]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2012 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | #include <vm/vm_page.h> | |
32 | #include <pexpert/pexpert.h> | |
33 | ||
34 | #include <i386/cpuid.h> | |
35 | ||
36 | static boolean_t cpuid_dbg | |
37 | #if DEBUG | |
38 | = TRUE; | |
39 | #else | |
40 | = FALSE; | |
41 | #endif | |
42 | #define DBG(x...) \ | |
43 | do { \ | |
44 | if (cpuid_dbg) \ | |
45 | kprintf(x); \ | |
46 | } while (0) \ | |
47 | ||
48 | #define min(a,b) ((a) < (b) ? (a) : (b)) | |
49 | #define quad(hi,lo) (((uint64_t)(hi)) << 32 | (lo)) | |
50 | ||
51 | /* Only for 32bit values */ | |
52 | #define bit32(n) (1U << (n)) | |
53 | #define bitmask32(h,l) ((bit32(h)|(bit32(h)-1)) & ~(bit32(l)-1)) | |
54 | #define bitfield32(x,h,l) ((((x) & bitmask32(h,l)) >> l)) | |
55 | ||
56 | /* | |
57 | * Leaf 2 cache descriptor encodings. | |
58 | */ | |
59 | typedef enum { | |
60 | _NULL_, /* NULL (empty) descriptor */ | |
61 | CACHE, /* Cache */ | |
62 | TLB, /* TLB */ | |
63 | STLB, /* Shared second-level unified TLB */ | |
64 | PREFETCH /* Prefetch size */ | |
65 | } cpuid_leaf2_desc_type_t; | |
66 | ||
67 | typedef enum { | |
68 | NA, /* Not Applicable */ | |
69 | FULLY, /* Fully-associative */ | |
70 | TRACE, /* Trace Cache (P4 only) */ | |
71 | INST, /* Instruction TLB */ | |
72 | DATA, /* Data TLB */ | |
73 | DATA0, /* Data TLB, 1st level */ | |
74 | DATA1, /* Data TLB, 2nd level */ | |
75 | L1, /* L1 (unified) cache */ | |
76 | L1_INST, /* L1 Instruction cache */ | |
77 | L1_DATA, /* L1 Data cache */ | |
78 | L2, /* L2 (unified) cache */ | |
79 | L3, /* L3 (unified) cache */ | |
80 | L2_2LINESECTOR, /* L2 (unified) cache with 2 lines per sector */ | |
81 | L3_2LINESECTOR, /* L3(unified) cache with 2 lines per sector */ | |
82 | SMALL, /* Small page TLB */ | |
83 | LARGE, /* Large page TLB */ | |
84 | BOTH /* Small and Large page TLB */ | |
85 | } cpuid_leaf2_qualifier_t; | |
86 | ||
87 | typedef struct cpuid_cache_descriptor { | |
88 | uint8_t value; /* descriptor code */ | |
89 | uint8_t type; /* cpuid_leaf2_desc_type_t */ | |
90 | uint8_t level; /* level of cache/TLB hierachy */ | |
91 | uint8_t ways; /* wayness of cache */ | |
92 | uint16_t size; /* cachesize or TLB pagesize */ | |
93 | uint16_t entries; /* number of TLB entries or linesize */ | |
94 | } cpuid_cache_descriptor_t; | |
95 | ||
96 | /* | |
97 | * These multipliers are used to encode 1*K .. 64*M in a 16 bit size field | |
98 | */ | |
99 | #define K (1) | |
100 | #define M (1024) | |
101 | ||
102 | /* | |
103 | * Intel cache descriptor table: | |
104 | */ | |
105 | static cpuid_cache_descriptor_t intel_cpuid_leaf2_descriptor_table[] = { | |
106 | // ------------------------------------------------------- | |
107 | // value type level ways size entries | |
108 | // ------------------------------------------------------- | |
109 | { 0x00, _NULL_, NA, NA, NA, NA }, | |
110 | { 0x01, TLB, INST, 4, SMALL, 32 }, | |
111 | { 0x02, TLB, INST, FULLY, LARGE, 2 }, | |
112 | { 0x03, TLB, DATA, 4, SMALL, 64 }, | |
113 | { 0x04, TLB, DATA, 4, LARGE, 8 }, | |
114 | { 0x05, TLB, DATA1, 4, LARGE, 32 }, | |
115 | { 0x06, CACHE, L1_INST, 4, 8*K, 32 }, | |
116 | { 0x08, CACHE, L1_INST, 4, 16*K, 32 }, | |
117 | { 0x09, CACHE, L1_INST, 4, 32*K, 64 }, | |
118 | { 0x0A, CACHE, L1_DATA, 2, 8*K, 32 }, | |
119 | { 0x0B, TLB, INST, 4, LARGE, 4 }, | |
120 | { 0x0C, CACHE, L1_DATA, 4, 16*K, 32 }, | |
121 | { 0x0D, CACHE, L1_DATA, 4, 16*K, 64 }, | |
122 | { 0x0E, CACHE, L1_DATA, 6, 24*K, 64 }, | |
123 | { 0x21, CACHE, L2, 8, 256*K, 64 }, | |
124 | { 0x22, CACHE, L3_2LINESECTOR, 4, 512*K, 64 }, | |
125 | { 0x23, CACHE, L3_2LINESECTOR, 8, 1*M, 64 }, | |
126 | { 0x25, CACHE, L3_2LINESECTOR, 8, 2*M, 64 }, | |
127 | { 0x29, CACHE, L3_2LINESECTOR, 8, 4*M, 64 }, | |
128 | { 0x2C, CACHE, L1_DATA, 8, 32*K, 64 }, | |
129 | { 0x30, CACHE, L1_INST, 8, 32*K, 64 }, | |
130 | { 0x40, CACHE, L2, NA, 0, NA }, | |
131 | { 0x41, CACHE, L2, 4, 128*K, 32 }, | |
132 | { 0x42, CACHE, L2, 4, 256*K, 32 }, | |
133 | { 0x43, CACHE, L2, 4, 512*K, 32 }, | |
134 | { 0x44, CACHE, L2, 4, 1*M, 32 }, | |
135 | { 0x45, CACHE, L2, 4, 2*M, 32 }, | |
136 | { 0x46, CACHE, L3, 4, 4*M, 64 }, | |
137 | { 0x47, CACHE, L3, 8, 8*M, 64 }, | |
138 | { 0x48, CACHE, L2, 12, 3*M, 64 }, | |
139 | { 0x49, CACHE, L2, 16, 4*M, 64 }, | |
140 | { 0x4A, CACHE, L3, 12, 6*M, 64 }, | |
141 | { 0x4B, CACHE, L3, 16, 8*M, 64 }, | |
142 | { 0x4C, CACHE, L3, 12, 12*M, 64 }, | |
143 | { 0x4D, CACHE, L3, 16, 16*M, 64 }, | |
144 | { 0x4E, CACHE, L2, 24, 6*M, 64 }, | |
145 | { 0x4F, TLB, INST, NA, SMALL, 32 }, | |
146 | { 0x50, TLB, INST, NA, BOTH, 64 }, | |
147 | { 0x51, TLB, INST, NA, BOTH, 128 }, | |
148 | { 0x52, TLB, INST, NA, BOTH, 256 }, | |
149 | { 0x55, TLB, INST, FULLY, BOTH, 7 }, | |
150 | { 0x56, TLB, DATA0, 4, LARGE, 16 }, | |
151 | { 0x57, TLB, DATA0, 4, SMALL, 16 }, | |
152 | { 0x59, TLB, DATA0, FULLY, SMALL, 16 }, | |
153 | { 0x5A, TLB, DATA0, 4, LARGE, 32 }, | |
154 | { 0x5B, TLB, DATA, NA, BOTH, 64 }, | |
155 | { 0x5C, TLB, DATA, NA, BOTH, 128 }, | |
156 | { 0x5D, TLB, DATA, NA, BOTH, 256 }, | |
157 | { 0x60, CACHE, L1, 16*K, 8, 64 }, | |
158 | { 0x61, CACHE, L1, 4, 8*K, 64 }, | |
159 | { 0x62, CACHE, L1, 4, 16*K, 64 }, | |
160 | { 0x63, CACHE, L1, 4, 32*K, 64 }, | |
161 | { 0x70, CACHE, TRACE, 8, 12*K, NA }, | |
162 | { 0x71, CACHE, TRACE, 8, 16*K, NA }, | |
163 | { 0x72, CACHE, TRACE, 8, 32*K, NA }, | |
164 | { 0x76, TLB, INST, NA, BOTH, 8 }, | |
165 | { 0x78, CACHE, L2, 4, 1*M, 64 }, | |
166 | { 0x79, CACHE, L2_2LINESECTOR, 8, 128*K, 64 }, | |
167 | { 0x7A, CACHE, L2_2LINESECTOR, 8, 256*K, 64 }, | |
168 | { 0x7B, CACHE, L2_2LINESECTOR, 8, 512*K, 64 }, | |
169 | { 0x7C, CACHE, L2_2LINESECTOR, 8, 1*M, 64 }, | |
