]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 2000-2012 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */ | |
29 | /* | |
30 | * Copyright (c) 1989, 1993, 1995 | |
31 | * The Regents of the University of California. All rights reserved. | |
32 | * | |
33 | * Redistribution and use in source and binary forms, with or without | |
34 | * modification, are permitted provided that the following conditions | |
35 | * are met: | |
36 | * 1. Redistributions of source code must retain the above copyright | |
37 | * notice, this list of conditions and the following disclaimer. | |
38 | * 2. Redistributions in binary form must reproduce the above copyright | |
39 | * notice, this list of conditions and the following disclaimer in the | |
40 | * documentation and/or other materials provided with the distribution. | |
41 | * 3. All advertising materials mentioning features or use of this software | |
42 | * must display the following acknowledgement: | |
43 | * This product includes software developed by the University of | |
44 | * California, Berkeley and its contributors. | |
45 | * 4. Neither the name of the University nor the names of its contributors | |
46 | * may be used to endorse or promote products derived from this software | |
47 | * without specific prior written permission. | |
48 | * | |
49 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |
50 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
51 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
52 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |
53 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
54 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
55 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
56 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
57 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
58 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
59 | * SUCH DAMAGE. | |
60 | * | |
61 | * @(#)spec_vnops.c 8.14 (Berkeley) 5/21/95 | |
62 | */ | |
63 | ||
64 | #include <sys/param.h> | |
65 | #include <sys/proc_internal.h> | |
66 | #include <sys/kauth.h> | |
67 | #include <sys/systm.h> | |
68 | #include <sys/kernel.h> | |
69 | #include <sys/conf.h> | |
70 | #include <sys/buf_internal.h> | |
71 | #include <sys/mount_internal.h> | |
72 | #include <sys/vnode_internal.h> | |
73 | #include <sys/file_internal.h> | |
74 | #include <sys/namei.h> | |
75 | #include <sys/stat.h> | |
76 | #include <sys/errno.h> | |
77 | #include <sys/ioctl.h> | |
78 | #include <sys/file.h> | |
79 | #include <sys/user.h> | |
80 | #include <sys/malloc.h> | |
81 | #include <sys/disk.h> | |
82 | #include <sys/uio_internal.h> | |
83 | #include <sys/resource.h> | |
84 | #include <miscfs/specfs/specdev.h> | |
85 | #include <vfs/vfs_support.h> | |
86 | #include <kern/assert.h> | |
87 | #include <kern/task.h> | |
88 | #include <pexpert/pexpert.h> | |
89 | ||
90 | #include <sys/kdebug.h> | |
91 | ||
92 | /* XXX following three prototypes should be in a header file somewhere */ | |
93 | extern dev_t chrtoblk(dev_t dev); | |
94 | extern int iskmemdev(dev_t dev); | |
95 | extern int bpfkqfilter(dev_t dev, struct knote *kn); | |
96 | extern int ptsd_kqfilter(dev_t dev, struct knote *kn); | |
97 | ||
98 | extern int ignore_is_ssd; | |
99 | ||
100 | struct vnode *speclisth[SPECHSZ]; | |
101 | ||
102 | /* symbolic sleep message strings for devices */ | |
103 | char devopn[] = "devopn"; | |
104 | char devio[] = "devio"; | |
105 | char devwait[] = "devwait"; | |
106 | char devin[] = "devin"; | |
107 | char devout[] = "devout"; | |
108 | char devioc[] = "devioc"; | |
109 | char devcls[] = "devcls"; | |
110 | ||
111 | #define VOPFUNC int (*)(void *) | |
112 | ||
113 | int (**spec_vnodeop_p)(void *); | |
114 | struct vnodeopv_entry_desc spec_vnodeop_entries[] = { | |
115 | { &vnop_default_desc, (VOPFUNC)vn_default_error }, | |
116 | { &vnop_lookup_desc, (VOPFUNC)spec_lookup }, /* lookup */ | |
117 | { &vnop_create_desc, (VOPFUNC)err_create }, /* create */ | |
118 | { &vnop_mknod_desc, (VOPFUNC)err_mknod }, /* mknod */ | |
119 | { &vnop_open_desc, (VOPFUNC)spec_open }, /* open */ | |
120 | { &vnop_close_desc, (VOPFUNC)spec_close }, /* close */ | |
121 | { &vnop_access_desc, (VOPFUNC)spec_access }, /* access */ | |
122 | { &vnop_getattr_desc, (VOPFUNC)spec_getattr }, /* getattr */ | |
123 | { &vnop_setattr_desc, (VOPFUNC)spec_setattr }, /* setattr */ | |
124 | { &vnop_read_desc, (VOPFUNC)spec_read }, /* read */ | |
125 | { &vnop_write_desc, (VOPFUNC)spec_write }, /* write */ | |
126 | { &vnop_ioctl_desc, (VOPFUNC)spec_ioctl }, /* ioctl */ | |
127 | { &vnop_select_desc, (VOPFUNC)spec_select }, /* select */ | |
128 | { &vnop_revoke_desc, (VOPFUNC)nop_revoke }, /* revoke */ | |
129 | { &vnop_mmap_desc, (VOPFUNC)err_mmap }, /* mmap */ | |
130 | { &vnop_fsync_desc, (VOPFUNC)spec_fsync }, /* fsync */ | |
131 | { &vnop_remove_desc, (VOPFUNC)err_remove }, /* remove */ | |
132 | { &vnop_link_desc, (VOPFUNC)err_link }, /* link */ | |
133 | { &vnop_rename_desc, (VOPFUNC)err_rename }, /* rename */ | |
134 | { &vnop_mkdir_desc, (VOPFUNC)err_mkdir }, /* mkdir */ | |
135 | { &vnop_rmdir_desc, (VOPFUNC)err_rmdir }, /* rmdir */ | |
136 | { &vnop_symlink_desc, (VOPFUNC)err_symlink }, /* symlink */ | |
137 | { &vnop_readdir_desc, (VOPFUNC)err_readdir }, /* readdir */ | |
138 | { &vnop_readlink_desc, (VOPFUNC)err_readlink }, /* readlink */ | |
139 | { &vnop_inactive_desc, (VOPFUNC)nop_inactive }, /* inactive */ | |
140 | { &vnop_reclaim_desc, (VOPFUNC)nop_reclaim }, /* reclaim */ | |
141 | { &vnop_strategy_desc, (VOPFUNC)spec_strategy }, /* strategy */ | |
142 | { &vnop_pathconf_desc, (VOPFUNC)spec_pathconf }, /* pathconf */ | |
143 | { &vnop_advlock_desc, (VOPFUNC)err_advlock }, /* advlock */ | |
144 | { &vnop_bwrite_desc, (VOPFUNC)spec_bwrite }, /* bwrite */ | |
145 | { &vnop_pagein_desc, (VOPFUNC)err_pagein }, /* Pagein */ | |
146 | { &vnop_pageout_desc, (VOPFUNC)err_pageout }, /* Pageout */ | |
147 | { &vnop_copyfile_desc, (VOPFUNC)err_copyfile }, /* Copyfile */ | |
148 | { &vnop_blktooff_desc, (VOPFUNC)spec_blktooff }, /* blktooff */ | |
149 | { &vnop_offtoblk_desc, (VOPFUNC)spec_offtoblk }, /* offtoblk */ | |
150 | { &vnop_blockmap_desc, (VOPFUNC)spec_blockmap }, /* blockmap */ | |
151 | { (struct vnodeop_desc*)NULL, (int(*)())NULL } | |
152 | }; | |
153 | struct vnodeopv_desc spec_vnodeop_opv_desc = | |
154 | { &spec_vnodeop_p, spec_vnodeop_entries }; | |
155 | ||
156 | ||
157 | static void set_blocksize(vnode_t, dev_t); | |
158 | ||
159 | #define LOWPRI_TIER1_WINDOW_MSECS 25 | |
160 | #define LOWPRI_TIER2_WINDOW_MSECS 100 | |
161 | #define LOWPRI_TIER3_WINDOW_MSECS 500 | |
162 | ||
163 | #define LOWPRI_TIER1_IO_PERIOD_MSECS 15 | |
164 | #define LOWPRI_TIER2_IO_PERIOD_MSECS 50 | |
165 | #define LOWPRI_TIER3_IO_PERIOD_MSECS 200 | |
166 | ||
167 | #define LOWPRI_TIER1_IO_PERIOD_SSD_MSECS 5 | |
168 | #define LOWPRI_TIER2_IO_PERIOD_SSD_MSECS 15 | |
169 | #define LOWPRI_TIER3_IO_PERIOD_SSD_MSECS 25 | |
170 | ||
171 | ||
172 | int throttle_windows_msecs[THROTTLE_LEVEL_END + 1] = { | |
173 | 0, | |
174 | LOWPRI_TIER1_WINDOW_MSECS, | |
175 | LOWPRI_TIER2_WINDOW_MSECS, | |
176 | LOWPRI_TIER3_WINDOW_MSECS, | |
177 | }; | |
178 | ||
179 | int throttle_io_period_msecs[THROTTLE_LEVEL_END + 1] = { | |
180 | 0, | |
181 | LOWPRI_TIER1_IO_PERIOD_MSECS, | |
182 | LOWPRI_TIER2_IO_PERIOD_MSECS, | |
183 | LOWPRI_TIER3_IO_PERIOD_MSECS, | |
184 | }; | |
185 | ||
186 | int throttle_io_period_ssd_msecs[THROTTLE_LEVEL_END + 1] = { | |
187 | 0, | |
188 | LOWPRI_TIER1_IO_PERIOD_SSD_MSECS, | |
189 | LOWPRI_TIER2_IO_PERIOD_SSD_MSECS, | |
190 | LOWPRI_TIER3_IO_PERIOD_SSD_MSECS, | |
191 | }; | |
192 | ||
193 | ||
194 | int throttled_count[THROTTLE_LEVEL_END + 1]; | |
195 | ||
196 | struct _throttle_io_info_t { | |
197 | lck_mtx_t throttle_lock; | |
198 | ||
199 | struct timeval throttle_last_write_timestamp; | |
200 | struct timeval throttle_min_timer_deadline; | |
201 | struct timeval throttle_window_start_timestamp[THROTTLE_LEVEL_END + 1]; | |
202 | struct timeval throttle_last_IO_timestamp[THROTTLE_LEVEL_END + 1]; | |
203 | pid_t throttle_last_IO_pid[THROTTLE_LEVEL_END + 1]; | |
204 | struct timeval throttle_start_IO_period_timestamp[THROTTLE_LEVEL_END + 1]; | |
205 | ||
206 | TAILQ_HEAD( , uthread) throttle_uthlist[THROTTLE_LEVEL_END + 1]; /* Lists of throttled uthreads */ | |
207 | int throttle_next_wake_level; | |
208 | ||
209 | thread_call_t throttle_timer_call; | |
210 | int32_t throttle_timer_ref; | |
211 | int32_t throttle_timer_active; | |
212 | ||
213 | int32_t throttle_io_count; | |
214 | int32_t throttle_io_count_begin; | |
215 | int *throttle_io_periods; | |
216 | uint32_t throttle_io_period_num; | |
217 | ||
218 | int32_t throttle_refcnt; | |
219 | int32_t throttle_alloc; | |
220 | }; | |
221 | ||
222 | struct _throttle_io_info_t _throttle_io_info[LOWPRI_MAX_NUM_DEV]; | |
223 | ||
224 | ||
225 | int lowpri_throttle_enabled = 1; | |
226 | ||
227 | ||
228 | ||
229 | static void throttle_info_update_internal(struct _throttle_io_info_t *info, uthread_t ut, int flags, boolean_t isssd); | |
230 | static int throttle_get_thread_throttle_level(uthread_t ut); | |
231 | ||
232 | /* | |
233 | * Trivial lookup routine that always fails. | |
234 | */ | |
235 | int | |
236 | spec_lookup(struct vnop_lookup_args *ap) | |
237 | { | |
238 | ||
239 | *ap->a_vpp = NULL; | |
240 | return (ENOTDIR); | |
241 | } | |
242 | ||
243 | static void | |
244 | set_blocksize(struct vnode *vp, dev_t dev) | |
245 | { | |
246 | int (*size)(dev_t); | |
247 | int rsize; | |
248 | ||
249 | if ((major(dev) < nblkdev) && (size = bdevsw[major(dev)].d_psize)) { | |
250 | rsize = (*size)(dev); | |
251 | if (rsize <= 0) /* did size fail? */ | |
252 | vp->v_specsize = DEV_BSIZE; | |
253 | else | |
254 | vp->v_specsize = rsize; | |
255 | } | |
256 | else | |
257 | vp->v_specsize = DEV_BSIZE; | |
258 | } | |
259 | ||
260 | void | |
261 | set_fsblocksize(struct vnode *vp) | |
262 | { | |
263 | ||
264 | if (vp->v_type == VBLK) { | |
265 | dev_t dev = (dev_t)vp->v_rdev; | |
266 | int maj = major(dev); | |
267 | ||
268 | if ((u_int)maj >= (u_int)nblkdev) | |
269 | return; | |
270 | ||
271 | vnode_lock(vp); | |
272 | set_blocksize(vp, dev); | |
273 | vnode_unlock(vp); | |
274 | } | |
275 | ||
276 | } | |
277 | ||
278 | ||
279 | /* | |
280 | * Open a special file. | |
281 | */ | |
282 | int | |
283 | spec_open(struct vnop_open_args *ap) | |
284 | { | |
285 | struct proc *p = vfs_context_proc(ap->a_context); | |
286 | kauth_cred_t cred = vfs_context_ucred(ap->a_context); | |
287 | struct vnode *vp = ap->a_vp; | |
288 | dev_t bdev, dev = (dev_t)vp->v_rdev; | |
289 | int maj = major(dev); | |
290 | int error; | |
291 | ||
