]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2003-2012 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991,1990,1989, 1988 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | ||
57 | ||
58 | #include <mach/i386/vm_param.h> | |
59 | ||
60 | #include <string.h> | |
61 | #include <mach/vm_param.h> | |
62 | #include <mach/vm_prot.h> | |
63 | #include <mach/machine.h> | |
64 | #include <mach/time_value.h> | |
65 | #include <kern/spl.h> | |
66 | #include <kern/assert.h> | |
67 | #include <kern/debug.h> | |
68 | #include <kern/misc_protos.h> | |
69 | #include <kern/cpu_data.h> | |
70 | #include <kern/processor.h> | |
71 | #include <vm/vm_page.h> | |
72 | #include <vm/pmap.h> | |
73 | #include <vm/vm_kern.h> | |
74 | #include <i386/pmap.h> | |
75 | #include <i386/misc_protos.h> | |
76 | #include <i386/cpuid.h> | |
77 | #include <mach/thread_status.h> | |
78 | #include <pexpert/i386/efi.h> | |
79 | #include <i386/i386_lowmem.h> | |
80 | #include <x86_64/lowglobals.h> | |
81 | #include <i386/pal_routines.h> | |
82 | ||
83 | #include <mach-o/loader.h> | |
84 | #include <libkern/kernel_mach_header.h> | |
85 | ||
86 | ||
87 | vm_size_t mem_size = 0; | |
88 | pmap_paddr_t first_avail = 0;/* first after page tables */ | |
89 | ||
90 | uint64_t max_mem; /* Size of physical memory (bytes), adjusted by maxmem */ | |
91 | uint64_t mem_actual; | |
92 | uint64_t sane_size = 0; /* Memory size for defaults calculations */ | |
93 | ||
94 | /* | |
95 | * KASLR parameters | |
96 | */ | |
97 | ppnum_t vm_kernel_base_page; | |
98 | vm_offset_t vm_kernel_base; | |
99 | vm_offset_t vm_kernel_top; | |
100 | vm_offset_t vm_kernel_stext; | |
101 | vm_offset_t vm_kernel_etext; | |
102 | vm_offset_t vm_kernel_slide; | |
103 | vm_offset_t vm_hib_base; | |
104 | vm_offset_t vm_kext_base = VM_MIN_KERNEL_AND_KEXT_ADDRESS; | |
105 | vm_offset_t vm_kext_top = VM_MIN_KERNEL_ADDRESS; | |
106 | ||
107 | vm_offset_t vm_prelink_stext; | |
108 | vm_offset_t vm_prelink_etext; | |
109 | vm_offset_t vm_prelink_sinfo; | |
110 | vm_offset_t vm_prelink_einfo; | |
111 | vm_offset_t vm_slinkedit; | |
112 | vm_offset_t vm_elinkedit; | |
113 | ||
114 | #define MAXLORESERVE (32 * 1024 * 1024) | |
115 | ||
116 | ppnum_t max_ppnum = 0; | |
117 | ppnum_t lowest_lo = 0; | |
118 | ppnum_t lowest_hi = 0; | |
119 | ppnum_t highest_hi = 0; | |
120 | ||
121 | enum {PMAP_MAX_RESERVED_RANGES = 32}; | |
122 | uint32_t pmap_reserved_pages_allocated = 0; | |
123 | uint32_t pmap_reserved_range_indices[PMAP_MAX_RESERVED_RANGES]; | |
124 | uint32_t pmap_last_reserved_range_index = 0; | |
125 | uint32_t pmap_reserved_ranges = 0; | |
126 | ||
127 | extern unsigned int bsd_mbuf_cluster_reserve(boolean_t *); | |
128 | ||
129 | pmap_paddr_t avail_start, avail_end; | |
130 | vm_offset_t virtual_avail, virtual_end; | |
131 | static pmap_paddr_t avail_remaining; | |
132 | vm_offset_t static_memory_end = 0; | |
133 | ||
134 | vm_offset_t sHIB, eHIB, stext, etext, sdata, edata, sconstdata, econstdata, end; | |
135 | ||
136 | /* | |
137 | * _mh_execute_header is the mach_header for the currently executing kernel | |
138 | */ | |
139 | vm_offset_t segTEXTB; unsigned long segSizeTEXT; | |
140 | vm_offset_t segDATAB; unsigned long segSizeDATA; | |
141 | vm_offset_t segLINKB; unsigned long segSizeLINK; | |
142 | vm_offset_t segPRELINKB; unsigned long segSizePRELINK; | |
143 | vm_offset_t segPRELINKINFOB; unsigned long segSizePRELINKINFO; | |
144 | vm_offset_t segHIBB; unsigned long segSizeHIB; | |
145 | vm_offset_t sectCONSTB; unsigned long sectSizeConst; | |
146 | ||
147 | boolean_t doconstro_override = FALSE; | |
148 | ||
149 | static kernel_segment_command_t *segTEXT, *segDATA; | |
