| 1 | /* |
| 2 | * Copyright (c) 2000 Apple Computer, Inc. All rights reserved. |
| 3 | * |
| 4 | * @APPLE_LICENSE_OSREFERENCE_HEADER_START@ |
| 5 | * |
| 6 | * This file contains Original Code and/or Modifications of Original Code |
| 7 | * as defined in and that are subject to the Apple Public Source License |
| 8 | * Version 2.0 (the 'License'). You may not use this file except in |
| 9 | * compliance with the License. The rights granted to you under the |
| 10 | * License may not be used to create, or enable the creation or |
| 11 | * redistribution of, unlawful or unlicensed copies of an Apple operating |
| 12 | * system, or to circumvent, violate, or enable the circumvention or |
| 13 | * violation of, any terms of an Apple operating system software license |
| 14 | * agreement. |
| 15 | * |
| 16 | * Please obtain a copy of the License at |
| 17 | * http://www.opensource.apple.com/apsl/ and read it before using this |
| 18 | * file. |
| 19 | * |
| 20 | * The Original Code and all software distributed under the License are |
| 21 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER |
| 22 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
| 23 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, |
| 24 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
| 25 | * Please see the License for the specific language governing rights and |
| 26 | * limitations under the License. |
| 27 | * |
| 28 | * @APPLE_LICENSE_OSREFERENCE_HEADER_END@ |
| 29 | */ |
| 30 | /* Copyright (c) 1998, 1999 Apple Computer, Inc. All Rights Reserved */ |
| 31 | /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */ |
| 32 | /* |
| 33 | * Copyright (c) 1982, 1986, 1988, 1990, 1993 |
| 34 | * The Regents of the University of California. All rights reserved. |
| 35 | * |
| 36 | * Redistribution and use in source and binary forms, with or without |
| 37 | * modification, are permitted provided that the following conditions |
| 38 | * are met: |
| 39 | * 1. Redistributions of source code must retain the above copyright |
| 40 | * notice, this list of conditions and the following disclaimer. |
| 41 | * 2. Redistributions in binary form must reproduce the above copyright |
| 42 | * notice, this list of conditions and the following disclaimer in the |
| 43 | * documentation and/or other materials provided with the distribution. |
| 44 | * 3. All advertising materials mentioning features or use of this software |
| 45 | * must display the following acknowledgement: |
| 46 | * This product includes software developed by the University of |
| 47 | * California, Berkeley and its contributors. |
| 48 | * 4. Neither the name of the University nor the names of its contributors |
| 49 | * may be used to endorse or promote products derived from this software |
| 50 | * without specific prior written permission. |
| 51 | * |
| 52 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| 53 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 54 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 55 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| 56 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 57 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 58 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 59 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 60 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 61 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 62 | * SUCH DAMAGE. |
| 63 | * |
| 64 | * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93 |
| 65 | * $FreeBSD: src/sys/kern/uipc_socket2.c,v 1.55.2.9 2001/07/26 18:53:02 peter Exp $ |
| 66 | */ |
| 67 | |
| 68 | #include <sys/param.h> |
| 69 | #include <sys/systm.h> |
| 70 | #include <sys/domain.h> |
| 71 | #include <sys/kernel.h> |
| 72 | #include <sys/proc_internal.h> |
| 73 | #include <sys/kauth.h> |
| 74 | #include <sys/malloc.h> |
| 75 | #include <sys/mbuf.h> |
| 76 | #include <sys/protosw.h> |
| 77 | #include <sys/stat.h> |
| 78 | #include <sys/socket.h> |
| 79 | #include <sys/socketvar.h> |
| 80 | #include <sys/signalvar.h> |
| 81 | #include <sys/sysctl.h> |
| 82 | #include <sys/ev.h> |
| 83 | #include <kern/locks.h> |
| 84 | #include <net/route.h> |
| 85 | #include <netinet/in.h> |
| 86 | #include <netinet/in_pcb.h> |
| 87 | #include <sys/kdebug.h> |
| 88 | |
| 89 | #define DBG_FNC_SBDROP NETDBG_CODE(DBG_NETSOCK, 4) |
| 90 | #define DBG_FNC_SBAPPEND NETDBG_CODE(DBG_NETSOCK, 5) |
| 91 | |
| 92 | static int sbcompress(struct sockbuf *, struct mbuf *, struct mbuf *); |
| 93 | |
| 94 | /* |
| 95 | * Primitive routines for operating on sockets and socket buffers |
| 96 | */ |
| 97 | |
| 98 | u_long sb_max = SB_MAX; /* XXX should be static */ |
| 99 | |
| 100 | static u_long sb_efficiency = 8; /* parameter for sbreserve() */ |
| 101 | |
| 102 | /* |
| 103 | * Procedures to manipulate state flags of socket |
| 104 | * and do appropriate wakeups. Normal sequence from the |
| 105 | * active (originating) side is that soisconnecting() is |
| 106 | * called during processing of connect() call, |
| 107 | * resulting in an eventual call to soisconnected() if/when the |
| 108 | * connection is established. When the connection is torn down |
| 109 | * soisdisconnecting() is called during processing of disconnect() call, |
| 110 | * and soisdisconnected() is called when the connection to the peer |
| 111 | * is totally severed. The semantics of these routines are such that |
| 112 | * connectionless protocols can call soisconnected() and soisdisconnected() |
| 113 | * only, bypassing the in-progress calls when setting up a ``connection'' |
| 114 | * takes no time. |
| 115 | * |
| 116 | * From the passive side, a socket is created with |
| 117 | * two queues of sockets: so_incomp for connections in progress |
| 118 | * and so_comp for connections already made and awaiting user acceptance. |
| 119 | * As a protocol is preparing incoming connections, it creates a socket |
| 120 | * structure queued on so_incomp by calling sonewconn(). When the connection |
| 121 | * is established, soisconnected() is called, and transfers the |
| 122 | * socket structure to so_comp, making it available to accept(). |
| 123 | * |
| 124 | * If a socket is closed with sockets on either |
| 125 | * so_incomp or so_comp, these sockets are dropped. |
| 126 | * |
| 127 | * If higher level protocols are implemented in |
| 128 | * the kernel, the wakeups done here will sometimes |
| 129 | * cause software-interrupt process scheduling. |
| 130 | */ |
| 131 | void |
| 132 | soisconnecting(so) |
| 133 | register struct socket *so; |
| 134 | { |
| 135 | |
| 136 | so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); |
| 137 | so->so_state |= SS_ISCONNECTING; |
| 138 | |
| 139 | sflt_notify(so, sock_evt_connecting, NULL); |
| 140 | } |
| 141 | |
| 142 | void |
| 143 | soisconnected(so) |
| 144 | struct socket *so; |
| 145 | { |