170 | { 0x7D, CACHE, L2, 8, 2*M, 64 }, | |
171 | { 0x7F, CACHE, L2, 2, 512*K, 64 }, | |
172 | { 0x80, CACHE, L2, 8, 512*K, 64 }, | |
173 | { 0x82, CACHE, L2, 8, 256*K, 32 }, | |
174 | { 0x83, CACHE, L2, 8, 512*K, 32 }, | |
175 | { 0x84, CACHE, L2, 8, 1*M, 32 }, | |
176 | { 0x85, CACHE, L2, 8, 2*M, 32 }, | |
177 | { 0x86, CACHE, L2, 4, 512*K, 64 }, | |
178 | { 0x87, CACHE, L2, 8, 1*M, 64 }, | |
179 | { 0xB0, TLB, INST, 4, SMALL, 128 }, | |
180 | { 0xB1, TLB, INST, 4, LARGE, 8 }, | |
181 | { 0xB2, TLB, INST, 4, SMALL, 64 }, | |
182 | { 0xB3, TLB, DATA, 4, SMALL, 128 }, | |
183 | { 0xB4, TLB, DATA1, 4, SMALL, 256 }, | |
184 | { 0xB5, TLB, DATA1, 8, SMALL, 64 }, | |
185 | { 0xB6, TLB, DATA1, 8, SMALL, 128 }, | |
186 | { 0xBA, TLB, DATA1, 4, BOTH, 64 }, | |
187 | { 0xC1, STLB, DATA1, 8, SMALL, 1024}, | |
188 | { 0xCA, STLB, DATA1, 4, SMALL, 512 }, | |
189 | { 0xD0, CACHE, L3, 4, 512*K, 64 }, | |
190 | { 0xD1, CACHE, L3, 4, 1*M, 64 }, | |
191 | { 0xD2, CACHE, L3, 4, 2*M, 64 }, | |
192 | { 0xD3, CACHE, L3, 4, 4*M, 64 }, | |
193 | { 0xD4, CACHE, L3, 4, 8*M, 64 }, | |
194 | { 0xD6, CACHE, L3, 8, 1*M, 64 }, | |
195 | { 0xD7, CACHE, L3, 8, 2*M, 64 }, | |
196 | { 0xD8, CACHE, L3, 8, 4*M, 64 }, | |
197 | { 0xD9, CACHE, L3, 8, 8*M, 64 }, | |
198 | { 0xDA, CACHE, L3, 8, 12*M, 64 }, | |
199 | { 0xDC, CACHE, L3, 12, 1536*K, 64 }, | |
200 | { 0xDD, CACHE, L3, 12, 3*M, 64 }, | |
201 | { 0xDE, CACHE, L3, 12, 6*M, 64 }, | |
202 | { 0xDF, CACHE, L3, 12, 12*M, 64 }, | |
203 | { 0xE0, CACHE, L3, 12, 18*M, 64 }, | |
204 | { 0xE2, CACHE, L3, 16, 2*M, 64 }, | |
205 | { 0xE3, CACHE, L3, 16, 4*M, 64 }, | |
206 | { 0xE4, CACHE, L3, 16, 8*M, 64 }, | |
207 | { 0xE5, CACHE, L3, 16, 16*M, 64 }, | |
208 | { 0xE6, CACHE, L3, 16, 24*M, 64 }, | |
209 | { 0xF0, PREFETCH, NA, NA, 64, NA }, | |
210 | { 0xF1, PREFETCH, NA, NA, 128, NA }, | |
211 | { 0xFF, CACHE, NA, NA, 0, NA } | |
212 | }; | |
213 | #define INTEL_LEAF2_DESC_NUM (sizeof(intel_cpuid_leaf2_descriptor_table) / \ | |
214 | sizeof(cpuid_cache_descriptor_t)) | |
215 | ||
216 | static inline cpuid_cache_descriptor_t * | |
217 | cpuid_leaf2_find(uint8_t value) | |
218 | { | |
219 | unsigned int i; | |
220 | ||
221 | for (i = 0; i < INTEL_LEAF2_DESC_NUM; i++) | |
222 | if (intel_cpuid_leaf2_descriptor_table[i].value == value) | |
223 | return &intel_cpuid_leaf2_descriptor_table[i]; | |
224 | return NULL; | |
225 | } | |
226 | ||
227 | /* | |
228 | * CPU identification routines. | |
229 | */ | |
230 | ||
231 | static i386_cpu_info_t cpuid_cpu_info; | |
232 | static i386_cpu_info_t *cpuid_cpu_infop = NULL; | |
233 | ||
234 | static void cpuid_fn(uint32_t selector, uint32_t *result) | |
235 | { | |
236 | do_cpuid(selector, result); | |
237 | DBG("cpuid_fn(0x%08x) eax:0x%08x ebx:0x%08x ecx:0x%08x edx:0x%08x\n", | |
238 | selector, result[0], result[1], result[2], result[3]); | |
239 | } | |
240 | ||
241 | static const char *cache_type_str[LCACHE_MAX] = { | |
242 | "Lnone", "L1I", "L1D", "L2U", "L3U" | |
243 | }; | |
244 | ||
245 | /* this function is Intel-specific */ | |
246 | static void | |
247 | cpuid_set_cache_info( i386_cpu_info_t * info_p ) | |
248 | { | |
249 | uint32_t cpuid_result[4]; | |
250 | uint32_t reg[4]; | |
251 | uint32_t index; | |
252 | uint32_t linesizes[LCACHE_MAX]; | |
253 | unsigned int i; | |
254 | unsigned int j; | |
255 | boolean_t cpuid_deterministic_supported = FALSE; | |
256 | ||
257 | DBG("cpuid_set_cache_info(%p)\n", info_p); | |
258 | ||
259 | bzero( linesizes, sizeof(linesizes) ); | |
260 | ||
261 | /* Get processor cache descriptor info using leaf 2. We don't use | |
262 | * this internally, but must publish it for KEXTs. | |
263 | */ | |
264 | cpuid_fn(2, cpuid_result); | |
265 | for (j = 0; j < 4; j++) { | |
266 | if ((cpuid_result[j] >> 31) == 1) /* bit31 is validity */ | |
267 | continue; | |
268 | ((uint32_t *) info_p->cache_info)[j] = cpuid_result[j]; | |
269 | } | |
270 | /* first byte gives number of cpuid calls to get all descriptors */ | |
271 | for (i = 1; i < info_p->cache_info[0]; i++) { | |
272 | if (i*16 > sizeof(info_p->cache_info)) | |
273 | break; | |
274 | cpuid_fn(2, cpuid_result); | |
275 | for (j = 0; j < 4; j++) { | |
276 | if ((cpuid_result[j] >> 31) == 1) | |
277 | continue; | |
278 | ((uint32_t *) info_p->cache_info)[4*i+j] = | |
279 | cpuid_result[j]; | |
280 | } | |
281 | } | |
282 | ||
283 | /* | |
284 | * Get cache info using leaf 4, the "deterministic cache parameters." | |
285 | * Most processors Mac OS X supports implement this flavor of CPUID. | |
286 | * Loop over each cache on the processor. | |
287 | */ | |
288 | cpuid_fn(0, cpuid_result); | |
289 | if (cpuid_result[eax] >= 4) | |
290 | cpuid_deterministic_supported = TRUE; | |
291 | ||
292 | for (index = 0; cpuid_deterministic_supported; index++) { | |
293 | cache_type_t type = Lnone; | |
294 | uint32_t cache_type; | |
295 | uint32_t cache_level; | |
296 | uint32_t cache_sharing; | |
297 | uint32_t cache_linesize; | |
298 | uint32_t cache_sets; | |
299 | uint32_t cache_associativity; | |
300 | uint32_t cache_size; | |
301 | uint32_t cache_partitions; | |
302 | uint32_t colors; | |
303 | ||
304 | reg[eax] = 4; /* cpuid request 4 */ | |
305 | reg[ecx] = index; /* index starting at 0 */ | |
306 | cpuid(reg); | |
307 | DBG("cpuid(4) index=%d eax=0x%x\n", index, reg[eax]); | |
308 | cache_type = bitfield32(reg[eax], 4, 0); | |
309 | if (cache_type == 0) | |
310 | break; /* no more caches */ | |
311 | cache_level = bitfield32(reg[eax], 7, 5); | |
312 | cache_sharing = bitfield32(reg[eax], 25, 14) + 1; | |
313 | info_p->cpuid_cores_per_package | |
314 | = bitfield32(reg[eax], 31, 26) + 1; | |
315 | cache_linesize = bitfield32(reg[ebx], 11, 0) + 1; | |
316 | cache_partitions = bitfield32(reg[ebx], 21, 12) + 1; | |