150 | static kernel_section_t *cursectTEXT, *lastsectTEXT; | |
151 | static kernel_section_t *sectDCONST; | |
152 | ||
153 | extern uint64_t firmware_Conventional_bytes; | |
154 | extern uint64_t firmware_RuntimeServices_bytes; | |
155 | extern uint64_t firmware_ACPIReclaim_bytes; | |
156 | extern uint64_t firmware_ACPINVS_bytes; | |
157 | extern uint64_t firmware_PalCode_bytes; | |
158 | extern uint64_t firmware_Reserved_bytes; | |
159 | extern uint64_t firmware_Unusable_bytes; | |
160 | extern uint64_t firmware_other_bytes; | |
161 | uint64_t firmware_MMIO_bytes; | |
162 | ||
163 | /* | |
164 | * Linker magic to establish the highest address in the kernel. | |
165 | */ | |
166 | extern void *last_kernel_symbol; | |
167 | ||
168 | #if DEBUG | |
169 | #define PRINT_PMAP_MEMORY_TABLE | |
170 | #define DBG(x...) kprintf(x) | |
171 | #else | |
172 | #define DBG(x...) | |
173 | #endif /* DEBUG */ | |
174 | /* | |
175 | * Basic VM initialization. | |
176 | */ | |
177 | void | |
178 | i386_vm_init(uint64_t maxmem, | |
179 | boolean_t IA32e, | |
180 | boot_args *args) | |
181 | { | |
182 | pmap_memory_region_t *pmptr; | |
183 | pmap_memory_region_t *prev_pmptr; | |
184 | EfiMemoryRange *mptr; | |
185 | unsigned int mcount; | |
186 | unsigned int msize; | |
187 | ppnum_t fap; | |
188 | unsigned int i; | |
189 | ppnum_t maxpg = 0; | |
190 | uint32_t pmap_type; | |
191 | uint32_t maxloreserve; | |
192 | uint32_t maxdmaaddr; | |
193 | uint32_t mbuf_reserve = 0; | |
194 | boolean_t mbuf_override = FALSE; | |
195 | boolean_t coalescing_permitted; | |
196 | vm_kernel_base_page = i386_btop(args->kaddr); | |
197 | vm_offset_t base_address; | |
198 | vm_offset_t static_base_address; | |
199 | ||
200 | /* | |
201 | * Establish the KASLR parameters. | |
202 | */ | |
203 | static_base_address = ml_static_ptovirt(KERNEL_BASE_OFFSET); | |
204 | base_address = ml_static_ptovirt(args->kaddr); | |
205 | vm_kernel_slide = base_address - static_base_address; | |
206 | if (args->kslide) { | |
207 | kprintf("KASLR slide: 0x%016lx dynamic\n", vm_kernel_slide); | |
208 | if (vm_kernel_slide != ((vm_offset_t)args->kslide)) | |
209 | panic("Kernel base inconsistent with slide - rebased?"); | |
210 | } else { | |
211 | /* No slide relative to on-disk symbols */ | |
212 | kprintf("KASLR slide: 0x%016lx static and ignored\n", | |
213 | vm_kernel_slide); | |
214 | vm_kernel_slide = 0; | |
215 | } | |
216 | ||
217 | /* | |
218 | * Zero out local relocations to avoid confusing kxld. | |
219 | * TODO: might be better to move this code to OSKext::initialize | |
220 | */ | |
221 | if (_mh_execute_header.flags & MH_PIE) { | |
222 | struct load_command *loadcmd; | |
223 | uint32_t cmd; | |
224 | ||
225 | loadcmd = (struct load_command *)((uintptr_t)&_mh_execute_header + | |
226 | sizeof (_mh_execute_header)); | |
227 | ||
228 | for (cmd = 0; cmd < _mh_execute_header.ncmds; cmd++) { | |
229 | if (loadcmd->cmd == LC_DYSYMTAB) { | |
230 | struct dysymtab_command *dysymtab; | |
231 | ||
232 | dysymtab = (struct dysymtab_command *)loadcmd; | |
233 | dysymtab->nlocrel = 0; | |
234 | dysymtab->locreloff = 0; | |
235 | kprintf("Hiding local relocations\n"); | |
236 | break; | |
237 | } | |
238 | loadcmd = (struct load_command *)((uintptr_t)loadcmd + loadcmd->cmdsize); | |
239 | } | |
240 | } | |
241 | ||
242 | /* | |
243 | * Now retrieve addresses for end, edata, and etext | |
244 | * from MACH-O headers. | |
245 | */ | |
246 | segTEXTB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, | |
247 | "__TEXT", &segSizeTEXT); | |
248 | segDATAB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, | |
