]> git.saurik.com Git - apple/xnu.git/blame - osfmk/i386/rtclock.c
xnu-6153.141.1.tar.gz
[apple/xnu.git] / osfmk / i386 / rtclock.c
CommitLineData
1c79356b 1/*
39236c6e 2 * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
1c79356b 3 *
2d21ac55 4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
0a7de745 5 *
2d21ac55
A
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
0a7de745 14 *
2d21ac55
A
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
0a7de745 17 *
2d21ac55
A
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
8f6c56a5
A
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
2d21ac55
A
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
0a7de745 25 *
2d21ac55 26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
1c79356b
A
27 */
28/*
29 * @OSF_COPYRIGHT@
30 */
31
32/*
33 * File: i386/rtclock.c
34 * Purpose: Routines for handling the machine dependent
91447636
A
35 * real-time clock. Historically, this clock is
36 * generated by the Intel 8254 Programmable Interval
37 * Timer, but local apic timers are now used for
38 * this purpose with the master time reference being
39 * the cpu clock counted by the timestamp MSR.
1c79356b
A
40 */
41
55e303ae
A
42
43#include <mach/mach_types.h>
44
1c79356b 45#include <kern/cpu_data.h>
91447636 46#include <kern/cpu_number.h>
1c79356b 47#include <kern/clock.h>
55e303ae 48#include <kern/host_notify.h>
1c79356b
A
49#include <kern/macro_help.h>
50#include <kern/misc_protos.h>
51#include <kern/spl.h>
91447636 52#include <kern/assert.h>
39236c6e 53#include <kern/timer_queue.h>
1c79356b
A
54#include <mach/vm_prot.h>
55#include <vm/pmap.h>
0a7de745 56#include <vm/vm_kern.h> /* for kernel_map */
0c530ab8 57#include <architecture/i386/pio.h>
55e303ae 58#include <i386/machine_cpu.h>
91447636 59#include <i386/cpuid.h>
91447636 60#include <i386/cpu_threads.h>
b0d623f7 61#include <i386/mp.h>
91447636 62#include <i386/machine_routines.h>
6d2010ae 63#include <i386/pal_routines.h>
b0d623f7
A
64#include <i386/proc_reg.h>
65#include <i386/misc_protos.h>
55e303ae 66#include <pexpert/pexpert.h>
91447636
A
67#include <machine/limits.h>
68#include <machine/commpage.h>
69#include <sys/kdebug.h>
0c530ab8 70#include <i386/tsc.h>
6d2010ae 71#include <i386/rtclock_protos.h>
0a7de745 72#define UI_CPUFREQ_ROUNDING_FACTOR 10000000
1c79356b 73
0a7de745 74int rtclock_init(void);
6601e61a 75
0a7de745 76uint64_t tsc_rebase_abs_time = 0;
b0d623f7 77
0a7de745
A
78static void rtc_set_timescale(uint64_t cycles);
79static uint64_t rtc_export_speed(uint64_t cycles);
8f6c56a5 80
060df5ea
A
81void
82rtc_timer_start(void)
83{
84 /*
85 * Force a complete re-evaluation of timer deadlines.
86 */
39236c6e
A
87 x86_lcpu()->rtcDeadline = EndOfAllTime;
88 timer_resync_deadlines();
060df5ea
A
89}
90
b0d623f7
A
91static inline uint32_t
92_absolutetime_to_microtime(uint64_t abstime, clock_sec_t *secs, clock_usec_t *microsecs)
93{
94 uint32_t remain;
b0d623f7
A
95 *secs = abstime / (uint64_t)NSEC_PER_SEC;
96 remain = (uint32_t)(abstime % (uint64_t)NSEC_PER_SEC);
97 *microsecs = remain / NSEC_PER_USEC;
b0d623f7
A
98 return remain;
99}
100
101static inline void
102_absolutetime_to_nanotime(uint64_t abstime, clock_sec_t *secs, clock_usec_t *nanosecs)
103{
b0d623f7
A
104 *secs = abstime / (uint64_t)NSEC_PER_SEC;
105 *nanosecs = (clock_usec_t)(abstime % (uint64_t)NSEC_PER_SEC);
b0d623f7
A
106}
107
91447636
A
108/*
109 * Nanotime/mach_absolutime_time
110 * -----------------------------
0c530ab8
A
111 * The timestamp counter (TSC) - which counts cpu clock cycles and can be read
112 * efficiently by the kernel and in userspace - is the reference for all timing.
