS */ | |
4406 | #endif /* VM_PAGE_BUCKETS_CHECK */ | |
4407 | ||
4408 | #if VM_OBJECT_TRACKING | |
4409 | vm_object_tracking_init(); | |
4410 | #endif /* VM_OBJECT_TRACKING */ | |
4411 | ||
4412 | ||
4413 | #if FBDP_TEST_COLLAPSE_COMPRESSOR | |
4414 | vm_object_size_t backing_size, top_size; | |
4415 | vm_object_t backing_object, top_object; | |
4416 | vm_map_offset_t backing_offset, top_offset; | |
4417 | unsigned char *backing_address, *top_address; | |
4418 | kern_return_t kr; | |
4419 | ||
4420 | printf("FBDP_TEST_COLLAPSE_COMPRESSOR:\n"); | |
4421 | ||
4422 | /* create backing object */ | |
4423 | backing_size = 15 * PAGE_SIZE; | |
4424 | backing_object = vm_object_allocate(backing_size); | |
4425 | assert(backing_object != VM_OBJECT_NULL); | |
4426 | printf("FBDP_TEST_COLLAPSE_COMPRESSOR: created backing object %p\n", | |
4427 | backing_object); | |
4428 | /* map backing object */ | |
4429 | backing_offset = 0; | |
4430 | kr = vm_map_enter(kernel_map, &backing_offset, backing_size, 0, | |
4431 | VM_FLAGS_ANYWHERE, backing_object, 0, FALSE, | |
4432 | VM_PROT_DEFAULT, VM_PROT_DEFAULT, VM_INHERIT_DEFAULT); | |
4433 | assert(kr == KERN_SUCCESS); | |
4434 | backing_address = (unsigned char *) backing_offset; | |
4435 | printf("FBDP_TEST_COLLAPSE_COMPRESSOR: " | |
4436 | "mapped backing object %p at 0x%llx\n", | |
4437 | backing_object, (uint64_t) backing_offset); | |
4438 | /* populate with pages to be compressed in backing object */ | |
4439 | backing_address[0x1*PAGE_SIZE] = 0xB1; | |
4440 | backing_address[0x4*PAGE_SIZE] = 0xB4; | |
4441 | backing_address[0x7*PAGE_SIZE] = 0xB7; | |
4442 | backing_address[0xa*PAGE_SIZE] = 0xBA; | |
4443 | backing_address[0xd*PAGE_SIZE] = 0xBD; | |
4444 | printf("FBDP_TEST_COLLAPSE_COMPRESSOR: " | |
4445 | "populated pages to be compressed in " | |
4446 | "backing_object %p\n", backing_object); | |
4447 | /* compress backing object */ | |
4448 | vm_object_pageout(backing_object); | |
4449 | printf("FBDP_TEST_COLLAPSE_COMPRESSOR: compressing backing_object %p\n", | |
4450 | backing_object); | |
4451 | /* wait for all the pages to be gone */ | |
4452 | while (*(volatile int *)&backing_object->resident_page_count != 0) | |
4453 | IODelay(10); | |
4454 | printf("FBDP_TEST_COLLAPSE_COMPRESSOR: backing_object %p compressed\n", | |
4455 | backing_object); | |
4456 | /* populate with pages to be resident in backing object */ | |
4457 | backing_address[0x0*PAGE_SIZE] = 0xB0; | |
4458 | backing_address[0x3*PAGE_SIZE] = 0xB3; | |
4459 | backing_address[0x6*PAGE_SIZE] = 0xB6; | |
4460 | backing_address[0x9*PAGE_SIZE] = 0xB9; | |
4461 | backing_address[0xc*PAGE_SIZE] = 0xBC; | |
4462 | printf("FBDP_TEST_COLLAPSE_COMPRESSOR: " | |
4463 | "populated pages to be resident in " | |
4464 | "backing_object %p\n", backing_object); | |
4465 | /* leave the other pages absent */ | |
4466 | /* mess with the paging_offset of the backing_object */ | |
4467 | assert(backing_object->paging_offset == 0); | |
4468 | backing_object->paging_offset = 0x3000; | |
4469 | ||
4470 | /* create top object */ | |
4471 | top_size = 9 * PAGE_SIZE; | |
4472 | top_object = vm_object_allocate(top_size); | |
4473 | assert(top_object != VM_OBJECT_NULL); | |
4474 | printf("FBDP_TEST_COLLAPSE_COMPRESSOR: created top object %p\n", | |
4475 | top_object); | |
4476 | /* map top object */ | |
4477 | top_offset = 0; | |
4478 | kr = vm_map_enter(kernel_map, &top_offset, top_size, 0, | |
4479 | VM_FLAGS_ANYWHERE, top_object, 0, FALSE, | |
4480 | VM_PROT_DEFAULT, VM_PROT_DEFAULT, VM_INHERIT_DEFAULT); | |
4481 | assert(kr == KERN_SUCCESS); | |
4482 | top_address = (unsigned char *) top_offset; | |
4483 | printf("FBDP_TEST_COLLAPSE_COMPRESSOR: " | |
4484 | "mapped top object %p at 0x%llx\n", | |
4485 | top_object, (uint64_t) top_offset); | |
4486 | /* populate with pages to be compressed in top object */ | |
4487 | top_address[0x3*PAGE_SIZE] = 0xA3; | |
4488 | top_address[0x4*PAGE_SIZE] = 0xA4; | |
4489 | top_address[0x5*PAGE_SIZE] = 0xA5; | |
4490 | printf("FBDP_TEST_COLLAPSE_COMPRESSOR: " | |
4491 | "populated pages to be compressed in " | |
4492 | "top_object %p\n", top_object); | |
4493 | /* compress top object */ | |
4494 | vm_object_pageout(top_object); | |
4495 | printf("FBDP_TEST_COLLAPSE_COMPRESSOR: compressing top_object %p\n", | |
4496 | top_object); | |
4497 | /* wait for all the pages to be gone */ | |
4498 | while (top_object->resident_page_count != 0); | |
4499 | printf("FBDP_TEST_COLLAPSE_COMPRESSOR: top_object %p compressed\n", | |
4500 | top_object); | |
4501 | /* populate with pages to be resident in top object */ | |
4502 | top_address[0x0*PAGE_SIZE] = 0xA0; | |
4503 | top_address[0x1*PAGE_SIZE] = 0xA1; | |
4504 | top_address[0x2*PAGE_SIZE] = 0xA2; | |
4505 | printf("FBDP_TEST_COLLAPSE_COMPRESSOR: " | |
4506 | "populated pages to be resident in " | |
4507 | "top_object %p\n", top_object); | |
4508 | /* leave the other pages absent */ | |
4509 | ||
4510 | /* link the 2 objects */ | |
4511 | vm_object_reference(backing_object); | |
4512 | top_object->shadow = backing_object; | |
4513 | top_object->vo_shadow_offset = 0x3000; | |
4514 | printf("FBDP_TEST_COLLAPSE_COMPRESSOR: linked %p and %p\n", | |
4515 | top_object, backing_object); | |
4516 | ||
4517 | /* unmap backing object */ | |
4518 | vm_map_remove(kernel_map, | |
4519 | backing_offset, | |
4520 | backing_offset + backing_size, | |
4521 | 0); | |
4522 | printf("FBDP_TEST_COLLAPSE_COMPRESSOR: " | |
4523 | "unmapped backing_object %p [0x%llx:0x%llx]\n", | |
4524 | backing_object, | |
4525 | (uint64_t) backing_offset, | |
4526 | (uint64_t) (backing_offset + backing_size)); | |
4527 | ||
4528 | /* collapse */ | |
4529 | printf("FBDP_TEST_COLLAPSE_COMPRESSOR: collapsing %p\n", top_object); | |
4530 | vm_object_lock(top_object); | |
4531 | vm_object_collapse(top_object, 0, FALSE); | |
4532 | vm_object_unlock(top_object); | |
4533 | printf("FBDP_TEST_COLLAPSE_COMPRESSOR: collapsed %p\n", top_object); | |
4534 | ||
4535 | /* did it work? */ | |
4536 | if (top_object->shadow != VM_OBJECT_NULL) { | |
4537 | printf("FBDP_TEST_COLLAPSE_COMPRESSOR: not collapsed\n"); | |
4538 | printf("FBDP_TEST_COLLAPSE_COMPRESSOR: FAIL\n"); | |
4539 | if (vm_object_collapse_compressor_allowed) { | |
4540 | panic("FBDP_TEST_COLLAPSE_COMPRESSOR: FAIL\n"); | |
4541 | } | |
4542 | } else { | |
4543 | /* check the contents of the mapping */ | |
4544 | unsigned char expect[9] = | |
4545 | { 0xA0, 0xA1, 0xA2, /* resident in top */ | |
4546 | 0xA3, 0xA4, 0xA5, /* compressed in top */ | |
4547 | 0xB9, /* resident in backing + shadow_offset */ | |
4548 | 0xBD, /* compressed in backing + shadow_offset + paging_offset */ | |
4549 | 0x00 }; /* absent in both */ | |
4550 | unsigned char actual[9]; | |
4551 | unsigned int i, errors; | |
4552 | ||
4553 | errors = 0; | |
4554 | for (i = 0; i < sizeof (actual); i++) { | |
4555 | actual[i] = (unsigned char) top_address[i*PAGE_SIZE]; | |
4556 | if (actual[i] != expect[i]) { | |
4557 | errors++; | |
4558 | } | |
4559 | } | |
4560 | printf("FBDP_TEST_COLLAPSE_COMPRESSOR: " | |
4561 | "actual [%x %x %x %x %x %x %x %x %x] " | |
4562 | "expect [%x %x %x %x %x %x %x %x %x] " | |
4563 | "%d errors\n", | |
4564 | actual[0], actual[1], actual[2], actual[3], | |
4565 | actual[4], actual[5], actual[6], actual[7], | |
4566 | actual[8], | |
4567 | expect[0], expect[1], expect[2], expect[3], | |
4568 | expect[4], expect[5], expect[6], expect[7], | |
4569 | expect[8], | |
4570 | errors); | |
4571 | if (errors) { | |
4572 | panic("FBDP_TEST_COLLAPSE_COMPRESSOR: FAIL\n"); | |
4573 | } else { | |
4574 | printf("FBDP_TEST_COLLAPSE_COMPRESSOR: PASS\n"); | |
4575 | } | |
4576 | } | |
4577 | #endif /* FBDP_TEST_COLLAPSE_COMPRESSOR */ | |
4578 | ||
4579 | #if FBDP_TEST_WIRE_AND_EXTRACT | |
4580 | ledger_t ledger; | |
4581 | vm_map_t user_map, wire_map; | |
4582 | mach_vm_address_t user_addr, wire_addr; | |
4583 | mach_vm_size_t user_size, wire_size; | |
4584 | mach_vm_offset_t cur_offset; | |
4585 | vm_prot_t cur_prot, max_prot; | |
4586 | ppnum_t user_ppnum, wire_ppnum; | |
4587 | kern_return_t kr; | |
4588 | ||
4589 | ledger = ledger_instantiate(task_ledger_template, | |
4590 | LEDGER_CREATE_ACTIVE_ENTRIES); | |
4591 | user_map = vm_map_create(pmap_create(ledger, 0, PMAP_CREATE_64BIT), | |
4592 | 0x100000000ULL, | |
4593 | 0x200000000ULL, | |
4594 | TRUE); | |
4595 | wire_map = vm_map_create(NULL, | |
4596 | 0x100000000ULL, | |
4597 | 0x200000000ULL, | |
4598 | TRUE); | |
4599 | user_addr = 0; | |
4600 | user_size = 0x10000; | |
4601 | kr = mach_vm_allocate(user_map, | |
4602 | &user_addr, | |
4603 | user_size, | |
4604 | VM_FLAGS_ANYWHERE); | |
4605 | assert(kr == KERN_SUCCESS); | |
4606 | wire_addr = 0; | |
4607 | wire_size = user_size; | |
4608 | kr = mach_vm_remap(wire_map, | |
4609 | &wire_addr, | |
4610 | wire_size, | |
4611 | 0, | |
4612 | VM_FLAGS_ANYWHERE, | |
4613 | user_map, | |
4614 | user_addr, | |
4615 | FALSE, | |
4616 | &cur_prot, | |
4617 | &max_prot, | |
4618 | VM_INHERIT_NONE); | |
4619 | assert(kr == KERN_SUCCESS); | |
4620 | for (cur_offset = 0; | |
4621 | cur_offset < wire_size; | |
4622 | cur_offset += PAGE_SIZE) { | |
4623 | kr = vm_map_wire_and_extract(wire_map, | |
4624 | wire_addr + cur_offset, | |
4625 | VM_PROT_DEFAULT | VM_PROT_MEMORY_TAG_MAKE(VM_KERN_MEMORY_OSFMK)), | |
4626 | TRUE, | |
4627 | &wire_ppnum); | |
4628 | assert(kr == KERN_SUCCESS); | |
4629 | user_ppnum = vm_map_get_phys_page(user_map, | |
4630 | user_addr + cur_offset); | |
4631 | printf("FBDP_TEST_WIRE_AND_EXTRACT: kr=0x%x " | |
4632 | "user[%p:0x%llx:0x%x] wire[%p:0x%llx:0x%x]\n", | |
4633 | kr, | |
4634 | user_map, user_addr + cur_offset, user_ppnum, | |
4635 | wire_map, wire_addr + cur_offset, wire_ppnum); | |
4636 | if (kr != KERN_SUCCESS || | |
4637 | wire_ppnum == 0 || | |
4638 | wire_ppnum != user_ppnum) { | |
4639 | panic("FBDP_TEST_WIRE_AND_EXTRACT: FAIL\n"); | |
4640 | } | |
4641 | } | |
4642 | cur_offset -= PAGE_SIZE; | |
4643 | kr = vm_map_wire_and_extract(wire_map, | |
4644 | wire_addr + cur_offset, | |
4645 | VM_PROT_DEFAULT, | |
4646 | TRUE, | |
4647 | &wire_ppnum); | |
4648 | assert(kr == KERN_SUCCESS); | |
4649 | printf("FBDP_TEST_WIRE_AND_EXTRACT: re-wire kr=0x%x " | |
4650 | "user[%p:0x%llx:0x%x] wire[%p:0x%llx:0x%x]\n", | |
4651 | kr, | |
4652 | user_map, user_addr + cur_offset, user_ppnum, | |
4653 | wire_map, wire_addr + cur_offset, wire_ppnum); | |
4654 | if (kr != KERN_SUCCESS || | |
4655 | wire_ppnum == 0 || | |
4656 | wire_ppnum != user_ppnum) { | |
4657 | panic("FBDP_TEST_WIRE_AND_EXTRACT: FAIL\n"); | |
4658 | } | |
4659 | ||
4660 | printf("FBDP_TEST_WIRE_AND_EXTRACT: PASS\n"); | |
4661 | #endif /* FBDP_TEST_WIRE_AND_EXTRACT */ | |
4662 | ||
4663 | vm_pageout_continue(); | |
4664 | ||
4665 | /* | |
4666 | * Unreached code! | |
4667 | * | |
4668 | * The vm_pageout_continue() call above never returns, so the code below is never | |
4669 | * executed. We take advantage of this to declare several DTrace VM related probe | |
4670 | * points that our kernel doesn't have an analog for. These are probe points that | |
4671 | * exist in Solaris and are in the DTrace documentation, so people may have written | |
4672 | * scripts that use them. Declaring the probe points here means their scripts will | |
4673 | * compile and execute which we want for portability of the scripts, but since this | |
4674 | * section of code is never reached, the probe points will simply never fire. Yes, | |
4675 | * this is basically a hack. The problem is the DTrace probe points were chosen with | |
4676 | * Solaris specific VM events in mind, not portability to different VM implementations. | |
4677 | */ | |
4678 | ||
4679 | DTRACE_VM2(execfree, int, 1, (uint64_t *), NULL); | |
4680 | DTRACE_VM2(execpgin, int, 1, (uint64_t *), NULL); | |
4681 | DTRACE_VM2(execpgout, int, 1, (uint64_t *), NULL); | |
4682 | DTRACE_VM2(pgswapin, int, 1, (uint64_t *), NULL); | |
4683 | DTRACE_VM2(pgswapout, int, 1, (uint64_t *), NULL); | |
4684 | DTRACE_VM2(swapin, int, 1, (uint64_t *), NULL); | |
4685 | DTRACE_VM2(swapout, int, 1, (uint64_t *), NULL); | |
4686 | /*NOTREACHED*/ | |
4687 | } | |
4688 | ||
4689 | ||
4690 | ||
4691 | int vm_compressor_thread_count = 2; | |
4692 | ||
4693 | kern_return_t | |
4694 | vm_pageout_internal_start(void) | |
4695 | { | |
4696 | kern_return_t result; | |
4697 | int i; | |
4698 | host_basic_info_data_t hinfo; | |
4699 | int thread_count; | |
4700 | ||
4701 | ||
4702 | if (COMPRESSED_PAGER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE) { | |
4703 | mach_msg_type_number_t count = HOST_BASIC_INFO_COUNT; | |
4704 | #define BSD_HOST 1 | |
4705 | host_info((host_t)BSD_HOST, HOST_BASIC_INFO, (host_info_t)&hinfo, &count); | |
4706 | ||
4707 | assert(hinfo.max_cpus > 0); | |
4708 | ||
4709 | if (vm_compressor_thread_count >= hinfo.max_cpus) | |
4710 | vm_compressor_thread_count = hinfo.max_cpus - 1; | |
4711 | if (vm_compressor_thread_count <= 0) | |
4712 | vm_compressor_thread_count = 1; | |
4713 | else if (vm_compressor_thread_count > MAX_COMPRESSOR_THREAD_COUNT) | |
4714 | vm_compressor_thread_count = MAX_COMPRESSOR_THREAD_COUNT; | |
4715 | ||
4716 | if (vm_compressor_immediate_preferred == TRUE) { | |
4717 | vm_pageout_immediate_chead = NULL; | |
4718 | vm_pageout_immediate_scratch_buf = kalloc(COMPRESSOR_SCRATCH_BUF_SIZE); | |
4719 | ||
4720 | vm_compressor_thread_count = 1; | |
4721 | } | |
4722 | thread_count = vm_compressor_thread_count; | |
4723 | ||
4724 | vm_pageout_queue_internal.pgo_maxlaundry = (vm_compressor_thread_count * 4) * VM_PAGE_LAUNDRY_MAX; | |
4725 | } else { | |
4726 | vm_compressor_thread_count = 0; | |
4727 | thread_count = 1; | |
4728 | vm_pageout_queue_internal.pgo_maxlaundry = VM_PAGE_LAUNDRY_MAX; | |
4729 | } | |
4730 | ||
4731 | for (i = 0; i < vm_compressor_thread_count; i++) { | |
4732 | ciq[i].id = i; | |
4733 | ciq[i].q = &vm_pageout_queue_internal; | |
4734 | ciq[i].current_chead = NULL; | |
4735 | ciq[i].scratch_buf = kalloc(COMPRESSOR_SCRATCH_BUF_SIZE); | |
4736 | } | |
4737 | for (i = 0; i < thread_count; i++) { | |
4738 | result = kernel_thread_start_priority((thread_continue_t)vm_pageout_iothread_internal, (void *)&ciq[i], BASEPRI_PREEMPT - 1, &vm_pageout_internal_iothread); | |
4739 | ||
4740 | if (result == KERN_SUCCESS) | |
4741 | thread_deallocate(vm_pageout_internal_iothread); | |
4742 | else | |
4743 | break; | |
4744 | } | |
4745 | return result; | |
4746 | } | |
4747 | ||
4748 | #if CONFIG_IOSCHED | |
4749 | /* | |
4750 | * To support I/O Expedite for compressed files we mark the upls with special flags. | |
4751 | * The way decmpfs works is that we create a big upl which marks all the pages needed to | |
4752 | * represent the compressed file as busy. We tag this upl with the flag UPL_DECMP_REQ. Decmpfs | |
4753 | * then issues smaller I/Os for compressed I/Os, deflates them and puts the data into the pages | |
4754 | * being held in the big original UPL. We mark each of these smaller UPLs with the flag | |
4755 | * UPL_DECMP_REAL_IO. Any outstanding real I/O UPL is tracked by the big req upl using the | |
4756 | * decmp_io_upl field (in the upl structure). This link is protected in the forward direction | |
4757 | * by the req upl lock (the reverse link doesnt need synch. since we never inspect this link | |
4758 | * unless the real I/O upl is being destroyed). | |
4759 | */ | |
4760 | ||
4761 | ||
4762 | static void | |
4763 | upl_set_decmp_info(upl_t upl, upl_t src_upl) | |
4764 | { | |
4765 | assert((src_upl->flags & UPL_DECMP_REQ) != 0); | |
4766 | ||
4767 | upl_lock(src_upl); | |
4768 | if (src_upl->decmp_io_upl) { | |
4769 | /* | |
4770 | * If there is already an alive real I/O UPL, ignore this new UPL. | |
4771 | * This case should rarely happen and even if it does, it just means | |
4772 | * that we might issue a spurious expedite which the driver is expected | |
4773 | * to handle. | |
4774 | */ | |
4775 | upl_unlock(src_upl); | |
4776 | return; | |
4777 | } | |
4778 | src_upl->decmp_io_upl = (void *)upl; | |
4779 | src_upl->ref_count++; | |
4780 | ||
4781 | upl->flags |= UPL_DECMP_REAL_IO; | |
4782 | upl->decmp_io_upl = (void *)src_upl; | |
4783 | upl_unlock(src_upl); | |
4784 | } | |
4785 | #endif /* CONFIG_IOSCHED */ | |
4786 | ||
4787 | #if UPL_DEBUG | |
4788 | int upl_debug_enabled = 1; | |
4789 | #else | |
4790 | int upl_debug_enabled = 0; | |
4791 | #endif | |
4792 | ||
4793 | static upl_t | |
4794 | upl_create(int type, int flags, upl_size_t size) | |
4795 | { | |
4796 | upl_t upl; | |
4797 | vm_size_t page_field_size = 0; | |
4798 | int upl_flags = 0; | |
4799 | vm_size_t upl_size = sizeof(struct upl); | |
4800 | ||
4801 | size = round_page_32(size); | |
4802 | ||
4803 | if (type & UPL_CREATE_LITE) { | |
4804 | page_field_size = (atop(size) + 7) >> 3; | |
4805 | page_field_size = (page_field_size + 3) & 0xFFFFFFFC; | |
4806 | ||
4807 | upl_flags |= UPL_LITE; | |
4808 | } | |
4809 | if (type & UPL_CREATE_INTERNAL) { | |
4810 | upl_size += sizeof(struct upl_page_info) * atop(size); | |
4811 | ||
4812 | upl_flags |= UPL_INTERNAL; | |
4813 | } | |
4814 | upl = (upl_t)kalloc(upl_size + page_field_size); | |
4815 | ||
4816 | if (page_field_size) | |
4817 | bzero((char *)upl + upl_size, page_field_size); | |
4818 | ||
4819 | upl->flags = upl_flags | flags; | |
4820 | upl->src_object = NULL; | |
4821 | upl->kaddr = (vm_offset_t)0; | |
4822 | upl->size = 0; | |
4823 | upl->map_object = NULL; | |
4824 | upl->ref_count = 1; | |
4825 | upl->ext_ref_count = 0; | |
4826 | upl->highest_page = 0; | |
4827 | upl_lock_init(upl); | |
4828 | upl->vector_upl = NULL; | |
4829 | upl->associated_upl = NULL; | |
4830 | #if CONFIG_IOSCHED | |
4831 | if (type & UPL_CREATE_IO_TRACKING) { | |
4832 | upl->upl_priority = proc_get_effective_thread_policy(current_thread(), TASK_POLICY_IO); | |
4833 | } | |
4834 | ||
4835 | upl->upl_reprio_info = 0; | |
4836 | upl->decmp_io_upl = 0; | |
4837 | if ((type & UPL_CREATE_INTERNAL) && (type & UPL_CREATE_EXPEDITE_SUP)) { | |
4838 | /* Only support expedite on internal UPLs */ | |
4839 | thread_t curthread = current_thread(); | |
4840 | upl->upl_reprio_info = (uint64_t *)kalloc(sizeof(uint64_t) * atop(size)); | |
4841 | bzero(upl->upl_reprio_info, (sizeof(uint64_t) * atop(size))); | |
4842 | upl->flags |= UPL_EXPEDITE_SUPPORTED; | |
4843 | if (curthread->decmp_upl != NULL) | |
4844 | upl_set_decmp_info(upl, curthread->decmp_upl); | |
4845 | } | |
4846 | #endif | |
4847 | #if CONFIG_IOSCHED || UPL_DEBUG | |
4848 | if ((type & UPL_CREATE_IO_TRACKING) || upl_debug_enabled) { | |
4849 | upl->upl_creator = current_thread(); | |
4850 | upl->uplq.next = 0; | |
4851 | upl->uplq.prev = 0; | |
4852 | upl->flags |= UPL_TRACKED_BY_OBJECT; | |
4853 | } | |
4854 | #endif | |
4855 | ||
4856 | #if UPL_DEBUG | |
4857 | upl->ubc_alias1 = 0; | |
4858 | upl->ubc_alias2 = 0; | |
4859 | ||
4860 | upl->upl_state = 0; | |
4861 | upl->upl_commit_index = 0; | |
4862 | bzero(&upl->upl_commit_records[0], sizeof(upl->upl_commit_records)); | |
4863 | ||
4864 | (void) OSBacktrace(&upl->upl_create_retaddr[0], UPL_DEBUG_STACK_FRAMES); | |
4865 | #endif /* UPL_DEBUG */ | |
4866 | ||
4867 | return(upl); | |
4868 | } | |
4869 | ||
4870 | static void | |
4871 | upl_destroy(upl_t upl) | |
4872 | { | |
4873 | int page_field_size; /* bit field in word size buf */ | |
4874 | int size; | |
4875 | ||
4876 | if (upl->ext_ref_count) { | |
4877 | panic("upl(%p) ext_ref_count", upl); | |
4878 | } | |
4879 | ||
4880 | #if CONFIG_IOSCHED | |
4881 | if ((upl->flags & UPL_DECMP_REAL_IO) && upl->decmp_io_upl) { | |
4882 | upl_t src_upl; | |
4883 | src_upl = upl->decmp_io_upl; | |
4884 | assert((src_upl->flags & UPL_DECMP_REQ) != 0); | |
4885 | upl_lock(src_upl); | |
4886 | src_upl->decmp_io_upl = NULL; | |
4887 | upl_unlock(src_upl); | |
4888 | upl_deallocate(src_upl); | |
4889 | } | |
4890 | #endif /* CONFIG_IOSCHED */ | |
4891 | ||
4892 | #if CONFIG_IOSCHED || UPL_DEBUG | |
4893 | if ((upl->flags & UPL_TRACKED_BY_OBJECT) && !(upl->flags & UPL_VECTOR)) { | |
4894 | vm_object_t object; | |
4895 | ||
4896 | if (upl->flags & UPL_SHADOWED) { | |
4897 | object = upl->map_object->shadow; | |
4898 | } else { | |
4899 | object = upl->map_object; | |
4900 | } | |
4901 | ||
4902 | vm_object_lock(object); | |
4903 | queue_remove(&object->uplq, upl, upl_t, uplq); | |
4904 | vm_object_activity_end(object); | |
4905 | vm_object_collapse(object, 0, TRUE); | |
4906 | vm_object_unlock(object); | |
4907 | } | |
4908 | #endif | |
4909 | /* | |
4910 | * drop a reference on the map_object whether or | |
4911 | * not a pageout object is inserted | |
4912 | */ | |
4913 | if (upl->flags & UPL_SHADOWED) | |
4914 | vm_object_deallocate(upl->map_object); | |
4915 | ||
4916 | if (upl->flags & UPL_DEVICE_MEMORY) | |
4917 | size = PAGE_SIZE; | |
4918 | else | |
4919 | size = upl->size; | |
4920 | page_field_size = 0; | |
4921 | ||
4922 | if (upl->flags & UPL_LITE) { | |
4923 | page_field_size = ((size/PAGE_SIZE) + 7) >> 3; | |
4924 | page_field_size = (page_field_size + 3) & 0xFFFFFFFC; | |
4925 | } | |
4926 | upl_lock_destroy(upl); | |
4927 | upl->vector_upl = (vector_upl_t) 0xfeedbeef; | |
4928 | ||
4929 | #if CONFIG_IOSCHED | |
4930 | if (upl->flags & UPL_EXPEDITE_SUPPORTED) | |
4931 | kfree(upl->upl_reprio_info, sizeof(uint64_t) * (size/PAGE_SIZE)); | |
4932 | #endif | |
4933 | ||
4934 | if (upl->flags & UPL_INTERNAL) { | |
4935 | kfree(upl, | |
4936 | sizeof(struct upl) + | |
4937 | (sizeof(struct upl_page_info) * (size/PAGE_SIZE)) | |
4938 | + page_field_size); | |
4939 | } else { | |
4940 | kfree(upl, sizeof(struct upl) + page_field_size); | |
4941 | } | |
4942 | } | |
4943 | ||
4944 | void | |
4945 | upl_deallocate(upl_t upl) | |
4946 | { | |
4947 | upl_lock(upl); | |
4948 | if (--upl->ref_count == 0) { | |
4949 | if(vector_upl_is_valid(upl)) | |
4950 | vector_upl_deallocate(upl); | |
4951 | upl_unlock(upl); | |
4952 | upl_destroy(upl); | |
4953 | } | |
4954 | else | |
4955 | upl_unlock(upl); | |
4956 | } | |
4957 | ||
4958 | #if CONFIG_IOSCHED | |
4959 | void | |
4960 | upl_mark_decmp(upl_t upl) | |
4961 | { | |
4962 | if (upl->flags & UPL_TRACKED_BY_OBJECT) { | |
4963 | upl->flags |= UPL_DECMP_REQ; | |
4964 | upl->upl_creator->decmp_upl = (void *)upl; | |
4965 | } | |
4966 | } | |
4967 | ||
4968 | void | |
4969 | upl_unmark_decmp(upl_t upl) | |
4970 | { | |
4971 | if(upl && (upl->flags & UPL_DECMP_REQ)) { | |
4972 | upl->upl_creator->decmp_upl = NULL; | |
4973 | } | |
4974 | } | |
4975 | ||
4976 | #endif /* CONFIG_IOSCHED */ | |
4977 | ||
4978 | #define VM_PAGE_Q_BACKING_UP(q) \ | |
4979 | ((q)->pgo_laundry >= (((q)->pgo_maxlaundry * 8) / 10)) | |
4980 | ||
4981 | boolean_t must_throttle_writes(void); | |
4982 | ||
4983 | boolean_t | |
4984 | must_throttle_writes() | |
4985 | { | |
4986 | if (VM_PAGE_Q_BACKING_UP(&vm_pageout_queue_external) && | |
4987 | vm_page_pageable_external_count > (AVAILABLE_NON_COMPRESSED_MEMORY * 6) / 10) | |
4988 | return (TRUE); | |
4989 | ||
4990 | return (FALSE); | |
4991 | } | |
4992 | ||
4993 | ||
4994 | #if DEVELOPMENT || DEBUG | |
4995 | /*/* | |
4996 | * Statistics about UPL enforcement of copy-on-write obligations. | |
4997 | */ | |
4998 | unsigned long upl_cow = 0; | |
4999 | unsigned long upl_cow_again = 0; | |
5000 | unsigned long upl_cow_pages = 0; | |
5001 | unsigned long upl_cow_again_pages = 0; | |
5002 | ||
5003 | unsigned long iopl_cow = 0; | |
5004 | unsigned long iopl_cow_pages = 0; | |
5005 | #endif | |
5006 | ||
5007 | /* | |
5008 | * Routine: vm_object_upl_request | |
5009 | * Purpose: | |
5010 | * Cause the population of a portion of a vm_object. | |
5011 | * Depending on the nature of the request, the pages | |
5012 | * returned may be contain valid data or be uninitialized. | |
5013 | * A page list structure, listing the physical pages | |
5014 | * will be returned upon request. | |
5015 | * This function is called by the file system or any other | |
5016 | * supplier of backing store to a pager. | |
5017 | * IMPORTANT NOTE: The caller must still respect the relationship | |
5018 | * between the vm_object and its backing memory object. The | |
5019 | * caller MUST NOT substitute changes in the backing file | |
5020 | * without first doing a memory_object_lock_request on the | |
5021 | * target range unless it is know that the pages are not | |
5022 | * shared with another entity at the pager level. | |
5023 | * Copy_in_to: | |
5024 | * if a page list structure is present | |
5025 | * return the mapped physical pages, where a | |
5026 | * page is not present, return a non-initialized | |
5027 | * one. If the no_sync bit is turned on, don't | |
5028 | * call the pager unlock to synchronize with other | |
5029 | * possible copies of the page. Leave pages busy | |
5030 | * in the original object, if a page list structure | |
5031 | * was specified. When a commit of the page list | |
5032 | * pages is done, the dirty bit will be set for each one. | |
5033 | * Copy_out_from: | |
5034 | * If a page list structure is present, return | |
5035 | * all mapped pages. Where a page does not exist | |
5036 | * map a zero filled one. Leave pages busy in | |
5037 | * the original object. If a page list structure | |
5038 | * is not specified, this call is a no-op. | |
5039 | * | |
5040 | * Note: access of default pager objects has a rather interesting | |
5041 | * twist. The caller of this routine, presumably the file system | |
5042 | * page cache handling code, will never actually make a request | |
5043 | * against a default pager backed object. Only the default | |
5044 | * pager will make requests on backing store related vm_objects | |
5045 | * In this way the default pager can maintain the relationship | |
5046 | * between backing store files (abstract memory objects) and | |
5047 | * the vm_objects (cache objects), they support. | |
5048 | * | |
5049 | */ | |
5050 | ||
5051 | __private_extern__ kern_return_t | |
5052 | vm_object_upl_request( | |
5053 | vm_object_t object, | |
5054 | vm_object_offset_t offset, | |
5055 | upl_size_t size, | |
5056 | upl_t *upl_ptr, | |
5057 | upl_page_info_array_t user_page_list, | |
5058 | unsigned int *page_list_count, | |
5059 | upl_control_flags_t cntrl_flags) | |
5060 | { | |
5061 | vm_page_t dst_page = VM_PAGE_NULL; | |
5062 | vm_object_offset_t dst_offset; | |
5063 | upl_size_t xfer_size; | |
5064 | unsigned int size_in_pages; | |
5065 | boolean_t dirty; | |
5066 | boolean_t hw_dirty; | |
5067 | upl_t upl = NULL; | |
5068 | unsigned int entry; | |
5069 | #if MACH_CLUSTER_STATS | |
5070 | boolean_t encountered_lrp = FALSE; | |
5071 | #endif | |
5072 | vm_page_t alias_page = NULL; | |
5073 | int refmod_state = 0; | |
5074 | wpl_array_t lite_list = NULL; | |
5075 | vm_object_t last_copy_object; | |
5076 | struct vm_page_delayed_work dw_array[DEFAULT_DELAYED_WORK_LIMIT]; | |
5077 | struct vm_page_delayed_work *dwp; | |
5078 | int dw_count; | |
5079 | int dw_limit; | |
5080 | int io_tracking_flag = 0; | |
5081 | ||
5082 | if (cntrl_flags & ~UPL_VALID_FLAGS) { | |
5083 | /* | |
5084 | * For forward compatibility's sake, | |
5085 | * reject any unknown flag. | |
5086 | */ | |
5087 | return KERN_INVALID_VALUE; | |
5088 | } | |
5089 | if ( (!object->internal) && (object->paging_offset != 0) ) | |
5090 | panic("vm_object_upl_request: external object with non-zero paging offset\n"); | |
5091 | if (object->phys_contiguous) | |
5092 | panic("vm_object_upl_request: contiguous object specified\n"); | |
5093 | ||
5094 | ||
5095 | if (size > MAX_UPL_SIZE_BYTES) | |
5096 | size = MAX_UPL_SIZE_BYTES; | |
5097 | ||
5098 | if ( (cntrl_flags & UPL_SET_INTERNAL) && page_list_count != NULL) | |
5099 | *page_list_count = MAX_UPL_SIZE_BYTES >> PAGE_SHIFT; | |
5100 | ||
5101 | #if CONFIG_IOSCHED || UPL_DEBUG | |
