]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 1999-2017 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | ||
29 | /* | |
30 | * Kernel Control domain - allows control connections to | |
31 | * and to read/write data. | |
32 | * | |
33 | * Vincent Lubet, 040506 | |
34 | * Christophe Allie, 010928 | |
35 | * Justin C. Walker, 990319 | |
36 | */ | |
37 | ||
38 | #include <sys/types.h> | |
39 | #include <sys/param.h> | |
40 | #include <sys/systm.h> | |
41 | #include <sys/syslog.h> | |
42 | #include <sys/socket.h> | |
43 | #include <sys/socketvar.h> | |
44 | #include <sys/protosw.h> | |
45 | #include <sys/domain.h> | |
46 | #include <sys/malloc.h> | |
47 | #include <sys/mbuf.h> | |
48 | #include <sys/sys_domain.h> | |
49 | #include <sys/kern_event.h> | |
50 | #include <sys/kern_control.h> | |
51 | #include <sys/kauth.h> | |
52 | #include <sys/sysctl.h> | |
53 | #include <sys/proc_info.h> | |
54 | #include <net/if_var.h> | |
55 | ||
56 | #include <mach/vm_types.h> | |
57 | ||
58 | #include <kern/thread.h> | |
59 | ||
60 | struct kctl { | |
61 | TAILQ_ENTRY(kctl) next; /* controller chain */ | |
62 | kern_ctl_ref kctlref; | |
63 | ||
64 | /* controller information provided when registering */ | |
65 | char name[MAX_KCTL_NAME]; /* unique identifier */ | |
66 | u_int32_t id; | |
67 | u_int32_t reg_unit; | |
68 | ||
69 | /* misc communication information */ | |
70 | u_int32_t flags; /* support flags */ | |
71 | u_int32_t recvbufsize; /* request more than the default buffer size */ | |
72 | u_int32_t sendbufsize; /* request more than the default buffer size */ | |
73 | ||
74 | /* Dispatch functions */ | |
75 | ctl_bind_func bind; /* Prepare contact */ | |
76 | ctl_connect_func connect; /* Make contact */ | |
77 | ctl_disconnect_func disconnect; /* Break contact */ | |
78 | ctl_send_func send; /* Send data to nke */ | |
79 | ctl_send_list_func send_list; /* Send list of packets */ | |
80 | ctl_setopt_func setopt; /* set kctl configuration */ | |
81 | ctl_getopt_func getopt; /* get kctl configuration */ | |
82 | ctl_rcvd_func rcvd; /* Notify nke when client reads data */ | |
83 | ||
84 | TAILQ_HEAD(, ctl_cb) kcb_head; | |
85 | u_int32_t lastunit; | |
86 | }; | |
87 | ||
88 | struct ctl_cb { | |
89 | TAILQ_ENTRY(ctl_cb) next; /* controller chain */ | |
90 | lck_mtx_t *mtx; | |
91 | struct socket *so; /* controlling socket */ | |
92 | struct kctl *kctl; /* back pointer to controller */ | |
93 | void *userdata; | |
94 | struct sockaddr_ctl sac; | |
95 | u_int32_t usecount; | |
96 | }; | |
97 | ||
98 | #ifndef ROUNDUP64 | |
99 | #define ROUNDUP64(x) P2ROUNDUP((x), sizeof (u_int64_t)) | |
100 | #endif | |
101 | ||
102 | #ifndef ADVANCE64 | |
103 | #define ADVANCE64(p, n) (void*)((char *)(p) + ROUNDUP64(n)) | |
104 | #endif | |
105 | ||
106 | /* | |
107 | * Definitions and vars for we support | |
108 | */ | |
109 | ||
110 | #define CTL_SENDSIZE (2 * 1024) /* default buffer size */ | |
111 | #define CTL_RECVSIZE (8 * 1024) /* default buffer size */ | |
112 | ||
113 | /* | |
114 | * Definitions and vars for we support | |
115 | */ | |
116 | ||
117 | static u_int32_t ctl_maxunit = 65536; | |
118 | static lck_grp_attr_t *ctl_lck_grp_attr = 0; | |
119 | static lck_attr_t *ctl_lck_attr = 0; | |
120 | static lck_grp_t *ctl_lck_grp = 0; | |
121 | static lck_mtx_t *ctl_mtx; | |
122 | ||
123 | /* all the controllers are chained */ | |
124 | TAILQ_HEAD(kctl_list, kctl) ctl_head; | |
125 | ||
126 | static int ctl_attach(struct socket *, int, struct proc *); | |
127 | static int ctl_detach(struct socket *); | |
128 | static int ctl_sofreelastref(struct socket *so); | |
129 | static int ctl_bind(struct socket *, struct sockaddr *, struct proc *); | |
130 | static int ctl_connect(struct socket *, struct sockaddr *, struct proc *); | |
131 | static int ctl_disconnect(struct socket *); | |
132 | static int ctl_ioctl(struct socket *so, u_long cmd, caddr_t data, | |
133 | struct ifnet *ifp, struct proc *p); | |
134 | static int ctl_send(struct socket *, int, struct mbuf *, | |
135 | struct sockaddr *, struct mbuf *, struct proc *); | |
136 | static int ctl_send_list(struct socket *, int, struct mbuf *, | |
137 | struct sockaddr *, struct mbuf *, struct proc *); | |
138 | static int ctl_ctloutput(struct socket *, struct sockopt *); | |
139 | static int ctl_peeraddr(struct socket *so, struct sockaddr **nam); | |
140 | static int ctl_usr_rcvd(struct socket *so, int flags); | |
141 | ||
142 | static struct kctl *ctl_find_by_name(const char *); | |
143 | static struct kctl *ctl_find_by_id_unit(u_int32_t id, u_int32_t unit); | |
144 | ||
145 | static struct socket *kcb_find_socket(kern_ctl_ref kctlref, u_int32_t unit, | |
146 | u_int32_t *); | |
147 | static struct ctl_cb *kcb_find(struct kctl *, u_int32_t unit); | |
148 | static void ctl_post_msg(u_int32_t event_code, u_int32_t id); | |
149 | ||
150 | static int ctl_lock(struct socket *, int, void *); | |
151 | static int ctl_unlock(struct socket *, int, void *); | |
152 | static lck_mtx_t * ctl_getlock(struct socket *, int); | |
153 | ||
154 | static struct pr_usrreqs ctl_usrreqs = { | |
155 | .pru_attach = ctl_attach, | |
156 | .pru_bind = ctl_bind, | |
157 | .pru_connect = ctl_connect, | |
158 | .pru_control = ctl_ioctl, | |
159 | .pru_detach = ctl_detach, | |
160 | .pru_disconnect = ctl_disconnect, | |
161 | .pru_peeraddr = ctl_peeraddr, | |
162 | .pru_rcvd = ctl_usr_rcvd, | |
163 | .pru_send = ctl_send, | |
164 | .pru_send_list = ctl_send_list, | |
165 | .pru_sosend = sosend, | |
166 | .pru_sosend_list = sosend_list, | |
167 | .pru_soreceive = soreceive, | |
168 | .pru_soreceive_list = soreceive_list, | |
169 | }; | |
170 | ||
171 | static struct protosw kctlsw[] = { | |
172 | { | |
173 | .pr_type = SOCK_DGRAM, | |
174 | .pr_protocol = SYSPROTO_CONTROL, | |
175 | .pr_flags = PR_ATOMIC | PR_CONNREQUIRED | PR_PCBLOCK | PR_WANTRCVD, | |
176 | .pr_ctloutput = ctl_ctloutput, | |
177 | .pr_usrreqs = &ctl_usrreqs, | |
178 | .pr_lock = ctl_lock, | |
179 | .pr_unlock = ctl_unlock, | |
180 | .pr_getlock = ctl_getlock, | |
181 | }, | |
182 | { | |
183 | .pr_type = SOCK_STREAM, | |
184 | .pr_protocol = SYSPROTO_CONTROL, | |
185 | .pr_flags = PR_CONNREQUIRED | PR_PCBLOCK | PR_WANTRCVD, | |
186 | .pr_ctloutput = ctl_ctloutput, | |
187 | .pr_usrreqs = &ctl_usrreqs, | |
188 | .pr_lock = ctl_lock, | |
189 | .pr_unlock = ctl_unlock, | |
190 | .pr_getlock = ctl_getlock, | |
191 | } | |
192 | }; | |
193 | ||
194 | __private_extern__ int kctl_reg_list SYSCTL_HANDLER_ARGS; | |
195 | __private_extern__ int kctl_pcblist SYSCTL_HANDLER_ARGS; | |
196 | __private_extern__ int kctl_getstat SYSCTL_HANDLER_ARGS; | |
197 | ||
198 | ||
199 | SYSCTL_NODE(_net_systm, OID_AUTO, kctl, | |
200 | CTLFLAG_RW | CTLFLAG_LOCKED, 0, "Kernel control family"); | |
201 | ||
202 | struct kctlstat kctlstat; | |
203 | SYSCTL_PROC(_net_systm_kctl, OID_AUTO, stats, | |
204 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, | |
205 | kctl_getstat, "S,kctlstat", ""); | |
206 | ||
207 | SYSCTL_PROC(_net_systm_kctl, OID_AUTO, reg_list, | |
208 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, | |
209 | kctl_reg_list, "S,xkctl_reg", ""); | |
210 | ||
211 | SYSCTL_PROC(_net_systm_kctl, OID_AUTO, pcblist, | |
212 | CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, | |
213 | kctl_pcblist, "S,xkctlpcb", ""); | |
214 | ||
215 | u_int32_t ctl_autorcvbuf_max = 256 * 1024; | |
216 | SYSCTL_INT(_net_systm_kctl, OID_AUTO, autorcvbufmax, | |
217 | CTLFLAG_RW | CTLFLAG_LOCKED, &ctl_autorcvbuf_max, 0, ""); | |
218 | ||
219 | u_int32_t ctl_autorcvbuf_high = 0; | |
220 | SYSCTL_INT(_net_systm_kctl, OID_AUTO, autorcvbufhigh, | |
221 | CTLFLAG_RD | CTLFLAG_LOCKED, &ctl_autorcvbuf_high, 0, ""); | |
222 | ||
223 | u_int32_t ctl_debug = 0; | |
224 | SYSCTL_INT(_net_systm_kctl, OID_AUTO, debug, | |
225 | CTLFLAG_RW | CTLFLAG_LOCKED, &ctl_debug, 0, ""); | |
226 | ||
227 | #define KCTL_TBL_INC 16 | |
228 | ||
229 | static uintptr_t kctl_tbl_size = 0; | |
230 | static u_int32_t kctl_tbl_growing = 0; | |
231 | static u_int32_t kctl_tbl_growing_waiting = 0; | |
232 | static uintptr_t kctl_tbl_count = 0; | |
233 | static struct kctl **kctl_table = NULL; | |
234 | static uintptr_t kctl_ref_gencnt = 0; | |
235 | ||
236 | static void kctl_tbl_grow(void); | |
237 | static kern_ctl_ref kctl_make_ref(struct kctl *kctl); | |
238 | static void kctl_delete_ref(kern_ctl_ref); | |
239 | static struct kctl *kctl_from_ref(kern_ctl_ref); | |
240 | ||
241 | /* | |
242 | * Install the protosw's for the Kernel Control manager. | |
243 | */ | |
244 | __private_extern__ void | |
245 | kern_control_init(struct domain *dp) | |
246 | { | |
247 | struct protosw *pr; | |
248 | int i; | |
249 | int kctl_proto_count = (sizeof(kctlsw) / sizeof(struct protosw)); | |