317 | cache_associativity = bitfield32(reg[ebx], 31, 22) + 1; | |
318 | cache_sets = bitfield32(reg[ecx], 31, 0) + 1; | |
319 | ||
320 | /* Map type/levels returned by CPUID into cache_type_t */ | |
321 | switch (cache_level) { | |
322 | case 1: | |
323 | type = cache_type == 1 ? L1D : | |
324 | cache_type == 2 ? L1I : | |
325 | Lnone; | |
326 | break; | |
327 | case 2: | |
328 | type = cache_type == 3 ? L2U : | |
329 | Lnone; | |
330 | break; | |
331 | case 3: | |
332 | type = cache_type == 3 ? L3U : | |
333 | Lnone; | |
334 | break; | |
335 | default: | |
336 | type = Lnone; | |
337 | } | |
338 | ||
339 | /* The total size of a cache is: | |
340 | * ( linesize * sets * associativity * partitions ) | |
341 | */ | |
342 | if (type != Lnone) { | |
343 | cache_size = cache_linesize * cache_sets * | |
344 | cache_associativity * cache_partitions; | |
345 | info_p->cache_size[type] = cache_size; | |
346 | info_p->cache_sharing[type] = cache_sharing; | |
347 | info_p->cache_partitions[type] = cache_partitions; | |
348 | linesizes[type] = cache_linesize; | |
349 | ||
350 | DBG(" cache_size[%s] : %d\n", | |
351 | cache_type_str[type], cache_size); | |
352 | DBG(" cache_sharing[%s] : %d\n", | |
353 | cache_type_str[type], cache_sharing); | |
354 | DBG(" cache_partitions[%s]: %d\n", | |
355 | cache_type_str[type], cache_partitions); | |
356 | ||
357 | /* | |
358 | * Overwrite associativity determined via | |
359 | * CPUID.0x80000006 -- this leaf is more | |
360 | * accurate | |
361 | */ | |
362 | if (type == L2U) | |
363 | info_p->cpuid_cache_L2_associativity = cache_associativity; | |
364 | /* | |
365 | * Adjust #sets to account for the N CBos | |
366 | * This is because addresses are hashed across CBos | |
367 | */ | |
368 | if (type == L3U && info_p->core_count) | |
369 | cache_sets = cache_sets / info_p->core_count; | |
370 | ||
371 | /* Compute the number of page colors for this cache, | |
372 | * which is: | |
373 | * ( linesize * sets ) / page_size | |
374 | * | |
375 | * To help visualize this, consider two views of a | |
376 | * physical address. To the cache, it is composed | |
377 | * of a line offset, a set selector, and a tag. | |
378 | * To VM, it is composed of a page offset, a page | |
379 | * color, and other bits in the pageframe number: | |
380 | * | |
381 | * +-----------------+---------+--------+ | |
382 | * cache: | tag | set | offset | | |
383 | * +-----------------+---------+--------+ | |
384 | * | |
385 | * +-----------------+-------+----------+ | |
386 | * VM: | don't care | color | pg offset| | |
387 | * +-----------------+-------+----------+ | |
388 | * | |
389 | * The color is those bits in (set+offset) not covered | |
390 | * by the page offset. | |
391 | */ | |
392 | colors = ( cache_linesize * cache_sets ) >> 12; | |
393 | ||
394 | if ( colors > vm_cache_geometry_colors ) | |
395 | vm_cache_geometry_colors = colors; | |
396 | } | |
397 | } | |
398 | DBG(" vm_cache_geometry_colors: %d\n", vm_cache_geometry_colors); | |
399 | ||
400 | /* | |
401 | * If deterministic cache parameters are not available, use | |
402 | * something else | |
403 | */ | |
404 | if (info_p->cpuid_cores_per_package == 0) { | |
405 | info_p->cpuid_cores_per_package = 1; | |
406 | ||
407 | /* cpuid define in 1024 quantities */ | |
408 | info_p->cache_size[L2U] = info_p->cpuid_cache_size * 1024; | |
409 | info_p->cache_sharing[L2U] = 1; | |
410 | info_p->cache_partitions[L2U] = 1; | |
411 | ||
412 | linesizes[L2U] = info_p->cpuid_cache_linesize; | |
413 | ||
414 | DBG(" cache_size[L2U] : %d\n", | |
415 | info_p->cache_size[L2U]); | |
416 | DBG(" cache_sharing[L2U] : 1\n"); | |
417 | DBG(" cache_partitions[L2U]: 1\n"); | |
418 | DBG(" linesizes[L2U] : %d\n", | |
419 | info_p->cpuid_cache_linesize); | |
420 | } | |
421 | ||
422 | /* | |
423 | * What linesize to publish? We use the L2 linesize if any, | |
424 | * else the L1D. | |
425 | */ | |
426 | if ( linesizes[L2U] ) | |
427 | info_p->cache_linesize = linesizes[L2U]; | |
428 | else if (linesizes[L1D]) | |
429 | info_p->cache_linesize = linesizes[L1D]; | |
430 | else panic("no linesize"); | |
431 | DBG(" cache_linesize : %d\n", info_p->cache_linesize); | |
432 | ||
433 | /* | |
434 | * Extract and publish TLB information from Leaf 2 descriptors. | |
435 | */ | |
436 | DBG(" %ld leaf2 descriptors:\n", sizeof(info_p->cache_info)); | |
437 | for (i = 1; i < sizeof(info_p->cache_info); i++) { | |
438 | cpuid_cache_descriptor_t *descp; | |
439 | int id; | |
440 | int level; | |
441 | int page; | |
442 | ||
443 | DBG(" 0x%02x", info_p->cache_info[i]); | |
444 | descp = cpuid_leaf2_find(info_p->cache_info[i]); | |
445 | if (descp == NULL) | |
446 | continue; | |
447 | ||
448 | switch (descp->type) { | |
449 | case TLB: | |
450 | page = (descp->size == SMALL) ? TLB_SMALL : TLB_LARGE; | |
451 | /* determine I or D: */ | |
452 | switch (descp->level) { | |
453 | case INST: | |
454 | id = TLB_INST; | |
455 | break; | |
456 | case DATA: | |
457 | case DATA0: | |
458 | case DATA1: | |
459 | id = TLB_DATA; | |
460 | break; | |
461 | default: | |
462 | continue; | |
463 | } | |
464 | /* determine level: */ | |
465 | switch (descp->level) { | |
466 | case DATA1: | |
467 | level = 1; | |
468 | break; | |
469 | default: | |
470 | level = 0; | |
471 | } | |
472 | info_p->cpuid_tlb[id][page][level] = descp->entries; | |
473 | break; | |
474 | case STLB: | |
475 | info_p->cpuid_stlb = descp->entries; | |
476 | } | |
477 | } | |
478 | DBG("\n"); | |
479 | } | |
480 | ||
481 | static void | |
482 | cpuid_set_generic_info(i386_cpu_info_t *info_p) | |
483 | { | |
484 | uint32_t reg[4]; | |
485 | char str[128], *p; | |
486 | ||
487 | DBG("cpuid_set_generic_info(%p)\n", info_p); | |
488 | ||