| 146 | struct socket *head = so->so_head; |
| 147 | |
| 148 | so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); |
| 149 | so->so_state |= SS_ISCONNECTED; |
| 150 | |
| 151 | sflt_notify(so, sock_evt_connected, NULL); |
| 152 | |
| 153 | if (head && (so->so_state & SS_INCOMP)) { |
| 154 | so->so_state &= ~SS_INCOMP; |
| 155 | so->so_state |= SS_COMP; |
| 156 | if (head->so_proto->pr_getlock != NULL) { |
| 157 | socket_unlock(so, 0); |
| 158 | socket_lock(head, 1); |
| 159 | } |
| 160 | postevent(head, 0, EV_RCONN); |
| 161 | TAILQ_REMOVE(&head->so_incomp, so, so_list); |
| 162 | head->so_incqlen--; |
| 163 | TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); |
| 164 | sorwakeup(head); |
| 165 | wakeup_one((caddr_t)&head->so_timeo); |
| 166 | if (head->so_proto->pr_getlock != NULL) { |
| 167 | socket_unlock(head, 1); |
| 168 | socket_lock(so, 0); |
| 169 | } |
| 170 | } else { |
| 171 | postevent(so, 0, EV_WCONN); |
| 172 | wakeup((caddr_t)&so->so_timeo); |
| 173 | sorwakeup(so); |
| 174 | sowwakeup(so); |
| 175 | } |
| 176 | } |
| 177 | |
| 178 | void |
| 179 | soisdisconnecting(so) |
| 180 | register struct socket *so; |
| 181 | { |
| 182 | so->so_state &= ~SS_ISCONNECTING; |
| 183 | so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE); |
| 184 | sflt_notify(so, sock_evt_disconnecting, NULL); |
| 185 | wakeup((caddr_t)&so->so_timeo); |
| 186 | sowwakeup(so); |
| 187 | sorwakeup(so); |
| 188 | } |
| 189 | |
| 190 | void |
| 191 | soisdisconnected(so) |
| 192 | register struct socket *so; |
| 193 | { |
| 194 | so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); |
| 195 | so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED); |
| 196 | sflt_notify(so, sock_evt_disconnected, NULL); |
| 197 | wakeup((caddr_t)&so->so_timeo); |
| 198 | sowwakeup(so); |
| 199 | sorwakeup(so); |
| 200 | } |
| 201 | |
| 202 | /* |
| 203 | * Return a random connection that hasn't been serviced yet and |
| 204 | * is eligible for discard. There is a one in qlen chance that |
| 205 | * we will return a null, saying that there are no dropable |
| 206 | * requests. In this case, the protocol specific code should drop |
| 207 | * the new request. This insures fairness. |
| 208 | * |
| 209 | * This may be used in conjunction with protocol specific queue |
| 210 | * congestion routines. |
| 211 | */ |
| 212 | struct socket * |
| 213 | sodropablereq(head) |
| 214 | register struct socket *head; |
| 215 | { |
| 216 | struct socket *so, *sonext = NULL; |
| 217 | unsigned int i, j, qlen; |
| 218 | static int rnd; |
| 219 | static struct timeval old_runtime; |
| 220 | static unsigned int cur_cnt, old_cnt; |
| 221 | struct timeval tv; |
| 222 | |
| 223 | microtime(&tv); |
| 224 | if ((i = (tv.tv_sec - old_runtime.tv_sec)) != 0) { |
| 225 | old_runtime = tv; |
| 226 | old_cnt = cur_cnt / i; |
| 227 | cur_cnt = 0; |
| 228 | } |
| 229 | |
| 230 | so = TAILQ_FIRST(&head->so_incomp); |
| 231 | if (!so) |
| 232 | return (NULL); |
| 233 | |
| 234 | qlen = head->so_incqlen; |
| 235 | if (++cur_cnt > qlen || old_cnt > qlen) { |
| 236 | rnd = (314159 * rnd + 66329) & 0xffff; |
| 237 | j = ((qlen + 1) * rnd) >> 16; |
| 238 | //###LD To clean up |
| 239 | while (j-- && so) { |
| 240 | // if (in_pcb_checkstate(so->so_pcb, WNT_ACQUIRE, 0) != WNT_STOPUSING) { |
| 241 | socket_lock(so, 1); |
| 242 | sonext = TAILQ_NEXT(so, so_list); |
| 243 | // in_pcb_check_state(so->so_pcb, WNT_RELEASE, 0); |
| 244 | socket_unlock(so, 1); |
| 245 | so = sonext; |
| 246 | } |
| 247 | } |
| 248 | |
| 249 | // if (in_pcb_checkstate(so->so_pcb, WNT_ACQUIRE, 0) == WNT_STOPUSING) |
| 250 | // return (NULL); |
| 251 | // else |
| 252 | return (so); |
| 253 | } |
| 254 | |
| 255 | /* |
| 256 | * When an attempt at a new connection is noted on a socket |
| 257 | * which accepts connections, sonewconn is called. If the |
| 258 | * connection is possible (subject to space constraints, etc.) |
| 259 | * then we allocate a new structure, propoerly linked into the |
| 260 | * data structure of the original socket, and return this. |
| 261 | * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED. |
| 262 | */ |
| 263 | static struct socket * |
| 264 | sonewconn_internal(head, connstatus) |
| 265 | register struct socket *head; |
| 266 | int connstatus; |
| 267 | { |
| 268 | int error = 0; |
| 269 | register struct socket *so; |
| 270 | lck_mtx_t *mutex_held; |
| 271 | |
| 272 | if (head->so_proto->pr_getlock != NULL) |
| 273 | mutex_held = (*head->so_proto->pr_getlock)(head, 0); |
| 274 | else |
| 275 | mutex_held = head->so_proto->pr_domain->dom_mtx; |
| 276 | lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED); |
| 277 | |
| 278 | if (head->so_qlen > 3 * head->so_qlimit / 2) |
| 279 | return ((struct socket *)0); |
| 280 | so = soalloc(1, head->so_proto->pr_domain->dom_family, head->so_type); |
| 281 | if (so == NULL) |
| 282 | return ((struct socket *)0); |
| 283 | /* check if head was closed during the soalloc */ |
| 284 | if (head->so_proto == NULL) { |
| 285 | sodealloc(so); |
| 286 | return ((struct socket *)0); |
| 287 | } |
| 288 | |
| 289 | so->so_head = head; |
| 290 | so->so_type = head->so_type; |
| 291 | so->so_options = head->so_options &~ SO_ACCEPTCONN; |
| 292 | so->so_linger = head->so_linger; |
| 293 | so->so_state = head->so_state | SS_NOFDREF; |
| 294 | so->so_proto = head->so_proto; |
| 295 | so->so_timeo = head->so_timeo; |
| 296 | so->so_pgid = head->so_pgid; |
| 297 | so->so_uid = head->so_uid; |
| 298 | so->so_usecount = 1; |
| 299 | so->next_lock_lr = 0; |
| 300 | so->next_unlock_lr = 0; |
| 301 | |
| 302 | #ifdef __APPLE__ |
| 303 | so->so_rcv.sb_flags |= SB_RECV; /* XXX */ |
| 304 | so->so_rcv.sb_so = so->so_snd.sb_so = so; |
| 305 | TAILQ_INIT(&so->so_evlist); |
| 306 | #endif |
| 307 | |
| 308 | if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) { |
| 309 | sflt_termsock(so); |
| 310 | sodealloc(so); |
| 311 | return ((struct socket *)0); |
| 312 | } |
| 313 | |
| 314 | /* |
| 315 | * Must be done with head unlocked to avoid deadlock for protocol with per socket mutexes. |
| 316 | */ |
| 317 | if (head->so_proto->pr_unlock) |
| 318 | socket_unlock(head, 0); |
| 319 | if (((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL) != 0) || error) { |
| 320 | sflt_termsock(so); |
| 321 | sodealloc(so); |
| 322 | if (head->so_proto->pr_unlock) |
| 323 | socket_lock(head, 0); |
| 324 | return ((struct socket *)0); |
| 325 | } |
| 326 | if (head->so_proto->pr_unlock) |
| 327 | socket_lock(head, 0); |
| 328 | #ifdef __APPLE__ |
| 329 | so->so_proto->pr_domain->dom_refs++; |
| 330 | #endif |
| 331 | |
| 332 | if (connstatus) { |
| 333 | TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); |
| 334 | so->so_state |= SS_COMP; |
| 335 | } else { |
| 336 | TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list); |
| 337 | so->so_state |= SS_INCOMP; |
| 338 | head->so_incqlen++; |