249 | "__DATA", &segSizeDATA); | |
250 | segLINKB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, | |
251 | "__LINKEDIT", &segSizeLINK); | |
252 | segHIBB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, | |
253 | "__HIB", &segSizeHIB); | |
254 | segPRELINKB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, | |
255 | "__PRELINK_TEXT", &segSizePRELINK); | |
256 | segPRELINKINFOB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header, | |
257 | "__PRELINK_INFO", &segSizePRELINKINFO); | |
258 | segTEXT = getsegbynamefromheader(&_mh_execute_header, | |
259 | "__TEXT"); | |
260 | segDATA = getsegbynamefromheader(&_mh_execute_header, | |
261 | "__DATA"); | |
262 | sectDCONST = getsectbynamefromheader(&_mh_execute_header, | |
263 | "__DATA", "__const"); | |
264 | cursectTEXT = lastsectTEXT = firstsect(segTEXT); | |
265 | /* Discover the last TEXT section within the TEXT segment */ | |
266 | while ((cursectTEXT = nextsect(segTEXT, cursectTEXT)) != NULL) { | |
267 | lastsectTEXT = cursectTEXT; | |
268 | } | |
269 | ||
270 | sHIB = segHIBB; | |
271 | eHIB = segHIBB + segSizeHIB; | |
272 | vm_hib_base = sHIB; | |
273 | /* Zero-padded from ehib to stext if text is 2M-aligned */ | |
274 | stext = segTEXTB; | |
275 | lowGlo.lgStext = stext; | |
276 | etext = (vm_offset_t) round_page_64(lastsectTEXT->addr + lastsectTEXT->size); | |
277 | /* Zero-padded from etext to sdata if text is 2M-aligned */ | |
278 | sdata = segDATAB; | |
279 | edata = segDATAB + segSizeDATA; | |
280 | ||
281 | sectCONSTB = (vm_offset_t) sectDCONST->addr; | |
282 | sectSizeConst = sectDCONST->size; | |
283 | sconstdata = sectCONSTB; | |
284 | econstdata = sectCONSTB + sectSizeConst; | |
285 | ||
286 | if (sectSizeConst & PAGE_MASK) { | |
287 | kernel_section_t *ns = nextsect(segDATA, sectDCONST); | |
288 | if (ns && !(ns->addr & PAGE_MASK)) | |
289 | doconstro_override = TRUE; | |
290 | } else | |
291 | doconstro_override = TRUE; | |
292 | ||
293 | DBG("segTEXTB = %p\n", (void *) segTEXTB); | |
294 | DBG("segDATAB = %p\n", (void *) segDATAB); | |
295 | DBG("segLINKB = %p\n", (void *) segLINKB); | |
296 | DBG("segHIBB = %p\n", (void *) segHIBB); | |
297 | DBG("segPRELINKB = %p\n", (void *) segPRELINKB); | |
298 | DBG("segPRELINKINFOB = %p\n", (void *) segPRELINKINFOB); | |
299 | DBG("sHIB = %p\n", (void *) sHIB); | |
300 | DBG("eHIB = %p\n", (void *) eHIB); | |
301 | DBG("stext = %p\n", (void *) stext); | |
302 | DBG("etext = %p\n", (void *) etext); | |
303 | DBG("sdata = %p\n", (void *) sdata); | |
304 | DBG("edata = %p\n", (void *) edata); | |
305 | DBG("sconstdata = %p\n", (void *) sconstdata); | |
306 | DBG("econstdata = %p\n", (void *) econstdata); | |
307 | DBG("kernel_top = %p\n", (void *) &last_kernel_symbol); | |
308 | ||
309 | vm_kernel_base = sHIB; | |
310 | vm_kernel_top = (vm_offset_t) &last_kernel_symbol; | |
311 | vm_kernel_stext = stext; | |
312 | vm_kernel_etext = etext; | |
313 | ||
314 | vm_prelink_stext = segPRELINKB; | |
315 | vm_prelink_etext = segPRELINKB + segSizePRELINK; | |
316 | vm_prelink_sinfo = segPRELINKINFOB; | |
317 | vm_prelink_einfo = segPRELINKINFOB + segSizePRELINKINFO; | |
318 | vm_slinkedit = segLINKB; | |
319 | vm_elinkedit = segLINKB + segSizePRELINK; | |
320 | ||
321 | vm_set_page_size(); | |
322 | ||
323 | /* | |
324 | * Compute the memory size. | |
325 | */ | |
326 | ||
327 | avail_remaining = 0; | |
328 | avail_end = 0; | |
329 | pmptr = pmap_memory_regions; | |
330 | prev_pmptr = 0; | |
331 | pmap_memory_region_count = pmap_memory_region_current = 0; | |
332 | fap = (ppnum_t) i386_btop(first_avail); | |
333 | ||
334 | mptr = (EfiMemoryRange *)ml_static_ptovirt((vm_offset_t)args->MemoryMap); | |