489 | /* do cpuid 0 to get vendor */ | |
490 | cpuid_fn(0, reg); | |
491 | info_p->cpuid_max_basic = reg[eax]; | |
492 | bcopy((char *)®[ebx], &info_p->cpuid_vendor[0], 4); /* ug */ | |
493 | bcopy((char *)®[ecx], &info_p->cpuid_vendor[8], 4); | |
494 | bcopy((char *)®[edx], &info_p->cpuid_vendor[4], 4); | |
495 | info_p->cpuid_vendor[12] = 0; | |
496 | ||
497 | /* get extended cpuid results */ | |
498 | cpuid_fn(0x80000000, reg); | |
499 | info_p->cpuid_max_ext = reg[eax]; | |
500 | ||
501 | /* check to see if we can get brand string */ | |
502 | if (info_p->cpuid_max_ext >= 0x80000004) { | |
503 | /* | |
504 | * The brand string 48 bytes (max), guaranteed to | |
505 | * be NUL terminated. | |
506 | */ | |
507 | cpuid_fn(0x80000002, reg); | |
508 | bcopy((char *)reg, &str[0], 16); | |
509 | cpuid_fn(0x80000003, reg); | |
510 | bcopy((char *)reg, &str[16], 16); | |
511 | cpuid_fn(0x80000004, reg); | |
512 | bcopy((char *)reg, &str[32], 16); | |
513 | for (p = str; *p != '\0'; p++) { | |
514 | if (*p != ' ') break; | |
515 | } | |
516 | strlcpy(info_p->cpuid_brand_string, | |
517 | p, sizeof(info_p->cpuid_brand_string)); | |
518 | ||
519 | if (!strncmp(info_p->cpuid_brand_string, CPUID_STRING_UNKNOWN, | |
520 | min(sizeof(info_p->cpuid_brand_string), | |
521 | strlen(CPUID_STRING_UNKNOWN) + 1))) { | |
522 | /* | |
523 | * This string means we have a firmware-programmable brand string, | |
524 | * and the firmware couldn't figure out what sort of CPU we have. | |
525 | */ | |
526 | info_p->cpuid_brand_string[0] = '\0'; | |
527 | } | |
528 | } | |
529 | ||
530 | /* Get cache and addressing info. */ | |
531 | if (info_p->cpuid_max_ext >= 0x80000006) { | |
532 | uint32_t assoc; | |
533 | cpuid_fn(0x80000006, reg); | |
534 | info_p->cpuid_cache_linesize = bitfield32(reg[ecx], 7, 0); | |
535 | assoc = bitfield32(reg[ecx],15,12); | |
536 | /* | |
537 | * L2 associativity is encoded, though in an insufficiently | |
538 | * descriptive fashion, e.g. 24-way is mapped to 16-way. | |
539 | * Represent a fully associative cache as 0xFFFF. | |
540 | * Overwritten by associativity as determined via CPUID.4 | |
541 | * if available. | |
542 | */ | |
543 | if (assoc == 6) | |
544 | assoc = 8; | |
545 | else if (assoc == 8) | |
546 | assoc = 16; | |
547 | else if (assoc == 0xF) | |
548 | assoc = 0xFFFF; | |
549 | info_p->cpuid_cache_L2_associativity = assoc; | |
550 | info_p->cpuid_cache_size = bitfield32(reg[ecx],31,16); | |
551 | cpuid_fn(0x80000008, reg); | |
552 | info_p->cpuid_address_bits_physical = | |
553 | bitfield32(reg[eax], 7, 0); | |
554 | info_p->cpuid_address_bits_virtual = | |
555 | bitfield32(reg[eax],15, 8); | |
556 | } | |
557 | ||
558 | /* | |
559 | * Get processor signature and decode | |
560 | * and bracket this with the approved procedure for reading the | |
561 | * the microcode version number a.k.a. signature a.k.a. BIOS ID | |
562 | */ | |
563 | wrmsr64(MSR_IA32_BIOS_SIGN_ID, 0); | |
564 | cpuid_fn(1, reg); | |
565 | info_p->cpuid_microcode_version = | |
566 | (uint32_t) (rdmsr64(MSR_IA32_BIOS_SIGN_ID) >> 32); | |
567 | info_p->cpuid_signature = reg[eax]; | |
568 | info_p->cpuid_stepping = bitfield32(reg[eax], 3, 0); | |
569 | info_p->cpuid_model = bitfield32(reg[eax], 7, 4); | |
570 | info_p->cpuid_family = bitfield32(reg[eax], 11, 8); | |
571 | info_p->cpuid_type = bitfield32(reg[eax], 13, 12); | |
572 | info_p->cpuid_extmodel = bitfield32(reg[eax], 19, 16); | |
573 | info_p->cpuid_extfamily = bitfield32(reg[eax], 27, 20); | |
574 | info_p->cpuid_brand = bitfield32(reg[ebx], 7, 0); | |
575 | info_p->cpuid_features = quad(reg[ecx], reg[edx]); | |
576 | ||
577 | /* Get "processor flag"; necessary for microcode update matching */ | |
578 | info_p->cpuid_processor_flag = (rdmsr64(MSR_IA32_PLATFORM_ID)>> 50) & 0x7; | |
579 | ||
580 | /* Fold extensions into family/model */ | |
581 | if (info_p->cpuid_family == 0x0f) | |
582 | info_p->cpuid_family += info_p->cpuid_extfamily; | |
583 | if (info_p->cpuid_family == 0x0f || info_p->cpuid_family == 0x06) | |
584 | info_p->cpuid_model += (info_p->cpuid_extmodel << 4); | |
585 | ||
586 | if (info_p->cpuid_features & CPUID_FEATURE_HTT) | |
587 | info_p->cpuid_logical_per_package = | |
588 | bitfield32(reg[ebx], 23, 16); | |
589 | else | |
590 | info_p->cpuid_logical_per_package = 1; | |
591 | ||
592 | if (info_p->cpuid_max_ext >= 0x80000001) { | |
593 | cpuid_fn(0x80000001, reg); | |
594 | info_p->cpuid_extfeatures = | |
595 | quad(reg[ecx], reg[edx]); | |
596 | } | |
597 | ||
598 | DBG(" max_basic : %d\n", info_p->cpuid_max_basic); | |
599 | DBG(" max_ext : 0x%08x\n", info_p->cpuid_max_ext); | |
600 | DBG(" vendor : %s\n", info_p->cpuid_vendor); | |
601 | DBG(" brand_string : %s\n", info_p->cpuid_brand_string); | |
602 | DBG(" signature : 0x%08x\n", info_p->cpuid_signature); | |
603 | DBG(" stepping : %d\n", info_p->cpuid_stepping); | |
604 | DBG(" model : %d\n", info_p->cpuid_model); | |
605 | DBG(" family : %d\n", info_p->cpuid_family); | |
606 | DBG(" type : %d\n", info_p->cpuid_type); | |
607 | DBG(" extmodel : %d\n", info_p->cpuid_extmodel); | |
608 | DBG(" extfamily : %d\n", info_p->cpuid_extfamily); | |
609 | DBG(" brand : %d\n", info_p->cpuid_brand); | |
610 | DBG(" features : 0x%016llx\n", info_p->cpuid_features); | |
611 | DBG(" extfeatures : 0x%016llx\n", info_p->cpuid_extfeatures); | |
612 | DBG(" logical_per_package : %d\n", info_p->cpuid_logical_per_package); | |
613 | DBG(" microcode_version : 0x%08x\n", info_p->cpuid_microcode_version); | |
614 | ||
615 | /* Fold in the Invariant TSC feature bit, if present */ | |
616 | if (info_p->cpuid_max_ext >= 0x80000007) { | |
617 | cpuid_fn(0x80000007, reg); | |
618 | info_p->cpuid_extfeatures |= | |
619 | reg[edx] & (uint32_t)CPUID_EXTFEATURE_TSCI; | |