| 339 | } |
| 340 | head->so_qlen++; |
| 341 | |
| 342 | #ifdef __APPLE__ |
| 343 | /* Attach socket filters for this protocol */ |
| 344 | sflt_initsock(so); |
| 345 | #endif |
| 346 | if (connstatus) { |
| 347 | so->so_state |= connstatus; |
| 348 | sorwakeup(head); |
| 349 | wakeup((caddr_t)&head->so_timeo); |
| 350 | } |
| 351 | return (so); |
| 352 | } |
| 353 | |
| 354 | |
| 355 | struct socket * |
| 356 | sonewconn( |
| 357 | struct socket *head, |
| 358 | int connstatus, |
| 359 | const struct sockaddr *from) |
| 360 | { |
| 361 | int error = 0; |
| 362 | struct socket_filter_entry *filter; |
| 363 | int filtered = 0; |
| 364 | |
| 365 | error = 0; |
| 366 | for (filter = head->so_filt; filter && (error == 0); |
| 367 | filter = filter->sfe_next_onsocket) { |
| 368 | if (filter->sfe_filter->sf_filter.sf_connect_in) { |
| 369 | if (filtered == 0) { |
| 370 | filtered = 1; |
| 371 | sflt_use(head); |
| 372 | socket_unlock(head, 0); |
| 373 | } |
| 374 | error = filter->sfe_filter->sf_filter.sf_connect_in( |
| 375 | filter->sfe_cookie, head, from); |
| 376 | } |
| 377 | } |
| 378 | if (filtered != 0) { |
| 379 | socket_lock(head, 0); |
| 380 | sflt_unuse(head); |
| 381 | } |
| 382 | |
| 383 | if (error) { |
| 384 | return NULL; |
| 385 | } |
| 386 | |
| 387 | return sonewconn_internal(head, connstatus); |
| 388 | } |
| 389 | |
| 390 | /* |
| 391 | * Socantsendmore indicates that no more data will be sent on the |
| 392 | * socket; it would normally be applied to a socket when the user |
| 393 | * informs the system that no more data is to be sent, by the protocol |
| 394 | * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data |
| 395 | * will be received, and will normally be applied to the socket by a |
| 396 | * protocol when it detects that the peer will send no more data. |
| 397 | * Data queued for reading in the socket may yet be read. |
| 398 | */ |
| 399 | |
| 400 | void |
| 401 | socantsendmore(so) |
| 402 | struct socket *so; |
| 403 | { |
| 404 | so->so_state |= SS_CANTSENDMORE; |
| 405 | sflt_notify(so, sock_evt_cantsendmore, NULL); |
| 406 | sowwakeup(so); |
| 407 | } |
| 408 | |
| 409 | void |
| 410 | socantrcvmore(so) |
| 411 | struct socket *so; |
| 412 | { |
| 413 | so->so_state |= SS_CANTRCVMORE; |
| 414 | sflt_notify(so, sock_evt_cantrecvmore, NULL); |
| 415 | sorwakeup(so); |
| 416 | } |
| 417 | |
| 418 | /* |
| 419 | * Wait for data to arrive at/drain from a socket buffer. |
| 420 | */ |
| 421 | int |
| 422 | sbwait(sb) |
| 423 | struct sockbuf *sb; |
| 424 | { |
| 425 | int error = 0, lr_saved; |
| 426 | struct socket *so = sb->sb_so; |
| 427 | lck_mtx_t *mutex_held; |
| 428 | struct timespec ts; |
| 429 | |
| 430 | lr_saved = (unsigned int) __builtin_return_address(0); |
| 431 | |
| 432 | if (so->so_proto->pr_getlock != NULL) |
| 433 | mutex_held = (*so->so_proto->pr_getlock)(so, 0); |
| 434 | else |
| 435 | mutex_held = so->so_proto->pr_domain->dom_mtx; |
| 436 | |
| 437 | sb->sb_flags |= SB_WAIT; |
| 438 | |
| 439 | if (so->so_usecount < 1) |
| 440 | panic("sbwait: so=%x refcount=%d\n", so, so->so_usecount); |
| 441 | ts.tv_sec = sb->sb_timeo.tv_sec; |
| 442 | ts.tv_nsec = sb->sb_timeo.tv_usec * 1000; |
| 443 | error = msleep((caddr_t)&sb->sb_cc, mutex_held, |
| 444 | (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait", |
| 445 | &ts); |
| 446 | |
| 447 | lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED); |
| 448 | |
| 449 | if (so->so_usecount < 1) |
| 450 | panic("sbwait: so=%x refcount=%d\n", so, so->so_usecount); |
| 451 | |
| 452 | if ((so->so_state & SS_DRAINING)) { |
| 453 | error = EBADF; |
| 454 | } |
| 455 | |
| 456 | return (error); |
| 457 | } |
| 458 | |
| 459 | /* |
| 460 | * Lock a sockbuf already known to be locked; |
| 461 | * return any error returned from sleep (EINTR). |
| 462 | */ |
| 463 | int |
| 464 | sb_lock(sb) |
| 465 | register struct sockbuf *sb; |
| 466 | { |
| 467 | struct socket *so = sb->sb_so; |
| 468 | lck_mtx_t * mutex_held; |
| 469 | int error = 0; |
| 470 | |
| 471 | if (so == NULL) |
| 472 | panic("sb_lock: null so back pointer sb=%x\n", sb); |
| 473 | |
| 474 | while (sb->sb_flags & SB_LOCK) { |
| 475 | sb->sb_flags |= SB_WANT; |
| 476 | if (so->so_proto->pr_getlock != NULL) |
| 477 | mutex_held = (*so->so_proto->pr_getlock)(so, 0); |
| 478 | else |
| 479 | mutex_held = so->so_proto->pr_domain->dom_mtx; |
| 480 | if (so->so_usecount < 1) |
| 481 | panic("sb_lock: so=%x refcount=%d\n", so, so->so_usecount); |
| 482 | |
| 483 | error = msleep((caddr_t)&sb->sb_flags, mutex_held, |
| 484 | (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sblock", 0); |
| 485 | if (so->so_usecount < 1) |
| 486 | panic("sb_lock: 2 so=%x refcount=%d\n", so, so->so_usecount); |
| 487 | if (error) |
| 488 | return (error); |
| 489 | } |
| 490 | sb->sb_flags |= SB_LOCK; |
| 491 | return (0); |
| 492 | } |
| 493 | |
| 494 | /* |
| 495 | * Wakeup processes waiting on a socket buffer. |
| 496 | * Do asynchronous notification via SIGIO |
| 497 | * if the socket has the SS_ASYNC flag set. |
| 498 | */ |
| 499 | void |
| 500 | sowakeup(so, sb) |
| 501 | register struct socket *so; |
| 502 | register struct sockbuf *sb; |
| 503 | { |
| 504 | struct proc *p = current_proc(); |
| 505 | sb->sb_flags &= ~SB_SEL; |
| 506 | selwakeup(&sb->sb_sel); |
| 507 | if (sb->sb_flags & SB_WAIT) { |
| 508 | sb->sb_flags &= ~SB_WAIT; |
| 509 | wakeup((caddr_t)&sb->sb_cc); |
| 510 | } |
| 511 | if (so->so_state & SS_ASYNC) { |
| 512 | if (so->so_pgid < 0) |
| 513 | gsignal(-so->so_pgid, SIGIO); |
| 514 | else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0) |
| 515 | psignal(p, SIGIO); |
| 516 | } |
| 517 | if (sb->sb_flags & SB_KNOTE) { |
| 518 | KNOTE(&sb->sb_sel.si_note, SO_FILT_HINT_LOCKED); |
| 519 | } |
| 520 | if (sb->sb_flags & SB_UPCALL) { |
| 521 | socket_unlock(so, 0); |
| 522 | (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT); |
| 523 | socket_lock(so, 0); |
| 524 | } |
| 525 | } |
| 526 | |
| 527 | /* |
| 528 | * Socket buffer (struct sockbuf) utility routines. |
| 529 | * |
| 530 | * Each socket contains two socket buffers: one for sending data and |
| 531 | * one for receiving data. Each buffer contains a queue of mbufs, |
| 532 | * information about the number of mbufs and amount of data in the |
| 533 | * queue, and other fields allowing select() statements and notification |
| 534 | * on data availability to be implemented. |
| 535 | * |
| 536 | * Data stored in a socket buffer is maintained as a list of records. |
| 537 | * Each record is a list of mbufs chained together with the m_next |
| 538 | * field. Records are chained together with the m_nextpkt field. The upper |
| 539 | * level routine soreceive() expects the following conventions to be |
| 540 | * observed when placing information in the receive buffer: |
| 541 | * |
| 542 | * 1. If the protocol requires each message be preceded by the sender's |
