]>
Commit | Line | Data |
---|---|---|
5ba3f43e A |
1 | /* |
2 | * Copyright (c) 2011-2016 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | #include <string.h> | |
29 | #include <mach_assert.h> | |
30 | #include <mach_ldebug.h> | |
31 | ||
32 | #include <mach/shared_region.h> | |
33 | #include <mach/vm_param.h> | |
34 | #include <mach/vm_prot.h> | |
35 | #include <mach/vm_map.h> | |
36 | #include <mach/machine/vm_param.h> | |
37 | #include <mach/machine/vm_types.h> | |
38 | ||
39 | #include <mach/boolean.h> | |
40 | #include <kern/thread.h> | |
41 | #include <kern/sched.h> | |
42 | #include <kern/zalloc.h> | |
43 | #include <kern/kalloc.h> | |
44 | #include <kern/ledger.h> | |
45 | #include <kern/misc_protos.h> | |
46 | #include <kern/spl.h> | |
47 | #include <kern/xpr.h> | |
48 | ||
49 | #include <vm/pmap.h> | |
50 | #include <vm/vm_map.h> | |
51 | #include <vm/vm_kern.h> | |
52 | #include <vm/vm_protos.h> | |
53 | #include <vm/vm_object.h> | |
54 | #include <vm/vm_page.h> | |
55 | #include <vm/vm_pageout.h> | |
56 | #include <vm/cpm.h> | |
57 | ||
58 | #include <libkern/section_keywords.h> | |
59 | ||
60 | #include <machine/atomic.h> | |
61 | #include <machine/thread.h> | |
62 | #include <machine/lowglobals.h> | |
63 | ||
64 | #include <arm/caches_internal.h> | |
65 | #include <arm/cpu_data.h> | |
66 | #include <arm/cpu_data_internal.h> | |
67 | #include <arm/cpu_capabilities.h> | |
68 | #include <arm/cpu_number.h> | |
69 | #include <arm/machine_cpu.h> | |
70 | #include <arm/misc_protos.h> | |
71 | #include <arm/trap.h> | |
72 | ||
73 | #include <libkern/section_keywords.h> | |
74 | ||
75 | #if (__ARM_VMSA__ > 7) | |
76 | #include <arm64/proc_reg.h> | |
77 | #include <pexpert/arm64/boot.h> | |
78 | #if CONFIG_PGTRACE | |
79 | #include <stdint.h> | |
80 | #include <arm64/pgtrace.h> | |
81 | #if CONFIG_PGTRACE_NONKEXT | |
82 | #include <arm64/pgtrace_decoder.h> | |
83 | #endif // CONFIG_PGTRACE_NONKEXT | |
84 | #endif | |
85 | #endif | |
86 | ||
87 | #include <pexpert/device_tree.h> | |
88 | ||
89 | #include <san/kasan.h> | |
90 | ||
5c9f4661 A |
91 | #if MACH_ASSERT |
92 | int pmap_stats_assert = 1; | |
93 | #define PMAP_STATS_ASSERTF(cond, pmap, fmt, ...) \ | |
94 | MACRO_BEGIN \ | |
95 | if (pmap_stats_assert && (pmap)->pmap_stats_assert) \ | |
96 | assertf(cond, fmt, ##__VA_ARGS__); \ | |
97 | MACRO_END | |
98 | #else /* MACH_ASSERT */ | |
99 | #define PMAP_STATS_ASSERTF(cond, pmap, fmt, ...) | |
100 | #endif /* MACH_ASSERT */ | |
101 | ||
5ba3f43e A |
102 | #if DEVELOPMENT || DEBUG |
103 | #define PMAP_FOOTPRINT_SUSPENDED(pmap) ((pmap)->footprint_suspended) | |
104 | #else /* DEVELOPMENT || DEBUG */ | |
105 | #define PMAP_FOOTPRINT_SUSPENDED(pmap) (FALSE) | |
106 | #endif /* DEVELOPMENT || DEBUG */ | |
107 | ||
108 | ||
109 | ||
110 | #if DEVELOPMENT || DEBUG | |
111 | int panic_on_unsigned_execute = 0; | |
112 | #endif /* DEVELOPMENT || DEBUG */ | |
113 | ||
114 | ||
115 | /* Virtual memory region for early allocation */ | |
116 | #if (__ARM_VMSA__ == 7) | |
117 | #define VREGION1_START (VM_HIGH_KERNEL_WINDOW & ~ARM_TT_L1_PT_OFFMASK) | |
118 | #else | |
119 | #define VREGION1_HIGH_WINDOW (PE_EARLY_BOOT_VA) | |
120 | #define VREGION1_START ((VM_MAX_KERNEL_ADDRESS & CPUWINDOWS_BASE_MASK) - VREGION1_HIGH_WINDOW) | |
121 | #endif | |
122 | #define VREGION1_SIZE (trunc_page(VM_MAX_KERNEL_ADDRESS - (VREGION1_START))) | |
123 | ||
124 | extern unsigned int not_in_kdp; | |
125 | ||
126 | extern vm_offset_t first_avail; | |
127 | ||
128 | extern pmap_paddr_t avail_start; | |
129 | extern pmap_paddr_t avail_end; | |
130 | ||
131 | extern vm_offset_t virtual_space_start; /* Next available kernel VA */ | |
132 | extern vm_offset_t virtual_space_end; /* End of kernel address space */ | |
133 | ||
134 | extern int hard_maxproc; | |
135 | ||
136 | #if (__ARM_VMSA__ > 7) | |
137 | /* The number of address bits one TTBR can cover. */ | |
138 | #define PGTABLE_ADDR_BITS (64ULL - T0SZ_BOOT) | |
139 | ||
140 | /* | |
141 | * The bounds on our TTBRs. These are for sanity checking that | |
142 | * an address is accessible by a TTBR before we attempt to map it. | |
143 | */ | |
144 | #define ARM64_TTBR0_MIN_ADDR (0ULL) | |
145 | #define ARM64_TTBR0_MAX_ADDR (0ULL + (1ULL << PGTABLE_ADDR_BITS) - 1) | |
146 | #define ARM64_TTBR1_MIN_ADDR (0ULL - (1ULL << PGTABLE_ADDR_BITS)) | |
147 | #define ARM64_TTBR1_MAX_ADDR (~0ULL) | |
148 | ||
149 | /* The level of the root of a page table. */ | |
150 | const uint64_t arm64_root_pgtable_level = (3 - ((PGTABLE_ADDR_BITS - 1 - ARM_PGSHIFT) / (ARM_PGSHIFT - TTE_SHIFT))); | |
151 | ||
152 | /* The number of entries in the root TT of a page table. */ | |
153 | const uint64_t arm64_root_pgtable_num_ttes = (2 << ((PGTABLE_ADDR_BITS - 1 - ARM_PGSHIFT) % (ARM_PGSHIFT - TTE_SHIFT))); | |
154 | #else | |
155 | const uint64_t arm64_root_pgtable_level = 0; | |
156 | const uint64_t arm64_root_pgtable_num_ttes = 0; | |
157 | #endif | |
158 | ||
159 | struct pmap kernel_pmap_store MARK_AS_PMAP_DATA; | |
160 | SECURITY_READ_ONLY_LATE(pmap_t) kernel_pmap = &kernel_pmap_store; | |
161 | ||
162 | struct vm_object pmap_object_store __attribute__((aligned(VM_PACKED_POINTER_ALIGNMENT))); /* store pt pages */ | |
163 | vm_object_t pmap_object = &pmap_object_store; | |
164 | ||
165 | static struct zone *pmap_zone; /* zone of pmap structures */ | |
166 | ||
167 | decl_simple_lock_data(, pmaps_lock MARK_AS_PMAP_DATA) | |
168 | unsigned int pmap_stamp MARK_AS_PMAP_DATA; | |
169 | queue_head_t map_pmap_list MARK_AS_PMAP_DATA; | |
170 | ||
171 | queue_head_t tt_pmap_list MARK_AS_PMAP_DATA; | |
172 | unsigned int tt_pmap_count MARK_AS_PMAP_DATA; | |
173 | unsigned int tt_pmap_max MARK_AS_PMAP_DATA; | |
174 | ||
175 | decl_simple_lock_data(, pt_pages_lock MARK_AS_PMAP_DATA) | |
176 | queue_head_t pt_page_list MARK_AS_PMAP_DATA; /* pt page ptd entries list */ | |
177 | ||
178 | decl_simple_lock_data(, pmap_pages_lock MARK_AS_PMAP_DATA) | |
179 | ||
180 | typedef struct page_free_entry { | |
181 | struct page_free_entry *next; | |
182 | } page_free_entry_t; | |
183 | ||
184 | #define PAGE_FREE_ENTRY_NULL ((page_free_entry_t *) 0) | |
185 | ||
186 | page_free_entry_t *pmap_pages_reclaim_list MARK_AS_PMAP_DATA; /* Reclaimed pt page list */ | |
187 | unsigned int pmap_pages_request_count MARK_AS_PMAP_DATA; /* Pending requests to reclaim pt page */ | |
188 | unsigned long long pmap_pages_request_acum MARK_AS_PMAP_DATA; | |
189 | ||
190 | ||
191 | typedef struct tt_free_entry { | |
192 | struct tt_free_entry *next; | |
193 | } tt_free_entry_t; | |
194 | ||
195 | #define TT_FREE_ENTRY_NULL ((tt_free_entry_t *) 0) | |
196 | ||
197 | tt_free_entry_t *free_page_size_tt_list MARK_AS_PMAP_DATA; | |
198 | unsigned int free_page_size_tt_count MARK_AS_PMAP_DATA; | |
199 | unsigned int free_page_size_tt_max MARK_AS_PMAP_DATA; | |
200 | #define FREE_PAGE_SIZE_TT_MAX 4 | |
201 | tt_free_entry_t *free_two_page_size_tt_list MARK_AS_PMAP_DATA; | |
202 | unsigned int free_two_page_size_tt_count MARK_AS_PMAP_DATA; | |
203 | unsigned int free_two_page_size_tt_max MARK_AS_PMAP_DATA; | |
204 | #define FREE_TWO_PAGE_SIZE_TT_MAX 4 | |
205 | tt_free_entry_t *free_tt_list MARK_AS_PMAP_DATA; | |
206 | unsigned int free_tt_count MARK_AS_PMAP_DATA; | |