620 | DBG(" extfeatures : 0x%016llx\n", | |
621 | info_p->cpuid_extfeatures); | |
622 | } | |
623 | ||
624 | if (info_p->cpuid_max_basic >= 0x5) { | |
625 | cpuid_mwait_leaf_t *cmp = &info_p->cpuid_mwait_leaf; | |
626 | ||
627 | /* | |
628 | * Extract the Monitor/Mwait Leaf info: | |
629 | */ | |
630 | cpuid_fn(5, reg); | |
631 | cmp->linesize_min = reg[eax]; | |
632 | cmp->linesize_max = reg[ebx]; | |
633 | cmp->extensions = reg[ecx]; | |
634 | cmp->sub_Cstates = reg[edx]; | |
635 | info_p->cpuid_mwait_leafp = cmp; | |
636 | ||
637 | DBG(" Monitor/Mwait Leaf:\n"); | |
638 | DBG(" linesize_min : %d\n", cmp->linesize_min); | |
639 | DBG(" linesize_max : %d\n", cmp->linesize_max); | |
640 | DBG(" extensions : %d\n", cmp->extensions); | |
641 | DBG(" sub_Cstates : 0x%08x\n", cmp->sub_Cstates); | |
642 | } | |
643 | ||
644 | if (info_p->cpuid_max_basic >= 0x6) { | |
645 | cpuid_thermal_leaf_t *ctp = &info_p->cpuid_thermal_leaf; | |
646 | ||
647 | /* | |
648 | * The thermal and Power Leaf: | |
649 | */ | |
650 | cpuid_fn(6, reg); | |
651 | ctp->sensor = bitfield32(reg[eax], 0, 0); | |
652 | ctp->dynamic_acceleration = bitfield32(reg[eax], 1, 1); | |
653 | ctp->invariant_APIC_timer = bitfield32(reg[eax], 2, 2); | |
654 | ctp->core_power_limits = bitfield32(reg[eax], 4, 4); | |
655 | ctp->fine_grain_clock_mod = bitfield32(reg[eax], 5, 5); | |
656 | ctp->package_thermal_intr = bitfield32(reg[eax], 6, 6); | |
657 | ctp->thresholds = bitfield32(reg[ebx], 3, 0); | |
658 | ctp->ACNT_MCNT = bitfield32(reg[ecx], 0, 0); | |
659 | ctp->hardware_feedback = bitfield32(reg[ecx], 1, 1); | |
660 | ctp->energy_policy = bitfield32(reg[ecx], 3, 3); | |
661 | info_p->cpuid_thermal_leafp = ctp; | |
662 | ||
663 | DBG(" Thermal/Power Leaf:\n"); | |
664 | DBG(" sensor : %d\n", ctp->sensor); | |
665 | DBG(" dynamic_acceleration : %d\n", ctp->dynamic_acceleration); | |
666 | DBG(" invariant_APIC_timer : %d\n", ctp->invariant_APIC_timer); | |
667 | DBG(" core_power_limits : %d\n", ctp->core_power_limits); | |
668 | DBG(" fine_grain_clock_mod : %d\n", ctp->fine_grain_clock_mod); | |
669 | DBG(" package_thermal_intr : %d\n", ctp->package_thermal_intr); | |
670 | DBG(" thresholds : %d\n", ctp->thresholds); | |
671 | DBG(" ACNT_MCNT : %d\n", ctp->ACNT_MCNT); | |
672 | DBG(" ACNT2 : %d\n", ctp->hardware_feedback); | |
673 | DBG(" energy_policy : %d\n", ctp->energy_policy); | |
674 | } | |
675 | ||
676 | if (info_p->cpuid_max_basic >= 0xa) { | |
677 | cpuid_arch_perf_leaf_t *capp = &info_p->cpuid_arch_perf_leaf; | |
678 | ||
679 | /* | |
680 | * Architectural Performance Monitoring Leaf: | |
681 | */ | |
682 | cpuid_fn(0xa, reg); | |
683 | capp->version = bitfield32(reg[eax], 7, 0); | |
684 | capp->number = bitfield32(reg[eax], 15, 8); | |
685 | capp->width = bitfield32(reg[eax], 23, 16); | |
686 | capp->events_number = bitfield32(reg[eax], 31, 24); | |
687 | capp->events = reg[ebx]; | |
688 | capp->fixed_number = bitfield32(reg[edx], 4, 0); | |
689 | capp->fixed_width = bitfield32(reg[edx], 12, 5); | |
690 | info_p->cpuid_arch_perf_leafp = capp; | |
691 | ||
692 | DBG(" Architectural Performance Monitoring Leaf:\n"); | |
693 | DBG(" version : %d\n", capp->version); | |
694 | DBG(" number : %d\n", capp->number); | |
695 | DBG(" width : %d\n", capp->width); | |
696 | DBG(" events_number : %d\n", capp->events_number); | |
697 | DBG(" events : %d\n", capp->events); | |
698 | DBG(" fixed_number : %d\n", capp->fixed_number); | |
699 | DBG(" fixed_width : %d\n", capp->fixed_width); | |
700 | } | |
701 | ||
702 | if (info_p->cpuid_max_basic >= 0xd) { | |
703 | cpuid_xsave_leaf_t *xsp; | |
704 | /* | |
705 | * XSAVE Features: | |
706 | */ | |
707 | xsp = &info_p->cpuid_xsave_leaf[0]; | |
708 | info_p->cpuid_xsave_leafp = xsp; | |
709 | xsp->extended_state[eax] = 0xd; | |
710 | xsp->extended_state[ecx] = 0; | |
711 | cpuid(xsp->extended_state); | |
712 | DBG(" XSAVE Main leaf:\n"); | |
713 | DBG(" EAX : 0x%x\n", xsp->extended_state[eax]); | |
714 | DBG(" EBX : 0x%x\n", xsp->extended_state[ebx]); | |
715 | DBG(" ECX : 0x%x\n", xsp->extended_state[ecx]); | |
716 | DBG(" EDX : 0x%x\n", xsp->extended_state[edx]); | |
717 | ||
718 | xsp = &info_p->cpuid_xsave_leaf[1]; | |
719 | xsp->extended_state[eax] = 0xd; | |
720 | xsp->extended_state[ecx] = 1; | |
721 | cpuid(xsp->extended_state); | |
722 | DBG(" XSAVE Sub-leaf1:\n"); | |
723 | DBG(" EAX : 0x%x\n", xsp->extended_state[eax]); | |
724 | DBG(" EBX : 0x%x\n", xsp->extended_state[ebx]); | |
725 | DBG(" ECX : 0x%x\n", xsp->extended_state[ecx]); | |
726 | DBG(" EDX : 0x%x\n", xsp->extended_state[edx]); | |
727 | ||
728 | } | |
729 | ||
730 | if (info_p->cpuid_model >= CPUID_MODEL_IVYBRIDGE) { | |
731 | /* | |
732 | * Leaf7 Features: | |
733 | */ | |
734 | cpuid_fn(0x7, reg); | |
735 | info_p->cpuid_leaf7_features = quad(reg[ecx], reg[ebx]); | |
736 | ||
737 | DBG(" Feature Leaf7:\n"); | |
738 | DBG(" EBX : 0x%x\n", reg[ebx]); | |
739 | DBG(" ECX : 0x%x\n", reg[ecx]); | |
740 | } | |
741 | ||
742 | if (info_p->cpuid_max_basic >= 0x15) { | |
743 | /* | |
744 | * TCS/CCC frequency leaf: | |
745 | */ | |
746 | cpuid_fn(0x15, reg); | |
747 | info_p->cpuid_tsc_leaf.denominator = reg[eax]; | |
748 | info_p->cpuid_tsc_leaf.numerator = reg[ebx]; | |
749 | ||
750 | DBG(" TSC/CCC Information Leaf:\n"); | |
751 | DBG(" numerator : 0x%x\n", reg[ebx]); | |
752 | DBG(" denominator : 0x%x\n", reg[eax]); | |
753 | } | |
754 | ||
755 | return; | |
756 | } | |
757 | ||
758 | static uint32_t | |
759 | cpuid_set_cpufamily(i386_cpu_info_t *info_p) | |
760 | { | |
761 | uint32_t cpufamily = CPUFAMILY_UNKNOWN; | |
762 | ||
763 | switch (info_p->cpuid_family) { | |
764 | case 6: | |
765 | switch (info_p->cpuid_model) { | |
766 | case 23: | |