| 543 | * name, then a record containing that name must be present before |
| 544 | * any associated data (mbuf's must be of type MT_SONAME). |
| 545 | * 2. If the protocol supports the exchange of ``access rights'' (really |
| 546 | * just additional data associated with the message), and there are |
| 547 | * ``rights'' to be received, then a record containing this data |
| 548 | * should be present (mbuf's must be of type MT_RIGHTS). |
| 549 | * 3. If a name or rights record exists, then it must be followed by |
| 550 | * a data record, perhaps of zero length. |
| 551 | * |
| 552 | * Before using a new socket structure it is first necessary to reserve |
| 553 | * buffer space to the socket, by calling sbreserve(). This should commit |
| 554 | * some of the available buffer space in the system buffer pool for the |
| 555 | * socket (currently, it does nothing but enforce limits). The space |
| 556 | * should be released by calling sbrelease() when the socket is destroyed. |
| 557 | */ |
| 558 | |
| 559 | int |
| 560 | soreserve(so, sndcc, rcvcc) |
| 561 | register struct socket *so; |
| 562 | u_long sndcc, rcvcc; |
| 563 | { |
| 564 | |
| 565 | if (sbreserve(&so->so_snd, sndcc) == 0) |
| 566 | goto bad; |
| 567 | if (sbreserve(&so->so_rcv, rcvcc) == 0) |
| 568 | goto bad2; |
| 569 | if (so->so_rcv.sb_lowat == 0) |
| 570 | so->so_rcv.sb_lowat = 1; |
| 571 | if (so->so_snd.sb_lowat == 0) |
| 572 | so->so_snd.sb_lowat = MCLBYTES; |
| 573 | if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat) |
| 574 | so->so_snd.sb_lowat = so->so_snd.sb_hiwat; |
| 575 | return (0); |
| 576 | bad2: |
| 577 | #ifdef __APPLE__ |
| 578 | selthreadclear(&so->so_snd.sb_sel); |
| 579 | #endif |
| 580 | sbrelease(&so->so_snd); |
| 581 | bad: |
| 582 | return (ENOBUFS); |
| 583 | } |
| 584 | |
| 585 | /* |
| 586 | * Allot mbufs to a sockbuf. |
| 587 | * Attempt to scale mbmax so that mbcnt doesn't become limiting |
| 588 | * if buffering efficiency is near the normal case. |
| 589 | */ |
| 590 | int |
| 591 | sbreserve(sb, cc) |
| 592 | struct sockbuf *sb; |
| 593 | u_long cc; |
| 594 | { |
| 595 | if ((u_quad_t)cc > (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES)) |
| 596 | return (0); |
| 597 | sb->sb_hiwat = cc; |
| 598 | sb->sb_mbmax = min(cc * sb_efficiency, sb_max); |
| 599 | if (sb->sb_lowat > sb->sb_hiwat) |
| 600 | sb->sb_lowat = sb->sb_hiwat; |
| 601 | return (1); |
| 602 | } |
| 603 | |
| 604 | /* |
| 605 | * Free mbufs held by a socket, and reserved mbuf space. |
| 606 | */ |
| 607 | /* WARNING needs to do selthreadclear() before calling this */ |
| 608 | void |
| 609 | sbrelease(sb) |
| 610 | struct sockbuf *sb; |
| 611 | { |
| 612 | |
| 613 | sbflush(sb); |
| 614 | sb->sb_hiwat = 0; |
| 615 | sb->sb_mbmax = 0; |
| 616 | |
| 617 | } |
| 618 | |
| 619 | /* |
| 620 | * Routines to add and remove |
| 621 | * data from an mbuf queue. |
| 622 | * |
| 623 | * The routines sbappend() or sbappendrecord() are normally called to |
| 624 | * append new mbufs to a socket buffer, after checking that adequate |
| 625 | * space is available, comparing the function sbspace() with the amount |
| 626 | * of data to be added. sbappendrecord() differs from sbappend() in |
| 627 | * that data supplied is treated as the beginning of a new record. |
| 628 | * To place a sender's address, optional access rights, and data in a |
| 629 | * socket receive buffer, sbappendaddr() should be used. To place |
| 630 | * access rights and data in a socket receive buffer, sbappendrights() |
| 631 | * should be used. In either case, the new data begins a new record. |
| 632 | * Note that unlike sbappend() and sbappendrecord(), these routines check |
| 633 | * for the caller that there will be enough space to store the data. |
| 634 | * Each fails if there is not enough space, or if it cannot find mbufs |
| 635 | * to store additional information in. |
| 636 | * |
| 637 | * Reliable protocols may use the socket send buffer to hold data |
| 638 | * awaiting acknowledgement. Data is normally copied from a socket |
| 639 | * send buffer in a protocol with m_copy for output to a peer, |
| 640 | * and then removing the data from the socket buffer with sbdrop() |
| 641 | * or sbdroprecord() when the data is acknowledged by the peer. |
| 642 | */ |
| 643 | |
| 644 | /* |
| 645 | * Append mbuf chain m to the last record in the |
| 646 | * socket buffer sb. The additional space associated |
| 647 | * the mbuf chain is recorded in sb. Empty mbufs are |
| 648 | * discarded and mbufs are compacted where possible. |
| 649 | */ |
| 650 | int |
| 651 | sbappend(sb, m) |
| 652 | struct sockbuf *sb; |
| 653 | struct mbuf *m; |
| 654 | { |
| 655 | register struct mbuf *n, *sb_first; |
| 656 | int result = 0; |
| 657 | int error = 0; |
| 658 | int filtered = 0; |
| 659 | |
| 660 | |
| 661 | KERNEL_DEBUG((DBG_FNC_SBAPPEND | DBG_FUNC_START), sb, m->m_len, 0, 0, 0); |
| 662 | |
| 663 | if (m == 0) |
| 664 | return 0; |
| 665 | |
| 666 | again: |
| 667 | sb_first = n = sb->sb_mb; |
| 668 | if (n) { |
| 669 | while (n->m_nextpkt) |
| 670 | n = n->m_nextpkt; |
| 671 | do { |
| 672 | if (n->m_flags & M_EOR) { |
| 673 | result = sbappendrecord(sb, m); /* XXXXXX!!!! */ |
| 674 | KERNEL_DEBUG((DBG_FNC_SBAPPEND | DBG_FUNC_END), sb, sb->sb_cc, 0, 0, 0); |
| 675 | return result; |
| 676 | } |
| 677 | } while (n->m_next && (n = n->m_next)); |
| 678 | } |
| 679 | |
| 680 | if (!filtered && (sb->sb_flags & SB_RECV) != 0) { |
| 681 | error = sflt_data_in(sb->sb_so, NULL, &m, NULL, 0, &filtered); |
| 682 | if (error) { |
| 683 | /* no data was appended, caller should not call sowakeup */ |
| 684 | return 0; |
| 685 | } |
| 686 | |
| 687 | /* |
| 688 | If we any filters, the socket lock was dropped. n and sb_first |
| 689 | cached data from the socket buffer. This cache is not valid |
| 690 | since we dropped the lock. We must start over. Since filtered |
| 691 | is set we won't run through the filters a second time. We just |
| 692 | set n and sb_start again. |
| 693 | */ |
| 694 | if (filtered) |
| 695 | goto again; |
| 696 | } |
| 697 | |
| 698 | result = sbcompress(sb, m, n); |
| 699 | |
| 700 | KERNEL_DEBUG((DBG_FNC_SBAPPEND | DBG_FUNC_END), sb, sb->sb_cc, 0, 0, 0); |
| 701 | |
| 702 | return result; |
| 703 | } |
| 704 | |
| 705 | #ifdef SOCKBUF_DEBUG |
| 706 | void |
| 707 | sbcheck(sb) |
| 708 | register struct sockbuf *sb; |
| 709 | { |
| 710 | register struct mbuf *m; |
| 711 | register struct mbuf *n = 0; |
| 712 | register u_long len = 0, mbcnt = 0; |
| 713 | lck_mtx_t *mutex_held; |
| 714 | |
| 715 | if (sb->sb_so->so_proto->pr_getlock != NULL) |
| 716 | mutex_held = (*sb->sb_so->so_proto->pr_getlock)(sb->sb_so, 0); |
| 717 | else |
| 718 | mutex_held = sb->sb_so->so_proto->pr_domain->dom_mtx; |
| 719 | |
| 720 | lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED); |
| 721 | |
| 722 | if (sbchecking == 0) |