292 | /* | |
293 | * Don't allow open if fs is mounted -nodev. | |
294 | */ | |
295 | if (vp->v_mount && (vp->v_mount->mnt_flag & MNT_NODEV)) | |
296 | return (ENXIO); | |
297 | ||
298 | switch (vp->v_type) { | |
299 | ||
300 | case VCHR: | |
301 | if ((u_int)maj >= (u_int)nchrdev) | |
302 | return (ENXIO); | |
303 | if (cred != FSCRED && (ap->a_mode & FWRITE)) { | |
304 | /* | |
305 | * When running in very secure mode, do not allow | |
306 | * opens for writing of any disk character devices. | |
307 | */ | |
308 | if (securelevel >= 2 && isdisk(dev, VCHR)) | |
309 | return (EPERM); | |
310 | /* | |
311 | * When running in secure mode, do not allow opens | |
312 | * for writing of /dev/mem, /dev/kmem, or character | |
313 | * devices whose corresponding block devices are | |
314 | * currently mounted. | |
315 | */ | |
316 | if (securelevel >= 1) { | |
317 | if ((bdev = chrtoblk(dev)) != NODEV && check_mountedon(bdev, VBLK, &error)) | |
318 | return (error); | |
319 | if (iskmemdev(dev)) | |
320 | return (EPERM); | |
321 | } | |
322 | } | |
323 | ||
324 | devsw_lock(dev, S_IFCHR); | |
325 | error = (*cdevsw[maj].d_open)(dev, ap->a_mode, S_IFCHR, p); | |
326 | ||
327 | if (error == 0) { | |
328 | vp->v_specinfo->si_opencount++; | |
329 | } | |
330 | ||
331 | devsw_unlock(dev, S_IFCHR); | |
332 | ||
333 | if (error == 0 && cdevsw[maj].d_type == D_DISK && !vp->v_un.vu_specinfo->si_initted) { | |
334 | int isssd = 0; | |
335 | uint64_t throttle_mask = 0; | |
336 | uint32_t devbsdunit = 0; | |
337 | ||
338 | if (VNOP_IOCTL(vp, DKIOCGETTHROTTLEMASK, (caddr_t)&throttle_mask, 0, NULL) == 0) { | |
339 | ||
340 | if (throttle_mask != 0 && | |
341 | VNOP_IOCTL(vp, DKIOCISSOLIDSTATE, (caddr_t)&isssd, 0, ap->a_context) == 0) { | |
342 | /* | |
343 | * as a reasonable approximation, only use the lowest bit of the mask | |
344 | * to generate a disk unit number | |
345 | */ | |
346 | devbsdunit = num_trailing_0(throttle_mask); | |
347 | ||
348 | vnode_lock(vp); | |
349 | ||
350 | vp->v_un.vu_specinfo->si_isssd = isssd; | |
351 | vp->v_un.vu_specinfo->si_devbsdunit = devbsdunit; | |
352 | vp->v_un.vu_specinfo->si_throttle_mask = throttle_mask; | |
353 | vp->v_un.vu_specinfo->si_throttleable = 1; | |
354 | vp->v_un.vu_specinfo->si_initted = 1; | |
355 | ||
356 | vnode_unlock(vp); | |
357 | } | |
358 | } | |
359 | if (vp->v_un.vu_specinfo->si_initted == 0) { | |
360 | vnode_lock(vp); | |
361 | vp->v_un.vu_specinfo->si_initted = 1; | |
362 | vnode_unlock(vp); | |
363 | } | |
364 | } | |
365 | return (error); | |
366 | ||
367 | case VBLK: | |
368 | if ((u_int)maj >= (u_int)nblkdev) | |
369 | return (ENXIO); | |
370 | /* | |
371 | * When running in very secure mode, do not allow | |
372 | * opens for writing of any disk block devices. | |
373 | */ | |
374 | if (securelevel >= 2 && cred != FSCRED && | |
375 | (ap->a_mode & FWRITE) && bdevsw[maj].d_type == D_DISK) | |
376 | return (EPERM); | |
377 | /* | |
378 | * Do not allow opens of block devices that are | |
379 | * currently mounted. | |
380 | */ | |
381 | if ( (error = vfs_mountedon(vp)) ) | |
382 | return (error); | |
383 | ||
384 | devsw_lock(dev, S_IFBLK); | |
385 | error = (*bdevsw[maj].d_open)(dev, ap->a_mode, S_IFBLK, p); | |
386 | if (!error) { | |
387 | vp->v_specinfo->si_opencount++; | |
388 | } | |
389 | devsw_unlock(dev, S_IFBLK); | |
390 | ||
391 | if (!error) { | |
392 | u_int64_t blkcnt; | |
393 | u_int32_t blksize; | |
394 | int setsize = 0; | |
395 | u_int32_t size512 = 512; | |
396 | ||
397 | ||
398 | if (!VNOP_IOCTL(vp, DKIOCGETBLOCKSIZE, (caddr_t)&blksize, 0, ap->a_context)) { | |
399 | /* Switch to 512 byte sectors (temporarily) */ | |
400 | ||
401 | if (!VNOP_IOCTL(vp, DKIOCSETBLOCKSIZE, (caddr_t)&size512, FWRITE, ap->a_context)) { | |
402 | /* Get the number of 512 byte physical blocks. */ | |
403 | if (!VNOP_IOCTL(vp, DKIOCGETBLOCKCOUNT, (caddr_t)&blkcnt, 0, ap->a_context)) { | |
404 | setsize = 1; | |
405 | } | |
406 | } | |
407 | /* If it doesn't set back, we can't recover */ | |
408 | if (VNOP_IOCTL(vp, DKIOCSETBLOCKSIZE, (caddr_t)&blksize, FWRITE, ap->a_context)) | |
409 | error = ENXIO; | |
410 | } | |
411 | ||
412 | ||
413 | vnode_lock(vp); | |
414 | set_blocksize(vp, dev); | |
415 | ||
416 | /* | |
417 | * Cache the size in bytes of the block device for later | |
418 | * use by spec_write(). | |
419 | */ | |
420 | if (setsize) | |
421 | vp->v_specdevsize = blkcnt * (u_int64_t)size512; | |
422 | else | |
423 | vp->v_specdevsize = (u_int64_t)0; /* Default: Can't get */ | |
424 | ||
425 | vnode_unlock(vp); | |
426 | ||
427 | } | |
428 | return(error); | |
429 | default: | |
430 | panic("spec_open type"); | |
431 | } | |
432 | return (0); | |
433 | } | |
434 | ||
435 | /* | |
436 | * Vnode op for read | |
437 | */ | |
438 | int | |
439 | spec_read(struct vnop_read_args *ap) | |
440 | { | |
441 | struct vnode *vp = ap->a_vp; | |
442 | struct uio *uio = ap->a_uio; | |
443 | struct buf *bp; | |
444 | daddr64_t bn, nextbn; | |
445 | long bsize, bscale; | |
446 | int devBlockSize=0; | |
447 | int n, on; | |
448 | int error = 0; | |
449 | dev_t dev; | |
450 | ||
451 | #if DIAGNOSTIC | |
452 | if (uio->uio_rw != UIO_READ) | |
453 | panic("spec_read mode"); | |
454 | if (UIO_SEG_IS_USER_SPACE(uio->uio_segflg)) | |
455 | panic("spec_read proc"); | |
456 | #endif | |
457 | if (uio_resid(uio) == 0) | |
458 | return (0); | |
459 | ||
460 | switch (vp->v_type) { | |
461 | ||
462 | case VCHR: | |
463 | if (cdevsw[major(vp->v_rdev)].d_type == D_DISK && vp->v_un.vu_specinfo->si_throttleable) { | |
464 | struct _throttle_io_info_t *throttle_info; | |
465 | ||
466 | throttle_info = &_throttle_io_info[vp->v_un.vu_specinfo->si_devbsdunit]; | |
467 | ||
468 | throttle_info_update_internal(throttle_info, NULL, 0, vp->v_un.vu_specinfo->si_isssd); | |
469 | } | |
470 | error = (*cdevsw[major(vp->v_rdev)].d_read) | |
471 | (vp->v_rdev, uio, ap->a_ioflag); | |
472 | ||
473 | return (error); | |
474 | ||
475 | case VBLK: | |
476 | if (uio->uio_offset < 0) | |
477 | return (EINVAL); | |
478 | ||
479 | dev = vp->v_rdev; | |
480 | ||
481 | devBlockSize = vp->v_specsize; | |
482 | ||
483 | if (devBlockSize > PAGE_SIZE) | |
484 | return (EINVAL); | |
485 | ||
486 | bscale = PAGE_SIZE / devBlockSize; | |
487 | bsize = bscale * devBlockSize; | |
488 | ||
489 | do { | |
490 | on = uio->uio_offset % bsize; | |
491 | ||
492 | bn = (daddr64_t)((uio->uio_offset / devBlockSize) &~ (bscale - 1)); | |
493 | ||
494 | if (vp->v_speclastr + bscale == bn) { | |
495 | nextbn = bn + bscale; | |
496 | error = buf_breadn(vp, bn, (int)bsize, &nextbn, | |
497 | (int *)&bsize, 1, NOCRED, &bp); | |
498 | } else | |
499 | error = buf_bread(vp, bn, (int)bsize, NOCRED, &bp); | |
500 | ||
501 | vnode_lock(vp); | |
502 | vp->v_speclastr = bn; | |
503 | vnode_unlock(vp); | |
504 | ||
505 | n = bsize - buf_resid(bp); | |
506 | if ((on > n) || error) { | |
507 | if (!error) | |
508 | error = EINVAL; | |
509 | buf_brelse(bp); | |
510 | return (error); | |
511 | } | |
512 | n = min((unsigned)(n - on), uio_resid(uio)); | |
513 | ||
514 | error = uiomove((char *)buf_dataptr(bp) + on, n, uio); | |
515 | if (n + on == bsize) | |
516 | buf_markaged(bp); | |
517 | buf_brelse(bp); | |
518 | } while (error == 0 && uio_resid(uio) > 0 && n != 0); | |
519 | return (error); | |
520 | ||
521 | default: | |
522 | panic("spec_read type"); | |
523 | } | |
524 | /* NOTREACHED */ | |
525 | ||
526 | return (0); | |
527 | } | |
528 | ||
529 | /* | |
530 | * Vnode op for write | |
531 | */ | |
532 | int | |
533 | spec_write(struct vnop_write_args *ap) | |
534 | { | |
535 | struct vnode *vp = ap->a_vp; | |
536 | struct uio *uio = ap->a_uio; | |
537 | struct buf *bp; | |
538 | daddr64_t bn; | |
539 | int bsize, blkmask, bscale; | |
540 | int io_sync; | |
541 | int devBlockSize=0; | |
542 | int n, on; | |
543 | int error = 0; | |
544 | dev_t dev; | |
545 | ||
546 | #if DIAGNOSTIC | |
547 | if (uio->uio_rw != UIO_WRITE) | |
548 | panic("spec_write mode"); | |
549 | if (UIO_SEG_IS_USER_SPACE(uio->uio_segflg)) | |
550 | panic("spec_write proc"); | |
551 | #endif | |
552 | ||
553 | switch (vp->v_type) { | |
554 | ||
555 | case VCHR: | |
556 | if (cdevsw[major(vp->v_rdev)].d_type == D_DISK && vp->v_un.vu_specinfo->si_throttleable) { | |
557 | struct _throttle_io_info_t *throttle_info; | |
558 | ||
559 | throttle_info = &_throttle_io_info[vp->v_un.vu_specinfo->si_devbsdunit]; | |
560 | ||
561 | throttle_info_update_internal(throttle_info, NULL, 0, vp->v_un.vu_specinfo->si_isssd); | |
562 | ||
563 | microuptime(&throttle_info->throttle_last_write_timestamp); | |
564 | } | |
565 | error = (*cdevsw[major(vp->v_rdev)].d_write) | |
566 | (vp->v_rdev, uio, ap->a_ioflag); | |
567 | ||
568 | return (error); | |
569 | ||
570 | case VBLK: | |
571 | if (uio_resid(uio) == 0) | |
572 | return (0); | |
573 | if (uio->uio_offset < 0) | |
574 | return (EINVAL); | |
575 | ||
576 | io_sync = (ap->a_ioflag & IO_SYNC); | |
577 | ||
578 | dev = (vp->v_rdev); | |
579 | ||
580 | devBlockSize = vp->v_specsize; | |
581 | if (devBlockSize > PAGE_SIZE) | |
582 | return(EINVAL); | |
583 | ||
584 | bscale = PAGE_SIZE / devBlockSize; | |
585 | blkmask = bscale - 1; | |
586 | bsize = bscale * devBlockSize; | |
587 | ||
588 | ||
589 | do { | |
590 | bn = (daddr64_t)((uio->uio_offset / devBlockSize) &~ blkmask); | |
591 | on = uio->uio_offset % bsize; | |
592 | ||
593 | n = min((unsigned)(bsize - on), uio_resid(uio)); | |
594 | ||
595 | /* | |
596 | * Use buf_getblk() as an optimization IFF: | |
597 | * | |
598 | * 1) We are reading exactly a block on a block | |
599 | * aligned boundary | |
600 | * 2) We know the size of the device from spec_open | |
601 | * 3) The read doesn't span the end of the device | |
602 | * | |
603 | * Otherwise, we fall back on buf_bread(). | |
604 | */ | |
605 | if (n == bsize && | |
606 | vp->v_specdevsize != (u_int64_t)0 && | |
607 | (uio->uio_offset + (u_int64_t)n) > vp->v_specdevsize) { | |
608 | /* reduce the size of the read to what is there */ | |
609 | n = (uio->uio_offset + (u_int64_t)n) - vp->v_specdevsize; | |
610 | } | |
611 | ||
612 | if (n == bsize) | |
613 | bp = buf_getblk(vp, bn, bsize, 0, 0, BLK_WRITE); | |
614 | else | |
615 | error = (int)buf_bread(vp, bn, bsize, NOCRED, &bp); | |
616 | ||
617 | /* Translate downstream error for upstream, if needed */ | |
618 | if (!error) | |
619 | error = (int)buf_error(bp); | |
620 | if (error) { | |
621 | buf_brelse(bp); | |
622 | return (error); | |
623 | } | |
624 | n = min(n, bsize - buf_resid(bp)); | |
625 | ||
626 | error = uiomove((char *)buf_dataptr(bp) + on, n, uio); | |
627 | if (error) { | |
628 | buf_brelse(bp); | |
629 | return (error); | |
630 | } | |
631 | buf_markaged(bp); | |