5102 | if (object->io_tracking || upl_debug_enabled) | |
5103 | io_tracking_flag |= UPL_CREATE_IO_TRACKING; | |
5104 | #endif | |
5105 | #if CONFIG_IOSCHED | |
5106 | if (object->io_tracking) | |
5107 | io_tracking_flag |= UPL_CREATE_EXPEDITE_SUP; | |
5108 | #endif | |
5109 | ||
5110 | if (cntrl_flags & UPL_SET_INTERNAL) { | |
5111 | if (cntrl_flags & UPL_SET_LITE) { | |
5112 | ||
5113 | upl = upl_create(UPL_CREATE_INTERNAL | UPL_CREATE_LITE | io_tracking_flag, 0, size); | |
5114 | ||
5115 | user_page_list = (upl_page_info_t *) (((uintptr_t)upl) + sizeof(struct upl)); | |
5116 | lite_list = (wpl_array_t) | |
5117 | (((uintptr_t)user_page_list) + | |
5118 | ((size/PAGE_SIZE) * sizeof(upl_page_info_t))); | |
5119 | if (size == 0) { | |
5120 | user_page_list = NULL; | |
5121 | lite_list = NULL; | |
5122 | } | |
5123 | } else { | |
5124 | upl = upl_create(UPL_CREATE_INTERNAL | io_tracking_flag, 0, size); | |
5125 | ||
5126 | user_page_list = (upl_page_info_t *) (((uintptr_t)upl) + sizeof(struct upl)); | |
5127 | if (size == 0) { | |
5128 | user_page_list = NULL; | |
5129 | } | |
5130 | } | |
5131 | } else { | |
5132 | if (cntrl_flags & UPL_SET_LITE) { | |
5133 | ||
5134 | upl = upl_create(UPL_CREATE_EXTERNAL | UPL_CREATE_LITE | io_tracking_flag, 0, size); | |
5135 | ||
5136 | lite_list = (wpl_array_t) (((uintptr_t)upl) + sizeof(struct upl)); | |
5137 | if (size == 0) { | |
5138 | lite_list = NULL; | |
5139 | } | |
5140 | } else { | |
5141 | upl = upl_create(UPL_CREATE_EXTERNAL | io_tracking_flag, 0, size); | |
5142 | } | |
5143 | } | |
5144 | *upl_ptr = upl; | |
5145 | ||
5146 | if (user_page_list) | |
5147 | user_page_list[0].device = FALSE; | |
5148 | ||
5149 | if (cntrl_flags & UPL_SET_LITE) { | |
5150 | upl->map_object = object; | |
5151 | } else { | |
5152 | upl->map_object = vm_object_allocate(size); | |
5153 | /* | |
5154 | * No neeed to lock the new object: nobody else knows | |
5155 | * about it yet, so it's all ours so far. | |
5156 | */ | |
5157 | upl->map_object->shadow = object; | |
5158 | upl->map_object->pageout = TRUE; | |
5159 | upl->map_object->can_persist = FALSE; | |
5160 | upl->map_object->copy_strategy = MEMORY_OBJECT_COPY_NONE; | |
5161 | upl->map_object->vo_shadow_offset = offset; | |
5162 | upl->map_object->wimg_bits = object->wimg_bits; | |
5163 | ||
5164 | VM_PAGE_GRAB_FICTITIOUS(alias_page); | |
5165 | ||
5166 | upl->flags |= UPL_SHADOWED; | |
5167 | } | |
5168 | /* | |
5169 | * ENCRYPTED SWAP: | |
5170 | * Just mark the UPL as "encrypted" here. | |
5171 | * We'll actually encrypt the pages later, | |
5172 | * in upl_encrypt(), when the caller has | |
5173 | * selected which pages need to go to swap. | |
5174 | */ | |
5175 | if (cntrl_flags & UPL_ENCRYPT) | |
5176 | upl->flags |= UPL_ENCRYPTED; | |
5177 | ||
5178 | if (cntrl_flags & UPL_FOR_PAGEOUT) | |
5179 | upl->flags |= UPL_PAGEOUT; | |
5180 | ||
5181 | vm_object_lock(object); | |
5182 | vm_object_activity_begin(object); | |
5183 | ||
5184 | /* | |
5185 | * we can lock in the paging_offset once paging_in_progress is set | |
5186 | */ | |
5187 | upl->size = size; | |
5188 | upl->offset = offset + object->paging_offset; | |
5189 | ||
5190 | #if CONFIG_IOSCHED || UPL_DEBUG | |
5191 | if (object->io_tracking || upl_debug_enabled) { | |
5192 | vm_object_activity_begin(object); | |
5193 | queue_enter(&object->uplq, upl, upl_t, uplq); | |
5194 | } | |
5195 | #endif | |
5196 | if ((cntrl_flags & UPL_WILL_MODIFY) && object->copy != VM_OBJECT_NULL) { | |
5197 | /* | |
5198 | * Honor copy-on-write obligations | |
5199 | * | |
5200 | * The caller is gathering these pages and | |
5201 | * might modify their contents. We need to | |
5202 | * make sure that the copy object has its own | |
5203 | * private copies of these pages before we let | |
5204 | * the caller modify them. | |
5205 | */ | |
5206 | vm_object_update(object, | |
5207 | offset, | |
5208 | size, | |
5209 | NULL, | |
5210 | NULL, | |
5211 | FALSE, /* should_return */ | |
5212 | MEMORY_OBJECT_COPY_SYNC, | |
5213 | VM_PROT_NO_CHANGE); | |
5214 | #if DEVELOPMENT || DEBUG | |
5215 | upl_cow++; | |
5216 | upl_cow_pages += size >> PAGE_SHIFT; | |
5217 | #endif | |
5218 | } | |
5219 | /* | |
5220 | * remember which copy object we synchronized with | |
5221 | */ | |
5222 | last_copy_object = object->copy; | |
5223 | entry = 0; | |
5224 | ||
5225 | xfer_size = size; | |
5226 | dst_offset = offset; | |
5227 | size_in_pages = size / PAGE_SIZE; | |
5228 | ||
5229 | dwp = &dw_array[0]; | |
5230 | dw_count = 0; | |
5231 | dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT); | |
5232 | ||
5233 | if (vm_page_free_count > (vm_page_free_target + size_in_pages) || | |
5234 | object->resident_page_count < ((MAX_UPL_SIZE_BYTES * 2) >> PAGE_SHIFT)) | |
5235 | object->scan_collisions = 0; | |
5236 | ||
5237 | if ((cntrl_flags & UPL_WILL_MODIFY) && must_throttle_writes() == TRUE) { | |
5238 | boolean_t isSSD = FALSE; | |
5239 | ||
5240 | vnode_pager_get_isSSD(object->pager, &isSSD); | |
5241 | vm_object_unlock(object); | |
5242 | ||
5243 | OSAddAtomic(size_in_pages, &vm_upl_wait_for_pages); | |
5244 | ||
5245 | if (isSSD == TRUE) | |
5246 | delay(1000 * size_in_pages); | |
5247 | else | |
5248 | delay(5000 * size_in_pages); | |
5249 | OSAddAtomic(-size_in_pages, &vm_upl_wait_for_pages); | |
5250 | ||
5251 | vm_object_lock(object); | |
5252 | } | |
5253 | ||
5254 | while (xfer_size) { | |
5255 | ||
5256 | dwp->dw_mask = 0; | |
5257 | ||
5258 | if ((alias_page == NULL) && !(cntrl_flags & UPL_SET_LITE)) { | |
5259 | vm_object_unlock(object); | |
5260 | VM_PAGE_GRAB_FICTITIOUS(alias_page); | |
5261 | vm_object_lock(object); | |
5262 | } | |
5263 | if (cntrl_flags & UPL_COPYOUT_FROM) { | |
5264 | upl->flags |= UPL_PAGE_SYNC_DONE; | |
5265 | ||
5266 | if ( ((dst_page = vm_page_lookup(object, dst_offset)) == VM_PAGE_NULL) || | |
5267 | dst_page->fictitious || | |
5268 | dst_page->absent || | |
5269 | dst_page->error || | |
5270 | dst_page->cleaning || | |
5271 | (VM_PAGE_WIRED(dst_page))) { | |
5272 | ||
5273 | if (user_page_list) | |
5274 | user_page_list[entry].phys_addr = 0; | |
5275 | ||
5276 | goto try_next_page; | |
5277 | } | |
5278 | /* | |
5279 | * grab this up front... | |
5280 | * a high percentange of the time we're going to | |
5281 | * need the hardware modification state a bit later | |
5282 | * anyway... so we can eliminate an extra call into | |
5283 | * the pmap layer by grabbing it here and recording it | |
5284 | */ | |
5285 | if (dst_page->pmapped) | |
5286 | refmod_state = pmap_get_refmod(dst_page->phys_page); | |
5287 | else | |
5288 | refmod_state = 0; | |
5289 | ||
5290 | if ( (refmod_state & VM_MEM_REFERENCED) && dst_page->inactive ) { | |
5291 | /* | |
5292 | * page is on inactive list and referenced... | |
5293 | * reactivate it now... this gets it out of the | |
5294 | * way of vm_pageout_scan which would have to | |
5295 | * reactivate it upon tripping over it | |
5296 | */ | |
5297 | dwp->dw_mask |= DW_vm_page_activate; | |
5298 | } | |
5299 | if (cntrl_flags & UPL_RET_ONLY_DIRTY) { | |
5300 | /* | |
5301 | * we're only asking for DIRTY pages to be returned | |
5302 | */ | |
5303 | if (dst_page->laundry || !(cntrl_flags & UPL_FOR_PAGEOUT)) { | |
5304 | /* | |
5305 | * if we were the page stolen by vm_pageout_scan to be | |
5306 | * cleaned (as opposed to a buddy being clustered in | |
5307 | * or this request is not being driven by a PAGEOUT cluster | |
5308 | * then we only need to check for the page being dirty or | |
5309 | * precious to decide whether to return it | |
5310 | */ | |
5311 | if (dst_page->dirty || dst_page->precious || (refmod_state & VM_MEM_MODIFIED)) | |
5312 | goto check_busy; | |
5313 | goto dont_return; | |
5314 | } | |
5315 | /* | |
5316 | * this is a request for a PAGEOUT cluster and this page | |
5317 | * is merely along for the ride as a 'buddy'... not only | |
5318 | * does it have to be dirty to be returned, but it also | |
5319 | * can't have been referenced recently... | |
5320 | */ | |
5321 | if ( (hibernate_cleaning_in_progress == TRUE || | |
5322 | (!((refmod_state & VM_MEM_REFERENCED) || dst_page->reference) || dst_page->throttled)) && | |
5323 | ((refmod_state & VM_MEM_MODIFIED) || dst_page->dirty || dst_page->precious) ) { | |
5324 | goto check_busy; | |
5325 | } | |
5326 | dont_return: | |
5327 | /* | |
5328 | * if we reach here, we're not to return | |
5329 | * the page... go on to the next one | |
5330 | */ | |
5331 | if (dst_page->laundry == TRUE) { | |
5332 | /* | |
5333 | * if we get here, the page is not 'cleaning' (filtered out above). | |
5334 | * since it has been referenced, remove it from the laundry | |
5335 | * so we don't pay the cost of an I/O to clean a page | |
5336 | * we're just going to take back | |
5337 | */ | |
5338 | vm_page_lockspin_queues(); | |
5339 | ||
5340 | vm_pageout_steal_laundry(dst_page, TRUE); | |
5341 | vm_page_activate(dst_page); | |
5342 | ||
5343 | vm_page_unlock_queues(); | |
5344 | } | |
5345 | if (user_page_list) | |
5346 | user_page_list[entry].phys_addr = 0; | |
5347 | ||
5348 | goto try_next_page; | |
5349 | } | |
5350 | check_busy: | |
5351 | if (dst_page->busy) { | |
5352 | if (cntrl_flags & UPL_NOBLOCK) { | |
5353 | if (user_page_list) | |
5354 | user_page_list[entry].phys_addr = 0; | |
5355 | ||
5356 | goto try_next_page; | |
5357 | } | |
5358 | /* | |
5359 | * someone else is playing with the | |
5360 | * page. We will have to wait. | |
5361 | */ | |
5362 | PAGE_SLEEP(object, dst_page, THREAD_UNINT); | |
5363 | ||
5364 | continue; | |
5365 | } | |
5366 | /* | |
5367 | * ENCRYPTED SWAP: | |
5368 | * The caller is gathering this page and might | |
5369 | * access its contents later on. Decrypt the | |
5370 | * page before adding it to the UPL, so that | |
5371 | * the caller never sees encrypted data. | |
5372 | */ | |
5373 | if (! (cntrl_flags & UPL_ENCRYPT) && dst_page->encrypted) { | |
5374 | int was_busy; | |
5375 | ||
5376 | /* | |
5377 | * save the current state of busy | |
5378 | * mark page as busy while decrypt | |
5379 | * is in progress since it will drop | |
5380 | * the object lock... | |
5381 | */ | |
5382 | was_busy = dst_page->busy; | |
5383 | dst_page->busy = TRUE; | |
5384 | ||
5385 | vm_page_decrypt(dst_page, 0); | |
5386 | vm_page_decrypt_for_upl_counter++; | |
5387 | /* | |
5388 | * restore to original busy state | |
5389 | */ | |
5390 | dst_page->busy = was_busy; | |
5391 | } | |
5392 | if (dst_page->pageout_queue == TRUE) { | |
5393 | ||
5394 | vm_page_lockspin_queues(); | |
5395 | ||
5396 | if (dst_page->pageout_queue == TRUE) { | |
5397 | /* | |
5398 | * we've buddied up a page for a clustered pageout | |
5399 | * that has already been moved to the pageout | |
5400 | * queue by pageout_scan... we need to remove | |
5401 | * it from the queue and drop the laundry count | |
5402 | * on that queue | |
5403 | */ | |
5404 | vm_pageout_throttle_up(dst_page); | |
5405 | } | |
5406 | vm_page_unlock_queues(); | |
5407 | } | |
5408 | #if MACH_CLUSTER_STATS | |
5409 | /* | |
5410 | * pageout statistics gathering. count | |
5411 | * all the pages we will page out that | |
5412 | * were not counted in the initial | |
5413 | * vm_pageout_scan work | |
5414 | */ | |
5415 | if (dst_page->pageout) | |
5416 | encountered_lrp = TRUE; | |
5417 | if ((dst_page->dirty || (dst_page->object->internal && dst_page->precious))) { | |
5418 | if (encountered_lrp) | |
5419 | CLUSTER_STAT(pages_at_higher_offsets++;) | |
5420 | else | |
5421 | CLUSTER_STAT(pages_at_lower_offsets++;) | |
5422 | } | |
5423 | #endif | |
5424 | hw_dirty = refmod_state & VM_MEM_MODIFIED; | |
5425 | dirty = hw_dirty ? TRUE : dst_page->dirty; | |
5426 | ||
5427 | if (dst_page->phys_page > upl->highest_page) | |
5428 | upl->highest_page = dst_page->phys_page; | |
5429 | ||
5430 | assert (!pmap_is_noencrypt(dst_page->phys_page)); | |
5431 | ||
5432 | if (cntrl_flags & UPL_SET_LITE) { | |
5433 | unsigned int pg_num; | |
5434 | ||
5435 | pg_num = (unsigned int) ((dst_offset-offset)/PAGE_SIZE); | |
5436 | assert(pg_num == (dst_offset-offset)/PAGE_SIZE); | |
5437 | lite_list[pg_num>>5] |= 1 << (pg_num & 31); | |
5438 | ||
5439 | if (hw_dirty) | |
5440 | pmap_clear_modify(dst_page->phys_page); | |
5441 | ||
5442 | /* | |
5443 | * Mark original page as cleaning | |
5444 | * in place. | |
5445 | */ | |
5446 | dst_page->cleaning = TRUE; | |
5447 | dst_page->precious = FALSE; | |
5448 | } else { | |
5449 | /* | |
5450 | * use pageclean setup, it is more | |
5451 | * convenient even for the pageout | |
5452 | * cases here | |
5453 | */ | |
5454 | vm_object_lock(upl->map_object); | |
5455 | vm_pageclean_setup(dst_page, alias_page, upl->map_object, size - xfer_size); | |
5456 | vm_object_unlock(upl->map_object); | |
5457 | ||
5458 | alias_page->absent = FALSE; | |
5459 | alias_page = NULL; | |
5460 | } | |
5461 | #if MACH_PAGEMAP | |
5462 | /* | |
5463 | * Record that this page has been | |
5464 | * written out | |
5465 | */ | |
5466 | vm_external_state_set(object->existence_map, dst_page->offset); | |
5467 | #endif /*MACH_PAGEMAP*/ | |
5468 | if (dirty) { | |
5469 | SET_PAGE_DIRTY(dst_page, FALSE); | |
5470 | } else { | |
5471 | dst_page->dirty = FALSE; | |
5472 | } | |
5473 | ||
5474 | if (!dirty) | |
5475 | dst_page->precious = TRUE; | |
5476 | ||
5477 | if ( (cntrl_flags & UPL_ENCRYPT) ) { | |
5478 | /* | |
5479 | * ENCRYPTED SWAP: | |
5480 | * We want to deny access to the target page | |
5481 | * because its contents are about to be | |
5482 | * encrypted and the user would be very | |
5483 | * confused to see encrypted data instead | |
5484 | * of their data. | |
5485 | * We also set "encrypted_cleaning" to allow | |
5486 | * vm_pageout_scan() to demote that page | |
5487 | * from "adjacent/clean-in-place" to | |
5488 | * "target/clean-and-free" if it bumps into | |
5489 | * this page during its scanning while we're | |
5490 | * still processing this cluster. | |
5491 | */ | |
5492 | dst_page->busy = TRUE; | |
5493 | dst_page->encrypted_cleaning = TRUE; | |
5494 | } | |
5495 | if ( !(cntrl_flags & UPL_CLEAN_IN_PLACE) ) { | |
5496 | if ( !VM_PAGE_WIRED(dst_page)) | |
5497 | dst_page->pageout = TRUE; | |
5498 | } | |
5499 | } else { | |
5500 | if ((cntrl_flags & UPL_WILL_MODIFY) && object->copy != last_copy_object) { | |
5501 | /* | |
5502 | * Honor copy-on-write obligations | |
5503 | * | |
5504 | * The copy object has changed since we | |
5505 | * last synchronized for copy-on-write. | |
5506 | * Another copy object might have been | |
5507 | * inserted while we released the object's | |
5508 | * lock. Since someone could have seen the | |
5509 | * original contents of the remaining pages | |
5510 | * through that new object, we have to | |
5511 | * synchronize with it again for the remaining | |
5512 | * pages only. The previous pages are "busy" | |
5513 | * so they can not be seen through the new | |
5514 | * mapping. The new mapping will see our | |
5515 | * upcoming changes for those previous pages, | |
5516 | * but that's OK since they couldn't see what | |
5517 | * was there before. It's just a race anyway | |
5518 | * and there's no guarantee of consistency or | |
5519 | * atomicity. We just don't want new mappings | |
5520 | * to see both the *before* and *after* pages. | |
5521 | */ | |
5522 | if (object->copy != VM_OBJECT_NULL) { | |
5523 | vm_object_update( | |
5524 | object, | |
5525 | dst_offset,/* current offset */ | |
5526 | xfer_size, /* remaining size */ | |
5527 | NULL, | |
5528 | NULL, | |
5529 | FALSE, /* should_return */ | |
5530 | MEMORY_OBJECT_COPY_SYNC, | |
5531 | VM_PROT_NO_CHANGE); | |
5532 | ||
5533 | #if DEVELOPMENT || DEBUG | |
5534 | upl_cow_again++; | |
5535 | upl_cow_again_pages += xfer_size >> PAGE_SHIFT; | |
5536 | #endif | |
5537 | } | |
5538 | /* | |
5539 | * remember the copy object we synced with | |
5540 | */ | |
5541 | last_copy_object = object->copy; | |
5542 | } | |
5543 | dst_page = vm_page_lookup(object, dst_offset); | |
5544 | ||
5545 | if (dst_page != VM_PAGE_NULL) { | |
5546 | ||
5547 | if ((cntrl_flags & UPL_RET_ONLY_ABSENT)) { | |
5548 | /* | |
5549 | * skip over pages already present in the cache | |
5550 | */ | |
5551 | if (user_page_list) | |
5552 | user_page_list[entry].phys_addr = 0; | |
5553 | ||
5554 | goto try_next_page; | |
5555 | } | |
5556 | if (dst_page->fictitious) { | |
5557 | panic("need corner case for fictitious page"); | |
5558 | } | |
5559 | ||
5560 | if (dst_page->busy || dst_page->cleaning) { | |
5561 | /* | |
5562 | * someone else is playing with the | |
5563 | * page. We will have to wait. | |
5564 | */ | |
5565 | PAGE_SLEEP(object, dst_page, THREAD_UNINT); | |
5566 | ||
5567 | continue; | |
5568 | } | |
5569 | if (dst_page->laundry) { | |
5570 | dst_page->pageout = FALSE; | |
5571 | ||
5572 | vm_pageout_steal_laundry(dst_page, FALSE); | |
5573 | } | |
5574 | } else { | |
5575 | if (object->private) { | |
5576 | /* | |
5577 | * This is a nasty wrinkle for users | |
5578 | * of upl who encounter device or | |
5579 | * private memory however, it is | |
5580 | * unavoidable, only a fault can | |
5581 | * resolve the actual backing | |
5582 | * physical page by asking the | |
5583 | * backing device. | |
5584 | */ | |
5585 | if (user_page_list) | |
5586 | user_page_list[entry].phys_addr = 0; | |
5587 | ||
5588 | goto try_next_page; | |
5589 | } | |
5590 | if (object->scan_collisions) { | |
5591 | /* | |
5592 | * the pageout_scan thread is trying to steal | |
5593 | * pages from this object, but has run into our | |
5594 | * lock... grab 2 pages from the head of the object... | |
5595 | * the first is freed on behalf of pageout_scan, the | |
5596 | * 2nd is for our own use... we use vm_object_page_grab | |
5597 | * in both cases to avoid taking pages from the free | |
5598 | * list since we are under memory pressure and our | |
5599 | * lock on this object is getting in the way of | |
5600 | * relieving it | |
5601 | */ | |
5602 | dst_page = vm_object_page_grab(object); | |
5603 | ||
5604 | if (dst_page != VM_PAGE_NULL) | |
5605 | vm_page_release(dst_page); | |
5606 | ||
5607 | dst_page = vm_object_page_grab(object); | |
5608 | } | |
5609 | if (dst_page == VM_PAGE_NULL) { | |
5610 | /* | |
5611 | * need to allocate a page | |
5612 | */ | |
5613 | dst_page = vm_page_grab(); | |
5614 | } | |
5615 | if (dst_page == VM_PAGE_NULL) { | |
5616 | if ( (cntrl_flags & (UPL_RET_ONLY_ABSENT | UPL_NOBLOCK)) == (UPL_RET_ONLY_ABSENT | UPL_NOBLOCK)) { | |
5617 | /* | |
5618 | * we don't want to stall waiting for pages to come onto the free list | |
5619 | * while we're already holding absent pages in this UPL | |
5620 | * the caller will deal with the empty slots | |
5621 | */ | |
5622 | if (user_page_list) | |
5623 | user_page_list[entry].phys_addr = 0; | |
5624 | ||
5625 | goto try_next_page; | |
5626 | } | |
5627 | /* | |
5628 | * no pages available... wait | |
5629 | * then try again for the same | |
5630 | * offset... | |
5631 | */ | |
5632 | vm_object_unlock(object); | |
5633 | ||
5634 | OSAddAtomic(size_in_pages, &vm_upl_wait_for_pages); | |
5635 | ||
5636 | VM_DEBUG_EVENT(vm_upl_page_wait, VM_UPL_PAGE_WAIT, DBG_FUNC_START, vm_upl_wait_for_pages, 0, 0, 0); | |
5637 | ||
5638 | VM_PAGE_WAIT(); | |
5639 | OSAddAtomic(-size_in_pages, &vm_upl_wait_for_pages); | |
5640 | ||
5641 | VM_DEBUG_EVENT(vm_upl_page_wait, VM_UPL_PAGE_WAIT, DBG_FUNC_END, vm_upl_wait_for_pages, 0, 0, 0); | |
5642 | ||
5643 | vm_object_lock(object); | |
5644 | ||
5645 | continue; | |
5646 | } | |
5647 | vm_page_insert(dst_page, object, dst_offset); | |
5648 | ||
5649 | dst_page->absent = TRUE; | |
5650 | dst_page->busy = FALSE; | |
5651 | ||
5652 | if (cntrl_flags & UPL_RET_ONLY_ABSENT) { | |
5653 | /* | |
5654 | * if UPL_RET_ONLY_ABSENT was specified, | |
5655 | * than we're definitely setting up a | |
5656 | * upl for a clustered read/pagein | |
5657 | * operation... mark the pages as clustered | |
5658 | * so upl_commit_range can put them on the | |
5659 | * speculative list | |
5660 | */ | |
5661 | dst_page->clustered = TRUE; | |
5662 | ||
5663 | if ( !(cntrl_flags & UPL_FILE_IO)) | |
5664 | VM_STAT_INCR(pageins); | |
5665 | } | |
5666 | } | |
5667 | /* | |
5668 | * ENCRYPTED SWAP: | |
5669 | */ | |
5670 | if (cntrl_flags & UPL_ENCRYPT) { | |
5671 | /* | |
5672 | * The page is going to be encrypted when we | |
5673 | * get it from the pager, so mark it so. | |
5674 | */ | |
5675 | dst_page->encrypted = TRUE; | |
5676 | } else { | |
5677 | /* | |
5678 | * Otherwise, the page will not contain | |
5679 | * encrypted data. | |
5680 | */ | |
5681 | dst_page->encrypted = FALSE; | |
5682 | } | |
5683 | dst_page->overwriting = TRUE; | |
5684 | ||
5685 | if (dst_page->pmapped) { | |
5686 | if ( !(cntrl_flags & UPL_FILE_IO)) | |
5687 | /* | |
5688 | * eliminate all mappings from the | |
5689 | * original object and its prodigy | |
5690 | */ | |
5691 | refmod_state = pmap_disconnect(dst_page->phys_page); | |
5692 | else | |
5693 | refmod_state = pmap_get_refmod(dst_page->phys_page); | |
5694 | } else | |
5695 | refmod_state = 0; | |
5696 | ||
5697 | hw_dirty = refmod_state & VM_MEM_MODIFIED; | |
5698 | dirty = hw_dirty ? TRUE : dst_page->dirty; | |
5699 | ||
5700 | if (cntrl_flags & UPL_SET_LITE) { | |
5701 | unsigned int pg_num; | |
5702 | ||
5703 | pg_num = (unsigned int) ((dst_offset-offset)/PAGE_SIZE); | |
5704 | assert(pg_num == (dst_offset-offset)/PAGE_SIZE); | |
5705 | lite_list[pg_num>>5] |= 1 << (pg_num & 31); | |
5706 | ||
5707 | if (hw_dirty) | |
5708 | pmap_clear_modify(dst_page->phys_page); | |
5709 | ||
5710 | /* | |
5711 | * Mark original page as cleaning | |
5712 | * in place. | |
5713 | */ | |
5714 | dst_page->cleaning = TRUE; | |
5715 | dst_page->precious = FALSE; | |
5716 | } else { | |
5717 | /* | |
5718 | * use pageclean setup, it is more | |
5719 | * convenient even for the pageout | |
5720 | * cases here | |
5721 | */ | |
5722 | vm_object_lock(upl->map_object); | |
5723 | vm_pageclean_setup(dst_page, alias_page, upl->map_object, size - xfer_size); | |
5724 | vm_object_unlock(upl->map_object); | |
5725 | ||
5726 | alias_page->absent = FALSE; | |
5727 | alias_page = NULL; | |
5728 | } | |
5729 | ||
5730 | if (cntrl_flags & UPL_REQUEST_SET_DIRTY) { | |
5731 | upl->flags &= ~UPL_CLEAR_DIRTY; | |
5732 | upl->flags |= UPL_SET_DIRTY; | |
5733 | dirty = TRUE; | |
5734 | upl->flags |= UPL_SET_DIRTY; | |
5735 | } else if (cntrl_flags & UPL_CLEAN_IN_PLACE) { | |
5736 | /* | |
5737 | * clean in place for read implies | |
5738 | * that a write will be done on all | |
5739 | * the pages that are dirty before | |
5740 | * a upl commit is done. The caller | |
5741 | * is obligated to preserve the | |
5742 | * contents of all pages marked dirty | |
5743 | */ | |
5744 | upl->flags |= UPL_CLEAR_DIRTY; | |
5745 | } | |
5746 | dst_page->dirty = dirty; | |
5747 | ||
5748 | if (!dirty) | |
5749 | dst_page->precious = TRUE; | |
5750 | ||
5751 | if ( !VM_PAGE_WIRED(dst_page)) { | |
5752 | /* | |
5753 | * deny access to the target page while | |
5754 | * it is being worked on | |
5755 | */ | |
5756 | dst_page->busy = TRUE; | |
5757 | } else | |
5758 | dwp->dw_mask |= DW_vm_page_wire; | |
5759 | ||
5760 | /* | |
5761 | * We might be about to satisfy a fault which has been | |
5762 | * requested. So no need for the "restart" bit. | |
5763 | */ | |
5764 | dst_page->restart = FALSE; | |
5765 | if (!dst_page->absent && !(cntrl_flags & UPL_WILL_MODIFY)) { | |
5766 | /* | |
5767 | * expect the page to be used | |
5768 | */ | |
5769 | dwp->dw_mask |= DW_set_reference; | |
5770 | } | |
5771 | if (cntrl_flags & UPL_PRECIOUS) { | |
5772 | if (dst_page->object->internal) { | |
5773 | SET_PAGE_DIRTY(dst_page, FALSE); | |
5774 | dst_page->precious = FALSE; | |
5775 | } else { | |
5776 | dst_page->precious = TRUE; | |
5777 | } | |
5778 | } else { | |
5779 | dst_page->precious = FALSE; | |
5780 | } | |
5781 | } | |
5782 | if (dst_page->busy) | |
5783 | upl->flags |= UPL_HAS_BUSY; | |
5784 | ||
5785 | if (dst_page->phys_page > upl->highest_page) | |
5786 | upl->highest_page = dst_page->phys_page; | |
5787 | assert (!pmap_is_noencrypt(dst_page->phys_page)); | |
5788 | if (user_page_list) { | |
5789 | user_page_list[entry].phys_addr = dst_page->phys_page; | |
5790 | user_page_list[entry].pageout = dst_page->pageout; | |
5791 | user_page_list[entry].absent = dst_page->absent; | |
5792 | user_page_list[entry].dirty = dst_page->dirty; | |
5793 | user_page_list[entry].precious = dst_page->precious; | |
5794 | user_page_list[entry].device = FALSE; | |
5795 | user_page_list[entry].needed = FALSE; | |
5796 | if (dst_page->clustered == TRUE) | |
5797 | user_page_list[entry].speculative = dst_page->speculative; | |
5798 | else | |
5799 | user_page_list[entry].speculative = FALSE; | |
5800 | user_page_list[entry].cs_validated = dst_page->cs_validated; | |
5801 | user_page_list[entry].cs_tainted = dst_page->cs_tainted; | |
5802 | user_page_list[entry].cs_nx = dst_page->cs_nx; | |
5803 | user_page_list[entry].mark = FALSE; | |
5804 | } | |
5805 | /* | |
5806 | * if UPL_RET_ONLY_ABSENT is set, then | |
5807 | * we are working with a fresh page and we've | |
5808 | * just set the clustered flag on it to | |
5809 | * indicate that it was drug in as part of a | |
5810 | * speculative cluster... so leave it alone | |
5811 | */ | |
5812 | if ( !(cntrl_flags & UPL_RET_ONLY_ABSENT)) { | |
5813 | /* | |
5814 | * someone is explicitly grabbing this page... | |
5815 | * update clustered and speculative state | |
5816 | * | |
5817 | */ | |
5818 | if (dst_page->clustered) | |
5819 | VM_PAGE_CONSUME_CLUSTERED(dst_page); | |
5820 | } | |
5821 | try_next_page: | |
5822 | if (dwp->dw_mask) { | |
5823 | if (dwp->dw_mask & DW_vm_page_activate) | |
5824 | VM_STAT_INCR(reactivations); | |
5825 | ||
5826 | VM_PAGE_ADD_DELAYED_WORK(dwp, dst_page, dw_count); | |
5827 | ||
5828 | if (dw_count >= dw_limit) { | |
5829 | vm_page_do_delayed_work(object, UPL_MEMORY_TAG(cntrl_flags), &dw_array[0], dw_count); | |
5830 | ||
5831 | dwp = &dw_array[0]; | |
5832 | dw_count = 0; | |
5833 | } | |
5834 | } | |
5835 | entry++; | |
5836 | dst_offset += PAGE_SIZE_64; | |
5837 | xfer_size -= PAGE_SIZE; | |
5838 | } | |
5839 | if (dw_count) | |
5840 | vm_page_do_delayed_work(object, UPL_MEMORY_TAG(cntrl_flags), &dw_array[0], dw_count); | |
5841 | ||
5842 | if (alias_page != NULL) { | |
5843 | VM_PAGE_FREE(alias_page); | |
5844 | } | |
5845 | ||
5846 | if (page_list_count != NULL) { | |
5847 | if (upl->flags & UPL_INTERNAL) | |
5848 | *page_list_count = 0; | |
5849 | else if (*page_list_count > entry) | |
5850 | *page_list_count = entry; | |
5851 | } | |
5852 | #if UPL_DEBUG | |
5853 | upl->upl_state = 1; | |
5854 | #endif | |
5855 | vm_object_unlock(object); | |
5856 | ||
5857 | return KERN_SUCCESS; | |
5858 | } | |
5859 | ||
5860 | /* | |
5861 | * Routine: vm_object_super_upl_request | |
5862 | * Purpose: | |
5863 | * Cause the population of a portion of a vm_object | |
5864 | * in much the same way as memory_object_upl_request. | |
5865 | * Depending on the nature of the request, the pages | |
5866 | * returned may be contain valid data or be uninitialized. | |
5867 | * However, the region may be expanded up to the super | |
5868 | * cluster size provided. | |
5869 | */ | |
5870 | ||
5871 | __private_extern__ kern_return_t | |
5872 | vm_object_super_upl_request( | |
5873 | vm_object_t object, | |
5874 | vm_object_offset_t offset, | |
5875 | upl_size_t size, | |
5876 | upl_size_t super_cluster, | |
5877 | upl_t *upl, | |
5878 | upl_page_info_t *user_page_list, | |
5879 | unsigned int *page_list_count, | |
5880 | upl_control_flags_t cntrl_flags) | |
5881 | { | |
5882 | if (object->paging_offset > offset || ((cntrl_flags & UPL_VECTOR)==UPL_VECTOR)) | |
5883 | return KERN_FAILURE; | |