767 | cpufamily = CPUFAMILY_INTEL_PENRYN; | |
768 | break; | |
769 | case CPUID_MODEL_NEHALEM: | |
770 | case CPUID_MODEL_FIELDS: | |
771 | case CPUID_MODEL_DALES: | |
772 | case CPUID_MODEL_NEHALEM_EX: | |
773 | cpufamily = CPUFAMILY_INTEL_NEHALEM; | |
774 | break; | |
775 | case CPUID_MODEL_DALES_32NM: | |
776 | case CPUID_MODEL_WESTMERE: | |
777 | case CPUID_MODEL_WESTMERE_EX: | |
778 | cpufamily = CPUFAMILY_INTEL_WESTMERE; | |
779 | break; | |
780 | case CPUID_MODEL_SANDYBRIDGE: | |
781 | case CPUID_MODEL_JAKETOWN: | |
782 | cpufamily = CPUFAMILY_INTEL_SANDYBRIDGE; | |
783 | break; | |
784 | case CPUID_MODEL_IVYBRIDGE: | |
785 | case CPUID_MODEL_IVYBRIDGE_EP: | |
786 | cpufamily = CPUFAMILY_INTEL_IVYBRIDGE; | |
787 | break; | |
788 | case CPUID_MODEL_HASWELL: | |
789 | case CPUID_MODEL_HASWELL_EP: | |
790 | case CPUID_MODEL_HASWELL_ULT: | |
791 | case CPUID_MODEL_CRYSTALWELL: | |
792 | cpufamily = CPUFAMILY_INTEL_HASWELL; | |
793 | break; | |
794 | case CPUID_MODEL_BROADWELL: | |
795 | case CPUID_MODEL_BRYSTALWELL: | |
796 | cpufamily = CPUFAMILY_INTEL_BROADWELL; | |
797 | break; | |
798 | case CPUID_MODEL_SKYLAKE: | |
799 | case CPUID_MODEL_SKYLAKE_DT: | |
800 | #if !defined(RC_HIDE_XNU_J137) | |
801 | case CPUID_MODEL_SKYLAKE_W: | |
802 | #endif | |
803 | cpufamily = CPUFAMILY_INTEL_SKYLAKE; | |
804 | break; | |
805 | case CPUID_MODEL_KABYLAKE: | |
806 | case CPUID_MODEL_KABYLAKE_DT: | |
807 | cpufamily = CPUFAMILY_INTEL_KABYLAKE; | |
808 | break; | |
809 | } | |
810 | break; | |
811 | } | |
812 | ||
813 | info_p->cpuid_cpufamily = cpufamily; | |
814 | DBG("cpuid_set_cpufamily(%p) returning 0x%x\n", info_p, cpufamily); | |
815 | return cpufamily; | |
816 | } | |
817 | /* | |
818 | * Must be invoked either when executing single threaded, or with | |
819 | * independent synchronization. | |
820 | */ | |
821 | void | |
822 | cpuid_set_info(void) | |
823 | { | |
824 | i386_cpu_info_t *info_p = &cpuid_cpu_info; | |
825 | boolean_t enable_x86_64h = TRUE; | |
826 | ||
827 | cpuid_set_generic_info(info_p); | |
828 | ||
829 | /* verify we are running on a supported CPU */ | |
830 | if ((strncmp(CPUID_VID_INTEL, info_p->cpuid_vendor, | |
831 | min(strlen(CPUID_STRING_UNKNOWN) + 1, | |
832 | sizeof(info_p->cpuid_vendor)))) || | |
833 | (cpuid_set_cpufamily(info_p) == CPUFAMILY_UNKNOWN)) | |
834 | panic("Unsupported CPU"); | |
835 | ||
836 | info_p->cpuid_cpu_type = CPU_TYPE_X86; | |
837 | ||
838 | if (!PE_parse_boot_argn("-enable_x86_64h", &enable_x86_64h, sizeof(enable_x86_64h))) { | |
839 | boolean_t disable_x86_64h = FALSE; | |
840 | ||
841 | if (PE_parse_boot_argn("-disable_x86_64h", &disable_x86_64h, sizeof(disable_x86_64h))) { | |
842 | enable_x86_64h = FALSE; | |
843 | } | |
844 | } | |
845 | ||
846 | if (enable_x86_64h && | |
847 | ((info_p->cpuid_features & CPUID_X86_64_H_FEATURE_SUBSET) == CPUID_X86_64_H_FEATURE_SUBSET) && | |
848 | ((info_p->cpuid_extfeatures & CPUID_X86_64_H_EXTFEATURE_SUBSET) == CPUID_X86_64_H_EXTFEATURE_SUBSET) && | |
849 | ((info_p->cpuid_leaf7_features & CPUID_X86_64_H_LEAF7_FEATURE_SUBSET) == CPUID_X86_64_H_LEAF7_FEATURE_SUBSET)) { | |
850 | info_p->cpuid_cpu_subtype = CPU_SUBTYPE_X86_64_H; | |
851 | } else { | |
852 | info_p->cpuid_cpu_subtype = CPU_SUBTYPE_X86_ARCH1; | |
853 | } | |
854 | /* cpuid_set_cache_info must be invoked after set_generic_info */ | |
855 | ||
856 | if (info_p->cpuid_cpufamily == CPUFAMILY_INTEL_PENRYN) | |
857 | cpuid_set_cache_info(info_p); | |
858 | ||
859 | /* | |
860 | * Find the number of enabled cores and threads | |
861 | * (which determines whether SMT/Hyperthreading is active). | |
862 | */ | |
863 | switch (info_p->cpuid_cpufamily) { | |
864 | case CPUFAMILY_INTEL_PENRYN: | |
865 | info_p->core_count = info_p->cpuid_cores_per_package; | |
866 | info_p->thread_count = info_p->cpuid_logical_per_package; | |
867 | break; | |
868 | case CPUFAMILY_INTEL_WESTMERE: { | |
869 | uint64_t msr = rdmsr64(MSR_CORE_THREAD_COUNT); | |
870 | info_p->core_count = bitfield32((uint32_t)msr, 19, 16); | |
871 | info_p->thread_count = bitfield32((uint32_t)msr, 15, 0); | |
872 | break; | |
873 | } | |
874 | default: { | |
875 | uint64_t msr = rdmsr64(MSR_CORE_THREAD_COUNT); | |
876 | if (msr == 0) | |
877 | /* Provide a non-zero default for some VMMs */ | |
878 | msr = (1 << 16) + 1; | |
879 | info_p->core_count = bitfield32((uint32_t)msr, 31, 16); | |
880 | info_p->thread_count = bitfield32((uint32_t)msr, 15, 0); | |
881 | break; | |
882 | } | |
883 | } | |
884 | if (info_p->core_count == 0) { | |
885 | info_p->core_count = info_p->cpuid_cores_per_package; | |
886 | info_p->thread_count = info_p->cpuid_logical_per_package; | |
887 | } | |
888 | ||
889 | if (info_p->cpuid_cpufamily != CPUFAMILY_INTEL_PENRYN) | |
890 | cpuid_set_cache_info(info_p); | |
891 | ||
892 | DBG("cpuid_set_info():\n"); | |
893 | DBG(" core_count : %d\n", info_p->core_count); | |
894 | DBG(" thread_count : %d\n", info_p->thread_count); | |
895 | DBG(" cpu_type: 0x%08x\n", info_p->cpuid_cpu_type); | |
896 | DBG(" cpu_subtype: 0x%08x\n", info_p->cpuid_cpu_subtype); | |
897 | ||
898 | info_p->cpuid_model_string = ""; /* deprecated */ | |
899 | } | |
900 | ||
901 | static struct table { | |
902 | uint64_t mask; | |
903 | const char *name; | |
904 | } feature_map[] = { | |
905 | {CPUID_FEATURE_FPU, "FPU"}, | |
906 | {CPUID_FEATURE_VME, "VME"}, | |
907 | {CPUID_FEATURE_DE, "DE"}, | |
908 | {CPUID_FEATURE_PSE, "PSE"}, | |
909 | {CPUID_FEATURE_TSC, "TSC"}, | |
910 | {CPUID_FEATURE_MSR, "MSR"}, | |
911 | {CPUID_FEATURE_PAE, "PAE"}, | |
912 | {CPUID_FEATURE_MCE, "MCE"}, | |
913 | {CPUID_FEATURE_CX8, "CX8"}, | |
914 | {CPUID_FEATURE_APIC, "APIC"}, | |
915 | {CPUID_FEATURE_SEP, "SEP"}, | |
916 | {CPUID_FEATURE_MTRR, "MTRR"}, | |