632 | ||
633 | if (io_sync) | |
634 | error = buf_bwrite(bp); | |
635 | else { | |
636 | if ((n + on) == bsize) | |
637 | error = buf_bawrite(bp); | |
638 | else | |
639 | error = buf_bdwrite(bp); | |
640 | } | |
641 | } while (error == 0 && uio_resid(uio) > 0 && n != 0); | |
642 | return (error); | |
643 | ||
644 | default: | |
645 | panic("spec_write type"); | |
646 | } | |
647 | /* NOTREACHED */ | |
648 | ||
649 | return (0); | |
650 | } | |
651 | ||
652 | /* | |
653 | * Device ioctl operation. | |
654 | */ | |
655 | int | |
656 | spec_ioctl(struct vnop_ioctl_args *ap) | |
657 | { | |
658 | proc_t p = vfs_context_proc(ap->a_context); | |
659 | dev_t dev = ap->a_vp->v_rdev; | |
660 | int retval = 0; | |
661 | ||
662 | KERNEL_DEBUG_CONSTANT(FSDBG_CODE(DBG_IOCTL, 0) | DBG_FUNC_START, | |
663 | (unsigned int)dev, (unsigned int)ap->a_command, (unsigned int)ap->a_fflag, (unsigned int)ap->a_vp->v_type, 0); | |
664 | ||
665 | switch (ap->a_vp->v_type) { | |
666 | ||
667 | case VCHR: | |
668 | retval = (*cdevsw[major(dev)].d_ioctl)(dev, ap->a_command, ap->a_data, | |
669 | ap->a_fflag, p); | |
670 | break; | |
671 | ||
672 | case VBLK: | |
673 | if (kdebug_enable) { | |
674 | if (ap->a_command == DKIOCUNMAP) { | |
675 | dk_unmap_t *unmap; | |
676 | dk_extent_t *extent; | |
677 | uint32_t i; | |
678 | ||
679 | unmap = (dk_unmap_t *)ap->a_data; | |
680 | extent = unmap->extents; | |
681 | ||
682 | for (i = 0; i < unmap->extentsCount; i++, extent++) { | |
683 | KERNEL_DEBUG_CONSTANT(FSDBG_CODE(DBG_IOCTL, 1) | DBG_FUNC_NONE, dev, extent->offset/ap->a_vp->v_specsize, extent->length, 0, 0); | |
684 | } | |
685 | } | |
686 | } | |
687 | retval = (*bdevsw[major(dev)].d_ioctl)(dev, ap->a_command, ap->a_data, ap->a_fflag, p); | |
688 | break; | |
689 | ||
690 | default: | |
691 | panic("spec_ioctl"); | |
692 | /* NOTREACHED */ | |
693 | } | |
694 | KERNEL_DEBUG_CONSTANT(FSDBG_CODE(DBG_IOCTL, 0) | DBG_FUNC_END, | |
695 | (unsigned int)dev, (unsigned int)ap->a_command, (unsigned int)ap->a_fflag, retval, 0); | |
696 | ||
697 | return (retval); | |
698 | } | |
699 | ||
700 | int | |
701 | spec_select(struct vnop_select_args *ap) | |
702 | { | |
703 | proc_t p = vfs_context_proc(ap->a_context); | |
704 | dev_t dev; | |
705 | ||
706 | switch (ap->a_vp->v_type) { | |
707 | ||
708 | default: | |
709 | return (1); /* XXX */ | |
710 | ||
711 | case VCHR: | |
712 | dev = ap->a_vp->v_rdev; | |
713 | return (*cdevsw[major(dev)].d_select)(dev, ap->a_which, ap->a_wql, p); | |
714 | } | |
715 | } | |
716 | ||
717 | static int filt_specattach(struct knote *kn); | |
718 | ||
719 | int | |
720 | spec_kqfilter(vnode_t vp, struct knote *kn) | |
721 | { | |
722 | dev_t dev; | |
723 | int err = EINVAL; | |
724 | ||
725 | /* | |
726 | * For a few special kinds of devices, we can attach knotes. | |
727 | * Each filter function must check whether the dev type matches it. | |
728 | */ | |
729 | dev = vnode_specrdev(vp); | |
730 | ||
731 | if (vnode_istty(vp)) { | |
732 | /* We can hook into TTYs... */ | |
733 | err = filt_specattach(kn); | |
734 | } else { | |
735 | #if NETWORKING | |
736 | /* Try a bpf device, as defined in bsd/net/bpf.c */ | |
737 | err = bpfkqfilter(dev, kn); | |
738 | #endif | |
739 | } | |
740 | ||
741 | return err; | |
742 | } | |
743 | ||
744 | /* | |
745 | * Synch buffers associated with a block device | |
746 | */ | |
747 | int | |
748 | spec_fsync_internal(vnode_t vp, int waitfor, __unused vfs_context_t context) | |
749 | { | |
750 | if (vp->v_type == VCHR) | |
751 | return (0); | |
752 | /* | |
753 | * Flush all dirty buffers associated with a block device. | |
754 | */ | |
755 | buf_flushdirtyblks(vp, (waitfor == MNT_WAIT || waitfor == MNT_DWAIT), 0, "spec_fsync"); | |
756 | ||
757 | return (0); | |
758 | } | |
759 | ||
760 | int | |
761 | spec_fsync(struct vnop_fsync_args *ap) | |
762 | { | |
763 | return spec_fsync_internal(ap->a_vp, ap->a_waitfor, ap->a_context); | |
764 | } | |
765 | ||
766 | ||
767 | /* | |
768 | * Just call the device strategy routine | |
769 | */ | |
770 | void throttle_init(void); | |
771 | ||
772 | ||
773 | #if 0 | |
774 | #define DEBUG_ALLOC_THROTTLE_INFO(format, debug_info, args...) \ | |
775 | do { \ | |
776 | if ((debug_info)->alloc) \ | |
777 | printf("%s: "format, __FUNCTION__, ## args); \ | |
778 | } while(0) | |
779 | ||
780 | #else | |
781 | #define DEBUG_ALLOC_THROTTLE_INFO(format, debug_info, args...) | |
782 | #endif | |
783 | ||
784 | ||
785 | SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier1_window_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_windows_msecs[THROTTLE_LEVEL_TIER1], 0, ""); | |
786 | SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier2_window_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_windows_msecs[THROTTLE_LEVEL_TIER2], 0, ""); | |
787 | SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier3_window_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_windows_msecs[THROTTLE_LEVEL_TIER3], 0, ""); | |
788 | ||
789 | SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier1_io_period_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_io_period_msecs[THROTTLE_LEVEL_TIER1], 0, ""); | |
790 | SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier2_io_period_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_io_period_msecs[THROTTLE_LEVEL_TIER2], 0, ""); | |
791 | SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier3_io_period_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_io_period_msecs[THROTTLE_LEVEL_TIER3], 0, ""); | |
792 | ||
793 | SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier1_io_period_ssd_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_io_period_ssd_msecs[THROTTLE_LEVEL_TIER1], 0, ""); | |
794 | SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier2_io_period_ssd_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_io_period_ssd_msecs[THROTTLE_LEVEL_TIER2], 0, ""); | |
795 | SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_tier3_io_period_ssd_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_io_period_ssd_msecs[THROTTLE_LEVEL_TIER3], 0, ""); | |
796 | ||
797 | SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_enabled, CTLFLAG_RW | CTLFLAG_LOCKED, &lowpri_throttle_enabled, 0, ""); | |
798 | ||
799 | ||
800 | static lck_grp_t *throttle_mtx_grp; | |
801 | static lck_attr_t *throttle_mtx_attr; | |
802 | static lck_grp_attr_t *throttle_mtx_grp_attr; | |
803 | ||
804 | ||
805 | /* | |
806 | * throttled I/O helper function | |
807 | * convert the index of the lowest set bit to a device index | |
808 | */ | |
809 | int | |
810 | num_trailing_0(uint64_t n) | |
811 | { | |
812 | /* | |
813 | * since in most cases the number of trailing 0s is very small, | |
814 | * we simply counting sequentially from the lowest bit | |
815 | */ | |
816 | if (n == 0) | |
817 | return sizeof(n) * 8; | |
818 | int count = 0; | |
819 | while (!ISSET(n, 1)) { | |
820 | n >>= 1; | |
821 | ++count; | |
822 | } | |
823 | return count; | |
824 | } | |
825 | ||
826 | ||
827 | /* | |
828 | * Release the reference and if the item was allocated and this is the last | |
829 | * reference then free it. | |
830 | * | |
831 | * This routine always returns the old value. | |
832 | */ | |
833 | static int | |
834 | throttle_info_rel(struct _throttle_io_info_t *info) | |
835 | { | |
836 | SInt32 oldValue = OSDecrementAtomic(&info->throttle_refcnt); | |
837 | ||
838 | DEBUG_ALLOC_THROTTLE_INFO("refcnt = %d info = %p\n", | |
839 | info, (int)(oldValue -1), info ); | |
840 | ||
841 | /* The reference count just went negative, very bad */ | |
842 | if (oldValue == 0) | |
843 | panic("throttle info ref cnt went negative!"); | |
844 | ||
845 | /* | |
846 | * Once reference count is zero, no one else should be able to take a | |
847 | * reference | |
848 | */ | |
849 | if ((info->throttle_refcnt == 0) && (info->throttle_alloc)) { | |
850 | DEBUG_ALLOC_THROTTLE_INFO("Freeing info = %p\n", info); | |
851 | ||
852 | lck_mtx_destroy(&info->throttle_lock, throttle_mtx_grp); | |
853 | FREE(info, M_TEMP); | |
854 | } | |
855 | return oldValue; | |
856 | } | |
857 | ||
858 | ||
859 | /* | |
860 | * Just take a reference on the throttle info structure. | |
861 | * | |
862 | * This routine always returns the old value. | |
863 | */ | |
864 | static SInt32 | |
865 | throttle_info_ref(struct _throttle_io_info_t *info) | |
866 | { | |
867 | SInt32 oldValue = OSIncrementAtomic(&info->throttle_refcnt); | |
868 | ||
869 | DEBUG_ALLOC_THROTTLE_INFO("refcnt = %d info = %p\n", | |
870 | info, (int)(oldValue -1), info ); | |
871 | /* Allocated items should never have a reference of zero */ | |
872 | if (info->throttle_alloc && (oldValue == 0)) | |
873 | panic("Taking a reference without calling create throttle info!\n"); | |
874 | ||
875 | return oldValue; | |
876 | } | |
877 | ||
878 | /* | |
879 | * on entry the throttle_lock is held... | |
880 | * this function is responsible for taking | |
881 | * and dropping the reference on the info | |
882 | * structure which will keep it from going | |
883 | * away while the timer is running if it | |
884 | * happens to have been dynamically allocated by | |
885 | * a network fileystem kext which is now trying | |
886 | * to free it | |
887 | */ | |
888 | static uint32_t | |
889 | throttle_timer_start(struct _throttle_io_info_t *info, boolean_t update_io_count, int wakelevel) | |
890 | { | |
891 | struct timeval elapsed; | |
892 | struct timeval now; | |
893 | struct timeval period; | |
894 | uint64_t elapsed_msecs; | |
895 | int throttle_level; | |
896 | int level; | |
897 | int msecs; | |
898 | boolean_t throttled = FALSE; | |
899 | boolean_t need_timer = FALSE; | |
900 | ||
901 | microuptime(&now); | |
902 | ||
903 | if (update_io_count == TRUE) { | |
904 | info->throttle_io_count_begin = info->throttle_io_count; | |
905 | info->throttle_io_period_num++; | |
906 | ||
907 | while (wakelevel >= THROTTLE_LEVEL_THROTTLED) | |
908 | info->throttle_start_IO_period_timestamp[wakelevel--] = now; | |
909 | ||
910 | info->throttle_min_timer_deadline = now; | |
911 | ||
912 | msecs = info->throttle_io_periods[THROTTLE_LEVEL_THROTTLED]; | |
913 | period.tv_sec = msecs / 1000; | |
914 | period.tv_usec = (msecs % 1000) * 1000; | |
915 | ||
916 | timevaladd(&info->throttle_min_timer_deadline, &period); | |
917 | } | |
918 | for (throttle_level = THROTTLE_LEVEL_START; throttle_level < THROTTLE_LEVEL_END; throttle_level++) { | |
919 | ||
920 | elapsed = now; | |
921 | timevalsub(&elapsed, &info->throttle_window_start_timestamp[throttle_level]); | |
922 | elapsed_msecs = (uint64_t)elapsed.tv_sec * (uint64_t)1000 + (elapsed.tv_usec / 1000); | |
923 | ||
924 | for (level = throttle_level + 1; level <= THROTTLE_LEVEL_END; level++) { | |