250 | ||
251 | VERIFY(!(dp->dom_flags & DOM_INITIALIZED)); | |
252 | VERIFY(dp == systemdomain); | |
253 | ||
254 | ctl_lck_grp_attr = lck_grp_attr_alloc_init(); | |
255 | if (ctl_lck_grp_attr == NULL) { | |
256 | panic("%s: lck_grp_attr_alloc_init failed\n", __func__); | |
257 | /* NOTREACHED */ | |
258 | } | |
259 | ||
260 | ctl_lck_grp = lck_grp_alloc_init("Kernel Control Protocol", | |
261 | ctl_lck_grp_attr); | |
262 | if (ctl_lck_grp == NULL) { | |
263 | panic("%s: lck_grp_alloc_init failed\n", __func__); | |
264 | /* NOTREACHED */ | |
265 | } | |
266 | ||
267 | ctl_lck_attr = lck_attr_alloc_init(); | |
268 | if (ctl_lck_attr == NULL) { | |
269 | panic("%s: lck_attr_alloc_init failed\n", __func__); | |
270 | /* NOTREACHED */ | |
271 | } | |
272 | ||
273 | ctl_mtx = lck_mtx_alloc_init(ctl_lck_grp, ctl_lck_attr); | |
274 | if (ctl_mtx == NULL) { | |
275 | panic("%s: lck_mtx_alloc_init failed\n", __func__); | |
276 | /* NOTREACHED */ | |
277 | } | |
278 | TAILQ_INIT(&ctl_head); | |
279 | ||
280 | for (i = 0, pr = &kctlsw[0]; i < kctl_proto_count; i++, pr++) { | |
281 | net_add_proto(pr, dp, 1); | |
282 | } | |
283 | } | |
284 | ||
285 | static void | |
286 | kcb_delete(struct ctl_cb *kcb) | |
287 | { | |
288 | if (kcb != 0) { | |
289 | if (kcb->mtx != 0) { | |
290 | lck_mtx_free(kcb->mtx, ctl_lck_grp); | |
291 | } | |
292 | FREE(kcb, M_TEMP); | |
293 | } | |
294 | } | |
295 | ||
296 | /* | |
297 | * Kernel Controller user-request functions | |
298 | * attach function must exist and succeed | |
299 | * detach not necessary | |
300 | * we need a pcb for the per socket mutex | |
301 | */ | |
302 | static int | |
303 | ctl_attach(struct socket *so, int proto, struct proc *p) | |
304 | { | |
305 | #pragma unused(proto, p) | |
306 | int error = 0; | |
307 | struct ctl_cb *kcb = 0; | |
308 | ||
309 | MALLOC(kcb, struct ctl_cb *, sizeof(struct ctl_cb), M_TEMP, M_WAITOK); | |
310 | if (kcb == NULL) { | |
311 | error = ENOMEM; | |
312 | goto quit; | |
313 | } | |
314 | bzero(kcb, sizeof(struct ctl_cb)); | |
315 | ||
316 | kcb->mtx = lck_mtx_alloc_init(ctl_lck_grp, ctl_lck_attr); | |
317 | if (kcb->mtx == NULL) { | |
318 | error = ENOMEM; | |
319 | goto quit; | |
320 | } | |
321 | kcb->so = so; | |
322 | so->so_pcb = (caddr_t)kcb; | |
323 | ||
324 | quit: | |
325 | if (error != 0) { | |
326 | kcb_delete(kcb); | |
327 | kcb = 0; | |
328 | } | |
329 | return error; | |
330 | } | |
331 | ||
332 | static int | |
333 | ctl_sofreelastref(struct socket *so) | |
334 | { | |
335 | struct ctl_cb *kcb = (struct ctl_cb *)so->so_pcb; | |
336 | ||
337 | so->so_pcb = 0; | |
338 | ||
339 | if (kcb != 0) { | |
340 | struct kctl *kctl; | |
341 | if ((kctl = kcb->kctl) != 0) { | |
342 | lck_mtx_lock(ctl_mtx); | |
343 | TAILQ_REMOVE(&kctl->kcb_head, kcb, next); | |
344 | kctlstat.kcs_pcbcount--; | |
345 | kctlstat.kcs_gencnt++; | |
346 | lck_mtx_unlock(ctl_mtx); | |
347 | } | |
348 | kcb_delete(kcb); | |
349 | } | |
350 | sofreelastref(so, 1); | |
351 | return 0; | |
352 | } | |
353 | ||
354 | static int | |
355 | ctl_detach(struct socket *so) | |
356 | { | |
357 | struct ctl_cb *kcb = (struct ctl_cb *)so->so_pcb; | |
358 | ||
359 | if (kcb == 0) { | |
360 | return 0; | |
361 | } | |
362 | ||
363 | if (kcb->kctl != NULL && kcb->kctl->bind != NULL && | |
364 | kcb->userdata != NULL && !(so->so_state & SS_ISCONNECTED)) { | |
365 | // The unit was bound, but not connected | |
366 | // Invoke the disconnected call to cleanup | |
367 | if (kcb->kctl->disconnect != NULL) { | |
368 | socket_unlock(so, 0); | |
369 | (*kcb->kctl->disconnect)(kcb->kctl->kctlref, | |
370 | kcb->sac.sc_unit, kcb->userdata); | |
371 | socket_lock(so, 0); | |
372 | } | |
373 | } | |
374 | ||
375 | soisdisconnected(so); | |
376 | so->so_flags |= SOF_PCBCLEARING; | |
377 | return 0; | |
378 | } | |
379 | ||
380 | static int | |
381 | ctl_setup_kctl(struct socket *so, struct sockaddr *nam, struct proc *p) | |
382 | { | |
383 | struct kctl *kctl = NULL; | |
384 | int error = 0; | |
385 | struct sockaddr_ctl sa; | |
386 | struct ctl_cb *kcb = (struct ctl_cb *)so->so_pcb; | |
387 | struct ctl_cb *kcb_next = NULL; | |
388 | u_quad_t sbmaxsize; | |
389 | u_int32_t recvbufsize, sendbufsize; | |
390 | ||
391 | if (kcb == 0) { | |
392 | panic("ctl_setup_kctl so_pcb null\n"); | |
393 | } | |
394 | ||
395 | if (kcb->kctl != NULL) { | |
396 | // Already set up, skip | |
397 | return 0; | |
398 | } | |
399 | ||
400 | if (nam->sa_len != sizeof(struct sockaddr_ctl)) { | |
401 | return EINVAL; | |
402 | } | |
403 | ||
404 | bcopy(nam, &sa, sizeof(struct sockaddr_ctl)); | |
405 | ||
406 | lck_mtx_lock(ctl_mtx); | |
407 | kctl = ctl_find_by_id_unit(sa.sc_id, sa.sc_unit); | |
408 | if (kctl == NULL) { | |
409 | lck_mtx_unlock(ctl_mtx); | |
410 | return ENOENT; | |
411 | } | |
412 | ||
413 | if (((kctl->flags & CTL_FLAG_REG_SOCK_STREAM) && | |
414 | (so->so_type != SOCK_STREAM)) || | |
415 | (!(kctl->flags & CTL_FLAG_REG_SOCK_STREAM) && | |
416 | (so->so_type != SOCK_DGRAM))) { | |
417 | lck_mtx_unlock(ctl_mtx); | |
418 | return EPROTOTYPE; | |
419 | } | |
420 | ||
421 | if (kctl->flags & CTL_FLAG_PRIVILEGED) { | |
422 | if (p == 0) { | |
423 | lck_mtx_unlock(ctl_mtx); | |
424 | return EINVAL; | |
425 | } | |
426 | if (kauth_cred_issuser(kauth_cred_get()) == 0) { | |
427 | lck_mtx_unlock(ctl_mtx); | |
428 | return EPERM; | |
429 | } | |
430 | } | |
431 | ||
432 | if ((kctl->flags & CTL_FLAG_REG_ID_UNIT) || sa.sc_unit != 0) { | |
433 | if (kcb_find(kctl, sa.sc_unit) != NULL) { | |
434 | lck_mtx_unlock(ctl_mtx); | |
435 | return EBUSY; | |
436 | } | |
437 | } else { | |
438 | /* Find an unused ID, assumes control IDs are in order */ | |
439 | u_int32_t unit = 1; | |
440 | ||
441 | TAILQ_FOREACH(kcb_next, &kctl->kcb_head, next) { | |
442 | if (kcb_next->sac.sc_unit > unit) { | |
443 | /* Found a gap, lets fill it in */ | |
444 | break; | |
445 | } | |
446 | unit = kcb_next->sac.sc_unit + 1; | |
447 | if (unit == ctl_maxunit) { | |
448 | break; | |
449 | } | |
450 | } | |
451 | ||
452 | if (unit == ctl_maxunit) { | |
453 | lck_mtx_unlock(ctl_mtx); | |
454 | return EBUSY; | |
455 | } | |
456 | ||
457 | sa.sc_unit = unit; | |
458 | } | |
459 | ||
460 | bcopy(&sa, &kcb->sac, sizeof(struct sockaddr_ctl)); | |
461 | kcb->kctl = kctl; | |
462 | if (kcb_next != NULL) { | |
463 | TAILQ_INSERT_BEFORE(kcb_next, kcb, next); | |
464 | } else { | |
465 | TAILQ_INSERT_TAIL(&kctl->kcb_head, kcb, next); | |
466 | } | |
467 | kctlstat.kcs_pcbcount++; | |
468 | kctlstat.kcs_gencnt++; | |
469 | kctlstat.kcs_connections++; | |
470 | lck_mtx_unlock(ctl_mtx); | |
471 | ||
472 | /* | |
473 | * rdar://15526688: Limit the send and receive sizes to sb_max | |
474 | * by using the same scaling as sbreserve() | |
475 | */ | |
476 | sbmaxsize = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES); | |
477 | ||
478 | if (kctl->sendbufsize > sbmaxsize) { | |
479 | sendbufsize = sbmaxsize; | |
480 | } else { | |
481 | sendbufsize = kctl->sendbufsize; | |
482 | } | |
483 | ||
484 | if (kctl->recvbufsize > sbmaxsize) { | |
485 | recvbufsize = sbmaxsize; | |
486 | } else { | |
487 | recvbufsize = kctl->recvbufsize; | |
488 | } | |
489 | ||
490 | error = soreserve(so, sendbufsize, recvbufsize); | |
491 | if (error) { | |
492 | if (ctl_debug) { | |
493 | printf("%s - soreserve(%llx, %u, %u) error %d\n", | |
494 | __func__, (uint64_t)VM_KERNEL_ADDRPERM(so), | |
495 | sendbufsize, recvbufsize, error); | |
496 | } | |
497 | goto done; | |
498 | } | |
499 | ||
500 | done: | |
501 | if (error) { | |
502 | soisdisconnected(so); | |
503 | lck_mtx_lock(ctl_mtx); | |
504 | TAILQ_REMOVE(&kctl->kcb_head, kcb, next); | |
505 | kcb->kctl = NULL; | |
506 | kcb->sac.sc_unit = 0; | |
507 | kctlstat.kcs_pcbcount--; | |
508 | kctlstat.kcs_gencnt++; | |
509 | kctlstat.kcs_conn_fail++; | |
510 | lck_mtx_unlock(ctl_mtx); | |
511 | } | |
512 | return error; | |
513 | } | |
514 | ||
515 | static int | |
516 | ctl_bind(struct socket *so, struct sockaddr *nam, struct proc *p) | |
517 | { | |
518 | int error = 0; | |
519 | struct ctl_cb *kcb = (struct ctl_cb *)so->so_pcb; | |
520 | ||
521 | if (kcb == NULL) { | |
522 | panic("ctl_bind so_pcb null\n"); | |
523 | } | |
524 | ||
525 | error = ctl_setup_kctl(so, nam, p); | |
526 | if (error) { | |
527 | return error; | |
528 | } | |
529 | ||
530 | if (kcb->kctl == NULL) { | |
531 | panic("ctl_bind kctl null\n"); | |
532 | } | |
533 | ||
534 | if (kcb->kctl->bind == NULL) { | |
535 | return EINVAL; | |
536 | } | |
537 | ||
538 | socket_unlock(so, 0); | |
539 | error = (*kcb->kctl->bind)(kcb->kctl->kctlref, &kcb->sac, &kcb->userdata); | |
540 | socket_lock(so, 0); | |
541 | ||
542 | return error; | |
543 | } | |
544 | ||
545 | static int | |