335 | if (args->MemoryMapDescriptorSize == 0) | |
336 | panic("Invalid memory map descriptor size"); | |
337 | msize = args->MemoryMapDescriptorSize; | |
338 | mcount = args->MemoryMapSize / msize; | |
339 | ||
340 | #define FOURGIG 0x0000000100000000ULL | |
341 | #define ONEGIG 0x0000000040000000ULL | |
342 | ||
343 | for (i = 0; i < mcount; i++, mptr = (EfiMemoryRange *)(((vm_offset_t)mptr) + msize)) { | |
344 | ppnum_t base, top; | |
345 | uint64_t region_bytes = 0; | |
346 | ||
347 | if (pmap_memory_region_count >= PMAP_MEMORY_REGIONS_SIZE) { | |
348 | kprintf("WARNING: truncating memory region count at %d\n", pmap_memory_region_count); | |
349 | break; | |
350 | } | |
351 | base = (ppnum_t) (mptr->PhysicalStart >> I386_PGSHIFT); | |
352 | top = (ppnum_t) (((mptr->PhysicalStart) >> I386_PGSHIFT) + mptr->NumberOfPages - 1); | |
353 | ||
354 | if (base == 0) { | |
355 | /* | |
356 | * Avoid having to deal with the edge case of the | |
357 | * very first possible physical page and the roll-over | |
358 | * to -1; just ignore that page. | |
359 | */ | |
360 | kprintf("WARNING: ignoring first page in [0x%llx:0x%llx]\n", (uint64_t) base, (uint64_t) top); | |
361 | base++; | |
362 | } | |
363 | if (top + 1 == 0) { | |
364 | /* | |
365 | * Avoid having to deal with the edge case of the | |
366 | * very last possible physical page and the roll-over | |
367 | * to 0; just ignore that page. | |
368 | */ | |
369 | kprintf("WARNING: ignoring last page in [0x%llx:0x%llx]\n", (uint64_t) base, (uint64_t) top); | |
370 | top--; | |
371 | } | |
372 | if (top < base) { | |
373 | /* | |
374 | * That was the only page in that region, so | |
375 | * ignore the whole region. | |
376 | */ | |
377 | continue; | |
378 | } | |
379 | ||
380 | #if MR_RSV_TEST | |
381 | static uint32_t nmr = 0; | |
382 | if ((base > 0x20000) && (nmr++ < 4)) | |
383 | mptr->Attribute |= EFI_MEMORY_KERN_RESERVED; | |
384 | #endif | |
385 | region_bytes = (uint64_t)(mptr->NumberOfPages << I386_PGSHIFT); | |
386 | pmap_type = mptr->Type; | |
387 | ||
388 | switch (mptr->Type) { | |
389 | case kEfiLoaderCode: | |
390 | case kEfiLoaderData: | |
391 | case kEfiBootServicesCode: | |
392 | case kEfiBootServicesData: | |
393 | case kEfiConventionalMemory: | |
394 | /* | |
395 | * Consolidate usable memory types into one. | |
396 | */ | |
397 | pmap_type = kEfiConventionalMemory; | |
398 | sane_size += region_bytes; | |
399 | firmware_Conventional_bytes += region_bytes; | |
400 | break; | |
401 | /* | |
402 | * sane_size should reflect the total amount of physical | |
403 | * RAM in the system, not just the amount that is | |
404 | * available for the OS to use. | |
405 | * We now get this value from SMBIOS tables | |
406 | * rather than reverse engineering the memory map. | |
407 | * But the legacy computation of "sane_size" is kept | |
408 | * for diagnostic information. | |
409 | */ | |
410 | ||
411 | case kEfiRuntimeServicesCode: | |
412 | case kEfiRuntimeServicesData: | |
413 | firmware_RuntimeServices_bytes += region_bytes; | |
414 | sane_size += region_bytes; | |
415 | break; | |
416 | case kEfiACPIReclaimMemory: | |
417 | firmware_ACPIReclaim_bytes += region_bytes; | |
418 | sane_size += region_bytes; | |
419 | break; | |
420 | case kEfiACPIMemoryNVS: | |
421 | firmware_ACPINVS_bytes += region_bytes; | |
422 | sane_size += region_bytes; | |
423 | break; | |
424 | case kEfiPalCode: | |
425 | firmware_PalCode_bytes += region_bytes; | |
426 | sane_size += region_bytes; | |
427 | break; | |
428 | ||
429 | case kEfiReservedMemoryType: | |
430 | firmware_Reserved_bytes += region_bytes; | |
431 | break; | |