925 | ||
926 | if (!TAILQ_EMPTY(&info->throttle_uthlist[level])) { | |
927 | ||
928 | if (elapsed_msecs < (uint64_t)throttle_windows_msecs[level]) { | |
929 | /* | |
930 | * we had an I/O occur at a higher priority tier within | |
931 | * this tier's throttle window | |
932 | */ | |
933 | throttled = TRUE; | |
934 | } | |
935 | /* | |
936 | * we assume that the windows are the same or longer | |
937 | * as we drop through the throttling tiers... thus | |
938 | * we can stop looking once we run into a tier with | |
939 | * threads to schedule regardless of whether it's | |
940 | * still in its throttling window or not | |
941 | */ | |
942 | break; | |
943 | } | |
944 | } | |
945 | if (throttled == TRUE) | |
946 | break; | |
947 | } | |
948 | if (throttled == TRUE) { | |
949 | uint64_t deadline = 0; | |
950 | struct timeval target; | |
951 | struct timeval min_target; | |
952 | ||
953 | /* | |
954 | * we've got at least one tier still in a throttled window | |
955 | * so we need a timer running... compute the next deadline | |
956 | * and schedule it | |
957 | */ | |
958 | for (level = throttle_level+1; level <= THROTTLE_LEVEL_END; level++) { | |
959 | ||
960 | if (TAILQ_EMPTY(&info->throttle_uthlist[level])) | |
961 | continue; | |
962 | ||
963 | target = info->throttle_start_IO_period_timestamp[level]; | |
964 | ||
965 | msecs = info->throttle_io_periods[level]; | |
966 | period.tv_sec = msecs / 1000; | |
967 | period.tv_usec = (msecs % 1000) * 1000; | |
968 | ||
969 | timevaladd(&target, &period); | |
970 | ||
971 | if (need_timer == FALSE || timevalcmp(&target, &min_target, <)) { | |
972 | min_target = target; | |
973 | need_timer = TRUE; | |
974 | } | |
975 | } | |
976 | if (timevalcmp(&info->throttle_min_timer_deadline, &now, >)) { | |
977 | if (timevalcmp(&info->throttle_min_timer_deadline, &min_target, >)) | |
978 | min_target = info->throttle_min_timer_deadline; | |
979 | } | |
980 | ||
981 | if (info->throttle_timer_active) { | |
982 | if (thread_call_cancel(info->throttle_timer_call) == FALSE) { | |
983 | /* | |
984 | * couldn't kill the timer because it's already | |
985 | * been dispatched, so don't try to start a new | |
986 | * one... once we drop the lock, the timer will | |
987 | * proceed and eventually re-run this function | |
988 | */ | |
989 | need_timer = FALSE; | |
990 | } else | |
991 | info->throttle_timer_active = 0; | |
992 | } | |
993 | if (need_timer == TRUE) { | |
994 | /* | |
995 | * This is defined as an int (32-bit) rather than a 64-bit | |
996 | * value because it would need a really big period in the | |
997 | * order of ~500 days to overflow this. So, we let this be | |
998 | * 32-bit which allows us to use the clock_interval_to_deadline() | |
999 | * routine. | |
1000 | */ | |
1001 | int target_msecs; | |
1002 | ||
1003 | if (info->throttle_timer_ref == 0) { | |
1004 | /* | |
1005 | * take a reference for the timer | |
1006 | */ | |
1007 | throttle_info_ref(info); | |
1008 | ||
1009 | info->throttle_timer_ref = 1; | |
1010 | } | |
1011 | elapsed = min_target; | |
1012 | timevalsub(&elapsed, &now); | |
1013 | target_msecs = elapsed.tv_sec * 1000 + elapsed.tv_usec / 1000; | |
1014 | ||
1015 | if (target_msecs <= 0) { | |
1016 | /* | |
1017 | * we may have computed a deadline slightly in the past | |
1018 | * due to various factors... if so, just set the timer | |
1019 | * to go off in the near future (we don't need to be precise) | |
1020 | */ | |
1021 | target_msecs = 1; | |
1022 | } | |
1023 | clock_interval_to_deadline(target_msecs, 1000000, &deadline); | |
1024 | ||
1025 | thread_call_enter_delayed(info->throttle_timer_call, deadline); | |
1026 | info->throttle_timer_active = 1; | |
1027 | } | |
1028 | } | |
1029 | return (throttle_level); | |
1030 | } | |
1031 | ||
1032 | ||
1033 | static void | |
1034 | throttle_timer(struct _throttle_io_info_t *info) | |
1035 | { | |
1036 | uthread_t ut, utlist; | |
1037 | struct timeval elapsed; | |
1038 | struct timeval now; | |
1039 | uint64_t elapsed_msecs; | |
1040 | int throttle_level; | |
1041 | int level; | |
1042 | int wake_level; | |
1043 | caddr_t wake_address = NULL; | |
1044 | boolean_t update_io_count = FALSE; | |
1045 | boolean_t need_wakeup = FALSE; | |
1046 | boolean_t need_release = FALSE; | |
1047 | ||
1048 | ut = NULL; | |
1049 | lck_mtx_lock(&info->throttle_lock); | |
1050 | ||
1051 | info->throttle_timer_active = 0; | |
1052 | microuptime(&now); | |
1053 | ||
1054 | elapsed = now; | |
1055 | timevalsub(&elapsed, &info->throttle_start_IO_period_timestamp[THROTTLE_LEVEL_THROTTLED]); | |
1056 | elapsed_msecs = (uint64_t)elapsed.tv_sec * (uint64_t)1000 + (elapsed.tv_usec / 1000); | |
1057 | ||
1058 | if (elapsed_msecs >= (uint64_t)info->throttle_io_periods[THROTTLE_LEVEL_THROTTLED]) { | |
1059 | ||
1060 | wake_level = info->throttle_next_wake_level; | |
1061 | ||
1062 | for (level = THROTTLE_LEVEL_START; level < THROTTLE_LEVEL_END; level++) { | |
1063 | ||
1064 | elapsed = now; | |
1065 | timevalsub(&elapsed, &info->throttle_start_IO_period_timestamp[wake_level]); | |
1066 | elapsed_msecs = (uint64_t)elapsed.tv_sec * (uint64_t)1000 + (elapsed.tv_usec / 1000); | |
1067 | ||
1068 | if (elapsed_msecs >= (uint64_t)info->throttle_io_periods[wake_level] && !TAILQ_EMPTY(&info->throttle_uthlist[wake_level])) { | |
1069 | /* | |
1070 | * we're closing out the current IO period... | |
1071 | * if we have a waiting thread, wake it up | |
1072 | * after we have reset the I/O window info | |
1073 | */ | |
1074 | need_wakeup = TRUE; | |
1075 | update_io_count = TRUE; | |
1076 | ||
1077 | info->throttle_next_wake_level = wake_level - 1; | |
1078 | ||
1079 | if (info->throttle_next_wake_level == THROTTLE_LEVEL_START) | |
1080 | info->throttle_next_wake_level = THROTTLE_LEVEL_END; | |
1081 | ||
1082 | break; | |
1083 | } | |
1084 | wake_level--; | |
1085 | ||
1086 | if (wake_level == THROTTLE_LEVEL_START) | |
1087 | wake_level = THROTTLE_LEVEL_END; | |
1088 | } | |
1089 | } | |
1090 | if (need_wakeup == TRUE) { | |
1091 | if (!TAILQ_EMPTY(&info->throttle_uthlist[wake_level])) { | |
1092 | ||
1093 | ut = (uthread_t)TAILQ_FIRST(&info->throttle_uthlist[wake_level]); | |
1094 | TAILQ_REMOVE(&info->throttle_uthlist[wake_level], ut, uu_throttlelist); | |
1095 | ut->uu_on_throttlelist = THROTTLE_LEVEL_NONE; | |
1096 | ||
1097 | wake_address = (caddr_t)&ut->uu_on_throttlelist; | |
1098 | } | |
1099 | } else | |
1100 | wake_level = THROTTLE_LEVEL_START; | |
1101 | ||
1102 | throttle_level = throttle_timer_start(info, update_io_count, wake_level); | |
1103 | ||
1104 | if (wake_address != NULL) | |
1105 | wakeup(wake_address); | |
1106 | ||
1107 | for (level = THROTTLE_LEVEL_THROTTLED; level <= throttle_level; level++) { | |
1108 | ||
1109 | TAILQ_FOREACH_SAFE(ut, &info->throttle_uthlist[level], uu_throttlelist, utlist) { | |
1110 | ||
1111 | TAILQ_REMOVE(&info->throttle_uthlist[level], ut, uu_throttlelist); | |
1112 | ut->uu_on_throttlelist = THROTTLE_LEVEL_NONE; | |
1113 | ||
1114 | wakeup(&ut->uu_on_throttlelist); | |
1115 | } | |
1116 | } | |
1117 | if (info->throttle_timer_active == 0 && info->throttle_timer_ref) { | |
1118 | info->throttle_timer_ref = 0; | |
1119 | need_release = TRUE; | |
1120 | } | |
1121 | lck_mtx_unlock(&info->throttle_lock); | |
1122 | ||
1123 | if (need_release == TRUE) | |
1124 | throttle_info_rel(info); | |
1125 | } | |
1126 | ||
1127 | ||
1128 | static int | |
1129 | throttle_add_to_list(struct _throttle_io_info_t *info, uthread_t ut, int mylevel, boolean_t insert_tail) | |
1130 | { | |
1131 | boolean_t start_timer = FALSE; | |
1132 | int level = THROTTLE_LEVEL_START; | |
1133 | ||
1134 | if (TAILQ_EMPTY(&info->throttle_uthlist[mylevel])) { | |
1135 | info->throttle_start_IO_period_timestamp[mylevel] = info->throttle_last_IO_timestamp[mylevel]; | |
1136 | start_timer = TRUE; | |
1137 | } | |
1138 | ||
1139 | if (insert_tail == TRUE) | |
1140 | TAILQ_INSERT_TAIL(&info->throttle_uthlist[mylevel], ut, uu_throttlelist); | |
1141 | else | |
1142 | TAILQ_INSERT_HEAD(&info->throttle_uthlist[mylevel], ut, uu_throttlelist); | |
1143 | ||
1144 | ut->uu_on_throttlelist = mylevel; | |
1145 | ||
1146 | if (start_timer == TRUE) { | |
1147 | /* we may need to start or rearm the timer */ | |
1148 | level = throttle_timer_start(info, FALSE, THROTTLE_LEVEL_START); | |
1149 | ||
1150 | if (level == THROTTLE_LEVEL_END) { | |
1151 | if (ut->uu_on_throttlelist >= THROTTLE_LEVEL_THROTTLED) { | |
1152 | TAILQ_REMOVE(&info->throttle_uthlist[ut->uu_on_throttlelist], ut, uu_throttlelist); | |
1153 | ||
1154 | ut->uu_on_throttlelist = THROTTLE_LEVEL_NONE; | |
1155 | } | |
1156 | } | |
1157 | } | |
1158 | return (level); | |
1159 | } | |
1160 | ||
1161 | static void | |
1162 | throttle_init_throttle_window(void) | |
1163 | { | |
1164 | int throttle_window_size; | |
1165 | ||
1166 | /* | |
1167 | * The hierarchy of throttle window values is as follows: | |
1168 | * - Global defaults | |
1169 | * - Device tree properties | |
1170 | * - Boot-args | |
1171 | * All values are specified in msecs. | |
1172 | */ | |
1173 | ||
1174 | /* Override global values with device-tree properties */ | |
1175 | if (PE_get_default("kern.io_throttle_window_tier1", &throttle_window_size, sizeof(throttle_window_size))) | |
1176 | throttle_windows_msecs[THROTTLE_LEVEL_TIER1] = throttle_window_size; | |
1177 | ||
1178 | if (PE_get_default("kern.io_throttle_window_tier2", &throttle_window_size, sizeof(throttle_window_size))) | |
1179 | throttle_windows_msecs[THROTTLE_LEVEL_TIER2] = throttle_window_size; | |
1180 | ||
1181 | if (PE_get_default("kern.io_throttle_window_tier3", &throttle_window_size, sizeof(throttle_window_size))) | |
1182 | throttle_windows_msecs[THROTTLE_LEVEL_TIER3] = throttle_window_size; | |
1183 | ||
1184 | /* Override with boot-args */ | |
1185 | if (PE_parse_boot_argn("io_throttle_window_tier1", &throttle_window_size, sizeof(throttle_window_size))) | |
1186 | throttle_windows_msecs[THROTTLE_LEVEL_TIER1] = throttle_window_size; | |
1187 | ||
1188 | if (PE_parse_boot_argn("io_throttle_window_tier2", &throttle_window_size, sizeof(throttle_window_size))) | |
1189 | throttle_windows_msecs[THROTTLE_LEVEL_TIER2] = throttle_window_size; | |
1190 | ||
1191 | if (PE_parse_boot_argn("io_throttle_window_tier3", &throttle_window_size, sizeof(throttle_window_size))) | |
1192 | throttle_windows_msecs[THROTTLE_LEVEL_TIER3] = throttle_window_size; | |
1193 | } | |
1194 | ||
1195 | static void | |
1196 | throttle_init_throttle_period(struct _throttle_io_info_t *info, boolean_t isssd) | |
1197 | { | |
1198 | int throttle_period_size; | |
1199 | ||
1200 | /* | |
1201 | * The hierarchy of throttle period values is as follows: | |