5884 | ||
5885 | assert(object->paging_in_progress); | |
5886 | offset = offset - object->paging_offset; | |
5887 | ||
5888 | if (super_cluster > size) { | |
5889 | ||
5890 | vm_object_offset_t base_offset; | |
5891 | upl_size_t super_size; | |
5892 | vm_object_size_t super_size_64; | |
5893 | ||
5894 | base_offset = (offset & ~((vm_object_offset_t) super_cluster - 1)); | |
5895 | super_size = (offset + size) > (base_offset + super_cluster) ? super_cluster<<1 : super_cluster; | |
5896 | super_size_64 = ((base_offset + super_size) > object->vo_size) ? (object->vo_size - base_offset) : super_size; | |
5897 | super_size = (upl_size_t) super_size_64; | |
5898 | assert(super_size == super_size_64); | |
5899 | ||
5900 | if (offset > (base_offset + super_size)) { | |
5901 | panic("vm_object_super_upl_request: Missed target pageout" | |
5902 | " %#llx,%#llx, %#x, %#x, %#x, %#llx\n", | |
5903 | offset, base_offset, super_size, super_cluster, | |
5904 | size, object->paging_offset); | |
5905 | } | |
5906 | /* | |
5907 | * apparently there is a case where the vm requests a | |
5908 | * page to be written out who's offset is beyond the | |
5909 | * object size | |
5910 | */ | |
5911 | if ((offset + size) > (base_offset + super_size)) { | |
5912 | super_size_64 = (offset + size) - base_offset; | |
5913 | super_size = (upl_size_t) super_size_64; | |
5914 | assert(super_size == super_size_64); | |
5915 | } | |
5916 | ||
5917 | offset = base_offset; | |
5918 | size = super_size; | |
5919 | } | |
5920 | return vm_object_upl_request(object, offset, size, upl, user_page_list, page_list_count, cntrl_flags); | |
5921 | } | |
5922 | ||
5923 | ||
5924 | kern_return_t | |
5925 | vm_map_create_upl( | |
5926 | vm_map_t map, | |
5927 | vm_map_address_t offset, | |
5928 | upl_size_t *upl_size, | |
5929 | upl_t *upl, | |
5930 | upl_page_info_array_t page_list, | |
5931 | unsigned int *count, | |
5932 | upl_control_flags_t *flags) | |
5933 | { | |
5934 | vm_map_entry_t entry; | |
5935 | upl_control_flags_t caller_flags; | |
5936 | int force_data_sync; | |
5937 | int sync_cow_data; | |
5938 | vm_object_t local_object; | |
5939 | vm_map_offset_t local_offset; | |
5940 | vm_map_offset_t local_start; | |
5941 | kern_return_t ret; | |
5942 | ||
5943 | caller_flags = *flags; | |
5944 | ||
5945 | if (caller_flags & ~UPL_VALID_FLAGS) { | |
5946 | /* | |
5947 | * For forward compatibility's sake, | |
5948 | * reject any unknown flag. | |
5949 | */ | |
5950 | return KERN_INVALID_VALUE; | |
5951 | } | |
5952 | force_data_sync = (caller_flags & UPL_FORCE_DATA_SYNC); | |
5953 | sync_cow_data = !(caller_flags & UPL_COPYOUT_FROM); | |
5954 | ||
5955 | if (upl == NULL) | |
5956 | return KERN_INVALID_ARGUMENT; | |
5957 | ||
5958 | REDISCOVER_ENTRY: | |
5959 | vm_map_lock_read(map); | |
5960 | ||
5961 | if (!vm_map_lookup_entry(map, offset, &entry)) { | |
5962 | vm_map_unlock_read(map); | |
5963 | return KERN_FAILURE; | |
5964 | } | |
5965 | ||
5966 | if ((entry->vme_end - offset) < *upl_size) { | |
5967 | *upl_size = (upl_size_t) (entry->vme_end - offset); | |
5968 | assert(*upl_size == entry->vme_end - offset); | |
5969 | } | |
5970 | ||
5971 | if (caller_flags & UPL_QUERY_OBJECT_TYPE) { | |
5972 | *flags = 0; | |
5973 | ||
5974 | if (!entry->is_sub_map && | |
5975 | VME_OBJECT(entry) != VM_OBJECT_NULL) { | |
5976 | if (VME_OBJECT(entry)->private) | |
5977 | *flags = UPL_DEV_MEMORY; | |
5978 | ||
5979 | if (VME_OBJECT(entry)->phys_contiguous) | |
5980 | *flags |= UPL_PHYS_CONTIG; | |
5981 | } | |
5982 | vm_map_unlock_read(map); | |
5983 | return KERN_SUCCESS; | |
5984 | } | |
5985 | ||
5986 | if (entry->is_sub_map) { | |
5987 | vm_map_t submap; | |
5988 | ||
5989 | submap = VME_SUBMAP(entry); | |
5990 | local_start = entry->vme_start; | |
5991 | local_offset = VME_OFFSET(entry); | |
5992 | ||
5993 | vm_map_reference(submap); | |
5994 | vm_map_unlock_read(map); | |
5995 | ||
5996 | ret = vm_map_create_upl(submap, | |
5997 | local_offset + (offset - local_start), | |
5998 | upl_size, upl, page_list, count, flags); | |
5999 | vm_map_deallocate(submap); | |
6000 | ||
6001 | return ret; | |
6002 | } | |
6003 | ||
6004 | if (VME_OBJECT(entry) == VM_OBJECT_NULL || | |
6005 | !VME_OBJECT(entry)->phys_contiguous) { | |
6006 | if (*upl_size > MAX_UPL_SIZE_BYTES) | |
6007 | *upl_size = MAX_UPL_SIZE_BYTES; | |
6008 | } | |
6009 | ||
6010 | /* | |
6011 | * Create an object if necessary. | |
6012 | */ | |
6013 | if (VME_OBJECT(entry) == VM_OBJECT_NULL) { | |
6014 | ||
6015 | if (vm_map_lock_read_to_write(map)) | |
6016 | goto REDISCOVER_ENTRY; | |
6017 | ||
6018 | VME_OBJECT_SET(entry, | |
6019 | vm_object_allocate((vm_size_t) | |
6020 | (entry->vme_end - | |
6021 | entry->vme_start))); | |
6022 | VME_OFFSET_SET(entry, 0); | |
6023 | ||
6024 | vm_map_lock_write_to_read(map); | |
6025 | } | |
6026 | ||
6027 | if (!(caller_flags & UPL_COPYOUT_FROM) && | |
6028 | !(entry->protection & VM_PROT_WRITE)) { | |
6029 | vm_map_unlock_read(map); | |
6030 | return KERN_PROTECTION_FAILURE; | |
6031 | } | |
6032 | ||
6033 | local_object = VME_OBJECT(entry); | |
6034 | assert(local_object != VM_OBJECT_NULL); | |
6035 | ||
6036 | if (*upl_size != 0 && | |
6037 | local_object->vo_size > *upl_size && /* partial UPL */ | |
6038 | entry->wired_count == 0 && /* No COW for entries that are wired */ | |
6039 | (map->pmap != kernel_pmap) && /* alias checks */ | |
6040 | (vm_map_entry_should_cow_for_true_share(entry) /* case 1 */ | |
6041 | || | |
6042 | (!entry->needs_copy && /* case 2 */ | |
6043 | local_object->internal && | |
6044 | (local_object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC) && | |
6045 | local_object->ref_count > 1))) { | |
6046 | vm_prot_t prot; | |
6047 | ||
6048 | /* | |
6049 | * Case 1: | |
6050 | * Set up the targeted range for copy-on-write to avoid | |
6051 | * applying true_share/copy_delay to the entire object. | |
6052 | * | |
6053 | * Case 2: | |
6054 | * This map entry covers only part of an internal | |
6055 | * object. There could be other map entries covering | |
6056 | * other areas of this object and some of these map | |
6057 | * entries could be marked as "needs_copy", which | |
6058 | * assumes that the object is COPY_SYMMETRIC. | |
6059 | * To avoid marking this object as COPY_DELAY and | |
6060 | * "true_share", let's shadow it and mark the new | |
6061 | * (smaller) object as "true_share" and COPY_DELAY. | |
6062 | */ | |
6063 | ||
6064 | if (vm_map_lock_read_to_write(map)) { | |
6065 | goto REDISCOVER_ENTRY; | |
6066 | } | |
6067 | vm_map_lock_assert_exclusive(map); | |
6068 | assert(VME_OBJECT(entry) == local_object); | |
6069 | ||
6070 | vm_map_clip_start(map, | |
6071 | entry, | |
6072 | vm_map_trunc_page(offset, | |
6073 | VM_MAP_PAGE_MASK(map))); | |
6074 | vm_map_clip_end(map, | |
6075 | entry, | |
6076 | vm_map_round_page(offset + *upl_size, | |
6077 | VM_MAP_PAGE_MASK(map))); | |
6078 | if ((entry->vme_end - offset) < *upl_size) { | |
6079 | *upl_size = (upl_size_t) (entry->vme_end - offset); | |
6080 | assert(*upl_size == entry->vme_end - offset); | |
6081 | } | |
6082 | ||
6083 | prot = entry->protection & ~VM_PROT_WRITE; | |
6084 | if (override_nx(map, VME_ALIAS(entry)) && prot) | |
6085 | prot |= VM_PROT_EXECUTE; | |
6086 | vm_object_pmap_protect(local_object, | |
6087 | VME_OFFSET(entry), | |
6088 | entry->vme_end - entry->vme_start, | |
6089 | ((entry->is_shared || | |
6090 | map->mapped_in_other_pmaps) | |
6091 | ? PMAP_NULL | |
6092 | : map->pmap), | |
6093 | entry->vme_start, | |
6094 | prot); | |
6095 | ||
6096 | assert(entry->wired_count == 0); | |
6097 | ||
6098 | /* | |
6099 | * Lock the VM object and re-check its status: if it's mapped | |
6100 | * in another address space, we could still be racing with | |
6101 | * another thread holding that other VM map exclusively. | |
6102 | */ | |
6103 | vm_object_lock(local_object); | |
6104 | if (local_object->true_share) { | |
6105 | /* object is already in proper state: no COW needed */ | |
6106 | assert(local_object->copy_strategy != | |
6107 | MEMORY_OBJECT_COPY_SYMMETRIC); | |
6108 | } else { | |
6109 | /* not true_share: ask for copy-on-write below */ | |
6110 | assert(local_object->copy_strategy == | |
6111 | MEMORY_OBJECT_COPY_SYMMETRIC); | |
6112 | entry->needs_copy = TRUE; | |
6113 | } | |
6114 | vm_object_unlock(local_object); | |
6115 | ||
6116 | vm_map_lock_write_to_read(map); | |
6117 | } | |
6118 | ||
6119 | if (entry->needs_copy) { | |
6120 | /* | |
6121 | * Honor copy-on-write for COPY_SYMMETRIC | |
6122 | * strategy. | |
6123 | */ | |
6124 | vm_map_t local_map; | |
6125 | vm_object_t object; | |
6126 | vm_object_offset_t new_offset; | |
6127 | vm_prot_t prot; | |
6128 | boolean_t wired; | |
6129 | vm_map_version_t version; | |
6130 | vm_map_t real_map; | |
6131 | vm_prot_t fault_type; | |
6132 | ||
6133 | local_map = map; | |
6134 | ||
6135 | if (caller_flags & UPL_COPYOUT_FROM) { | |
6136 | fault_type = VM_PROT_READ | VM_PROT_COPY; | |
6137 | vm_counters.create_upl_extra_cow++; | |
6138 | vm_counters.create_upl_extra_cow_pages += | |
6139 | (entry->vme_end - entry->vme_start) / PAGE_SIZE; | |
6140 | } else { | |
6141 | fault_type = VM_PROT_WRITE; | |
6142 | } | |
6143 | if (vm_map_lookup_locked(&local_map, | |
6144 | offset, fault_type, | |
6145 | OBJECT_LOCK_EXCLUSIVE, | |
6146 | &version, &object, | |
6147 | &new_offset, &prot, &wired, | |
6148 | NULL, | |
6149 | &real_map) != KERN_SUCCESS) { | |
6150 | if (fault_type == VM_PROT_WRITE) { | |
6151 | vm_counters.create_upl_lookup_failure_write++; | |
6152 | } else { | |
6153 | vm_counters.create_upl_lookup_failure_copy++; | |
6154 | } | |
6155 | vm_map_unlock_read(local_map); | |
6156 | return KERN_FAILURE; | |
6157 | } | |
6158 | if (real_map != map) | |
6159 | vm_map_unlock(real_map); | |
6160 | vm_map_unlock_read(local_map); | |
6161 | ||
6162 | vm_object_unlock(object); | |
6163 | ||
6164 | goto REDISCOVER_ENTRY; | |
6165 | } | |
6166 | ||
6167 | if (sync_cow_data && | |
6168 | (VME_OBJECT(entry)->shadow || | |
6169 | VME_OBJECT(entry)->copy)) { | |
6170 | local_object = VME_OBJECT(entry); | |
6171 | local_start = entry->vme_start; | |
6172 | local_offset = VME_OFFSET(entry); | |
6173 | ||
6174 | vm_object_reference(local_object); | |
6175 | vm_map_unlock_read(map); | |
6176 | ||
6177 | if (local_object->shadow && local_object->copy) { | |
6178 | vm_object_lock_request(local_object->shadow, | |
6179 | ((vm_object_offset_t) | |
6180 | ((offset - local_start) + | |
6181 | local_offset) + | |
6182 | local_object->vo_shadow_offset), | |
6183 | *upl_size, FALSE, | |
6184 | MEMORY_OBJECT_DATA_SYNC, | |
6185 | VM_PROT_NO_CHANGE); | |
6186 | } | |
6187 | sync_cow_data = FALSE; | |
6188 | vm_object_deallocate(local_object); | |
6189 | ||
6190 | goto REDISCOVER_ENTRY; | |
6191 | } | |
6192 | if (force_data_sync) { | |
6193 | local_object = VME_OBJECT(entry); | |
6194 | local_start = entry->vme_start; | |
6195 | local_offset = VME_OFFSET(entry); | |
6196 | ||
6197 | vm_object_reference(local_object); | |
6198 | vm_map_unlock_read(map); | |
6199 | ||
6200 | vm_object_lock_request(local_object, | |
6201 | ((vm_object_offset_t) | |
6202 | ((offset - local_start) + | |
6203 | local_offset)), | |
6204 | (vm_object_size_t)*upl_size, | |
6205 | FALSE, | |
6206 | MEMORY_OBJECT_DATA_SYNC, | |
6207 | VM_PROT_NO_CHANGE); | |
6208 | ||
6209 | force_data_sync = FALSE; | |
6210 | vm_object_deallocate(local_object); | |
6211 | ||
6212 | goto REDISCOVER_ENTRY; | |
6213 | } | |
6214 | if (VME_OBJECT(entry)->private) | |
6215 | *flags = UPL_DEV_MEMORY; | |
6216 | else | |
6217 | *flags = 0; | |
6218 | ||
6219 | if (VME_OBJECT(entry)->phys_contiguous) | |
6220 | *flags |= UPL_PHYS_CONTIG; | |
6221 | ||
6222 | local_object = VME_OBJECT(entry); | |
6223 | local_offset = VME_OFFSET(entry); | |
6224 | local_start = entry->vme_start; | |
6225 | ||
6226 | vm_object_lock(local_object); | |
6227 | ||
6228 | /* | |
6229 | * Ensure that this object is "true_share" and "copy_delay" now, | |
6230 | * while we're still holding the VM map lock. After we unlock the map, | |
6231 | * anything could happen to that mapping, including some copy-on-write | |
6232 | * activity. We need to make sure that the IOPL will point at the | |
6233 | * same memory as the mapping. | |
6234 | */ | |
6235 | if (local_object->true_share) { | |
6236 | assert(local_object->copy_strategy != | |
6237 | MEMORY_OBJECT_COPY_SYMMETRIC); | |
6238 | } else if (local_object != kernel_object && | |
6239 | local_object != compressor_object && | |
6240 | !local_object->phys_contiguous) { | |
6241 | #if VM_OBJECT_TRACKING_OP_TRUESHARE | |
6242 | if (!local_object->true_share && | |
6243 | vm_object_tracking_inited) { | |
6244 | void *bt[VM_OBJECT_TRACKING_BTDEPTH]; | |
6245 | int num = 0; | |
6246 | num = OSBacktrace(bt, | |
6247 | VM_OBJECT_TRACKING_BTDEPTH); | |
6248 | btlog_add_entry(vm_object_tracking_btlog, | |
6249 | local_object, | |
6250 | VM_OBJECT_TRACKING_OP_TRUESHARE, | |
6251 | bt, | |
6252 | num); | |
6253 | } | |
6254 | #endif /* VM_OBJECT_TRACKING_OP_TRUESHARE */ | |
6255 | local_object->true_share = TRUE; | |
6256 | if (local_object->copy_strategy == | |
6257 | MEMORY_OBJECT_COPY_SYMMETRIC) { | |
6258 | local_object->copy_strategy = MEMORY_OBJECT_COPY_DELAY; | |
6259 | } | |
6260 | } | |
6261 | ||
6262 | vm_object_reference_locked(local_object); | |
6263 | vm_object_unlock(local_object); | |
6264 | ||
6265 | vm_map_unlock_read(map); | |
6266 | ||
6267 | ret = vm_object_iopl_request(local_object, | |
6268 | ((vm_object_offset_t) | |
6269 | ((offset - local_start) + local_offset)), | |
6270 | *upl_size, | |
6271 | upl, | |
6272 | page_list, | |
6273 | count, | |
6274 | caller_flags); | |
6275 | vm_object_deallocate(local_object); | |
6276 | ||
6277 | return ret; | |
6278 | } | |
6279 | ||
6280 | /* | |
6281 | * Internal routine to enter a UPL into a VM map. | |
6282 | * | |
6283 | * JMM - This should just be doable through the standard | |
6284 | * vm_map_enter() API. | |
6285 | */ | |
6286 | kern_return_t | |
6287 | vm_map_enter_upl( | |
6288 | vm_map_t map, | |
6289 | upl_t upl, | |
6290 | vm_map_offset_t *dst_addr) | |
6291 | { | |
6292 | vm_map_size_t size; | |
6293 | vm_object_offset_t offset; | |
6294 | vm_map_offset_t addr; | |
6295 | vm_page_t m; | |
6296 | kern_return_t kr; | |
6297 | int isVectorUPL = 0, curr_upl=0; | |
6298 | upl_t vector_upl = NULL; | |
6299 | vm_offset_t vector_upl_dst_addr = 0; | |
6300 | vm_map_t vector_upl_submap = NULL; | |
6301 | upl_offset_t subupl_offset = 0; | |
6302 | upl_size_t subupl_size = 0; | |
6303 | ||
6304 | if (upl == UPL_NULL) | |
6305 | return KERN_INVALID_ARGUMENT; | |
6306 | ||
6307 | if((isVectorUPL = vector_upl_is_valid(upl))) { | |
6308 | int mapped=0,valid_upls=0; | |
6309 | vector_upl = upl; | |
6310 | ||
6311 | upl_lock(vector_upl); | |
6312 | for(curr_upl=0; curr_upl < MAX_VECTOR_UPL_ELEMENTS; curr_upl++) { | |
6313 | upl = vector_upl_subupl_byindex(vector_upl, curr_upl ); | |
6314 | if(upl == NULL) | |
6315 | continue; | |
6316 | valid_upls++; | |
6317 | if (UPL_PAGE_LIST_MAPPED & upl->flags) | |
6318 | mapped++; | |
6319 | } | |
6320 | ||
6321 | if(mapped) { | |
6322 | if(mapped != valid_upls) | |
6323 | panic("Only %d of the %d sub-upls within the Vector UPL are alread mapped\n", mapped, valid_upls); | |
6324 | else { | |
6325 | upl_unlock(vector_upl); | |
6326 | return KERN_FAILURE; | |
6327 | } | |
6328 | } | |
6329 | ||
6330 | kr = kmem_suballoc(map, &vector_upl_dst_addr, vector_upl->size, FALSE, VM_FLAGS_ANYWHERE, &vector_upl_submap); | |
6331 | if( kr != KERN_SUCCESS ) | |
6332 | panic("Vector UPL submap allocation failed\n"); | |
6333 | map = vector_upl_submap; | |
6334 | vector_upl_set_submap(vector_upl, vector_upl_submap, vector_upl_dst_addr); | |
6335 | curr_upl=0; | |
6336 | } | |
6337 | else | |
6338 | upl_lock(upl); | |
6339 | ||
6340 | process_upl_to_enter: | |
6341 | if(isVectorUPL){ | |
6342 | if(curr_upl == MAX_VECTOR_UPL_ELEMENTS) { | |
6343 | *dst_addr = vector_upl_dst_addr; | |
6344 | upl_unlock(vector_upl); | |
6345 | return KERN_SUCCESS; | |
6346 | } | |
6347 | upl = vector_upl_subupl_byindex(vector_upl, curr_upl++ ); | |
6348 | if(upl == NULL) | |
6349 | goto process_upl_to_enter; | |
6350 | ||
6351 | vector_upl_get_iostate(vector_upl, upl, &subupl_offset, &subupl_size); | |
6352 | *dst_addr = (vm_map_offset_t)(vector_upl_dst_addr + (vm_map_offset_t)subupl_offset); | |
6353 | } else { | |
6354 | /* | |
6355 | * check to see if already mapped | |
6356 | */ | |
6357 | if (UPL_PAGE_LIST_MAPPED & upl->flags) { | |
6358 | upl_unlock(upl); | |
6359 | return KERN_FAILURE; | |
6360 | } | |
6361 | } | |
6362 | if ((!(upl->flags & UPL_SHADOWED)) && | |
6363 | ((upl->flags & UPL_HAS_BUSY) || | |
6364 | !((upl->flags & (UPL_DEVICE_MEMORY | UPL_IO_WIRE)) || (upl->map_object->phys_contiguous)))) { | |
6365 | ||
6366 | vm_object_t object; | |
6367 | vm_page_t alias_page; | |
6368 | vm_object_offset_t new_offset; | |
6369 | unsigned int pg_num; | |
6370 | wpl_array_t lite_list; | |
6371 | ||
6372 | if (upl->flags & UPL_INTERNAL) { | |
6373 | lite_list = (wpl_array_t) | |
6374 | ((((uintptr_t)upl) + sizeof(struct upl)) | |
6375 | + ((upl->size/PAGE_SIZE) * sizeof(upl_page_info_t))); | |
6376 | } else { | |
6377 | lite_list = (wpl_array_t)(((uintptr_t)upl) + sizeof(struct upl)); | |
6378 | } | |
6379 | object = upl->map_object; | |
6380 | upl->map_object = vm_object_allocate(upl->size); | |
6381 | ||
6382 | vm_object_lock(upl->map_object); | |
6383 | ||
6384 | upl->map_object->shadow = object; | |
6385 | upl->map_object->pageout = TRUE; | |
6386 | upl->map_object->can_persist = FALSE; | |
6387 | upl->map_object->copy_strategy = MEMORY_OBJECT_COPY_NONE; | |
6388 | upl->map_object->vo_shadow_offset = upl->offset - object->paging_offset; | |
6389 | upl->map_object->wimg_bits = object->wimg_bits; | |
6390 | offset = upl->map_object->vo_shadow_offset; | |
6391 | new_offset = 0; | |
6392 | size = upl->size; | |
6393 | ||
6394 | upl->flags |= UPL_SHADOWED; | |
6395 | ||
6396 | while (size) { | |
6397 | pg_num = (unsigned int) (new_offset / PAGE_SIZE); | |
6398 | assert(pg_num == new_offset / PAGE_SIZE); | |
6399 | ||
6400 | if (lite_list[pg_num>>5] & (1 << (pg_num & 31))) { | |
6401 | ||
6402 | VM_PAGE_GRAB_FICTITIOUS(alias_page); | |
6403 | ||
6404 | vm_object_lock(object); | |
6405 | ||
6406 | m = vm_page_lookup(object, offset); | |
6407 | if (m == VM_PAGE_NULL) { | |
6408 | panic("vm_upl_map: page missing\n"); | |
6409 | } | |
6410 | ||
6411 | /* | |
6412 | * Convert the fictitious page to a private | |
6413 | * shadow of the real page. | |
6414 | */ | |
6415 | assert(alias_page->fictitious); | |
6416 | alias_page->fictitious = FALSE; | |
6417 | alias_page->private = TRUE; | |
6418 | alias_page->pageout = TRUE; | |
6419 | /* | |
6420 | * since m is a page in the upl it must | |
6421 | * already be wired or BUSY, so it's | |
6422 | * safe to assign the underlying physical | |
6423 | * page to the alias | |
6424 | */ | |
6425 | alias_page->phys_page = m->phys_page; | |
6426 | ||
6427 | vm_object_unlock(object); | |
6428 | ||
6429 | vm_page_lockspin_queues(); | |
6430 | vm_page_wire(alias_page, VM_KERN_MEMORY_NONE, TRUE); | |
6431 | vm_page_unlock_queues(); | |
6432 | ||
6433 | /* | |
6434 | * ENCRYPTED SWAP: | |
6435 | * The virtual page ("m") has to be wired in some way | |
6436 | * here or its physical page ("m->phys_page") could | |
6437 | * be recycled at any time. | |
6438 | * Assuming this is enforced by the caller, we can't | |
6439 | * get an encrypted page here. Since the encryption | |
6440 | * key depends on the VM page's "pager" object and | |
6441 | * the "paging_offset", we couldn't handle 2 pageable | |
6442 | * VM pages (with different pagers and paging_offsets) | |
6443 | * sharing the same physical page: we could end up | |
6444 | * encrypting with one key (via one VM page) and | |
6445 | * decrypting with another key (via the alias VM page). | |
6446 | */ | |
6447 | ASSERT_PAGE_DECRYPTED(m); | |
6448 | ||
6449 | vm_page_insert_wired(alias_page, upl->map_object, new_offset, VM_KERN_MEMORY_NONE); | |
6450 | ||
6451 | assert(!alias_page->wanted); | |
6452 | alias_page->busy = FALSE; | |
6453 | alias_page->absent = FALSE; | |
6454 | } | |
6455 | size -= PAGE_SIZE; | |
6456 | offset += PAGE_SIZE_64; | |
6457 | new_offset += PAGE_SIZE_64; | |
6458 | } | |
6459 | vm_object_unlock(upl->map_object); | |
6460 | } | |
6461 | if (upl->flags & UPL_SHADOWED) | |
6462 | offset = 0; | |
6463 | else | |
6464 | offset = upl->offset - upl->map_object->paging_offset; | |
6465 | ||
6466 | size = upl->size; | |
6467 | ||
6468 | vm_object_reference(upl->map_object); | |
6469 | ||
6470 | if(!isVectorUPL) { | |
6471 | *dst_addr = 0; | |
6472 | /* | |
6473 | * NEED A UPL_MAP ALIAS | |
6474 | */ | |
6475 | kr = vm_map_enter(map, dst_addr, (vm_map_size_t)size, (vm_map_offset_t) 0, | |
6476 | VM_FLAGS_ANYWHERE | VM_MAKE_TAG(VM_KERN_MEMORY_OSFMK), | |
6477 | upl->map_object, offset, FALSE, | |
6478 | VM_PROT_DEFAULT, VM_PROT_ALL, VM_INHERIT_DEFAULT); | |
6479 | ||
6480 | if (kr != KERN_SUCCESS) { | |
6481 | upl_unlock(upl); | |
6482 | return(kr); | |
6483 | } | |
6484 | } | |
6485 | else { | |
6486 | kr = vm_map_enter(map, dst_addr, (vm_map_size_t)size, (vm_map_offset_t) 0, | |
6487 | VM_FLAGS_FIXED | VM_MAKE_TAG(VM_KERN_MEMORY_OSFMK), | |
6488 | upl->map_object, offset, FALSE, | |
6489 | VM_PROT_DEFAULT, VM_PROT_ALL, VM_INHERIT_DEFAULT); | |
6490 | if(kr) | |
6491 | panic("vm_map_enter failed for a Vector UPL\n"); | |
6492 | } | |
6493 | vm_object_lock(upl->map_object); | |
6494 | ||
6495 | for (addr = *dst_addr; size > 0; size -= PAGE_SIZE, addr += PAGE_SIZE) { | |
6496 | m = vm_page_lookup(upl->map_object, offset); | |
6497 | ||
6498 | if (m) { | |
6499 | m->pmapped = TRUE; | |
6500 | ||
6501 | /* CODE SIGNING ENFORCEMENT: page has been wpmapped, | |
6502 | * but only in kernel space. If this was on a user map, | |
6503 | * we'd have to set the wpmapped bit. */ | |
6504 | /* m->wpmapped = TRUE; */ | |
6505 | assert(map->pmap == kernel_pmap); | |
6506 | ||
6507 | PMAP_ENTER(map->pmap, addr, m, VM_PROT_DEFAULT, VM_PROT_NONE, 0, TRUE); | |
6508 | } | |
6509 | offset += PAGE_SIZE_64; | |
6510 | } | |
6511 | vm_object_unlock(upl->map_object); | |
6512 | ||
6513 | /* | |
6514 | * hold a reference for the mapping | |
6515 | */ | |
6516 | upl->ref_count++; | |
6517 | upl->flags |= UPL_PAGE_LIST_MAPPED; | |
6518 | upl->kaddr = (vm_offset_t) *dst_addr; | |
6519 | assert(upl->kaddr == *dst_addr); | |
6520 | ||
6521 | if(isVectorUPL) | |
6522 | goto process_upl_to_enter; | |
6523 | ||
6524 | upl_unlock(upl); | |
6525 | ||
6526 | return KERN_SUCCESS; | |
6527 | } | |
6528 | ||
6529 | /* | |
6530 | * Internal routine to remove a UPL mapping from a VM map. | |
6531 | * | |
6532 | * XXX - This should just be doable through a standard | |
6533 | * vm_map_remove() operation. Otherwise, implicit clean-up | |
6534 | * of the target map won't be able to correctly remove | |
6535 | * these (and release the reference on the UPL). Having | |
6536 | * to do this means we can't map these into user-space | |
6537 | * maps yet. | |
6538 | */ | |
6539 | kern_return_t | |
6540 | vm_map_remove_upl( | |
6541 | vm_map_t map, | |
6542 | upl_t upl) | |
6543 | { | |
6544 | vm_address_t addr; | |
6545 | upl_size_t size; | |
6546 | int isVectorUPL = 0, curr_upl = 0; | |
6547 | upl_t vector_upl = NULL; | |
6548 | ||
6549 | if (upl == UPL_NULL) | |
6550 | return KERN_INVALID_ARGUMENT; | |
6551 | ||
6552 | if((isVectorUPL = vector_upl_is_valid(upl))) { | |
6553 | int unmapped=0, valid_upls=0; | |
6554 | vector_upl = upl; | |
6555 | upl_lock(vector_upl); | |
6556 | for(curr_upl=0; curr_upl < MAX_VECTOR_UPL_ELEMENTS; curr_upl++) { | |
6557 | upl = vector_upl_subupl_byindex(vector_upl, curr_upl ); | |
6558 | if(upl == NULL) | |
6559 | continue; | |
6560 | valid_upls++; | |
6561 | if (!(UPL_PAGE_LIST_MAPPED & upl->flags)) | |
6562 | unmapped++; | |
6563 | } | |
6564 | ||
6565 | if(unmapped) { | |
6566 | if(unmapped != valid_upls) | |
6567 | panic("%d of the %d sub-upls within the Vector UPL is/are not mapped\n", unmapped, valid_upls); | |
6568 | else { | |
6569 | upl_unlock(vector_upl); | |
6570 | return KERN_FAILURE; | |
6571 | } | |
6572 | } | |
6573 | curr_upl=0; | |
6574 | } | |
6575 | else | |
6576 | upl_lock(upl); | |
6577 | ||
6578 | process_upl_to_remove: | |
6579 | if(isVectorUPL) { | |
6580 | if(curr_upl == MAX_VECTOR_UPL_ELEMENTS) { | |
6581 | vm_map_t v_upl_submap; | |
6582 | vm_offset_t v_upl_submap_dst_addr; | |
6583 | vector_upl_get_submap(vector_upl, &v_upl_submap, &v_upl_submap_dst_addr); | |
6584 | ||
6585 | vm_map_remove(map, v_upl_submap_dst_addr, v_upl_submap_dst_addr + vector_upl->size, VM_MAP_NO_FLAGS); | |
6586 | vm_map_deallocate(v_upl_submap); | |
6587 | upl_unlock(vector_upl); | |
6588 | return KERN_SUCCESS; | |
6589 | } | |
6590 | ||
6591 | upl = vector_upl_subupl_byindex(vector_upl, curr_upl++ ); | |
6592 | if(upl == NULL) | |
6593 | goto process_upl_to_remove; | |
6594 | } | |
6595 | ||
6596 | if (upl->flags & UPL_PAGE_LIST_MAPPED) { | |
6597 | addr = upl->kaddr; | |
6598 | size = upl->size; | |
6599 | ||
6600 | assert(upl->ref_count > 1); | |
6601 | upl->ref_count--; /* removing mapping ref */ | |
6602 | ||
6603 | upl->flags &= ~UPL_PAGE_LIST_MAPPED; | |
6604 | upl->kaddr = (vm_offset_t) 0; | |
6605 | ||
6606 | if(!isVectorUPL) { | |
6607 | upl_unlock(upl); | |
6608 | ||
6609 | vm_map_remove( | |
6610 | map, | |
6611 | vm_map_trunc_page(addr, | |
6612 | VM_MAP_PAGE_MASK(map)), | |
6613 | vm_map_round_page(addr + size, | |
6614 | VM_MAP_PAGE_MASK(map)), | |
6615 | VM_MAP_NO_FLAGS); | |
6616 | ||
6617 | return KERN_SUCCESS; | |
6618 | } | |
6619 | else { | |
6620 | /* | |
6621 | * If it's a Vectored UPL, we'll be removing the entire | |
6622 | * submap anyways, so no need to remove individual UPL | |
6623 | * element mappings from within the submap | |
6624 | */ | |
6625 | goto process_upl_to_remove; | |
6626 | } | |
6627 | } | |
6628 | upl_unlock(upl); | |
6629 | ||
6630 | return KERN_FAILURE; | |
6631 | } | |
6632 | ||
6633 | kern_return_t | |
6634 | upl_commit_range( | |
6635 | upl_t upl, | |
6636 | upl_offset_t offset, | |
6637 | upl_size_t size, | |
6638 | int flags, | |
6639 | upl_page_info_t *page_list, | |
6640 | mach_msg_type_number_t count, | |
6641 | boolean_t *empty) | |
6642 | { | |
6643 | upl_size_t xfer_size, subupl_size = size; | |
6644 | vm_object_t shadow_object; | |
6645 | vm_object_t object; | |
6646 | vm_object_offset_t target_offset; | |
6647 | upl_offset_t subupl_offset = offset; | |
6648 | int entry; | |
6649 | wpl_array_t lite_list; | |
6650 | int occupied; | |
6651 | int clear_refmod = 0; | |
6652 | int pgpgout_count = 0; | |
6653 | struct vm_page_delayed_work dw_array[DEFAULT_DELAYED_WORK_LIMIT]; | |
6654 | struct vm_page_delayed_work *dwp; | |
6655 | int dw_count; | |
6656 | int dw_limit; | |
6657 | int isVectorUPL = 0; | |
6658 | upl_t vector_upl = NULL; | |
6659 | boolean_t should_be_throttled = FALSE; | |
6660 | ||
6661 | vm_page_t nxt_page = VM_PAGE_NULL; | |
6662 | int fast_path_possible = 0; | |
6663 | int fast_path_full_commit = 0; | |
6664 | int throttle_page = 0; | |
6665 | int unwired_count = 0; | |
6666 | int local_queue_count = 0; | |
6667 | queue_head_t local_queue; | |
6668 | ||
6669 | *empty = FALSE; | |
6670 | ||
6671 | if (upl == UPL_NULL) | |
6672 | return KERN_INVALID_ARGUMENT; | |
6673 | ||
6674 | if (count == 0) | |
6675 | page_list = NULL; | |
6676 | ||
6677 | if((isVectorUPL = vector_upl_is_valid(upl))) { | |
6678 | vector_upl = upl; | |
6679 | upl_lock(vector_upl); | |
6680 | } | |
6681 | else | |
6682 | upl_lock(upl); | |
6683 | ||
6684 | process_upl_to_commit: | |