| 723 | return; |
| 724 | |
| 725 | for (m = sb->sb_mb; m; m = n) { |
| 726 | n = m->m_nextpkt; |
| 727 | for (; m; m = m->m_next) { |
| 728 | len += m->m_len; |
| 729 | mbcnt += MSIZE; |
| 730 | if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */ |
| 731 | mbcnt += m->m_ext.ext_size; |
| 732 | } |
| 733 | } |
| 734 | if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) { |
| 735 | panic("cc %ld != %ld || mbcnt %ld != %ld\n", len, sb->sb_cc, |
| 736 | mbcnt, sb->sb_mbcnt); |
| 737 | } |
| 738 | } |
| 739 | #endif |
| 740 | |
| 741 | /* |
| 742 | * As above, except the mbuf chain |
| 743 | * begins a new record. |
| 744 | */ |
| 745 | int |
| 746 | sbappendrecord(sb, m0) |
| 747 | register struct sockbuf *sb; |
| 748 | struct mbuf *m0; |
| 749 | { |
| 750 | register struct mbuf *m; |
| 751 | int result = 0; |
| 752 | |
| 753 | if (m0 == 0) |
| 754 | return 0; |
| 755 | |
| 756 | if ((sb->sb_flags & SB_RECV) != 0) { |
| 757 | int error = sflt_data_in(sb->sb_so, NULL, &m0, NULL, sock_data_filt_flag_record, NULL); |
| 758 | if (error != 0) { |
| 759 | if (error != EJUSTRETURN) |
| 760 | m_freem(m0); |
| 761 | return 0; |
| 762 | } |
| 763 | } |
| 764 | |
| 765 | m = sb->sb_mb; |
| 766 | if (m) |
| 767 | while (m->m_nextpkt) |
| 768 | m = m->m_nextpkt; |
| 769 | /* |
| 770 | * Put the first mbuf on the queue. |
| 771 | * Note this permits zero length records. |
| 772 | */ |
| 773 | sballoc(sb, m0); |
| 774 | if (m) |
| 775 | m->m_nextpkt = m0; |
| 776 | else |
| 777 | sb->sb_mb = m0; |
| 778 | m = m0->m_next; |
| 779 | m0->m_next = 0; |
| 780 | if (m && (m0->m_flags & M_EOR)) { |
| 781 | m0->m_flags &= ~M_EOR; |
| 782 | m->m_flags |= M_EOR; |
| 783 | } |
| 784 | return sbcompress(sb, m, m0); |
| 785 | } |
| 786 | |
| 787 | /* |
| 788 | * As above except that OOB data |
| 789 | * is inserted at the beginning of the sockbuf, |
| 790 | * but after any other OOB data. |
| 791 | */ |
| 792 | int |
| 793 | sbinsertoob(sb, m0) |
| 794 | struct sockbuf *sb; |
| 795 | struct mbuf *m0; |
| 796 | { |
| 797 | struct mbuf *m; |
| 798 | struct mbuf **mp; |
| 799 | |
| 800 | if (m0 == 0) |
| 801 | return 0; |
| 802 | |
| 803 | if ((sb->sb_flags & SB_RECV) != 0) { |
| 804 | int error = sflt_data_in(sb->sb_so, NULL, &m0, NULL, |
| 805 | sock_data_filt_flag_oob, NULL); |
| 806 | |
| 807 | if (error) { |
| 808 | if (error != EJUSTRETURN) { |
| 809 | m_freem(m0); |
| 810 | } |
| 811 | return 0; |
| 812 | } |
| 813 | } |
| 814 | |
| 815 | for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) { |
| 816 | m = *mp; |
| 817 | again: |
| 818 | switch (m->m_type) { |
| 819 | |
| 820 | case MT_OOBDATA: |
| 821 | continue; /* WANT next train */ |
| 822 | |
| 823 | case MT_CONTROL: |
| 824 | m = m->m_next; |
| 825 | if (m) |
| 826 | goto again; /* inspect THIS train further */ |
| 827 | } |
| 828 | break; |
| 829 | } |
| 830 | /* |
| 831 | * Put the first mbuf on the queue. |
| 832 | * Note this permits zero length records. |
| 833 | */ |
| 834 | sballoc(sb, m0); |
| 835 | m0->m_nextpkt = *mp; |
| 836 | *mp = m0; |
| 837 | m = m0->m_next; |
| 838 | m0->m_next = 0; |
| 839 | if (m && (m0->m_flags & M_EOR)) { |
| 840 | m0->m_flags &= ~M_EOR; |
| 841 | m->m_flags |= M_EOR; |
| 842 | } |
| 843 | return sbcompress(sb, m, m0); |
| 844 | } |
| 845 | |
| 846 | /* |
| 847 | * Append address and data, and optionally, control (ancillary) data |
| 848 | * to the receive queue of a socket. If present, |
| 849 | * m0 must include a packet header with total length. |
| 850 | * Returns 0 if no space in sockbuf or insufficient mbufs. |
| 851 | */ |
| 852 | static int |
| 853 | sbappendaddr_internal(sb, asa, m0, control) |
| 854 | register struct sockbuf *sb; |
| 855 | struct sockaddr *asa; |
| 856 | struct mbuf *m0, *control; |
| 857 | { |
| 858 | register struct mbuf *m, *n; |
| 859 | int space = asa->sa_len; |
| 860 | |
| 861 | if (m0 && (m0->m_flags & M_PKTHDR) == 0) |
| 862 | panic("sbappendaddr"); |
| 863 | |
| 864 | if (m0) |
| 865 | space += m0->m_pkthdr.len; |
| 866 | for (n = control; n; n = n->m_next) { |
| 867 | space += n->m_len; |
| 868 | if (n->m_next == 0) /* keep pointer to last control buf */ |
| 869 | break; |
| 870 | } |
| 871 | if (space > sbspace(sb)) |
| 872 | return (0); |
| 873 | if (asa->sa_len > MLEN) |
| 874 | return (0); |
| 875 | MGET(m, M_DONTWAIT, MT_SONAME); |
| 876 | if (m == 0) |
| 877 | return (0); |
| 878 | m->m_len = asa->sa_len; |
| 879 | bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len); |
| 880 | if (n) |
| 881 | n->m_next = m0; /* concatenate data to control */ |
| 882 | else |
| 883 | control = m0; |
| 884 | m->m_next = control; |
| 885 | for (n = m; n; n = n->m_next) |
| 886 | sballoc(sb, n); |
| 887 | n = sb->sb_mb; |
| 888 | if (n) { |
| 889 | while (n->m_nextpkt) |
| 890 | n = n->m_nextpkt; |
| 891 | n->m_nextpkt = m; |
| 892 | } else |
| 893 | sb->sb_mb = m; |
| 894 | postevent(0,sb,EV_RWBYTES); |
| 895 | return (1); |
| 896 | } |
| 897 | |
| 898 | int |
| 899 | sbappendaddr( |
| 900 | struct sockbuf* sb, |
| 901 | struct sockaddr* asa, |
| 902 | struct mbuf *m0, |
| 903 | struct mbuf *control, |
| 904 | int *error_out) |
| 905 | { |
| 906 | int result = 0; |
| 907 | |
| 908 | if (error_out) *error_out = 0; |
| 909 | |
| 910 | if (m0 && (m0->m_flags & M_PKTHDR) == 0) |
| 911 | panic("sbappendaddrorfree"); |
| 912 | |
| 913 | /* Call socket data in filters */ |
| 914 | if ((sb->sb_flags & SB_RECV) != 0) { |
| 915 | int error; |
| 916 | error = sflt_data_in(sb->sb_so, asa, &m0, &control, 0, NULL); |
| 917 | if (error) { |
| 918 | if (error != EJUSTRETURN) { |
| 919 | if (m0) m_freem(m0); |
| 920 | if (control) m_freem(control); |
| 921 | if (error_out) *error_out = error; |
| 922 | } |
| 923 | return 0; |
| 924 | } |
| 925 | } |
| 926 | |
| 927 | result = sbappendaddr_internal(sb, asa, m0, control); |
| 928 | if (result == 0) { |
| 929 | if (m0) m_freem(m0); |
| 930 | if (control) m_freem(control); |
| 931 | if (error_out) *error_out = ENOBUFS; |
| 932 | } |
| 933 | |
| 934 | return result; |
| 935 | } |
| 936 | |
| 937 | static int |
| 938 | sbappendcontrol_internal(sb, m0, control) |
| 939 | struct sockbuf *sb; |
| 940 | struct mbuf *control, *m0; |
| 941 | { |
| 942 | register struct mbuf *m, *n; |
| 943 | int space = 0; |
| 944 | |
| 945 | if (control == 0) |
| 946 | panic("sbappendcontrol"); |
| 947 | |
| 948 | for (m = control; ; m = m->m_next) { |
| 949 | space += m->m_len; |
| 950 | if (m->m_next == 0) |
| 951 | break; |
| 952 | } |
| 953 | n = m; /* save pointer to last control buffer */ |
| 954 | for (m = m0; m; m = m->m_next) |
| 955 | space += m->m_len; |
| 956 | if (space > sbspace(sb)) |
| 957 | return (0); |
| 958 | n->m_next = m0; /* concatenate data to control */ |
| 959 | for (m = control; m; m = m->m_next) |
| 960 | sballoc(sb, m); |
| 961 | n = sb->sb_mb; |
| 962 | if (n) { |
| 963 | while (n->m_nextpkt) |