432 | case kEfiUnusableMemory: | |
433 | firmware_Unusable_bytes += region_bytes; | |
434 | break; | |
435 | case kEfiMemoryMappedIO: | |
436 | case kEfiMemoryMappedIOPortSpace: | |
437 | firmware_MMIO_bytes += region_bytes; | |
438 | break; | |
439 | default: | |
440 | firmware_other_bytes += region_bytes; | |
441 | break; | |
442 | } | |
443 | ||
444 | DBG("EFI region %d: type %u/%d, base 0x%x, top 0x%x %s\n", | |
445 | i, mptr->Type, pmap_type, base, top, | |
446 | (mptr->Attribute&EFI_MEMORY_KERN_RESERVED)? "RESERVED" : | |
447 | (mptr->Attribute&EFI_MEMORY_RUNTIME)? "RUNTIME" : ""); | |
448 | ||
449 | if (maxpg) { | |
450 | if (base >= maxpg) | |
451 | break; | |
452 | top = (top > maxpg) ? maxpg : top; | |
453 | } | |
454 | ||
455 | /* | |
456 | * handle each region | |
457 | */ | |
458 | if ((mptr->Attribute & EFI_MEMORY_RUNTIME) == EFI_MEMORY_RUNTIME || | |
459 | pmap_type != kEfiConventionalMemory) { | |
460 | prev_pmptr = 0; | |
461 | continue; | |
462 | } else { | |
463 | /* | |
464 | * Usable memory region | |
465 | */ | |
466 | if (top < I386_LOWMEM_RESERVED || | |
467 | !pal_is_usable_memory(base, top)) { | |
468 | prev_pmptr = 0; | |
469 | continue; | |
470 | } | |
471 | /* | |
472 | * A range may be marked with with the | |
473 | * EFI_MEMORY_KERN_RESERVED attribute | |
474 | * on some systems, to indicate that the range | |
475 | * must not be made available to devices. | |
476 | */ | |
477 | ||
478 | if (mptr->Attribute & EFI_MEMORY_KERN_RESERVED) { | |
479 | if (++pmap_reserved_ranges > PMAP_MAX_RESERVED_RANGES) { | |
480 | panic("Too many reserved ranges %u\n", pmap_reserved_ranges); | |
481 | } | |
482 | } | |
483 | ||
484 | if (top < fap) { | |
485 | /* | |
486 | * entire range below first_avail | |
487 | * salvage some low memory pages | |
488 | * we use some very low memory at startup | |
489 | * mark as already allocated here | |
490 | */ | |
491 | if (base >= I386_LOWMEM_RESERVED) | |
492 | pmptr->base = base; | |
493 | else | |
494 | pmptr->base = I386_LOWMEM_RESERVED; | |
495 | ||
496 | pmptr->end = top; | |
497 | ||
498 | ||
499 | if ((mptr->Attribute & EFI_MEMORY_KERN_RESERVED) && | |
500 | (top < vm_kernel_base_page)) { | |
501 | pmptr->alloc_up = pmptr->base; | |
502 | pmptr->alloc_down = pmptr->end; | |
503 | pmap_reserved_range_indices[pmap_last_reserved_range_index++] = pmap_memory_region_count; | |
504 | } | |
505 | else { | |
506 | /* | |
507 | * mark as already mapped | |
508 | */ | |
509 | pmptr->alloc_up = top + 1; | |
510 | pmptr->alloc_down = top; | |
511 | } | |
512 | pmptr->type = pmap_type; | |
513 | pmptr->attribute = mptr->Attribute; | |
514 | } | |
515 | else if ( (base < fap) && (top > fap) ) { | |
516 | /* | |
517 | * spans first_avail | |
518 | * put mem below first avail in table but | |
519 | * mark already allocated | |
520 | */ | |
521 | pmptr->base = base; | |
522 | pmptr->end = (fap - 1); | |
523 | pmptr->alloc_up = pmptr->end + 1; | |
524 | pmptr->alloc_down = pmptr->end; | |
525 | pmptr->type = pmap_type; | |
526 | pmptr->attribute = mptr->Attribute; | |
527 | /* | |
528 | * we bump these here inline so the accounting | |
529 | * below works correctly | |
530 | */ | |
531 | pmptr++; | |
532 | pmap_memory_region_count++; | |
533 | ||
534 | pmptr->alloc_up = pmptr->base = fap; | |
535 | pmptr->type = pmap_type; | |
536 | pmptr->attribute = mptr->Attribute; | |
537 | pmptr->alloc_down = pmptr->end = top; | |
538 | ||
539 | if (mptr->Attribute & EFI_MEMORY_KERN_RESERVED) | |
540 | pmap_reserved_range_indices[pmap_last_reserved_range_index++] = pmap_memory_region_count; | |
541 | } else { | |
542 | /* | |
543 | * entire range useable | |
544 | */ | |