6685 | ||
6686 | if(isVectorUPL) { | |
6687 | size = subupl_size; | |
6688 | offset = subupl_offset; | |
6689 | if(size == 0) { | |
6690 | upl_unlock(vector_upl); | |
6691 | return KERN_SUCCESS; | |
6692 | } | |
6693 | upl = vector_upl_subupl_byoffset(vector_upl, &offset, &size); | |
6694 | if(upl == NULL) { | |
6695 | upl_unlock(vector_upl); | |
6696 | return KERN_FAILURE; | |
6697 | } | |
6698 | page_list = UPL_GET_INTERNAL_PAGE_LIST_SIMPLE(upl); | |
6699 | subupl_size -= size; | |
6700 | subupl_offset += size; | |
6701 | } | |
6702 | ||
6703 | #if UPL_DEBUG | |
6704 | if (upl->upl_commit_index < UPL_DEBUG_COMMIT_RECORDS) { | |
6705 | (void) OSBacktrace(&upl->upl_commit_records[upl->upl_commit_index].c_retaddr[0], UPL_DEBUG_STACK_FRAMES); | |
6706 | ||
6707 | upl->upl_commit_records[upl->upl_commit_index].c_beg = offset; | |
6708 | upl->upl_commit_records[upl->upl_commit_index].c_end = (offset + size); | |
6709 | ||
6710 | upl->upl_commit_index++; | |
6711 | } | |
6712 | #endif | |
6713 | if (upl->flags & UPL_DEVICE_MEMORY) | |
6714 | xfer_size = 0; | |
6715 | else if ((offset + size) <= upl->size) | |
6716 | xfer_size = size; | |
6717 | else { | |
6718 | if(!isVectorUPL) | |
6719 | upl_unlock(upl); | |
6720 | else { | |
6721 | upl_unlock(vector_upl); | |
6722 | } | |
6723 | return KERN_FAILURE; | |
6724 | } | |
6725 | if (upl->flags & UPL_SET_DIRTY) | |
6726 | flags |= UPL_COMMIT_SET_DIRTY; | |
6727 | if (upl->flags & UPL_CLEAR_DIRTY) | |
6728 | flags |= UPL_COMMIT_CLEAR_DIRTY; | |
6729 | ||
6730 | if (upl->flags & UPL_INTERNAL) | |
6731 | lite_list = (wpl_array_t) ((((uintptr_t)upl) + sizeof(struct upl)) | |
6732 | + ((upl->size/PAGE_SIZE) * sizeof(upl_page_info_t))); | |
6733 | else | |
6734 | lite_list = (wpl_array_t) (((uintptr_t)upl) + sizeof(struct upl)); | |
6735 | ||
6736 | object = upl->map_object; | |
6737 | ||
6738 | if (upl->flags & UPL_SHADOWED) { | |
6739 | vm_object_lock(object); | |
6740 | shadow_object = object->shadow; | |
6741 | } else { | |
6742 | shadow_object = object; | |
6743 | } | |
6744 | entry = offset/PAGE_SIZE; | |
6745 | target_offset = (vm_object_offset_t)offset; | |
6746 | ||
6747 | assert(!(target_offset & PAGE_MASK)); | |
6748 | assert(!(xfer_size & PAGE_MASK)); | |
6749 | ||
6750 | if (upl->flags & UPL_KERNEL_OBJECT) | |
6751 | vm_object_lock_shared(shadow_object); | |
6752 | else | |
6753 | vm_object_lock(shadow_object); | |
6754 | ||
6755 | if (upl->flags & UPL_ACCESS_BLOCKED) { | |
6756 | assert(shadow_object->blocked_access); | |
6757 | shadow_object->blocked_access = FALSE; | |
6758 | vm_object_wakeup(object, VM_OBJECT_EVENT_UNBLOCKED); | |
6759 | } | |
6760 | ||
6761 | if (shadow_object->code_signed) { | |
6762 | /* | |
6763 | * CODE SIGNING: | |
6764 | * If the object is code-signed, do not let this UPL tell | |
6765 | * us if the pages are valid or not. Let the pages be | |
6766 | * validated by VM the normal way (when they get mapped or | |
6767 | * copied). | |
6768 | */ | |
6769 | flags &= ~UPL_COMMIT_CS_VALIDATED; | |
6770 | } | |
6771 | if (! page_list) { | |
6772 | /* | |
6773 | * No page list to get the code-signing info from !? | |
6774 | */ | |
6775 | flags &= ~UPL_COMMIT_CS_VALIDATED; | |
6776 | } | |
6777 | if (!VM_DYNAMIC_PAGING_ENABLED(memory_manager_default) && shadow_object->internal) | |
6778 | should_be_throttled = TRUE; | |
6779 | ||
6780 | dwp = &dw_array[0]; | |
6781 | dw_count = 0; | |
6782 | dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT); | |
6783 | ||
6784 | if ((upl->flags & UPL_IO_WIRE) && | |
6785 | !(flags & UPL_COMMIT_FREE_ABSENT) && | |
6786 | !isVectorUPL && | |
6787 | shadow_object->purgable != VM_PURGABLE_VOLATILE && | |
6788 | shadow_object->purgable != VM_PURGABLE_EMPTY) { | |
6789 | ||
6790 | if (!queue_empty(&shadow_object->memq)) { | |
6791 | queue_init(&local_queue); | |
6792 | if (size == shadow_object->vo_size) { | |
6793 | nxt_page = (vm_page_t)queue_first(&shadow_object->memq); | |
6794 | fast_path_full_commit = 1; | |
6795 | } | |
6796 | fast_path_possible = 1; | |
6797 | ||
6798 | if (!VM_DYNAMIC_PAGING_ENABLED(memory_manager_default) && shadow_object->internal && | |
6799 | (shadow_object->purgable == VM_PURGABLE_DENY || | |
6800 | shadow_object->purgable == VM_PURGABLE_NONVOLATILE || | |
6801 | shadow_object->purgable == VM_PURGABLE_VOLATILE)) { | |
6802 | throttle_page = 1; | |
6803 | } | |
6804 | } | |
6805 | } | |
6806 | ||
6807 | while (xfer_size) { | |
6808 | vm_page_t t, m; | |
6809 | ||
6810 | dwp->dw_mask = 0; | |
6811 | clear_refmod = 0; | |
6812 | ||
6813 | m = VM_PAGE_NULL; | |
6814 | ||
6815 | if (upl->flags & UPL_LITE) { | |
6816 | unsigned int pg_num; | |
6817 | ||
6818 | if (nxt_page != VM_PAGE_NULL) { | |
6819 | m = nxt_page; | |
6820 | nxt_page = (vm_page_t)queue_next(&nxt_page->listq); | |
6821 | target_offset = m->offset; | |
6822 | } | |
6823 | pg_num = (unsigned int) (target_offset/PAGE_SIZE); | |
6824 | assert(pg_num == target_offset/PAGE_SIZE); | |
6825 | ||
6826 | if (lite_list[pg_num>>5] & (1 << (pg_num & 31))) { | |
6827 | lite_list[pg_num>>5] &= ~(1 << (pg_num & 31)); | |
6828 | ||
6829 | if (!(upl->flags & UPL_KERNEL_OBJECT) && m == VM_PAGE_NULL) | |
6830 | m = vm_page_lookup(shadow_object, target_offset + (upl->offset - shadow_object->paging_offset)); | |
6831 | } else | |
6832 | m = NULL; | |
6833 | } | |
6834 | if (upl->flags & UPL_SHADOWED) { | |
6835 | if ((t = vm_page_lookup(object, target_offset)) != VM_PAGE_NULL) { | |
6836 | ||
6837 | t->pageout = FALSE; | |
6838 | ||
6839 | VM_PAGE_FREE(t); | |
6840 | ||
6841 | if (!(upl->flags & UPL_KERNEL_OBJECT) && m == VM_PAGE_NULL) | |
6842 | m = vm_page_lookup(shadow_object, target_offset + object->vo_shadow_offset); | |
6843 | } | |
6844 | } | |
6845 | if (m == VM_PAGE_NULL) | |
6846 | goto commit_next_page; | |
6847 | ||
6848 | if (m->compressor) { | |
6849 | assert(m->busy); | |
6850 | ||
6851 | dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP); | |
6852 | goto commit_next_page; | |
6853 | } | |
6854 | ||
6855 | if (flags & UPL_COMMIT_CS_VALIDATED) { | |
6856 | /* | |
6857 | * CODE SIGNING: | |
6858 | * Set the code signing bits according to | |
6859 | * what the UPL says they should be. | |
6860 | */ | |
6861 | m->cs_validated = page_list[entry].cs_validated; | |
6862 | m->cs_tainted = page_list[entry].cs_tainted; | |
6863 | m->cs_nx = page_list[entry].cs_nx; | |
6864 | } | |
6865 | if (flags & UPL_COMMIT_WRITTEN_BY_KERNEL) | |
6866 | m->written_by_kernel = TRUE; | |
6867 | ||
6868 | if (upl->flags & UPL_IO_WIRE) { | |
6869 | ||
6870 | if (page_list) | |
6871 | page_list[entry].phys_addr = 0; | |
6872 | ||
6873 | if (flags & UPL_COMMIT_SET_DIRTY) { | |
6874 | SET_PAGE_DIRTY(m, FALSE); | |
6875 | } else if (flags & UPL_COMMIT_CLEAR_DIRTY) { | |
6876 | m->dirty = FALSE; | |
6877 | ||
6878 | if (! (flags & UPL_COMMIT_CS_VALIDATED) && | |
6879 | m->cs_validated && !m->cs_tainted) { | |
6880 | /* | |
6881 | * CODE SIGNING: | |
6882 | * This page is no longer dirty | |
6883 | * but could have been modified, | |
6884 | * so it will need to be | |
6885 | * re-validated. | |
6886 | */ | |
6887 | if (m->slid) { | |
6888 | panic("upl_commit_range(%p): page %p was slid\n", | |
6889 | upl, m); | |
6890 | } | |
6891 | assert(!m->slid); | |
6892 | m->cs_validated = FALSE; | |
6893 | #if DEVELOPMENT || DEBUG | |
6894 | vm_cs_validated_resets++; | |
6895 | #endif | |
6896 | pmap_disconnect(m->phys_page); | |
6897 | } | |
6898 | clear_refmod |= VM_MEM_MODIFIED; | |
6899 | } | |
6900 | if (upl->flags & UPL_ACCESS_BLOCKED) { | |
6901 | /* | |
6902 | * We blocked access to the pages in this UPL. | |
6903 | * Clear the "busy" bit and wake up any waiter | |
6904 | * for this page. | |
6905 | */ | |
6906 | dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP); | |
6907 | } | |
6908 | if (fast_path_possible) { | |
6909 | assert(m->object->purgable != VM_PURGABLE_EMPTY); | |
6910 | assert(m->object->purgable != VM_PURGABLE_VOLATILE); | |
6911 | if (m->absent) { | |
6912 | assert(m->wire_count == 0); | |
6913 | assert(m->busy); | |
6914 | ||
6915 | m->absent = FALSE; | |
6916 | dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP); | |
6917 | } else { | |
6918 | if (m->wire_count == 0) | |
6919 | panic("wire_count == 0, m = %p, obj = %p\n", m, shadow_object); | |
6920 | ||
6921 | /* | |
6922 | * XXX FBDP need to update some other | |
6923 | * counters here (purgeable_wired_count) | |
6924 | * (ledgers), ... | |
6925 | */ | |
6926 | assert(m->wire_count); | |
6927 | m->wire_count--; | |
6928 | ||
6929 | if (m->wire_count == 0) | |
6930 | unwired_count++; | |
6931 | } | |
6932 | if (m->wire_count == 0) { | |
6933 | queue_enter(&local_queue, m, vm_page_t, pageq); | |
6934 | local_queue_count++; | |
6935 | ||
6936 | if (throttle_page) { | |
6937 | m->throttled = TRUE; | |
6938 | } else { | |
6939 | if (flags & UPL_COMMIT_INACTIVATE) | |
6940 | m->inactive = TRUE; | |
6941 | else | |
6942 | m->active = TRUE; | |
6943 | } | |
6944 | } | |
6945 | } else { | |
6946 | if (flags & UPL_COMMIT_INACTIVATE) { | |
6947 | dwp->dw_mask |= DW_vm_page_deactivate_internal; | |
6948 | clear_refmod |= VM_MEM_REFERENCED; | |
6949 | } | |
6950 | if (m->absent) { | |
6951 | if (flags & UPL_COMMIT_FREE_ABSENT) | |
6952 | dwp->dw_mask |= DW_vm_page_free; | |
6953 | else { | |
6954 | m->absent = FALSE; | |
6955 | dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP); | |
6956 | ||
6957 | if ( !(dwp->dw_mask & DW_vm_page_deactivate_internal)) | |
6958 | dwp->dw_mask |= DW_vm_page_activate; | |
6959 | } | |
6960 | } else | |
6961 | dwp->dw_mask |= DW_vm_page_unwire; | |
6962 | } | |
6963 | goto commit_next_page; | |
6964 | } | |
6965 | assert(!m->compressor); | |
6966 | ||
6967 | if (page_list) | |
6968 | page_list[entry].phys_addr = 0; | |
6969 | ||
6970 | /* | |
6971 | * make sure to clear the hardware | |
6972 | * modify or reference bits before | |
6973 | * releasing the BUSY bit on this page | |
6974 | * otherwise we risk losing a legitimate | |
6975 | * change of state | |
6976 | */ | |
6977 | if (flags & UPL_COMMIT_CLEAR_DIRTY) { | |
6978 | m->dirty = FALSE; | |
6979 | ||
6980 | clear_refmod |= VM_MEM_MODIFIED; | |
6981 | } | |
6982 | if (m->laundry) | |
6983 | dwp->dw_mask |= DW_vm_pageout_throttle_up; | |
6984 | ||
6985 | if (VM_PAGE_WIRED(m)) | |
6986 | m->pageout = FALSE; | |
6987 | ||
6988 | if (! (flags & UPL_COMMIT_CS_VALIDATED) && | |
6989 | m->cs_validated && !m->cs_tainted) { | |
6990 | /* | |
6991 | * CODE SIGNING: | |
6992 | * This page is no longer dirty | |
6993 | * but could have been modified, | |
6994 | * so it will need to be | |
6995 | * re-validated. | |
6996 | */ | |
6997 | if (m->slid) { | |
6998 | panic("upl_commit_range(%p): page %p was slid\n", | |
6999 | upl, m); | |
7000 | } | |
7001 | assert(!m->slid); | |
7002 | m->cs_validated = FALSE; | |
7003 | #if DEVELOPMENT || DEBUG | |
7004 | vm_cs_validated_resets++; | |
7005 | #endif | |
7006 | pmap_disconnect(m->phys_page); | |
7007 | } | |
7008 | if (m->overwriting) { | |
7009 | /* | |
7010 | * the (COPY_OUT_FROM == FALSE) request_page_list case | |
7011 | */ | |
7012 | if (m->busy) { | |
7013 | #if CONFIG_PHANTOM_CACHE | |
7014 | if (m->absent && !m->object->internal) | |
7015 | dwp->dw_mask |= DW_vm_phantom_cache_update; | |
7016 | #endif | |
7017 | m->absent = FALSE; | |
7018 | ||
7019 | dwp->dw_mask |= DW_clear_busy; | |
7020 | } else { | |
7021 | /* | |
7022 | * alternate (COPY_OUT_FROM == FALSE) page_list case | |
7023 | * Occurs when the original page was wired | |
7024 | * at the time of the list request | |
7025 | */ | |
7026 | assert(VM_PAGE_WIRED(m)); | |
7027 | ||
7028 | dwp->dw_mask |= DW_vm_page_unwire; /* reactivates */ | |
7029 | } | |
7030 | m->overwriting = FALSE; | |
7031 | } | |
7032 | if (m->encrypted_cleaning == TRUE) { | |
7033 | m->encrypted_cleaning = FALSE; | |
7034 | ||
7035 | dwp->dw_mask |= DW_clear_busy | DW_PAGE_WAKEUP; | |
7036 | } | |
7037 | m->cleaning = FALSE; | |
7038 | ||
7039 | if (m->pageout) { | |
7040 | /* | |
7041 | * With the clean queue enabled, UPL_PAGEOUT should | |
7042 | * no longer set the pageout bit. It's pages now go | |
7043 | * to the clean queue. | |
7044 | */ | |
7045 | assert(!(flags & UPL_PAGEOUT)); | |
7046 | ||
7047 | m->pageout = FALSE; | |
7048 | #if MACH_CLUSTER_STATS | |
7049 | if (m->wanted) vm_pageout_target_collisions++; | |
7050 | #endif | |
7051 | if ((flags & UPL_COMMIT_SET_DIRTY) || | |
7052 | (m->pmapped && (pmap_disconnect(m->phys_page) & VM_MEM_MODIFIED))) { | |
7053 | /* | |
7054 | * page was re-dirtied after we started | |
7055 | * the pageout... reactivate it since | |
7056 | * we don't know whether the on-disk | |
7057 | * copy matches what is now in memory | |
7058 | */ | |
7059 | SET_PAGE_DIRTY(m, FALSE); | |
7060 | ||
7061 | dwp->dw_mask |= DW_vm_page_activate | DW_PAGE_WAKEUP; | |
7062 | ||
7063 | if (upl->flags & UPL_PAGEOUT) { | |
7064 | CLUSTER_STAT(vm_pageout_target_page_dirtied++;) | |
7065 | VM_STAT_INCR(reactivations); | |
7066 | DTRACE_VM2(pgrec, int, 1, (uint64_t *), NULL); | |
7067 | } | |
7068 | } else { | |
7069 | /* | |
7070 | * page has been successfully cleaned | |
7071 | * go ahead and free it for other use | |
7072 | */ | |
7073 | if (m->object->internal) { | |
7074 | DTRACE_VM2(anonpgout, int, 1, (uint64_t *), NULL); | |
7075 | } else { | |
7076 | DTRACE_VM2(fspgout, int, 1, (uint64_t *), NULL); | |
7077 | } | |
7078 | m->dirty = FALSE; | |
7079 | m->busy = TRUE; | |
7080 | ||
7081 | dwp->dw_mask |= DW_vm_page_free; | |
7082 | } | |
7083 | goto commit_next_page; | |
7084 | } | |
7085 | #if MACH_CLUSTER_STATS | |
7086 | if (m->wpmapped) | |
7087 | m->dirty = pmap_is_modified(m->phys_page); | |
7088 | ||
7089 | if (m->dirty) vm_pageout_cluster_dirtied++; | |
7090 | else vm_pageout_cluster_cleaned++; | |
7091 | if (m->wanted) vm_pageout_cluster_collisions++; | |
7092 | #endif | |
7093 | /* | |
7094 | * It is a part of the semantic of COPYOUT_FROM | |
7095 | * UPLs that a commit implies cache sync | |
7096 | * between the vm page and the backing store | |
7097 | * this can be used to strip the precious bit | |
7098 | * as well as clean | |
7099 | */ | |
7100 | if ((upl->flags & UPL_PAGE_SYNC_DONE) || (flags & UPL_COMMIT_CLEAR_PRECIOUS)) | |
7101 | m->precious = FALSE; | |
7102 | ||
7103 | if (flags & UPL_COMMIT_SET_DIRTY) { | |
7104 | SET_PAGE_DIRTY(m, FALSE); | |
7105 | } else { | |
7106 | m->dirty = FALSE; | |
7107 | } | |
7108 | ||
7109 | /* with the clean queue on, move *all* cleaned pages to the clean queue */ | |
7110 | if (hibernate_cleaning_in_progress == FALSE && !m->dirty && (upl->flags & UPL_PAGEOUT)) { | |
7111 | pgpgout_count++; | |
7112 | ||
7113 | VM_STAT_INCR(pageouts); | |
7114 | DTRACE_VM2(pgout, int, 1, (uint64_t *), NULL); | |
7115 | ||
7116 | dwp->dw_mask |= DW_enqueue_cleaned; | |
7117 | vm_pageout_enqueued_cleaned_from_inactive_dirty++; | |
7118 | } else if (should_be_throttled == TRUE && !m->active && !m->inactive && !m->speculative && !m->throttled) { | |
7119 | /* | |
7120 | * page coming back in from being 'frozen'... | |
7121 | * it was dirty before it was frozen, so keep it so | |
7122 | * the vm_page_activate will notice that it really belongs | |
7123 | * on the throttle queue and put it there | |
7124 | */ | |
7125 | SET_PAGE_DIRTY(m, FALSE); | |
7126 | dwp->dw_mask |= DW_vm_page_activate; | |
7127 | ||
7128 | } else { | |
7129 | if ((flags & UPL_COMMIT_INACTIVATE) && !m->clustered && !m->speculative) { | |
7130 | dwp->dw_mask |= DW_vm_page_deactivate_internal; | |
7131 | clear_refmod |= VM_MEM_REFERENCED; | |
7132 | } else if (!m->active && !m->inactive && !m->speculative) { | |
7133 | ||
7134 | if (m->clustered || (flags & UPL_COMMIT_SPECULATE)) | |
7135 | dwp->dw_mask |= DW_vm_page_speculate; | |
7136 | else if (m->reference) | |
7137 | dwp->dw_mask |= DW_vm_page_activate; | |
7138 | else { | |
7139 | dwp->dw_mask |= DW_vm_page_deactivate_internal; | |
7140 | clear_refmod |= VM_MEM_REFERENCED; | |
7141 | } | |
7142 | } | |
7143 | } | |
7144 | if (upl->flags & UPL_ACCESS_BLOCKED) { | |
7145 | /* | |
7146 | * We blocked access to the pages in this URL. | |
7147 | * Clear the "busy" bit on this page before we | |
7148 | * wake up any waiter. | |
7149 | */ | |
7150 | dwp->dw_mask |= DW_clear_busy; | |
7151 | } | |
7152 | /* | |
7153 | * Wakeup any thread waiting for the page to be un-cleaning. | |
7154 | */ | |
7155 | dwp->dw_mask |= DW_PAGE_WAKEUP; | |
7156 | ||
7157 | commit_next_page: | |
7158 | if (clear_refmod) | |
7159 | pmap_clear_refmod(m->phys_page, clear_refmod); | |
7160 | ||
7161 | target_offset += PAGE_SIZE_64; | |
7162 | xfer_size -= PAGE_SIZE; | |
7163 | entry++; | |
7164 | ||
7165 | if (dwp->dw_mask) { | |
7166 | if (dwp->dw_mask & ~(DW_clear_busy | DW_PAGE_WAKEUP)) { | |
7167 | VM_PAGE_ADD_DELAYED_WORK(dwp, m, dw_count); | |
7168 | ||
7169 | if (dw_count >= dw_limit) { | |
7170 | vm_page_do_delayed_work(shadow_object, VM_KERN_MEMORY_NONE, &dw_array[0], dw_count); | |
7171 | ||
7172 | dwp = &dw_array[0]; | |
7173 | dw_count = 0; | |
7174 | } | |
7175 | } else { | |
7176 | if (dwp->dw_mask & DW_clear_busy) | |
7177 | m->busy = FALSE; | |
7178 | ||
7179 | if (dwp->dw_mask & DW_PAGE_WAKEUP) | |
7180 | PAGE_WAKEUP(m); | |
7181 | } | |
7182 | } | |
7183 | } | |
7184 | if (dw_count) | |
7185 | vm_page_do_delayed_work(shadow_object, VM_KERN_MEMORY_NONE, &dw_array[0], dw_count); | |
7186 | ||
7187 | if (fast_path_possible) { | |
7188 | ||
7189 | assert(shadow_object->purgable != VM_PURGABLE_VOLATILE); | |
7190 | assert(shadow_object->purgable != VM_PURGABLE_EMPTY); | |
7191 | ||
7192 | if (local_queue_count || unwired_count) { | |
7193 | ||
7194 | if (local_queue_count) { | |
7195 | vm_page_t first_local, last_local; | |
7196 | vm_page_t first_target; | |
7197 | queue_head_t *target_queue; | |
7198 | ||
7199 | if (throttle_page) | |
7200 | target_queue = &vm_page_queue_throttled; | |
7201 | else { | |
7202 | if (flags & UPL_COMMIT_INACTIVATE) { | |
7203 | if (shadow_object->internal) | |
7204 | target_queue = &vm_page_queue_anonymous; | |
7205 | else | |
7206 | target_queue = &vm_page_queue_inactive; | |
7207 | } else | |
7208 | target_queue = &vm_page_queue_active; | |
7209 | } | |
7210 | /* | |
7211 | * Transfer the entire local queue to a regular LRU page queues. | |
7212 | */ | |
7213 | first_local = (vm_page_t) queue_first(&local_queue); | |
7214 | last_local = (vm_page_t) queue_last(&local_queue); | |
7215 | ||
7216 | vm_page_lockspin_queues(); | |
7217 | ||
7218 | first_target = (vm_page_t) queue_first(target_queue); | |
7219 | ||
7220 | if (queue_empty(target_queue)) | |
7221 | queue_last(target_queue) = (queue_entry_t) last_local; | |
7222 | else | |
7223 | queue_prev(&first_target->pageq) = (queue_entry_t) last_local; | |
7224 | ||
7225 | queue_first(target_queue) = (queue_entry_t) first_local; | |
7226 | queue_prev(&first_local->pageq) = (queue_entry_t) target_queue; | |
7227 | queue_next(&last_local->pageq) = (queue_entry_t) first_target; | |
7228 | ||
7229 | /* | |
7230 | * Adjust the global page counts. | |
7231 | */ | |
7232 | if (throttle_page) { | |
7233 | vm_page_throttled_count += local_queue_count; | |
7234 | } else { | |
7235 | if (flags & UPL_COMMIT_INACTIVATE) { | |
7236 | if (shadow_object->internal) | |
7237 | vm_page_anonymous_count += local_queue_count; | |
7238 | vm_page_inactive_count += local_queue_count; | |
7239 | ||
7240 | token_new_pagecount += local_queue_count; | |
7241 | } else | |
7242 | vm_page_active_count += local_queue_count; | |
7243 | ||
7244 | if (shadow_object->internal) | |
7245 | vm_page_pageable_internal_count += local_queue_count; | |
7246 | else | |
7247 | vm_page_pageable_external_count += local_queue_count; | |
7248 | } | |
7249 | } else { | |
7250 | vm_page_lockspin_queues(); | |
7251 | } | |
7252 | if (unwired_count) { | |
7253 | vm_page_wire_count -= unwired_count; | |
7254 | VM_CHECK_MEMORYSTATUS; | |
7255 | } | |
7256 | vm_page_unlock_queues(); | |
7257 | ||
7258 | shadow_object->wired_page_count -= unwired_count; | |
7259 | ||
7260 | if (!shadow_object->wired_page_count) { | |
7261 | VM_OBJECT_UNWIRED(shadow_object); | |
7262 | } | |
7263 | } | |
7264 | } | |
7265 | occupied = 1; | |
7266 | ||
7267 | if (upl->flags & UPL_DEVICE_MEMORY) { | |
7268 | occupied = 0; | |
7269 | } else if (upl->flags & UPL_LITE) { | |
7270 | int pg_num; | |
7271 | int i; | |
7272 | ||
7273 | occupied = 0; | |
7274 | ||
7275 | if (!fast_path_full_commit) { | |
7276 | pg_num = upl->size/PAGE_SIZE; | |
7277 | pg_num = (pg_num + 31) >> 5; | |
7278 | ||
7279 | for (i = 0; i < pg_num; i++) { | |
7280 | if (lite_list[i] != 0) { | |
7281 | occupied = 1; | |
7282 | break; | |
7283 | } | |
7284 | } | |
7285 | } | |
7286 | } else { | |
7287 | if (queue_empty(&upl->map_object->memq)) | |
7288 | occupied = 0; | |
7289 | } | |
7290 | if (occupied == 0) { | |
7291 | /* | |
7292 | * If this UPL element belongs to a Vector UPL and is | |
7293 | * empty, then this is the right function to deallocate | |
7294 | * it. So go ahead set the *empty variable. The flag | |
7295 | * UPL_COMMIT_NOTIFY_EMPTY, from the caller's point of view | |
7296 | * should be considered relevant for the Vector UPL and not | |
7297 | * the internal UPLs. | |
7298 | */ | |
7299 | if ((upl->flags & UPL_COMMIT_NOTIFY_EMPTY) || isVectorUPL) | |
7300 | *empty = TRUE; | |
7301 | ||
7302 | if (object == shadow_object && !(upl->flags & UPL_KERNEL_OBJECT)) { | |
7303 | /* | |
7304 | * this is not a paging object | |
7305 | * so we need to drop the paging reference | |
7306 | * that was taken when we created the UPL | |
7307 | * against this object | |
7308 | */ | |
7309 | vm_object_activity_end(shadow_object); | |
7310 | vm_object_collapse(shadow_object, 0, TRUE); | |
7311 | } else { | |
7312 | /* | |
7313 | * we dontated the paging reference to | |
7314 | * the map object... vm_pageout_object_terminate | |
7315 | * will drop this reference | |
7316 | */ | |
7317 | } | |
7318 | } | |
7319 | vm_object_unlock(shadow_object); | |
7320 | if (object != shadow_object) | |
7321 | vm_object_unlock(object); | |
7322 | ||
7323 | if(!isVectorUPL) | |
7324 | upl_unlock(upl); | |
7325 | else { | |
7326 | /* | |
7327 | * If we completed our operations on an UPL that is | |
7328 | * part of a Vectored UPL and if empty is TRUE, then | |
7329 | * we should go ahead and deallocate this UPL element. | |
7330 | * Then we check if this was the last of the UPL elements | |
7331 | * within that Vectored UPL. If so, set empty to TRUE | |
7332 | * so that in ubc_upl_commit_range or ubc_upl_commit, we | |
7333 | * can go ahead and deallocate the Vector UPL too. | |
7334 | */ | |
7335 | if(*empty==TRUE) { | |
7336 | *empty = vector_upl_set_subupl(vector_upl, upl, 0); | |
7337 | upl_deallocate(upl); | |
7338 | } | |
7339 | goto process_upl_to_commit; | |
7340 | } | |
7341 | ||
7342 | if (pgpgout_count) { | |
7343 | DTRACE_VM2(pgpgout, int, pgpgout_count, (uint64_t *), NULL); | |
7344 | } | |
7345 | ||
7346 | return KERN_SUCCESS; | |
7347 | } | |
7348 | ||
7349 | kern_return_t | |
7350 | upl_abort_range( | |
7351 | upl_t upl, | |
7352 | upl_offset_t offset, | |
7353 | upl_size_t size, | |
7354 | int error, | |
7355 | boolean_t *empty) | |
7356 | { | |
7357 | upl_page_info_t *user_page_list = NULL; | |
7358 | upl_size_t xfer_size, subupl_size = size; | |
7359 | vm_object_t shadow_object; | |
7360 | vm_object_t object; | |
7361 | vm_object_offset_t target_offset; | |
7362 | upl_offset_t subupl_offset = offset; | |
7363 | int entry; | |
7364 | wpl_array_t lite_list; | |
7365 | int occupied; | |
7366 | struct vm_page_delayed_work dw_array[DEFAULT_DELAYED_WORK_LIMIT]; | |
7367 | struct vm_page_delayed_work *dwp; | |
7368 | int dw_count; | |
7369 | int dw_limit; | |
7370 | int isVectorUPL = 0; | |
7371 | upl_t vector_upl = NULL; | |
7372 | ||
7373 | *empty = FALSE; | |
7374 | ||
7375 | if (upl == UPL_NULL) | |
7376 | return KERN_INVALID_ARGUMENT; | |
7377 | ||
7378 | if ( (upl->flags & UPL_IO_WIRE) && !(error & UPL_ABORT_DUMP_PAGES) ) | |
7379 | return upl_commit_range(upl, offset, size, UPL_COMMIT_FREE_ABSENT, NULL, 0, empty); | |
7380 | ||
7381 | if((isVectorUPL = vector_upl_is_valid(upl))) { | |
7382 | vector_upl = upl; | |
7383 | upl_lock(vector_upl); | |
7384 | } | |
7385 | else | |
7386 | upl_lock(upl); | |
7387 | ||
7388 | process_upl_to_abort: | |
7389 | if(isVectorUPL) { | |
7390 | size = subupl_size; | |
7391 | offset = subupl_offset; | |
7392 | if(size == 0) { | |
7393 | upl_unlock(vector_upl); | |
7394 | return KERN_SUCCESS; | |
7395 | } | |
7396 | upl = vector_upl_subupl_byoffset(vector_upl, &offset, &size); | |
7397 | if(upl == NULL) { | |
7398 | upl_unlock(vector_upl); | |
7399 | return KERN_FAILURE; | |
7400 | } | |
7401 | subupl_size -= size; | |
7402 | subupl_offset += size; | |
7403 | } | |
7404 | ||
7405 | *empty = FALSE; | |
7406 | ||
7407 | #if UPL_DEBUG | |
7408 | if (upl->upl_commit_index < UPL_DEBUG_COMMIT_RECORDS) { | |
7409 | (void) OSBacktrace(&upl->upl_commit_records[upl->upl_commit_index].c_retaddr[0], UPL_DEBUG_STACK_FRAMES); | |
7410 | ||
7411 | upl->upl_commit_records[upl->upl_commit_index].c_beg = offset; | |
7412 | upl->upl_commit_records[upl->upl_commit_index].c_end = (offset + size); | |
7413 | upl->upl_commit_records[upl->upl_commit_index].c_aborted = 1; | |
7414 | ||
7415 | upl->upl_commit_index++; | |
7416 | } | |
7417 | #endif | |
7418 | if (upl->flags & UPL_DEVICE_MEMORY) | |
7419 | xfer_size = 0; | |
7420 | else if ((offset + size) <= upl->size) | |
7421 | xfer_size = size; | |
7422 | else { | |
7423 | if(!isVectorUPL) | |
7424 | upl_unlock(upl); | |
7425 | else { | |
7426 | upl_unlock(vector_upl); | |
7427 | } | |
7428 | ||
7429 | return KERN_FAILURE; | |
7430 | } | |
7431 | if (upl->flags & UPL_INTERNAL) { | |
7432 | lite_list = (wpl_array_t) | |
7433 | ((((uintptr_t)upl) + sizeof(struct upl)) | |
7434 | + ((upl->size/PAGE_SIZE) * sizeof(upl_page_info_t))); | |
7435 | ||
7436 | user_page_list = (upl_page_info_t *) (((uintptr_t)upl) + sizeof(struct upl)); | |
7437 | } else { | |
7438 | lite_list = (wpl_array_t) | |
7439 | (((uintptr_t)upl) + sizeof(struct upl)); | |
7440 | } | |
7441 | object = upl->map_object; | |
7442 | ||
7443 | if (upl->flags & UPL_SHADOWED) { | |
7444 | vm_object_lock(object); | |
7445 | shadow_object = object->shadow; | |
7446 | } else | |
7447 | shadow_object = object; | |
7448 | ||
7449 | entry = offset/PAGE_SIZE; | |
7450 | target_offset = (vm_object_offset_t)offset; | |
7451 | ||
7452 | assert(!(target_offset & PAGE_MASK)); | |
7453 | assert(!(xfer_size & PAGE_MASK)); | |
7454 | ||
7455 | if (upl->flags & UPL_KERNEL_OBJECT) | |
7456 | vm_object_lock_shared(shadow_object); | |
7457 | else | |
7458 | vm_object_lock(shadow_object); | |
7459 | ||
7460 | if (upl->flags & UPL_ACCESS_BLOCKED) { | |
7461 | assert(shadow_object->blocked_access); | |
7462 | shadow_object->blocked_access = FALSE; | |
7463 | vm_object_wakeup(object, VM_OBJECT_EVENT_UNBLOCKED); | |
7464 | } | |
7465 | ||
7466 | dwp = &dw_array[0]; | |
7467 | dw_count = 0; | |
7468 | dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT); | |
7469 | ||
7470 | if ((error & UPL_ABORT_DUMP_PAGES) && (upl->flags & UPL_KERNEL_OBJECT)) | |
7471 | panic("upl_abort_range: kernel_object being DUMPED"); | |
7472 | ||
7473 | while (xfer_size) { | |
7474 | vm_page_t t, m; | |
7475 | unsigned int pg_num; | |
7476 | boolean_t needed; | |
7477 | ||
7478 | pg_num = (unsigned int) (target_offset/PAGE_SIZE); | |
7479 | assert(pg_num == target_offset/PAGE_SIZE); | |
7480 | ||
7481 | needed = FALSE; | |
7482 | ||
7483 | if (user_page_list) | |
7484 | needed = user_page_list[pg_num].needed; | |
7485 | ||
7486 | dwp->dw_mask = 0; | |
7487 | m = VM_PAGE_NULL; | |
7488 | ||
7489 | if (upl->flags & UPL_LITE) { | |