546 | ctl_connect(struct socket *so, struct sockaddr *nam, struct proc *p) | |
547 | { | |
548 | int error = 0; | |
549 | struct ctl_cb *kcb = (struct ctl_cb *)so->so_pcb; | |
550 | ||
551 | if (kcb == NULL) { | |
552 | panic("ctl_connect so_pcb null\n"); | |
553 | } | |
554 | ||
555 | error = ctl_setup_kctl(so, nam, p); | |
556 | if (error) { | |
557 | return error; | |
558 | } | |
559 | ||
560 | if (kcb->kctl == NULL) { | |
561 | panic("ctl_connect kctl null\n"); | |
562 | } | |
563 | ||
564 | soisconnecting(so); | |
565 | socket_unlock(so, 0); | |
566 | error = (*kcb->kctl->connect)(kcb->kctl->kctlref, &kcb->sac, &kcb->userdata); | |
567 | socket_lock(so, 0); | |
568 | if (error) { | |
569 | goto end; | |
570 | } | |
571 | soisconnected(so); | |
572 | ||
573 | end: | |
574 | if (error && kcb->kctl->disconnect) { | |
575 | /* | |
576 | * XXX Make sure we Don't check the return value | |
577 | * of disconnect here. | |
578 | * ipsec/utun_ctl_disconnect will return error when | |
579 | * disconnect gets called after connect failure. | |
580 | * However if we decide to check for disconnect return | |
581 | * value here. Please make sure to revisit | |
582 | * ipsec/utun_ctl_disconnect. | |
583 | */ | |
584 | socket_unlock(so, 0); | |
585 | (*kcb->kctl->disconnect)(kcb->kctl->kctlref, kcb->sac.sc_unit, kcb->userdata); | |
586 | socket_lock(so, 0); | |
587 | } | |
588 | if (error) { | |
589 | soisdisconnected(so); | |
590 | lck_mtx_lock(ctl_mtx); | |
591 | TAILQ_REMOVE(&kcb->kctl->kcb_head, kcb, next); | |
592 | kcb->kctl = NULL; | |
593 | kcb->sac.sc_unit = 0; | |
594 | kctlstat.kcs_pcbcount--; | |
595 | kctlstat.kcs_gencnt++; | |
596 | kctlstat.kcs_conn_fail++; | |
597 | lck_mtx_unlock(ctl_mtx); | |
598 | } | |
599 | return error; | |
600 | } | |
601 | ||
602 | static int | |
603 | ctl_disconnect(struct socket *so) | |
604 | { | |
605 | struct ctl_cb *kcb = (struct ctl_cb *)so->so_pcb; | |
606 | ||
607 | if ((kcb = (struct ctl_cb *)so->so_pcb)) { | |
608 | struct kctl *kctl = kcb->kctl; | |
609 | ||
610 | if (kctl && kctl->disconnect) { | |
611 | socket_unlock(so, 0); | |
612 | (*kctl->disconnect)(kctl->kctlref, kcb->sac.sc_unit, | |
613 | kcb->userdata); | |
614 | socket_lock(so, 0); | |
615 | } | |
616 | ||
617 | soisdisconnected(so); | |
618 | ||
619 | socket_unlock(so, 0); | |
620 | lck_mtx_lock(ctl_mtx); | |
621 | kcb->kctl = 0; | |
622 | kcb->sac.sc_unit = 0; | |
623 | while (kcb->usecount != 0) { | |
624 | msleep(&kcb->usecount, ctl_mtx, 0, "kcb->usecount", 0); | |
625 | } | |
626 | TAILQ_REMOVE(&kctl->kcb_head, kcb, next); | |
627 | kctlstat.kcs_pcbcount--; | |
628 | kctlstat.kcs_gencnt++; | |
629 | lck_mtx_unlock(ctl_mtx); | |
630 | socket_lock(so, 0); | |
631 | } | |
632 | return 0; | |
633 | } | |
634 | ||
635 | static int | |
636 | ctl_peeraddr(struct socket *so, struct sockaddr **nam) | |
637 | { | |
638 | struct ctl_cb *kcb = (struct ctl_cb *)so->so_pcb; | |
639 | struct kctl *kctl; | |
640 | struct sockaddr_ctl sc; | |
641 | ||
642 | if (kcb == NULL) { /* sanity check */ | |
643 | return ENOTCONN; | |
644 | } | |
645 | ||
646 | if ((kctl = kcb->kctl) == NULL) { | |
647 | return EINVAL; | |
648 | } | |
649 | ||
650 | bzero(&sc, sizeof(struct sockaddr_ctl)); | |
651 | sc.sc_len = sizeof(struct sockaddr_ctl); | |
652 | sc.sc_family = AF_SYSTEM; | |
653 | sc.ss_sysaddr = AF_SYS_CONTROL; | |
654 | sc.sc_id = kctl->id; | |
655 | sc.sc_unit = kcb->sac.sc_unit; | |
656 | ||
657 | *nam = dup_sockaddr((struct sockaddr *)&sc, 1); | |
658 | ||
659 | return 0; | |
660 | } | |
661 | ||
662 | static void | |
663 | ctl_sbrcv_trim(struct socket *so) | |
664 | { | |
665 | struct sockbuf *sb = &so->so_rcv; | |
666 | ||
667 | if (sb->sb_hiwat > sb->sb_idealsize) { | |
668 | u_int32_t diff; | |
669 | int32_t trim; | |
670 | ||
671 | /* | |
672 | * The difference between the ideal size and the | |
673 | * current size is the upper bound of the trimage | |
674 | */ | |
675 | diff = sb->sb_hiwat - sb->sb_idealsize; | |
676 | /* | |
677 | * We cannot trim below the outstanding data | |
678 | */ | |
679 | trim = sb->sb_hiwat - sb->sb_cc; | |
680 | ||
681 | trim = imin(trim, (int32_t)diff); | |
682 | ||
683 | if (trim > 0) { | |
684 | sbreserve(sb, (sb->sb_hiwat - trim)); | |
685 | ||
686 | if (ctl_debug) { | |
687 | printf("%s - shrunk to %d\n", | |
688 | __func__, sb->sb_hiwat); | |
689 | } | |
690 | } | |
691 | } | |
692 | } | |
693 | ||
694 | static int | |
695 | ctl_usr_rcvd(struct socket *so, int flags) | |
696 | { | |
697 | struct ctl_cb *kcb = (struct ctl_cb *)so->so_pcb; | |
698 | struct kctl *kctl; | |
699 | ||
700 | if ((kctl = kcb->kctl) == NULL) { | |
701 | return EINVAL; | |
702 | } | |
703 | ||
704 | if (kctl->rcvd) { | |
705 | socket_unlock(so, 0); | |
706 | (*kctl->rcvd)(kctl->kctlref, kcb->sac.sc_unit, kcb->userdata, flags); | |
707 | socket_lock(so, 0); | |
708 | } | |
709 | ||
710 | ctl_sbrcv_trim(so); | |
711 | ||
712 | return 0; | |
713 | } | |
714 | ||
715 | static int | |
716 | ctl_send(struct socket *so, int flags, struct mbuf *m, | |
717 | struct sockaddr *addr, struct mbuf *control, | |
718 | struct proc *p) | |
719 | { | |
720 | #pragma unused(addr, p) | |
721 | int error = 0; | |
722 | struct ctl_cb *kcb = (struct ctl_cb *)so->so_pcb; | |
723 | struct kctl *kctl; | |
724 | ||
725 | if (control) { | |
726 | m_freem(control); | |
727 | } | |
728 | ||
729 | if (kcb == NULL) { /* sanity check */ | |
730 | error = ENOTCONN; | |
731 | } | |
732 | ||
733 | if (error == 0 && (kctl = kcb->kctl) == NULL) { | |
734 | error = EINVAL; | |
735 | } | |
736 | ||
737 | if (error == 0 && kctl->send) { | |
738 | so_tc_update_stats(m, so, m_get_service_class(m)); | |
739 | socket_unlock(so, 0); | |
740 | error = (*kctl->send)(kctl->kctlref, kcb->sac.sc_unit, kcb->userdata, | |
741 | m, flags); | |
742 | socket_lock(so, 0); | |
743 | } else { | |
744 | m_freem(m); | |
745 | if (error == 0) { | |
746 | error = ENOTSUP; | |
747 | } | |
748 | } | |
749 | if (error != 0) { | |
750 | OSIncrementAtomic64((SInt64 *)&kctlstat.kcs_send_fail); | |
751 | } | |
752 | return error; | |
753 | } | |
754 | ||
755 | static int | |
756 | ctl_send_list(struct socket *so, int flags, struct mbuf *m, | |
757 | __unused struct sockaddr *addr, struct mbuf *control, | |
758 | __unused struct proc *p) | |
759 | { | |
760 | int error = 0; | |
761 | struct ctl_cb *kcb = (struct ctl_cb *)so->so_pcb; | |
762 | struct kctl *kctl; | |
763 | ||
764 | if (control) { | |
765 | m_freem_list(control); | |
766 | } | |
767 | ||
768 | if (kcb == NULL) { /* sanity check */ | |
769 | error = ENOTCONN; | |
770 | } | |
771 | ||
772 | if (error == 0 && (kctl = kcb->kctl) == NULL) { | |
773 | error = EINVAL; | |
774 | } | |
775 | ||
776 | if (error == 0 && kctl->send_list) { | |
777 | struct mbuf *nxt; | |
778 | ||
779 | for (nxt = m; nxt != NULL; nxt = nxt->m_nextpkt) { | |
780 | so_tc_update_stats(nxt, so, m_get_service_class(nxt)); | |
781 | } | |
782 | ||
783 | socket_unlock(so, 0); | |
784 | error = (*kctl->send_list)(kctl->kctlref, kcb->sac.sc_unit, | |
785 | kcb->userdata, m, flags); | |
786 | socket_lock(so, 0); | |
787 | } else if (error == 0 && kctl->send) { | |
788 | while (m != NULL && error == 0) { | |
789 | struct mbuf *nextpkt = m->m_nextpkt; | |
790 | ||
791 | m->m_nextpkt = NULL; | |
792 | so_tc_update_stats(m, so, m_get_service_class(m)); | |
793 | socket_unlock(so, 0); | |
794 | error = (*kctl->send)(kctl->kctlref, kcb->sac.sc_unit, | |
795 | kcb->userdata, m, flags); | |
796 | socket_lock(so, 0); | |
797 | m = nextpkt; | |
798 | } | |
799 | if (m != NULL) { | |
800 | m_freem_list(m); | |
801 | } | |
802 | } else { | |
803 | m_freem_list(m); | |
804 | if (error == 0) { | |
805 | error = ENOTSUP; | |
806 | } | |
807 | } | |
808 | if (error != 0) { | |
809 | OSIncrementAtomic64((SInt64 *)&kctlstat.kcs_send_list_fail); | |
810 | } | |
811 | return error; | |
812 | } | |
813 | ||
814 | static errno_t | |
815 | ctl_rcvbspace(struct socket *so, u_int32_t datasize, | |
816 | u_int32_t kctlflags, u_int32_t flags) | |
817 | { | |
818 | struct sockbuf *sb = &so->so_rcv; | |
819 | u_int32_t space = sbspace(sb); | |
820 | errno_t error; | |
821 | ||
822 | if ((kctlflags & CTL_FLAG_REG_CRIT) == 0) { | |
823 | if ((u_int32_t) space >= datasize) { | |
824 | error = 0; | |
825 | } else { | |
826 | error = ENOBUFS; | |
827 | } | |
828 | } else if ((flags & CTL_DATA_CRIT) == 0) { | |
829 | /* | |
830 | * Reserve 25% for critical messages | |
831 | */ | |
832 | if (space < (sb->sb_hiwat >> 2) || | |
833 | space < datasize) { | |
834 | error = ENOBUFS; | |
835 | } else { | |
836 | error = 0; | |
837 | } | |
838 | } else { | |
839 | u_int32_t autorcvbuf_max; | |
840 | ||
841 | /* | |
842 | * Allow overcommit of 25% | |
843 | */ | |