| 964 | n = n->m_nextpkt; |
| 965 | n->m_nextpkt = control; |
| 966 | } else |
| 967 | sb->sb_mb = control; |
| 968 | postevent(0,sb,EV_RWBYTES); |
| 969 | return (1); |
| 970 | } |
| 971 | |
| 972 | int |
| 973 | sbappendcontrol( |
| 974 | struct sockbuf *sb, |
| 975 | struct mbuf *m0, |
| 976 | struct mbuf *control, |
| 977 | int *error_out) |
| 978 | { |
| 979 | int result = 0; |
| 980 | |
| 981 | if (error_out) *error_out = 0; |
| 982 | |
| 983 | if (sb->sb_flags & SB_RECV) { |
| 984 | int error; |
| 985 | error = sflt_data_in(sb->sb_so, NULL, &m0, &control, 0, NULL); |
| 986 | if (error) { |
| 987 | if (error != EJUSTRETURN) { |
| 988 | if (m0) m_freem(m0); |
| 989 | if (control) m_freem(control); |
| 990 | if (error_out) *error_out = error; |
| 991 | } |
| 992 | return 0; |
| 993 | } |
| 994 | } |
| 995 | |
| 996 | result = sbappendcontrol_internal(sb, m0, control); |
| 997 | if (result == 0) { |
| 998 | if (m0) m_freem(m0); |
| 999 | if (control) m_freem(control); |
| 1000 | if (error_out) *error_out = ENOBUFS; |
| 1001 | } |
| 1002 | |
| 1003 | return result; |
| 1004 | } |
| 1005 | |
| 1006 | /* |
| 1007 | * Compress mbuf chain m into the socket |
| 1008 | * buffer sb following mbuf n. If n |
| 1009 | * is null, the buffer is presumed empty. |
| 1010 | */ |
| 1011 | static int |
| 1012 | sbcompress(sb, m, n) |
| 1013 | register struct sockbuf *sb; |
| 1014 | register struct mbuf *m, *n; |
| 1015 | { |
| 1016 | register int eor = 0; |
| 1017 | register struct mbuf *o; |
| 1018 | |
| 1019 | while (m) { |
| 1020 | eor |= m->m_flags & M_EOR; |
| 1021 | if (m->m_len == 0 && |
| 1022 | (eor == 0 || |
| 1023 | (((o = m->m_next) || (o = n)) && |
| 1024 | o->m_type == m->m_type))) { |
| 1025 | m = m_free(m); |
| 1026 | continue; |
| 1027 | } |
| 1028 | if (n && (n->m_flags & M_EOR) == 0 && |
| 1029 | #ifndef __APPLE__ |
| 1030 | M_WRITABLE(n) && |
| 1031 | #endif |
| 1032 | m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */ |
| 1033 | m->m_len <= M_TRAILINGSPACE(n) && |
| 1034 | n->m_type == m->m_type) { |
| 1035 | bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len, |
| 1036 | (unsigned)m->m_len); |
| 1037 | n->m_len += m->m_len; |
| 1038 | sb->sb_cc += m->m_len; |
| 1039 | m = m_free(m); |
| 1040 | continue; |
| 1041 | } |
| 1042 | if (n) |
| 1043 | n->m_next = m; |
| 1044 | else |
| 1045 | sb->sb_mb = m; |
| 1046 | sballoc(sb, m); |
| 1047 | n = m; |
| 1048 | m->m_flags &= ~M_EOR; |
| 1049 | m = m->m_next; |
| 1050 | n->m_next = 0; |
| 1051 | } |
| 1052 | if (eor) { |
| 1053 | if (n) |
| 1054 | n->m_flags |= eor; |
| 1055 | else |
| 1056 | printf("semi-panic: sbcompress\n"); |
| 1057 | } |
| 1058 | postevent(0,sb, EV_RWBYTES); |
| 1059 | return 1; |
| 1060 | } |
| 1061 | |
| 1062 | /* |
| 1063 | * Free all mbufs in a sockbuf. |
| 1064 | * Check that all resources are reclaimed. |
| 1065 | */ |
| 1066 | void |
| 1067 | sbflush(sb) |
| 1068 | register struct sockbuf *sb; |
| 1069 | { |
| 1070 | if (sb->sb_so == NULL) |
| 1071 | panic ("sbflush sb->sb_so already null sb=%x\n", sb); |
| 1072 | (void)sblock(sb, M_WAIT); |
| 1073 | while (sb->sb_mbcnt) { |
| 1074 | /* |
| 1075 | * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty: |
| 1076 | * we would loop forever. Panic instead. |
| 1077 | */ |
| 1078 | if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len)) |
| 1079 | break; |
| 1080 | sbdrop(sb, (int)sb->sb_cc); |
| 1081 | } |
| 1082 | if (sb->sb_cc || sb->sb_mb || sb->sb_mbcnt || sb->sb_so == NULL) |
| 1083 | panic("sbflush: cc %ld || mb %p || mbcnt %ld sb_so=%x", sb->sb_cc, (void *)sb->sb_mb, sb->sb_mbcnt, sb->sb_so); |
| 1084 | |
| 1085 | postevent(0, sb, EV_RWBYTES); |
| 1086 | sbunlock(sb, 1); /* keep socket locked */ |
| 1087 | |
| 1088 | } |
| 1089 | |
| 1090 | /* |
| 1091 | * Drop data from (the front of) a sockbuf. |
| 1092 | * use m_freem_list to free the mbuf structures |
| 1093 | * under a single lock... this is done by pruning |
| 1094 | * the top of the tree from the body by keeping track |
| 1095 | * of where we get to in the tree and then zeroing the |
| 1096 | * two pertinent pointers m_nextpkt and m_next |
| 1097 | * the socket buffer is then updated to point at the new |
| 1098 | * top of the tree and the pruned area is released via |
| 1099 | * m_freem_list. |
| 1100 | */ |
| 1101 | void |
| 1102 | sbdrop(sb, len) |
| 1103 | register struct sockbuf *sb; |
| 1104 | register int len; |
| 1105 | { |
| 1106 | register struct mbuf *m, *free_list, *ml; |
| 1107 | struct mbuf *next, *last; |
| 1108 | |
| 1109 | KERNEL_DEBUG((DBG_FNC_SBDROP | DBG_FUNC_START), sb, len, 0, 0, 0); |
| 1110 | |
| 1111 | next = (m = sb->sb_mb) ? m->m_nextpkt : 0; |
| 1112 | free_list = last = m; |
| 1113 | ml = (struct mbuf *)0; |
| 1114 | |
| 1115 | while (len > 0) { |
| 1116 | if (m == 0) { |
| 1117 | if (next == 0) { |
| 1118 | /* temporarily replacing this panic with printf because |
| 1119 | * it occurs occasionally when closing a socket when there |
| 1120 | * is no harm in ignoring it. This problem will be investigated |
| 1121 | * further. |
| 1122 | */ |
| 1123 | /* panic("sbdrop"); */ |
| 1124 | printf("sbdrop - count not zero\n"); |
| 1125 | len = 0; |
| 1126 | /* zero the counts. if we have no mbufs, we have no data (PR-2986815) */ |
| 1127 | sb->sb_cc = 0; |
| 1128 | sb->sb_mbcnt = 0; |
| 1129 | break; |
| 1130 | } |
| 1131 | m = last = next; |
| 1132 | next = m->m_nextpkt; |
| 1133 | continue; |
| 1134 | } |
| 1135 | if (m->m_len > len) { |
| 1136 | m->m_len -= len; |
| 1137 | m->m_data += len; |
| 1138 | sb->sb_cc -= len; |
| 1139 | break; |
| 1140 | } |
| 1141 | len -= m->m_len; |
| 1142 | sbfree(sb, m); |
| 1143 | |
| 1144 | ml = m; |
| 1145 | m = m->m_next; |
| 1146 | } |
| 1147 | while (m && m->m_len == 0) { |
| 1148 | sbfree(sb, m); |
| 1149 | |
| 1150 | ml = m; |
| 1151 | m = m->m_next; |
| 1152 | } |
| 1153 | if (ml) { |
| 1154 | ml->m_next = (struct mbuf *)0; |
| 1155 | last->m_nextpkt = (struct mbuf *)0; |
| 1156 | m_freem_list(free_list); |
| 1157 | } |
| 1158 | if (m) { |
| 1159 | sb->sb_mb = m; |
| 1160 | m->m_nextpkt = next; |
| 1161 | } else |
| 1162 | sb->sb_mb = next; |
| 1163 | |
| 1164 | postevent(0, sb, EV_RWBYTES); |
| 1165 | |
| 1166 | KERNEL_DEBUG((DBG_FNC_SBDROP | DBG_FUNC_END), sb, 0, 0, 0, 0); |
| 1167 | } |
| 1168 | |
| 1169 | /* |
| 1170 | * Drop a record off the front of a sockbuf |
| 1171 | * and move the next record to the front. |
| 1172 | */ |
| 1173 | void |
| 1174 | sbdroprecord(sb) |
| 1175 | register struct sockbuf *sb; |
| 1176 | { |
| 1177 | register struct mbuf *m, *mn; |
| 1178 | |
| 1179 | m = sb->sb_mb; |
| 1180 | if (m) { |
| 1181 | sb->sb_mb = m->m_nextpkt; |
| 1182 | do { |
| 1183 | sbfree(sb, m); |
| 1184 | MFREE(m, mn); |
| 1185 | m = mn; |
| 1186 | } while (m); |
| 1187 | } |
| 1188 | postevent(0, sb, EV_RWBYTES); |
| 1189 | } |
| 1190 | |
| 1191 | /* |
| 1192 | * Create a "control" mbuf containing the specified data |