7490 | ||
7491 | if (lite_list[pg_num>>5] & (1 << (pg_num & 31))) { | |
7492 | lite_list[pg_num>>5] &= ~(1 << (pg_num & 31)); | |
7493 | ||
7494 | if ( !(upl->flags & UPL_KERNEL_OBJECT)) | |
7495 | m = vm_page_lookup(shadow_object, target_offset + | |
7496 | (upl->offset - shadow_object->paging_offset)); | |
7497 | } | |
7498 | } | |
7499 | if (upl->flags & UPL_SHADOWED) { | |
7500 | if ((t = vm_page_lookup(object, target_offset)) != VM_PAGE_NULL) { | |
7501 | t->pageout = FALSE; | |
7502 | ||
7503 | VM_PAGE_FREE(t); | |
7504 | ||
7505 | if (m == VM_PAGE_NULL) | |
7506 | m = vm_page_lookup(shadow_object, target_offset + object->vo_shadow_offset); | |
7507 | } | |
7508 | } | |
7509 | if ((upl->flags & UPL_KERNEL_OBJECT)) | |
7510 | goto abort_next_page; | |
7511 | ||
7512 | if (m != VM_PAGE_NULL) { | |
7513 | ||
7514 | assert(!m->compressor); | |
7515 | ||
7516 | if (m->absent) { | |
7517 | boolean_t must_free = TRUE; | |
7518 | ||
7519 | /* | |
7520 | * COPYOUT = FALSE case | |
7521 | * check for error conditions which must | |
7522 | * be passed back to the pages customer | |
7523 | */ | |
7524 | if (error & UPL_ABORT_RESTART) { | |
7525 | m->restart = TRUE; | |
7526 | m->absent = FALSE; | |
7527 | m->unusual = TRUE; | |
7528 | must_free = FALSE; | |
7529 | } else if (error & UPL_ABORT_UNAVAILABLE) { | |
7530 | m->restart = FALSE; | |
7531 | m->unusual = TRUE; | |
7532 | must_free = FALSE; | |
7533 | } else if (error & UPL_ABORT_ERROR) { | |
7534 | m->restart = FALSE; | |
7535 | m->absent = FALSE; | |
7536 | m->error = TRUE; | |
7537 | m->unusual = TRUE; | |
7538 | must_free = FALSE; | |
7539 | } | |
7540 | if (m->clustered && needed == FALSE) { | |
7541 | /* | |
7542 | * This page was a part of a speculative | |
7543 | * read-ahead initiated by the kernel | |
7544 | * itself. No one is expecting this | |
7545 | * page and no one will clean up its | |
7546 | * error state if it ever becomes valid | |
7547 | * in the future. | |
7548 | * We have to free it here. | |
7549 | */ | |
7550 | must_free = TRUE; | |
7551 | } | |
7552 | ||
7553 | /* | |
7554 | * ENCRYPTED SWAP: | |
7555 | * If the page was already encrypted, | |
7556 | * we don't really need to decrypt it | |
7557 | * now. It will get decrypted later, | |
7558 | * on demand, as soon as someone needs | |
7559 | * to access its contents. | |
7560 | */ | |
7561 | ||
7562 | m->cleaning = FALSE; | |
7563 | m->encrypted_cleaning = FALSE; | |
7564 | ||
7565 | if (m->overwriting && !m->busy) { | |
7566 | /* | |
7567 | * this shouldn't happen since | |
7568 | * this is an 'absent' page, but | |
7569 | * it doesn't hurt to check for | |
7570 | * the 'alternate' method of | |
7571 | * stabilizing the page... | |
7572 | * we will mark 'busy' to be cleared | |
7573 | * in the following code which will | |
7574 | * take care of the primary stabilzation | |
7575 | * method (i.e. setting 'busy' to TRUE) | |
7576 | */ | |
7577 | dwp->dw_mask |= DW_vm_page_unwire; | |
7578 | } | |
7579 | m->overwriting = FALSE; | |
7580 | ||
7581 | dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP); | |
7582 | ||
7583 | if (must_free == TRUE) | |
7584 | dwp->dw_mask |= DW_vm_page_free; | |
7585 | else | |
7586 | dwp->dw_mask |= DW_vm_page_activate; | |
7587 | } else { | |
7588 | /* | |
7589 | * Handle the trusted pager throttle. | |
7590 | */ | |
7591 | if (m->laundry) | |
7592 | dwp->dw_mask |= DW_vm_pageout_throttle_up; | |
7593 | ||
7594 | if (upl->flags & UPL_ACCESS_BLOCKED) { | |
7595 | /* | |
7596 | * We blocked access to the pages in this UPL. | |
7597 | * Clear the "busy" bit and wake up any waiter | |
7598 | * for this page. | |
7599 | */ | |
7600 | dwp->dw_mask |= DW_clear_busy; | |
7601 | } | |
7602 | if (m->overwriting) { | |
7603 | if (m->busy) | |
7604 | dwp->dw_mask |= DW_clear_busy; | |
7605 | else { | |
7606 | /* | |
7607 | * deal with the 'alternate' method | |
7608 | * of stabilizing the page... | |
7609 | * we will either free the page | |
7610 | * or mark 'busy' to be cleared | |
7611 | * in the following code which will | |
7612 | * take care of the primary stabilzation | |
7613 | * method (i.e. setting 'busy' to TRUE) | |
7614 | */ | |
7615 | dwp->dw_mask |= DW_vm_page_unwire; | |
7616 | } | |
7617 | m->overwriting = FALSE; | |
7618 | } | |
7619 | if (m->encrypted_cleaning == TRUE) { | |
7620 | m->encrypted_cleaning = FALSE; | |
7621 | ||
7622 | dwp->dw_mask |= DW_clear_busy; | |
7623 | } | |
7624 | m->pageout = FALSE; | |
7625 | m->cleaning = FALSE; | |
7626 | #if MACH_PAGEMAP | |
7627 | vm_external_state_clr(m->object->existence_map, m->offset); | |
7628 | #endif /* MACH_PAGEMAP */ | |
7629 | if (error & UPL_ABORT_DUMP_PAGES) { | |
7630 | pmap_disconnect(m->phys_page); | |
7631 | ||
7632 | dwp->dw_mask |= DW_vm_page_free; | |
7633 | } else { | |
7634 | if (!(dwp->dw_mask & DW_vm_page_unwire)) { | |
7635 | if (error & UPL_ABORT_REFERENCE) { | |
7636 | /* | |
7637 | * we've been told to explictly | |
7638 | * reference this page... for | |
7639 | * file I/O, this is done by | |
7640 | * implementing an LRU on the inactive q | |
7641 | */ | |
7642 | dwp->dw_mask |= DW_vm_page_lru; | |
7643 | ||
7644 | } else if (!m->active && !m->inactive && !m->speculative) | |
7645 | dwp->dw_mask |= DW_vm_page_deactivate_internal; | |
7646 | } | |
7647 | dwp->dw_mask |= DW_PAGE_WAKEUP; | |
7648 | } | |
7649 | } | |
7650 | } | |
7651 | abort_next_page: | |
7652 | target_offset += PAGE_SIZE_64; | |
7653 | xfer_size -= PAGE_SIZE; | |
7654 | entry++; | |
7655 | ||
7656 | if (dwp->dw_mask) { | |
7657 | if (dwp->dw_mask & ~(DW_clear_busy | DW_PAGE_WAKEUP)) { | |
7658 | VM_PAGE_ADD_DELAYED_WORK(dwp, m, dw_count); | |
7659 | ||
7660 | if (dw_count >= dw_limit) { | |
7661 | vm_page_do_delayed_work(shadow_object, VM_KERN_MEMORY_NONE, &dw_array[0], dw_count); | |
7662 | ||
7663 | dwp = &dw_array[0]; | |
7664 | dw_count = 0; | |
7665 | } | |
7666 | } else { | |
7667 | if (dwp->dw_mask & DW_clear_busy) | |
7668 | m->busy = FALSE; | |
7669 | ||
7670 | if (dwp->dw_mask & DW_PAGE_WAKEUP) | |
7671 | PAGE_WAKEUP(m); | |
7672 | } | |
7673 | } | |
7674 | } | |
7675 | if (dw_count) | |
7676 | vm_page_do_delayed_work(shadow_object, VM_KERN_MEMORY_NONE, &dw_array[0], dw_count); | |
7677 | ||
7678 | occupied = 1; | |
7679 | ||
7680 | if (upl->flags & UPL_DEVICE_MEMORY) { | |
7681 | occupied = 0; | |
7682 | } else if (upl->flags & UPL_LITE) { | |
7683 | int pg_num; | |
7684 | int i; | |
7685 | ||
7686 | pg_num = upl->size/PAGE_SIZE; | |
7687 | pg_num = (pg_num + 31) >> 5; | |
7688 | occupied = 0; | |
7689 | ||
7690 | for (i = 0; i < pg_num; i++) { | |
7691 | if (lite_list[i] != 0) { | |
7692 | occupied = 1; | |
7693 | break; | |
7694 | } | |
7695 | } | |
7696 | } else { | |
7697 | if (queue_empty(&upl->map_object->memq)) | |
7698 | occupied = 0; | |
7699 | } | |
7700 | if (occupied == 0) { | |
7701 | /* | |
7702 | * If this UPL element belongs to a Vector UPL and is | |
7703 | * empty, then this is the right function to deallocate | |
7704 | * it. So go ahead set the *empty variable. The flag | |
7705 | * UPL_COMMIT_NOTIFY_EMPTY, from the caller's point of view | |
7706 | * should be considered relevant for the Vector UPL and | |
7707 | * not the internal UPLs. | |
7708 | */ | |
7709 | if ((upl->flags & UPL_COMMIT_NOTIFY_EMPTY) || isVectorUPL) | |
7710 | *empty = TRUE; | |
7711 | ||
7712 | if (object == shadow_object && !(upl->flags & UPL_KERNEL_OBJECT)) { | |
7713 | /* | |
7714 | * this is not a paging object | |
7715 | * so we need to drop the paging reference | |
7716 | * that was taken when we created the UPL | |
7717 | * against this object | |
7718 | */ | |
7719 | vm_object_activity_end(shadow_object); | |
7720 | vm_object_collapse(shadow_object, 0, TRUE); | |
7721 | } else { | |
7722 | /* | |
7723 | * we dontated the paging reference to | |
7724 | * the map object... vm_pageout_object_terminate | |
7725 | * will drop this reference | |
7726 | */ | |
7727 | } | |
7728 | } | |
7729 | vm_object_unlock(shadow_object); | |
7730 | if (object != shadow_object) | |
7731 | vm_object_unlock(object); | |
7732 | ||
7733 | if(!isVectorUPL) | |
7734 | upl_unlock(upl); | |
7735 | else { | |
7736 | /* | |
7737 | * If we completed our operations on an UPL that is | |
7738 | * part of a Vectored UPL and if empty is TRUE, then | |
7739 | * we should go ahead and deallocate this UPL element. | |
7740 | * Then we check if this was the last of the UPL elements | |
7741 | * within that Vectored UPL. If so, set empty to TRUE | |
7742 | * so that in ubc_upl_abort_range or ubc_upl_abort, we | |
7743 | * can go ahead and deallocate the Vector UPL too. | |
7744 | */ | |
7745 | if(*empty == TRUE) { | |
7746 | *empty = vector_upl_set_subupl(vector_upl, upl,0); | |
7747 | upl_deallocate(upl); | |
7748 | } | |
7749 | goto process_upl_to_abort; | |
7750 | } | |
7751 | ||
7752 | return KERN_SUCCESS; | |
7753 | } | |
7754 | ||
7755 | ||
7756 | kern_return_t | |
7757 | upl_abort( | |
7758 | upl_t upl, | |
7759 | int error) | |
7760 | { | |
7761 | boolean_t empty; | |
7762 | ||
7763 | if (upl == UPL_NULL) | |
7764 | return KERN_INVALID_ARGUMENT; | |
7765 | ||
7766 | return upl_abort_range(upl, 0, upl->size, error, &empty); | |
7767 | } | |
7768 | ||
7769 | ||
7770 | /* an option on commit should be wire */ | |
7771 | kern_return_t | |
7772 | upl_commit( | |
7773 | upl_t upl, | |
7774 | upl_page_info_t *page_list, | |
7775 | mach_msg_type_number_t count) | |
7776 | { | |
7777 | boolean_t empty; | |
7778 | ||
7779 | if (upl == UPL_NULL) | |
7780 | return KERN_INVALID_ARGUMENT; | |
7781 | ||
7782 | return upl_commit_range(upl, 0, upl->size, 0, page_list, count, &empty); | |
7783 | } | |
7784 | ||
7785 | ||
7786 | void | |
7787 | iopl_valid_data( | |
7788 | upl_t upl) | |
7789 | { | |
7790 | vm_object_t object; | |
7791 | vm_offset_t offset; | |
7792 | vm_page_t m, nxt_page = VM_PAGE_NULL; | |
7793 | upl_size_t size; | |
7794 | int wired_count = 0; | |
7795 | ||
7796 | if (upl == NULL) | |
7797 | panic("iopl_valid_data: NULL upl"); | |
7798 | if (vector_upl_is_valid(upl)) | |
7799 | panic("iopl_valid_data: vector upl"); | |
7800 | if ((upl->flags & (UPL_DEVICE_MEMORY|UPL_SHADOWED|UPL_ACCESS_BLOCKED|UPL_IO_WIRE|UPL_INTERNAL)) != UPL_IO_WIRE) | |
7801 | panic("iopl_valid_data: unsupported upl, flags = %x", upl->flags); | |
7802 | ||
7803 | object = upl->map_object; | |
7804 | ||
7805 | if (object == kernel_object || object == compressor_object) | |
7806 | panic("iopl_valid_data: object == kernel or compressor"); | |
7807 | ||
7808 | if (object->purgable == VM_PURGABLE_VOLATILE) | |
7809 | panic("iopl_valid_data: object == VM_PURGABLE_VOLATILE"); | |
7810 | ||
7811 | size = upl->size; | |
7812 | ||
7813 | vm_object_lock(object); | |
7814 | ||
7815 | if (object->vo_size == size && object->resident_page_count == (size / PAGE_SIZE)) | |
7816 | nxt_page = (vm_page_t)queue_first(&object->memq); | |
7817 | else | |
7818 | offset = 0 + upl->offset - object->paging_offset; | |
7819 | ||
7820 | while (size) { | |
7821 | ||
7822 | if (nxt_page != VM_PAGE_NULL) { | |
7823 | m = nxt_page; | |
7824 | nxt_page = (vm_page_t)queue_next(&nxt_page->listq); | |
7825 | } else { | |
7826 | m = vm_page_lookup(object, offset); | |
7827 | offset += PAGE_SIZE; | |
7828 | ||
7829 | if (m == VM_PAGE_NULL) | |
7830 | panic("iopl_valid_data: missing expected page at offset %lx", (long)offset); | |
7831 | } | |
7832 | if (m->busy) { | |
7833 | if (!m->absent) | |
7834 | panic("iopl_valid_data: busy page w/o absent"); | |
7835 | ||
7836 | if (m->pageq.next || m->pageq.prev) | |
7837 | panic("iopl_valid_data: busy+absent page on page queue"); | |
7838 | ||
7839 | m->absent = FALSE; | |
7840 | m->dirty = TRUE; | |
7841 | m->wire_count++; | |
7842 | wired_count++; | |
7843 | ||
7844 | PAGE_WAKEUP_DONE(m); | |
7845 | } | |
7846 | size -= PAGE_SIZE; | |
7847 | } | |
7848 | if (wired_count) { | |
7849 | ||
7850 | if (!object->wired_page_count) { | |
7851 | VM_OBJECT_WIRED(object); | |
7852 | } | |
7853 | object->wired_page_count += wired_count; | |
7854 | ||
7855 | vm_page_lockspin_queues(); | |
7856 | vm_page_wire_count += wired_count; | |
7857 | vm_page_unlock_queues(); | |
7858 | } | |
7859 | vm_object_unlock(object); | |
7860 | } | |
7861 | ||
7862 | void | |
7863 | vm_object_set_pmap_cache_attr( | |
7864 | vm_object_t object, | |
7865 | upl_page_info_array_t user_page_list, | |
7866 | unsigned int num_pages, | |
7867 | boolean_t batch_pmap_op) | |
7868 | { | |
7869 | unsigned int cache_attr = 0; | |
7870 | ||
7871 | cache_attr = object->wimg_bits & VM_WIMG_MASK; | |
7872 | assert(user_page_list); | |
7873 | if (cache_attr != VM_WIMG_USE_DEFAULT) { | |
7874 | PMAP_BATCH_SET_CACHE_ATTR(object, user_page_list, cache_attr, num_pages, batch_pmap_op); | |
7875 | } | |
7876 | } | |
7877 | ||
7878 | ||
7879 | boolean_t vm_object_iopl_wire_full(vm_object_t, upl_t, upl_page_info_array_t, wpl_array_t, upl_control_flags_t); | |
7880 | kern_return_t vm_object_iopl_wire_empty(vm_object_t, upl_t, upl_page_info_array_t, wpl_array_t, upl_control_flags_t, vm_object_offset_t *, int); | |
7881 | ||
7882 | ||
7883 | ||
7884 | boolean_t | |
7885 | vm_object_iopl_wire_full(vm_object_t object, upl_t upl, upl_page_info_array_t user_page_list, | |
7886 | wpl_array_t lite_list, upl_control_flags_t cntrl_flags) | |
7887 | { | |
7888 | vm_page_t dst_page; | |
7889 | vm_tag_t tag; | |
7890 | unsigned int entry; | |
7891 | int page_count; | |
7892 | int delayed_unlock = 0; | |
7893 | boolean_t retval = TRUE; | |
7894 | ||
7895 | vm_object_lock_assert_exclusive(object); | |
7896 | assert(object->purgable != VM_PURGABLE_VOLATILE); | |
7897 | assert(object->purgable != VM_PURGABLE_EMPTY); | |
7898 | assert(object->pager == NULL); | |
7899 | assert(object->copy == NULL); | |
7900 | assert(object->shadow == NULL); | |
7901 | ||
7902 | tag = UPL_MEMORY_TAG(cntrl_flags); | |
7903 | page_count = object->resident_page_count; | |
7904 | dst_page = (vm_page_t)queue_first(&object->memq); | |
7905 | ||
7906 | vm_page_lock_queues(); | |
7907 | ||
7908 | while (page_count--) { | |
7909 | ||
7910 | if (dst_page->busy || | |
7911 | dst_page->fictitious || | |
7912 | dst_page->absent || | |
7913 | dst_page->error || | |
7914 | dst_page->cleaning || | |
7915 | dst_page->restart || | |
7916 | dst_page->encrypted || | |
7917 | dst_page->laundry) { | |
7918 | retval = FALSE; | |
7919 | goto done; | |
7920 | } | |
7921 | if ((cntrl_flags & UPL_REQUEST_FORCE_COHERENCY) && dst_page->written_by_kernel == TRUE) { | |
7922 | retval = FALSE; | |
7923 | goto done; | |
7924 | } | |
7925 | dst_page->reference = TRUE; | |
7926 | ||
7927 | vm_page_wire(dst_page, tag, FALSE); | |
7928 | ||
7929 | if (!(cntrl_flags & UPL_COPYOUT_FROM)) { | |
7930 | SET_PAGE_DIRTY(dst_page, FALSE); | |
7931 | } | |
7932 | entry = (unsigned int)(dst_page->offset / PAGE_SIZE); | |
7933 | assert(entry >= 0 && entry < object->resident_page_count); | |
7934 | lite_list[entry>>5] |= 1 << (entry & 31); | |
7935 | ||
7936 | if (dst_page->phys_page > upl->highest_page) | |
7937 | upl->highest_page = dst_page->phys_page; | |
7938 | ||
7939 | if (user_page_list) { | |
7940 | user_page_list[entry].phys_addr = dst_page->phys_page; | |
7941 | user_page_list[entry].absent = dst_page->absent; | |
7942 | user_page_list[entry].dirty = dst_page->dirty; | |
7943 | user_page_list[entry].pageout = dst_page->pageout;; | |
7944 | user_page_list[entry].precious = dst_page->precious; | |
7945 | user_page_list[entry].device = FALSE; | |
7946 | user_page_list[entry].speculative = FALSE; | |
7947 | user_page_list[entry].cs_validated = FALSE; | |
7948 | user_page_list[entry].cs_tainted = FALSE; | |
7949 | user_page_list[entry].cs_nx = FALSE; | |
7950 | user_page_list[entry].needed = FALSE; | |
7951 | user_page_list[entry].mark = FALSE; | |
7952 | } | |
7953 | if (delayed_unlock++ > 256) { | |
7954 | delayed_unlock = 0; | |
7955 | lck_mtx_yield(&vm_page_queue_lock); | |
7956 | ||
7957 | VM_CHECK_MEMORYSTATUS; | |
7958 | } | |
7959 | dst_page = (vm_page_t)queue_next(&dst_page->listq); | |
7960 | } | |
7961 | done: | |
7962 | vm_page_unlock_queues(); | |
7963 | ||
7964 | VM_CHECK_MEMORYSTATUS; | |
7965 | ||
7966 | return (retval); | |
7967 | } | |
7968 | ||
7969 | ||
7970 | kern_return_t | |
7971 | vm_object_iopl_wire_empty(vm_object_t object, upl_t upl, upl_page_info_array_t user_page_list, | |
7972 | wpl_array_t lite_list, upl_control_flags_t cntrl_flags, vm_object_offset_t *dst_offset, int page_count) | |
7973 | { | |
7974 | vm_page_t dst_page; | |
7975 | vm_tag_t tag; | |
7976 | boolean_t no_zero_fill = FALSE; | |
7977 | int interruptible; | |
7978 | int pages_wired = 0; | |
7979 | int pages_inserted = 0; | |
7980 | int entry = 0; | |
7981 | uint64_t delayed_ledger_update = 0; | |
7982 | kern_return_t ret = KERN_SUCCESS; | |
7983 | ||
7984 | vm_object_lock_assert_exclusive(object); | |
7985 | assert(object->purgable != VM_PURGABLE_VOLATILE); | |
7986 | assert(object->purgable != VM_PURGABLE_EMPTY); | |
7987 | assert(object->pager == NULL); | |
7988 | assert(object->copy == NULL); | |
7989 | assert(object->shadow == NULL); | |
7990 | ||
7991 | if (cntrl_flags & UPL_SET_INTERRUPTIBLE) | |
7992 | interruptible = THREAD_ABORTSAFE; | |
7993 | else | |
7994 | interruptible = THREAD_UNINT; | |
7995 | ||
7996 | if (cntrl_flags & (UPL_NOZEROFILL | UPL_NOZEROFILLIO)) | |
7997 | no_zero_fill = TRUE; | |
7998 | ||
7999 | tag = UPL_MEMORY_TAG(cntrl_flags); | |
8000 | ||
8001 | while (page_count--) { | |
8002 | ||
8003 | while ( (dst_page = vm_page_grab()) == VM_PAGE_NULL) { | |
8004 | ||
8005 | OSAddAtomic(page_count, &vm_upl_wait_for_pages); | |
8006 | ||
8007 | VM_DEBUG_EVENT(vm_iopl_page_wait, VM_IOPL_PAGE_WAIT, DBG_FUNC_START, vm_upl_wait_for_pages, 0, 0, 0); | |
8008 | ||
8009 | if (vm_page_wait(interruptible) == FALSE) { | |
8010 | /* | |
8011 | * interrupted case | |
8012 | */ | |
8013 | OSAddAtomic(-page_count, &vm_upl_wait_for_pages); | |
8014 | ||
8015 | VM_DEBUG_EVENT(vm_iopl_page_wait, VM_IOPL_PAGE_WAIT, DBG_FUNC_END, vm_upl_wait_for_pages, 0, 0, -1); | |
8016 | ||
8017 | ret = MACH_SEND_INTERRUPTED; | |
8018 | goto done; | |
8019 | } | |
8020 | OSAddAtomic(-page_count, &vm_upl_wait_for_pages); | |
8021 | ||
8022 | VM_DEBUG_EVENT(vm_iopl_page_wait, VM_IOPL_PAGE_WAIT, DBG_FUNC_END, vm_upl_wait_for_pages, 0, 0, 0); | |
8023 | } | |
8024 | if (no_zero_fill == FALSE) | |
8025 | vm_page_zero_fill(dst_page); | |
8026 | else | |
8027 | dst_page->absent = TRUE; | |
8028 | ||
8029 | dst_page->reference = TRUE; | |
8030 | ||
8031 | if (!(cntrl_flags & UPL_COPYOUT_FROM)) { | |
8032 | SET_PAGE_DIRTY(dst_page, FALSE); | |
8033 | } | |
8034 | if (dst_page->absent == FALSE) { | |
8035 | dst_page->wire_count++; | |
8036 | pages_wired++; | |
8037 | PAGE_WAKEUP_DONE(dst_page); | |
8038 | } | |
8039 | pages_inserted++; | |
8040 | ||
8041 | vm_page_insert_internal(dst_page, object, *dst_offset, tag, FALSE, TRUE, TRUE, TRUE, &delayed_ledger_update); | |
8042 | ||
8043 | lite_list[entry>>5] |= 1 << (entry & 31); | |
8044 | ||
8045 | if (dst_page->phys_page > upl->highest_page) | |
8046 | upl->highest_page = dst_page->phys_page; | |
8047 | ||
8048 | if (user_page_list) { | |
8049 | user_page_list[entry].phys_addr = dst_page->phys_page; | |
8050 | user_page_list[entry].absent = dst_page->absent; | |
8051 | user_page_list[entry].dirty = dst_page->dirty; | |
8052 | user_page_list[entry].pageout = FALSE; | |
8053 | user_page_list[entry].precious = FALSE; | |
8054 | user_page_list[entry].device = FALSE; | |
8055 | user_page_list[entry].speculative = FALSE; | |
8056 | user_page_list[entry].cs_validated = FALSE; | |
8057 | user_page_list[entry].cs_tainted = FALSE; | |
8058 | user_page_list[entry].cs_nx = FALSE; | |
8059 | user_page_list[entry].needed = FALSE; | |
8060 | user_page_list[entry].mark = FALSE; | |
8061 | } | |
8062 | entry++; | |
8063 | *dst_offset += PAGE_SIZE_64; | |
8064 | } | |
8065 | done: | |
8066 | if (pages_wired) { | |
8067 | vm_page_lockspin_queues(); | |
8068 | vm_page_wire_count += pages_wired; | |
8069 | vm_page_unlock_queues(); | |
8070 | } | |
8071 | if (pages_inserted) { | |
8072 | if (object->internal) { | |
8073 | OSAddAtomic(pages_inserted, &vm_page_internal_count); | |
8074 | } else { | |
8075 | OSAddAtomic(pages_inserted, &vm_page_external_count); | |
8076 | } | |
8077 | } | |
8078 | if (delayed_ledger_update) { | |
8079 | task_t owner; | |
8080 | ||
8081 | owner = object->vo_purgeable_owner; | |
8082 | assert(owner); | |
8083 | ||
8084 | /* more non-volatile bytes */ | |
8085 | ledger_credit(owner->ledger, | |
8086 | task_ledgers.purgeable_nonvolatile, | |
8087 | delayed_ledger_update); | |
8088 | /* more footprint */ | |
8089 | ledger_credit(owner->ledger, | |
8090 | task_ledgers.phys_footprint, | |
8091 | delayed_ledger_update); | |
8092 | } | |
8093 | return (ret); | |
8094 | } | |
8095 | ||
8096 | ||
8097 | unsigned int vm_object_iopl_request_sleep_for_cleaning = 0; | |
8098 | ||
8099 | ||
8100 | kern_return_t | |
8101 | vm_object_iopl_request( | |
8102 | vm_object_t object, | |
8103 | vm_object_offset_t offset, | |
8104 | upl_size_t size, | |
8105 | upl_t *upl_ptr, | |
8106 | upl_page_info_array_t user_page_list, | |
8107 | unsigned int *page_list_count, | |
8108 | upl_control_flags_t cntrl_flags) | |
8109 | { | |
8110 | vm_page_t dst_page; | |
8111 | vm_object_offset_t dst_offset; | |
8112 | upl_size_t xfer_size; | |
8113 | upl_t upl = NULL; | |
8114 | unsigned int entry; | |
8115 | wpl_array_t lite_list = NULL; | |
8116 | int no_zero_fill = FALSE; | |
8117 | unsigned int size_in_pages; | |
8118 | u_int32_t psize; | |
8119 | kern_return_t ret; | |
8120 | vm_prot_t prot; | |
8121 | struct vm_object_fault_info fault_info; | |
8122 | struct vm_page_delayed_work dw_array[DEFAULT_DELAYED_WORK_LIMIT]; | |
8123 | struct vm_page_delayed_work *dwp; | |
8124 | int dw_count; | |
8125 | int dw_limit; | |
8126 | int dw_index; | |
8127 | boolean_t caller_lookup; | |
8128 | int io_tracking_flag = 0; | |
8129 | int interruptible; | |
8130 | ||
8131 | boolean_t set_cache_attr_needed = FALSE; | |
8132 | boolean_t free_wired_pages = FALSE; | |
8133 | boolean_t fast_path_empty_req = FALSE; | |
8134 | boolean_t fast_path_full_req = FALSE; | |
8135 | ||
8136 | if (cntrl_flags & ~UPL_VALID_FLAGS) { | |
8137 | /* | |
8138 | * For forward compatibility's sake, | |
8139 | * reject any unknown flag. | |
8140 | */ | |
8141 | return KERN_INVALID_VALUE; | |
8142 | } | |
8143 | if (vm_lopage_needed == FALSE) | |
8144 | cntrl_flags &= ~UPL_NEED_32BIT_ADDR; | |
8145 | ||
8146 | if (cntrl_flags & UPL_NEED_32BIT_ADDR) { | |
8147 | if ( (cntrl_flags & (UPL_SET_IO_WIRE | UPL_SET_LITE)) != (UPL_SET_IO_WIRE | UPL_SET_LITE)) | |
8148 | return KERN_INVALID_VALUE; | |
8149 | ||
8150 | if (object->phys_contiguous) { | |
8151 | if ((offset + object->vo_shadow_offset) >= (vm_object_offset_t)max_valid_dma_address) | |
8152 | return KERN_INVALID_ADDRESS; | |
8153 | ||
8154 | if (((offset + object->vo_shadow_offset) + size) >= (vm_object_offset_t)max_valid_dma_address) | |
8155 | return KERN_INVALID_ADDRESS; | |
8156 | } | |
8157 | } | |
8158 | ||
8159 | if (cntrl_flags & UPL_ENCRYPT) { | |
8160 | /* | |
8161 | * ENCRYPTED SWAP: | |
8162 | * The paging path doesn't use this interface, | |
8163 | * so we don't support the UPL_ENCRYPT flag | |
8164 | * here. We won't encrypt the pages. | |
8165 | */ | |
8166 | assert(! (cntrl_flags & UPL_ENCRYPT)); | |
8167 | } | |
8168 | if (cntrl_flags & (UPL_NOZEROFILL | UPL_NOZEROFILLIO)) | |
8169 | no_zero_fill = TRUE; | |
8170 | ||
8171 | if (cntrl_flags & UPL_COPYOUT_FROM) | |
8172 | prot = VM_PROT_READ; | |
8173 | else | |
8174 | prot = VM_PROT_READ | VM_PROT_WRITE; | |
8175 | ||
8176 | if ((!object->internal) && (object->paging_offset != 0)) | |
8177 | panic("vm_object_iopl_request: external object with non-zero paging offset\n"); | |
8178 | ||
8179 | #if CONFIG_IOSCHED || UPL_DEBUG | |
8180 | if ((object->io_tracking && object != kernel_object) || upl_debug_enabled) | |
8181 | io_tracking_flag |= UPL_CREATE_IO_TRACKING; | |
8182 | #endif | |
8183 | ||
8184 | #if CONFIG_IOSCHED | |
8185 | if (object->io_tracking) { | |
8186 | /* Check if we're dealing with the kernel object. We do not support expedite on kernel object UPLs */ | |
8187 | if (object != kernel_object) | |
8188 | io_tracking_flag |= UPL_CREATE_EXPEDITE_SUP; | |
8189 | } | |
8190 | #endif | |
8191 | ||
8192 | if (object->phys_contiguous) | |
8193 | psize = PAGE_SIZE; | |
8194 | else | |
8195 | psize = size; | |
8196 | ||
8197 | if (cntrl_flags & UPL_SET_INTERNAL) { | |
8198 | upl = upl_create(UPL_CREATE_INTERNAL | UPL_CREATE_LITE | io_tracking_flag, UPL_IO_WIRE, psize); | |
8199 | ||
8200 | user_page_list = (upl_page_info_t *) (((uintptr_t)upl) + sizeof(struct upl)); | |
8201 | lite_list = (wpl_array_t) (((uintptr_t)user_page_list) + | |
8202 | ((psize / PAGE_SIZE) * sizeof(upl_page_info_t))); | |
8203 | if (size == 0) { | |
8204 | user_page_list = NULL; | |
8205 | lite_list = NULL; | |
8206 | } | |
8207 | } else { | |
8208 | upl = upl_create(UPL_CREATE_LITE | io_tracking_flag, UPL_IO_WIRE, psize); | |
8209 | ||
8210 | lite_list = (wpl_array_t) (((uintptr_t)upl) + sizeof(struct upl)); | |
8211 | if (size == 0) { | |
8212 | lite_list = NULL; | |
8213 | } | |
8214 | } | |
8215 | if (user_page_list) | |
8216 | user_page_list[0].device = FALSE; | |
8217 | *upl_ptr = upl; | |
8218 | ||
8219 | upl->map_object = object; | |
8220 | upl->size = size; | |
8221 | ||
8222 | size_in_pages = size / PAGE_SIZE; | |
8223 | ||
8224 | if (object == kernel_object && | |
8225 | !(cntrl_flags & (UPL_NEED_32BIT_ADDR | UPL_BLOCK_ACCESS))) { | |
8226 | upl->flags |= UPL_KERNEL_OBJECT; | |
8227 | #if UPL_DEBUG | |
8228 | vm_object_lock(object); | |
8229 | #else | |
8230 | vm_object_lock_shared(object); | |
8231 | #endif | |
8232 | } else { | |
8233 | vm_object_lock(object); | |
8234 | vm_object_activity_begin(object); | |
8235 | } | |
8236 | /* | |
8237 | * paging in progress also protects the paging_offset | |
8238 | */ | |
8239 | upl->offset = offset + object->paging_offset; | |
8240 | ||
8241 | if (cntrl_flags & UPL_BLOCK_ACCESS) { | |
8242 | /* | |
8243 | * The user requested that access to the pages in this UPL | |
8244 | * be blocked until the UPL is commited or aborted. | |
8245 | */ | |
8246 | upl->flags |= UPL_ACCESS_BLOCKED; | |
8247 | } | |
8248 | ||
8249 | #if CONFIG_IOSCHED || UPL_DEBUG | |
8250 | if (upl->flags & UPL_TRACKED_BY_OBJECT) { | |
8251 | vm_object_activity_begin(object); | |
8252 | queue_enter(&object->uplq, upl, upl_t, uplq); | |
8253 | } | |
8254 | #endif | |
8255 | ||
8256 | if (object->phys_contiguous) { | |
8257 | ||
8258 | if (upl->flags & UPL_ACCESS_BLOCKED) { | |
8259 | assert(!object->blocked_access); | |
8260 | object->blocked_access = TRUE; | |
8261 | } | |
8262 | ||
8263 | vm_object_unlock(object); | |
8264 | ||
8265 | /* | |
8266 | * don't need any shadow mappings for this one | |
8267 | * since it is already I/O memory | |
8268 | */ | |
8269 | upl->flags |= UPL_DEVICE_MEMORY; | |
8270 | ||
8271 | upl->highest_page = (ppnum_t) ((offset + object->vo_shadow_offset + size - 1)>>PAGE_SHIFT); | |
8272 | ||
8273 | if (user_page_list) { | |
8274 | user_page_list[0].phys_addr = (ppnum_t) ((offset + object->vo_shadow_offset)>>PAGE_SHIFT); | |
8275 | user_page_list[0].device = TRUE; | |
8276 | } | |
8277 | if (page_list_count != NULL) { | |
8278 | if (upl->flags & UPL_INTERNAL) | |
8279 | *page_list_count = 0; | |
8280 | else | |
8281 | *page_list_count = 1; | |
8282 | } | |
8283 | return KERN_SUCCESS; | |
8284 | } | |
8285 | if (object != kernel_object && object != compressor_object) { | |
8286 | /* | |
8287 | * Protect user space from future COW operations | |
8288 | */ | |
8289 | #if VM_OBJECT_TRACKING_OP_TRUESHARE | |