844 | autorcvbuf_max = min(sb->sb_idealsize + (sb->sb_idealsize >> 2), | |
845 | ctl_autorcvbuf_max); | |
846 | ||
847 | if ((u_int32_t) space >= datasize) { | |
848 | error = 0; | |
849 | } else if (tcp_cansbgrow(sb) && | |
850 | sb->sb_hiwat < autorcvbuf_max) { | |
851 | /* | |
852 | * Grow with a little bit of leeway | |
853 | */ | |
854 | u_int32_t grow = datasize - space + MSIZE; | |
855 | ||
856 | if (sbreserve(sb, | |
857 | min((sb->sb_hiwat + grow), autorcvbuf_max)) == 1) { | |
858 | if (sb->sb_hiwat > ctl_autorcvbuf_high) { | |
859 | ctl_autorcvbuf_high = sb->sb_hiwat; | |
860 | } | |
861 | ||
862 | /* | |
863 | * A final check | |
864 | */ | |
865 | if ((u_int32_t) sbspace(sb) >= datasize) { | |
866 | error = 0; | |
867 | } else { | |
868 | error = ENOBUFS; | |
869 | } | |
870 | ||
871 | if (ctl_debug) { | |
872 | printf("%s - grown to %d error %d\n", | |
873 | __func__, sb->sb_hiwat, error); | |
874 | } | |
875 | } else { | |
876 | error = ENOBUFS; | |
877 | } | |
878 | } else { | |
879 | error = ENOBUFS; | |
880 | } | |
881 | } | |
882 | return error; | |
883 | } | |
884 | ||
885 | errno_t | |
886 | ctl_enqueuembuf(kern_ctl_ref kctlref, u_int32_t unit, struct mbuf *m, | |
887 | u_int32_t flags) | |
888 | { | |
889 | struct socket *so; | |
890 | errno_t error = 0; | |
891 | int len = m->m_pkthdr.len; | |
892 | u_int32_t kctlflags; | |
893 | ||
894 | so = kcb_find_socket(kctlref, unit, &kctlflags); | |
895 | if (so == NULL) { | |
896 | return EINVAL; | |
897 | } | |
898 | ||
899 | if (ctl_rcvbspace(so, len, kctlflags, flags) != 0) { | |
900 | error = ENOBUFS; | |
901 | OSIncrementAtomic64((SInt64 *)&kctlstat.kcs_enqueue_fullsock); | |
902 | goto bye; | |
903 | } | |
904 | if ((flags & CTL_DATA_EOR)) { | |
905 | m->m_flags |= M_EOR; | |
906 | } | |
907 | ||
908 | so_recv_data_stat(so, m, 0); | |
909 | if (sbappend(&so->so_rcv, m) != 0) { | |
910 | if ((flags & CTL_DATA_NOWAKEUP) == 0) { | |
911 | sorwakeup(so); | |
912 | } | |
913 | } else { | |
914 | error = ENOBUFS; | |
915 | OSIncrementAtomic64((SInt64 *)&kctlstat.kcs_enqueue_fullsock); | |
916 | } | |
917 | bye: | |
918 | if (ctl_debug && error != 0 && (flags & CTL_DATA_CRIT)) { | |
919 | printf("%s - crit data err %d len %d hiwat %d cc: %d\n", | |
920 | __func__, error, len, | |
921 | so->so_rcv.sb_hiwat, so->so_rcv.sb_cc); | |
922 | } | |
923 | ||
924 | socket_unlock(so, 1); | |
925 | if (error != 0) { | |
926 | OSIncrementAtomic64((SInt64 *)&kctlstat.kcs_enqueue_fail); | |
927 | } | |
928 | ||
929 | return error; | |
930 | } | |
931 | ||
932 | /* | |
933 | * Compute space occupied by mbuf like sbappendrecord | |
934 | */ | |
935 | static int | |
936 | m_space(struct mbuf *m) | |
937 | { | |
938 | int space = 0; | |
939 | struct mbuf *nxt; | |
940 | ||
941 | for (nxt = m; nxt != NULL; nxt = nxt->m_next) { | |
942 | space += nxt->m_len; | |
943 | } | |
944 | ||
945 | return space; | |
946 | } | |
947 | ||
948 | errno_t | |
949 | ctl_enqueuembuf_list(void *kctlref, u_int32_t unit, struct mbuf *m_list, | |
950 | u_int32_t flags, struct mbuf **m_remain) | |
951 | { | |
952 | struct socket *so = NULL; | |
953 | errno_t error = 0; | |
954 | struct mbuf *m, *nextpkt; | |
955 | int needwakeup = 0; | |
956 | int len = 0; | |
957 | u_int32_t kctlflags; | |
958 | ||
959 | /* | |
960 | * Need to point the beginning of the list in case of early exit | |
961 | */ | |
962 | m = m_list; | |
963 | ||
964 | /* | |
965 | * kcb_find_socket takes the socket lock with a reference | |
966 | */ | |
967 | so = kcb_find_socket(kctlref, unit, &kctlflags); | |
968 | if (so == NULL) { | |
969 | error = EINVAL; | |
970 | goto done; | |
971 | } | |
972 | ||
973 | if (kctlflags & CTL_FLAG_REG_SOCK_STREAM) { | |
974 | error = EOPNOTSUPP; | |
975 | goto done; | |
976 | } | |
977 | if (flags & CTL_DATA_EOR) { | |
978 | error = EINVAL; | |
979 | goto done; | |
980 | } | |
981 | ||
982 | for (m = m_list; m != NULL; m = nextpkt) { | |
983 | nextpkt = m->m_nextpkt; | |
984 | ||
985 | if (m->m_pkthdr.len == 0 && ctl_debug) { | |
986 | printf("%s: %llx m_pkthdr.len is 0", | |
987 | __func__, (uint64_t)VM_KERNEL_ADDRPERM(m)); | |
988 | } | |
989 | ||
990 | /* | |
991 | * The mbuf is either appended or freed by sbappendrecord() | |
992 | * so it's not reliable from a data standpoint | |
993 | */ | |
994 | len = m_space(m); | |
995 | if (ctl_rcvbspace(so, len, kctlflags, flags) != 0) { | |
996 | error = ENOBUFS; | |
997 | OSIncrementAtomic64( | |
998 | (SInt64 *)&kctlstat.kcs_enqueue_fullsock); | |
999 | break; | |
1000 | } else { | |
1001 | /* | |
1002 | * Unlink from the list, m is on its own | |
1003 | */ | |
1004 | m->m_nextpkt = NULL; | |
1005 | so_recv_data_stat(so, m, 0); | |
1006 | if (sbappendrecord(&so->so_rcv, m) != 0) { | |
1007 | needwakeup = 1; | |
1008 | } else { | |
1009 | /* | |
1010 | * We free or return the remaining | |
1011 | * mbufs in the list | |
1012 | */ | |
1013 | m = nextpkt; | |
1014 | error = ENOBUFS; | |
1015 | OSIncrementAtomic64( | |
1016 | (SInt64 *)&kctlstat.kcs_enqueue_fullsock); | |
1017 | break; | |
1018 | } | |
1019 | } | |
1020 | } | |
1021 | if (needwakeup && (flags & CTL_DATA_NOWAKEUP) == 0) { | |
1022 | sorwakeup(so); | |
1023 | } | |
1024 | ||
1025 | done: | |
1026 | if (so != NULL) { | |
1027 | if (ctl_debug && error != 0 && (flags & CTL_DATA_CRIT)) { | |
1028 | printf("%s - crit data err %d len %d hiwat %d cc: %d\n", | |
1029 | __func__, error, len, | |
1030 | so->so_rcv.sb_hiwat, so->so_rcv.sb_cc); | |
1031 | } | |
1032 | ||
1033 | socket_unlock(so, 1); | |
1034 | } | |
1035 | if (m_remain) { | |
1036 | *m_remain = m; | |
1037 | ||
1038 | if (m != NULL && socket_debug && so != NULL && | |
1039 | (so->so_options & SO_DEBUG)) { | |
1040 | struct mbuf *n; | |
1041 | ||
1042 | printf("%s m_list %llx\n", __func__, | |
1043 | (uint64_t) VM_KERNEL_ADDRPERM(m_list)); | |
1044 | for (n = m; n != NULL; n = n->m_nextpkt) { | |
1045 | printf(" remain %llx m_next %llx\n", | |
1046 | (uint64_t) VM_KERNEL_ADDRPERM(n), | |
1047 | (uint64_t) VM_KERNEL_ADDRPERM(n->m_next)); | |
1048 | } | |
1049 | } | |
1050 | } else { | |
1051 | if (m != NULL) { | |
1052 | m_freem_list(m); | |
1053 | } | |
1054 | } | |
1055 | if (error != 0) { | |
1056 | OSIncrementAtomic64((SInt64 *)&kctlstat.kcs_enqueue_fail); | |
1057 | } | |
1058 | return error; | |
1059 | } | |
1060 | ||
1061 | errno_t | |
1062 | ctl_enqueuedata(void *kctlref, u_int32_t unit, void *data, size_t len, | |
1063 | u_int32_t flags) | |
1064 | { | |
1065 | struct socket *so; | |
1066 | struct mbuf *m; | |
1067 | errno_t error = 0; | |
1068 | unsigned int num_needed; | |
1069 | struct mbuf *n; | |
1070 | size_t curlen = 0; | |
1071 | u_int32_t kctlflags; | |
1072 | ||
1073 | so = kcb_find_socket(kctlref, unit, &kctlflags); | |
1074 | if (so == NULL) { | |
1075 | return EINVAL; | |
1076 | } | |
1077 | ||
1078 | if (ctl_rcvbspace(so, len, kctlflags, flags) != 0) { | |
1079 | error = ENOBUFS; | |
1080 | OSIncrementAtomic64((SInt64 *)&kctlstat.kcs_enqueue_fullsock); | |
1081 | goto bye; | |
1082 | } | |
1083 | ||
1084 | num_needed = 1; | |
1085 | m = m_allocpacket_internal(&num_needed, len, NULL, M_NOWAIT, 1, 0); | |
1086 | if (m == NULL) { | |
1087 | kctlstat.kcs_enqdata_mb_alloc_fail++; | |
1088 | if (ctl_debug) { | |
1089 | printf("%s: m_allocpacket_internal(%lu) failed\n", | |
1090 | __func__, len); | |
1091 | } | |
1092 | error = ENOMEM; | |
1093 | goto bye; | |
1094 | } | |
1095 | ||
1096 | for (n = m; n != NULL; n = n->m_next) { | |
1097 | size_t mlen = mbuf_maxlen(n); | |
1098 | ||
1099 | if (mlen + curlen > len) { | |
1100 | mlen = len - curlen; | |
1101 | } | |
1102 | n->m_len = mlen; | |
1103 | bcopy((char *)data + curlen, n->m_data, mlen); | |
1104 | curlen += mlen; | |
1105 | } | |
1106 | mbuf_pkthdr_setlen(m, curlen); | |
1107 | ||
1108 | if ((flags & CTL_DATA_EOR)) { | |
1109 | m->m_flags |= M_EOR; | |
1110 | } | |
1111 | so_recv_data_stat(so, m, 0); | |
1112 | if (sbappend(&so->so_rcv, m) != 0) { | |
1113 | if ((flags & CTL_DATA_NOWAKEUP) == 0) { | |
1114 | sorwakeup(so); | |
1115 | } | |
1116 | } else { | |
1117 | kctlstat.kcs_enqdata_sbappend_fail++; | |
1118 | error = ENOBUFS; | |
1119 | OSIncrementAtomic64((SInt64 *)&kctlstat.kcs_enqueue_fullsock); | |
1120 | } | |
1121 | ||
1122 | bye: | |
1123 | if (ctl_debug && error != 0 && (flags & CTL_DATA_CRIT)) { | |
1124 | printf("%s - crit data err %d len %d hiwat %d cc: %d\n", | |
1125 | __func__, error, (int)len, | |
1126 | so->so_rcv.sb_hiwat, so->so_rcv.sb_cc); | |
1127 | } | |
1128 | ||
1129 | socket_unlock(so, 1); | |
1130 | if (error != 0) { | |
1131 | OSIncrementAtomic64((SInt64 *)&kctlstat.kcs_enqueue_fail); | |
1132 | } | |
1133 | return error; | |
1134 | } | |
1135 | ||
1136 | errno_t | |