1202 | * - Global defaults | |
1203 | * - Device tree properties | |
1204 | * - Boot-args | |
1205 | * All values are specified in msecs. | |
1206 | */ | |
1207 | ||
1208 | /* Assign global defaults */ | |
1209 | if (isssd == TRUE) | |
1210 | info->throttle_io_periods = &throttle_io_period_ssd_msecs[0]; | |
1211 | else | |
1212 | info->throttle_io_periods = &throttle_io_period_msecs[0]; | |
1213 | ||
1214 | /* Override global values with device-tree properties */ | |
1215 | if (PE_get_default("kern.io_throttle_period_tier1", &throttle_period_size, sizeof(throttle_period_size))) | |
1216 | info->throttle_io_periods[THROTTLE_LEVEL_TIER1] = throttle_period_size; | |
1217 | ||
1218 | if (PE_get_default("kern.io_throttle_period_tier2", &throttle_period_size, sizeof(throttle_period_size))) | |
1219 | info->throttle_io_periods[THROTTLE_LEVEL_TIER2] = throttle_period_size; | |
1220 | ||
1221 | if (PE_get_default("kern.io_throttle_period_tier3", &throttle_period_size, sizeof(throttle_period_size))) | |
1222 | info->throttle_io_periods[THROTTLE_LEVEL_TIER3] = throttle_period_size; | |
1223 | ||
1224 | /* Override with boot-args */ | |
1225 | if (PE_parse_boot_argn("io_throttle_period_tier1", &throttle_period_size, sizeof(throttle_period_size))) | |
1226 | info->throttle_io_periods[THROTTLE_LEVEL_TIER1] = throttle_period_size; | |
1227 | ||
1228 | if (PE_parse_boot_argn("io_throttle_period_tier2", &throttle_period_size, sizeof(throttle_period_size))) | |
1229 | info->throttle_io_periods[THROTTLE_LEVEL_TIER2] = throttle_period_size; | |
1230 | ||
1231 | if (PE_parse_boot_argn("io_throttle_period_tier3", &throttle_period_size, sizeof(throttle_period_size))) | |
1232 | info->throttle_io_periods[THROTTLE_LEVEL_TIER3] = throttle_period_size; | |
1233 | ||
1234 | } | |
1235 | ||
1236 | void | |
1237 | throttle_init(void) | |
1238 | { | |
1239 | struct _throttle_io_info_t *info; | |
1240 | int i; | |
1241 | int level; | |
1242 | ||
1243 | /* | |
1244 | * allocate lock group attribute and group | |
1245 | */ | |
1246 | throttle_mtx_grp_attr = lck_grp_attr_alloc_init(); | |
1247 | throttle_mtx_grp = lck_grp_alloc_init("throttle I/O", throttle_mtx_grp_attr); | |
1248 | ||
1249 | /* Update throttle parameters based on device tree configuration */ | |
1250 | throttle_init_throttle_window(); | |
1251 | ||
1252 | /* | |
1253 | * allocate the lock attribute | |
1254 | */ | |
1255 | throttle_mtx_attr = lck_attr_alloc_init(); | |
1256 | ||
1257 | for (i = 0; i < LOWPRI_MAX_NUM_DEV; i++) { | |
1258 | info = &_throttle_io_info[i]; | |
1259 | ||
1260 | lck_mtx_init(&info->throttle_lock, throttle_mtx_grp, throttle_mtx_attr); | |
1261 | info->throttle_timer_call = thread_call_allocate((thread_call_func_t)throttle_timer, (thread_call_param_t)info); | |
1262 | ||
1263 | for (level = 0; level <= THROTTLE_LEVEL_END; level++) { | |
1264 | TAILQ_INIT(&info->throttle_uthlist[level]); | |
1265 | info->throttle_last_IO_pid[level] = 0; | |
1266 | } | |
1267 | info->throttle_next_wake_level = THROTTLE_LEVEL_END; | |
1268 | } | |
1269 | } | |
1270 | ||
1271 | void | |
1272 | sys_override_io_throttle(int flag) | |
1273 | { | |
1274 | if (flag == THROTTLE_IO_ENABLE) | |
1275 | lowpri_throttle_enabled = 1; | |
1276 | if (flag == THROTTLE_IO_DISABLE) | |
1277 | lowpri_throttle_enabled = 0; | |
1278 | } | |
1279 | ||
1280 | int rethrottle_removed_from_list = 0; | |
1281 | int rethrottle_moved_to_new_list = 0; | |
1282 | ||
1283 | /* | |
1284 | * move a throttled thread to the appropriate state based | |
1285 | * on it's new throttle level... throttle_add_to_list will | |
1286 | * reset the timer deadline if necessary... it may also | |
1287 | * leave the thread off of the queue if we're already outside | |
1288 | * the throttle window for the new level | |
1289 | * takes a valid uthread (which may or may not be on the | |
1290 | * throttle queue) as input | |
1291 | * | |
1292 | * NOTE: This is called with the task lock held. | |
1293 | */ | |
1294 | ||
1295 | void | |
1296 | rethrottle_thread(uthread_t ut) | |
1297 | { | |
1298 | struct _throttle_io_info_t *info; | |
1299 | int my_new_level; | |
1300 | ||
1301 | if ((info = ut->uu_throttle_info) == NULL) | |
1302 | return; | |
1303 | ||
1304 | lck_mtx_lock(&info->throttle_lock); | |
1305 | ||
1306 | if (ut->uu_on_throttlelist >= THROTTLE_LEVEL_THROTTLED) { | |
1307 | ||
1308 | my_new_level = throttle_get_thread_throttle_level(ut); | |
1309 | ||
1310 | if (my_new_level != ut->uu_on_throttlelist) { | |
1311 | ||
1312 | TAILQ_REMOVE(&info->throttle_uthlist[ut->uu_on_throttlelist], ut, uu_throttlelist); | |
1313 | ut->uu_on_throttlelist = THROTTLE_LEVEL_NONE; | |
1314 | ||
1315 | if (my_new_level >= THROTTLE_LEVEL_THROTTLED) { | |
1316 | throttle_add_to_list(info, ut, my_new_level, TRUE); | |
1317 | rethrottle_moved_to_new_list++; | |
1318 | } | |
1319 | ||
1320 | /* Thread no longer in window, need to wake it up */ | |
1321 | if (ut->uu_on_throttlelist == THROTTLE_LEVEL_NONE) { | |
1322 | wakeup(&ut->uu_on_throttlelist); | |
1323 | rethrottle_removed_from_list++; | |
1324 | } | |
1325 | } | |
1326 | } | |
1327 | ||
1328 | lck_mtx_unlock(&info->throttle_lock); | |
1329 | } | |
1330 | ||
1331 | ||
1332 | /* | |
1333 | * KPI routine | |
1334 | * | |
1335 | * Create and take a reference on a throttle info structure and return a | |
1336 | * pointer for the file system to use when calling throttle_info_update. | |
1337 | * Calling file system must have a matching release for every create. | |
1338 | */ | |
1339 | void * | |
1340 | throttle_info_create(void) | |
1341 | { | |
1342 | struct _throttle_io_info_t *info; | |
1343 | int level; | |
1344 | ||
1345 | MALLOC(info, struct _throttle_io_info_t *, sizeof(*info), M_TEMP, M_ZERO | M_WAITOK); | |
1346 | /* Should never happen but just in case */ | |
1347 | if (info == NULL) | |
1348 | return NULL; | |
1349 | /* Mark that this one was allocated and needs to be freed */ | |
1350 | DEBUG_ALLOC_THROTTLE_INFO("Creating info = %p\n", info, info ); | |
1351 | info->throttle_alloc = TRUE; | |
1352 | ||
1353 | lck_mtx_init(&info->throttle_lock, throttle_mtx_grp, throttle_mtx_attr); | |
1354 | info->throttle_timer_call = thread_call_allocate((thread_call_func_t)throttle_timer, (thread_call_param_t)info); | |
1355 | ||
1356 | for (level = 0; level <= THROTTLE_LEVEL_END; level++) { | |
1357 | TAILQ_INIT(&info->throttle_uthlist[level]); | |
1358 | } | |
1359 | info->throttle_next_wake_level = THROTTLE_LEVEL_END; | |
1360 | ||
1361 | /* Take a reference */ | |
1362 | OSIncrementAtomic(&info->throttle_refcnt); | |
1363 | return info; | |
1364 | } | |
1365 | ||
1366 | /* | |
1367 | * KPI routine | |
1368 | * | |
1369 | * Release the throttle info pointer if all the reference are gone. Should be | |
1370 | * called to release reference taken by throttle_info_create | |
1371 | */ | |
1372 | void | |
1373 | throttle_info_release(void *throttle_info) | |
1374 | { | |
1375 | DEBUG_ALLOC_THROTTLE_INFO("Releaseing info = %p\n", | |
1376 | (struct _throttle_io_info_t *)throttle_info, | |
1377 | (struct _throttle_io_info_t *)throttle_info); | |
1378 | if (throttle_info) /* Just to be careful */ | |
1379 | throttle_info_rel(throttle_info); | |
1380 | } | |
1381 | ||
1382 | /* | |
1383 | * KPI routine | |
1384 | * | |
1385 | * File Systems that create an info structure, need to call this routine in | |
1386 | * their mount routine (used by cluster code). File Systems that call this in | |
1387 | * their mount routines must call throttle_info_mount_rel in their unmount | |
1388 | * routines. | |
1389 | */ | |
1390 | void | |
1391 | throttle_info_mount_ref(mount_t mp, void *throttle_info) | |
1392 | { | |
1393 | if ((throttle_info == NULL) || (mp == NULL)) | |
1394 | return; | |
1395 | throttle_info_ref(throttle_info); | |
1396 | ||
1397 | /* | |
1398 | * We already have a reference release it before adding the new one | |
1399 | */ | |
1400 | if (mp->mnt_throttle_info) | |
1401 | throttle_info_rel(mp->mnt_throttle_info); | |
1402 | mp->mnt_throttle_info = throttle_info; | |
1403 | } | |
1404 | ||
1405 | /* | |
1406 | * Private KPI routine | |
1407 | * | |
1408 | * return a handle for accessing throttle_info given a throttle_mask. The | |
1409 | * handle must be released by throttle_info_rel_by_mask | |
1410 | */ | |
1411 | int | |
1412 | throttle_info_ref_by_mask(uint64_t throttle_mask, throttle_info_handle_t *throttle_info_handle) | |
1413 | { | |
1414 | int dev_index; | |
1415 | struct _throttle_io_info_t *info; | |
1416 | ||
1417 | if (throttle_info_handle == NULL) | |
1418 | return EINVAL; | |
1419 | ||
1420 | dev_index = num_trailing_0(throttle_mask); | |
1421 | info = &_throttle_io_info[dev_index]; | |
1422 | throttle_info_ref(info); | |
1423 | *(struct _throttle_io_info_t**)throttle_info_handle = info; | |
1424 | ||
1425 | return 0; | |
1426 | } | |
1427 | ||
1428 | /* | |
1429 | * Private KPI routine | |
1430 | * | |
1431 | * release the handle obtained by throttle_info_ref_by_mask | |
1432 | */ | |
1433 | void | |
1434 | throttle_info_rel_by_mask(throttle_info_handle_t throttle_info_handle) | |
1435 | { | |
1436 | /* | |
1437 | * for now the handle is just a pointer to _throttle_io_info_t | |
1438 | */ | |
1439 | throttle_info_rel((struct _throttle_io_info_t*)throttle_info_handle); | |
1440 | } | |
1441 | ||
1442 | /* | |
1443 | * KPI routine | |
1444 | * | |
1445 | * File Systems that throttle_info_mount_ref, must call this routine in their | |
1446 | * umount routine. | |
1447 | */ | |
1448 | void | |
1449 | throttle_info_mount_rel(mount_t mp) | |
1450 | { | |
1451 | if (mp->mnt_throttle_info) | |
1452 | throttle_info_rel(mp->mnt_throttle_info); | |
1453 | mp->mnt_throttle_info = NULL; | |
1454 | } | |
1455 | ||
1456 | void | |
1457 | throttle_info_get_last_io_time(mount_t mp, struct timeval *tv) | |
1458 | { | |
1459 | struct _throttle_io_info_t *info; | |
1460 | ||
1461 | if (mp == NULL) | |
1462 | info = &_throttle_io_info[LOWPRI_MAX_NUM_DEV - 1]; | |
1463 | else if (mp->mnt_throttle_info == NULL) | |
1464 | info = &_throttle_io_info[mp->mnt_devbsdunit]; | |
1465 | else | |
1466 | info = mp->mnt_throttle_info; | |
1467 | ||
1468 | *tv = info->throttle_last_write_timestamp; | |
1469 | } | |
1470 | ||
1471 | void | |
1472 | update_last_io_time(mount_t mp) | |
1473 | { | |
1474 | struct _throttle_io_info_t *info; | |
1475 | ||
1476 | if (mp == NULL) | |
1477 | info = &_throttle_io_info[LOWPRI_MAX_NUM_DEV - 1]; | |
1478 | else if (mp->mnt_throttle_info == NULL) | |
1479 | info = &_throttle_io_info[mp->mnt_devbsdunit]; | |
1480 | else | |
1481 | info = mp->mnt_throttle_info; | |
1482 | ||
1483 | microuptime(&info->throttle_last_write_timestamp); | |
1484 | if (mp != NULL) | |