113 * The cpu clock rate is platform-dependent and may stop or be reset when the
114 * processor is napped/slept. As a result, nanotime is the software abstraction
115 * used to maintain a monotonic clock, adjusted from an outside reference as needed.
91447636
A
116 *
117 * The kernel maintains nanotime information recording:
0a7de745 118 * - the ratio of tsc to nanoseconds
91447636
A
119 * with this ratio expressed as a 32-bit scale and shift
120 * (power of 2 divider);
0c530ab8 121 * - { tsc_base, ns_base } pair of corresponding timestamps.
6601e61a 122 *
0a7de745 123 * The tuple {tsc_base, ns_base, scale, shift} is exported in the commpage
0c530ab8 124 * for the userspace nanotime routine to read.
6601e61a 125 *
0c530ab8
A
126 * All of the routines which update the nanotime data are non-reentrant. This must
127 * be guaranteed by the caller.
91447636
A
128 */
129static inline void
6d2010ae 130rtc_nanotime_set_commpage(pal_rtc_nanotime_t *rntp)
91447636 131{
0c530ab8
A
132 commpage_set_nanotime(rntp->tsc_base, rntp->ns_base, rntp->scale, rntp->shift);
133}
6601e61a 134
0c530ab8
A
135/*
136 * rtc_nanotime_init:
137 *
138 * Intialize the nanotime info from the base time.
139 */
140static inline void
6d2010ae 141_rtc_nanotime_init(pal_rtc_nanotime_t *rntp, uint64_t base)
0c530ab8 142{
0a7de745 143 uint64_t tsc = rdtsc64();
21362eb3 144
6d2010ae 145 _pal_rtc_nanotime_store(tsc, base, rntp->scale, rntp->shift, rntp);
91447636
A
146}
147
39037602 148void
0c530ab8 149rtc_nanotime_init(uint64_t base)
91447636 150{
6d2010ae
A
151 _rtc_nanotime_init(&pal_rtc_nanotime_info, base);
152 rtc_nanotime_set_commpage(&pal_rtc_nanotime_info);
91447636
A
153}
154
0c530ab8
A
155/*
156 * rtc_nanotime_init_commpage:
157 *
158 * Call back from the commpage initialization to
159 * cause the commpage data to be filled in once the
160 * commpages have been created.
161 */
162void
163rtc_nanotime_init_commpage(void)
91447636 164{
0a7de745 165 spl_t s = splclock();
0c530ab8 166
6d2010ae 167 rtc_nanotime_set_commpage(&pal_rtc_nanotime_info);
0c530ab8 168 splx(s);
91447636
A
169}
170
0c530ab8
A
171/*
172 * rtc_nanotime_read:
173 *
174 * Returns the current nanotime value, accessable from any
175 * context.
176 */
2d21ac55 177static inline uint64_t
91447636
A
178rtc_nanotime_read(void)
179{
0a7de745 180 return _rtc_nanotime_read(&pal_rtc_nanotime_info);
91447636
A
181}
182
91447636 183/*
0c530ab8
A
184 * rtc_clock_napped:
185 *
4a3eedf9
A
186 * Invoked from power management when we exit from a low C-State (>= C4)
187 * and the TSC has stopped counting. The nanotime data is updated according
188 * to the provided value which represents the new value for nanotime.
91447636 189 */
0c530ab8 190void
4a3eedf9 191rtc_clock_napped(uint64_t base, uint64_t tsc_base)
0c530ab8 192{
0a7de745
A
193 pal_rtc_nanotime_t *rntp = &pal_rtc_nanotime_info;
194 uint64_t oldnsecs;
195 uint64_t newnsecs;
196 uint64_t tsc;
2d21ac55
A
197
198 assert(!ml_get_interrupts_enabled());
4a3eedf9 199 tsc = rdtsc64();
bd504ef0
A
200 oldnsecs = rntp->ns_base + _rtc_tsc_to_nanoseconds(tsc - rntp->tsc_base, rntp);
201 newnsecs = base + _rtc_tsc_to_nanoseconds(tsc - tsc_base, rntp);
0a7de745 202
4a3eedf9
A
203 /*
204 * Only update the base values if time using the new base values
205 * is later than the time using the old base values.