207 | unsigned int free_tt_max MARK_AS_PMAP_DATA; | |
208 | ||
209 | #define TT_FREE_ENTRY_NULL ((tt_free_entry_t *) 0) | |
210 | ||
211 | boolean_t pmap_gc_allowed MARK_AS_PMAP_DATA = TRUE; | |
212 | boolean_t pmap_gc_forced MARK_AS_PMAP_DATA = FALSE; | |
213 | boolean_t pmap_gc_allowed_by_time_throttle = TRUE; | |
214 | ||
215 | unsigned int inuse_user_ttepages_count MARK_AS_PMAP_DATA = 0; /* non-root, non-leaf user pagetable pages, in units of PAGE_SIZE */ | |
216 | unsigned int inuse_user_ptepages_count MARK_AS_PMAP_DATA = 0; /* leaf user pagetable pages, in units of PAGE_SIZE */ | |
217 | unsigned int inuse_user_tteroot_count MARK_AS_PMAP_DATA = 0; /* root user pagetables, in units of PMAP_ROOT_ALLOC_SIZE */ | |
218 | unsigned int inuse_kernel_ttepages_count MARK_AS_PMAP_DATA = 0; /* non-root, non-leaf kernel pagetable pages, in units of PAGE_SIZE */ | |
219 | unsigned int inuse_kernel_ptepages_count MARK_AS_PMAP_DATA = 0; /* leaf kernel pagetable pages, in units of PAGE_SIZE */ | |
220 | unsigned int inuse_kernel_tteroot_count MARK_AS_PMAP_DATA = 0; /* root kernel pagetables, in units of PMAP_ROOT_ALLOC_SIZE */ | |
221 | unsigned int inuse_pmap_pages_count = 0; /* debugging */ | |
222 | ||
223 | SECURITY_READ_ONLY_LATE(tt_entry_t *) invalid_tte = 0; | |
224 | SECURITY_READ_ONLY_LATE(pmap_paddr_t) invalid_ttep = 0; | |
225 | ||
226 | SECURITY_READ_ONLY_LATE(tt_entry_t *) cpu_tte = 0; /* set by arm_vm_init() - keep out of bss */ | |
227 | SECURITY_READ_ONLY_LATE(pmap_paddr_t) cpu_ttep = 0; /* set by arm_vm_init() - phys tte addr */ | |
228 | ||
229 | #if DEVELOPMENT || DEBUG | |
230 | int nx_enabled = 1; /* enable no-execute protection */ | |
231 | int allow_data_exec = 0; /* No apps may execute data */ | |
232 | int allow_stack_exec = 0; /* No apps may execute from the stack */ | |
233 | #else /* DEVELOPMENT || DEBUG */ | |
234 | const int nx_enabled = 1; /* enable no-execute protection */ | |
235 | const int allow_data_exec = 0; /* No apps may execute data */ | |
236 | const int allow_stack_exec = 0; /* No apps may execute from the stack */ | |
237 | #endif /* DEVELOPMENT || DEBUG */ | |
238 | ||
239 | /* | |
240 | * pv_entry_t - structure to track the active mappings for a given page | |
241 | */ | |
242 | typedef struct pv_entry { | |
243 | struct pv_entry *pve_next; /* next alias */ | |
244 | pt_entry_t *pve_ptep; /* page table entry */ | |
245 | #if __arm__ && (__BIGGEST_ALIGNMENT__ > 4) | |
246 | /* For the newer ARMv7k ABI where 64-bit types are 64-bit aligned, but pointers | |
247 | * are 32-bit: | |
248 | * Since pt_desc is 64-bit aligned and we cast often from pv_entry to | |
249 | * pt_desc. | |
250 | */ | |
251 | } __attribute__ ((aligned(8))) pv_entry_t; | |
252 | #else | |
253 | } pv_entry_t; | |
254 | #endif | |
255 | ||
256 | #define PV_ENTRY_NULL ((pv_entry_t *) 0) | |
257 | ||
258 | /* | |
259 | * PMAP LEDGERS: | |
260 | * We use the least significant bit of the "pve_next" pointer in a "pv_entry" | |
261 | * as a marker for pages mapped through an "alternate accounting" mapping. | |
262 | * These macros set, clear and test for this marker and extract the actual | |
263 | * value of the "pve_next" pointer. | |
264 | */ | |
265 | #define PVE_NEXT_ALTACCT ((uintptr_t) 0x1) | |
266 | #define PVE_NEXT_SET_ALTACCT(pve_next_p) \ | |
267 | *(pve_next_p) = (struct pv_entry *) (((uintptr_t) *(pve_next_p)) | \ | |
268 | PVE_NEXT_ALTACCT) | |
269 | #define PVE_NEXT_CLR_ALTACCT(pve_next_p) \ | |
270 | *(pve_next_p) = (struct pv_entry *) (((uintptr_t) *(pve_next_p)) & \ | |
271 | ~PVE_NEXT_ALTACCT) | |
272 | #define PVE_NEXT_IS_ALTACCT(pve_next) \ | |
273 | ((((uintptr_t) (pve_next)) & PVE_NEXT_ALTACCT) ? TRUE : FALSE) | |
274 | #define PVE_NEXT_PTR(pve_next) \ | |
275 | ((struct pv_entry *)(((uintptr_t) (pve_next)) & \ | |
276 | ~PVE_NEXT_ALTACCT)) | |
277 | #if MACH_ASSERT | |
278 | static void pmap_check_ledgers(pmap_t pmap); | |
279 | #else | |
280 | static inline void pmap_check_ledgers(__unused pmap_t pmap) {} | |
281 | #endif /* MACH_ASSERT */ | |
282 | ||
283 | SECURITY_READ_ONLY_LATE(pv_entry_t **) pv_head_table; /* array of pv entry pointers */ | |
284 | ||
285 | pv_entry_t *pv_free_list MARK_AS_PMAP_DATA; | |
286 | pv_entry_t *pv_kern_free_list MARK_AS_PMAP_DATA; | |
287 | decl_simple_lock_data(,pv_free_list_lock MARK_AS_PMAP_DATA) | |
288 | decl_simple_lock_data(,pv_kern_free_list_lock MARK_AS_PMAP_DATA) | |
289 | ||
290 | decl_simple_lock_data(,phys_backup_lock) | |
291 | ||
292 | /* | |
293 | * pt_desc - structure to keep info on page assigned to page tables | |
294 | */ | |
295 | #if (__ARM_VMSA__ == 7) | |
296 | #define PT_INDEX_MAX 1 | |
297 | #else | |
298 | #if (ARM_PGSHIFT == 14) | |
299 | #define PT_INDEX_MAX 1 | |
300 | #else | |
301 | #define PT_INDEX_MAX 4 | |
302 | #endif | |
303 | #endif | |
304 | ||
305 | #define PT_DESC_REFCOUNT 0x4000U | |
306 | ||
307 | typedef struct pt_desc { | |
308 | queue_chain_t pt_page; | |
309 | struct { | |
310 | unsigned short refcnt; | |
311 | unsigned short wiredcnt; | |
312 | } pt_cnt[PT_INDEX_MAX]; | |
313 | struct pmap *pmap; | |
314 | struct { | |
315 | vm_offset_t va; | |
316 | } pt_map[PT_INDEX_MAX]; | |
317 | } pt_desc_t; | |
318 | ||
319 | ||
320 | #define PTD_ENTRY_NULL ((pt_desc_t *) 0) | |
321 | ||
322 | SECURITY_READ_ONLY_LATE(pt_desc_t *) ptd_root_table; | |
323 | ||
324 | pt_desc_t *ptd_free_list MARK_AS_PMAP_DATA = PTD_ENTRY_NULL; | |
325 | SECURITY_READ_ONLY_LATE(boolean_t) ptd_preboot = TRUE; | |
326 | unsigned int ptd_free_count MARK_AS_PMAP_DATA = 0; | |
327 | decl_simple_lock_data(,ptd_free_list_lock MARK_AS_PMAP_DATA) | |
328 | ||
329 | /* | |
330 | * physical page attribute | |
331 | */ | |
332 | typedef u_int16_t pp_attr_t; | |
333 | ||
334 | #define PP_ATTR_WIMG_MASK 0x003F | |
335 | #define PP_ATTR_WIMG(x) ((x) & PP_ATTR_WIMG_MASK) | |
336 | ||
337 | #define PP_ATTR_REFERENCED 0x0040 | |
338 | #define PP_ATTR_MODIFIED 0x0080 | |
339 | ||
340 | #define PP_ATTR_INTERNAL 0x0100 | |
341 | #define PP_ATTR_REUSABLE 0x0200 | |
342 | #define PP_ATTR_ALTACCT 0x0400 | |
343 | #define PP_ATTR_NOENCRYPT 0x0800 | |
344 | ||
345 | #define PP_ATTR_REFFAULT 0x1000 | |
346 | #define PP_ATTR_MODFAULT 0x2000 | |
347 | ||
348 | ||
349 | SECURITY_READ_ONLY_LATE(pp_attr_t*) pp_attr_table; | |
350 | ||
351 | ||
352 | typedef uint8_t io_attr_t; | |
353 | ||
354 | #define IO_ATTR_WIMG_MASK 0x3F | |
355 | #define IO_ATTR_WIMG(x) ((x) & IO_ATTR_WIMG_MASK) | |
356 | ||
357 | SECURITY_READ_ONLY_LATE(io_attr_t*) io_attr_table; | |
358 | ||
359 | SECURITY_READ_ONLY_LATE(pmap_paddr_t) vm_first_phys = (pmap_paddr_t) 0; | |
360 | SECURITY_READ_ONLY_LATE(pmap_paddr_t) vm_last_phys = (pmap_paddr_t) 0; | |
361 | ||
362 | SECURITY_READ_ONLY_LATE(pmap_paddr_t) io_rgn_start = 0; | |
363 | SECURITY_READ_ONLY_LATE(pmap_paddr_t) io_rgn_end = 0; | |
364 | SECURITY_READ_ONLY_LATE(uint32_t) io_rgn_granule = 0; | |
365 | ||
366 | SECURITY_READ_ONLY_LATE(boolean_t) pmap_initialized = FALSE; /* Has pmap_init completed? */ | |
367 | ||
368 | SECURITY_READ_ONLY_LATE(uint64_t) pmap_nesting_size_min; | |
369 | SECURITY_READ_ONLY_LATE(uint64_t) pmap_nesting_size_max; | |
370 | ||
371 | SECURITY_READ_ONLY_LATE(vm_map_offset_t) arm_pmap_max_offset_default = 0x0; | |