1485 | mp->mnt_last_write_completed_timestamp = info->throttle_last_write_timestamp; | |
1486 | } | |
1487 | ||
1488 | ||
1489 | int | |
1490 | throttle_get_io_policy(uthread_t *ut) | |
1491 | { | |
1492 | if (ut != NULL) | |
1493 | *ut = get_bsdthread_info(current_thread()); | |
1494 | ||
1495 | return (proc_get_effective_thread_policy(current_thread(), TASK_POLICY_IO)); | |
1496 | } | |
1497 | ||
1498 | int | |
1499 | throttle_get_passive_io_policy(uthread_t *ut) | |
1500 | { | |
1501 | if (ut != NULL) | |
1502 | *ut = get_bsdthread_info(current_thread()); | |
1503 | ||
1504 | return (proc_get_effective_thread_policy(current_thread(), TASK_POLICY_PASSIVE_IO)); | |
1505 | } | |
1506 | ||
1507 | ||
1508 | static int | |
1509 | throttle_get_thread_throttle_level(uthread_t ut) | |
1510 | { | |
1511 | int thread_throttle_level; | |
1512 | ||
1513 | if (ut == NULL) | |
1514 | ut = get_bsdthread_info(current_thread()); | |
1515 | ||
1516 | thread_throttle_level = proc_get_effective_thread_policy(ut->uu_thread, TASK_POLICY_IO); | |
1517 | ||
1518 | /* Bootcache misses should always be throttled */ | |
1519 | if (ut->uu_throttle_bc == TRUE) | |
1520 | thread_throttle_level = THROTTLE_LEVEL_TIER3; | |
1521 | ||
1522 | return (thread_throttle_level); | |
1523 | } | |
1524 | ||
1525 | ||
1526 | static int | |
1527 | throttle_io_will_be_throttled_internal(void * throttle_info, int * mylevel, int * throttling_level) | |
1528 | { | |
1529 | struct _throttle_io_info_t *info = throttle_info; | |
1530 | struct timeval elapsed; | |
1531 | uint64_t elapsed_msecs; | |
1532 | int thread_throttle_level; | |
1533 | int throttle_level; | |
1534 | ||
1535 | if ((thread_throttle_level = throttle_get_thread_throttle_level(NULL)) < THROTTLE_LEVEL_THROTTLED) | |
1536 | return (THROTTLE_DISENGAGED); | |
1537 | ||
1538 | for (throttle_level = THROTTLE_LEVEL_START; throttle_level < thread_throttle_level; throttle_level++) { | |
1539 | ||
1540 | microuptime(&elapsed); | |
1541 | timevalsub(&elapsed, &info->throttle_window_start_timestamp[throttle_level]); | |
1542 | elapsed_msecs = (uint64_t)elapsed.tv_sec * (uint64_t)1000 + (elapsed.tv_usec / 1000); | |
1543 | ||
1544 | if (elapsed_msecs < (uint64_t)throttle_windows_msecs[thread_throttle_level]) | |
1545 | break; | |
1546 | } | |
1547 | if (throttle_level >= thread_throttle_level) { | |
1548 | /* | |
1549 | * we're beyond all of the throttle windows | |
1550 | * that affect the throttle level of this thread, | |
1551 | * so go ahead and treat as normal I/O | |
1552 | */ | |
1553 | return (THROTTLE_DISENGAGED); | |
1554 | } | |
1555 | if (mylevel) | |
1556 | *mylevel = thread_throttle_level; | |
1557 | if (throttling_level) | |
1558 | *throttling_level = throttle_level; | |
1559 | ||
1560 | if (info->throttle_io_count != info->throttle_io_count_begin) { | |
1561 | /* | |
1562 | * we've already issued at least one throttleable I/O | |
1563 | * in the current I/O window, so avoid issuing another one | |
1564 | */ | |
1565 | return (THROTTLE_NOW); | |
1566 | } | |
1567 | /* | |
1568 | * we're in the throttle window, so | |
1569 | * cut the I/O size back | |
1570 | */ | |
1571 | return (THROTTLE_ENGAGED); | |
1572 | } | |
1573 | ||
1574 | /* | |
1575 | * If we have a mount point and it has a throttle info pointer then | |
1576 | * use it to do the check, otherwise use the device unit number to find | |
1577 | * the correct throttle info array element. | |
1578 | */ | |
1579 | int | |
1580 | throttle_io_will_be_throttled(__unused int lowpri_window_msecs, mount_t mp) | |
1581 | { | |
1582 | void *info; | |
1583 | ||
1584 | /* | |
1585 | * Should we just return zero if no mount point | |
1586 | */ | |
1587 | if (mp == NULL) | |
1588 | info = &_throttle_io_info[LOWPRI_MAX_NUM_DEV - 1]; | |
1589 | else if (mp->mnt_throttle_info == NULL) | |
1590 | info = &_throttle_io_info[mp->mnt_devbsdunit]; | |
1591 | else | |
1592 | info = mp->mnt_throttle_info; | |
1593 | ||
1594 | return throttle_io_will_be_throttled_internal(info, NULL, NULL); | |
1595 | } | |
1596 | ||
1597 | /* | |
1598 | * Routine to increment I/O throttling counters maintained in the proc | |
1599 | */ | |
1600 | ||
1601 | static void | |
1602 | throttle_update_proc_stats(pid_t throttling_pid) | |
1603 | { | |
1604 | proc_t throttling_proc; | |
1605 | proc_t throttled_proc = current_proc(); | |
1606 | ||
1607 | /* The throttled_proc is always the current proc; so we are not concerned with refs */ | |
1608 | OSAddAtomic64(1, &(throttled_proc->was_throttled)); | |
1609 | ||
1610 | /* The throttling pid might have exited by now */ | |
1611 | throttling_proc = proc_find(throttling_pid); | |
1612 | if (throttling_proc != PROC_NULL) { | |
1613 | OSAddAtomic64(1, &(throttling_proc->did_throttle)); | |
1614 | proc_rele(throttling_proc); | |
1615 | } | |
1616 | } | |
1617 | ||
1618 | /* | |
1619 | * Block until woken up by the throttle timer or by a rethrottle call. | |
1620 | * As long as we hold the throttle_lock while querying the throttle tier, we're | |
1621 | * safe against seeing an old throttle tier after a rethrottle. | |
1622 | */ | |
1623 | uint32_t | |
1624 | throttle_lowpri_io(int sleep_amount) | |
1625 | { | |
1626 | uthread_t ut; | |
1627 | struct _throttle_io_info_t *info; | |
1628 | int throttle_type = 0; | |
1629 | int mylevel = 0; | |
1630 | int throttling_level = THROTTLE_LEVEL_NONE; | |
1631 | int sleep_cnt = 0; | |
1632 | uint32_t throttle_io_period_num = 0; | |
1633 | boolean_t insert_tail = TRUE; | |
1634 | ||
1635 | ut = get_bsdthread_info(current_thread()); | |
1636 | ||
1637 | if (ut->uu_lowpri_window == 0) | |
1638 | return (0); | |
1639 | ||
1640 | info = ut->uu_throttle_info; | |
1641 | ||
1642 | if (info == NULL) { | |
1643 | ut->uu_throttle_bc = FALSE; | |
1644 | ut->uu_lowpri_window = 0; | |
1645 | return (0); | |
1646 | } | |
1647 | ||
1648 | lck_mtx_lock(&info->throttle_lock); | |
1649 | ||
1650 | if (sleep_amount == 0) | |
1651 | goto done; | |
1652 | ||
1653 | if (sleep_amount == 1 && ut->uu_throttle_bc == FALSE) | |
1654 | sleep_amount = 0; | |
1655 | ||
1656 | throttle_io_period_num = info->throttle_io_period_num; | |
1657 | ||
1658 | while ( (throttle_type = throttle_io_will_be_throttled_internal(info, &mylevel, &throttling_level)) ) { | |
1659 | ||
1660 | if (throttle_type == THROTTLE_ENGAGED) { | |
1661 | if (sleep_amount == 0) | |
1662 | break; | |
1663 | if (info->throttle_io_period_num < throttle_io_period_num) | |
1664 | break; | |
1665 | if ((info->throttle_io_period_num - throttle_io_period_num) >= (uint32_t)sleep_amount) | |
1666 | break; | |
1667 | } | |
1668 | if (ut->uu_on_throttlelist < THROTTLE_LEVEL_THROTTLED) { | |
1669 | if (throttle_add_to_list(info, ut, mylevel, insert_tail) == THROTTLE_LEVEL_END) | |
1670 | goto done; | |
1671 | } | |
1672 | assert(throttling_level >= THROTTLE_LEVEL_START && throttling_level <= THROTTLE_LEVEL_END); | |
1673 | throttle_update_proc_stats(info->throttle_last_IO_pid[throttling_level]); | |
1674 | KERNEL_DEBUG_CONSTANT((FSDBG_CODE(DBG_THROTTLE, PROCESS_THROTTLED)) | DBG_FUNC_NONE, | |
1675 | info->throttle_last_IO_pid[throttling_level], throttling_level, proc_selfpid(), mylevel, 0); | |
1676 | ||
1677 | ||
1678 | if (sleep_cnt == 0) { | |
1679 | KERNEL_DEBUG_CONSTANT((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_START, | |
1680 | throttle_windows_msecs[mylevel], info->throttle_io_periods[mylevel], info->throttle_io_count, 0, 0); | |
1681 | throttled_count[mylevel]++; | |
1682 | } | |
1683 | msleep((caddr_t)&ut->uu_on_throttlelist, &info->throttle_lock, PRIBIO + 1, "throttle_lowpri_io", NULL); | |
1684 | ||
1685 | sleep_cnt++; | |
1686 | ||
1687 | if (sleep_amount == 0) | |
1688 | insert_tail = FALSE; | |
1689 | else if (info->throttle_io_period_num < throttle_io_period_num || | |
1690 | (info->throttle_io_period_num - throttle_io_period_num) >= (uint32_t)sleep_amount) { | |
1691 | insert_tail = FALSE; | |
1692 | sleep_amount = 0; | |
1693 | } | |
1694 | } | |
1695 | done: | |
1696 | if (ut->uu_on_throttlelist >= THROTTLE_LEVEL_THROTTLED) { | |
1697 | TAILQ_REMOVE(&info->throttle_uthlist[ut->uu_on_throttlelist], ut, uu_throttlelist); | |
1698 | ut->uu_on_throttlelist = THROTTLE_LEVEL_NONE; | |
1699 | } | |
1700 | ||
1701 | lck_mtx_unlock(&info->throttle_lock); | |
1702 | ||
1703 | if (sleep_cnt) { | |
1704 | KERNEL_DEBUG_CONSTANT((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_END, | |
1705 | throttle_windows_msecs[mylevel], info->throttle_io_periods[mylevel], info->throttle_io_count, 0, 0); | |
1706 | } | |
1707 | ||
1708 | throttle_info_rel(info); | |
1709 | ||
1710 | ut->uu_throttle_info = NULL; | |
1711 | ut->uu_throttle_bc = FALSE; | |
1712 | ut->uu_lowpri_window = 0; | |
1713 | ||
1714 | return (sleep_cnt); | |
1715 | } | |
1716 | ||
1717 | /* | |
1718 | * KPI routine | |
1719 | * | |
1720 | * set a kernel thread's IO policy. policy can be: | |
1721 | * IOPOL_NORMAL, IOPOL_THROTTLE, IOPOL_PASSIVE, IOPOL_UTILITY, IOPOL_STANDARD | |
1722 | * | |
1723 | * explanations about these policies are in the man page of setiopolicy_np | |
1724 | */ | |
1725 | void throttle_set_thread_io_policy(int policy) | |
1726 | { | |
1727 | proc_set_task_policy(current_task(), current_thread(), | |
1728 | TASK_POLICY_INTERNAL, TASK_POLICY_IOPOL, | |
1729 | policy); | |
1730 | } | |
1731 | ||
1732 | ||
1733 | static | |
1734 | void throttle_info_reset_window(uthread_t ut) | |
1735 | { | |
1736 | struct _throttle_io_info_t *info; | |
1737 | ||
1738 | if ( (info = ut->uu_throttle_info) ) { | |
1739 | throttle_info_rel(info); | |
1740 | ||
1741 | ut->uu_throttle_info = NULL; | |
1742 | ut->uu_lowpri_window = 0; | |
1743 | ut->uu_throttle_bc = FALSE; | |
1744 | } | |
1745 | } | |
1746 | ||
1747 | static | |
1748 | void throttle_info_set_initial_window(uthread_t ut, struct _throttle_io_info_t *info, boolean_t BC_throttle, boolean_t isssd) | |
1749 | { | |
1750 | if (lowpri_throttle_enabled == 0) | |
1751 | return; | |
1752 | ||
1753 | if (info->throttle_io_periods == 0) { | |
1754 | throttle_init_throttle_period(info, isssd); | |
1755 | } | |
1756 | if (ut->uu_throttle_info == NULL) { | |
1757 | ||
1758 | ut->uu_throttle_info = info; | |
1759 | throttle_info_ref(info); | |
1760 | DEBUG_ALLOC_THROTTLE_INFO("updating info = %p\n", info, info ); | |
1761 | ||
1762 | ut->uu_lowpri_window = 1; | |
1763 | ut->uu_throttle_bc = BC_throttle; | |
1764 | } | |
1765 | } | |
1766 | ||
1767 | ||
1768 | static | |
1769 | void throttle_info_update_internal(struct _throttle_io_info_t *info, uthread_t ut, int flags, boolean_t isssd) | |
1770 | { | |
1771 | int thread_throttle_level; | |
1772 | ||
1773 | if (lowpri_throttle_enabled == 0) | |
1774 | return; | |
1775 | ||