545 | pmptr->alloc_up = pmptr->base = base; | |
546 | pmptr->type = pmap_type; | |
547 | pmptr->attribute = mptr->Attribute; | |
548 | pmptr->alloc_down = pmptr->end = top; | |
549 | if (mptr->Attribute & EFI_MEMORY_KERN_RESERVED) | |
550 | pmap_reserved_range_indices[pmap_last_reserved_range_index++] = pmap_memory_region_count; | |
551 | } | |
552 | ||
553 | if (i386_ptob(pmptr->end) > avail_end ) | |
554 | avail_end = i386_ptob(pmptr->end); | |
555 | ||
556 | avail_remaining += (pmptr->end - pmptr->base); | |
557 | coalescing_permitted = (prev_pmptr && (pmptr->attribute == prev_pmptr->attribute) && ((pmptr->attribute & EFI_MEMORY_KERN_RESERVED) == 0)); | |
558 | /* | |
559 | * Consolidate contiguous memory regions, if possible | |
560 | */ | |
561 | if (prev_pmptr && | |
562 | (pmptr->type == prev_pmptr->type) && | |
563 | (coalescing_permitted) && | |
564 | (pmptr->base == pmptr->alloc_up) && | |
565 | (prev_pmptr->end == prev_pmptr->alloc_down) && | |
566 | (pmptr->base == (prev_pmptr->end + 1))) | |
567 | { | |
568 | prev_pmptr->end = pmptr->end; | |
569 | prev_pmptr->alloc_down = pmptr->alloc_down; | |
570 | } else { | |
571 | pmap_memory_region_count++; | |
572 | prev_pmptr = pmptr; | |
573 | pmptr++; | |
574 | } | |
575 | } | |
576 | } | |
577 | ||
578 | #ifdef PRINT_PMAP_MEMORY_TABLE | |
579 | { | |
580 | unsigned int j; | |
581 | pmap_memory_region_t *p = pmap_memory_regions; | |
582 | addr64_t region_start, region_end; | |
583 | addr64_t efi_start, efi_end; | |
584 | for (j=0;j<pmap_memory_region_count;j++, p++) { | |
585 | kprintf("pmap region %d type %d base 0x%llx alloc_up 0x%llx alloc_down 0x%llx top 0x%llx\n", | |
586 | j, p->type, | |
587 | (addr64_t) p->base << I386_PGSHIFT, | |
588 | (addr64_t) p->alloc_up << I386_PGSHIFT, | |
589 | (addr64_t) p->alloc_down << I386_PGSHIFT, | |
590 | (addr64_t) p->end << I386_PGSHIFT); | |
591 | region_start = (addr64_t) p->base << I386_PGSHIFT; | |
592 | region_end = ((addr64_t) p->end << I386_PGSHIFT) - 1; | |
593 | mptr = (EfiMemoryRange *) ml_static_ptovirt((vm_offset_t)args->MemoryMap); | |
594 | for (i=0; i<mcount; i++, mptr = (EfiMemoryRange *)(((vm_offset_t)mptr) + msize)) { | |
595 | if (mptr->Type != kEfiLoaderCode && | |
596 | mptr->Type != kEfiLoaderData && | |
597 | mptr->Type != kEfiBootServicesCode && | |
598 | mptr->Type != kEfiBootServicesData && | |
599 | mptr->Type != kEfiConventionalMemory) { | |
600 | efi_start = (addr64_t)mptr->PhysicalStart; | |
601 | efi_end = efi_start + ((vm_offset_t)mptr->NumberOfPages << I386_PGSHIFT) - 1; | |
602 | if ((efi_start >= region_start && efi_start <= region_end) || | |
603 | (efi_end >= region_start && efi_end <= region_end)) { | |
604 | kprintf(" *** Overlapping region with EFI runtime region %d\n", i); | |
605 | } | |
606 | } | |
607 | } | |
608 | } | |
609 | } | |
610 | #endif | |
611 | ||
612 | avail_start = first_avail; | |
613 | mem_actual = args->PhysicalMemorySize; | |
614 | ||
615 | /* | |
616 | * For user visible memory size, round up to 128 Mb | |
617 | * - accounting for the various stolen memory not reported by EFI. | |
618 | * This is maintained for historical, comparison purposes but | |
619 | * we now use the memory size reported by EFI/Booter. | |
620 | */ | |
621 | sane_size = (sane_size + 128 * MB - 1) & ~((uint64_t)(128 * MB - 1)); | |
622 | if (sane_size != mem_actual) | |
623 | printf("mem_actual: 0x%llx\n legacy sane_size: 0x%llx\n", | |
624 | mem_actual, sane_size); | |
625 | sane_size = mem_actual; | |
626 | ||
627 | /* | |
628 | * We cap at KERNEL_MAXMEM bytes (currently 32GB for K32, 96GB for K64). | |
629 | * Unless overriden by the maxmem= boot-arg | |