206 */
207 if (oldnsecs < newnsecs) {
0a7de745
A
208 _pal_rtc_nanotime_store(tsc_base, base, rntp->scale, rntp->shift, rntp);
209 rtc_nanotime_set_commpage(rntp);
4a3eedf9 210 }
0c530ab8
A
211}
212
0b4c1975
A
213/*
214 * Invoked from power management to correct the SFLM TSC entry drift problem:
6d2010ae
A
215 * a small delta is added to the tsc_base. This is equivalent to nudgin time
216 * backwards. We require this to be on the order of a TSC quantum which won't
217 * cause callers of mach_absolute_time() to see time going backwards!
0b4c1975
A
218 */
219void
220rtc_clock_adjust(uint64_t tsc_base_delta)
221{
0a7de745 222 pal_rtc_nanotime_t *rntp = &pal_rtc_nanotime_info;
0b4c1975 223
0a7de745
A
224 assert(!ml_get_interrupts_enabled());
225 assert(tsc_base_delta < 100ULL); /* i.e. it's small */
226 _rtc_nanotime_adjust(tsc_base_delta, rntp);
227 rtc_nanotime_set_commpage(rntp);
0b4c1975
A
228}
229
1c79356b 230/*
0c530ab8
A
231 * rtc_sleep_wakeup:
232 *
6d2010ae 233 * Invoked from power management when we have awoken from a sleep (S3)
bd504ef0
A
234 * and the TSC has been reset, or from Deep Idle (S0) sleep when the TSC
235 * has progressed. The nanotime data is updated based on the passed-in value.
0c530ab8
A
236 *
237 * The caller must guarantee non-reentrancy.
91447636
A
238 */
239void
0c530ab8 240rtc_sleep_wakeup(
0a7de745 241 uint64_t base)
91447636 242{
0a7de745 243 /* Set fixed configuration for lapic timers */
fe8ab488 244 rtc_timer->rtc_config();
060df5ea 245
91447636
A
246 /*
247 * Reset nanotime.
248 * The timestamp counter will have been reset
249 * but nanotime (uptime) marches onward.
91447636 250 */
0c530ab8 251 rtc_nanotime_init(base);
91447636
A
252}
253
39037602 254void
0a7de745
A
255rtc_decrementer_configure(void)
256{
39037602
A
257 rtc_timer->rtc_config();
258}
fe8ab488
A
259/*
260 * rtclock_early_init() is called very early at boot to
261 * establish mach_absolute_time() and set it to zero.
262 */
263void
264rtclock_early_init(void)
265{
266 assert(tscFreq);
267 rtc_set_timescale(tscFreq);
268}
269
91447636
A
270/*
271 * Initialize the real-time clock device.
272 * In addition, various variables used to support the clock are initialized.
1c79356b
A
273 */
274int
0c530ab8 275rtclock_init(void)
1c79356b 276{
0a7de745 277 uint64_t cycles;
91447636 278
0c530ab8
A
279 assert(!ml_get_interrupts_enabled());
280
91447636 281 if (cpu_number() == master_cpu) {
0c530ab8 282 assert(tscFreq);
0c530ab8 283
91447636 284 /*
0c530ab8 285 * Adjust and set the exported cpu speed.
91447636 286 */
0c530ab8 287 cycles = rtc_export_speed(tscFreq);
91447636
A
288
289 /*
290 * Set min/max to actual.
291 * ACPI may update these later if speed-stepping is detected.
292 */
0c530ab8
A
293 gPEClockFrequencyInfo.cpu_frequency_min_hz = cycles;
294 gPEClockFrequencyInfo.cpu_frequency_max_hz = cycles;
91447636 295
060df5ea 296 rtc_timer_init();
91447636 297 clock_timebase_init();
0c530ab8 298 ml_init_lock_timeout();
bd504ef0 299 ml_init_delay_spin_threshold(10);
1c79356b 300 }
91447636 301
0a7de745 302 /* Set fixed configuration for lapic timers */
fe8ab488 303 rtc_timer->rtc_config();
060df5ea 304 rtc_timer_start();
91447636 305
0a7de745 306 return 1;
1c79356b
A
307}
308
0a7de745 309// utility routine
0c530ab8 310// Code to calculate how many processor cycles are in a second...