1137 | ctl_getenqueuepacketcount(kern_ctl_ref kctlref, u_int32_t unit, u_int32_t *pcnt) | |
1138 | { | |
1139 | struct socket *so; | |
1140 | u_int32_t cnt; | |
1141 | struct mbuf *m1; | |
1142 | ||
1143 | if (pcnt == NULL) { | |
1144 | return EINVAL; | |
1145 | } | |
1146 | ||
1147 | so = kcb_find_socket(kctlref, unit, NULL); | |
1148 | if (so == NULL) { | |
1149 | return EINVAL; | |
1150 | } | |
1151 | ||
1152 | cnt = 0; | |
1153 | m1 = so->so_rcv.sb_mb; | |
1154 | while (m1 != NULL) { | |
1155 | if (m1->m_type == MT_DATA || | |
1156 | m1->m_type == MT_HEADER || | |
1157 | m1->m_type == MT_OOBDATA) { | |
1158 | cnt += 1; | |
1159 | } | |
1160 | m1 = m1->m_nextpkt; | |
1161 | } | |
1162 | *pcnt = cnt; | |
1163 | ||
1164 | socket_unlock(so, 1); | |
1165 | ||
1166 | return 0; | |
1167 | } | |
1168 | ||
1169 | errno_t | |
1170 | ctl_getenqueuespace(kern_ctl_ref kctlref, u_int32_t unit, size_t *space) | |
1171 | { | |
1172 | struct socket *so; | |
1173 | long avail; | |
1174 | ||
1175 | if (space == NULL) { | |
1176 | return EINVAL; | |
1177 | } | |
1178 | ||
1179 | so = kcb_find_socket(kctlref, unit, NULL); | |
1180 | if (so == NULL) { | |
1181 | return EINVAL; | |
1182 | } | |
1183 | ||
1184 | avail = sbspace(&so->so_rcv); | |
1185 | *space = (avail < 0) ? 0 : avail; | |
1186 | socket_unlock(so, 1); | |
1187 | ||
1188 | return 0; | |
1189 | } | |
1190 | ||
1191 | errno_t | |
1192 | ctl_getenqueuereadable(kern_ctl_ref kctlref, u_int32_t unit, | |
1193 | u_int32_t *difference) | |
1194 | { | |
1195 | struct socket *so; | |
1196 | ||
1197 | if (difference == NULL) { | |
1198 | return EINVAL; | |
1199 | } | |
1200 | ||
1201 | so = kcb_find_socket(kctlref, unit, NULL); | |
1202 | if (so == NULL) { | |
1203 | return EINVAL; | |
1204 | } | |
1205 | ||
1206 | if (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat) { | |
1207 | *difference = 0; | |
1208 | } else { | |
1209 | *difference = (so->so_rcv.sb_lowat - so->so_rcv.sb_cc); | |
1210 | } | |
1211 | socket_unlock(so, 1); | |
1212 | ||
1213 | return 0; | |
1214 | } | |
1215 | ||
1216 | static int | |
1217 | ctl_ctloutput(struct socket *so, struct sockopt *sopt) | |
1218 | { | |
1219 | struct ctl_cb *kcb = (struct ctl_cb *)so->so_pcb; | |
1220 | struct kctl *kctl; | |
1221 | int error = 0; | |
1222 | void *data = NULL; | |
1223 | size_t len; | |
1224 | ||
1225 | if (sopt->sopt_level != SYSPROTO_CONTROL) { | |
1226 | return EINVAL; | |
1227 | } | |
1228 | ||
1229 | if (kcb == NULL) { /* sanity check */ | |
1230 | return ENOTCONN; | |
1231 | } | |
1232 | ||
1233 | if ((kctl = kcb->kctl) == NULL) { | |
1234 | return EINVAL; | |
1235 | } | |
1236 | ||
1237 | switch (sopt->sopt_dir) { | |
1238 | case SOPT_SET: | |
1239 | if (kctl->setopt == NULL) { | |
1240 | return ENOTSUP; | |
1241 | } | |
1242 | if (sopt->sopt_valsize != 0) { | |
1243 | MALLOC(data, void *, sopt->sopt_valsize, M_TEMP, | |
1244 | M_WAITOK | M_ZERO); | |
1245 | if (data == NULL) { | |
1246 | return ENOMEM; | |
1247 | } | |
1248 | error = sooptcopyin(sopt, data, | |
1249 | sopt->sopt_valsize, sopt->sopt_valsize); | |
1250 | } | |
1251 | if (error == 0) { | |
1252 | socket_unlock(so, 0); | |
1253 | error = (*kctl->setopt)(kctl->kctlref, | |
1254 | kcb->sac.sc_unit, kcb->userdata, sopt->sopt_name, | |
1255 | data, sopt->sopt_valsize); | |
1256 | socket_lock(so, 0); | |
1257 | } | |
1258 | ||
1259 | if (data != NULL) { | |
1260 | FREE(data, M_TEMP); | |
1261 | } | |
1262 | break; | |
1263 | ||
1264 | case SOPT_GET: | |
1265 | if (kctl->getopt == NULL) { | |
1266 | return ENOTSUP; | |
1267 | } | |
1268 | ||
1269 | if (sopt->sopt_valsize && sopt->sopt_val) { | |
1270 | MALLOC(data, void *, sopt->sopt_valsize, M_TEMP, | |
1271 | M_WAITOK | M_ZERO); | |
1272 | if (data == NULL) { | |
1273 | return ENOMEM; | |
1274 | } | |
1275 | /* | |
1276 | * 4108337 - copy user data in case the | |
1277 | * kernel control needs it | |
1278 | */ | |
1279 | error = sooptcopyin(sopt, data, | |
1280 | sopt->sopt_valsize, sopt->sopt_valsize); | |
1281 | } | |
1282 | ||
1283 | if (error == 0) { | |
1284 | len = sopt->sopt_valsize; | |
1285 | socket_unlock(so, 0); | |
1286 | error = (*kctl->getopt)(kctl->kctlref, kcb->sac.sc_unit, | |
1287 | kcb->userdata, sopt->sopt_name, | |
1288 | data, &len); | |
1289 | if (data != NULL && len > sopt->sopt_valsize) { | |
1290 | panic_plain("ctl_ctloutput: ctl %s returned " | |
1291 | "len (%lu) > sopt_valsize (%lu)\n", | |
1292 | kcb->kctl->name, len, | |
1293 | sopt->sopt_valsize); | |
1294 | } | |
1295 | socket_lock(so, 0); | |
1296 | if (error == 0) { | |
1297 | if (data != NULL) { | |
1298 | error = sooptcopyout(sopt, data, len); | |
1299 | } else { | |
1300 | sopt->sopt_valsize = len; | |
1301 | } | |
1302 | } | |
1303 | } | |
1304 | if (data != NULL) { | |
1305 | FREE(data, M_TEMP); | |
1306 | } | |
1307 | break; | |
1308 | } | |
1309 | return error; | |
1310 | } | |
1311 | ||
1312 | static int | |
1313 | ctl_ioctl(struct socket *so, u_long cmd, caddr_t data, | |
1314 | struct ifnet *ifp, struct proc *p) | |
1315 | { | |
1316 | #pragma unused(so, ifp, p) | |
1317 | int error = ENOTSUP; | |
1318 | ||
1319 | switch (cmd) { | |
1320 | /* get the number of controllers */ | |
1321 | case CTLIOCGCOUNT: { | |
1322 | struct kctl *kctl; | |
1323 | u_int32_t n = 0; | |
1324 | ||
1325 | lck_mtx_lock(ctl_mtx); | |
1326 | TAILQ_FOREACH(kctl, &ctl_head, next) | |
1327 | n++; | |
1328 | lck_mtx_unlock(ctl_mtx); | |
1329 | ||
1330 | bcopy(&n, data, sizeof(n)); | |
1331 | error = 0; | |
1332 | break; | |
1333 | } | |
1334 | case CTLIOCGINFO: { | |
1335 | struct ctl_info ctl_info; | |
1336 | struct kctl *kctl = 0; | |
1337 | size_t name_len; | |
1338 | ||
1339 | bcopy(data, &ctl_info, sizeof(ctl_info)); | |
1340 | name_len = strnlen(ctl_info.ctl_name, MAX_KCTL_NAME); | |
1341 | ||
1342 | if (name_len == 0 || name_len + 1 > MAX_KCTL_NAME) { | |
1343 | error = EINVAL; | |
1344 | break; | |
1345 | } | |
1346 | lck_mtx_lock(ctl_mtx); | |
1347 | kctl = ctl_find_by_name(ctl_info.ctl_name); | |
1348 | lck_mtx_unlock(ctl_mtx); | |
1349 | if (kctl == 0) { | |
1350 | error = ENOENT; | |
1351 | break; | |
1352 | } | |
1353 | ctl_info.ctl_id = kctl->id; | |
1354 | bcopy(&ctl_info, data, sizeof(ctl_info)); | |
1355 | error = 0; | |
1356 | break; | |
1357 | } | |
1358 | ||
1359 | /* add controls to get list of NKEs */ | |
1360 | } | |
1361 | ||
1362 | return error; | |
1363 | } | |
1364 | ||
1365 | static void | |
1366 | kctl_tbl_grow() | |
1367 | { | |
1368 | struct kctl **new_table; | |
1369 | uintptr_t new_size; | |
1370 | ||
1371 | lck_mtx_assert(ctl_mtx, LCK_MTX_ASSERT_OWNED); | |
1372 | ||
1373 | if (kctl_tbl_growing) { | |
1374 | /* Another thread is allocating */ | |
1375 | kctl_tbl_growing_waiting++; | |
1376 | ||
1377 | do { | |
1378 | (void) msleep((caddr_t) &kctl_tbl_growing, ctl_mtx, | |
1379 | PSOCK | PCATCH, "kctl_tbl_growing", 0); | |
1380 | } while (kctl_tbl_growing); | |
1381 | kctl_tbl_growing_waiting--; | |
1382 | } | |
1383 | /* Another thread grew the table */ | |
1384 | if (kctl_table != NULL && kctl_tbl_count < kctl_tbl_size) { | |
1385 | return; | |
1386 | } | |
1387 | ||
1388 | /* Verify we have a sane size */ | |
1389 | if (kctl_tbl_size + KCTL_TBL_INC >= UINT16_MAX) { | |
1390 | kctlstat.kcs_tbl_size_too_big++; | |
1391 | if (ctl_debug) { | |
1392 | printf("%s kctl_tbl_size %lu too big\n", | |
1393 | __func__, kctl_tbl_size); | |
1394 | } | |
1395 | return; | |
1396 | } | |
1397 | kctl_tbl_growing = 1; | |
1398 | ||
1399 | new_size = kctl_tbl_size + KCTL_TBL_INC; | |
1400 | ||
1401 | lck_mtx_unlock(ctl_mtx); | |
1402 | new_table = _MALLOC(sizeof(struct kctl *) * new_size, | |
1403 | M_TEMP, M_WAIT | M_ZERO); | |
1404 | lck_mtx_lock(ctl_mtx); | |
1405 | ||
1406 | if (new_table != NULL) { | |
1407 | if (kctl_table != NULL) { | |
1408 | bcopy(kctl_table, new_table, | |
1409 | kctl_tbl_size * sizeof(struct kctl *)); | |
1410 | ||
1411 | _FREE(kctl_table, M_TEMP); | |
1412 | } | |
1413 | kctl_table = new_table; | |
1414 | kctl_tbl_size = new_size; | |
1415 | } | |
1416 | ||
1417 | kctl_tbl_growing = 0; | |
1418 | ||
1419 | if (kctl_tbl_growing_waiting) { | |
1420 | wakeup(&kctl_tbl_growing); | |
1421 | } | |
1422 | } | |
1423 | ||
1424 | #define KCTLREF_INDEX_MASK 0x0000FFFF | |
1425 | #define KCTLREF_GENCNT_MASK 0xFFFF0000 | |
1426 | #define KCTLREF_GENCNT_SHIFT 16 | |
1427 | ||
1428 | static kern_ctl_ref | |
1429 | kctl_make_ref(struct kctl *kctl) | |
1430 | { | |
1431 | uintptr_t i; | |
1432 | ||
1433 | lck_mtx_assert(ctl_mtx, LCK_MTX_ASSERT_OWNED); | |
1434 | ||
1435 | if (kctl_tbl_count >= kctl_tbl_size) { | |
1436 | kctl_tbl_grow(); | |
1437 | } | |
1438 | ||
1439 | kctl->kctlref = NULL; | |
1440 | for (i = 0; i < kctl_tbl_size; i++) { | |
1441 | if (kctl_table[i] == NULL) { | |