372 | #if defined(__arm64__) | |
373 | SECURITY_READ_ONLY_LATE(vm_map_offset_t) arm64_pmap_max_offset_default = 0x0; | |
374 | #endif | |
375 | ||
376 | /* free address spaces (1 means free) */ | |
377 | static uint32_t asid_bitmap[MAX_ASID / (sizeof(uint32_t) * NBBY)] MARK_AS_PMAP_DATA; | |
378 | ||
379 | #if (__ARM_VMSA__ > 7) | |
5c9f4661 | 380 | SECURITY_READ_ONLY_LATE(pmap_t) sharedpage_pmap; |
5ba3f43e A |
381 | #endif |
382 | ||
383 | ||
384 | #define pa_index(pa) \ | |
385 | (atop((pa) - vm_first_phys)) | |
386 | ||
387 | #define pai_to_pvh(pai) \ | |
388 | (&pv_head_table[pai]) | |
389 | ||
390 | #define pa_valid(x) \ | |
391 | ((x) >= vm_first_phys && (x) < vm_last_phys) | |
392 | ||
393 | /* PTE Define Macros */ | |
394 | ||
395 | #define pte_is_wired(pte) \ | |
396 | (((pte) & ARM_PTE_WIRED_MASK) == ARM_PTE_WIRED) | |
397 | ||
398 | #define pte_set_wired(ptep, wired) \ | |
399 | do { \ | |
400 | SInt16 *ptd_wiredcnt_ptr; \ | |
401 | ptd_wiredcnt_ptr = (SInt16 *)&(ptep_get_ptd(ptep)->pt_cnt[ARM_PT_DESC_INDEX(ptep)].wiredcnt); \ | |
402 | if (wired) { \ | |
403 | *ptep |= ARM_PTE_WIRED; \ | |
404 | OSAddAtomic16(1, ptd_wiredcnt_ptr); \ | |
405 | } else { \ | |
406 | *ptep &= ~ARM_PTE_WIRED; \ | |
407 | OSAddAtomic16(-1, ptd_wiredcnt_ptr); \ | |
408 | } \ | |
409 | } while(0) | |
410 | ||
411 | #define pte_is_ffr(pte) \ | |
412 | (((pte) & ARM_PTE_WRITEABLE) == ARM_PTE_WRITEABLE) | |
413 | ||
414 | #define pte_set_ffr(pte, ffr) \ | |
415 | do { \ | |
416 | if (ffr) { \ | |
417 | pte |= ARM_PTE_WRITEABLE; \ | |
418 | } else { \ | |
419 | pte &= ~ARM_PTE_WRITEABLE; \ | |
420 | } \ | |
421 | } while(0) | |
422 | ||
423 | /* PVE Define Macros */ | |
424 | ||
425 | #define pve_next(pve) \ | |
426 | ((pve)->pve_next) | |
427 | ||
428 | #define pve_link_field(pve) \ | |
429 | (&pve_next(pve)) | |
430 | ||
431 | #define pve_link(pp, e) \ | |
432 | ((pve_next(e) = pve_next(pp)), (pve_next(pp) = (e))) | |
433 | ||
434 | #define pve_unlink(pp, e) \ | |
435 | (pve_next(pp) = pve_next(e)) | |
436 | ||
437 | /* bits held in the ptep pointer field */ | |
438 | ||
439 | #define pve_get_ptep(pve) \ | |
440 | ((pve)->pve_ptep) | |
441 | ||
442 | #define pve_set_ptep(pve, ptep_new) \ | |
443 | do { \ | |
444 | (pve)->pve_ptep = (ptep_new); \ | |
445 | } while (0) | |
446 | ||
447 | /* PTEP Define Macros */ | |
448 | ||
449 | #if (__ARM_VMSA__ == 7) | |
450 | ||
451 | #define ARM_PT_DESC_INDEX_MASK 0x00000 | |
452 | #define ARM_PT_DESC_INDEX_SHIFT 0 | |
453 | ||
454 | /* | |
455 | * mask for page descriptor index: 4MB per page table | |
456 | */ | |
457 | #define ARM_TT_PT_INDEX_MASK 0xfffU /* mask for page descriptor index: 4MB per page table */ | |
458 | ||
459 | /* | |
460 | * Shift value used for reconstructing the virtual address for a PTE. | |
461 | */ | |
462 | #define ARM_TT_PT_ADDR_SHIFT (10U) | |
463 | ||
464 | #define ARM_PT_DESC_INDEX(ptep) \ | |
465 | (((unsigned)(ptep) & ARM_PT_DESC_INDEX_MASK) >> ARM_PT_DESC_INDEX_SHIFT) | |
466 | ||
467 | #define ptep_get_ptd(ptep) \ | |
468 | ((struct pt_desc *)((*((vm_offset_t *)(pai_to_pvh(pa_index((vm_offset_t)(ptep) - gVirtBase + gPhysBase))))) & PVH_LIST_MASK)) | |
469 | ||
470 | #define ptep_get_va(ptep) \ | |
471 | ((((pt_desc_t *) (pvh_list(pai_to_pvh(pa_index((((vm_offset_t)(ptep) & ~0xFFF) - gVirtBase + gPhysBase))))))->pt_map[ARM_PT_DESC_INDEX(ptep)].va)+ ((((unsigned)(ptep)) & ARM_TT_PT_INDEX_MASK)<<ARM_TT_PT_ADDR_SHIFT)) | |
472 | ||
473 | #define ptep_get_pmap(ptep) \ | |
474 | ((((pt_desc_t *) (pvh_list(pai_to_pvh(pa_index((((vm_offset_t)(ptep) & ~0xFFF) - gVirtBase + gPhysBase))))))->pmap)) | |
475 | ||
476 | ||
477 | #else | |
478 | ||
479 | #if (ARM_PGSHIFT == 12) | |
480 | #define ARM_PT_DESC_INDEX_MASK ((PAGE_SHIFT_CONST == ARM_PGSHIFT )? 0x00000ULL : 0x03000ULL) | |
481 | #define ARM_PT_DESC_INDEX_SHIFT ((PAGE_SHIFT_CONST == ARM_PGSHIFT )? 0 : 12) | |
482 | /* | |
483 | * mask for page descriptor index: 2MB per page table | |
484 | */ | |
485 | #define ARM_TT_PT_INDEX_MASK (0x0fffULL) | |
486 | /* | |
487 | * Shift value used for reconstructing the virtual address for a PTE. | |
488 | */ | |
489 | #define ARM_TT_PT_ADDR_SHIFT (9ULL) | |
490 | ||
491 | /* TODO: Give this a better name/documentation than "other" */ | |
492 | #define ARM_TT_PT_OTHER_MASK (0x0fffULL) | |
493 | ||
494 | #else | |
495 | ||
496 | #define ARM_PT_DESC_INDEX_MASK (0x00000) | |
497 | #define ARM_PT_DESC_INDEX_SHIFT (0) | |
498 | /* | |
499 | * mask for page descriptor index: 32MB per page table | |
500 | */ | |
501 | #define ARM_TT_PT_INDEX_MASK (0x3fffULL) | |
502 | /* | |
503 | * Shift value used for reconstructing the virtual address for a PTE. | |
504 | */ | |
505 | #define ARM_TT_PT_ADDR_SHIFT (11ULL) | |
506 | ||
507 | /* TODO: Give this a better name/documentation than "other" */ | |
508 | #define ARM_TT_PT_OTHER_MASK (0x3fffULL) | |
509 | #endif | |
510 | ||
511 | #define ARM_PT_DESC_INDEX(ptep) \ | |
512 | (((unsigned)(ptep) & ARM_PT_DESC_INDEX_MASK) >> ARM_PT_DESC_INDEX_SHIFT) | |
513 | ||
514 | ||
515 | #define ptep_get_ptd(ptep) \ | |
516 | ((struct pt_desc *)((*((vm_offset_t *)(pai_to_pvh(pa_index((vm_offset_t)(ptep) - gVirtBase + gPhysBase))))) & PVH_LIST_MASK)) | |
517 | ||
518 | #define ptep_get_va(ptep) \ | |
519 | ((((pt_desc_t *) (pvh_list(pai_to_pvh(pa_index((((vm_offset_t)(ptep) & ~ARM_TT_PT_OTHER_MASK) - gVirtBase + gPhysBase))))))->pt_map[ARM_PT_DESC_INDEX(ptep)].va)+ ((((unsigned)(ptep)) & ARM_TT_PT_INDEX_MASK)<<ARM_TT_PT_ADDR_SHIFT)) | |
520 | ||
521 | #define ptep_get_pmap(ptep) \ | |
522 | ((((pt_desc_t *) (pvh_list(pai_to_pvh(pa_index((((vm_offset_t)(ptep) & ~ARM_TT_PT_OTHER_MASK) - gVirtBase + gPhysBase))))))->pmap)) | |
523 | ||
524 | #endif | |
525 | ||
526 | ||
527 | /* PVH Define Macros */ | |
528 | ||
529 | /* pvhead type */ | |
530 | #define PVH_TYPE_NULL 0x0UL | |
531 | #define PVH_TYPE_PVEP 0x1UL | |
532 | #define PVH_TYPE_PTEP 0x2UL | |
533 | #define PVH_TYPE_PTDP 0x3UL | |
534 | ||
535 | #define PVH_TYPE_MASK (0x3UL) | |
536 | #define PVH_LIST_MASK (~PVH_TYPE_MASK) | |
537 | ||
538 | #if (__ARM_VMSA__ == 7) | |
539 | #define pvh_set_bits(h, b) \ | |
540 | do { \ | |
541 | while (!OSCompareAndSwap(*(vm_offset_t *)(h), *(vm_offset_t *)(h) | (b), (vm_offset_t *)(h))); \ | |
542 | } while (0) | |
543 | ||
544 | #define pvh_clear_bits(h, b) \ | |
545 | do { \ | |
546 | while (!OSCompareAndSwap(*(vm_offset_t *)(h), *(vm_offset_t *)(h) & ~(b), (vm_offset_t *)(h))); \ | |
547 | } while (0) | |
548 | #else | |
549 | #define pvh_set_bits(h, b) \ | |
550 | do { \ | |
551 | while (!OSCompareAndSwap64(*(vm_offset_t *)(h), *(vm_offset_t *)(h) | ((int64_t)b), (vm_offset_t *)(h))); \ | |
552 | } while (0) | |
553 | ||
554 | #define pvh_clear_bits(h, b) \ | |
555 | do { \ | |
556 | while (!OSCompareAndSwap64(*(vm_offset_t *)(h), *(vm_offset_t *)(h) & ~((int64_t)b), (vm_offset_t *)(h))); \ | |
557 | } while (0) | |
558 | #endif | |
559 | ||
560 | #define pvh_test_type(h, b) \ | |
561 | ((*(vm_offset_t *)(h) & (PVH_TYPE_MASK)) == (b)) | |
562 | ||
563 | #define pvh_ptep(h) \ | |
564 | ((pt_entry_t *)(*(vm_offset_t *)(h) & PVH_LIST_MASK)) | |
565 | ||
566 | #define pvh_list(h) \ | |
567 | ((pv_entry_t *)(*(vm_offset_t *)(h) & PVH_LIST_MASK)) | |
568 | ||
569 | #define pvh_bits(h) \ | |