1c79356b 311
0c530ab8
A
312static void
313rtc_set_timescale(uint64_t cycles)
1c79356b 314{
0a7de745 315 pal_rtc_nanotime_t *rntp = &pal_rtc_nanotime_info;
bd504ef0 316 uint32_t shift = 0;
0a7de745 317
bd504ef0 318 /* the "scale" factor will overflow unless cycles>SLOW_TSC_THRESHOLD */
0a7de745
A
319
320 while (cycles <= SLOW_TSC_THRESHOLD) {
bd504ef0
A
321 shift++;
322 cycles <<= 1;
323 }
0a7de745 324
b0d623f7 325 rntp->scale = (uint32_t)(((uint64_t)NSEC_PER_SEC << 32) / cycles);
2d21ac55 326
bd504ef0 327 rntp->shift = shift;
1c79356b 328
15129b1c
A
329 /*
330 * On some platforms, the TSC is not reset at warm boot. But the
331 * rebase time must be relative to the current boot so we can't use
332 * mach_absolute_time(). Instead, we convert the TSC delta since boot
333 * to nanoseconds.
334 */
0a7de745 335 if (tsc_rebase_abs_time == 0) {
15129b1c 336 tsc_rebase_abs_time = _rtc_tsc_to_nanoseconds(
0a7de745
A
337 rdtsc64() - tsc_at_boot, rntp);
338 }
b0d623f7 339
0c530ab8 340 rtc_nanotime_init(0);
1c79356b
A
341}
342
91447636 343static uint64_t
0c530ab8 344rtc_export_speed(uint64_t cyc_per_sec)
9bccf70c 345{
0a7de745
A
346 pal_rtc_nanotime_t *rntp = &pal_rtc_nanotime_info;
347 uint64_t cycles;
1c79356b 348
0a7de745 349 if (rntp->shift != 0) {
fe8ab488 350 printf("Slow TSC, rtc_nanotime.shift == %d\n", rntp->shift);
0a7de745
A
351 }
352
0c530ab8 353 /* Round: */
0a7de745
A
354 cycles = ((cyc_per_sec + (UI_CPUFREQ_ROUNDING_FACTOR / 2))
355 / UI_CPUFREQ_ROUNDING_FACTOR)
356 * UI_CPUFREQ_ROUNDING_FACTOR;
9bccf70c 357
91447636
A
358 /*
359 * Set current measured speed.
360 */
0a7de745
A
361 if (cycles >= 0x100000000ULL) {
362 gPEClockFrequencyInfo.cpu_clock_rate_hz = 0xFFFFFFFFUL;
363 } else {
364 gPEClockFrequencyInfo.cpu_clock_rate_hz = (unsigned long)cycles;
365 }
366 gPEClockFrequencyInfo.cpu_frequency_hz = cycles;
55e303ae 367
0c530ab8 368 kprintf("[RTCLOCK] frequency %llu (%llu)\n", cycles, cyc_per_sec);
0a7de745 369 return cycles;
9bccf70c 370}
1c79356b 371
55e303ae
A
372void
373clock_get_system_microtime(
0a7de745
A
374 clock_sec_t *secs,
375 clock_usec_t *microsecs)
9bccf70c 376{
0a7de745 377 uint64_t now = rtc_nanotime_read();
6601e61a 378
b0d623f7 379 _absolutetime_to_microtime(now, secs, microsecs);
1c79356b
A
380}
381
55e303ae
A
382void
383clock_get_system_nanotime(
0a7de745
A
384 clock_sec_t *secs,
385 clock_nsec_t *nanosecs)
55e303ae 386{
0a7de745 387 uint64_t now = rtc_nanotime_read();
8f6c56a5 388
b0d623f7 389 _absolutetime_to_nanotime(now, secs, nanosecs);
6601e61a
A
390}
391
392void
5ba3f43e 393clock_gettimeofday_set_commpage(uint64_t abstime, uint64_t sec, uint64_t frac, uint64_t scale, uint64_t tick_per_sec)
0c530ab8 394{
5ba3f43e 395 commpage_set_timestamp(abstime, sec, frac, scale, tick_per_sec);
91447636
A
396}
397
1c79356b
A
398void
399clock_timebase_info(
0a7de745 400 mach_timebase_info_t info)
1c79356b 401{
91447636 402 info->numer = info->denom = 1;
0a7de745 403}
1c79356b 404
1c79356b 405/*
91447636 406 * Real-time clock device interrupt.