8290 | if (!object->true_share && | |
8291 | vm_object_tracking_inited) { | |
8292 | void *bt[VM_OBJECT_TRACKING_BTDEPTH]; | |
8293 | int num = 0; | |
8294 | ||
8295 | num = OSBacktrace(bt, | |
8296 | VM_OBJECT_TRACKING_BTDEPTH); | |
8297 | btlog_add_entry(vm_object_tracking_btlog, | |
8298 | object, | |
8299 | VM_OBJECT_TRACKING_OP_TRUESHARE, | |
8300 | bt, | |
8301 | num); | |
8302 | } | |
8303 | #endif /* VM_OBJECT_TRACKING_OP_TRUESHARE */ | |
8304 | ||
8305 | object->true_share = TRUE; | |
8306 | ||
8307 | if (object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC) | |
8308 | object->copy_strategy = MEMORY_OBJECT_COPY_DELAY; | |
8309 | } | |
8310 | ||
8311 | if (!(cntrl_flags & UPL_COPYOUT_FROM) && | |
8312 | object->copy != VM_OBJECT_NULL) { | |
8313 | /* | |
8314 | * Honor copy-on-write obligations | |
8315 | * | |
8316 | * The caller is gathering these pages and | |
8317 | * might modify their contents. We need to | |
8318 | * make sure that the copy object has its own | |
8319 | * private copies of these pages before we let | |
8320 | * the caller modify them. | |
8321 | * | |
8322 | * NOTE: someone else could map the original object | |
8323 | * after we've done this copy-on-write here, and they | |
8324 | * could then see an inconsistent picture of the memory | |
8325 | * while it's being modified via the UPL. To prevent this, | |
8326 | * we would have to block access to these pages until the | |
8327 | * UPL is released. We could use the UPL_BLOCK_ACCESS | |
8328 | * code path for that... | |
8329 | */ | |
8330 | vm_object_update(object, | |
8331 | offset, | |
8332 | size, | |
8333 | NULL, | |
8334 | NULL, | |
8335 | FALSE, /* should_return */ | |
8336 | MEMORY_OBJECT_COPY_SYNC, | |
8337 | VM_PROT_NO_CHANGE); | |
8338 | #if DEVELOPMENT || DEBUG | |
8339 | iopl_cow++; | |
8340 | iopl_cow_pages += size >> PAGE_SHIFT; | |
8341 | #endif | |
8342 | } | |
8343 | if (!(cntrl_flags & (UPL_NEED_32BIT_ADDR | UPL_BLOCK_ACCESS)) && | |
8344 | object->purgable != VM_PURGABLE_VOLATILE && | |
8345 | object->purgable != VM_PURGABLE_EMPTY && | |
8346 | object->copy == NULL && | |
8347 | size == object->vo_size && | |
8348 | offset == 0 && | |
8349 | object->shadow == NULL && | |
8350 | object->pager == NULL) | |
8351 | { | |
8352 | if (object->resident_page_count == size_in_pages) | |
8353 | { | |
8354 | assert(object != compressor_object); | |
8355 | assert(object != kernel_object); | |
8356 | fast_path_full_req = TRUE; | |
8357 | } | |
8358 | else if (object->resident_page_count == 0) | |
8359 | { | |
8360 | assert(object != compressor_object); | |
8361 | assert(object != kernel_object); | |
8362 | fast_path_empty_req = TRUE; | |
8363 | set_cache_attr_needed = TRUE; | |
8364 | } | |
8365 | } | |
8366 | ||
8367 | if (cntrl_flags & UPL_SET_INTERRUPTIBLE) | |
8368 | interruptible = THREAD_ABORTSAFE; | |
8369 | else | |
8370 | interruptible = THREAD_UNINT; | |
8371 | ||
8372 | entry = 0; | |
8373 | ||
8374 | xfer_size = size; | |
8375 | dst_offset = offset; | |
8376 | dw_count = 0; | |
8377 | ||
8378 | if (fast_path_full_req) { | |
8379 | ||
8380 | if (vm_object_iopl_wire_full(object, upl, user_page_list, lite_list, cntrl_flags) == TRUE) | |
8381 | goto finish; | |
8382 | /* | |
8383 | * we couldn't complete the processing of this request on the fast path | |
8384 | * so fall through to the slow path and finish up | |
8385 | */ | |
8386 | ||
8387 | } else if (fast_path_empty_req) { | |
8388 | ||
8389 | if (cntrl_flags & UPL_REQUEST_NO_FAULT) { | |
8390 | ret = KERN_MEMORY_ERROR; | |
8391 | goto return_err; | |
8392 | } | |
8393 | ret = vm_object_iopl_wire_empty(object, upl, user_page_list, lite_list, cntrl_flags, &dst_offset, size_in_pages); | |
8394 | ||
8395 | if (ret) { | |
8396 | free_wired_pages = TRUE; | |
8397 | goto return_err; | |
8398 | } | |
8399 | goto finish; | |
8400 | } | |
8401 | ||
8402 | fault_info.behavior = VM_BEHAVIOR_SEQUENTIAL; | |
8403 | fault_info.user_tag = 0; | |
8404 | fault_info.lo_offset = offset; | |
8405 | fault_info.hi_offset = offset + xfer_size; | |
8406 | fault_info.no_cache = FALSE; | |
8407 | fault_info.stealth = FALSE; | |
8408 | fault_info.io_sync = FALSE; | |
8409 | fault_info.cs_bypass = FALSE; | |
8410 | fault_info.mark_zf_absent = TRUE; | |
8411 | fault_info.interruptible = interruptible; | |
8412 | fault_info.batch_pmap_op = TRUE; | |
8413 | ||
8414 | dwp = &dw_array[0]; | |
8415 | dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT); | |
8416 | ||
8417 | while (xfer_size) { | |
8418 | vm_fault_return_t result; | |
8419 | ||
8420 | dwp->dw_mask = 0; | |
8421 | ||
8422 | if (fast_path_full_req) { | |
8423 | /* | |
8424 | * if we get here, it means that we ran into a page | |
8425 | * state we couldn't handle in the fast path and | |
8426 | * bailed out to the slow path... since the order | |
8427 | * we look at pages is different between the 2 paths, | |
8428 | * the following check is needed to determine whether | |
8429 | * this page was already processed in the fast path | |
8430 | */ | |
8431 | if (lite_list[entry>>5] & (1 << (entry & 31))) | |
8432 | goto skip_page; | |
8433 | } | |
8434 | dst_page = vm_page_lookup(object, dst_offset); | |
8435 | ||
8436 | /* | |
8437 | * ENCRYPTED SWAP: | |
8438 | * If the page is encrypted, we need to decrypt it, | |
8439 | * so force a soft page fault. | |
8440 | */ | |
8441 | if (dst_page == VM_PAGE_NULL || | |
8442 | dst_page->busy || | |
8443 | dst_page->encrypted || | |
8444 | dst_page->error || | |
8445 | dst_page->restart || | |
8446 | dst_page->absent || | |
8447 | dst_page->fictitious) { | |
8448 | ||
8449 | if (object == kernel_object) | |
8450 | panic("vm_object_iopl_request: missing/bad page in kernel object\n"); | |
8451 | if (object == compressor_object) | |
8452 | panic("vm_object_iopl_request: missing/bad page in compressor object\n"); | |
8453 | ||
8454 | if (cntrl_flags & UPL_REQUEST_NO_FAULT) { | |
8455 | ret = KERN_MEMORY_ERROR; | |
8456 | goto return_err; | |
8457 | } | |
8458 | set_cache_attr_needed = TRUE; | |
8459 | ||
8460 | /* | |
8461 | * We just looked up the page and the result remains valid | |
8462 | * until the object lock is release, so send it to | |
8463 | * vm_fault_page() (as "dst_page"), to avoid having to | |
8464 | * look it up again there. | |
8465 | */ | |
8466 | caller_lookup = TRUE; | |
8467 | ||
8468 | do { | |
8469 | vm_page_t top_page; | |
8470 | kern_return_t error_code; | |
8471 | ||
8472 | fault_info.cluster_size = xfer_size; | |
8473 | ||
8474 | vm_object_paging_begin(object); | |
8475 | ||
8476 | result = vm_fault_page(object, dst_offset, | |
8477 | prot | VM_PROT_WRITE, FALSE, | |
8478 | caller_lookup, | |
8479 | &prot, &dst_page, &top_page, | |
8480 | (int *)0, | |
8481 | &error_code, no_zero_fill, | |
8482 | FALSE, &fault_info); | |
8483 | ||
8484 | /* our lookup is no longer valid at this point */ | |
8485 | caller_lookup = FALSE; | |
8486 | ||
8487 | switch (result) { | |
8488 | ||
8489 | case VM_FAULT_SUCCESS: | |
8490 | ||
8491 | if ( !dst_page->absent) { | |
8492 | PAGE_WAKEUP_DONE(dst_page); | |
8493 | } else { | |
8494 | /* | |
8495 | * we only get back an absent page if we | |
8496 | * requested that it not be zero-filled | |
8497 | * because we are about to fill it via I/O | |
8498 | * | |
8499 | * absent pages should be left BUSY | |
8500 | * to prevent them from being faulted | |
8501 | * into an address space before we've | |
8502 | * had a chance to complete the I/O on | |
8503 | * them since they may contain info that | |
8504 | * shouldn't be seen by the faulting task | |
8505 | */ | |
8506 | } | |
8507 | /* | |
8508 | * Release paging references and | |
8509 | * top-level placeholder page, if any. | |
8510 | */ | |
8511 | if (top_page != VM_PAGE_NULL) { | |
8512 | vm_object_t local_object; | |
8513 | ||
8514 | local_object = top_page->object; | |
8515 | ||
8516 | if (top_page->object != dst_page->object) { | |
8517 | vm_object_lock(local_object); | |
8518 | VM_PAGE_FREE(top_page); | |
8519 | vm_object_paging_end(local_object); | |
8520 | vm_object_unlock(local_object); | |
8521 | } else { | |
8522 | VM_PAGE_FREE(top_page); | |
8523 | vm_object_paging_end(local_object); | |
8524 | } | |
8525 | } | |
8526 | vm_object_paging_end(object); | |
8527 | break; | |
8528 | ||
8529 | case VM_FAULT_RETRY: | |
8530 | vm_object_lock(object); | |
8531 | break; | |
8532 | ||
8533 | case VM_FAULT_MEMORY_SHORTAGE: | |
8534 | OSAddAtomic((size_in_pages - entry), &vm_upl_wait_for_pages); | |
8535 | ||
8536 | VM_DEBUG_EVENT(vm_iopl_page_wait, VM_IOPL_PAGE_WAIT, DBG_FUNC_START, vm_upl_wait_for_pages, 0, 0, 0); | |
8537 | ||
8538 | if (vm_page_wait(interruptible)) { | |
8539 | OSAddAtomic(-(size_in_pages - entry), &vm_upl_wait_for_pages); | |
8540 | ||
8541 | VM_DEBUG_EVENT(vm_iopl_page_wait, VM_IOPL_PAGE_WAIT, DBG_FUNC_END, vm_upl_wait_for_pages, 0, 0, 0); | |
8542 | vm_object_lock(object); | |
8543 | ||
8544 | break; | |
8545 | } | |
8546 | OSAddAtomic(-(size_in_pages - entry), &vm_upl_wait_for_pages); | |
8547 | ||
8548 | VM_DEBUG_EVENT(vm_iopl_page_wait, VM_IOPL_PAGE_WAIT, DBG_FUNC_END, vm_upl_wait_for_pages, 0, 0, -1); | |
8549 | ||
8550 | /* fall thru */ | |
8551 | ||
8552 | case VM_FAULT_INTERRUPTED: | |
8553 | error_code = MACH_SEND_INTERRUPTED; | |
8554 | case VM_FAULT_MEMORY_ERROR: | |
8555 | memory_error: | |
8556 | ret = (error_code ? error_code: KERN_MEMORY_ERROR); | |
8557 | ||
8558 | vm_object_lock(object); | |
8559 | goto return_err; | |
8560 | ||
8561 | case VM_FAULT_SUCCESS_NO_VM_PAGE: | |
8562 | /* success but no page: fail */ | |
8563 | vm_object_paging_end(object); | |
8564 | vm_object_unlock(object); | |
8565 | goto memory_error; | |
8566 | ||
8567 | default: | |
8568 | panic("vm_object_iopl_request: unexpected error" | |
8569 | " 0x%x from vm_fault_page()\n", result); | |
8570 | } | |
8571 | } while (result != VM_FAULT_SUCCESS); | |
8572 | ||
8573 | } | |
8574 | if (upl->flags & UPL_KERNEL_OBJECT) | |
8575 | goto record_phys_addr; | |
8576 | ||
8577 | if (dst_page->compressor) { | |
8578 | dst_page->busy = TRUE; | |
8579 | goto record_phys_addr; | |
8580 | } | |
8581 | ||
8582 | if (dst_page->cleaning) { | |
8583 | /* | |
8584 | * Someone else is cleaning this page in place. | |
8585 | * In theory, we should be able to proceed and use this | |
8586 | * page but they'll probably end up clearing the "busy" | |
8587 | * bit on it in upl_commit_range() but they didn't set | |
8588 | * it, so they would clear our "busy" bit and open | |
8589 | * us to race conditions. | |
8590 | * We'd better wait for the cleaning to complete and | |
8591 | * then try again. | |
8592 | */ | |
8593 | vm_object_iopl_request_sleep_for_cleaning++; | |
8594 | PAGE_SLEEP(object, dst_page, THREAD_UNINT); | |
8595 | continue; | |
8596 | } | |
8597 | if (dst_page->laundry) { | |
8598 | dst_page->pageout = FALSE; | |
8599 | ||
8600 | vm_pageout_steal_laundry(dst_page, FALSE); | |
8601 | } | |
8602 | if ( (cntrl_flags & UPL_NEED_32BIT_ADDR) && | |
8603 | dst_page->phys_page >= (max_valid_dma_address >> PAGE_SHIFT) ) { | |
8604 | vm_page_t low_page; | |
8605 | int refmod; | |
8606 | ||
8607 | /* | |
8608 | * support devices that can't DMA above 32 bits | |
8609 | * by substituting pages from a pool of low address | |
8610 | * memory for any pages we find above the 4G mark | |
8611 | * can't substitute if the page is already wired because | |
8612 | * we don't know whether that physical address has been | |
8613 | * handed out to some other 64 bit capable DMA device to use | |
8614 | */ | |
8615 | if (VM_PAGE_WIRED(dst_page)) { | |
8616 | ret = KERN_PROTECTION_FAILURE; | |
8617 | goto return_err; | |
8618 | } | |
8619 | low_page = vm_page_grablo(); | |
8620 | ||
8621 | if (low_page == VM_PAGE_NULL) { | |
8622 | ret = KERN_RESOURCE_SHORTAGE; | |
8623 | goto return_err; | |
8624 | } | |
8625 | /* | |
8626 | * from here until the vm_page_replace completes | |
8627 | * we musn't drop the object lock... we don't | |
8628 | * want anyone refaulting this page in and using | |
8629 | * it after we disconnect it... we want the fault | |
8630 | * to find the new page being substituted. | |
8631 | */ | |
8632 | if (dst_page->pmapped) | |
8633 | refmod = pmap_disconnect(dst_page->phys_page); | |
8634 | else | |
8635 | refmod = 0; | |
8636 | ||
8637 | if (!dst_page->absent) | |
8638 | vm_page_copy(dst_page, low_page); | |
8639 | ||
8640 | low_page->reference = dst_page->reference; | |
8641 | low_page->dirty = dst_page->dirty; | |
8642 | low_page->absent = dst_page->absent; | |
8643 | ||
8644 | if (refmod & VM_MEM_REFERENCED) | |
8645 | low_page->reference = TRUE; | |
8646 | if (refmod & VM_MEM_MODIFIED) { | |
8647 | SET_PAGE_DIRTY(low_page, FALSE); | |
8648 | } | |
8649 | ||
8650 | vm_page_replace(low_page, object, dst_offset); | |
8651 | ||
8652 | dst_page = low_page; | |
8653 | /* | |
8654 | * vm_page_grablo returned the page marked | |
8655 | * BUSY... we don't need a PAGE_WAKEUP_DONE | |
8656 | * here, because we've never dropped the object lock | |
8657 | */ | |
8658 | if ( !dst_page->absent) | |
8659 | dst_page->busy = FALSE; | |
8660 | } | |
8661 | if ( !dst_page->busy) | |
8662 | dwp->dw_mask |= DW_vm_page_wire; | |
8663 | ||
8664 | if (cntrl_flags & UPL_BLOCK_ACCESS) { | |
8665 | /* | |
8666 | * Mark the page "busy" to block any future page fault | |
8667 | * on this page in addition to wiring it. | |
8668 | * We'll also remove the mapping | |
8669 | * of all these pages before leaving this routine. | |
8670 | */ | |
8671 | assert(!dst_page->fictitious); | |
8672 | dst_page->busy = TRUE; | |
8673 | } | |
8674 | /* | |
8675 | * expect the page to be used | |
8676 | * page queues lock must be held to set 'reference' | |
8677 | */ | |
8678 | dwp->dw_mask |= DW_set_reference; | |
8679 | ||
8680 | if (!(cntrl_flags & UPL_COPYOUT_FROM)) { | |
8681 | SET_PAGE_DIRTY(dst_page, TRUE); | |
8682 | } | |
8683 | if ((cntrl_flags & UPL_REQUEST_FORCE_COHERENCY) && dst_page->written_by_kernel == TRUE) { | |
8684 | pmap_sync_page_attributes_phys(dst_page->phys_page); | |
8685 | dst_page->written_by_kernel = FALSE; | |
8686 | } | |
8687 | ||
8688 | record_phys_addr: | |
8689 | if (dst_page->busy) | |
8690 | upl->flags |= UPL_HAS_BUSY; | |
8691 | ||
8692 | lite_list[entry>>5] |= 1 << (entry & 31); | |
8693 | ||
8694 | if (dst_page->phys_page > upl->highest_page) | |
8695 | upl->highest_page = dst_page->phys_page; | |
8696 | ||
8697 | if (user_page_list) { | |
8698 | user_page_list[entry].phys_addr = dst_page->phys_page; | |
8699 | user_page_list[entry].pageout = dst_page->pageout; | |
8700 | user_page_list[entry].absent = dst_page->absent; | |
8701 | user_page_list[entry].dirty = dst_page->dirty; | |
8702 | user_page_list[entry].precious = dst_page->precious; | |
8703 | user_page_list[entry].device = FALSE; | |
8704 | user_page_list[entry].needed = FALSE; | |
8705 | if (dst_page->clustered == TRUE) | |
8706 | user_page_list[entry].speculative = dst_page->speculative; | |
8707 | else | |
8708 | user_page_list[entry].speculative = FALSE; | |
8709 | user_page_list[entry].cs_validated = dst_page->cs_validated; | |
8710 | user_page_list[entry].cs_tainted = dst_page->cs_tainted; | |
8711 | user_page_list[entry].cs_nx = dst_page->cs_nx; | |
8712 | user_page_list[entry].mark = FALSE; | |
8713 | } | |
8714 | if (object != kernel_object && object != compressor_object) { | |
8715 | /* | |
8716 | * someone is explicitly grabbing this page... | |
8717 | * update clustered and speculative state | |
8718 | * | |
8719 | */ | |
8720 | if (dst_page->clustered) | |
8721 | VM_PAGE_CONSUME_CLUSTERED(dst_page); | |
8722 | } | |
8723 | skip_page: | |
8724 | entry++; | |
8725 | dst_offset += PAGE_SIZE_64; | |
8726 | xfer_size -= PAGE_SIZE; | |
8727 | ||
8728 | if (dwp->dw_mask) { | |
8729 | VM_PAGE_ADD_DELAYED_WORK(dwp, dst_page, dw_count); | |
8730 | ||
8731 | if (dw_count >= dw_limit) { | |
8732 | vm_page_do_delayed_work(object, UPL_MEMORY_TAG(cntrl_flags), &dw_array[0], dw_count); | |
8733 | ||
8734 | dwp = &dw_array[0]; | |
8735 | dw_count = 0; | |
8736 | } | |
8737 | } | |
8738 | } | |
8739 | assert(entry == size_in_pages); | |
8740 | ||
8741 | if (dw_count) | |
8742 | vm_page_do_delayed_work(object, UPL_MEMORY_TAG(cntrl_flags), &dw_array[0], dw_count); | |
8743 | finish: | |
8744 | if (user_page_list && set_cache_attr_needed == TRUE) | |
8745 | vm_object_set_pmap_cache_attr(object, user_page_list, size_in_pages, TRUE); | |
8746 | ||
8747 | if (page_list_count != NULL) { | |
8748 | if (upl->flags & UPL_INTERNAL) | |
8749 | *page_list_count = 0; | |
8750 | else if (*page_list_count > size_in_pages) | |
8751 | *page_list_count = size_in_pages; | |
8752 | } | |
8753 | vm_object_unlock(object); | |
8754 | ||
8755 | if (cntrl_flags & UPL_BLOCK_ACCESS) { | |
8756 | /* | |
8757 | * We've marked all the pages "busy" so that future | |
8758 | * page faults will block. | |
8759 | * Now remove the mapping for these pages, so that they | |
8760 | * can't be accessed without causing a page fault. | |
8761 | */ | |
8762 | vm_object_pmap_protect(object, offset, (vm_object_size_t)size, | |
8763 | PMAP_NULL, 0, VM_PROT_NONE); | |
8764 | assert(!object->blocked_access); | |
8765 | object->blocked_access = TRUE; | |
8766 | } | |
8767 | ||
8768 | return KERN_SUCCESS; | |
8769 | ||
8770 | return_err: | |
8771 | dw_index = 0; | |
8772 | ||
8773 | for (; offset < dst_offset; offset += PAGE_SIZE) { | |
8774 | boolean_t need_unwire; | |
8775 | ||
8776 | dst_page = vm_page_lookup(object, offset); | |
8777 | ||
8778 | if (dst_page == VM_PAGE_NULL) | |
8779 | panic("vm_object_iopl_request: Wired page missing. \n"); | |
8780 | ||
8781 | /* | |
8782 | * if we've already processed this page in an earlier | |
8783 | * dw_do_work, we need to undo the wiring... we will | |
8784 | * leave the dirty and reference bits on if they | |
8785 | * were set, since we don't have a good way of knowing | |
8786 | * what the previous state was and we won't get here | |
8787 | * under any normal circumstances... we will always | |
8788 | * clear BUSY and wakeup any waiters via vm_page_free | |
8789 | * or PAGE_WAKEUP_DONE | |
8790 | */ | |
8791 | need_unwire = TRUE; | |
8792 | ||
8793 | if (dw_count) { | |
8794 | if (dw_array[dw_index].dw_m == dst_page) { | |
8795 | /* | |
8796 | * still in the deferred work list | |
8797 | * which means we haven't yet called | |
8798 | * vm_page_wire on this page | |
8799 | */ | |
8800 | need_unwire = FALSE; | |
8801 | ||
8802 | dw_index++; | |
8803 | dw_count--; | |
8804 | } | |
8805 | } | |
8806 | vm_page_lock_queues(); | |
8807 | ||
8808 | if (dst_page->absent || free_wired_pages == TRUE) { | |
8809 | vm_page_free(dst_page); | |
8810 | ||
8811 | need_unwire = FALSE; | |
8812 | } else { | |
8813 | if (need_unwire == TRUE) | |
8814 | vm_page_unwire(dst_page, TRUE); | |
8815 | ||
8816 | PAGE_WAKEUP_DONE(dst_page); | |
8817 | } | |
8818 | vm_page_unlock_queues(); | |
8819 | ||
8820 | if (need_unwire == TRUE) | |
8821 | VM_STAT_INCR(reactivations); | |
8822 | } | |
8823 | #if UPL_DEBUG | |
8824 | upl->upl_state = 2; | |
8825 | #endif | |
8826 | if (! (upl->flags & UPL_KERNEL_OBJECT)) { | |
8827 | vm_object_activity_end(object); | |
8828 | vm_object_collapse(object, 0, TRUE); | |
8829 | } | |
8830 | vm_object_unlock(object); | |
8831 | upl_destroy(upl); | |
8832 | ||
8833 | return ret; | |
8834 | } | |
8835 | ||
8836 | kern_return_t | |
8837 | upl_transpose( | |
8838 | upl_t upl1, | |
8839 | upl_t upl2) | |
8840 | { | |
8841 | kern_return_t retval; | |
8842 | boolean_t upls_locked; | |
8843 | vm_object_t object1, object2; | |
8844 | ||
8845 | if (upl1 == UPL_NULL || upl2 == UPL_NULL || upl1 == upl2 || ((upl1->flags & UPL_VECTOR)==UPL_VECTOR) || ((upl2->flags & UPL_VECTOR)==UPL_VECTOR)) { | |
8846 | return KERN_INVALID_ARGUMENT; | |
8847 | } | |
8848 | ||
8849 | upls_locked = FALSE; | |
8850 | ||
8851 | /* | |
8852 | * Since we need to lock both UPLs at the same time, | |
8853 | * avoid deadlocks by always taking locks in the same order. | |
8854 | */ | |
8855 | if (upl1 < upl2) { | |
8856 | upl_lock(upl1); | |
8857 | upl_lock(upl2); | |
8858 | } else { | |
8859 | upl_lock(upl2); | |
8860 | upl_lock(upl1); | |
8861 | } | |
8862 | upls_locked = TRUE; /* the UPLs will need to be unlocked */ | |
8863 | ||
8864 | object1 = upl1->map_object; | |
8865 | object2 = upl2->map_object; | |
8866 | ||
8867 | if (upl1->offset != 0 || upl2->offset != 0 || | |
8868 | upl1->size != upl2->size) { | |
8869 | /* | |
8870 | * We deal only with full objects, not subsets. | |
8871 | * That's because we exchange the entire backing store info | |
8872 | * for the objects: pager, resident pages, etc... We can't do | |
8873 | * only part of it. | |
8874 | */ | |
8875 | retval = KERN_INVALID_VALUE; | |
8876 | goto done; | |
8877 | } | |
8878 | ||
8879 | /* | |
8880 | * Tranpose the VM objects' backing store. | |
8881 | */ | |
8882 | retval = vm_object_transpose(object1, object2, | |
8883 | (vm_object_size_t) upl1->size); | |
8884 | ||
8885 | if (retval == KERN_SUCCESS) { | |
8886 | /* | |
8887 | * Make each UPL point to the correct VM object, i.e. the | |
8888 | * object holding the pages that the UPL refers to... | |
8889 | */ | |
8890 | #if CONFIG_IOSCHED || UPL_DEBUG | |
8891 | if ((upl1->flags & UPL_TRACKED_BY_OBJECT) || (upl2->flags & UPL_TRACKED_BY_OBJECT)) { | |
8892 | vm_object_lock(object1); | |
8893 | vm_object_lock(object2); | |
8894 | } | |
8895 | if (upl1->flags & UPL_TRACKED_BY_OBJECT) | |
8896 | queue_remove(&object1->uplq, upl1, upl_t, uplq); | |
8897 | if (upl2->flags & UPL_TRACKED_BY_OBJECT) | |
8898 | queue_remove(&object2->uplq, upl2, upl_t, uplq); | |
8899 | #endif | |
8900 | upl1->map_object = object2; | |
8901 | upl2->map_object = object1; | |
8902 | ||
8903 | #if CONFIG_IOSCHED || UPL_DEBUG | |
8904 | if (upl1->flags & UPL_TRACKED_BY_OBJECT) | |
8905 | queue_enter(&object2->uplq, upl1, upl_t, uplq); | |
8906 | if (upl2->flags & UPL_TRACKED_BY_OBJECT) | |
8907 | queue_enter(&object1->uplq, upl2, upl_t, uplq); | |
8908 | if ((upl1->flags & UPL_TRACKED_BY_OBJECT) || (upl2->flags & UPL_TRACKED_BY_OBJECT)) { | |
8909 | vm_object_unlock(object2); | |
8910 | vm_object_unlock(object1); | |
8911 | } | |
8912 | #endif | |
8913 | } | |
8914 | ||
8915 | done: | |
8916 | /* | |
8917 | * Cleanup. | |
8918 | */ | |
8919 | if (upls_locked) { | |
8920 | upl_unlock(upl1); | |
8921 | upl_unlock(upl2); | |
8922 | upls_locked = FALSE; | |
8923 | } | |
8924 | ||
8925 | return retval; | |
8926 | } | |
8927 | ||
8928 | void | |
8929 | upl_range_needed( | |
8930 | upl_t upl, | |
8931 | int index, | |
8932 | int count) | |
8933 | { | |
8934 | upl_page_info_t *user_page_list; | |
8935 | int size_in_pages; | |
8936 | ||
8937 | if ( !(upl->flags & UPL_INTERNAL) || count <= 0) | |
8938 | return; | |
8939 | ||
8940 | size_in_pages = upl->size / PAGE_SIZE; | |
8941 | ||
8942 | user_page_list = (upl_page_info_t *) (((uintptr_t)upl) + sizeof(struct upl)); | |
8943 | ||
8944 | while (count-- && index < size_in_pages) | |
8945 | user_page_list[index++].needed = TRUE; | |
8946 | } | |
8947 | ||
8948 | ||
8949 | /* | |
8950 | * ENCRYPTED SWAP: | |
8951 | * | |
8952 | * Rationale: the user might have some encrypted data on disk (via | |
8953 | * FileVault or any other mechanism). That data is then decrypted in | |
8954 | * memory, which is safe as long as the machine is secure. But that | |
8955 | * decrypted data in memory could be paged out to disk by the default | |
8956 | * pager. The data would then be stored on disk in clear (not encrypted) | |
8957 | * and it could be accessed by anyone who gets physical access to the | |
8958 | * disk (if the laptop or the disk gets stolen for example). This weakens | |
8959 | * the security offered by FileVault. | |
8960 | * | |
8961 | * Solution: the default pager will optionally request that all the | |
8962 | * pages it gathers for pageout be encrypted, via the UPL interfaces, | |
8963 | * before it sends this UPL to disk via the vnode_pageout() path. | |
8964 | * | |
8965 | * Notes: | |
8966 | * | |
8967 | * To avoid disrupting the VM LRU algorithms, we want to keep the | |
8968 | * clean-in-place mechanisms, which allow us to send some extra pages to | |
8969 | * swap (clustering) without actually removing them from the user's | |
8970 | * address space. We don't want the user to unknowingly access encrypted | |
8971 | * data, so we have to actually remove the encrypted pages from the page | |
8972 | * table. When the user accesses the data, the hardware will fail to | |
8973 | * locate the virtual page in its page table and will trigger a page | |
8974 | * fault. We can then decrypt the page and enter it in the page table | |
8975 | * again. Whenever we allow the user to access the contents of a page, | |
8976 | * we have to make sure it's not encrypted. | |
8977 | * | |
8978 | * | |
8979 | */ | |
8980 | /* | |
8981 | * ENCRYPTED SWAP: | |
8982 | * Reserve of virtual addresses in the kernel address space. | |
8983 | * We need to map the physical pages in the kernel, so that we | |
8984 | * can call the encryption/decryption routines with a kernel | |
8985 | * virtual address. We keep this pool of pre-allocated kernel | |
8986 | * virtual addresses so that we don't have to scan the kernel's | |
8987 | * virtaul address space each time we need to encrypt or decrypt | |
8988 | * a physical page. | |
8989 | * It would be nice to be able to encrypt and decrypt in physical | |
8990 | * mode but that might not always be more efficient... | |
8991 | */ | |
8992 | decl_simple_lock_data(,vm_paging_lock) | |
8993 | #define VM_PAGING_NUM_PAGES 64 | |
8994 | vm_map_offset_t vm_paging_base_address = 0; | |
8995 | boolean_t vm_paging_page_inuse[VM_PAGING_NUM_PAGES] = { FALSE, }; | |
8996 | int vm_paging_max_index = 0; | |
8997 | int vm_paging_page_waiter = 0; | |
8998 | int vm_paging_page_waiter_total = 0; | |
8999 | unsigned long vm_paging_no_kernel_page = 0; | |
9000 | unsigned long vm_paging_objects_mapped = 0; | |
9001 | unsigned long vm_paging_pages_mapped = 0; | |
9002 | unsigned long vm_paging_objects_mapped_slow = 0; | |
9003 | unsigned long vm_paging_pages_mapped_slow = 0; | |
9004 | ||
9005 | void | |
9006 | vm_paging_map_init(void) | |
9007 | { | |
9008 | kern_return_t kr; | |
9009 | vm_map_offset_t page_map_offset; | |
9010 | vm_map_entry_t map_entry; | |
9011 | ||
9012 | assert(vm_paging_base_address == 0); | |
9013 | ||
9014 | /* | |
9015 | * Initialize our pool of pre-allocated kernel | |
9016 | * virtual addresses. | |
9017 | */ | |
9018 | page_map_offset = 0; | |
9019 | kr = vm_map_find_space(kernel_map, | |
9020 | &page_map_offset, | |
9021 | VM_PAGING_NUM_PAGES * PAGE_SIZE, | |
9022 | 0, | |
9023 | 0, | |
9024 | &map_entry); | |
9025 | if (kr != KERN_SUCCESS) { | |
9026 | panic("vm_paging_map_init: kernel_map full\n"); | |
9027 | } | |
9028 | VME_OBJECT_SET(map_entry, kernel_object); | |
9029 | VME_OFFSET_SET(map_entry, page_map_offset); | |
9030 | map_entry->protection = VM_PROT_NONE; | |
9031 | map_entry->max_protection = VM_PROT_NONE; | |
9032 | map_entry->permanent = TRUE; | |
9033 | vm_object_reference(kernel_object); | |
9034 | vm_map_unlock(kernel_map); | |
9035 | ||
9036 | assert(vm_paging_base_address == 0); | |
9037 | vm_paging_base_address = page_map_offset; | |
9038 | } | |
9039 | ||
9040 | /* | |
9041 | * ENCRYPTED SWAP: | |
9042 | * vm_paging_map_object: | |
9043 | * Maps part of a VM object's pages in the kernel | |
9044 | * virtual address space, using the pre-allocated | |
9045 | * kernel virtual addresses, if possible. | |
9046 | * Context: | |
9047 | * The VM object is locked. This lock will get | |
9048 | * dropped and re-acquired though, so the caller | |
9049 | * must make sure the VM object is kept alive | |