1442 | uintptr_t ref; | |
1443 | ||
1444 | /* | |
1445 | * Reference is index plus one | |
1446 | */ | |
1447 | kctl_ref_gencnt += 1; | |
1448 | ||
1449 | /* | |
1450 | * Add generation count as salt to reference to prevent | |
1451 | * use after deregister | |
1452 | */ | |
1453 | ref = ((kctl_ref_gencnt << KCTLREF_GENCNT_SHIFT) & | |
1454 | KCTLREF_GENCNT_MASK) + | |
1455 | ((i + 1) & KCTLREF_INDEX_MASK); | |
1456 | ||
1457 | kctl->kctlref = (void *)(ref); | |
1458 | kctl_table[i] = kctl; | |
1459 | kctl_tbl_count++; | |
1460 | break; | |
1461 | } | |
1462 | } | |
1463 | ||
1464 | if (kctl->kctlref == NULL) { | |
1465 | panic("%s no space in table", __func__); | |
1466 | } | |
1467 | ||
1468 | if (ctl_debug > 0) { | |
1469 | printf("%s %p for %p\n", | |
1470 | __func__, kctl->kctlref, kctl); | |
1471 | } | |
1472 | ||
1473 | return kctl->kctlref; | |
1474 | } | |
1475 | ||
1476 | static void | |
1477 | kctl_delete_ref(kern_ctl_ref kctlref) | |
1478 | { | |
1479 | /* | |
1480 | * Reference is index plus one | |
1481 | */ | |
1482 | uintptr_t i = (((uintptr_t)kctlref) & KCTLREF_INDEX_MASK) - 1; | |
1483 | ||
1484 | lck_mtx_assert(ctl_mtx, LCK_MTX_ASSERT_OWNED); | |
1485 | ||
1486 | if (i < kctl_tbl_size) { | |
1487 | struct kctl *kctl = kctl_table[i]; | |
1488 | ||
1489 | if (kctl->kctlref == kctlref) { | |
1490 | kctl_table[i] = NULL; | |
1491 | kctl_tbl_count--; | |
1492 | } else { | |
1493 | kctlstat.kcs_bad_kctlref++; | |
1494 | } | |
1495 | } else { | |
1496 | kctlstat.kcs_bad_kctlref++; | |
1497 | } | |
1498 | } | |
1499 | ||
1500 | static struct kctl * | |
1501 | kctl_from_ref(kern_ctl_ref kctlref) | |
1502 | { | |
1503 | /* | |
1504 | * Reference is index plus one | |
1505 | */ | |
1506 | uintptr_t i = (((uintptr_t)kctlref) & KCTLREF_INDEX_MASK) - 1; | |
1507 | struct kctl *kctl = NULL; | |
1508 | ||
1509 | lck_mtx_assert(ctl_mtx, LCK_MTX_ASSERT_OWNED); | |
1510 | ||
1511 | if (i >= kctl_tbl_size) { | |
1512 | kctlstat.kcs_bad_kctlref++; | |
1513 | return NULL; | |
1514 | } | |
1515 | kctl = kctl_table[i]; | |
1516 | if (kctl->kctlref != kctlref) { | |
1517 | kctlstat.kcs_bad_kctlref++; | |
1518 | return NULL; | |
1519 | } | |
1520 | return kctl; | |
1521 | } | |
1522 | ||
1523 | /* | |
1524 | * Register/unregister a NKE | |
1525 | */ | |
1526 | errno_t | |
1527 | ctl_register(struct kern_ctl_reg *userkctl, kern_ctl_ref *kctlref) | |
1528 | { | |
1529 | struct kctl *kctl = NULL; | |
1530 | struct kctl *kctl_next = NULL; | |
1531 | u_int32_t id = 1; | |
1532 | size_t name_len; | |
1533 | int is_extended = 0; | |
1534 | ||
1535 | if (userkctl == NULL) { /* sanity check */ | |
1536 | return EINVAL; | |
1537 | } | |
1538 | if (userkctl->ctl_connect == NULL) { | |
1539 | return EINVAL; | |
1540 | } | |
1541 | name_len = strlen(userkctl->ctl_name); | |
1542 | if (name_len == 0 || name_len + 1 > MAX_KCTL_NAME) { | |
1543 | return EINVAL; | |
1544 | } | |
1545 | ||
1546 | MALLOC(kctl, struct kctl *, sizeof(*kctl), M_TEMP, M_WAITOK); | |
1547 | if (kctl == NULL) { | |
1548 | return ENOMEM; | |
1549 | } | |
1550 | bzero((char *)kctl, sizeof(*kctl)); | |
1551 | ||
1552 | lck_mtx_lock(ctl_mtx); | |
1553 | ||
1554 | if (kctl_make_ref(kctl) == NULL) { | |
1555 | lck_mtx_unlock(ctl_mtx); | |
1556 | FREE(kctl, M_TEMP); | |
1557 | return ENOMEM; | |
1558 | } | |
1559 | ||
1560 | /* | |
1561 | * Kernel Control IDs | |
1562 | * | |
1563 | * CTL_FLAG_REG_ID_UNIT indicates the control ID and unit number are | |
1564 | * static. If they do not exist, add them to the list in order. If the | |
1565 | * flag is not set, we must find a new unique value. We assume the | |
1566 | * list is in order. We find the last item in the list and add one. If | |
1567 | * this leads to wrapping the id around, we start at the front of the | |
1568 | * list and look for a gap. | |
1569 | */ | |
1570 | ||
1571 | if ((userkctl->ctl_flags & CTL_FLAG_REG_ID_UNIT) == 0) { | |
1572 | /* Must dynamically assign an unused ID */ | |
1573 | ||
1574 | /* Verify the same name isn't already registered */ | |
1575 | if (ctl_find_by_name(userkctl->ctl_name) != NULL) { | |
1576 | kctl_delete_ref(kctl->kctlref); | |
1577 | lck_mtx_unlock(ctl_mtx); | |
1578 | FREE(kctl, M_TEMP); | |
1579 | return EEXIST; | |
1580 | } | |
1581 | ||
1582 | /* Start with 1 in case the list is empty */ | |
1583 | id = 1; | |
1584 | kctl_next = TAILQ_LAST(&ctl_head, kctl_list); | |
1585 | ||
1586 | if (kctl_next != NULL) { | |
1587 | /* List was not empty, add one to the last item */ | |
1588 | id = kctl_next->id + 1; | |
1589 | kctl_next = NULL; | |
1590 | ||
1591 | /* | |
1592 | * If this wrapped the id number, start looking at | |
1593 | * the front of the list for an unused id. | |
1594 | */ | |
1595 | if (id == 0) { | |
1596 | /* Find the next unused ID */ | |
1597 | id = 1; | |
1598 | ||
1599 | TAILQ_FOREACH(kctl_next, &ctl_head, next) { | |
1600 | if (kctl_next->id > id) { | |
1601 | /* We found a gap */ | |
1602 | break; | |
1603 | } | |
1604 | ||
1605 | id = kctl_next->id + 1; | |
1606 | } | |
1607 | } | |
1608 | } | |
1609 | ||
1610 | userkctl->ctl_id = id; | |
1611 | kctl->id = id; | |
1612 | kctl->reg_unit = -1; | |
1613 | } else { | |
1614 | TAILQ_FOREACH(kctl_next, &ctl_head, next) { | |
1615 | if (kctl_next->id > userkctl->ctl_id) { | |
1616 | break; | |
1617 | } | |
1618 | } | |
1619 | ||
1620 | if (ctl_find_by_id_unit(userkctl->ctl_id, userkctl->ctl_unit)) { | |
1621 | kctl_delete_ref(kctl->kctlref); | |
1622 | lck_mtx_unlock(ctl_mtx); | |
1623 | FREE(kctl, M_TEMP); | |
1624 | return EEXIST; | |
1625 | } | |
1626 | kctl->id = userkctl->ctl_id; | |
1627 | kctl->reg_unit = userkctl->ctl_unit; | |
1628 | } | |
1629 | ||
1630 | is_extended = (userkctl->ctl_flags & CTL_FLAG_REG_EXTENDED); | |
1631 | ||
1632 | strlcpy(kctl->name, userkctl->ctl_name, MAX_KCTL_NAME); | |
1633 | kctl->flags = userkctl->ctl_flags; | |
1634 | ||
1635 | /* | |
1636 | * Let the caller know the default send and receive sizes | |
1637 | */ | |
1638 | if (userkctl->ctl_sendsize == 0) { | |
1639 | kctl->sendbufsize = CTL_SENDSIZE; | |
1640 | userkctl->ctl_sendsize = kctl->sendbufsize; | |
1641 | } else { | |
1642 | kctl->sendbufsize = userkctl->ctl_sendsize; | |
1643 | } | |
1644 | if (userkctl->ctl_recvsize == 0) { | |
1645 | kctl->recvbufsize = CTL_RECVSIZE; | |
1646 | userkctl->ctl_recvsize = kctl->recvbufsize; | |
1647 | } else { | |
1648 | kctl->recvbufsize = userkctl->ctl_recvsize; | |
1649 | } | |
1650 | ||
1651 | kctl->bind = userkctl->ctl_bind; | |
1652 | kctl->connect = userkctl->ctl_connect; | |
1653 | kctl->disconnect = userkctl->ctl_disconnect; | |
1654 | kctl->send = userkctl->ctl_send; | |
1655 | kctl->setopt = userkctl->ctl_setopt; | |
1656 | kctl->getopt = userkctl->ctl_getopt; | |
1657 | if (is_extended) { | |
1658 | kctl->rcvd = userkctl->ctl_rcvd; | |
1659 | kctl->send_list = userkctl->ctl_send_list; | |
1660 | } | |
1661 | ||
1662 | TAILQ_INIT(&kctl->kcb_head); | |
1663 | ||
1664 | if (kctl_next) { | |
1665 | TAILQ_INSERT_BEFORE(kctl_next, kctl, next); | |
1666 | } else { | |
1667 | TAILQ_INSERT_TAIL(&ctl_head, kctl, next); | |
1668 | } | |
1669 | ||
1670 | kctlstat.kcs_reg_count++; | |
1671 | kctlstat.kcs_gencnt++; | |
1672 | ||
1673 | lck_mtx_unlock(ctl_mtx); | |
1674 | ||
1675 | *kctlref = kctl->kctlref; | |
1676 | ||
1677 | ctl_post_msg(KEV_CTL_REGISTERED, kctl->id); | |
1678 | return 0; | |
1679 | } | |
1680 | ||
1681 | errno_t | |
1682 | ctl_deregister(void *kctlref) | |
1683 | { | |
1684 | struct kctl *kctl; | |
1685 | ||
1686 | lck_mtx_lock(ctl_mtx); | |
1687 | if ((kctl = kctl_from_ref(kctlref)) == NULL) { | |
1688 | kctlstat.kcs_bad_kctlref++; | |
1689 | lck_mtx_unlock(ctl_mtx); | |
1690 | if (ctl_debug != 0) { | |
1691 | printf("%s invalid kctlref %p\n", | |
1692 | __func__, kctlref); | |
1693 | } | |
1694 | return EINVAL; | |
1695 | } | |
1696 | ||
1697 | if (!TAILQ_EMPTY(&kctl->kcb_head)) { | |
1698 | lck_mtx_unlock(ctl_mtx); | |
1699 | return EBUSY; | |
1700 | } | |
1701 | ||
1702 | TAILQ_REMOVE(&ctl_head, kctl, next); | |
1703 | ||
1704 | kctlstat.kcs_reg_count--; | |
1705 | kctlstat.kcs_gencnt++; | |
1706 | ||
1707 | kctl_delete_ref(kctl->kctlref); | |
1708 | lck_mtx_unlock(ctl_mtx); | |
1709 | ||
1710 | ctl_post_msg(KEV_CTL_DEREGISTERED, kctl->id); | |
1711 | FREE(kctl, M_TEMP); | |
1712 | return 0; | |
1713 | } | |
1714 | ||
1715 | /* | |
1716 | * Must be called with global ctl_mtx lock taked | |
1717 | */ | |
1718 | static struct kctl * | |
1719 | ctl_find_by_name(const char *name) | |
1720 | { | |
1721 | struct kctl *kctl; | |
1722 | ||
1723 | lck_mtx_assert(ctl_mtx, LCK_MTX_ASSERT_OWNED); | |
1724 | ||
1725 | TAILQ_FOREACH(kctl, &ctl_head, next) | |
1726 | if (strncmp(kctl->name, name, sizeof(kctl->name)) == 0) { | |
1727 | return kctl; | |