630 | * -- which is a non-zero maxmem argument to this function. | |
631 | */ | |
632 | if (maxmem == 0 && sane_size > KERNEL_MAXMEM) { | |
633 | maxmem = KERNEL_MAXMEM; | |
634 | printf("Physical memory %lld bytes capped at %dGB\n", | |
635 | sane_size, (uint32_t) (KERNEL_MAXMEM/GB)); | |
636 | } | |
637 | ||
638 | /* | |
639 | * if user set maxmem, reduce memory sizes | |
640 | */ | |
641 | if ( (maxmem > (uint64_t)first_avail) && (maxmem < sane_size)) { | |
642 | ppnum_t discarded_pages = (ppnum_t)((sane_size - maxmem) >> I386_PGSHIFT); | |
643 | ppnum_t highest_pn = 0; | |
644 | ppnum_t cur_end = 0; | |
645 | uint64_t pages_to_use; | |
646 | unsigned cur_region = 0; | |
647 | ||
648 | sane_size = maxmem; | |
649 | ||
650 | if (avail_remaining > discarded_pages) | |
651 | avail_remaining -= discarded_pages; | |
652 | else | |
653 | avail_remaining = 0; | |
654 | ||
655 | pages_to_use = avail_remaining; | |
656 | ||
657 | while (cur_region < pmap_memory_region_count && pages_to_use) { | |
658 | for (cur_end = pmap_memory_regions[cur_region].base; | |
659 | cur_end < pmap_memory_regions[cur_region].end && pages_to_use; | |
660 | cur_end++) { | |
661 | if (cur_end > highest_pn) | |
662 | highest_pn = cur_end; | |
663 | pages_to_use--; | |
664 | } | |
665 | if (pages_to_use == 0) { | |
666 | pmap_memory_regions[cur_region].end = cur_end; | |
667 | pmap_memory_regions[cur_region].alloc_down = cur_end; | |
668 | } | |
669 | ||
670 | cur_region++; | |
671 | } | |
672 | pmap_memory_region_count = cur_region; | |
673 | ||
674 | avail_end = i386_ptob(highest_pn + 1); | |
675 | } | |
676 | ||
677 | /* | |
678 | * mem_size is only a 32 bit container... follow the PPC route | |
679 | * and pin it to a 2 Gbyte maximum | |
680 | */ | |
681 | if (sane_size > (FOURGIG >> 1)) | |
682 | mem_size = (vm_size_t)(FOURGIG >> 1); | |
683 | else | |
684 | mem_size = (vm_size_t)sane_size; | |
685 | max_mem = sane_size; | |
686 | ||
687 | kprintf("Physical memory %llu MB\n", sane_size/MB); | |
688 | ||
689 | max_valid_low_ppnum = (2 * GB) / PAGE_SIZE; | |
690 | ||
691 | if (!PE_parse_boot_argn("max_valid_dma_addr", &maxdmaaddr, sizeof (maxdmaaddr))) { | |
692 | max_valid_dma_address = (uint64_t)4 * (uint64_t)GB; | |
693 | } else { | |
694 | max_valid_dma_address = ((uint64_t) maxdmaaddr) * MB; | |
695 | ||
696 | if ((max_valid_dma_address / PAGE_SIZE) < max_valid_low_ppnum) | |
697 | max_valid_low_ppnum = (ppnum_t)(max_valid_dma_address / PAGE_SIZE); | |
698 | } | |
699 | if (avail_end >= max_valid_dma_address) { | |
700 | ||
701 | if (!PE_parse_boot_argn("maxloreserve", &maxloreserve, sizeof (maxloreserve))) { | |
702 | ||
703 | if (sane_size >= (ONEGIG * 15)) | |
704 | maxloreserve = (MAXLORESERVE / PAGE_SIZE) * 4; | |
705 | else if (sane_size >= (ONEGIG * 7)) | |
706 | maxloreserve = (MAXLORESERVE / PAGE_SIZE) * 2; | |
707 | else | |
708 | maxloreserve = MAXLORESERVE / PAGE_SIZE; | |
709 | ||
710 | #if SOCKETS | |
711 | mbuf_reserve = bsd_mbuf_cluster_reserve(&mbuf_override) / PAGE_SIZE; | |
712 | #endif | |
713 | } else | |
714 | maxloreserve = (maxloreserve * (1024 * 1024)) / PAGE_SIZE; | |
715 | ||
716 | if (maxloreserve) { | |
717 | vm_lopage_free_limit = maxloreserve; | |
718 | ||
719 | if (mbuf_override == TRUE) { | |
720 | vm_lopage_free_limit += mbuf_reserve; | |
721 | vm_lopage_lowater = 0; | |
722 | } else | |
723 | vm_lopage_lowater = vm_lopage_free_limit / 16; | |
724 | ||
725 | vm_lopage_refill = TRUE; | |
726 | vm_lopage_needed = TRUE; | |
727 | } | |
728 | } | |
729 | ||
730 | /* | |
731 | * Initialize kernel physical map. | |
732 | * Kernel virtual address starts at VM_KERNEL_MIN_ADDRESS. | |