917 | {CPUID_FEATURE_PGE, "PGE"}, | |
918 | {CPUID_FEATURE_MCA, "MCA"}, | |
919 | {CPUID_FEATURE_CMOV, "CMOV"}, | |
920 | {CPUID_FEATURE_PAT, "PAT"}, | |
921 | {CPUID_FEATURE_PSE36, "PSE36"}, | |
922 | {CPUID_FEATURE_PSN, "PSN"}, | |
923 | {CPUID_FEATURE_CLFSH, "CLFSH"}, | |
924 | {CPUID_FEATURE_DS, "DS"}, | |
925 | {CPUID_FEATURE_ACPI, "ACPI"}, | |
926 | {CPUID_FEATURE_MMX, "MMX"}, | |
927 | {CPUID_FEATURE_FXSR, "FXSR"}, | |
928 | {CPUID_FEATURE_SSE, "SSE"}, | |
929 | {CPUID_FEATURE_SSE2, "SSE2"}, | |
930 | {CPUID_FEATURE_SS, "SS"}, | |
931 | {CPUID_FEATURE_HTT, "HTT"}, | |
932 | {CPUID_FEATURE_TM, "TM"}, | |
933 | {CPUID_FEATURE_PBE, "PBE"}, | |
934 | {CPUID_FEATURE_SSE3, "SSE3"}, | |
935 | {CPUID_FEATURE_PCLMULQDQ, "PCLMULQDQ"}, | |
936 | {CPUID_FEATURE_DTES64, "DTES64"}, | |
937 | {CPUID_FEATURE_MONITOR, "MON"}, | |
938 | {CPUID_FEATURE_DSCPL, "DSCPL"}, | |
939 | {CPUID_FEATURE_VMX, "VMX"}, | |
940 | {CPUID_FEATURE_SMX, "SMX"}, | |
941 | {CPUID_FEATURE_EST, "EST"}, | |
942 | {CPUID_FEATURE_TM2, "TM2"}, | |
943 | {CPUID_FEATURE_SSSE3, "SSSE3"}, | |
944 | {CPUID_FEATURE_CID, "CID"}, | |
945 | {CPUID_FEATURE_FMA, "FMA"}, | |
946 | {CPUID_FEATURE_CX16, "CX16"}, | |
947 | {CPUID_FEATURE_xTPR, "TPR"}, | |
948 | {CPUID_FEATURE_PDCM, "PDCM"}, | |
949 | {CPUID_FEATURE_SSE4_1, "SSE4.1"}, | |
950 | {CPUID_FEATURE_SSE4_2, "SSE4.2"}, | |
951 | {CPUID_FEATURE_x2APIC, "x2APIC"}, | |
952 | {CPUID_FEATURE_MOVBE, "MOVBE"}, | |
953 | {CPUID_FEATURE_POPCNT, "POPCNT"}, | |
954 | {CPUID_FEATURE_AES, "AES"}, | |
955 | {CPUID_FEATURE_VMM, "VMM"}, | |
956 | {CPUID_FEATURE_PCID, "PCID"}, | |
957 | {CPUID_FEATURE_XSAVE, "XSAVE"}, | |
958 | {CPUID_FEATURE_OSXSAVE, "OSXSAVE"}, | |
959 | {CPUID_FEATURE_SEGLIM64, "SEGLIM64"}, | |
960 | {CPUID_FEATURE_TSCTMR, "TSCTMR"}, | |
961 | {CPUID_FEATURE_AVX1_0, "AVX1.0"}, | |
962 | {CPUID_FEATURE_RDRAND, "RDRAND"}, | |
963 | {CPUID_FEATURE_F16C, "F16C"}, | |
964 | {0, 0} | |
965 | }, | |
966 | extfeature_map[] = { | |
967 | {CPUID_EXTFEATURE_SYSCALL, "SYSCALL"}, | |
968 | {CPUID_EXTFEATURE_XD, "XD"}, | |
969 | {CPUID_EXTFEATURE_1GBPAGE, "1GBPAGE"}, | |
970 | {CPUID_EXTFEATURE_EM64T, "EM64T"}, | |
971 | {CPUID_EXTFEATURE_LAHF, "LAHF"}, | |
972 | {CPUID_EXTFEATURE_LZCNT, "LZCNT"}, | |
973 | {CPUID_EXTFEATURE_PREFETCHW, "PREFETCHW"}, | |
974 | {CPUID_EXTFEATURE_RDTSCP, "RDTSCP"}, | |
975 | {CPUID_EXTFEATURE_TSCI, "TSCI"}, | |
976 | {0, 0} | |
977 | ||
978 | }, | |
979 | leaf7_feature_map[] = { | |
980 | {CPUID_LEAF7_FEATURE_SMEP, "SMEP"}, | |
981 | {CPUID_LEAF7_FEATURE_ERMS, "ERMS"}, | |
982 | {CPUID_LEAF7_FEATURE_RDWRFSGS, "RDWRFSGS"}, | |
983 | {CPUID_LEAF7_FEATURE_TSCOFF, "TSC_THREAD_OFFSET"}, | |
984 | {CPUID_LEAF7_FEATURE_BMI1, "BMI1"}, | |
985 | {CPUID_LEAF7_FEATURE_HLE, "HLE"}, | |
986 | {CPUID_LEAF7_FEATURE_AVX2, "AVX2"}, | |
987 | {CPUID_LEAF7_FEATURE_BMI2, "BMI2"}, | |
988 | {CPUID_LEAF7_FEATURE_INVPCID, "INVPCID"}, | |
989 | {CPUID_LEAF7_FEATURE_RTM, "RTM"}, | |
990 | {CPUID_LEAF7_FEATURE_SMAP, "SMAP"}, | |
991 | {CPUID_LEAF7_FEATURE_RDSEED, "RDSEED"}, | |
992 | {CPUID_LEAF7_FEATURE_ADX, "ADX"}, | |
993 | {CPUID_LEAF7_FEATURE_IPT, "IPT"}, | |
994 | #if !defined(RC_HIDE_XNU_J137) | |
995 | {CPUID_LEAF7_FEATURE_AVX512F, "AVX512F"}, | |
996 | {CPUID_LEAF7_FEATURE_AVX512CD, "AVX512CD"}, | |
997 | {CPUID_LEAF7_FEATURE_AVX512DQ, "AVX512DQ"}, | |
998 | {CPUID_LEAF7_FEATURE_AVX512BW, "AVX512BW"}, | |
999 | {CPUID_LEAF7_FEATURE_AVX512VL, "AVX512VL"}, | |
1000 | {CPUID_LEAF7_FEATURE_AVX512IFMA, "AVX512IFMA"}, | |
1001 | {CPUID_LEAF7_FEATURE_AVX512VBMI, "AVX512VBMI"}, | |
1002 | #endif /* not RC_HIDE_XNU_J137 */ | |
1003 | {CPUID_LEAF7_FEATURE_SGX, "SGX"}, | |
1004 | {CPUID_LEAF7_FEATURE_PQM, "PQM"}, | |
1005 | {CPUID_LEAF7_FEATURE_FPU_CSDS, "FPU_CSDS"}, | |
1006 | {CPUID_LEAF7_FEATURE_MPX, "MPX"}, | |
1007 | {CPUID_LEAF7_FEATURE_PQE, "PQE"}, | |
1008 | {CPUID_LEAF7_FEATURE_CLFSOPT, "CLFSOPT"}, | |
1009 | {CPUID_LEAF7_FEATURE_SHA, "SHA"}, | |
1010 | {0, 0} | |
1011 | }; | |
1012 | ||
1013 | static char * | |
1014 | cpuid_get_names(struct table *map, uint64_t bits, char *buf, unsigned buf_len) | |
1015 | { | |
1016 | size_t len = 0; | |
1017 | char *p = buf; | |
1018 | int i; | |
1019 | ||
1020 | for (i = 0; map[i].mask != 0; i++) { | |
1021 | if ((bits & map[i].mask) == 0) | |
1022 | continue; | |
1023 | if (len && ((size_t) (p - buf) < (buf_len - 1))) | |
1024 | *p++ = ' '; | |
1025 | len = min(strlen(map[i].name), (size_t)((buf_len-1)-(p-buf))); | |
1026 | if (len == 0) | |
1027 | break; | |
1028 | bcopy(map[i].name, p, len); | |
1029 | p += len; | |
1030 | } | |
1031 | *p = '\0'; | |
1032 | return buf; | |
1033 | } | |
1034 | ||
1035 | i386_cpu_info_t * | |
1036 | cpuid_info(void) | |
1037 | { | |
1038 | /* Set-up the cpuid_info stucture lazily */ | |
1039 | if (cpuid_cpu_infop == NULL) { | |
1040 | PE_parse_boot_argn("-cpuid", &cpuid_dbg, sizeof(cpuid_dbg)); | |
1041 | cpuid_set_info(); | |
1042 | cpuid_cpu_infop = &cpuid_cpu_info; | |
1043 | } | |
1044 | return cpuid_cpu_infop; | |
1045 | } | |
1046 | ||
1047 | char * | |
1048 | cpuid_get_feature_names(uint64_t features, char *buf, unsigned buf_len) | |
1049 | { | |
1050 | return cpuid_get_names(feature_map, features, buf, buf_len); | |
1051 | } | |
1052 | ||
1053 | char * | |
1054 | cpuid_get_extfeature_names(uint64_t extfeatures, char *buf, unsigned buf_len) | |
1055 | { | |
1056 | return cpuid_get_names(extfeature_map, extfeatures, buf, buf_len); | |
1057 | } | |
1058 | ||
1059 | char * | |
1060 | cpuid_get_leaf7_feature_names(uint64_t features, char *buf, unsigned buf_len) | |
1061 | { | |
1062 | return cpuid_get_names(leaf7_feature_map, features, buf, buf_len); | |
1063 | } | |
1064 | ||
1065 | void | |
1066 | cpuid_feature_display( | |
1067 | const char *header) | |