1728 | } | |
1729 | ||
1730 | return NULL; | |
1731 | } | |
1732 | ||
1733 | u_int32_t | |
1734 | ctl_id_by_name(const char *name) | |
1735 | { | |
1736 | u_int32_t ctl_id = 0; | |
1737 | struct kctl *kctl; | |
1738 | ||
1739 | lck_mtx_lock(ctl_mtx); | |
1740 | kctl = ctl_find_by_name(name); | |
1741 | if (kctl) { | |
1742 | ctl_id = kctl->id; | |
1743 | } | |
1744 | lck_mtx_unlock(ctl_mtx); | |
1745 | ||
1746 | return ctl_id; | |
1747 | } | |
1748 | ||
1749 | errno_t | |
1750 | ctl_name_by_id(u_int32_t id, char *out_name, size_t maxsize) | |
1751 | { | |
1752 | int found = 0; | |
1753 | struct kctl *kctl; | |
1754 | ||
1755 | lck_mtx_lock(ctl_mtx); | |
1756 | TAILQ_FOREACH(kctl, &ctl_head, next) { | |
1757 | if (kctl->id == id) { | |
1758 | break; | |
1759 | } | |
1760 | } | |
1761 | ||
1762 | if (kctl) { | |
1763 | if (maxsize > MAX_KCTL_NAME) { | |
1764 | maxsize = MAX_KCTL_NAME; | |
1765 | } | |
1766 | strlcpy(out_name, kctl->name, maxsize); | |
1767 | found = 1; | |
1768 | } | |
1769 | lck_mtx_unlock(ctl_mtx); | |
1770 | ||
1771 | return found ? 0 : ENOENT; | |
1772 | } | |
1773 | ||
1774 | /* | |
1775 | * Must be called with global ctl_mtx lock taked | |
1776 | * | |
1777 | */ | |
1778 | static struct kctl * | |
1779 | ctl_find_by_id_unit(u_int32_t id, u_int32_t unit) | |
1780 | { | |
1781 | struct kctl *kctl; | |
1782 | ||
1783 | lck_mtx_assert(ctl_mtx, LCK_MTX_ASSERT_OWNED); | |
1784 | ||
1785 | TAILQ_FOREACH(kctl, &ctl_head, next) { | |
1786 | if (kctl->id == id && (kctl->flags & CTL_FLAG_REG_ID_UNIT) == 0) { | |
1787 | return kctl; | |
1788 | } else if (kctl->id == id && kctl->reg_unit == unit) { | |
1789 | return kctl; | |
1790 | } | |
1791 | } | |
1792 | return NULL; | |
1793 | } | |
1794 | ||
1795 | /* | |
1796 | * Must be called with kernel controller lock taken | |
1797 | */ | |
1798 | static struct ctl_cb * | |
1799 | kcb_find(struct kctl *kctl, u_int32_t unit) | |
1800 | { | |
1801 | struct ctl_cb *kcb; | |
1802 | ||
1803 | lck_mtx_assert(ctl_mtx, LCK_MTX_ASSERT_OWNED); | |
1804 | ||
1805 | TAILQ_FOREACH(kcb, &kctl->kcb_head, next) | |
1806 | if (kcb->sac.sc_unit == unit) { | |
1807 | return kcb; | |
1808 | } | |
1809 | ||
1810 | return NULL; | |
1811 | } | |
1812 | ||
1813 | static struct socket * | |
1814 | kcb_find_socket(kern_ctl_ref kctlref, u_int32_t unit, u_int32_t *kctlflags) | |
1815 | { | |
1816 | struct socket *so = NULL; | |
1817 | struct ctl_cb *kcb; | |
1818 | void *lr_saved; | |
1819 | struct kctl *kctl; | |
1820 | int i; | |
1821 | ||
1822 | lr_saved = __builtin_return_address(0); | |
1823 | ||
1824 | lck_mtx_lock(ctl_mtx); | |
1825 | /* | |
1826 | * First validate the kctlref | |
1827 | */ | |
1828 | if ((kctl = kctl_from_ref(kctlref)) == NULL) { | |
1829 | kctlstat.kcs_bad_kctlref++; | |
1830 | lck_mtx_unlock(ctl_mtx); | |
1831 | if (ctl_debug != 0) { | |
1832 | printf("%s invalid kctlref %p\n", | |
1833 | __func__, kctlref); | |
1834 | } | |
1835 | return NULL; | |
1836 | } | |
1837 | ||
1838 | kcb = kcb_find(kctl, unit); | |
1839 | if (kcb == NULL || kcb->kctl != kctl || (so = kcb->so) == NULL) { | |
1840 | lck_mtx_unlock(ctl_mtx); | |
1841 | return NULL; | |
1842 | } | |
1843 | /* | |
1844 | * This prevents the socket from being closed | |
1845 | */ | |
1846 | kcb->usecount++; | |
1847 | /* | |
1848 | * Respect lock ordering: socket before ctl_mtx | |
1849 | */ | |
1850 | lck_mtx_unlock(ctl_mtx); | |
1851 | ||
1852 | socket_lock(so, 1); | |
1853 | /* | |
1854 | * The socket lock history is more useful if we store | |
1855 | * the address of the caller. | |
1856 | */ | |
1857 | i = (so->next_lock_lr + SO_LCKDBG_MAX - 1) % SO_LCKDBG_MAX; | |
1858 | so->lock_lr[i] = lr_saved; | |
1859 | ||
1860 | lck_mtx_lock(ctl_mtx); | |
1861 | ||
1862 | if ((kctl = kctl_from_ref(kctlref)) == NULL || kcb->kctl == NULL) { | |
1863 | lck_mtx_unlock(ctl_mtx); | |
1864 | socket_unlock(so, 1); | |
1865 | so = NULL; | |
1866 | lck_mtx_lock(ctl_mtx); | |
1867 | } else if (kctlflags != NULL) { | |
1868 | *kctlflags = kctl->flags; | |
1869 | } | |
1870 | ||
1871 | kcb->usecount--; | |
1872 | if (kcb->usecount == 0) { | |
1873 | wakeup((event_t)&kcb->usecount); | |
1874 | } | |
1875 | ||
1876 | lck_mtx_unlock(ctl_mtx); | |
1877 | ||
1878 | return so; | |
1879 | } | |
1880 | ||
1881 | static void | |
1882 | ctl_post_msg(u_int32_t event_code, u_int32_t id) | |
1883 | { | |
1884 | struct ctl_event_data ctl_ev_data; | |
1885 | struct kev_msg ev_msg; | |
1886 | ||
1887 | lck_mtx_assert(ctl_mtx, LCK_MTX_ASSERT_NOTOWNED); | |
1888 | ||
1889 | bzero(&ev_msg, sizeof(struct kev_msg)); | |
1890 | ev_msg.vendor_code = KEV_VENDOR_APPLE; | |
1891 | ||
1892 | ev_msg.kev_class = KEV_SYSTEM_CLASS; | |
1893 | ev_msg.kev_subclass = KEV_CTL_SUBCLASS; | |
1894 | ev_msg.event_code = event_code; | |
1895 | ||
1896 | /* common nke subclass data */ | |
1897 | bzero(&ctl_ev_data, sizeof(ctl_ev_data)); | |
1898 | ctl_ev_data.ctl_id = id; | |
1899 | ev_msg.dv[0].data_ptr = &ctl_ev_data; | |
1900 | ev_msg.dv[0].data_length = sizeof(ctl_ev_data); | |
1901 | ||
1902 | ev_msg.dv[1].data_length = 0; | |
1903 | ||
1904 | kev_post_msg(&ev_msg); | |
1905 | } | |
1906 | ||
1907 | static int | |
1908 | ctl_lock(struct socket *so, int refcount, void *lr) | |
1909 | { | |
1910 | void *lr_saved; | |
1911 | ||
1912 | if (lr == NULL) { | |
1913 | lr_saved = __builtin_return_address(0); | |
1914 | } else { | |
1915 | lr_saved = lr; | |
1916 | } | |
1917 | ||
1918 | if (so->so_pcb != NULL) { | |
1919 | lck_mtx_lock(((struct ctl_cb *)so->so_pcb)->mtx); | |
1920 | } else { | |
1921 | panic("ctl_lock: so=%p NO PCB! lr=%p lrh= %s\n", | |
1922 | so, lr_saved, solockhistory_nr(so)); | |
1923 | /* NOTREACHED */ | |
1924 | } | |
1925 | ||
1926 | if (so->so_usecount < 0) { | |
1927 | panic("ctl_lock: so=%p so_pcb=%p lr=%p ref=%x lrh= %s\n", | |
1928 | so, so->so_pcb, lr_saved, so->so_usecount, | |
1929 | solockhistory_nr(so)); | |
1930 | /* NOTREACHED */ | |
1931 | } | |
1932 | ||
1933 | if (refcount) { | |
1934 | so->so_usecount++; | |
1935 | } | |
1936 | ||
1937 | so->lock_lr[so->next_lock_lr] = lr_saved; | |
1938 | so->next_lock_lr = (so->next_lock_lr + 1) % SO_LCKDBG_MAX; | |
1939 | return 0; | |
1940 | } | |
1941 | ||
1942 | static int | |
1943 | ctl_unlock(struct socket *so, int refcount, void *lr) | |
1944 | { | |
1945 | void *lr_saved; | |
1946 | lck_mtx_t *mutex_held; | |
1947 | ||
1948 | if (lr == NULL) { | |
1949 | lr_saved = __builtin_return_address(0); | |
1950 | } else { | |
1951 | lr_saved = lr; | |
1952 | } | |
1953 | ||
1954 | #if (MORE_KCTLLOCK_DEBUG && (DEVELOPMENT || DEBUG)) | |
1955 | printf("ctl_unlock: so=%llx sopcb=%x lock=%llx ref=%u lr=%llx\n", | |
1956 | (uint64_t)VM_KERNEL_ADDRPERM(so), | |
1957 | (uint64_t)VM_KERNEL_ADDRPERM(so->so_pcb, | |
1958 | (uint64_t)VM_KERNEL_ADDRPERM(((struct ctl_cb *)so->so_pcb)->mtx), | |
1959 | so->so_usecount, (uint64_t)VM_KERNEL_ADDRPERM(lr_saved)); | |
1960 | #endif /* (MORE_KCTLLOCK_DEBUG && (DEVELOPMENT || DEBUG)) */ | |
1961 | if (refcount) { | |
1962 | so->so_usecount--; | |
1963 | } | |
1964 | ||
1965 | if (so->so_usecount < 0) { | |
1966 | panic("ctl_unlock: so=%p usecount=%x lrh= %s\n", | |
1967 | so, so->so_usecount, solockhistory_nr(so)); | |
1968 | /* NOTREACHED */ | |
1969 | } | |
1970 | if (so->so_pcb == NULL) { | |
1971 | panic("ctl_unlock: so=%p NO PCB usecount=%x lr=%p lrh= %s\n", | |
1972 | so, so->so_usecount, (void *)lr_saved, | |
1973 | solockhistory_nr(so)); | |
1974 | /* NOTREACHED */ | |
1975 | } | |
1976 | mutex_held = ((struct ctl_cb *)so->so_pcb)->mtx; | |
1977 | ||
1978 | lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED); | |
1979 | so->unlock_lr[so->next_unlock_lr] = lr_saved; | |
1980 | so->next_unlock_lr = (so->next_unlock_lr + 1) % SO_LCKDBG_MAX; | |
1981 | lck_mtx_unlock(mutex_held); | |
1982 | ||
1983 | if (so->so_usecount == 0) { | |
1984 | ctl_sofreelastref(so); | |
1985 | } | |
1986 | ||
1987 | return 0; | |
1988 | } | |
1989 | ||
1990 | static lck_mtx_t * | |
1991 | ctl_getlock(struct socket *so, int flags) | |
1992 | { | |
1993 | #pragma unused(flags) | |
1994 | struct ctl_cb *kcb = (struct ctl_cb *)so->so_pcb; | |
1995 | ||
1996 | if (so->so_pcb) { | |
1997 | if (so->so_usecount < 0) { | |
1998 | panic("ctl_getlock: so=%p usecount=%x lrh= %s\n", | |
1999 | so, so->so_usecount, solockhistory_nr(so)); | |
2000 | } | |
2001 | return kcb->mtx; | |
2002 | } else { | |
2003 | panic("ctl_getlock: so=%p NULL NO so_pcb %s\n", | |
2004 | so, solockhistory_nr(so)); | |
2005 | return so->so_proto->pr_domain->dom_mtx; | |
2006 | } | |
2007 | } | |
2008 | ||
2009 | __private_extern__ int | |
2010 | kctl_reg_list SYSCTL_HANDLER_ARGS | |
2011 | { | |
2012 | #pragma unused(oidp, arg1, arg2) | |
2013 | int error = 0; | |