570 | (*(vm_offset_t *)(h) & PVH_TYPE_MASK) | |
571 | ||
572 | #if (__ARM_VMSA__ == 7) | |
573 | #define pvh_update_head(h, e, t) \ | |
574 | do { \ | |
575 | while (!OSCompareAndSwap(*(vm_offset_t *)(h), (vm_offset_t)(e) | (t), (vm_offset_t *)(h))); \ | |
576 | } while (0) | |
577 | #else | |
578 | #define pvh_update_head(h, e, t) \ | |
579 | do { \ | |
580 | while (!OSCompareAndSwap64(*(vm_offset_t *)(h), (vm_offset_t)(e) | (t), (vm_offset_t *)(h))); \ | |
581 | } while (0) | |
582 | #endif | |
583 | ||
584 | #define pvh_add(h, e) \ | |
585 | do { \ | |
586 | assert(!pvh_test_type((h), PVH_TYPE_PTEP)); \ | |
587 | pve_next(e) = pvh_list(h); \ | |
588 | pvh_update_head((h), (e), PVH_TYPE_PVEP); \ | |
589 | } while (0) | |
590 | ||
591 | #define pvh_remove(h, p, e) \ | |
592 | do { \ | |
593 | assert(!PVE_NEXT_IS_ALTACCT(pve_next((e)))); \ | |
594 | if ((p) == (h)) { \ | |
595 | if (PVE_NEXT_PTR(pve_next((e))) == PV_ENTRY_NULL) { \ | |
596 | pvh_update_head((h), PV_ENTRY_NULL, PVH_TYPE_NULL); \ | |
597 | } else { \ | |
598 | pvh_update_head((h), PVE_NEXT_PTR(pve_next((e))), PVH_TYPE_PVEP); \ | |
599 | } \ | |
600 | } else { \ | |
601 | /* \ | |
602 | * PMAP LEDGERS: \ | |
603 | * preserve the "alternate accounting" bit \ | |
604 | * when updating "p" (the previous entry's \ | |
605 | * "pve_next"). \ | |
606 | */ \ | |
607 | boolean_t __is_altacct; \ | |
608 | __is_altacct = PVE_NEXT_IS_ALTACCT(*(p)); \ | |
609 | *(p) = PVE_NEXT_PTR(pve_next((e))); \ | |
610 | if (__is_altacct) { \ | |
611 | PVE_NEXT_SET_ALTACCT((p)); \ | |
612 | } else { \ | |
613 | PVE_NEXT_CLR_ALTACCT((p)); \ | |
614 | } \ | |
615 | } \ | |
616 | } while (0) | |
617 | ||
618 | ||
619 | /* PPATTR Define Macros */ | |
620 | ||
621 | #define ppattr_set_bits(h, b) \ | |
622 | do { \ | |
623 | while (!OSCompareAndSwap16(*(pp_attr_t *)(h), *(pp_attr_t *)(h) | (b), (pp_attr_t *)(h))); \ | |
624 | } while (0) | |
625 | ||
626 | #define ppattr_clear_bits(h, b) \ | |
627 | do { \ | |
628 | while (!OSCompareAndSwap16(*(pp_attr_t *)(h), *(pp_attr_t *)(h) & ~(b), (pp_attr_t *)(h))); \ | |
629 | } while (0) | |
630 | ||
631 | #define ppattr_test_bits(h, b) \ | |
632 | ((*(pp_attr_t *)(h) & (b)) == (b)) | |
633 | ||
634 | #define pa_set_bits(x, b) \ | |
635 | do { \ | |
636 | if (pa_valid(x)) \ | |
637 | ppattr_set_bits(&pp_attr_table[pa_index(x)], \ | |
638 | (b)); \ | |
639 | } while (0) | |
640 | ||
641 | #define pa_test_bits(x, b) \ | |
642 | (pa_valid(x) ? ppattr_test_bits(&pp_attr_table[pa_index(x)],\ | |
643 | (b)) : FALSE) | |
644 | ||
645 | #define pa_clear_bits(x, b) \ | |
646 | do { \ | |
647 | if (pa_valid(x)) \ | |
648 | ppattr_clear_bits(&pp_attr_table[pa_index(x)], \ | |
649 | (b)); \ | |
650 | } while (0) | |
651 | ||
652 | #define pa_set_modify(x) \ | |
653 | pa_set_bits(x, PP_ATTR_MODIFIED) | |
654 | ||
655 | #define pa_clear_modify(x) \ | |
656 | pa_clear_bits(x, PP_ATTR_MODIFIED) | |
657 | ||
658 | #define pa_set_reference(x) \ | |
659 | pa_set_bits(x, PP_ATTR_REFERENCED) | |
660 | ||
661 | #define pa_clear_reference(x) \ | |
662 | pa_clear_bits(x, PP_ATTR_REFERENCED) | |
663 | ||
664 | ||
665 | #define IS_INTERNAL_PAGE(pai) \ | |
666 | ppattr_test_bits(&pp_attr_table[pai], PP_ATTR_INTERNAL) | |
667 | #define SET_INTERNAL_PAGE(pai) \ | |
668 | ppattr_set_bits(&pp_attr_table[pai], PP_ATTR_INTERNAL) | |
669 | #define CLR_INTERNAL_PAGE(pai) \ | |
670 | ppattr_clear_bits(&pp_attr_table[pai], PP_ATTR_INTERNAL) | |
671 | ||
672 | #define IS_REUSABLE_PAGE(pai) \ | |
673 | ppattr_test_bits(&pp_attr_table[pai], PP_ATTR_REUSABLE) | |
674 | #define SET_REUSABLE_PAGE(pai) \ | |
675 | ppattr_set_bits(&pp_attr_table[pai], PP_ATTR_REUSABLE) | |
676 | #define CLR_REUSABLE_PAGE(pai) \ | |
677 | ppattr_clear_bits(&pp_attr_table[pai], PP_ATTR_REUSABLE) | |
678 | ||
679 | #define IS_ALTACCT_PAGE(pai, pve_p) \ | |
680 | (((pve_p) == NULL) \ | |
681 | ? ppattr_test_bits(&pp_attr_table[pai], PP_ATTR_ALTACCT) \ | |
682 | : PVE_NEXT_IS_ALTACCT(pve_next((pve_p)))) | |
683 | #define SET_ALTACCT_PAGE(pai, pve_p) \ | |
684 | if ((pve_p) == NULL) { \ | |
685 | ppattr_set_bits(&pp_attr_table[pai], PP_ATTR_ALTACCT); \ | |
686 | } else { \ | |
687 | PVE_NEXT_SET_ALTACCT(&pve_next((pve_p))); \ | |
688 | } | |
689 | #define CLR_ALTACCT_PAGE(pai, pve_p) \ | |
690 | if ((pve_p) == NULL) { \ | |
691 | ppattr_clear_bits(&pp_attr_table[pai], PP_ATTR_ALTACCT);\ | |
692 | } else { \ | |
693 | PVE_NEXT_CLR_ALTACCT(&pve_next((pve_p))); \ | |
694 | } | |
695 | ||
696 | #define IS_REFFAULT_PAGE(pai) \ | |
697 | ppattr_test_bits(&pp_attr_table[pai], PP_ATTR_REFFAULT) | |
698 | #define SET_REFFAULT_PAGE(pai) \ | |
699 | ppattr_set_bits(&pp_attr_table[pai], PP_ATTR_REFFAULT) | |
700 | #define CLR_REFFAULT_PAGE(pai) \ | |
701 | ppattr_clear_bits(&pp_attr_table[pai], PP_ATTR_REFFAULT) | |
702 | ||
703 | #define IS_MODFAULT_PAGE(pai) \ | |
704 | ppattr_test_bits(&pp_attr_table[pai], PP_ATTR_MODFAULT) | |
705 | #define SET_MODFAULT_PAGE(pai) \ | |
706 | ppattr_set_bits(&pp_attr_table[pai], PP_ATTR_MODFAULT) | |
707 | #define CLR_MODFAULT_PAGE(pai) \ | |
708 | ppattr_clear_bits(&pp_attr_table[pai], PP_ATTR_MODFAULT) | |
709 | ||
710 | ||
711 | #if (__ARM_VMSA__ == 7) | |
712 | ||
713 | #define tte_index(pmap, addr) \ | |
714 | ttenum((addr)) | |
715 | ||
716 | #define tte_get_ptd(tte) \ | |
717 | ((struct pt_desc *)((*((vm_offset_t *)(pai_to_pvh(pa_index((vm_offset_t)((tte) & ~PAGE_MASK)))))) & PVH_LIST_MASK)) | |
718 | ||
719 | #else | |
720 | ||
721 | #define tt0_index(pmap, addr) \ | |
722 | (((addr) & ARM_TT_L0_INDEX_MASK) >> ARM_TT_L0_SHIFT) | |
723 | ||
724 | #define tt1_index(pmap, addr) \ | |
725 | (((addr) & ARM_TT_L1_INDEX_MASK) >> ARM_TT_L1_SHIFT) | |
726 | ||
727 | #define tt2_index(pmap, addr) \ | |
728 | (((addr) & ARM_TT_L2_INDEX_MASK) >> ARM_TT_L2_SHIFT) | |
729 | ||
730 | #define tt3_index(pmap, addr) \ | |
731 | (((addr) & ARM_TT_L3_INDEX_MASK) >> ARM_TT_L3_SHIFT) | |
732 | ||
733 | #define tte_index(pmap, addr) \ | |
734 | (((addr) & ARM_TT_L2_INDEX_MASK) >> ARM_TT_L2_SHIFT) | |
735 | ||
736 | #define tte_get_ptd(tte) \ | |
737 | ((struct pt_desc *)((*((vm_offset_t *)(pai_to_pvh(pa_index((vm_offset_t)((tte) & ~PAGE_MASK)))))) & PVH_LIST_MASK)) | |
738 | ||
739 | #endif | |
740 | ||
741 | /* | |
742 | * Lock on pmap system | |
743 | */ | |
744 | ||
745 | #define PMAP_LOCK_INIT(pmap) { \ | |
746 | simple_lock_init(&(pmap)->lock, 0); \ | |
747 | } | |
748 | ||
749 | #define PMAP_LOCK(pmap) { \ | |
750 | simple_lock(&(pmap)->lock); \ | |
751 | } | |
752 | ||
753 | #define PMAP_UNLOCK(pmap) { \ | |
754 | simple_unlock(&(pmap)->lock); \ | |
755 | } | |
756 | ||
757 | #if MACH_ASSERT | |
758 | #define PMAP_ASSERT_LOCKED(pmap) { \ | |
759 | simple_lock_assert(&(pmap)->lock, LCK_ASSERT_OWNED); \ | |
760 | } | |
761 | #else | |
762 | #define PMAP_ASSERT_LOCKED(pmap) | |
763 | #endif | |
764 | ||
765 | /* | |
766 | * Each entry in the pv_head_table is locked by a bit in the | |
767 | * pv lock array, which is stored in the region preceding pv_head_table. | |
768 | * The lock bits are accessed by the physical address of the page they lock. | |
769 | */ | |
770 | #define LOCK_PVH(index) { \ | |
771 | hw_lock_bit((hw_lock_bit_t *) \ | |
772 | ((unsigned int*)pv_head_table)-1-(index>>5), \ | |