9050 | * (by holding a VM map that has a reference | |
9051 | * on it, for example, or taking an extra reference). | |
9052 | * The page should also be kept busy to prevent | |
9053 | * it from being reclaimed. | |
9054 | */ | |
9055 | kern_return_t | |
9056 | vm_paging_map_object( | |
9057 | vm_page_t page, | |
9058 | vm_object_t object, | |
9059 | vm_object_offset_t offset, | |
9060 | vm_prot_t protection, | |
9061 | boolean_t can_unlock_object, | |
9062 | vm_map_size_t *size, /* IN/OUT */ | |
9063 | vm_map_offset_t *address, /* OUT */ | |
9064 | boolean_t *need_unmap) /* OUT */ | |
9065 | { | |
9066 | kern_return_t kr; | |
9067 | vm_map_offset_t page_map_offset; | |
9068 | vm_map_size_t map_size; | |
9069 | vm_object_offset_t object_offset; | |
9070 | int i; | |
9071 | ||
9072 | if (page != VM_PAGE_NULL && *size == PAGE_SIZE) { | |
9073 | /* use permanent 1-to-1 kernel mapping of physical memory ? */ | |
9074 | #if __x86_64__ | |
9075 | *address = (vm_map_offset_t) | |
9076 | PHYSMAP_PTOV((pmap_paddr_t)page->phys_page << | |
9077 | PAGE_SHIFT); | |
9078 | *need_unmap = FALSE; | |
9079 | return KERN_SUCCESS; | |
9080 | #else | |
9081 | #warn "vm_paging_map_object: no 1-to-1 kernel mapping of physical memory..." | |
9082 | #endif | |
9083 | ||
9084 | assert(page->busy); | |
9085 | /* | |
9086 | * Use one of the pre-allocated kernel virtual addresses | |
9087 | * and just enter the VM page in the kernel address space | |
9088 | * at that virtual address. | |
9089 | */ | |
9090 | simple_lock(&vm_paging_lock); | |
9091 | ||
9092 | /* | |
9093 | * Try and find an available kernel virtual address | |
9094 | * from our pre-allocated pool. | |
9095 | */ | |
9096 | page_map_offset = 0; | |
9097 | for (;;) { | |
9098 | for (i = 0; i < VM_PAGING_NUM_PAGES; i++) { | |
9099 | if (vm_paging_page_inuse[i] == FALSE) { | |
9100 | page_map_offset = | |
9101 | vm_paging_base_address + | |
9102 | (i * PAGE_SIZE); | |
9103 | break; | |
9104 | } | |
9105 | } | |
9106 | if (page_map_offset != 0) { | |
9107 | /* found a space to map our page ! */ | |
9108 | break; | |
9109 | } | |
9110 | ||
9111 | if (can_unlock_object) { | |
9112 | /* | |
9113 | * If we can afford to unlock the VM object, | |
9114 | * let's take the slow path now... | |
9115 | */ | |
9116 | break; | |
9117 | } | |
9118 | /* | |
9119 | * We can't afford to unlock the VM object, so | |
9120 | * let's wait for a space to become available... | |
9121 | */ | |
9122 | vm_paging_page_waiter_total++; | |
9123 | vm_paging_page_waiter++; | |
9124 | kr = assert_wait((event_t)&vm_paging_page_waiter, THREAD_UNINT); | |
9125 | if (kr == THREAD_WAITING) { | |
9126 | simple_unlock(&vm_paging_lock); | |
9127 | kr = thread_block(THREAD_CONTINUE_NULL); | |
9128 | simple_lock(&vm_paging_lock); | |
9129 | } | |
9130 | vm_paging_page_waiter--; | |
9131 | /* ... and try again */ | |
9132 | } | |
9133 | ||
9134 | if (page_map_offset != 0) { | |
9135 | /* | |
9136 | * We found a kernel virtual address; | |
9137 | * map the physical page to that virtual address. | |
9138 | */ | |
9139 | if (i > vm_paging_max_index) { | |
9140 | vm_paging_max_index = i; | |
9141 | } | |
9142 | vm_paging_page_inuse[i] = TRUE; | |
9143 | simple_unlock(&vm_paging_lock); | |
9144 | ||
9145 | page->pmapped = TRUE; | |
9146 | ||
9147 | /* | |
9148 | * Keep the VM object locked over the PMAP_ENTER | |
9149 | * and the actual use of the page by the kernel, | |
9150 | * or this pmap mapping might get undone by a | |
9151 | * vm_object_pmap_protect() call... | |
9152 | */ | |
9153 | PMAP_ENTER(kernel_pmap, | |
9154 | page_map_offset, | |
9155 | page, | |
9156 | protection, | |
9157 | VM_PROT_NONE, | |
9158 | 0, | |
9159 | TRUE); | |
9160 | vm_paging_objects_mapped++; | |
9161 | vm_paging_pages_mapped++; | |
9162 | *address = page_map_offset; | |
9163 | *need_unmap = TRUE; | |
9164 | ||
9165 | /* all done and mapped, ready to use ! */ | |
9166 | return KERN_SUCCESS; | |
9167 | } | |
9168 | ||
9169 | /* | |
9170 | * We ran out of pre-allocated kernel virtual | |
9171 | * addresses. Just map the page in the kernel | |
9172 | * the slow and regular way. | |
9173 | */ | |
9174 | vm_paging_no_kernel_page++; | |
9175 | simple_unlock(&vm_paging_lock); | |
9176 | } | |
9177 | ||
9178 | if (! can_unlock_object) { | |
9179 | *address = 0; | |
9180 | *size = 0; | |
9181 | *need_unmap = FALSE; | |
9182 | return KERN_NOT_SUPPORTED; | |
9183 | } | |
9184 | ||
9185 | object_offset = vm_object_trunc_page(offset); | |
9186 | map_size = vm_map_round_page(*size, | |
9187 | VM_MAP_PAGE_MASK(kernel_map)); | |
9188 | ||
9189 | /* | |
9190 | * Try and map the required range of the object | |
9191 | * in the kernel_map | |
9192 | */ | |
9193 | ||
9194 | vm_object_reference_locked(object); /* for the map entry */ | |
9195 | vm_object_unlock(object); | |
9196 | ||
9197 | kr = vm_map_enter(kernel_map, | |
9198 | address, | |
9199 | map_size, | |
9200 | 0, | |
9201 | VM_FLAGS_ANYWHERE, | |
9202 | object, | |
9203 | object_offset, | |
9204 | FALSE, | |
9205 | protection, | |
9206 | VM_PROT_ALL, | |
9207 | VM_INHERIT_NONE); | |
9208 | if (kr != KERN_SUCCESS) { | |
9209 | *address = 0; | |
9210 | *size = 0; | |
9211 | *need_unmap = FALSE; | |
9212 | vm_object_deallocate(object); /* for the map entry */ | |
9213 | vm_object_lock(object); | |
9214 | return kr; | |
9215 | } | |
9216 | ||
9217 | *size = map_size; | |
9218 | ||
9219 | /* | |
9220 | * Enter the mapped pages in the page table now. | |
9221 | */ | |
9222 | vm_object_lock(object); | |
9223 | /* | |
9224 | * VM object must be kept locked from before PMAP_ENTER() | |
9225 | * until after the kernel is done accessing the page(s). | |
9226 | * Otherwise, the pmap mappings in the kernel could be | |
9227 | * undone by a call to vm_object_pmap_protect(). | |
9228 | */ | |
9229 | ||
9230 | for (page_map_offset = 0; | |
9231 | map_size != 0; | |
9232 | map_size -= PAGE_SIZE_64, page_map_offset += PAGE_SIZE_64) { | |
9233 | ||
9234 | page = vm_page_lookup(object, offset + page_map_offset); | |
9235 | if (page == VM_PAGE_NULL) { | |
9236 | printf("vm_paging_map_object: no page !?"); | |
9237 | vm_object_unlock(object); | |
9238 | kr = vm_map_remove(kernel_map, *address, *size, | |
9239 | VM_MAP_NO_FLAGS); | |
9240 | assert(kr == KERN_SUCCESS); | |
9241 | *address = 0; | |
9242 | *size = 0; | |
9243 | *need_unmap = FALSE; | |
9244 | vm_object_lock(object); | |
9245 | return KERN_MEMORY_ERROR; | |
9246 | } | |
9247 | page->pmapped = TRUE; | |
9248 | ||
9249 | //assert(pmap_verify_free(page->phys_page)); | |
9250 | PMAP_ENTER(kernel_pmap, | |
9251 | *address + page_map_offset, | |
9252 | page, | |
9253 | protection, | |
9254 | VM_PROT_NONE, | |
9255 | 0, | |
9256 | TRUE); | |
9257 | } | |
9258 | ||
9259 | vm_paging_objects_mapped_slow++; | |
9260 | vm_paging_pages_mapped_slow += (unsigned long) (map_size / PAGE_SIZE_64); | |
9261 | ||
9262 | *need_unmap = TRUE; | |
9263 | ||
9264 | return KERN_SUCCESS; | |
9265 | } | |
9266 | ||
9267 | /* | |
9268 | * ENCRYPTED SWAP: | |
9269 | * vm_paging_unmap_object: | |
9270 | * Unmaps part of a VM object's pages from the kernel | |
9271 | * virtual address space. | |
9272 | * Context: | |
9273 | * The VM object is locked. This lock will get | |
9274 | * dropped and re-acquired though. | |
9275 | */ | |
9276 | void | |
9277 | vm_paging_unmap_object( | |
9278 | vm_object_t object, | |
9279 | vm_map_offset_t start, | |
9280 | vm_map_offset_t end) | |
9281 | { | |
9282 | kern_return_t kr; | |
9283 | int i; | |
9284 | ||
9285 | if ((vm_paging_base_address == 0) || | |
9286 | (start < vm_paging_base_address) || | |
9287 | (end > (vm_paging_base_address | |
9288 | + (VM_PAGING_NUM_PAGES * PAGE_SIZE)))) { | |
9289 | /* | |
9290 | * We didn't use our pre-allocated pool of | |
9291 | * kernel virtual address. Deallocate the | |
9292 | * virtual memory. | |
9293 | */ | |
9294 | if (object != VM_OBJECT_NULL) { | |
9295 | vm_object_unlock(object); | |
9296 | } | |
9297 | kr = vm_map_remove(kernel_map, start, end, VM_MAP_NO_FLAGS); | |
9298 | if (object != VM_OBJECT_NULL) { | |
9299 | vm_object_lock(object); | |
9300 | } | |
9301 | assert(kr == KERN_SUCCESS); | |
9302 | } else { | |
9303 | /* | |
9304 | * We used a kernel virtual address from our | |
9305 | * pre-allocated pool. Put it back in the pool | |
9306 | * for next time. | |
9307 | */ | |
9308 | assert(end - start == PAGE_SIZE); | |
9309 | i = (int) ((start - vm_paging_base_address) >> PAGE_SHIFT); | |
9310 | assert(i >= 0 && i < VM_PAGING_NUM_PAGES); | |
9311 | ||
9312 | /* undo the pmap mapping */ | |
9313 | pmap_remove(kernel_pmap, start, end); | |
9314 | ||
9315 | simple_lock(&vm_paging_lock); | |
9316 | vm_paging_page_inuse[i] = FALSE; | |
9317 | if (vm_paging_page_waiter) { | |
9318 | thread_wakeup(&vm_paging_page_waiter); | |
9319 | } | |
9320 | simple_unlock(&vm_paging_lock); | |
9321 | } | |
9322 | } | |
9323 | ||
9324 | #if ENCRYPTED_SWAP | |
9325 | /* | |
9326 | * Encryption data. | |
9327 | * "iv" is the "initial vector". Ideally, we want to | |
9328 | * have a different one for each page we encrypt, so that | |
9329 | * crackers can't find encryption patterns too easily. | |
9330 | */ | |
9331 | #define SWAP_CRYPT_AES_KEY_SIZE 128 /* XXX 192 and 256 don't work ! */ | |
9332 | boolean_t swap_crypt_ctx_initialized = FALSE; | |
9333 | uint32_t swap_crypt_key[8]; /* big enough for a 256 key */ | |
9334 | aes_ctx swap_crypt_ctx; | |
9335 | const unsigned char swap_crypt_null_iv[AES_BLOCK_SIZE] = {0xa, }; | |
9336 | ||
9337 | #if DEBUG | |
9338 | boolean_t swap_crypt_ctx_tested = FALSE; | |
9339 | unsigned char swap_crypt_test_page_ref[4096] __attribute__((aligned(4096))); | |
9340 | unsigned char swap_crypt_test_page_encrypt[4096] __attribute__((aligned(4096))); | |
9341 | unsigned char swap_crypt_test_page_decrypt[4096] __attribute__((aligned(4096))); | |
9342 | #endif /* DEBUG */ | |
9343 | ||
9344 | /* | |
9345 | * Initialize the encryption context: key and key size. | |
9346 | */ | |
9347 | void swap_crypt_ctx_initialize(void); /* forward */ | |
9348 | void | |
9349 | swap_crypt_ctx_initialize(void) | |
9350 | { | |
9351 | unsigned int i; | |
9352 | ||
9353 | /* | |
9354 | * No need for locking to protect swap_crypt_ctx_initialized | |
9355 | * because the first use of encryption will come from the | |
9356 | * pageout thread (we won't pagein before there's been a pageout) | |
9357 | * and there's only one pageout thread. | |
9358 | */ | |
9359 | if (swap_crypt_ctx_initialized == FALSE) { | |
9360 | for (i = 0; | |
9361 | i < (sizeof (swap_crypt_key) / | |
9362 | sizeof (swap_crypt_key[0])); | |
9363 | i++) { | |
9364 | swap_crypt_key[i] = random(); | |
9365 | } | |
9366 | aes_encrypt_key((const unsigned char *) swap_crypt_key, | |
9367 | SWAP_CRYPT_AES_KEY_SIZE, | |
9368 | &swap_crypt_ctx.encrypt); | |
9369 | aes_decrypt_key((const unsigned char *) swap_crypt_key, | |
9370 | SWAP_CRYPT_AES_KEY_SIZE, | |
9371 | &swap_crypt_ctx.decrypt); | |
9372 | swap_crypt_ctx_initialized = TRUE; | |
9373 | } | |
9374 | ||
9375 | #if DEBUG | |
9376 | /* | |
9377 | * Validate the encryption algorithms. | |
9378 | */ | |
9379 | if (swap_crypt_ctx_tested == FALSE) { | |
9380 | /* initialize */ | |
9381 | for (i = 0; i < 4096; i++) { | |
9382 | swap_crypt_test_page_ref[i] = (char) i; | |
9383 | } | |
9384 | /* encrypt */ | |
9385 | aes_encrypt_cbc(swap_crypt_test_page_ref, | |
9386 | swap_crypt_null_iv, | |
9387 | PAGE_SIZE / AES_BLOCK_SIZE, | |
9388 | swap_crypt_test_page_encrypt, | |
9389 | &swap_crypt_ctx.encrypt); | |
9390 | /* decrypt */ | |
9391 | aes_decrypt_cbc(swap_crypt_test_page_encrypt, | |
9392 | swap_crypt_null_iv, | |
9393 | PAGE_SIZE / AES_BLOCK_SIZE, | |
9394 | swap_crypt_test_page_decrypt, | |
9395 | &swap_crypt_ctx.decrypt); | |
9396 | /* compare result with original */ | |
9397 | for (i = 0; i < 4096; i ++) { | |
9398 | if (swap_crypt_test_page_decrypt[i] != | |
9399 | swap_crypt_test_page_ref[i]) { | |
9400 | panic("encryption test failed"); | |
9401 | } | |
9402 | } | |
9403 | ||
9404 | /* encrypt again */ | |
9405 | aes_encrypt_cbc(swap_crypt_test_page_decrypt, | |
9406 | swap_crypt_null_iv, | |
9407 | PAGE_SIZE / AES_BLOCK_SIZE, | |
9408 | swap_crypt_test_page_decrypt, | |
9409 | &swap_crypt_ctx.encrypt); | |
9410 | /* decrypt in place */ | |
9411 | aes_decrypt_cbc(swap_crypt_test_page_decrypt, | |
9412 | swap_crypt_null_iv, | |
9413 | PAGE_SIZE / AES_BLOCK_SIZE, | |
9414 | swap_crypt_test_page_decrypt, | |
9415 | &swap_crypt_ctx.decrypt); | |
9416 | for (i = 0; i < 4096; i ++) { | |
9417 | if (swap_crypt_test_page_decrypt[i] != | |
9418 | swap_crypt_test_page_ref[i]) { | |
9419 | panic("in place encryption test failed"); | |
9420 | } | |
9421 | } | |
9422 | ||
9423 | swap_crypt_ctx_tested = TRUE; | |
9424 | } | |
9425 | #endif /* DEBUG */ | |
9426 | } | |
9427 | ||
9428 | /* | |
9429 | * ENCRYPTED SWAP: | |
9430 | * vm_page_encrypt: | |
9431 | * Encrypt the given page, for secure paging. | |
9432 | * The page might already be mapped at kernel virtual | |
9433 | * address "kernel_mapping_offset". Otherwise, we need | |
9434 | * to map it. | |
9435 | * | |
9436 | * Context: | |
9437 | * The page's object is locked, but this lock will be released | |
9438 | * and re-acquired. | |
9439 | * The page is busy and not accessible by users (not entered in any pmap). | |
9440 | */ | |
9441 | void | |
9442 | vm_page_encrypt( | |
9443 | vm_page_t page, | |
9444 | vm_map_offset_t kernel_mapping_offset) | |
9445 | { | |
9446 | kern_return_t kr; | |
9447 | vm_map_size_t kernel_mapping_size; | |
9448 | boolean_t kernel_mapping_needs_unmap; | |
9449 | vm_offset_t kernel_vaddr; | |
9450 | union { | |
9451 | unsigned char aes_iv[AES_BLOCK_SIZE]; | |
9452 | struct { | |
9453 | memory_object_t pager_object; | |
9454 | vm_object_offset_t paging_offset; | |
9455 | } vm; | |
9456 | } encrypt_iv; | |
9457 | ||
9458 | if (! vm_pages_encrypted) { | |
9459 | vm_pages_encrypted = TRUE; | |
9460 | } | |
9461 | ||
9462 | assert(page->busy); | |
9463 | ||
9464 | if (page->encrypted) { | |
9465 | /* | |
9466 | * Already encrypted: no need to do it again. | |
9467 | */ | |
9468 | vm_page_encrypt_already_encrypted_counter++; | |
9469 | return; | |
9470 | } | |
9471 | assert(page->dirty || page->precious); | |
9472 | ||
9473 | ASSERT_PAGE_DECRYPTED(page); | |
9474 | ||
9475 | /* | |
9476 | * Take a paging-in-progress reference to keep the object | |
9477 | * alive even if we have to unlock it (in vm_paging_map_object() | |
9478 | * for example)... | |
9479 | */ | |
9480 | vm_object_paging_begin(page->object); | |
9481 | ||
9482 | if (kernel_mapping_offset == 0) { | |
9483 | /* | |
9484 | * The page hasn't already been mapped in kernel space | |
9485 | * by the caller. Map it now, so that we can access | |
9486 | * its contents and encrypt them. | |
9487 | */ | |
9488 | kernel_mapping_size = PAGE_SIZE; | |
9489 | kernel_mapping_needs_unmap = FALSE; | |
9490 | kr = vm_paging_map_object(page, | |
9491 | page->object, | |
9492 | page->offset, | |
9493 | VM_PROT_READ | VM_PROT_WRITE, | |
9494 | FALSE, | |
9495 | &kernel_mapping_size, | |
9496 | &kernel_mapping_offset, | |
9497 | &kernel_mapping_needs_unmap); | |
9498 | if (kr != KERN_SUCCESS) { | |
9499 | panic("vm_page_encrypt: " | |
9500 | "could not map page in kernel: 0x%x\n", | |
9501 | kr); | |
9502 | } | |
9503 | } else { | |
9504 | kernel_mapping_size = 0; | |
9505 | kernel_mapping_needs_unmap = FALSE; | |
9506 | } | |
9507 | kernel_vaddr = CAST_DOWN(vm_offset_t, kernel_mapping_offset); | |
9508 | ||
9509 | if (swap_crypt_ctx_initialized == FALSE) { | |
9510 | swap_crypt_ctx_initialize(); | |
9511 | } | |
9512 | assert(swap_crypt_ctx_initialized); | |
9513 | ||
9514 | /* | |
9515 | * Prepare an "initial vector" for the encryption. | |
9516 | * We use the "pager" and the "paging_offset" for that | |
9517 | * page to obfuscate the encrypted data a bit more and | |
9518 | * prevent crackers from finding patterns that they could | |
9519 | * use to break the key. | |
9520 | */ | |
9521 | bzero(&encrypt_iv.aes_iv[0], sizeof (encrypt_iv.aes_iv)); | |
9522 | encrypt_iv.vm.pager_object = page->object->pager; | |
9523 | encrypt_iv.vm.paging_offset = | |
9524 | page->object->paging_offset + page->offset; | |
9525 | ||
9526 | /* encrypt the "initial vector" */ | |
9527 | aes_encrypt_cbc((const unsigned char *) &encrypt_iv.aes_iv[0], | |
9528 | swap_crypt_null_iv, | |
9529 | 1, | |
9530 | &encrypt_iv.aes_iv[0], | |
9531 | &swap_crypt_ctx.encrypt); | |
9532 | ||
9533 | /* | |
9534 | * Encrypt the page. | |
9535 | */ | |
9536 | aes_encrypt_cbc((const unsigned char *) kernel_vaddr, | |
9537 | &encrypt_iv.aes_iv[0], | |
9538 | PAGE_SIZE / AES_BLOCK_SIZE, | |
9539 | (unsigned char *) kernel_vaddr, | |
9540 | &swap_crypt_ctx.encrypt); | |
9541 | ||
9542 | vm_page_encrypt_counter++; | |
9543 | ||
9544 | /* | |
9545 | * Unmap the page from the kernel's address space, | |
9546 | * if we had to map it ourselves. Otherwise, let | |
9547 | * the caller undo the mapping if needed. | |
9548 | */ | |
9549 | if (kernel_mapping_needs_unmap) { | |
9550 | vm_paging_unmap_object(page->object, | |
9551 | kernel_mapping_offset, | |
9552 | kernel_mapping_offset + kernel_mapping_size); | |
9553 | } | |
9554 | ||
9555 | /* | |
9556 | * Clear the "reference" and "modified" bits. | |
9557 | * This should clean up any impact the encryption had | |
9558 | * on them. | |
9559 | * The page was kept busy and disconnected from all pmaps, | |
9560 | * so it can't have been referenced or modified from user | |
9561 | * space. | |
9562 | * The software bits will be reset later after the I/O | |
9563 | * has completed (in upl_commit_range()). | |
9564 | */ | |
9565 | pmap_clear_refmod(page->phys_page, VM_MEM_REFERENCED | VM_MEM_MODIFIED); | |
9566 | ||
9567 | page->encrypted = TRUE; | |
9568 | ||
9569 | vm_object_paging_end(page->object); | |
9570 | } | |
9571 | ||
9572 | /* | |
9573 | * ENCRYPTED SWAP: | |
9574 | * vm_page_decrypt: | |
9575 | * Decrypt the given page. | |
9576 | * The page might already be mapped at kernel virtual | |
9577 | * address "kernel_mapping_offset". Otherwise, we need | |
9578 | * to map it. | |
9579 | * | |
9580 | * Context: | |
9581 | * The page's VM object is locked but will be unlocked and relocked. | |
9582 | * The page is busy and not accessible by users (not entered in any pmap). | |
9583 | */ | |
9584 | void | |
9585 | vm_page_decrypt( | |
9586 | vm_page_t page, | |
9587 | vm_map_offset_t kernel_mapping_offset) | |
9588 | { | |
9589 | kern_return_t kr; | |
9590 | vm_map_size_t kernel_mapping_size; | |
9591 | vm_offset_t kernel_vaddr; | |
9592 | boolean_t kernel_mapping_needs_unmap; | |
9593 | union { | |
9594 | unsigned char aes_iv[AES_BLOCK_SIZE]; | |
9595 | struct { | |
9596 | memory_object_t pager_object; | |
9597 | vm_object_offset_t paging_offset; | |
9598 | } vm; | |
9599 | } decrypt_iv; | |
9600 | boolean_t was_dirty; | |
9601 | ||
9602 | assert(page->busy); | |
9603 | assert(page->encrypted); | |
9604 | ||
9605 | was_dirty = page->dirty; | |
9606 | ||
9607 | /* | |
9608 | * Take a paging-in-progress reference to keep the object | |
9609 | * alive even if we have to unlock it (in vm_paging_map_object() | |
9610 | * for example)... | |
9611 | */ | |
9612 | vm_object_paging_begin(page->object); | |
9613 | ||
9614 | if (kernel_mapping_offset == 0) { | |
9615 | /* | |
9616 | * The page hasn't already been mapped in kernel space | |
9617 | * by the caller. Map it now, so that we can access | |
9618 | * its contents and decrypt them. | |
9619 | */ | |
9620 | kernel_mapping_size = PAGE_SIZE; | |
9621 | kernel_mapping_needs_unmap = FALSE; | |
9622 | kr = vm_paging_map_object(page, | |
9623 | page->object, | |
9624 | page->offset, | |
9625 | VM_PROT_READ | VM_PROT_WRITE, | |
9626 | FALSE, | |
9627 | &kernel_mapping_size, | |
9628 | &kernel_mapping_offset, | |
9629 | &kernel_mapping_needs_unmap); | |
9630 | if (kr != KERN_SUCCESS) { | |
9631 | panic("vm_page_decrypt: " | |
9632 | "could not map page in kernel: 0x%x\n", | |
9633 | kr); | |
9634 | } | |
9635 | } else { | |
9636 | kernel_mapping_size = 0; | |
9637 | kernel_mapping_needs_unmap = FALSE; | |
9638 | } | |
9639 | kernel_vaddr = CAST_DOWN(vm_offset_t, kernel_mapping_offset); | |
9640 | ||
9641 | assert(swap_crypt_ctx_initialized); | |
9642 | ||
9643 | /* | |
9644 | * Prepare an "initial vector" for the decryption. | |
9645 | * It has to be the same as the "initial vector" we | |
9646 | * used to encrypt that page. | |
9647 | */ | |
9648 | bzero(&decrypt_iv.aes_iv[0], sizeof (decrypt_iv.aes_iv)); | |
9649 | decrypt_iv.vm.pager_object = page->object->pager; | |
9650 | decrypt_iv.vm.paging_offset = | |
9651 | page->object->paging_offset + page->offset; | |
9652 | ||
9653 | /* encrypt the "initial vector" */ | |
9654 | aes_encrypt_cbc((const unsigned char *) &decrypt_iv.aes_iv[0], | |
9655 | swap_crypt_null_iv, | |
9656 | 1, | |
9657 | &decrypt_iv.aes_iv[0], | |
9658 | &swap_crypt_ctx.encrypt); | |
9659 | ||
9660 | /* | |
9661 | * Decrypt the page. | |
9662 | */ | |
9663 | aes_decrypt_cbc((const unsigned char *) kernel_vaddr, | |
9664 | &decrypt_iv.aes_iv[0], | |
9665 | PAGE_SIZE / AES_BLOCK_SIZE, | |
9666 | (unsigned char *) kernel_vaddr, | |
9667 | &swap_crypt_ctx.decrypt); | |
9668 | vm_page_decrypt_counter++; | |
9669 | ||
9670 | /* | |
9671 | * Unmap the page from the kernel's address space, | |
9672 | * if we had to map it ourselves. Otherwise, let | |
9673 | * the caller undo the mapping if needed. | |
9674 | */ | |
9675 | if (kernel_mapping_needs_unmap) { | |
9676 | vm_paging_unmap_object(page->object, | |
9677 | kernel_vaddr, | |
9678 | kernel_vaddr + PAGE_SIZE); | |
9679 | } | |
9680 | ||
9681 | if (was_dirty) { | |
9682 | /* | |
9683 | * The pager did not specify that the page would be | |
9684 | * clean when it got paged in, so let's not clean it here | |
9685 | * either. | |
9686 | */ | |
9687 | } else { | |
9688 | /* | |
9689 | * After decryption, the page is actually still clean. | |
9690 | * It was encrypted as part of paging, which "cleans" | |
9691 | * the "dirty" pages. | |
9692 | * Noone could access it after it was encrypted | |
9693 | * and the decryption doesn't count. | |
9694 | */ | |
9695 | page->dirty = FALSE; | |
9696 | assert (page->cs_validated == FALSE); | |
9697 | pmap_clear_refmod(page->phys_page, VM_MEM_MODIFIED | VM_MEM_REFERENCED); | |
9698 | } | |
9699 | page->encrypted = FALSE; | |
9700 | ||
9701 | /* | |
9702 | * We've just modified the page's contents via the data cache and part | |
9703 | * of the new contents might still be in the cache and not yet in RAM. | |
9704 | * Since the page is now available and might get gathered in a UPL to | |
9705 | * be part of a DMA transfer from a driver that expects the memory to | |
9706 | * be coherent at this point, we have to flush the data cache. | |
9707 | */ | |
9708 | pmap_sync_page_attributes_phys(page->phys_page); | |
9709 | /* | |
9710 | * Since the page is not mapped yet, some code might assume that it | |
9711 | * doesn't need to invalidate the instruction cache when writing to | |
9712 | * that page. That code relies on "pmapped" being FALSE, so that the | |
9713 | * caches get synchronized when the page is first mapped. | |
9714 | */ | |
9715 | assert(pmap_verify_free(page->phys_page)); | |
9716 | page->pmapped = FALSE; | |
9717 | page->wpmapped = FALSE; | |
9718 | ||
9719 | vm_object_paging_end(page->object); | |
9720 | } | |
9721 | ||
9722 | #if DEVELOPMENT || DEBUG | |
9723 | unsigned long upl_encrypt_upls = 0; | |
9724 | unsigned long upl_encrypt_pages = 0; | |
9725 | #endif | |
9726 | ||
9727 | /* | |
9728 | * ENCRYPTED SWAP: | |
9729 | * | |
9730 | * upl_encrypt: | |
9731 | * Encrypts all the pages in the UPL, within the specified range. | |
9732 | * | |
9733 | */ | |
9734 | void | |
9735 | upl_encrypt( | |
9736 | upl_t upl, | |
9737 | upl_offset_t crypt_offset, | |
9738 | upl_size_t crypt_size) | |
9739 | { | |
9740 | upl_size_t upl_size, subupl_size=crypt_size; | |
9741 | upl_offset_t offset_in_upl, subupl_offset=crypt_offset; | |
9742 | vm_object_t upl_object; | |
9743 | vm_object_offset_t upl_offset; | |
9744 | vm_page_t page; | |
9745 | vm_object_t shadow_object; | |
9746 | vm_object_offset_t shadow_offset; | |
9747 | vm_object_offset_t paging_offset; | |
9748 | vm_object_offset_t base_offset; | |
9749 | int isVectorUPL = 0; | |
9750 | upl_t vector_upl = NULL; | |
9751 | ||
9752 | if((isVectorUPL = vector_upl_is_valid(upl))) | |
9753 | vector_upl = upl; | |
9754 | ||
9755 | process_upl_to_encrypt: | |
9756 | if(isVectorUPL) { | |
9757 | crypt_size = subupl_size; | |
9758 | crypt_offset = subupl_offset; | |
9759 | upl = vector_upl_subupl_byoffset(vector_upl, &crypt_offset, &crypt_size); | |
9760 | if(upl == NULL) | |
9761 | panic("upl_encrypt: Accessing a sub-upl that doesn't exist\n"); | |
9762 | subupl_size -= crypt_size; | |
9763 | subupl_offset += crypt_size; | |
9764 | } | |
9765 | ||
9766 | #if DEVELOPMENT || DEBUG | |
9767 | upl_encrypt_upls++; | |
9768 | upl_encrypt_pages += crypt_size / PAGE_SIZE; | |
9769 | #endif | |
9770 | upl_object = upl->map_object; | |
9771 | upl_offset = upl->offset; | |
9772 | upl_size = upl->size; | |
9773 | ||
9774 | vm_object_lock(upl_object); | |
9775 | ||
9776 | /* | |
9777 | * Find the VM object that contains the actual pages. | |
9778 | */ | |
9779 | if (upl_object->pageout) { | |
9780 | shadow_object = upl_object->shadow; | |
9781 | /* | |
9782 | * The offset in the shadow object is actually also | |
9783 | * accounted for in upl->offset. It possibly shouldn't be | |
9784 | * this way, but for now don't account for it twice. | |
9785 | */ | |
9786 | shadow_offset = 0; | |
9787 | assert(upl_object->paging_offset == 0); /* XXX ? */ | |
9788 | vm_object_lock(shadow_object); | |
9789 | } else { | |
9790 | shadow_object = upl_object; | |
9791 | shadow_offset = 0; | |
9792 | } | |
9793 | ||
9794 | paging_offset = shadow_object->paging_offset; | |
9795 | vm_object_paging_begin(shadow_object); | |
9796 | ||
9797 | if (shadow_object != upl_object) | |
9798 | vm_object_unlock(upl_object); | |
9799 | ||
9800 | ||
9801 | base_offset = shadow_offset; | |
9802 | base_offset += upl_offset; | |
9803 | base_offset += crypt_offset; | |
9804 | base_offset -= paging_offset; | |
9805 | ||
9806 | assert(crypt_offset + crypt_size <= upl_size); | |
9807 | ||
9808 | for (offset_in_upl = 0; | |
9809 | offset_in_upl < crypt_size; | |
9810 | offset_in_upl += PAGE_SIZE) { | |
9811 | page = vm_page_lookup(shadow_object, | |
9812 | base_offset + offset_in_upl); | |
9813 | if (page == VM_PAGE_NULL) { | |
9814 | panic("upl_encrypt: " | |
9815 | "no page for (obj=%p,off=0x%llx+0x%x)!\n", | |
9816 | shadow_object, | |
9817 | base_offset, | |
9818 | offset_in_upl); | |
9819 | } | |
9820 | /* | |
9821 | * Disconnect the page from all pmaps, so that nobody can | |
9822 | * access it while it's encrypted. After that point, all | |
9823 | * accesses to this page will cause a page fault and block | |
9824 | * while the page is busy being encrypted. After the | |
9825 | * encryption completes, any access will cause a | |
9826 | * page fault and the page gets decrypted at that time. | |
9827 | */ | |
9828 | pmap_disconnect(page->phys_page); | |
9829 | vm_page_encrypt(page, 0); | |
9830 | ||
9831 | if (vm_object_lock_avoid(shadow_object)) { | |
9832 | /* | |
9833 | * Give vm_pageout_scan() a chance to convert more | |
9834 | * pages from "clean-in-place" to "clean-and-free", | |
9835 | * if it's interested in the same pages we selected | |
9836 | * in this cluster. | |
9837 | */ | |
9838 | vm_object_unlock(shadow_object); | |
9839 | mutex_pause(2); | |
9840 | vm_object_lock(shadow_object); | |
9841 | } | |
9842 | } | |
9843 | ||