| 1193 | * with the specified type for presentation on a socket buffer. |
| 1194 | */ |
| 1195 | struct mbuf * |
| 1196 | sbcreatecontrol(p, size, type, level) |
| 1197 | caddr_t p; |
| 1198 | register int size; |
| 1199 | int type, level; |
| 1200 | { |
| 1201 | register struct cmsghdr *cp; |
| 1202 | struct mbuf *m; |
| 1203 | |
| 1204 | if (CMSG_SPACE((u_int)size) > MLEN) |
| 1205 | return ((struct mbuf *) NULL); |
| 1206 | if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL) |
| 1207 | return ((struct mbuf *) NULL); |
| 1208 | cp = mtod(m, struct cmsghdr *); |
| 1209 | /* XXX check size? */ |
| 1210 | (void)memcpy(CMSG_DATA(cp), p, size); |
| 1211 | m->m_len = CMSG_SPACE(size); |
| 1212 | cp->cmsg_len = CMSG_LEN(size); |
| 1213 | cp->cmsg_level = level; |
| 1214 | cp->cmsg_type = type; |
| 1215 | return (m); |
| 1216 | } |
| 1217 | |
| 1218 | /* |
| 1219 | * Some routines that return EOPNOTSUPP for entry points that are not |
| 1220 | * supported by a protocol. Fill in as needed. |
| 1221 | */ |
| 1222 | int |
| 1223 | pru_abort_notsupp(struct socket *so) |
| 1224 | { |
| 1225 | return EOPNOTSUPP; |
| 1226 | } |
| 1227 | |
| 1228 | |
| 1229 | int |
| 1230 | pru_accept_notsupp(struct socket *so, struct sockaddr **nam) |
| 1231 | { |
| 1232 | return EOPNOTSUPP; |
| 1233 | } |
| 1234 | |
| 1235 | int |
| 1236 | pru_attach_notsupp(struct socket *so, int proto, struct proc *p) |
| 1237 | { |
| 1238 | return EOPNOTSUPP; |
| 1239 | } |
| 1240 | |
| 1241 | int |
| 1242 | pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct proc *p) |
| 1243 | { |
| 1244 | return EOPNOTSUPP; |
| 1245 | } |
| 1246 | |
| 1247 | int |
| 1248 | pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct proc *p) |
| 1249 | { |
| 1250 | return EOPNOTSUPP; |
| 1251 | } |
| 1252 | |
| 1253 | int |
| 1254 | pru_connect2_notsupp(struct socket *so1, struct socket *so2) |
| 1255 | { |
| 1256 | return EOPNOTSUPP; |
| 1257 | } |
| 1258 | |
| 1259 | int |
| 1260 | pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, |
| 1261 | struct ifnet *ifp, struct proc *p) |
| 1262 | { |
| 1263 | return EOPNOTSUPP; |
| 1264 | } |
| 1265 | |
| 1266 | int |
| 1267 | pru_detach_notsupp(struct socket *so) |
| 1268 | { |
| 1269 | return EOPNOTSUPP; |
| 1270 | } |
| 1271 | |
| 1272 | int |
| 1273 | pru_disconnect_notsupp(struct socket *so) |
| 1274 | { |
| 1275 | return EOPNOTSUPP; |
| 1276 | } |
| 1277 | |
| 1278 | int |
| 1279 | pru_listen_notsupp(struct socket *so, struct proc *p) |
| 1280 | { |
| 1281 | return EOPNOTSUPP; |
| 1282 | } |
| 1283 | |
| 1284 | int |
| 1285 | pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam) |
| 1286 | { |
| 1287 | return EOPNOTSUPP; |
| 1288 | } |
| 1289 | |
| 1290 | int |
| 1291 | pru_rcvd_notsupp(struct socket *so, int flags) |
| 1292 | { |
| 1293 | return EOPNOTSUPP; |
| 1294 | } |
| 1295 | |
| 1296 | int |
| 1297 | pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) |
| 1298 | { |
| 1299 | return EOPNOTSUPP; |
| 1300 | } |
| 1301 | |
| 1302 | int |
| 1303 | pru_send_notsupp(struct socket *so, int flags, struct mbuf *m, |
| 1304 | struct sockaddr *addr, struct mbuf *control, |
| 1305 | struct proc *p) |
| 1306 | |
| 1307 | { |
| 1308 | return EOPNOTSUPP; |
| 1309 | } |
| 1310 | |
| 1311 | |
| 1312 | /* |
| 1313 | * This isn't really a ``null'' operation, but it's the default one |
| 1314 | * and doesn't do anything destructive. |
| 1315 | */ |
| 1316 | int |
| 1317 | pru_sense_null(struct socket *so, struct stat *sb) |
| 1318 | { |
| 1319 | sb->st_blksize = so->so_snd.sb_hiwat; |
| 1320 | return 0; |
| 1321 | } |
| 1322 | |
| 1323 | |
| 1324 | int pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, |
| 1325 | struct uio *uio, struct mbuf *top, |
| 1326 | struct mbuf *control, int flags) |
| 1327 | |
| 1328 | { |
| 1329 | return EOPNOTSUPP; |
| 1330 | } |
| 1331 | |
| 1332 | int pru_soreceive_notsupp(struct socket *so, |
| 1333 | struct sockaddr **paddr, |
| 1334 | struct uio *uio, struct mbuf **mp0, |
| 1335 | struct mbuf **controlp, int *flagsp) |
| 1336 | { |
| 1337 | return EOPNOTSUPP; |
| 1338 | } |
| 1339 | |
| 1340 | int |
| 1341 | |
| 1342 | pru_shutdown_notsupp(struct socket *so) |
| 1343 | { |
| 1344 | return EOPNOTSUPP; |
| 1345 | } |
| 1346 | |
| 1347 | int |
| 1348 | pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam) |
| 1349 | { |
| 1350 | return EOPNOTSUPP; |
| 1351 | } |
| 1352 | |
| 1353 | int pru_sosend(struct socket *so, struct sockaddr *addr, |
| 1354 | struct uio *uio, struct mbuf *top, |
| 1355 | struct mbuf *control, int flags) |
| 1356 | { |
| 1357 | return EOPNOTSUPP; |
| 1358 | } |
| 1359 | |
| 1360 | int pru_soreceive(struct socket *so, |
| 1361 | struct sockaddr **paddr, |
| 1362 | struct uio *uio, struct mbuf **mp0, |
| 1363 | struct mbuf **controlp, int *flagsp) |
| 1364 | { |
| 1365 | return EOPNOTSUPP; |
| 1366 | } |
| 1367 | |
| 1368 | |
| 1369 | int |
| 1370 | pru_sopoll_notsupp(__unused struct socket *so, __unused int events, |
| 1371 | __unused kauth_cred_t cred, __unused void *wql) |
| 1372 | { |
| 1373 | return EOPNOTSUPP; |
| 1374 | } |
| 1375 | |
| 1376 | |
| 1377 | #ifdef __APPLE__ |
| 1378 | /* |
| 1379 | * The following are macros on BSD and functions on Darwin |
| 1380 | */ |
| 1381 | |
| 1382 | /* |
| 1383 | * Do we need to notify the other side when I/O is possible? |
| 1384 | */ |
| 1385 | |
| 1386 | int |
| 1387 | sb_notify(struct sockbuf *sb) |
| 1388 | { |
| 1389 | return ((sb->sb_flags & (SB_WAIT|SB_SEL|SB_ASYNC|SB_UPCALL|SB_KNOTE)) != 0); |
| 1390 | } |
| 1391 | |
| 1392 | /* |
| 1393 | * How much space is there in a socket buffer (so->so_snd or so->so_rcv)? |
| 1394 | * This is problematical if the fields are unsigned, as the space might |
| 1395 | * still be negative (cc > hiwat or mbcnt > mbmax). Should detect |
| 1396 | * overflow and return 0. Should use "lmin" but it doesn't exist now. |
| 1397 | */ |
| 1398 | long |
| 1399 | sbspace(struct sockbuf *sb) |
| 1400 | { |
| 1401 | return ((long) imin((int)(sb->sb_hiwat - sb->sb_cc), |
| 1402 | (int)(sb->sb_mbmax - sb->sb_mbcnt))); |
| 1403 | } |
| 1404 | |
| 1405 | /* do we have to send all at once on a socket? */ |
| 1406 | int |
| 1407 | sosendallatonce(struct socket *so) |
| 1408 | { |
| 1409 | return (so->so_proto->pr_flags & PR_ATOMIC); |
| 1410 | } |
| 1411 | |
| 1412 | /* can we read something from so? */ |
| 1413 | int |
| 1414 | soreadable(struct socket *so) |
| 1415 | { |
| 1416 | return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat || |
| 1417 | (so->so_state & SS_CANTRCVMORE) || |
| 1418 | so->so_comp.tqh_first || so->so_error); |
| 1419 | } |
| 1420 | |
| 1421 | /* can we write something to so? */ |
| 1422 | |
| 1423 | int |
| 1424 | sowriteable(struct socket *so) |
| 1425 | { |
| 1426 | return ((sbspace(&(so)->so_snd) >= (so)->so_snd.sb_lowat && |
| 1427 | ((so->so_state&SS_ISCONNECTED) || |