1068 | { | |
1069 | char buf[320]; | |
1070 | ||
1071 | kprintf("%s: %s", header, | |
1072 | cpuid_get_feature_names(cpuid_features(), buf, sizeof(buf))); | |
1073 | if (cpuid_leaf7_features()) | |
1074 | kprintf(" %s", cpuid_get_leaf7_feature_names( | |
1075 | cpuid_leaf7_features(), buf, sizeof(buf))); | |
1076 | kprintf("\n"); | |
1077 | if (cpuid_features() & CPUID_FEATURE_HTT) { | |
1078 | #define s_if_plural(n) ((n > 1) ? "s" : "") | |
1079 | kprintf(" HTT: %d core%s per package;" | |
1080 | " %d logical cpu%s per package\n", | |
1081 | cpuid_cpu_infop->cpuid_cores_per_package, | |
1082 | s_if_plural(cpuid_cpu_infop->cpuid_cores_per_package), | |
1083 | cpuid_cpu_infop->cpuid_logical_per_package, | |
1084 | s_if_plural(cpuid_cpu_infop->cpuid_logical_per_package)); | |
1085 | } | |
1086 | } | |
1087 | ||
1088 | void | |
1089 | cpuid_extfeature_display( | |
1090 | const char *header) | |
1091 | { | |
1092 | char buf[256]; | |
1093 | ||
1094 | kprintf("%s: %s\n", header, | |
1095 | cpuid_get_extfeature_names(cpuid_extfeatures(), | |
1096 | buf, sizeof(buf))); | |
1097 | } | |
1098 | ||
1099 | void | |
1100 | cpuid_cpu_display( | |
1101 | const char *header) | |
1102 | { | |
1103 | if (cpuid_cpu_infop->cpuid_brand_string[0] != '\0') { | |
1104 | kprintf("%s: %s\n", header, cpuid_cpu_infop->cpuid_brand_string); | |
1105 | } | |
1106 | } | |
1107 | ||
1108 | unsigned int | |
1109 | cpuid_family(void) | |
1110 | { | |
1111 | return cpuid_info()->cpuid_family; | |
1112 | } | |
1113 | ||
1114 | uint32_t | |
1115 | cpuid_cpufamily(void) | |
1116 | { | |
1117 | return cpuid_info()->cpuid_cpufamily; | |
1118 | } | |
1119 | ||
1120 | cpu_type_t | |
1121 | cpuid_cputype(void) | |
1122 | { | |
1123 | return cpuid_info()->cpuid_cpu_type; | |
1124 | } | |
1125 | ||
1126 | cpu_subtype_t | |
1127 | cpuid_cpusubtype(void) | |
1128 | { | |
1129 | return cpuid_info()->cpuid_cpu_subtype; | |
1130 | } | |
1131 | ||
1132 | uint64_t | |
1133 | cpuid_features(void) | |
1134 | { | |
1135 | static int checked = 0; | |
1136 | char fpu_arg[20] = { 0 }; | |
1137 | ||
1138 | (void) cpuid_info(); | |
1139 | if (!checked) { | |
1140 | /* check for boot-time fpu limitations */ | |
1141 | if (PE_parse_boot_argn("_fpu", &fpu_arg[0], sizeof (fpu_arg))) { | |
1142 | printf("limiting fpu features to: %s\n", fpu_arg); | |
1143 | if (!strncmp("387", fpu_arg, sizeof("387")) || !strncmp("mmx", fpu_arg, sizeof("mmx"))) { | |
1144 | printf("no sse or sse2\n"); | |
1145 | cpuid_cpu_infop->cpuid_features &= ~(CPUID_FEATURE_SSE | CPUID_FEATURE_SSE2 | CPUID_FEATURE_FXSR); | |
1146 | } else if (!strncmp("sse", fpu_arg, sizeof("sse"))) { | |
1147 | printf("no sse2\n"); | |
1148 | cpuid_cpu_infop->cpuid_features &= ~(CPUID_FEATURE_SSE2); | |
1149 | } | |
1150 | } | |
1151 | checked = 1; | |
1152 | } | |
1153 | return cpuid_cpu_infop->cpuid_features; | |
1154 | } | |
1155 | ||
1156 | uint64_t | |
1157 | cpuid_extfeatures(void) | |
1158 | { | |
1159 | return cpuid_info()->cpuid_extfeatures; | |
1160 | } | |
1161 | ||
1162 | uint64_t | |
1163 | cpuid_leaf7_features(void) | |
1164 | { | |
1165 | return cpuid_info()->cpuid_leaf7_features; | |
1166 | } | |
1167 | ||
1168 | static i386_vmm_info_t *_cpuid_vmm_infop = NULL; | |
1169 | static i386_vmm_info_t _cpuid_vmm_info; | |
1170 | ||
1171 | static void | |
1172 | cpuid_init_vmm_info(i386_vmm_info_t *info_p) | |
1173 | { | |
1174 | uint32_t reg[4]; | |
1175 | uint32_t max_vmm_leaf; | |
1176 | ||
1177 | bzero(info_p, sizeof(*info_p)); | |
1178 | ||
1179 | if (!cpuid_vmm_present()) | |
1180 | return; | |
1181 | ||
1182 | DBG("cpuid_init_vmm_info(%p)\n", info_p); | |
1183 | ||
1184 | /* do cpuid 0x40000000 to get VMM vendor */ | |
1185 | cpuid_fn(0x40000000, reg); | |
1186 | max_vmm_leaf = reg[eax]; | |
1187 | bcopy((char *)®[ebx], &info_p->cpuid_vmm_vendor[0], 4); | |
1188 | bcopy((char *)®[ecx], &info_p->cpuid_vmm_vendor[4], 4); | |
1189 | bcopy((char *)®[edx], &info_p->cpuid_vmm_vendor[8], 4); | |
1190 | info_p->cpuid_vmm_vendor[12] = '\0'; | |
1191 | ||
1192 | if (0 == strcmp(info_p->cpuid_vmm_vendor, CPUID_VMM_ID_VMWARE)) { | |
1193 | /* VMware identification string: kb.vmware.com/kb/1009458 */ | |
1194 | info_p->cpuid_vmm_family = CPUID_VMM_FAMILY_VMWARE; | |
1195 | } else if (0 == strcmp(info_p->cpuid_vmm_vendor, CPUID_VMM_ID_PARALLELS)) { | |
1196 | /* Parallels identification string */ | |
1197 | info_p->cpuid_vmm_family = CPUID_VMM_FAMILY_PARALLELS; | |
1198 | } else { | |
1199 | info_p->cpuid_vmm_family = CPUID_VMM_FAMILY_UNKNOWN; | |
1200 | } | |
1201 | ||
1202 | /* VMM generic leaves: https://lkml.org/lkml/2008/10/1/246 */ | |
1203 | if (max_vmm_leaf >= 0x40000010) { | |
1204 | cpuid_fn(0x40000010, reg); | |
1205 | ||
1206 | info_p->cpuid_vmm_tsc_frequency = reg[eax]; | |
1207 | info_p->cpuid_vmm_bus_frequency = reg[ebx]; | |
1208 | } | |
1209 | ||
1210 | DBG(" vmm_vendor : %s\n", info_p->cpuid_vmm_vendor); | |
1211 | DBG(" vmm_family : %u\n", info_p->cpuid_vmm_family); | |
1212 | DBG(" vmm_bus_frequency : %u\n", info_p->cpuid_vmm_bus_frequency); | |
1213 | DBG(" vmm_tsc_frequency : %u\n", info_p->cpuid_vmm_tsc_frequency); | |
1214 | } | |
1215 | ||
1216 | boolean_t | |
1217 | cpuid_vmm_present(void) | |
1218 | { | |
1219 | return (cpuid_features() & CPUID_FEATURE_VMM) ? TRUE : FALSE; | |
1220 | } | |
1221 | ||
1222 | i386_vmm_info_t * | |
1223 | cpuid_vmm_info(void) | |
1224 | { | |
1225 | if (_cpuid_vmm_infop == NULL) { | |
1226 | cpuid_init_vmm_info(&_cpuid_vmm_info); | |
1227 | _cpuid_vmm_infop = &_cpuid_vmm_info; | |
1228 | } | |
1229 | return _cpuid_vmm_infop; | |
1230 | } | |
1231 | ||
1232 | uint32_t | |
1233 | cpuid_vmm_family(void) | |
1234 | { | |
1235 | return cpuid_vmm_info()->cpuid_vmm_family; | |
1236 | } | |
1237 |