773 | (index&0x1F)); \ | |
774 | } | |
775 | ||
776 | #define UNLOCK_PVH(index) { \ | |
777 | hw_unlock_bit((hw_lock_bit_t *) \ | |
778 | ((unsigned int*)pv_head_table)-1-(index>>5), \ | |
779 | (index&0x1F)); \ | |
780 | } | |
781 | ||
782 | #define ASSERT_PVH_LOCKED(index) { \ | |
783 | assert(*(((unsigned int*)pv_head_table)-1-(index>>5)) & (1 << (index & 0x1F))); \ | |
784 | } | |
785 | ||
786 | #define PMAP_UPDATE_TLBS(pmap, s, e) { \ | |
787 | flush_mmu_tlb_region_asid(s, (unsigned)(e - s), pmap); \ | |
788 | } | |
789 | ||
790 | #ifdef __ARM_L1_PTW__ | |
791 | ||
792 | #define FLUSH_PTE_RANGE(spte, epte) \ | |
793 | __asm__ volatile("dsb ish"); | |
794 | ||
795 | #define FLUSH_PTE(pte_p) \ | |
796 | __asm__ volatile("dsb ish"); | |
797 | ||
798 | #else | |
799 | ||
800 | #define FLUSH_PTE_RANGE(spte, epte) \ | |
801 | CleanPoU_DcacheRegion((vm_offset_t)spte, \ | |
802 | (vm_offset_t)epte - (vm_offset_t)spte); | |
803 | ||
804 | #define FLUSH_PTE(pte_p) \ | |
805 | CleanPoU_DcacheRegion((vm_offset_t)pte_p, sizeof(pt_entry_t)); | |
806 | #endif | |
807 | ||
808 | #define WRITE_PTE(pte_p, pte_entry) \ | |
809 | __unreachable_ok_push \ | |
810 | if (TEST_PAGE_RATIO_4) { \ | |
811 | do { \ | |
812 | if (((unsigned)(pte_p)) & 0x1f) panic("WRITE_PTE\n"); \ | |
813 | if (((pte_entry) & ~ARM_PTE_COMPRESSED_MASK) == ARM_PTE_EMPTY) { \ | |
814 | *(pte_p) = (pte_entry); \ | |
815 | *((pte_p)+1) = (pte_entry); \ | |
816 | *((pte_p)+2) = (pte_entry); \ | |
817 | *((pte_p)+3) = (pte_entry); \ | |
818 | } else { \ | |
819 | *(pte_p) = (pte_entry); \ | |
820 | *((pte_p)+1) = (pte_entry) | 0x1000; \ | |
821 | *((pte_p)+2) = (pte_entry) | 0x2000; \ | |
822 | *((pte_p)+3) = (pte_entry) | 0x3000; \ | |
823 | } \ | |
824 | FLUSH_PTE_RANGE((pte_p),((pte_p)+4)); \ | |
825 | } while(0); \ | |
826 | } else { \ | |
827 | do { \ | |
828 | *(pte_p) = (pte_entry); \ | |
829 | FLUSH_PTE(pte_p); \ | |
830 | } while(0); \ | |
831 | } \ | |
832 | __unreachable_ok_pop | |
833 | ||
834 | #define WRITE_PTE_FAST(pte_p, pte_entry) \ | |
835 | __unreachable_ok_push \ | |
836 | if (TEST_PAGE_RATIO_4) { \ | |
837 | if (((unsigned)(pte_p)) & 0x1f) panic("WRITE_PTE\n"); \ | |
838 | if (((pte_entry) & ~ARM_PTE_COMPRESSED_MASK) == ARM_PTE_EMPTY) { \ | |
839 | *(pte_p) = (pte_entry); \ | |
840 | *((pte_p)+1) = (pte_entry); \ | |
841 | *((pte_p)+2) = (pte_entry); \ | |
842 | *((pte_p)+3) = (pte_entry); \ | |
843 | } else { \ | |
844 | *(pte_p) = (pte_entry); \ | |
845 | *((pte_p)+1) = (pte_entry) | 0x1000; \ | |
846 | *((pte_p)+2) = (pte_entry) | 0x2000; \ | |
847 | *((pte_p)+3) = (pte_entry) | 0x3000; \ | |
848 | } \ | |
849 | } else { \ | |
850 | *(pte_p) = (pte_entry); \ | |
851 | } \ | |
852 | __unreachable_ok_pop | |
853 | ||
854 | ||
855 | /* | |
856 | * Other useful macros. | |
857 | */ | |
858 | #define current_pmap() \ | |
859 | (vm_map_pmap(current_thread()->map)) | |
860 | ||
861 | #define PMAP_IS_VALID(x) (TRUE) | |
862 | ||
863 | #ifdef PMAP_TRACES | |
864 | unsigned int pmap_trace = 0; | |
865 | ||
866 | #define PMAP_TRACE(...) \ | |
867 | if (pmap_trace) { \ | |
868 | KDBG_RELEASE(__VA_ARGS__); \ | |
869 | } | |
870 | #else | |
871 | #define PMAP_TRACE(...) KDBG_DEBUG(__VA_ARGS__) | |
872 | #endif | |
873 | ||
874 | #define PMAP_TRACE_CONSTANT(...) KDBG_RELEASE(__VA_ARGS__) | |
875 | ||
876 | /* | |
877 | * Internal function prototypes (forward declarations). | |
878 | */ | |
879 | ||
880 | static void pv_init( | |
881 | void); | |
882 | ||
883 | static boolean_t pv_alloc( | |
884 | pmap_t pmap, | |
885 | unsigned int pai, | |
886 | pv_entry_t **pvepp); | |
887 | ||
888 | static void pv_free( | |
889 | pv_entry_t *pvep); | |
890 | ||
891 | static void pv_list_free( | |
892 | pv_entry_t *pvehp, | |
893 | pv_entry_t *pvetp, | |
894 | unsigned int cnt); | |
895 | ||
896 | static void ptd_bootstrap( | |
897 | pt_desc_t *ptdp, unsigned int ptd_cnt); | |
898 | ||
899 | static pt_desc_t *ptd_alloc( | |
900 | pmap_t pmap); | |
901 | ||
902 | static void ptd_deallocate( | |
903 | pt_desc_t *ptdp); | |
904 | ||
905 | static void ptd_init( | |
906 | pt_desc_t *ptdp, pmap_t pmap, vm_map_address_t va, unsigned int ttlevel, pt_entry_t * pte_p); | |
907 | ||
908 | static void pmap_zone_init( | |
909 | void); | |
910 | ||
911 | static void pmap_set_reference( | |
912 | ppnum_t pn); | |
913 | ||
914 | ppnum_t pmap_vtophys( | |
915 | pmap_t pmap, addr64_t va); | |
916 | ||
917 | void pmap_switch_user_ttb( | |
918 | pmap_t pmap); | |
919 | ||
920 | static void flush_mmu_tlb_region_asid( | |
921 | vm_offset_t va, unsigned length, pmap_t pmap); | |
922 | ||
923 | static kern_return_t pmap_expand( | |
924 | pmap_t, vm_map_address_t, unsigned int options, unsigned int level); | |
925 | ||
926 | static int pmap_remove_range( | |
927 | pmap_t, vm_map_address_t, pt_entry_t *, pt_entry_t *, uint32_t *); | |
928 | ||
929 | static int pmap_remove_range_options( | |
930 | pmap_t, vm_map_address_t, pt_entry_t *, pt_entry_t *, uint32_t *, int); | |
931 | ||
932 | static tt_entry_t *pmap_tt1_allocate( | |
933 | pmap_t, vm_size_t, unsigned int); | |
934 | ||
935 | #define PMAP_TT_ALLOCATE_NOWAIT 0x1 | |
936 | ||
937 | static void pmap_tt1_deallocate( | |
938 | pmap_t, tt_entry_t *, vm_size_t, unsigned int); | |
939 | ||
940 | #define PMAP_TT_DEALLOCATE_NOBLOCK 0x1 | |
941 | ||
942 | static kern_return_t pmap_tt_allocate( | |
943 | pmap_t, tt_entry_t **, unsigned int, unsigned int); | |
944 | ||
945 | #define PMAP_TT_ALLOCATE_NOWAIT 0x1 | |
946 | ||
947 | static void pmap_tte_deallocate( | |
948 | pmap_t, tt_entry_t *, unsigned int); | |
949 | ||
950 | #define PMAP_TT_L1_LEVEL 0x1 | |
951 | #define PMAP_TT_L2_LEVEL 0x2 | |
952 | #define PMAP_TT_L3_LEVEL 0x3 | |
953 | #if (__ARM_VMSA__ == 7) | |
954 | #define PMAP_TT_MAX_LEVEL PMAP_TT_L2_LEVEL | |
955 | #else | |
956 | #define PMAP_TT_MAX_LEVEL PMAP_TT_L3_LEVEL | |
957 | #endif | |
958 | ||
959 | #ifdef __ARM64_PMAP_SUBPAGE_L1__ | |
960 | #if (__ARM_VMSA__ <= 7) | |
961 | #error This is not supported for old-style page tables | |
962 | #endif | |
963 | #define PMAP_ROOT_ALLOC_SIZE (((ARM_TT_L1_INDEX_MASK >> ARM_TT_L1_SHIFT) + 1) * sizeof(tt_entry_t)) | |
964 | #else | |
965 | #define PMAP_ROOT_ALLOC_SIZE (ARM_PGBYTES) | |
966 | #endif | |
967 | ||
968 | const unsigned int arm_hardware_page_size = ARM_PGBYTES; | |
969 | const unsigned int arm_pt_desc_size = sizeof(pt_desc_t); | |
970 | const unsigned int arm_pt_root_size = PMAP_ROOT_ALLOC_SIZE; | |
971 | ||
972 | #define PMAP_TT_DEALLOCATE_NOBLOCK 0x1 | |
973 | ||
974 | void pmap_init_pte_page_internal( | |
975 | pmap_t, pt_entry_t *, vm_offset_t, unsigned int , pt_desc_t **); | |
976 | ||
977 | ||
978 | #if (__ARM_VMSA__ > 7) | |
979 | ||
980 | static inline tt_entry_t *pmap_tt1e( | |
981 | pmap_t, vm_map_address_t); | |
982 | ||
983 | static inline tt_entry_t *pmap_tt2e( | |
984 | pmap_t, vm_map_address_t); | |
985 | ||
986 | static inline pt_entry_t *pmap_tt3e( | |
987 | pmap_t, vm_map_address_t); | |
988 | ||
5c9f4661 | 989 | static void pmap_unmap_sharedpage( |
5ba3f43e A |
990 | pmap_t pmap); |
991 | ||
992 | static void pmap_sharedpage_flush_32_to_64( | |
993 | void); | |
994 | ||
995 | static boolean_t | |
996 | pmap_is_64bit(pmap_t); | |
997 | ||
998 | ||