| 1428 | (so->so_proto->pr_flags&PR_CONNREQUIRED)==0)) || |
| 1429 | (so->so_state & SS_CANTSENDMORE) || |
| 1430 | so->so_error); |
| 1431 | } |
| 1432 | |
| 1433 | /* adjust counters in sb reflecting allocation of m */ |
| 1434 | |
| 1435 | void |
| 1436 | sballoc(struct sockbuf *sb, struct mbuf *m) |
| 1437 | { |
| 1438 | sb->sb_cc += m->m_len; |
| 1439 | sb->sb_mbcnt += MSIZE; |
| 1440 | if (m->m_flags & M_EXT) |
| 1441 | sb->sb_mbcnt += m->m_ext.ext_size; |
| 1442 | } |
| 1443 | |
| 1444 | /* adjust counters in sb reflecting freeing of m */ |
| 1445 | void |
| 1446 | sbfree(struct sockbuf *sb, struct mbuf *m) |
| 1447 | { |
| 1448 | sb->sb_cc -= m->m_len; |
| 1449 | sb->sb_mbcnt -= MSIZE; |
| 1450 | if (m->m_flags & M_EXT) |
| 1451 | sb->sb_mbcnt -= m->m_ext.ext_size; |
| 1452 | } |
| 1453 | |
| 1454 | /* |
| 1455 | * Set lock on sockbuf sb; sleep if lock is already held. |
| 1456 | * Unless SB_NOINTR is set on sockbuf, sleep is interruptible. |
| 1457 | * Returns error without lock if sleep is interrupted. |
| 1458 | */ |
| 1459 | int |
| 1460 | sblock(struct sockbuf *sb, int wf) |
| 1461 | { |
| 1462 | return(sb->sb_flags & SB_LOCK ? |
| 1463 | ((wf == M_WAIT) ? sb_lock(sb) : EWOULDBLOCK) : |
| 1464 | (sb->sb_flags |= SB_LOCK), 0); |
| 1465 | } |
| 1466 | |
| 1467 | /* release lock on sockbuf sb */ |
| 1468 | void |
| 1469 | sbunlock(struct sockbuf *sb, int keeplocked) |
| 1470 | { |
| 1471 | struct socket *so = sb->sb_so; |
| 1472 | int lr_saved; |
| 1473 | lck_mtx_t *mutex_held; |
| 1474 | |
| 1475 | |
| 1476 | lr_saved = (unsigned int) __builtin_return_address(0); |
| 1477 | |
| 1478 | sb->sb_flags &= ~SB_LOCK; |
| 1479 | |
| 1480 | if (so->so_proto->pr_getlock != NULL) |
| 1481 | mutex_held = (*so->so_proto->pr_getlock)(so, 0); |
| 1482 | else |
| 1483 | mutex_held = so->so_proto->pr_domain->dom_mtx; |
| 1484 | |
| 1485 | if (keeplocked == 0) |
| 1486 | lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED); |
| 1487 | |
| 1488 | if (sb->sb_flags & SB_WANT) { |
| 1489 | sb->sb_flags &= ~SB_WANT; |
| 1490 | if (so->so_usecount < 0) |
| 1491 | panic("sbunlock: b4 wakeup so=%x ref=%d lr=%x sb_flags=%x\n", sb->sb_so, so->so_usecount, lr_saved, sb->sb_flags); |
| 1492 | |
| 1493 | wakeup((caddr_t)&(sb)->sb_flags); |
| 1494 | } |
| 1495 | if (keeplocked == 0) { /* unlock on exit */ |
| 1496 | so->so_usecount--; |
| 1497 | if (so->so_usecount < 0) |
| 1498 | panic("sbunlock: unlock on exit so=%x lr=%x sb_flags=%x\n", so, so->so_usecount,lr_saved, sb->sb_flags); |
| 1499 | so->unlock_lr[so->next_unlock_lr] = (void *)lr_saved; |
| 1500 | so->next_unlock_lr = (so->next_unlock_lr+1) % SO_LCKDBG_MAX; |
| 1501 | lck_mtx_unlock(mutex_held); |
| 1502 | } |
| 1503 | } |
| 1504 | |
| 1505 | void |
| 1506 | sorwakeup(struct socket * so) |
| 1507 | { |
| 1508 | if (sb_notify(&so->so_rcv)) |
| 1509 | sowakeup(so, &so->so_rcv); |
| 1510 | } |
| 1511 | |
| 1512 | void |
| 1513 | sowwakeup(struct socket * so) |
| 1514 | { |
| 1515 | if (sb_notify(&so->so_snd)) |
| 1516 | sowakeup(so, &so->so_snd); |
| 1517 | } |
| 1518 | #endif __APPLE__ |
| 1519 | |
| 1520 | /* |
| 1521 | * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. |
| 1522 | */ |
| 1523 | struct sockaddr * |
| 1524 | dup_sockaddr(sa, canwait) |
| 1525 | struct sockaddr *sa; |
| 1526 | int canwait; |
| 1527 | { |
| 1528 | struct sockaddr *sa2; |
| 1529 | |
| 1530 | MALLOC(sa2, struct sockaddr *, sa->sa_len, M_SONAME, |
| 1531 | canwait ? M_WAITOK : M_NOWAIT); |
| 1532 | if (sa2) |
| 1533 | bcopy(sa, sa2, sa->sa_len); |
| 1534 | return sa2; |
| 1535 | } |
| 1536 | |
| 1537 | /* |
| 1538 | * Create an external-format (``xsocket'') structure using the information |
| 1539 | * in the kernel-format socket structure pointed to by so. This is done |
| 1540 | * to reduce the spew of irrelevant information over this interface, |
| 1541 | * to isolate user code from changes in the kernel structure, and |
| 1542 | * potentially to provide information-hiding if we decide that |
| 1543 | * some of this information should be hidden from users. |
| 1544 | */ |
| 1545 | void |
| 1546 | sotoxsocket(struct socket *so, struct xsocket *xso) |
| 1547 | { |
| 1548 | xso->xso_len = sizeof *xso; |
| 1549 | xso->xso_so = so; |
| 1550 | xso->so_type = so->so_type; |
| 1551 | xso->so_options = so->so_options; |
| 1552 | xso->so_linger = so->so_linger; |
| 1553 | xso->so_state = so->so_state; |
| 1554 | xso->so_pcb = so->so_pcb; |
| 1555 | if (so->so_proto) { |
| 1556 | xso->xso_protocol = so->so_proto->pr_protocol; |
| 1557 | xso->xso_family = so->so_proto->pr_domain->dom_family; |
| 1558 | } |
| 1559 | else |
| 1560 | xso->xso_protocol = xso->xso_family = 0; |
| 1561 | xso->so_qlen = so->so_qlen; |
| 1562 | xso->so_incqlen = so->so_incqlen; |
| 1563 | xso->so_qlimit = so->so_qlimit; |
| 1564 | xso->so_timeo = so->so_timeo; |
| 1565 | xso->so_error = so->so_error; |
| 1566 | xso->so_pgid = so->so_pgid; |
| 1567 | xso->so_oobmark = so->so_oobmark; |
| 1568 | sbtoxsockbuf(&so->so_snd, &xso->so_snd); |
| 1569 | sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); |
| 1570 | xso->so_uid = so->so_uid; |
| 1571 | } |
| 1572 | |
| 1573 | /* |
| 1574 | * This does the same for sockbufs. Note that the xsockbuf structure, |
| 1575 | * since it is always embedded in a socket, does not include a self |
| 1576 | * pointer nor a length. We make this entry point public in case |
| 1577 | * some other mechanism needs it. |
| 1578 | */ |
| 1579 | void |
| 1580 | sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb) |
| 1581 | { |
| 1582 | xsb->sb_cc = sb->sb_cc; |
| 1583 | xsb->sb_hiwat = sb->sb_hiwat; |
| 1584 | xsb->sb_mbcnt = sb->sb_mbcnt; |
| 1585 | xsb->sb_mbmax = sb->sb_mbmax; |
| 1586 | xsb->sb_lowat = sb->sb_lowat; |
| 1587 | xsb->sb_flags = sb->sb_flags; |
| 1588 | xsb->sb_timeo = (u_long)(sb->sb_timeo.tv_sec * hz) + sb->sb_timeo.tv_usec / tick; |
| 1589 | if (xsb->sb_timeo == 0 && sb->sb_timeo.tv_usec != 0) |
| 1590 | xsb->sb_timeo = 1; |
| 1591 | } |
| 1592 | |
| 1593 | /* |
| 1594 | * Here is the definition of some of the basic objects in the kern.ipc |
| 1595 | * branch of the MIB. |
| 1596 | */ |
| 1597 | SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC"); |
| 1598 | |
| 1599 | /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */ |
| 1600 | static int dummy; |
| 1601 | SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, ""); |
| 1602 | |
| 1603 | SYSCTL_INT(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLFLAG_RW, |
| 1604 | &sb_max, 0, "Maximum socket buffer size"); |
| 1605 | SYSCTL_INT(_kern_ipc, OID_AUTO, maxsockets, CTLFLAG_RD, |
| 1606 | &maxsockets, 0, "Maximum number of sockets avaliable"); |
| 1607 | SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW, |
| 1608 | &sb_efficiency, 0, ""); |
| 1609 | SYSCTL_INT(_kern_ipc, KIPC_NMBCLUSTERS, nmbclusters, CTLFLAG_RD, &nmbclusters, 0, ""); |
| 1610 | |