1776 | if (ut == NULL) | |
1777 | ut = get_bsdthread_info(current_thread()); | |
1778 | ||
1779 | thread_throttle_level = throttle_get_thread_throttle_level(ut); | |
1780 | ||
1781 | if (thread_throttle_level != THROTTLE_LEVEL_NONE) { | |
1782 | if(!ISSET(flags, B_PASSIVE)) { | |
1783 | microuptime(&info->throttle_window_start_timestamp[thread_throttle_level]); | |
1784 | info->throttle_last_IO_pid[thread_throttle_level] = proc_selfpid(); | |
1785 | KERNEL_DEBUG_CONSTANT((FSDBG_CODE(DBG_THROTTLE, OPEN_THROTTLE_WINDOW)) | DBG_FUNC_NONE, | |
1786 | current_proc()->p_pid, thread_throttle_level, 0, 0, 0); | |
1787 | } | |
1788 | microuptime(&info->throttle_last_IO_timestamp[thread_throttle_level]); | |
1789 | } | |
1790 | ||
1791 | ||
1792 | if (thread_throttle_level >= THROTTLE_LEVEL_THROTTLED) { | |
1793 | /* | |
1794 | * I'd really like to do the IOSleep here, but | |
1795 | * we may be holding all kinds of filesystem related locks | |
1796 | * and the pages for this I/O marked 'busy'... | |
1797 | * we don't want to cause a normal task to block on | |
1798 | * one of these locks while we're throttling a task marked | |
1799 | * for low priority I/O... we'll mark the uthread and | |
1800 | * do the delay just before we return from the system | |
1801 | * call that triggered this I/O or from vnode_pagein | |
1802 | */ | |
1803 | OSAddAtomic(1, &info->throttle_io_count); | |
1804 | ||
1805 | throttle_info_set_initial_window(ut, info, FALSE, isssd); | |
1806 | } | |
1807 | } | |
1808 | ||
1809 | void *throttle_info_update_by_mount(mount_t mp) | |
1810 | { | |
1811 | struct _throttle_io_info_t *info; | |
1812 | uthread_t ut; | |
1813 | boolean_t isssd = FALSE; | |
1814 | ||
1815 | ut = get_bsdthread_info(current_thread()); | |
1816 | ||
1817 | if (mp != NULL) { | |
1818 | if ((mp->mnt_kern_flag & MNTK_SSD) && !ignore_is_ssd) | |
1819 | isssd = TRUE; | |
1820 | info = &_throttle_io_info[mp->mnt_devbsdunit]; | |
1821 | } else | |
1822 | info = &_throttle_io_info[LOWPRI_MAX_NUM_DEV - 1]; | |
1823 | ||
1824 | if (!ut->uu_lowpri_window) | |
1825 | throttle_info_set_initial_window(ut, info, FALSE, isssd); | |
1826 | ||
1827 | return info; | |
1828 | } | |
1829 | ||
1830 | ||
1831 | /* | |
1832 | * KPI routine | |
1833 | * | |
1834 | * this is usually called before every I/O, used for throttled I/O | |
1835 | * book keeping. This routine has low overhead and does not sleep | |
1836 | */ | |
1837 | void throttle_info_update(void *throttle_info, int flags) | |
1838 | { | |
1839 | if (throttle_info) | |
1840 | throttle_info_update_internal(throttle_info, NULL, flags, FALSE); | |
1841 | } | |
1842 | ||
1843 | /* | |
1844 | * KPI routine | |
1845 | * | |
1846 | * this is usually called before every I/O, used for throttled I/O | |
1847 | * book keeping. This routine has low overhead and does not sleep | |
1848 | */ | |
1849 | void throttle_info_update_by_mask(void *throttle_info_handle, int flags) | |
1850 | { | |
1851 | void *throttle_info = throttle_info_handle; | |
1852 | ||
1853 | /* | |
1854 | * for now we only use the lowest bit of the throttle mask, so the | |
1855 | * handle is the same as the throttle_info. Later if we store a | |
1856 | * set of throttle infos in the handle, we will want to loop through | |
1857 | * them and call throttle_info_update in a loop | |
1858 | */ | |
1859 | throttle_info_update(throttle_info, flags); | |
1860 | } | |
1861 | ||
1862 | /* | |
1863 | * KPI routine (private) | |
1864 | * Called to determine if this IO is being throttled to this level so that it can be treated specially | |
1865 | */ | |
1866 | int throttle_info_io_will_be_throttled(void * throttle_info, int policy) | |
1867 | { | |
1868 | struct _throttle_io_info_t *info = throttle_info; | |
1869 | struct timeval elapsed; | |
1870 | uint64_t elapsed_msecs; | |
1871 | int throttle_level; | |
1872 | int thread_throttle_level; | |
1873 | ||
1874 | switch (policy) { | |
1875 | ||
1876 | case IOPOL_THROTTLE: | |
1877 | thread_throttle_level = THROTTLE_LEVEL_TIER3; | |
1878 | break; | |
1879 | case IOPOL_UTILITY: | |
1880 | thread_throttle_level = THROTTLE_LEVEL_TIER2; | |
1881 | break; | |
1882 | case IOPOL_STANDARD: | |
1883 | thread_throttle_level = THROTTLE_LEVEL_TIER1; | |
1884 | break; | |
1885 | default: | |
1886 | thread_throttle_level = THROTTLE_LEVEL_TIER0; | |
1887 | break; | |
1888 | } | |
1889 | for (throttle_level = THROTTLE_LEVEL_START; throttle_level < thread_throttle_level; throttle_level++) { | |
1890 | ||
1891 | microuptime(&elapsed); | |
1892 | timevalsub(&elapsed, &info->throttle_window_start_timestamp[throttle_level]); | |
1893 | elapsed_msecs = (uint64_t)elapsed.tv_sec * (uint64_t)1000 + (elapsed.tv_usec / 1000); | |
1894 | ||
1895 | if (elapsed_msecs < (uint64_t)throttle_windows_msecs[thread_throttle_level]) | |
1896 | break; | |
1897 | } | |
1898 | if (throttle_level >= thread_throttle_level) { | |
1899 | /* | |
1900 | * we're beyond all of the throttle windows | |
1901 | * so go ahead and treat as normal I/O | |
1902 | */ | |
1903 | return (THROTTLE_DISENGAGED); | |
1904 | } | |
1905 | /* | |
1906 | * we're in the throttle window | |
1907 | */ | |
1908 | return (THROTTLE_ENGAGED); | |
1909 | } | |
1910 | ||
1911 | int | |
1912 | spec_strategy(struct vnop_strategy_args *ap) | |
1913 | { | |
1914 | buf_t bp; | |
1915 | int bflags; | |
1916 | int io_tier; | |
1917 | int passive; | |
1918 | dev_t bdev; | |
1919 | uthread_t ut; | |
1920 | mount_t mp; | |
1921 | struct bufattr *bap; | |
1922 | int strategy_ret; | |
1923 | struct _throttle_io_info_t *throttle_info; | |
1924 | boolean_t isssd = FALSE; | |
1925 | proc_t curproc = current_proc(); | |
1926 | ||
1927 | bp = ap->a_bp; | |
1928 | bdev = buf_device(bp); | |
1929 | mp = buf_vnode(bp)->v_mount; | |
1930 | bap = &bp->b_attr; | |
1931 | ||
1932 | io_tier = throttle_get_io_policy(&ut); | |
1933 | passive = throttle_get_passive_io_policy(&ut); | |
1934 | ||
1935 | if (bp->b_flags & B_META) | |
1936 | bap->ba_flags |= BA_META; | |
1937 | ||
1938 | SET_BUFATTR_IO_TIER(bap, io_tier); | |
1939 | ||
1940 | if (passive) | |
1941 | bp->b_flags |= B_PASSIVE; | |
1942 | ||
1943 | if ((curproc != NULL) && ((curproc->p_flag & P_DELAYIDLESLEEP) == P_DELAYIDLESLEEP)) | |
1944 | bap->ba_flags |= BA_DELAYIDLESLEEP; | |
1945 | ||
1946 | bflags = bp->b_flags; | |
1947 | ||
1948 | if (((bflags & B_READ) == 0) && ((bflags & B_ASYNC) == 0)) | |
1949 | bufattr_markquickcomplete(bap); | |
1950 | ||
1951 | if (kdebug_enable) { | |
1952 | int code = 0; | |
1953 | ||
1954 | if (bflags & B_READ) | |
1955 | code |= DKIO_READ; | |
1956 | if (bflags & B_ASYNC) | |
1957 | code |= DKIO_ASYNC; | |
1958 | ||
1959 | if (bflags & B_META) | |
1960 | code |= DKIO_META; | |
1961 | else if (bflags & B_PAGEIO) | |
1962 | code |= DKIO_PAGING; | |
1963 | ||
1964 | if (io_tier != 0) | |
1965 | code |= DKIO_THROTTLE; | |
1966 | ||
1967 | code |= ((io_tier << DKIO_TIER_SHIFT) & DKIO_TIER_MASK); | |
1968 | ||
1969 | if (bflags & B_PASSIVE) | |
1970 | code |= DKIO_PASSIVE; | |
1971 | ||
1972 | if (bap->ba_flags & BA_NOCACHE) | |
1973 | code |= DKIO_NOCACHE; | |
1974 | ||
1975 | KERNEL_DEBUG_CONSTANT_IST(KDEBUG_COMMON, FSDBG_CODE(DBG_DKRW, code) | DBG_FUNC_NONE, | |
1976 | buf_kernel_addrperm_addr(bp), bdev, (int)buf_blkno(bp), buf_count(bp), 0); | |
1977 | } | |
1978 | if (mp != NULL) { | |
1979 | if ((mp->mnt_kern_flag & MNTK_SSD) && !ignore_is_ssd) | |
1980 | isssd = TRUE; | |
1981 | throttle_info = &_throttle_io_info[mp->mnt_devbsdunit]; | |
1982 | } else | |
1983 | throttle_info = &_throttle_io_info[LOWPRI_MAX_NUM_DEV - 1]; | |
1984 | ||
1985 | throttle_info_update_internal(throttle_info, ut, bflags, isssd); | |
1986 | ||
1987 | if ((bflags & B_READ) == 0) { | |
1988 | microuptime(&throttle_info->throttle_last_write_timestamp); | |
1989 | ||
1990 | if (mp) { | |
1991 | mp->mnt_last_write_issued_timestamp = throttle_info->throttle_last_write_timestamp; | |
1992 | INCR_PENDING_IO(buf_count(bp), mp->mnt_pending_write_size); | |
1993 | } | |
1994 | } else if (mp) { | |
1995 | INCR_PENDING_IO(buf_count(bp), mp->mnt_pending_read_size); | |
1996 | } | |
1997 | /* | |
1998 | * The BootCache may give us special information about | |
1999 | * the IO, so it returns special values that we check | |
2000 | * for here. | |
2001 | * | |
2002 | * IO_SATISFIED_BY_CACHE | |
2003 | * The read has been satisfied by the boot cache. Don't | |
2004 | * throttle the thread unnecessarily. | |
2005 | * | |
2006 | * IO_SHOULD_BE_THROTTLED | |
2007 | * The boot cache is playing back a playlist and this IO | |
2008 | * cut through. Throttle it so we're not cutting through | |
2009 | * the boot cache too often. | |
2010 | * | |
2011 | * Note that typical strategy routines are defined with | |
2012 | * a void return so we'll get garbage here. In the | |
2013 | * unlikely case the garbage matches our special return | |
2014 | * value, it's not a big deal since we're only adjusting | |
2015 | * the throttling delay. | |
2016 | */ | |
2017 | #define IO_SATISFIED_BY_CACHE ((int)0xcafefeed) | |
2018 | #define IO_SHOULD_BE_THROTTLED ((int)0xcafebeef) | |
2019 | typedef int strategy_fcn_ret_t(struct buf *bp); | |
2020 | ||
2021 | strategy_ret = (*(strategy_fcn_ret_t*)bdevsw[major(bdev)].d_strategy)(bp); | |
2022 | ||
2023 | if (IO_SATISFIED_BY_CACHE == strategy_ret) { | |
2024 | /* | |
2025 | * If this was a throttled IO satisfied by the boot cache, | |
2026 | * don't delay the thread. | |
2027 | */ | |
2028 | throttle_info_reset_window(ut); | |
2029 | ||
2030 | } else if (IO_SHOULD_BE_THROTTLED == strategy_ret) { | |
2031 | /* | |
2032 | * If the boot cache indicates this IO should be throttled, | |
2033 | * delay the thread. | |
2034 | */ | |
2035 | throttle_info_set_initial_window(ut, throttle_info, TRUE, isssd); | |
2036 | } | |
2037 | return (0); | |
2038 | } | |
2039 | ||
2040 | ||
2041 | /* | |
2042 | * This is a noop, simply returning what one has been given. | |
2043 | */ | |
2044 | int | |
2045 | spec_blockmap(__unused struct vnop_blockmap_args *ap) | |
2046 | { | |
2047 | return (ENOTSUP); | |
2048 | } | |
2049 | ||
2050 | ||
2051 | /* | |
2052 | * Device close routine | |
2053 | */ | |
2054 | int | |
2055 | spec_close(struct vnop_close_args *ap) | |
2056 | { | |
2057 | struct vnode *vp = ap->a_vp; | |
2058 | dev_t dev = vp->v_rdev; | |
2059 | int error = 0; | |
2060 | int flags = ap->a_fflag; | |
2061 | struct proc *p = vfs_context_proc(ap->a_context); | |
2062 | struct session *sessp; | |
2063 | int do_rele = 0; | |
2064 | ||
2065 | switch (vp->v_type) { | |
2066 | ||
2067 | case VCHR: | |
2068 | /* | |
2069 | * Hack: a tty device that is a controlling terminal | |
2070 | * has a reference from the session structure. | |