999 | #endif | |
1000 | static inline tt_entry_t *pmap_tte( | |
1001 | pmap_t, vm_map_address_t); | |
1002 | ||
1003 | static inline pt_entry_t *pmap_pte( | |
1004 | pmap_t, vm_map_address_t); | |
1005 | ||
1006 | static void pmap_update_cache_attributes_locked( | |
1007 | ppnum_t, unsigned); | |
1008 | ||
1009 | boolean_t arm_clear_fast_fault( | |
1010 | ppnum_t ppnum, | |
1011 | vm_prot_t fault_type); | |
1012 | ||
1013 | static pmap_paddr_t pmap_pages_reclaim( | |
1014 | void); | |
1015 | ||
1016 | static kern_return_t pmap_pages_alloc( | |
1017 | pmap_paddr_t *pa, | |
1018 | unsigned size, | |
1019 | unsigned option); | |
1020 | ||
1021 | #define PMAP_PAGES_ALLOCATE_NOWAIT 0x1 | |
1022 | #define PMAP_PAGES_RECLAIM_NOWAIT 0x2 | |
1023 | ||
1024 | static void pmap_pages_free( | |
1025 | pmap_paddr_t pa, | |
1026 | unsigned size); | |
1027 | ||
1028 | ||
1029 | #define PMAP_SUPPORT_PROTOTYPES(__return_type, __function_name, __function_args, __function_index) \ | |
1030 | static __return_type __function_name##_internal __function_args; | |
1031 | ||
1032 | PMAP_SUPPORT_PROTOTYPES( | |
1033 | kern_return_t, | |
1034 | arm_fast_fault, (pmap_t pmap, | |
1035 | vm_map_address_t va, | |
1036 | vm_prot_t fault_type, | |
1037 | boolean_t from_user), ARM_FAST_FAULT_INDEX); | |
1038 | ||
1039 | ||
1040 | PMAP_SUPPORT_PROTOTYPES( | |
1041 | boolean_t, | |
1042 | arm_force_fast_fault, (ppnum_t ppnum, | |
1043 | vm_prot_t allow_mode, | |
1044 | int options), ARM_FORCE_FAST_FAULT_INDEX); | |
1045 | ||
1046 | PMAP_SUPPORT_PROTOTYPES( | |
1047 | kern_return_t, | |
1048 | mapping_free_prime, (void), MAPPING_FREE_PRIME_INDEX); | |
1049 | ||
1050 | PMAP_SUPPORT_PROTOTYPES( | |
1051 | kern_return_t, | |
1052 | mapping_replenish, (void), MAPPING_REPLENISH_INDEX); | |
1053 | ||
1054 | PMAP_SUPPORT_PROTOTYPES( | |
1055 | boolean_t, | |
1056 | pmap_batch_set_cache_attributes, (ppnum_t pn, | |
1057 | unsigned int cacheattr, | |
1058 | unsigned int page_cnt, | |
1059 | unsigned int page_index, | |
1060 | boolean_t doit, | |
1061 | unsigned int *res), PMAP_BATCH_SET_CACHE_ATTRIBUTES_INDEX); | |
1062 | ||
1063 | PMAP_SUPPORT_PROTOTYPES( | |
1064 | void, | |
1065 | pmap_change_wiring, (pmap_t pmap, | |
1066 | vm_map_address_t v, | |
1067 | boolean_t wired), PMAP_CHANGE_WIRING_INDEX); | |
1068 | ||
1069 | PMAP_SUPPORT_PROTOTYPES( | |
1070 | pmap_t, | |
1071 | pmap_create, (ledger_t ledger, | |
1072 | vm_map_size_t size, | |
1073 | boolean_t is_64bit), PMAP_CREATE_INDEX); | |
1074 | ||
1075 | PMAP_SUPPORT_PROTOTYPES( | |
1076 | void, | |
1077 | pmap_destroy, (pmap_t pmap), PMAP_DESTROY_INDEX); | |
1078 | ||
1079 | ||
1080 | ||
1081 | PMAP_SUPPORT_PROTOTYPES( | |
1082 | kern_return_t, | |
1083 | pmap_enter_options, (pmap_t pmap, | |
1084 | vm_map_address_t v, | |
1085 | ppnum_t pn, | |
1086 | vm_prot_t prot, | |
1087 | vm_prot_t fault_type, | |
1088 | unsigned int flags, | |
1089 | boolean_t wired, | |
1090 | unsigned int options), PMAP_ENTER_OPTIONS_INDEX); | |
1091 | ||
1092 | PMAP_SUPPORT_PROTOTYPES( | |
1093 | vm_offset_t, | |
1094 | pmap_extract, (pmap_t pmap, | |
1095 | vm_map_address_t va), PMAP_EXTRACT_INDEX); | |
1096 | ||
1097 | PMAP_SUPPORT_PROTOTYPES( | |
1098 | ppnum_t, | |
1099 | pmap_find_phys, (pmap_t pmap, | |
1100 | addr64_t va), PMAP_FIND_PHYS_INDEX); | |
1101 | ||
1102 | #if (__ARM_VMSA__ > 7) | |
1103 | PMAP_SUPPORT_PROTOTYPES( | |
1104 | void, | |
1105 | pmap_insert_sharedpage, (pmap_t pmap), PMAP_INSERT_SHAREDPAGE_INDEX); | |
1106 | #endif | |
1107 | ||
1108 | ||
1109 | PMAP_SUPPORT_PROTOTYPES( | |
1110 | boolean_t, | |
1111 | pmap_is_empty, (pmap_t pmap, | |
1112 | vm_map_offset_t va_start, | |
1113 | vm_map_offset_t va_end), PMAP_IS_EMPTY_INDEX); | |
1114 | ||
1115 | ||
1116 | PMAP_SUPPORT_PROTOTYPES( | |
1117 | unsigned int, | |
1118 | pmap_map_cpu_windows_copy, (ppnum_t pn, | |
1119 | vm_prot_t prot, | |
1120 | unsigned int wimg_bits), PMAP_MAP_CPU_WINDOWS_COPY_INDEX); | |
1121 | ||
1122 | PMAP_SUPPORT_PROTOTYPES( | |
1123 | kern_return_t, | |
1124 | pmap_nest, (pmap_t grand, | |
1125 | pmap_t subord, | |
1126 | addr64_t vstart, | |
1127 | addr64_t nstart, | |
1128 | uint64_t size), PMAP_NEST_INDEX); | |
1129 | ||
1130 | PMAP_SUPPORT_PROTOTYPES( | |
1131 | void, | |
1132 | pmap_page_protect_options, (ppnum_t ppnum, | |
1133 | vm_prot_t prot, | |
1134 | unsigned int options), PMAP_PAGE_PROTECT_OPTIONS_INDEX); | |
1135 | ||
1136 | PMAP_SUPPORT_PROTOTYPES( | |
1137 | void, | |
1138 | pmap_protect_options, (pmap_t pmap, | |
1139 | vm_map_address_t start, | |
1140 | vm_map_address_t end, | |
1141 | vm_prot_t prot, | |
1142 | unsigned int options, | |
1143 | void *args), PMAP_PROTECT_OPTIONS_INDEX); | |
1144 | ||
1145 | PMAP_SUPPORT_PROTOTYPES( | |
1146 | kern_return_t, | |
1147 | pmap_query_page_info, (pmap_t pmap, | |
1148 | vm_map_offset_t va, | |
1149 | int *disp_p), PMAP_QUERY_PAGE_INFO_INDEX); | |
1150 | ||
1151 | PMAP_SUPPORT_PROTOTYPES( | |
1152 | boolean_t, | |
1153 | pmap_query_resident, (pmap_t pmap, | |
1154 | vm_map_address_t start, | |
1155 | vm_map_address_t end, | |
1156 | mach_vm_size_t *resident_bytes_p, | |
1157 | mach_vm_size_t *compressed_bytes_p), PMAP_QUERY_RESIDENT_INDEX); | |
1158 | ||
1159 | PMAP_SUPPORT_PROTOTYPES( | |
1160 | void, | |
1161 | pmap_reference, (pmap_t pmap), PMAP_REFERENCE_INDEX); | |
1162 | ||
1163 | PMAP_SUPPORT_PROTOTYPES( | |
1164 | int, | |
1165 | pmap_remove_options, (pmap_t pmap, | |
1166 | vm_map_address_t start, | |
1167 | vm_map_address_t end, | |
1168 | int options), PMAP_REMOVE_OPTIONS_INDEX); | |
1169 | ||
1170 | PMAP_SUPPORT_PROTOTYPES( | |
1171 | kern_return_t, | |
1172 | pmap_return, (boolean_t do_panic, | |
1173 | boolean_t do_recurse), PMAP_RETURN_INDEX); | |
1174 | ||
1175 | PMAP_SUPPORT_PROTOTYPES( | |
1176 | void, | |
1177 | pmap_set_cache_attributes, (ppnum_t pn, | |
1178 | unsigned int cacheattr), PMAP_SET_CACHE_ATTRIBUTES_INDEX); | |
1179 | ||
1180 | PMAP_SUPPORT_PROTOTYPES( | |
1181 | void, | |
1182 | pmap_set_nested, (pmap_t pmap), PMAP_SET_NESTED_INDEX); | |
1183 | ||
1184 | #if MACH_ASSERT | |
1185 | PMAP_SUPPORT_PROTOTYPES( | |
1186 | void, | |
1187 | pmap_set_process, (pmap_t pmap, | |
1188 | int pid, | |
1189 | char *procname), PMAP_SET_PROCESS_INDEX); | |
1190 | #endif | |
1191 | ||
1192 | ||
1193 | PMAP_SUPPORT_PROTOTYPES( | |
1194 | void, | |
1195 | pmap_unmap_cpu_windows_copy, (unsigned int index), PMAP_UNMAP_CPU_WINDOWS_COPY_INDEX); | |
1196 | ||
1197 | PMAP_SUPPORT_PROTOTYPES( | |
1198 | kern_return_t, | |
1199 | pmap_unnest_options, (pmap_t grand, | |
1200 | addr64_t vaddr, | |
1201 | uint64_t size, | |
1202 | unsigned int option), PMAP_UNNEST_OPTIONS_INDEX); | |
1203 | ||
1204 | ||
1205 | PMAP_SUPPORT_PROTOTYPES( | |
1206 | void, | |
1207 | phys_attribute_set, (ppnum_t pn, | |
1208 | unsigned int bits), PHYS_ATTRIBUTE_SET_INDEX); | |
1209 | ||
1210 | ||
1211 | PMAP_SUPPORT_PROTOTYPES( | |
1212 | void, | |
1213 | phys_attribute_clear, (ppnum_t pn, | |
1214 | unsigned int bits, | |
1215 | int options, | |
1216 | void *arg), PHYS_ATTRIBUTE_CLEAR_INDEX); | |
1217 | ||
1218 | PMAP_SUPPORT_PROTOTYPES( | |
1219 | void, | |
1220 | pmap_switch, (pmap_t pmap), PMAP_SWITCH_INDEX); | |
1221 | ||
1222 | PMAP_SUPPORT_PROTOTYPES( | |
1223 | void, | |