2014 | int n, i; | |
2015 | struct xsystmgen xsg; | |
2016 | void *buf = NULL; | |
2017 | struct kctl *kctl; | |
2018 | size_t item_size = ROUNDUP64(sizeof(struct xkctl_reg)); | |
2019 | ||
2020 | buf = _MALLOC(item_size, M_TEMP, M_WAITOK | M_ZERO); | |
2021 | if (buf == NULL) { | |
2022 | return ENOMEM; | |
2023 | } | |
2024 | ||
2025 | lck_mtx_lock(ctl_mtx); | |
2026 | ||
2027 | n = kctlstat.kcs_reg_count; | |
2028 | ||
2029 | if (req->oldptr == USER_ADDR_NULL) { | |
2030 | req->oldidx = (n + n / 8) * sizeof(struct xkctl_reg); | |
2031 | goto done; | |
2032 | } | |
2033 | if (req->newptr != USER_ADDR_NULL) { | |
2034 | error = EPERM; | |
2035 | goto done; | |
2036 | } | |
2037 | bzero(&xsg, sizeof(xsg)); | |
2038 | xsg.xg_len = sizeof(xsg); | |
2039 | xsg.xg_count = n; | |
2040 | xsg.xg_gen = kctlstat.kcs_gencnt; | |
2041 | xsg.xg_sogen = so_gencnt; | |
2042 | error = SYSCTL_OUT(req, &xsg, sizeof(xsg)); | |
2043 | if (error) { | |
2044 | goto done; | |
2045 | } | |
2046 | /* | |
2047 | * We are done if there is no pcb | |
2048 | */ | |
2049 | if (n == 0) { | |
2050 | goto done; | |
2051 | } | |
2052 | ||
2053 | i = 0; | |
2054 | for (i = 0, kctl = TAILQ_FIRST(&ctl_head); | |
2055 | i < n && kctl != NULL; | |
2056 | i++, kctl = TAILQ_NEXT(kctl, next)) { | |
2057 | struct xkctl_reg *xkr = (struct xkctl_reg *)buf; | |
2058 | struct ctl_cb *kcb; | |
2059 | u_int32_t pcbcount = 0; | |
2060 | ||
2061 | TAILQ_FOREACH(kcb, &kctl->kcb_head, next) | |
2062 | pcbcount++; | |
2063 | ||
2064 | bzero(buf, item_size); | |
2065 | ||
2066 | xkr->xkr_len = sizeof(struct xkctl_reg); | |
2067 | xkr->xkr_kind = XSO_KCREG; | |
2068 | xkr->xkr_id = kctl->id; | |
2069 | xkr->xkr_reg_unit = kctl->reg_unit; | |
2070 | xkr->xkr_flags = kctl->flags; | |
2071 | xkr->xkr_kctlref = (uint64_t)(kctl->kctlref); | |
2072 | xkr->xkr_recvbufsize = kctl->recvbufsize; | |
2073 | xkr->xkr_sendbufsize = kctl->sendbufsize; | |
2074 | xkr->xkr_lastunit = kctl->lastunit; | |
2075 | xkr->xkr_pcbcount = pcbcount; | |
2076 | xkr->xkr_connect = (uint64_t)VM_KERNEL_UNSLIDE(kctl->connect); | |
2077 | xkr->xkr_disconnect = | |
2078 | (uint64_t)VM_KERNEL_UNSLIDE(kctl->disconnect); | |
2079 | xkr->xkr_send = (uint64_t)VM_KERNEL_UNSLIDE(kctl->send); | |
2080 | xkr->xkr_send_list = | |
2081 | (uint64_t)VM_KERNEL_UNSLIDE(kctl->send_list); | |
2082 | xkr->xkr_setopt = (uint64_t)VM_KERNEL_UNSLIDE(kctl->setopt); | |
2083 | xkr->xkr_getopt = (uint64_t)VM_KERNEL_UNSLIDE(kctl->getopt); | |
2084 | xkr->xkr_rcvd = (uint64_t)VM_KERNEL_UNSLIDE(kctl->rcvd); | |
2085 | strlcpy(xkr->xkr_name, kctl->name, sizeof(xkr->xkr_name)); | |
2086 | ||
2087 | error = SYSCTL_OUT(req, buf, item_size); | |
2088 | } | |
2089 | ||
2090 | if (error == 0) { | |
2091 | /* | |
2092 | * Give the user an updated idea of our state. | |
2093 | * If the generation differs from what we told | |
2094 | * her before, she knows that something happened | |
2095 | * while we were processing this request, and it | |
2096 | * might be necessary to retry. | |
2097 | */ | |
2098 | bzero(&xsg, sizeof(xsg)); | |
2099 | xsg.xg_len = sizeof(xsg); | |
2100 | xsg.xg_count = n; | |
2101 | xsg.xg_gen = kctlstat.kcs_gencnt; | |
2102 | xsg.xg_sogen = so_gencnt; | |
2103 | error = SYSCTL_OUT(req, &xsg, sizeof(xsg)); | |
2104 | if (error) { | |
2105 | goto done; | |
2106 | } | |
2107 | } | |
2108 | ||
2109 | done: | |
2110 | lck_mtx_unlock(ctl_mtx); | |
2111 | ||
2112 | if (buf != NULL) { | |
2113 | FREE(buf, M_TEMP); | |
2114 | } | |
2115 | ||
2116 | return error; | |
2117 | } | |
2118 | ||
2119 | __private_extern__ int | |
2120 | kctl_pcblist SYSCTL_HANDLER_ARGS | |
2121 | { | |
2122 | #pragma unused(oidp, arg1, arg2) | |
2123 | int error = 0; | |
2124 | int n, i; | |
2125 | struct xsystmgen xsg; | |
2126 | void *buf = NULL; | |
2127 | struct kctl *kctl; | |
2128 | size_t item_size = ROUNDUP64(sizeof(struct xkctlpcb)) + | |
2129 | ROUNDUP64(sizeof(struct xsocket_n)) + | |
2130 | 2 * ROUNDUP64(sizeof(struct xsockbuf_n)) + | |
2131 | ROUNDUP64(sizeof(struct xsockstat_n)); | |
2132 | ||
2133 | buf = _MALLOC(item_size, M_TEMP, M_WAITOK | M_ZERO); | |
2134 | if (buf == NULL) { | |
2135 | return ENOMEM; | |
2136 | } | |
2137 | ||
2138 | lck_mtx_lock(ctl_mtx); | |
2139 | ||
2140 | n = kctlstat.kcs_pcbcount; | |
2141 | ||
2142 | if (req->oldptr == USER_ADDR_NULL) { | |
2143 | req->oldidx = (n + n / 8) * item_size; | |
2144 | goto done; | |
2145 | } | |
2146 | if (req->newptr != USER_ADDR_NULL) { | |
2147 | error = EPERM; | |
2148 | goto done; | |
2149 | } | |
2150 | bzero(&xsg, sizeof(xsg)); | |
2151 | xsg.xg_len = sizeof(xsg); | |
2152 | xsg.xg_count = n; | |
2153 | xsg.xg_gen = kctlstat.kcs_gencnt; | |
2154 | xsg.xg_sogen = so_gencnt; | |
2155 | error = SYSCTL_OUT(req, &xsg, sizeof(xsg)); | |
2156 | if (error) { | |
2157 | goto done; | |
2158 | } | |
2159 | /* | |
2160 | * We are done if there is no pcb | |
2161 | */ | |
2162 | if (n == 0) { | |
2163 | goto done; | |
2164 | } | |
2165 | ||
2166 | i = 0; | |
2167 | for (i = 0, kctl = TAILQ_FIRST(&ctl_head); | |
2168 | i < n && kctl != NULL; | |
2169 | kctl = TAILQ_NEXT(kctl, next)) { | |
2170 | struct ctl_cb *kcb; | |
2171 | ||
2172 | for (kcb = TAILQ_FIRST(&kctl->kcb_head); | |
2173 | i < n && kcb != NULL; | |
2174 | i++, kcb = TAILQ_NEXT(kcb, next)) { | |
2175 | struct xkctlpcb *xk = (struct xkctlpcb *)buf; | |
2176 | struct xsocket_n *xso = (struct xsocket_n *) | |
2177 | ADVANCE64(xk, sizeof(*xk)); | |
2178 | struct xsockbuf_n *xsbrcv = (struct xsockbuf_n *) | |
2179 | ADVANCE64(xso, sizeof(*xso)); | |
2180 | struct xsockbuf_n *xsbsnd = (struct xsockbuf_n *) | |
2181 | ADVANCE64(xsbrcv, sizeof(*xsbrcv)); | |
2182 | struct xsockstat_n *xsostats = (struct xsockstat_n *) | |
2183 | ADVANCE64(xsbsnd, sizeof(*xsbsnd)); | |
2184 | ||
2185 | bzero(buf, item_size); | |
2186 | ||
2187 | xk->xkp_len = sizeof(struct xkctlpcb); | |
2188 | xk->xkp_kind = XSO_KCB; | |
2189 | xk->xkp_unit = kcb->sac.sc_unit; | |
2190 | xk->xkp_kctpcb = (uint64_t)VM_KERNEL_ADDRPERM(kcb); | |
2191 | xk->xkp_kctlref = (uint64_t)VM_KERNEL_ADDRPERM(kctl); | |
2192 | xk->xkp_kctlid = kctl->id; | |
2193 | strlcpy(xk->xkp_kctlname, kctl->name, | |
2194 | sizeof(xk->xkp_kctlname)); | |
2195 | ||
2196 | sotoxsocket_n(kcb->so, xso); | |
2197 | sbtoxsockbuf_n(kcb->so ? | |
2198 | &kcb->so->so_rcv : NULL, xsbrcv); | |
2199 | sbtoxsockbuf_n(kcb->so ? | |
2200 | &kcb->so->so_snd : NULL, xsbsnd); | |
2201 | sbtoxsockstat_n(kcb->so, xsostats); | |
2202 | ||
2203 | error = SYSCTL_OUT(req, buf, item_size); | |
2204 | } | |
2205 | } | |
2206 | ||
2207 | if (error == 0) { | |
2208 | /* | |
2209 | * Give the user an updated idea of our state. | |
2210 | * If the generation differs from what we told | |
2211 | * her before, she knows that something happened | |
2212 | * while we were processing this request, and it | |
2213 | * might be necessary to retry. | |
2214 | */ | |
2215 | bzero(&xsg, sizeof(xsg)); | |
2216 | xsg.xg_len = sizeof(xsg); | |
2217 | xsg.xg_count = n; | |
2218 | xsg.xg_gen = kctlstat.kcs_gencnt; | |
2219 | xsg.xg_sogen = so_gencnt; | |
2220 | error = SYSCTL_OUT(req, &xsg, sizeof(xsg)); | |
2221 | if (error) { | |
2222 | goto done; | |
2223 | } | |
2224 | } | |
2225 | ||
2226 | done: | |
2227 | lck_mtx_unlock(ctl_mtx); | |
2228 | ||
2229 | return error; | |
2230 | } | |
2231 | ||
2232 | int | |
2233 | kctl_getstat SYSCTL_HANDLER_ARGS | |
2234 | { | |
2235 | #pragma unused(oidp, arg1, arg2) | |
2236 | int error = 0; | |
2237 | ||
2238 | lck_mtx_lock(ctl_mtx); | |
2239 | ||
2240 | if (req->newptr != USER_ADDR_NULL) { | |
2241 | error = EPERM; | |
2242 | goto done; | |
2243 | } | |
2244 | if (req->oldptr == USER_ADDR_NULL) { | |
2245 | req->oldidx = sizeof(struct kctlstat); | |
2246 | goto done; | |
2247 | } | |
2248 | ||
2249 | error = SYSCTL_OUT(req, &kctlstat, | |
2250 | MIN(sizeof(struct kctlstat), req->oldlen)); | |
2251 | done: | |
2252 | lck_mtx_unlock(ctl_mtx); | |
2253 | return error; | |
2254 | } | |
2255 | ||
2256 | void | |
2257 | kctl_fill_socketinfo(struct socket *so, struct socket_info *si) | |
2258 | { | |
2259 | struct ctl_cb *kcb = (struct ctl_cb *)so->so_pcb; | |
2260 | struct kern_ctl_info *kcsi = | |
2261 | &si->soi_proto.pri_kern_ctl; | |
2262 | struct kctl *kctl = kcb->kctl; | |
2263 | ||
2264 | si->soi_kind = SOCKINFO_KERN_CTL; | |
2265 | ||
2266 | if (kctl == 0) { | |
2267 | return; | |
2268 | } | |
2269 | ||
2270 | kcsi->kcsi_id = kctl->id; | |
2271 | kcsi->kcsi_reg_unit = kctl->reg_unit; | |
2272 | kcsi->kcsi_flags = kctl->flags; | |
2273 | kcsi->kcsi_recvbufsize = kctl->recvbufsize; | |
2274 | kcsi->kcsi_sendbufsize = kctl->sendbufsize; | |
2275 | kcsi->kcsi_unit = kcb->sac.sc_unit; | |
2276 | strlcpy(kcsi->kcsi_name, kctl->name, MAX_KCTL_NAME); | |
2277 | } |