1c79356b 407 */
1c79356b 408void
0c530ab8 409rtclock_intr(
0a7de745 410 x86_saved_state_t *tregs)
1c79356b 411{
0a7de745
A
412 uint64_t rip;
413 boolean_t user_mode = FALSE;
91447636
A
414
415 assert(get_preemption_level() > 0);
416 assert(!ml_get_interrupts_enabled());
417
0c530ab8 418 if (is_saved_state64(tregs) == TRUE) {
0a7de745
A
419 x86_saved_state64_t *regs;
420
0c530ab8 421 regs = saved_state64(tregs);
5d5c5d0d 422
0a7de745 423 if (regs->isf.cs & 0x03) {
b0d623f7 424 user_mode = TRUE;
0a7de745 425 }
0c530ab8
A
426 rip = regs->isf.rip;
427 } else {
0a7de745 428 x86_saved_state32_t *regs;
8ad349bb 429
0c530ab8 430 regs = saved_state32(tregs);
4452a7af 431
0a7de745
A
432 if (regs->cs & 0x03) {
433 user_mode = TRUE;
434 }
0c530ab8
A
435 rip = regs->eip;
436 }
89b3af67 437
0c530ab8 438 /* call the generic etimer */
39236c6e 439 timer_intr(user_mode, rip);
5d5c5d0d
A
440}
441
060df5ea 442
0c530ab8 443/*
0a7de745 444 * Request timer pop from the hardware
0c530ab8
A
445 */
446
060df5ea 447uint64_t
fe8ab488 448setPop(uint64_t time)
5d5c5d0d 449{
0a7de745
A
450 uint64_t now;
451 uint64_t pop;
060df5ea
A
452
453 /* 0 and EndOfAllTime are special-cases for "clear the timer" */
0a7de745 454 if (time == 0 || time == EndOfAllTime) {
060df5ea
A
455 time = EndOfAllTime;
456 now = 0;
fe8ab488 457 pop = rtc_timer->rtc_set(0, 0);
060df5ea 458 } else {
0a7de745 459 now = rtc_nanotime_read(); /* The time in nanoseconds */
fe8ab488 460 pop = rtc_timer->rtc_set(time, now);
060df5ea 461 }
4452a7af 462
6d2010ae 463 /* Record requested and actual deadlines set */
060df5ea 464 x86_lcpu()->rtcDeadline = time;
0a7de745 465 x86_lcpu()->rtcPop = pop;
4452a7af 466
060df5ea 467 return pop - now;
89b3af67
A
468}
469
6601e61a
A
470uint64_t
471mach_absolute_time(void)
4452a7af 472{
0c530ab8
A
473 return rtc_nanotime_read();
474}
475
3e170ce0
A
476uint64_t
477mach_approximate_time(void)
478{
479 return rtc_nanotime_read();
480}
481
0c530ab8
A
482void
483clock_interval_to_absolutetime_interval(
0a7de745
A
484 uint32_t interval,
485 uint32_t scale_factor,
486 uint64_t *result)
0c530ab8
A
487{
488 *result = (uint64_t)interval * scale_factor;
91447636
A
489}
490
491void
492absolutetime_to_microtime(
0a7de745
A
493 uint64_t abstime,
494 clock_sec_t *secs,
495 clock_usec_t *microsecs)
91447636 496{
b0d623f7 497 _absolutetime_to_microtime(abstime, secs, microsecs);
1c79356b
A
498}
499
6601e61a 500void
0c530ab8 501nanotime_to_absolutetime(
0a7de745
A
502 clock_sec_t secs,
503 clock_nsec_t nanosecs,
504 uint64_t *result)
1c79356b 505{
0c530ab8 506 *result = ((uint64_t)secs * NSEC_PER_SEC) + nanosecs;
1c79356b
A
507}
508
509void
510absolutetime_to_nanoseconds(
0a7de745
A
511 uint64_t abstime,
512 uint64_t *result)
1c79356b 513{
0b4e3aa0 514 *result = abstime;
1c79356b
A
515}
516
517void
518nanoseconds_to_absolutetime(
0a7de745
A
519 uint64_t nanoseconds,
520 uint64_t *result)
1c79356b 521{
0b4e3aa0 522 *result = nanoseconds;
1c79356b
A
523}
524
55e303ae 525void
91447636 526machine_delay_until(
39236c6e 527 uint64_t interval,
0a7de745 528 uint64_t deadline)
55e303ae 529{
39236c6e
A
530 (void)interval;
531 while (mach_absolute_time() < deadline) {
532 cpu_pause();
0a7de745 533 }
55e303ae 534}