1224 | pmap_switch_user_ttb, (pmap_t pmap), PMAP_SWITCH_USER_TTB_INDEX); | |
1225 | ||
1226 | ||
1227 | ||
1228 | void pmap_footprint_suspend(vm_map_t map, | |
1229 | boolean_t suspend); | |
1230 | PMAP_SUPPORT_PROTOTYPES( | |
1231 | void, | |
1232 | pmap_footprint_suspend, (vm_map_t map, | |
1233 | boolean_t suspend), | |
1234 | PMAP_FOOTPRINT_SUSPEND_INDEX); | |
1235 | ||
1236 | #if CONFIG_PGTRACE | |
1237 | boolean_t pgtrace_enabled = 0; | |
1238 | ||
1239 | typedef struct { | |
1240 | queue_chain_t chain; | |
1241 | ||
1242 | /* | |
1243 | pmap - pmap for below addresses | |
1244 | ova - original va page address | |
1245 | cva - clone va addresses for pre, target and post pages | |
1246 | cva_spte - clone saved ptes | |
1247 | range - trace range in this map | |
1248 | cloned - has been cloned or not | |
1249 | */ | |
1250 | pmap_t pmap; | |
1251 | vm_map_offset_t ova; | |
1252 | vm_map_offset_t cva[3]; | |
1253 | pt_entry_t cva_spte[3]; | |
1254 | struct { | |
1255 | pmap_paddr_t start; | |
1256 | pmap_paddr_t end; | |
1257 | } range; | |
1258 | bool cloned; | |
1259 | } pmap_pgtrace_map_t; | |
1260 | ||
1261 | static void pmap_pgtrace_init(void); | |
1262 | static bool pmap_pgtrace_enter_clone(pmap_t pmap, vm_map_offset_t va_page, vm_map_offset_t start, vm_map_offset_t end); | |
1263 | static void pmap_pgtrace_remove_clone(pmap_t pmap, pmap_paddr_t pa_page, vm_map_offset_t va_page); | |
1264 | static void pmap_pgtrace_remove_all_clone(pmap_paddr_t pa); | |
1265 | #endif | |
1266 | ||
1267 | #if (__ARM_VMSA__ > 7) | |
1268 | /* | |
1269 | * The low global vector page is mapped at a fixed alias. | |
1270 | * Since the page size is 16k for H8 and newer we map the globals to a 16k | |
1271 | * aligned address. Readers of the globals (e.g. lldb, panic server) need | |
1272 | * to check both addresses anyway for backward compatibility. So for now | |
1273 | * we leave H6 and H7 where they were. | |
1274 | */ | |
1275 | #if (ARM_PGSHIFT == 14) | |
1276 | #define LOWGLOBAL_ALIAS (LOW_GLOBAL_BASE_ADDRESS + 0x4000) | |
1277 | #else | |
1278 | #define LOWGLOBAL_ALIAS (LOW_GLOBAL_BASE_ADDRESS + 0x2000) | |
1279 | #endif | |
1280 | ||
1281 | #else | |
1282 | #define LOWGLOBAL_ALIAS (0xFFFF1000) | |
1283 | #endif | |
1284 | ||
1285 | long long alloc_tteroot_count __attribute__((aligned(8))) MARK_AS_PMAP_DATA = 0LL; | |
1286 | long long alloc_ttepages_count __attribute__((aligned(8))) MARK_AS_PMAP_DATA = 0LL; | |
1287 | long long alloc_ptepages_count __attribute__((aligned(8))) MARK_AS_PMAP_DATA = 0LL; | |
1288 | long long alloc_pmap_pages_count __attribute__((aligned(8))) = 0LL; | |
1289 | ||
1290 | int pt_fake_zone_index = -1; /* index of pmap fake zone */ | |
1291 | ||
1292 | ||
1293 | ||
1294 | /* | |
1295 | * Allocates and initializes a per-CPU data structure for the pmap. | |
1296 | */ | |
1297 | static void | |
1298 | pmap_cpu_data_init_internal(unsigned int cpu_number) | |
1299 | { | |
1300 | pmap_cpu_data_t * pmap_cpu_data = NULL; | |
1301 | ||
1302 | pmap_cpu_data = pmap_get_cpu_data(); | |
1303 | pmap_cpu_data->cpu_number = cpu_number; | |
1304 | } | |
1305 | ||
1306 | void | |
1307 | pmap_cpu_data_init(void) | |
1308 | { | |
1309 | pmap_cpu_data_init_internal(cpu_number()); | |
1310 | } | |
1311 | ||
1312 | static void | |
1313 | pmap_cpu_data_array_init(void) | |
1314 | { | |
1315 | ||
1316 | pmap_cpu_data_init(); | |
1317 | } | |
1318 | ||
1319 | pmap_cpu_data_t * | |
1320 | pmap_get_cpu_data(void) | |
1321 | { | |
1322 | pmap_cpu_data_t * pmap_cpu_data = NULL; | |
1323 | ||
1324 | pmap_cpu_data = &getCpuDatap()->cpu_pmap_cpu_data; | |
1325 | ||
1326 | return pmap_cpu_data; | |
1327 | } | |
1328 | ||
1329 | ||
1330 | /* TODO */ | |
1331 | pmap_paddr_t | |
1332 | pmap_pages_reclaim( | |
1333 | void) | |
1334 | { | |
1335 | boolean_t found_page; | |
1336 | unsigned i; | |
1337 | pt_desc_t *ptdp; | |
1338 | ||
1339 | ||
1340 | /* | |
1341 | * pmap_pages_reclaim() is returning a page by freeing an active pt page. | |
1342 | * To be eligible, a pt page is assigned to a user pmap. It doesn't have any wired pte | |
1343 | * entry and it contains at least one valid pte entry. | |
1344 | * | |
1345 | * In a loop, check for a page in the reclaimed pt page list. | |
1346 | * if one is present, unlink that page and return the physical page address. | |
1347 | * Otherwise, scan the pt page list for an eligible pt page to reclaim. | |
1348 | * If found, invoke pmap_remove_range() on its pmap and address range then | |
1349 | * deallocates that pt page. This will end up adding the pt page to the | |
1350 | * reclaimed pt page list. | |
1351 | * If no eligible page were found in the pt page list, panic. | |
1352 | */ | |
1353 | ||
1354 | simple_lock(&pmap_pages_lock); | |
1355 | pmap_pages_request_count++; | |
1356 | pmap_pages_request_acum++; | |
1357 | ||
1358 | while (1) { | |
1359 | ||
1360 | if (pmap_pages_reclaim_list != (page_free_entry_t *)NULL) { | |
1361 | page_free_entry_t *page_entry; | |
1362 | ||
1363 | page_entry = pmap_pages_reclaim_list; | |
1364 | pmap_pages_reclaim_list = pmap_pages_reclaim_list->next; | |
1365 | simple_unlock(&pmap_pages_lock); | |
1366 | ||
1367 | return((pmap_paddr_t)ml_static_vtop((vm_offset_t)page_entry)); | |
1368 | } | |
1369 | ||
1370 | simple_unlock(&pmap_pages_lock); | |
1371 | ||
1372 | simple_lock(&pt_pages_lock); | |
1373 | ptdp = (pt_desc_t *)queue_first(&pt_page_list); | |
1374 | found_page = FALSE; | |
1375 | ||
1376 | while (!queue_end(&pt_page_list, (queue_entry_t)ptdp)) { | |
1377 | if ((ptdp->pmap != kernel_pmap) | |
1378 | && (ptdp->pmap->nested == FALSE) | |
1379 | && (simple_lock_try(&ptdp->pmap->lock))) { | |
1380 | ||
1381 | unsigned refcnt_acc = 0; | |
1382 | unsigned wiredcnt_acc = 0; | |
1383 | ||
1384 | for (i = 0 ; i < PT_INDEX_MAX ; i++) { | |
1385 | if (ptdp->pt_cnt[i].refcnt & PT_DESC_REFCOUNT) { | |
1386 | /* Do not attempt to free a page that contains an L2 table | |
1387 | * or is currently being operated on by pmap_enter(), | |
1388 | * which can drop the pmap lock. */ | |
1389 | refcnt_acc = 0; | |
1390 | break; | |
1391 | } | |
1392 | refcnt_acc += ptdp->pt_cnt[i].refcnt; | |
1393 | wiredcnt_acc += ptdp->pt_cnt[i].wiredcnt; | |
1394 | } | |
1395 | if ((wiredcnt_acc == 0) && (refcnt_acc != 0)) { | |
1396 | found_page = TRUE; | |
1397 | /* Leave ptdp->pmap locked here. We're about to reclaim | |
1398 | * a tt page from it, so we don't want anyone else messing | |
1399 | * with it while we do that. */ | |
1400 | break; | |
1401 | } | |
1402 | simple_unlock(&ptdp->pmap->lock); | |
1403 | } | |
1404 | ptdp = (pt_desc_t *)queue_next((queue_t)ptdp); | |
1405 | } | |
1406 | if (!found_page) { | |
1407 | panic("pmap_pages_reclaim(): No eligible page in pt_page_list\n"); | |
1408 | } else { | |
1409 | int remove_count = 0; | |
1410 | vm_map_address_t va; | |
1411 | pmap_t pmap; | |
1412 | pt_entry_t *bpte, *epte; | |
1413 | pt_entry_t *pte_p; | |
1414 | tt_entry_t *tte_p; | |
1415 | uint32_t rmv_spte=0; | |
1416 | ||
1417 | simple_unlock(&pt_pages_lock); | |
1418 | pmap = ptdp->pmap; | |
1419 | PMAP_ASSERT_LOCKED(pmap); // pmap lock should be held from loop above | |
1420 | for (i = 0 ; i < PT_INDEX_MAX ; i++) { | |
1421 | va = ptdp->pt_map[i].va; | |
1422 | ||