733 | */ | |
734 | kprintf("avail_remaining = 0x%lx\n", (unsigned long)avail_remaining); | |
735 | pmap_bootstrap(0, IA32e); | |
736 | } | |
737 | ||
738 | ||
739 | unsigned int | |
740 | pmap_free_pages(void) | |
741 | { | |
742 | return (unsigned int)avail_remaining; | |
743 | } | |
744 | ||
745 | ||
746 | boolean_t pmap_next_page_reserved(ppnum_t *); | |
747 | ||
748 | /* | |
749 | * Pick a page from a "kernel private" reserved range; works around | |
750 | * errata on some hardware. | |
751 | */ | |
752 | boolean_t | |
753 | pmap_next_page_reserved(ppnum_t *pn) { | |
754 | if (pmap_reserved_ranges) { | |
755 | uint32_t n; | |
756 | pmap_memory_region_t *region; | |
757 | for (n = 0; n < pmap_last_reserved_range_index; n++) { | |
758 | uint32_t reserved_index = pmap_reserved_range_indices[n]; | |
759 | region = &pmap_memory_regions[reserved_index]; | |
760 | if (region->alloc_up <= region->alloc_down) { | |
761 | *pn = region->alloc_up++; | |
762 | avail_remaining--; | |
763 | ||
764 | if (*pn > max_ppnum) | |
765 | max_ppnum = *pn; | |
766 | ||
767 | if (lowest_lo == 0 || *pn < lowest_lo) | |
768 | lowest_lo = *pn; | |
769 | ||
770 | pmap_reserved_pages_allocated++; | |
771 | #if DEBUG | |
772 | if (region->alloc_up > region->alloc_down) { | |
773 | kprintf("Exhausted reserved range index: %u, base: 0x%x end: 0x%x, type: 0x%x, attribute: 0x%llx\n", reserved_index, region->base, region->end, region->type, region->attribute); | |
774 | } | |
775 | #endif | |
776 | return TRUE; | |
777 | } | |
778 | } | |
779 | } | |
780 | return FALSE; | |
781 | } | |
782 | ||
783 | ||
784 | boolean_t | |
785 | pmap_next_page_hi( | |
786 | ppnum_t *pn) | |
787 | { | |
788 | pmap_memory_region_t *region; | |
789 | int n; | |
790 | ||
791 | if (pmap_next_page_reserved(pn)) | |
792 | return TRUE; | |
793 | ||
794 | if (avail_remaining) { | |
795 | for (n = pmap_memory_region_count - 1; n >= 0; n--) { | |
796 | region = &pmap_memory_regions[n]; | |
797 | ||
798 | if (region->alloc_down >= region->alloc_up) { | |
799 | *pn = region->alloc_down--; | |
800 | avail_remaining--; | |
801 | ||
802 | if (*pn > max_ppnum) | |
803 | max_ppnum = *pn; | |
804 | ||
805 | if (lowest_lo == 0 || *pn < lowest_lo) | |
806 | lowest_lo = *pn; | |
807 | ||
808 | if (lowest_hi == 0 || *pn < lowest_hi) | |
809 | lowest_hi = *pn; | |
810 | ||
811 | if (*pn > highest_hi) | |
812 | highest_hi = *pn; | |
813 | ||
814 | return TRUE; | |
815 | } | |
816 | } | |
817 | } | |
818 | return FALSE; | |
819 | } | |
820 | ||
821 | ||
822 | boolean_t | |
823 | pmap_next_page( | |
824 | ppnum_t *pn) | |
825 | { | |
826 | if (avail_remaining) while (pmap_memory_region_current < pmap_memory_region_count) { | |
827 | if (pmap_memory_regions[pmap_memory_region_current].alloc_up > | |
828 | pmap_memory_regions[pmap_memory_region_current].alloc_down) { | |
829 | pmap_memory_region_current++; | |
830 | continue; | |
831 | } | |
832 | *pn = pmap_memory_regions[pmap_memory_region_current].alloc_up++; | |
833 | avail_remaining--; | |
834 | ||
835 | if (*pn > max_ppnum) | |
836 | max_ppnum = *pn; | |
837 | ||
838 | if (lowest_lo == 0 || *pn < lowest_lo) | |
839 | lowest_lo = *pn; | |
840 | ||
841 | return TRUE; | |
842 | } | |
843 | return FALSE; | |
844 | } | |
845 | ||
846 | ||
847 | boolean_t | |
848 | pmap_valid_page( | |
849 | ppnum_t pn) | |
850 | { | |
851 | unsigned int i; | |
852 | pmap_memory_region_t *pmptr = pmap_memory_regions; | |
853 | ||
854 | for (i = 0; i < pmap_memory_region_count; i++, pmptr++) { | |
855 | if ( (pn >= pmptr->base) && (pn <= pmptr->end) ) | |
856 | return TRUE; | |
857 | } | |
858 | return FALSE; | |
859 | } | |
860 |