2071 | * We cannot easily tell that a character device is | |
2072 | * a controlling terminal, unless it is the closing | |
2073 | * process' controlling terminal. In that case, | |
2074 | * if the reference count is 1 (this is the very | |
2075 | * last close) | |
2076 | */ | |
2077 | sessp = proc_session(p); | |
2078 | devsw_lock(dev, S_IFCHR); | |
2079 | if (sessp != SESSION_NULL) { | |
2080 | if (vp == sessp->s_ttyvp && vcount(vp) == 1) { | |
2081 | struct tty *tp; | |
2082 | ||
2083 | devsw_unlock(dev, S_IFCHR); | |
2084 | session_lock(sessp); | |
2085 | if (vp == sessp->s_ttyvp) { | |
2086 | tp = SESSION_TP(sessp); | |
2087 | sessp->s_ttyvp = NULL; | |
2088 | sessp->s_ttyvid = 0; | |
2089 | sessp->s_ttyp = TTY_NULL; | |
2090 | sessp->s_ttypgrpid = NO_PID; | |
2091 | do_rele = 1; | |
2092 | } | |
2093 | session_unlock(sessp); | |
2094 | ||
2095 | if (do_rele) { | |
2096 | vnode_rele(vp); | |
2097 | if (NULL != tp) | |
2098 | ttyfree(tp); | |
2099 | } | |
2100 | devsw_lock(dev, S_IFCHR); | |
2101 | } | |
2102 | session_rele(sessp); | |
2103 | } | |
2104 | ||
2105 | if (--vp->v_specinfo->si_opencount < 0) | |
2106 | panic("negative open count (c, %u, %u)", major(dev), minor(dev)); | |
2107 | ||
2108 | /* | |
2109 | * close on last reference or on vnode revoke call | |
2110 | */ | |
2111 | if (vcount(vp) == 0 || (flags & IO_REVOKE) != 0) | |
2112 | error = cdevsw[major(dev)].d_close(dev, flags, S_IFCHR, p); | |
2113 | ||
2114 | devsw_unlock(dev, S_IFCHR); | |
2115 | break; | |
2116 | ||
2117 | case VBLK: | |
2118 | /* | |
2119 | * If there is more than one outstanding open, don't | |
2120 | * send the close to the device. | |
2121 | */ | |
2122 | devsw_lock(dev, S_IFBLK); | |
2123 | if (vcount(vp) > 1) { | |
2124 | vp->v_specinfo->si_opencount--; | |
2125 | devsw_unlock(dev, S_IFBLK); | |
2126 | return (0); | |
2127 | } | |
2128 | devsw_unlock(dev, S_IFBLK); | |
2129 | ||
2130 | /* | |
2131 | * On last close of a block device (that isn't mounted) | |
2132 | * we must invalidate any in core blocks, so that | |
2133 | * we can, for instance, change floppy disks. | |
2134 | */ | |
2135 | if ((error = spec_fsync_internal(vp, MNT_WAIT, ap->a_context))) | |
2136 | return (error); | |
2137 | ||
2138 | error = buf_invalidateblks(vp, BUF_WRITE_DATA, 0, 0); | |
2139 | if (error) | |
2140 | return (error); | |
2141 | ||
2142 | devsw_lock(dev, S_IFBLK); | |
2143 | ||
2144 | if (--vp->v_specinfo->si_opencount < 0) | |
2145 | panic("negative open count (b, %u, %u)", major(dev), minor(dev)); | |
2146 | ||
2147 | if (vcount(vp) == 0) | |
2148 | error = bdevsw[major(dev)].d_close(dev, flags, S_IFBLK, p); | |
2149 | ||
2150 | devsw_unlock(dev, S_IFBLK); | |
2151 | break; | |
2152 | ||
2153 | default: | |
2154 | panic("spec_close: not special"); | |
2155 | return(EBADF); | |
2156 | } | |
2157 | ||
2158 | return error; | |
2159 | } | |
2160 | ||
2161 | /* | |
2162 | * Return POSIX pathconf information applicable to special devices. | |
2163 | */ | |
2164 | int | |
2165 | spec_pathconf(struct vnop_pathconf_args *ap) | |
2166 | { | |
2167 | ||
2168 | switch (ap->a_name) { | |
2169 | case _PC_LINK_MAX: | |
2170 | *ap->a_retval = LINK_MAX; | |
2171 | return (0); | |
2172 | case _PC_MAX_CANON: | |
2173 | *ap->a_retval = MAX_CANON; | |
2174 | return (0); | |
2175 | case _PC_MAX_INPUT: | |
2176 | *ap->a_retval = MAX_INPUT; | |
2177 | return (0); | |
2178 | case _PC_PIPE_BUF: | |
2179 | *ap->a_retval = PIPE_BUF; | |
2180 | return (0); | |
2181 | case _PC_CHOWN_RESTRICTED: | |
2182 | *ap->a_retval = 200112; /* _POSIX_CHOWN_RESTRICTED */ | |
2183 | return (0); | |
2184 | case _PC_VDISABLE: | |
2185 | *ap->a_retval = _POSIX_VDISABLE; | |
2186 | return (0); | |
2187 | default: | |
2188 | return (EINVAL); | |
2189 | } | |
2190 | /* NOTREACHED */ | |
2191 | } | |
2192 | ||
2193 | /* | |
2194 | * Special device failed operation | |
2195 | */ | |
2196 | int | |
2197 | spec_ebadf(__unused void *dummy) | |
2198 | { | |
2199 | ||
2200 | return (EBADF); | |
2201 | } | |
2202 | ||
2203 | /* Blktooff derives file offset from logical block number */ | |
2204 | int | |
2205 | spec_blktooff(struct vnop_blktooff_args *ap) | |
2206 | { | |
2207 | struct vnode *vp = ap->a_vp; | |
2208 | ||
2209 | switch (vp->v_type) { | |
2210 | case VCHR: | |
2211 | *ap->a_offset = (off_t)-1; /* failure */ | |
2212 | return (ENOTSUP); | |
2213 | ||
2214 | case VBLK: | |
2215 | printf("spec_blktooff: not implemented for VBLK\n"); | |
2216 | *ap->a_offset = (off_t)-1; /* failure */ | |
2217 | return (ENOTSUP); | |
2218 | ||
2219 | default: | |
2220 | panic("spec_blktooff type"); | |
2221 | } | |
2222 | /* NOTREACHED */ | |
2223 | ||
2224 | return (0); | |
2225 | } | |
2226 | ||
2227 | /* Offtoblk derives logical block number from file offset */ | |
2228 | int | |
2229 | spec_offtoblk(struct vnop_offtoblk_args *ap) | |
2230 | { | |
2231 | struct vnode *vp = ap->a_vp; | |
2232 | ||
2233 | switch (vp->v_type) { | |
2234 | case VCHR: | |
2235 | *ap->a_lblkno = (daddr64_t)-1; /* failure */ | |
2236 | return (ENOTSUP); | |
2237 | ||
2238 | case VBLK: | |
2239 | printf("spec_offtoblk: not implemented for VBLK\n"); | |
2240 | *ap->a_lblkno = (daddr64_t)-1; /* failure */ | |
2241 | return (ENOTSUP); | |
2242 | ||
2243 | default: | |
2244 | panic("spec_offtoblk type"); | |
2245 | } | |
2246 | /* NOTREACHED */ | |
2247 | ||
2248 | return (0); | |
2249 | } | |
2250 | ||
2251 | static void filt_specdetach(struct knote *kn); | |
2252 | static int filt_spec(struct knote *kn, long hint); | |
2253 | static unsigned filt_specpeek(struct knote *kn); | |
2254 | ||
2255 | struct filterops spec_filtops = { | |
2256 | .f_isfd = 1, | |
2257 | .f_attach = filt_specattach, | |
2258 | .f_detach = filt_specdetach, | |
2259 | .f_event = filt_spec, | |
2260 | .f_peek = filt_specpeek | |
2261 | }; | |
2262 | ||
2263 | static int | |
2264 | filter_to_seltype(int16_t filter) | |
2265 | { | |
2266 | switch (filter) { | |
2267 | case EVFILT_READ: | |
2268 | return FREAD; | |
2269 | case EVFILT_WRITE: | |
2270 | return FWRITE; | |
2271 | break; | |
2272 | default: | |
2273 | panic("filt_to_seltype(): invalid filter %d\n", filter); | |
2274 | return 0; | |
2275 | } | |
2276 | } | |
2277 | ||
2278 | static int | |
2279 | filt_specattach(struct knote *kn) | |
2280 | { | |
2281 | vnode_t vp; | |
2282 | dev_t dev; | |
2283 | ||
2284 | vp = (vnode_t)kn->kn_fp->f_fglob->fg_data; /* Already have iocount, and vnode is alive */ | |
2285 | ||
2286 | assert(vnode_ischr(vp)); | |
2287 | ||
2288 | dev = vnode_specrdev(vp); | |
2289 | ||
2290 | if (major(dev) > nchrdev) { | |
2291 | return ENXIO; | |
2292 | } | |
2293 | ||
2294 | if ((cdevsw_flags[major(dev)] & CDEVSW_SELECT_KQUEUE) == 0) { | |
2295 | return EINVAL; | |
2296 | } | |
2297 | ||
2298 | /* Resulting wql is safe to unlink even if it has never been linked */ | |
2299 | kn->kn_hook = wait_queue_link_allocate(); | |
2300 | if (kn->kn_hook == NULL) { | |
2301 | return EAGAIN; | |
2302 | } | |
2303 | ||
2304 | kn->kn_fop = &spec_filtops; | |
2305 | kn->kn_hookid = vnode_vid(vp); | |
2306 | ||
2307 | knote_markstayqueued(kn); | |
2308 | ||
2309 | return 0; | |
2310 | } | |
2311 | ||
2312 | static void | |
2313 | filt_specdetach(struct knote *kn) | |
2314 | { | |
2315 | kern_return_t ret; | |
2316 | ||
2317 | /* | |
2318 | * Given wait queue link and wait queue set, unlink. This is subtle. | |
2319 | * If the device has been revoked from under us, selclearthread() will | |
2320 | * have removed our link from the kqueue's wait queue set, which | |
2321 | * wait_queue_set_unlink_one() will detect and handle. | |
2322 | */ | |
2323 | ret = wait_queue_set_unlink_one(kn->kn_kq->kq_wqs, kn->kn_hook); | |
2324 | if (ret != KERN_SUCCESS) { | |
2325 | panic("filt_specdetach(): failed to unlink wait queue link."); | |
2326 | } | |
2327 | ||
2328 | (void)wait_queue_link_free(kn->kn_hook); | |
2329 | kn->kn_hook = NULL; | |
2330 | kn->kn_status &= ~KN_STAYQUEUED; | |
2331 | } | |
2332 | ||
2333 | static int | |
2334 | filt_spec(struct knote *kn, long hint) | |
2335 | { | |
2336 | vnode_t vp; | |
2337 | uthread_t uth; | |
2338 | wait_queue_set_t old_wqs; | |
2339 | vfs_context_t ctx; | |
2340 | int selres; | |
2341 | int error; | |
2342 | int use_offset; | |
2343 | dev_t dev; | |
2344 | uint64_t flags; | |
2345 | ||
2346 | assert(kn->kn_hook != NULL); | |
2347 | ||
2348 | if (hint != 0) { | |
2349 | panic("filt_spec(): nonzero hint?"); | |
2350 | } | |
2351 | ||
2352 | uth = get_bsdthread_info(current_thread()); | |
2353 | ctx = vfs_context_current(); | |
2354 | vp = (vnode_t)kn->kn_fp->f_fglob->fg_data; | |
2355 | ||
2356 | error = vnode_getwithvid(vp, kn->kn_hookid); | |
2357 | if (error != 0) { | |
2358 | kn->kn_flags |= (EV_EOF | EV_ONESHOT); | |
2359 | return 1; | |
2360 | } | |
2361 | ||
2362 | dev = vnode_specrdev(vp); | |
2363 | flags = cdevsw_flags[major(dev)]; | |
2364 | use_offset = ((flags & CDEVSW_USE_OFFSET) != 0); | |
2365 | assert((flags & CDEVSW_SELECT_KQUEUE) != 0); | |
2366 | ||
2367 | /* Trick selrecord() into hooking kqueue's wait queue set into device wait queue */ | |
2368 | old_wqs = uth->uu_wqset; | |
2369 | uth->uu_wqset = kn->kn_kq->kq_wqs; | |
2370 | selres = VNOP_SELECT(vp, filter_to_seltype(kn->kn_filter), 0, kn->kn_hook, ctx); | |
2371 | uth->uu_wqset = old_wqs; | |
2372 | ||
2373 | if (use_offset) { | |
2374 | if (kn->kn_fp->f_fglob->fg_offset >= (uint32_t)selres) { | |
2375 | kn->kn_data = 0; | |
2376 | } else { | |
2377 | kn->kn_data = ((uint32_t)selres) - kn->kn_fp->f_fglob->fg_offset; | |
2378 | } | |
2379 | } else { | |
2380 | kn->kn_data = selres; | |
2381 | } | |
2382 | ||
2383 | vnode_put(vp); | |
2384 | ||
2385 | return (kn->kn_data != 0); | |
2386 | } | |
2387 | ||
2388 | static unsigned | |
2389 | filt_specpeek(struct knote *kn) | |
2390 | { | |
2391 | vnode_t vp; | |
2392 | uthread_t uth; | |
2393 | wait_queue_set_t old_wqs; | |
2394 | vfs_context_t ctx; | |
2395 | int error, selres; | |
2396 | ||
2397 | uth = get_bsdthread_info(current_thread()); | |
2398 | ctx = vfs_context_current(); | |
2399 | vp = (vnode_t)kn->kn_fp->f_fglob->fg_data; | |
2400 | ||
2401 | error = vnode_getwithvid(vp, kn->kn_hookid); | |
2402 | if (error != 0) { | |
2403 | return 1; /* Just like VNOP_SELECT() on recycled vnode */ | |
2404 | } | |
2405 | ||
2406 | /* | |
2407 | * Why pass the link here? Because we may not have registered in the past... | |
2408 | */ | |
2409 | old_wqs = uth->uu_wqset; | |
2410 | uth->uu_wqset = kn->kn_kq->kq_wqs; | |
2411 | selres = VNOP_SELECT(vp, filter_to_seltype(kn->kn_filter), 0, kn->kn_hook, ctx); | |
2412 | uth->uu_wqset = old_wqs; | |
2413 | ||
2414 | vnode_put(vp); | |
2415 | return selres; | |
2416 | } | |
2417 |