9844 | vm_object_paging_end(shadow_object); | |
9845 | vm_object_unlock(shadow_object); | |
9846 | ||
9847 | if(isVectorUPL && subupl_size) | |
9848 | goto process_upl_to_encrypt; | |
9849 | } | |
9850 | ||
9851 | #else /* ENCRYPTED_SWAP */ | |
9852 | void | |
9853 | upl_encrypt( | |
9854 | __unused upl_t upl, | |
9855 | __unused upl_offset_t crypt_offset, | |
9856 | __unused upl_size_t crypt_size) | |
9857 | { | |
9858 | } | |
9859 | ||
9860 | void | |
9861 | vm_page_encrypt( | |
9862 | __unused vm_page_t page, | |
9863 | __unused vm_map_offset_t kernel_mapping_offset) | |
9864 | { | |
9865 | } | |
9866 | ||
9867 | void | |
9868 | vm_page_decrypt( | |
9869 | __unused vm_page_t page, | |
9870 | __unused vm_map_offset_t kernel_mapping_offset) | |
9871 | { | |
9872 | } | |
9873 | ||
9874 | #endif /* ENCRYPTED_SWAP */ | |
9875 | ||
9876 | /* | |
9877 | * page->object must be locked | |
9878 | */ | |
9879 | void | |
9880 | vm_pageout_steal_laundry(vm_page_t page, boolean_t queues_locked) | |
9881 | { | |
9882 | if (!queues_locked) { | |
9883 | vm_page_lockspin_queues(); | |
9884 | } | |
9885 | ||
9886 | /* | |
9887 | * need to drop the laundry count... | |
9888 | * we may also need to remove it | |
9889 | * from the I/O paging queue... | |
9890 | * vm_pageout_throttle_up handles both cases | |
9891 | * | |
9892 | * the laundry and pageout_queue flags are cleared... | |
9893 | */ | |
9894 | vm_pageout_throttle_up(page); | |
9895 | ||
9896 | vm_page_steal_pageout_page++; | |
9897 | ||
9898 | if (!queues_locked) { | |
9899 | vm_page_unlock_queues(); | |
9900 | } | |
9901 | } | |
9902 | ||
9903 | upl_t | |
9904 | vector_upl_create(vm_offset_t upl_offset) | |
9905 | { | |
9906 | int vector_upl_size = sizeof(struct _vector_upl); | |
9907 | int i=0; | |
9908 | upl_t upl; | |
9909 | vector_upl_t vector_upl = (vector_upl_t)kalloc(vector_upl_size); | |
9910 | ||
9911 | upl = upl_create(0,UPL_VECTOR,0); | |
9912 | upl->vector_upl = vector_upl; | |
9913 | upl->offset = upl_offset; | |
9914 | vector_upl->size = 0; | |
9915 | vector_upl->offset = upl_offset; | |
9916 | vector_upl->invalid_upls=0; | |
9917 | vector_upl->num_upls=0; | |
9918 | vector_upl->pagelist = NULL; | |
9919 | ||
9920 | for(i=0; i < MAX_VECTOR_UPL_ELEMENTS ; i++) { | |
9921 | vector_upl->upl_iostates[i].size = 0; | |
9922 | vector_upl->upl_iostates[i].offset = 0; | |
9923 | ||
9924 | } | |
9925 | return upl; | |
9926 | } | |
9927 | ||
9928 | void | |
9929 | vector_upl_deallocate(upl_t upl) | |
9930 | { | |
9931 | if(upl) { | |
9932 | vector_upl_t vector_upl = upl->vector_upl; | |
9933 | if(vector_upl) { | |
9934 | if(vector_upl->invalid_upls != vector_upl->num_upls) | |
9935 | panic("Deallocating non-empty Vectored UPL\n"); | |
9936 | kfree(vector_upl->pagelist,(sizeof(struct upl_page_info)*(vector_upl->size/PAGE_SIZE))); | |
9937 | vector_upl->invalid_upls=0; | |
9938 | vector_upl->num_upls = 0; | |
9939 | vector_upl->pagelist = NULL; | |
9940 | vector_upl->size = 0; | |
9941 | vector_upl->offset = 0; | |
9942 | kfree(vector_upl, sizeof(struct _vector_upl)); | |
9943 | vector_upl = (vector_upl_t)0xfeedfeed; | |
9944 | } | |
9945 | else | |
9946 | panic("vector_upl_deallocate was passed a non-vectored upl\n"); | |
9947 | } | |
9948 | else | |
9949 | panic("vector_upl_deallocate was passed a NULL upl\n"); | |
9950 | } | |
9951 | ||
9952 | boolean_t | |
9953 | vector_upl_is_valid(upl_t upl) | |
9954 | { | |
9955 | if(upl && ((upl->flags & UPL_VECTOR)==UPL_VECTOR)) { | |
9956 | vector_upl_t vector_upl = upl->vector_upl; | |
9957 | if(vector_upl == NULL || vector_upl == (vector_upl_t)0xfeedfeed || vector_upl == (vector_upl_t)0xfeedbeef) | |
9958 | return FALSE; | |
9959 | else | |
9960 | return TRUE; | |
9961 | } | |
9962 | return FALSE; | |
9963 | } | |
9964 | ||
9965 | boolean_t | |
9966 | vector_upl_set_subupl(upl_t upl,upl_t subupl, uint32_t io_size) | |
9967 | { | |
9968 | if(vector_upl_is_valid(upl)) { | |
9969 | vector_upl_t vector_upl = upl->vector_upl; | |
9970 | ||
9971 | if(vector_upl) { | |
9972 | if(subupl) { | |
9973 | if(io_size) { | |
9974 | if(io_size < PAGE_SIZE) | |
9975 | io_size = PAGE_SIZE; | |
9976 | subupl->vector_upl = (void*)vector_upl; | |
9977 | vector_upl->upl_elems[vector_upl->num_upls++] = subupl; | |
9978 | vector_upl->size += io_size; | |
9979 | upl->size += io_size; | |
9980 | } | |
9981 | else { | |
9982 | uint32_t i=0,invalid_upls=0; | |
9983 | for(i = 0; i < vector_upl->num_upls; i++) { | |
9984 | if(vector_upl->upl_elems[i] == subupl) | |
9985 | break; | |
9986 | } | |
9987 | if(i == vector_upl->num_upls) | |
9988 | panic("Trying to remove sub-upl when none exists"); | |
9989 | ||
9990 | vector_upl->upl_elems[i] = NULL; | |
9991 | invalid_upls = hw_atomic_add(&(vector_upl)->invalid_upls, 1); | |
9992 | if(invalid_upls == vector_upl->num_upls) | |
9993 | return TRUE; | |
9994 | else | |
9995 | return FALSE; | |
9996 | } | |
9997 | } | |
9998 | else | |
9999 | panic("vector_upl_set_subupl was passed a NULL upl element\n"); | |
10000 | } | |
10001 | else | |
10002 | panic("vector_upl_set_subupl was passed a non-vectored upl\n"); | |
10003 | } | |
10004 | else | |
10005 | panic("vector_upl_set_subupl was passed a NULL upl\n"); | |
10006 | ||
10007 | return FALSE; | |
10008 | } | |
10009 | ||
10010 | void | |
10011 | vector_upl_set_pagelist(upl_t upl) | |
10012 | { | |
10013 | if(vector_upl_is_valid(upl)) { | |
10014 | uint32_t i=0; | |
10015 | vector_upl_t vector_upl = upl->vector_upl; | |
10016 | ||
10017 | if(vector_upl) { | |
10018 | vm_offset_t pagelist_size=0, cur_upl_pagelist_size=0; | |
10019 | ||
10020 | vector_upl->pagelist = (upl_page_info_array_t)kalloc(sizeof(struct upl_page_info)*(vector_upl->size/PAGE_SIZE)); | |
10021 | ||
10022 | for(i=0; i < vector_upl->num_upls; i++) { | |
10023 | cur_upl_pagelist_size = sizeof(struct upl_page_info) * vector_upl->upl_elems[i]->size/PAGE_SIZE; | |
10024 | bcopy(UPL_GET_INTERNAL_PAGE_LIST_SIMPLE(vector_upl->upl_elems[i]), (char*)vector_upl->pagelist + pagelist_size, cur_upl_pagelist_size); | |
10025 | pagelist_size += cur_upl_pagelist_size; | |
10026 | if(vector_upl->upl_elems[i]->highest_page > upl->highest_page) | |
10027 | upl->highest_page = vector_upl->upl_elems[i]->highest_page; | |
10028 | } | |
10029 | assert( pagelist_size == (sizeof(struct upl_page_info)*(vector_upl->size/PAGE_SIZE)) ); | |
10030 | } | |
10031 | else | |
10032 | panic("vector_upl_set_pagelist was passed a non-vectored upl\n"); | |
10033 | } | |
10034 | else | |
10035 | panic("vector_upl_set_pagelist was passed a NULL upl\n"); | |
10036 | ||
10037 | } | |
10038 | ||
10039 | upl_t | |
10040 | vector_upl_subupl_byindex(upl_t upl, uint32_t index) | |
10041 | { | |
10042 | if(vector_upl_is_valid(upl)) { | |
10043 | vector_upl_t vector_upl = upl->vector_upl; | |
10044 | if(vector_upl) { | |
10045 | if(index < vector_upl->num_upls) | |
10046 | return vector_upl->upl_elems[index]; | |
10047 | } | |
10048 | else | |
10049 | panic("vector_upl_subupl_byindex was passed a non-vectored upl\n"); | |
10050 | } | |
10051 | return NULL; | |
10052 | } | |
10053 | ||
10054 | upl_t | |
10055 | vector_upl_subupl_byoffset(upl_t upl, upl_offset_t *upl_offset, upl_size_t *upl_size) | |
10056 | { | |
10057 | if(vector_upl_is_valid(upl)) { | |
10058 | uint32_t i=0; | |
10059 | vector_upl_t vector_upl = upl->vector_upl; | |
10060 | ||
10061 | if(vector_upl) { | |
10062 | upl_t subupl = NULL; | |
10063 | vector_upl_iostates_t subupl_state; | |
10064 | ||
10065 | for(i=0; i < vector_upl->num_upls; i++) { | |
10066 | subupl = vector_upl->upl_elems[i]; | |
10067 | subupl_state = vector_upl->upl_iostates[i]; | |
10068 | if( *upl_offset <= (subupl_state.offset + subupl_state.size - 1)) { | |
10069 | /* We could have been passed an offset/size pair that belongs | |
10070 | * to an UPL element that has already been committed/aborted. | |
10071 | * If so, return NULL. | |
10072 | */ | |
10073 | if(subupl == NULL) | |
10074 | return NULL; | |
10075 | if((subupl_state.offset + subupl_state.size) < (*upl_offset + *upl_size)) { | |
10076 | *upl_size = (subupl_state.offset + subupl_state.size) - *upl_offset; | |
10077 | if(*upl_size > subupl_state.size) | |
10078 | *upl_size = subupl_state.size; | |
10079 | } | |
10080 | if(*upl_offset >= subupl_state.offset) | |
10081 | *upl_offset -= subupl_state.offset; | |
10082 | else if(i) | |
10083 | panic("Vector UPL offset miscalculation\n"); | |
10084 | return subupl; | |
10085 | } | |
10086 | } | |
10087 | } | |
10088 | else | |
10089 | panic("vector_upl_subupl_byoffset was passed a non-vectored UPL\n"); | |
10090 | } | |
10091 | return NULL; | |
10092 | } | |
10093 | ||
10094 | void | |
10095 | vector_upl_get_submap(upl_t upl, vm_map_t *v_upl_submap, vm_offset_t *submap_dst_addr) | |
10096 | { | |
10097 | *v_upl_submap = NULL; | |
10098 | ||
10099 | if(vector_upl_is_valid(upl)) { | |
10100 | vector_upl_t vector_upl = upl->vector_upl; | |
10101 | if(vector_upl) { | |
10102 | *v_upl_submap = vector_upl->submap; | |
10103 | *submap_dst_addr = vector_upl->submap_dst_addr; | |
10104 | } | |
10105 | else | |
10106 | panic("vector_upl_get_submap was passed a non-vectored UPL\n"); | |
10107 | } | |
10108 | else | |
10109 | panic("vector_upl_get_submap was passed a null UPL\n"); | |
10110 | } | |
10111 | ||
10112 | void | |
10113 | vector_upl_set_submap(upl_t upl, vm_map_t submap, vm_offset_t submap_dst_addr) | |
10114 | { | |
10115 | if(vector_upl_is_valid(upl)) { | |
10116 | vector_upl_t vector_upl = upl->vector_upl; | |
10117 | if(vector_upl) { | |
10118 | vector_upl->submap = submap; | |
10119 | vector_upl->submap_dst_addr = submap_dst_addr; | |
10120 | } | |
10121 | else | |
10122 | panic("vector_upl_get_submap was passed a non-vectored UPL\n"); | |
10123 | } | |
10124 | else | |
10125 | panic("vector_upl_get_submap was passed a NULL UPL\n"); | |
10126 | } | |
10127 | ||
10128 | void | |
10129 | vector_upl_set_iostate(upl_t upl, upl_t subupl, upl_offset_t offset, upl_size_t size) | |
10130 | { | |
10131 | if(vector_upl_is_valid(upl)) { | |
10132 | uint32_t i = 0; | |
10133 | vector_upl_t vector_upl = upl->vector_upl; | |
10134 | ||
10135 | if(vector_upl) { | |
10136 | for(i = 0; i < vector_upl->num_upls; i++) { | |
10137 | if(vector_upl->upl_elems[i] == subupl) | |
10138 | break; | |
10139 | } | |
10140 | ||
10141 | if(i == vector_upl->num_upls) | |
10142 | panic("setting sub-upl iostate when none exists"); | |
10143 | ||
10144 | vector_upl->upl_iostates[i].offset = offset; | |
10145 | if(size < PAGE_SIZE) | |
10146 | size = PAGE_SIZE; | |
10147 | vector_upl->upl_iostates[i].size = size; | |
10148 | } | |
10149 | else | |
10150 | panic("vector_upl_set_iostate was passed a non-vectored UPL\n"); | |
10151 | } | |
10152 | else | |
10153 | panic("vector_upl_set_iostate was passed a NULL UPL\n"); | |
10154 | } | |
10155 | ||
10156 | void | |
10157 | vector_upl_get_iostate(upl_t upl, upl_t subupl, upl_offset_t *offset, upl_size_t *size) | |
10158 | { | |
10159 | if(vector_upl_is_valid(upl)) { | |
10160 | uint32_t i = 0; | |
10161 | vector_upl_t vector_upl = upl->vector_upl; | |
10162 | ||
10163 | if(vector_upl) { | |
10164 | for(i = 0; i < vector_upl->num_upls; i++) { | |
10165 | if(vector_upl->upl_elems[i] == subupl) | |
10166 | break; | |
10167 | } | |
10168 | ||
10169 | if(i == vector_upl->num_upls) | |
10170 | panic("getting sub-upl iostate when none exists"); | |
10171 | ||
10172 | *offset = vector_upl->upl_iostates[i].offset; | |
10173 | *size = vector_upl->upl_iostates[i].size; | |
10174 | } | |
10175 | else | |
10176 | panic("vector_upl_get_iostate was passed a non-vectored UPL\n"); | |
10177 | } | |
10178 | else | |
10179 | panic("vector_upl_get_iostate was passed a NULL UPL\n"); | |
10180 | } | |
10181 | ||
10182 | void | |
10183 | vector_upl_get_iostate_byindex(upl_t upl, uint32_t index, upl_offset_t *offset, upl_size_t *size) | |
10184 | { | |
10185 | if(vector_upl_is_valid(upl)) { | |
10186 | vector_upl_t vector_upl = upl->vector_upl; | |
10187 | if(vector_upl) { | |
10188 | if(index < vector_upl->num_upls) { | |
10189 | *offset = vector_upl->upl_iostates[index].offset; | |
10190 | *size = vector_upl->upl_iostates[index].size; | |
10191 | } | |
10192 | else | |
10193 | *offset = *size = 0; | |
10194 | } | |
10195 | else | |
10196 | panic("vector_upl_get_iostate_byindex was passed a non-vectored UPL\n"); | |
10197 | } | |
10198 | else | |
10199 | panic("vector_upl_get_iostate_byindex was passed a NULL UPL\n"); | |
10200 | } | |
10201 | ||
10202 | upl_page_info_t * | |
10203 | upl_get_internal_vectorupl_pagelist(upl_t upl) | |
10204 | { | |
10205 | return ((vector_upl_t)(upl->vector_upl))->pagelist; | |
10206 | } | |
10207 | ||
10208 | void * | |
10209 | upl_get_internal_vectorupl(upl_t upl) | |
10210 | { | |
10211 | return upl->vector_upl; | |
10212 | } | |
10213 | ||
10214 | vm_size_t | |
10215 | upl_get_internal_pagelist_offset(void) | |
10216 | { | |
10217 | return sizeof(struct upl); | |
10218 | } | |
10219 | ||
10220 | void | |
10221 | upl_clear_dirty( | |
10222 | upl_t upl, | |
10223 | boolean_t value) | |
10224 | { | |
10225 | if (value) { | |
10226 | upl->flags |= UPL_CLEAR_DIRTY; | |
10227 | } else { | |
10228 | upl->flags &= ~UPL_CLEAR_DIRTY; | |
10229 | } | |
10230 | } | |
10231 | ||
10232 | void | |
10233 | upl_set_referenced( | |
10234 | upl_t upl, | |
10235 | boolean_t value) | |
10236 | { | |
10237 | upl_lock(upl); | |
10238 | if (value) { | |
10239 | upl->ext_ref_count++; | |
10240 | } else { | |
10241 | if (!upl->ext_ref_count) { | |
10242 | panic("upl_set_referenced not %p\n", upl); | |
10243 | } | |
10244 | upl->ext_ref_count--; | |
10245 | } | |
10246 | upl_unlock(upl); | |
10247 | } | |
10248 | ||
10249 | #if CONFIG_IOSCHED | |
10250 | void | |
10251 | upl_set_blkno( | |
10252 | upl_t upl, | |
10253 | vm_offset_t upl_offset, | |
10254 | int io_size, | |
10255 | int64_t blkno) | |
10256 | { | |
10257 | int i,j; | |
10258 | if ((upl->flags & UPL_EXPEDITE_SUPPORTED) == 0) | |
10259 | return; | |
10260 | ||
10261 | assert(upl->upl_reprio_info != 0); | |
10262 | for(i = (int)(upl_offset / PAGE_SIZE), j = 0; j < io_size; i++, j += PAGE_SIZE) { | |
10263 | UPL_SET_REPRIO_INFO(upl, i, blkno, io_size); | |
10264 | } | |
10265 | } | |
10266 | #endif | |
10267 | ||
10268 | boolean_t | |
10269 | vm_page_is_slideable(vm_page_t m) | |
10270 | { | |
10271 | boolean_t result = FALSE; | |
10272 | vm_shared_region_slide_info_t si; | |
10273 | ||
10274 | vm_object_lock_assert_held(m->object); | |
10275 | ||
10276 | /* make sure our page belongs to the one object allowed to do this */ | |
10277 | if (!m->object->object_slid) { | |
10278 | goto done; | |
10279 | } | |
10280 | ||
10281 | si = m->object->vo_slide_info; | |
10282 | if (si == NULL) { | |
10283 | goto done; | |
10284 | } | |
10285 | ||
10286 | if(!m->slid && (si->start <= m->offset && si->end > m->offset)) { | |
10287 | result = TRUE; | |
10288 | } | |
10289 | ||
10290 | done: | |
10291 | return result; | |
10292 | } | |
10293 | ||
10294 | int vm_page_slide_counter = 0; | |
10295 | int vm_page_slide_errors = 0; | |
10296 | kern_return_t | |
10297 | vm_page_slide( | |
10298 | vm_page_t page, | |
10299 | vm_map_offset_t kernel_mapping_offset) | |
10300 | { | |
10301 | kern_return_t kr; | |
10302 | vm_map_size_t kernel_mapping_size; | |
10303 | boolean_t kernel_mapping_needs_unmap; | |
10304 | vm_offset_t kernel_vaddr; | |
10305 | uint32_t pageIndex; | |
10306 | uint32_t slide_chunk; | |
10307 | ||
10308 | assert(!page->slid); | |
10309 | assert(page->object->object_slid); | |
10310 | vm_object_lock_assert_exclusive(page->object); | |
10311 | ||
10312 | if (page->error) | |
10313 | return KERN_FAILURE; | |
10314 | ||
10315 | /* | |
10316 | * Take a paging-in-progress reference to keep the object | |
10317 | * alive even if we have to unlock it (in vm_paging_map_object() | |
10318 | * for example)... | |
10319 | */ | |
10320 | vm_object_paging_begin(page->object); | |
10321 | ||
10322 | if (kernel_mapping_offset == 0) { | |
10323 | /* | |
10324 | * The page hasn't already been mapped in kernel space | |
10325 | * by the caller. Map it now, so that we can access | |
10326 | * its contents and decrypt them. | |
10327 | */ | |
10328 | kernel_mapping_size = PAGE_SIZE; | |
10329 | kernel_mapping_needs_unmap = FALSE; | |
10330 | kr = vm_paging_map_object(page, | |
10331 | page->object, | |
10332 | page->offset, | |
10333 | VM_PROT_READ | VM_PROT_WRITE, | |
10334 | FALSE, | |
10335 | &kernel_mapping_size, | |
10336 | &kernel_mapping_offset, | |
10337 | &kernel_mapping_needs_unmap); | |
10338 | if (kr != KERN_SUCCESS) { | |
10339 | panic("vm_page_slide: " | |
10340 | "could not map page in kernel: 0x%x\n", | |
10341 | kr); | |
10342 | } | |
10343 | } else { | |
10344 | kernel_mapping_size = 0; | |
10345 | kernel_mapping_needs_unmap = FALSE; | |
10346 | } | |
10347 | kernel_vaddr = CAST_DOWN(vm_offset_t, kernel_mapping_offset); | |
10348 | ||
10349 | /* | |
10350 | * Slide the pointers on the page. | |
10351 | */ | |
10352 | ||
10353 | /*assert that slide_file_info.start/end are page-aligned?*/ | |
10354 | ||
10355 | assert(!page->slid); | |
10356 | assert(page->object->object_slid); | |
10357 | ||
10358 | #define PAGE_SIZE_FOR_SR_SLIDE 4096 | |
10359 | pageIndex = (uint32_t)((page->offset - | |
10360 | page->object->vo_slide_info->start) / | |
10361 | PAGE_SIZE_FOR_SR_SLIDE); | |
10362 | for (slide_chunk = 0; | |
10363 | slide_chunk < PAGE_SIZE / PAGE_SIZE_FOR_SR_SLIDE; | |
10364 | slide_chunk++) { | |
10365 | kr = vm_shared_region_slide_page(page->object->vo_slide_info, | |
10366 | (kernel_vaddr + | |
10367 | (slide_chunk * | |
10368 | PAGE_SIZE_FOR_SR_SLIDE)), | |
10369 | (pageIndex + slide_chunk)); | |
10370 | if (kr != KERN_SUCCESS) { | |
10371 | break; | |
10372 | } | |
10373 | } | |
10374 | ||
10375 | vm_page_slide_counter++; | |
10376 | ||
10377 | /* | |
10378 | * Unmap the page from the kernel's address space, | |
10379 | */ | |
10380 | if (kernel_mapping_needs_unmap) { | |
10381 | vm_paging_unmap_object(page->object, | |
10382 | kernel_vaddr, | |
10383 | kernel_vaddr + PAGE_SIZE); | |
10384 | } | |
10385 | ||
10386 | page->dirty = FALSE; | |
10387 | pmap_clear_refmod(page->phys_page, VM_MEM_MODIFIED | VM_MEM_REFERENCED); | |
10388 | ||
10389 | if (kr != KERN_SUCCESS || cs_debug > 1) { | |
10390 | printf("vm_page_slide(%p): " | |
10391 | "obj %p off 0x%llx mobj %p moff 0x%llx\n", | |
10392 | page, | |
10393 | page->object, page->offset, | |
10394 | page->object->pager, | |
10395 | page->offset + page->object->paging_offset); | |
10396 | } | |
10397 | ||
10398 | if (kr == KERN_SUCCESS) { | |
10399 | page->slid = TRUE; | |
10400 | } else { | |
10401 | page->error = TRUE; | |
10402 | vm_page_slide_errors++; | |
10403 | } | |
10404 | ||
10405 | vm_object_paging_end(page->object); | |
10406 | ||
10407 | return kr; | |
10408 | } | |
10409 | ||
10410 | void inline memoryshot(unsigned int event, unsigned int control) | |
10411 | { | |
10412 | if (vm_debug_events) { | |
10413 | KERNEL_DEBUG_CONSTANT1((MACHDBG_CODE(DBG_MACH_VM_PRESSURE, event)) | control, | |
10414 | vm_page_active_count, vm_page_inactive_count, | |
10415 | vm_page_free_count, vm_page_speculative_count, | |
10416 | vm_page_throttled_count); | |
10417 | } else { | |
10418 | (void) event; | |
10419 | (void) control; | |
10420 | } | |
10421 | ||
10422 | } | |
10423 | ||
10424 | #ifdef MACH_BSD | |
10425 | ||
10426 | boolean_t upl_device_page(upl_page_info_t *upl) | |
10427 | { | |
10428 | return(UPL_DEVICE_PAGE(upl)); | |
10429 | } | |
10430 | boolean_t upl_page_present(upl_page_info_t *upl, int index) | |
10431 | { | |
10432 | return(UPL_PAGE_PRESENT(upl, index)); | |
10433 | } | |
10434 | boolean_t upl_speculative_page(upl_page_info_t *upl, int index) | |
10435 | { | |
10436 | return(UPL_SPECULATIVE_PAGE(upl, index)); | |
10437 | } | |
10438 | boolean_t upl_dirty_page(upl_page_info_t *upl, int index) | |
10439 | { | |
10440 | return(UPL_DIRTY_PAGE(upl, index)); | |
10441 | } | |
10442 | boolean_t upl_valid_page(upl_page_info_t *upl, int index) | |
10443 | { | |
10444 | return(UPL_VALID_PAGE(upl, index)); | |
10445 | } | |
10446 | ppnum_t upl_phys_page(upl_page_info_t *upl, int index) | |
10447 | { | |
10448 | return(UPL_PHYS_PAGE(upl, index)); | |
10449 | } | |
10450 | ||
10451 | void upl_page_set_mark(upl_page_info_t *upl, int index, boolean_t v) | |
10452 | { | |
10453 | upl[index].mark = v; | |
10454 | } | |
10455 | ||
10456 | boolean_t upl_page_get_mark(upl_page_info_t *upl, int index) | |
10457 | { | |
10458 | return upl[index].mark; | |
10459 | } | |
10460 | ||
10461 | void | |
10462 | vm_countdirtypages(void) | |
10463 | { | |
10464 | vm_page_t m; | |
10465 | int dpages; | |
10466 | int pgopages; | |
10467 | int precpages; | |
10468 | ||
10469 | ||
10470 | dpages=0; | |
10471 | pgopages=0; | |
10472 | precpages=0; | |
10473 | ||
10474 | vm_page_lock_queues(); | |
10475 | m = (vm_page_t) queue_first(&vm_page_queue_inactive); | |
10476 | do { | |
10477 | if (m ==(vm_page_t )0) break; | |
10478 | ||
10479 | if(m->dirty) dpages++; | |
10480 | if(m->pageout) pgopages++; | |
10481 | if(m->precious) precpages++; | |
10482 | ||
10483 | assert(m->object != kernel_object); | |
10484 | m = (vm_page_t) queue_next(&m->pageq); | |
10485 | if (m ==(vm_page_t )0) break; | |
10486 | ||
10487 | } while (!queue_end(&vm_page_queue_inactive,(queue_entry_t) m)); | |
10488 | vm_page_unlock_queues(); | |
10489 | ||
10490 | vm_page_lock_queues(); | |
10491 | m = (vm_page_t) queue_first(&vm_page_queue_throttled); | |
10492 | do { | |
10493 | if (m ==(vm_page_t )0) break; | |
10494 | ||
10495 | dpages++; | |
10496 | assert(m->dirty); | |
10497 | assert(!m->pageout); | |
10498 | assert(m->object != kernel_object); | |
10499 | m = (vm_page_t) queue_next(&m->pageq); | |
10500 | if (m ==(vm_page_t )0) break; | |
10501 | ||
10502 | } while (!queue_end(&vm_page_queue_throttled,(queue_entry_t) m)); | |
10503 | vm_page_unlock_queues(); | |
10504 | ||
10505 | vm_page_lock_queues(); | |
10506 | m = (vm_page_t) queue_first(&vm_page_queue_anonymous); | |
10507 | do { | |
10508 | if (m ==(vm_page_t )0) break; | |
10509 | ||
10510 | if(m->dirty) dpages++; | |
10511 | if(m->pageout) pgopages++; | |
10512 | if(m->precious) precpages++; | |
10513 | ||
10514 | assert(m->object != kernel_object); | |
10515 | m = (vm_page_t) queue_next(&m->pageq); | |
10516 | if (m ==(vm_page_t )0) break; | |
10517 | ||
10518 | } while (!queue_end(&vm_page_queue_anonymous,(queue_entry_t) m)); | |
10519 | vm_page_unlock_queues(); | |
10520 | ||
10521 | printf("IN Q: %d : %d : %d\n", dpages, pgopages, precpages); | |
10522 | ||
10523 | dpages=0; | |
10524 | pgopages=0; | |
10525 | precpages=0; | |
10526 | ||
10527 | vm_page_lock_queues(); | |
10528 | m = (vm_page_t) queue_first(&vm_page_queue_active); | |
10529 | ||
10530 | do { | |
10531 | if(m == (vm_page_t )0) break; | |
10532 | if(m->dirty) dpages++; | |
10533 | if(m->pageout) pgopages++; | |
10534 | if(m->precious) precpages++; | |
10535 | ||
10536 | assert(m->object != kernel_object); | |
10537 | m = (vm_page_t) queue_next(&m->pageq); | |
10538 | if(m == (vm_page_t )0) break; | |
10539 | ||
10540 | } while (!queue_end(&vm_page_queue_active,(queue_entry_t) m)); | |
10541 | vm_page_unlock_queues(); | |
10542 | ||
10543 | printf("AC Q: %d : %d : %d\n", dpages, pgopages, precpages); | |
10544 | ||
10545 | } | |
10546 | #endif /* MACH_BSD */ | |
10547 | ||
10548 | ppnum_t upl_get_highest_page( | |
10549 | upl_t upl) | |
10550 | { | |
10551 | return upl->highest_page; | |
10552 | } | |
10553 | ||
10554 | upl_size_t upl_get_size( | |
10555 | upl_t upl) | |
10556 | { | |
10557 | return upl->size; | |
10558 | } | |
10559 | ||
10560 | upl_t upl_associated_upl(upl_t upl) | |
10561 | { | |
10562 | return upl->associated_upl; | |
10563 | } | |
10564 | ||
10565 | void upl_set_associated_upl(upl_t upl, upl_t associated_upl) | |
10566 | { | |
10567 | upl->associated_upl = associated_upl; | |
10568 | } | |
10569 | ||
10570 | #if UPL_DEBUG | |
10571 | kern_return_t upl_ubc_alias_set(upl_t upl, uintptr_t alias1, uintptr_t alias2) | |
10572 | { | |
10573 | upl->ubc_alias1 = alias1; | |
10574 | upl->ubc_alias2 = alias2; | |
10575 | return KERN_SUCCESS; | |
10576 | } | |
10577 | int upl_ubc_alias_get(upl_t upl, uintptr_t * al, uintptr_t * al2) | |
10578 | { | |
10579 | if(al) | |
10580 | *al = upl->ubc_alias1; | |
10581 | if(al2) | |
10582 | *al2 = upl->ubc_alias2; | |
10583 | return KERN_SUCCESS; | |
10584 | } | |
10585 | #endif /* UPL_DEBUG */ | |
10586 | ||
10587 | #if VM_PRESSURE_EVENTS | |
10588 | /* | |
10589 | * Upward trajectory. | |
10590 | */ | |
10591 | extern boolean_t vm_compressor_low_on_space(void); | |
10592 | ||
10593 | boolean_t | |
10594 | VM_PRESSURE_NORMAL_TO_WARNING(void) { | |
10595 | ||
10596 | if (DEFAULT_PAGER_IS_ACTIVE || DEFAULT_FREEZER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_SWAPLESS) { | |
10597 | ||
10598 | /* Available pages below our threshold */ | |
10599 | if (memorystatus_available_pages < memorystatus_available_pages_pressure) { | |
10600 | /* No frozen processes to kill */ | |
10601 | if (memorystatus_frozen_count == 0) { | |
10602 | /* Not enough suspended processes available. */ | |
10603 | if (memorystatus_suspended_count < MEMORYSTATUS_SUSPENDED_THRESHOLD) { | |
10604 | return TRUE; | |
10605 | } | |
10606 | } | |
10607 | } | |
10608 | return FALSE; | |
10609 | ||
10610 | } else { | |
10611 | return ((AVAILABLE_NON_COMPRESSED_MEMORY < VM_PAGE_COMPRESSOR_COMPACT_THRESHOLD) ? 1 : 0); | |
10612 | } | |
10613 | } | |
10614 | ||
10615 | boolean_t | |
10616 | VM_PRESSURE_WARNING_TO_CRITICAL(void) { | |
10617 | ||
10618 | if (DEFAULT_PAGER_IS_ACTIVE || DEFAULT_FREEZER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_SWAPLESS) { | |
10619 | /* Available pages below our threshold */ | |
10620 | if (memorystatus_available_pages < memorystatus_available_pages_critical) { | |
10621 | return TRUE; | |
10622 | } | |
10623 | return FALSE; | |
10624 | } else { | |
10625 | return (vm_compressor_low_on_space() || (AVAILABLE_NON_COMPRESSED_MEMORY < ((12 * VM_PAGE_COMPRESSOR_SWAP_UNTHROTTLE_THRESHOLD) / 10)) ? 1 : 0); | |
10626 | } | |
10627 | } | |
10628 | ||
10629 | /* | |
10630 | * Downward trajectory. | |
10631 | */ | |
10632 | boolean_t | |
10633 | VM_PRESSURE_WARNING_TO_NORMAL(void) { | |
10634 | ||
10635 | if (DEFAULT_PAGER_IS_ACTIVE || DEFAULT_FREEZER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_SWAPLESS) { | |
10636 | /* Available pages above our threshold */ | |
10637 | unsigned int target_threshold = memorystatus_available_pages_pressure + ((15 * memorystatus_available_pages_pressure) / 100); | |
10638 | if (memorystatus_available_pages > target_threshold) { | |
10639 | return TRUE; | |
10640 | } | |
10641 | return FALSE; | |
10642 | } else { | |
10643 | return ((AVAILABLE_NON_COMPRESSED_MEMORY > ((12 * VM_PAGE_COMPRESSOR_COMPACT_THRESHOLD) / 10)) ? 1 : 0); | |
10644 | } | |
10645 | } | |
10646 | ||
10647 | boolean_t | |
10648 | VM_PRESSURE_CRITICAL_TO_WARNING(void) { | |
10649 | ||
10650 | if (DEFAULT_PAGER_IS_ACTIVE || DEFAULT_FREEZER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_SWAPLESS) { | |
10651 | /* Available pages above our threshold */ | |
10652 | unsigned int target_threshold = memorystatus_available_pages_critical + ((15 * memorystatus_available_pages_critical) / 100); | |
10653 | if (memorystatus_available_pages > target_threshold) { | |
10654 | return TRUE; | |
10655 | } | |
10656 | return FALSE; | |
10657 | } else { | |
10658 | return ((AVAILABLE_NON_COMPRESSED_MEMORY > ((14 * VM_PAGE_COMPRESSOR_SWAP_UNTHROTTLE_THRESHOLD) / 10)) ? 1 : 0); | |
10659 | } | |
10660 | } | |
10661 | #endif /* VM_PRESSURE_EVENTS */ | |
10662 |