1423 | tte_p = pmap_tte(pmap, va); | |
1424 | if ((tte_p != (tt_entry_t *) NULL) | |
1425 | && ((*tte_p & ARM_TTE_TYPE_MASK) == ARM_TTE_TYPE_TABLE)) { | |
1426 | ||
1427 | #if (__ARM_VMSA__ == 7) | |
1428 | pte_p = (pt_entry_t *) ttetokv(*tte_p); | |
1429 | bpte = &pte_p[ptenum(va)]; | |
1430 | epte = bpte + PAGE_SIZE/sizeof(pt_entry_t); | |
1431 | #else | |
1432 | pte_p = (pt_entry_t *) ttetokv(*tte_p); | |
1433 | bpte = &pte_p[tt3_index(pmap, va)]; | |
1434 | epte = bpte + PAGE_SIZE/sizeof(pt_entry_t); | |
1435 | #endif | |
1436 | /* | |
1437 | * Use PMAP_OPTIONS_REMOVE to clear any | |
1438 | * "compressed" markers and update the | |
1439 | * "compressed" counter in pmap->stats. | |
1440 | * This means that we lose accounting for | |
1441 | * any compressed pages in this range | |
1442 | * but the alternative is to not be able | |
1443 | * to account for their future decompression, | |
1444 | * which could cause the counter to drift | |
1445 | * more and more. | |
1446 | */ | |
1447 | remove_count += pmap_remove_range_options( | |
1448 | pmap, va, bpte, epte, | |
1449 | &rmv_spte, PMAP_OPTIONS_REMOVE); | |
1450 | if (ptdp->pt_cnt[ARM_PT_DESC_INDEX(pte_p)].refcnt != 0) | |
1451 | panic("pmap_pages_reclaim(): ptdp %p, count %d\n", ptdp, ptdp->pt_cnt[ARM_PT_DESC_INDEX(pte_p)].refcnt); | |
1452 | #if (__ARM_VMSA__ == 7) | |
1453 | pmap_tte_deallocate(pmap, tte_p, PMAP_TT_L1_LEVEL); | |
1454 | flush_mmu_tlb_entry((va & ~ARM_TT_L1_PT_OFFMASK) | (pmap->asid & 0xff)); | |
1455 | flush_mmu_tlb_entry(((va & ~ARM_TT_L1_PT_OFFMASK) + ARM_TT_L1_SIZE) | (pmap->asid & 0xff)); | |
1456 | flush_mmu_tlb_entry(((va & ~ARM_TT_L1_PT_OFFMASK) + 2*ARM_TT_L1_SIZE)| (pmap->asid & 0xff)); | |
1457 | flush_mmu_tlb_entry(((va & ~ARM_TT_L1_PT_OFFMASK) + 3*ARM_TT_L1_SIZE)| (pmap->asid & 0xff)); | |
1458 | #else | |
1459 | pmap_tte_deallocate(pmap, tte_p, PMAP_TT_L2_LEVEL); | |
1460 | flush_mmu_tlb_entry(tlbi_addr(va & ~ARM_TT_L2_OFFMASK) | tlbi_asid(pmap->asid)); | |
1461 | #endif | |
1462 | ||
1463 | if (remove_count > 0) { | |
1464 | #if (__ARM_VMSA__ == 7) | |
1465 | PMAP_UPDATE_TLBS(pmap, va, va+4*ARM_TT_L1_SIZE); | |
1466 | #else | |
1467 | PMAP_UPDATE_TLBS(pmap, va, va+ARM_TT_L2_SIZE); | |
1468 | #endif | |
1469 | } | |
1470 | } | |
1471 | } | |
1472 | // Undo the lock we grabbed when we found ptdp above | |
1473 | PMAP_UNLOCK(pmap); | |
1474 | } | |
1475 | simple_lock(&pmap_pages_lock); | |
1476 | } | |
1477 | } | |
1478 | ||
1479 | ||
1480 | static kern_return_t | |
1481 | pmap_pages_alloc( | |
1482 | pmap_paddr_t *pa, | |
1483 | unsigned size, | |
1484 | unsigned option) | |
1485 | { | |
1486 | vm_page_t m = VM_PAGE_NULL, m_prev; | |
1487 | ||
1488 | if(option & PMAP_PAGES_RECLAIM_NOWAIT) { | |
1489 | assert(size == PAGE_SIZE); | |
1490 | *pa = pmap_pages_reclaim(); | |
1491 | return KERN_SUCCESS; | |
1492 | } | |
1493 | if (size == PAGE_SIZE) { | |
1494 | while ((m = vm_page_grab()) == VM_PAGE_NULL) { | |
1495 | if(option & PMAP_PAGES_ALLOCATE_NOWAIT) { | |
1496 | return KERN_RESOURCE_SHORTAGE; | |
1497 | } | |
1498 | ||
1499 | VM_PAGE_WAIT(); | |
1500 | } | |
1501 | vm_page_lock_queues(); | |
1502 | vm_page_wire(m, VM_KERN_MEMORY_PTE, TRUE); | |
1503 | vm_page_unlock_queues(); | |
1504 | } | |
1505 | if (size == 2*PAGE_SIZE) { | |
1506 | while (cpm_allocate(size, &m, 0, 1, TRUE, 0) != KERN_SUCCESS) { | |
1507 | if(option & PMAP_PAGES_ALLOCATE_NOWAIT) | |
1508 | return KERN_RESOURCE_SHORTAGE; | |
1509 | ||
1510 | VM_PAGE_WAIT(); | |
1511 | } | |
1512 | } | |
1513 | ||
1514 | *pa = (pmap_paddr_t)ptoa(VM_PAGE_GET_PHYS_PAGE(m)); | |
1515 | ||
1516 | vm_object_lock(pmap_object); | |
1517 | while (m != VM_PAGE_NULL) { | |
1518 | vm_page_insert_wired(m, pmap_object, (vm_object_offset_t) ((ptoa(VM_PAGE_GET_PHYS_PAGE(m))) - gPhysBase), VM_KERN_MEMORY_PTE); | |
1519 | m_prev = m; | |
1520 | m = NEXT_PAGE(m_prev); | |
1521 | *(NEXT_PAGE_PTR(m_prev)) = VM_PAGE_NULL; | |
1522 | } | |
1523 | vm_object_unlock(pmap_object); | |
1524 | ||
1525 | OSAddAtomic(size>>PAGE_SHIFT, &inuse_pmap_pages_count); | |
1526 | OSAddAtomic64(size>>PAGE_SHIFT, &alloc_pmap_pages_count); | |
1527 | ||
1528 | return KERN_SUCCESS; | |
1529 | } | |
1530 | ||
1531 | ||
1532 | static void | |
1533 | pmap_pages_free( | |
1534 | pmap_paddr_t pa, | |
1535 | unsigned size) | |
1536 | { | |
1537 | simple_lock(&pmap_pages_lock); | |
1538 | ||
1539 | if (pmap_pages_request_count != 0) { | |
1540 | page_free_entry_t *page_entry; | |
1541 | ||
1542 | pmap_pages_request_count--; | |
1543 | page_entry = (page_free_entry_t *)phystokv(pa); | |
1544 | page_entry->next = pmap_pages_reclaim_list; | |
1545 | pmap_pages_reclaim_list = page_entry; | |
1546 | simple_unlock(&pmap_pages_lock); | |
1547 | ||
1548 | return; | |
1549 | } | |
1550 | ||
1551 | simple_unlock(&pmap_pages_lock); | |
1552 | ||
1553 | vm_page_t m; | |
1554 | pmap_paddr_t pa_max; | |
1555 | ||
1556 | OSAddAtomic(-(size>>PAGE_SHIFT), &inuse_pmap_pages_count); | |
1557 | ||
1558 | for (pa_max = pa + size; pa < pa_max; pa = pa + PAGE_SIZE) { | |
1559 | vm_object_lock(pmap_object); | |
1560 | m = vm_page_lookup(pmap_object, (pa - gPhysBase)); | |
1561 | assert(m != VM_PAGE_NULL); | |
1562 | assert(VM_PAGE_WIRED(m)); | |
1563 | vm_page_lock_queues(); | |
1564 | vm_page_free(m); | |
1565 | vm_page_unlock_queues(); | |
1566 | vm_object_unlock(pmap_object); | |
1567 | } | |
1568 | } | |
1569 | ||
1570 | static inline void | |
1571 | PMAP_ZINFO_PALLOC( | |
1572 | pmap_t pmap, int bytes) | |
1573 | { | |
1574 | pmap_ledger_credit(pmap, task_ledgers.tkm_private, bytes); | |
1575 | } | |
1576 | ||
1577 | static inline void | |
1578 | PMAP_ZINFO_PFREE( | |
1579 | pmap_t pmap, | |
1580 | int bytes) | |
1581 | { | |
1582 | pmap_ledger_debit(pmap, task_ledgers.tkm_private, bytes); | |
1583 | } | |
1584 | ||
1585 | static inline void | |
1586 | pmap_tt_ledger_credit( | |
1587 | pmap_t pmap, | |
1588 | vm_size_t size) | |
1589 | { | |
1590 | if (pmap != kernel_pmap) { | |
1591 | pmap_ledger_credit(pmap, task_ledgers.phys_footprint, size); | |
1592 | pmap_ledger_credit(pmap, task_ledgers.page_table, size); | |
1593 | } | |
1594 | } | |
1595 | ||
1596 | static inline void | |
1597 | pmap_tt_ledger_debit( | |
1598 | pmap_t pmap, | |
1599 | vm_size_t size) | |
1600 | { | |
1601 | if (pmap != kernel_pmap) { | |
1602 | pmap_ledger_debit(pmap, task_ledgers.phys_footprint, size); | |
1603 | pmap_ledger_debit(pmap, task_ledgers.page_table, size); | |
1604 | } | |
1605 | } | |
1606 | ||
1607 | static unsigned int | |
1608 | alloc_asid( | |
1609 | void) | |
1610 | { | |
1611 | unsigned int asid_bitmap_index; | |
1612 | ||
1613 | simple_lock(&pmaps_lock); | |
1614 | for (asid_bitmap_index = 0; asid_bitmap_index < (MAX_ASID / (sizeof(uint32_t) * NBBY)); asid_bitmap_index++) { | |
1615 | unsigned int temp = ffs(asid_bitmap[asid_bitmap_index]); | |
1616 | if (temp > 0) { | |
1617 | temp -= 1; | |
1618 | asid_bitmap[asid_bitmap_index] &= ~(1 << temp); | |
5c9f4661 A |
1619 | #if __ARM_KERNEL_PROTECT__ |
1620 | /* | |
1621 | * We need two ASIDs: n and (n | 1). n is used for EL0, | |
1622 | * (n | 1) for EL1. | |
1623 | */ | |
1624 | unsigned int temp2 = temp | 1; | |
1625 | assert(temp2 < MAX_ASID); | |
1626 | assert(temp2 < 32); | |
1627 | assert(temp2 != temp); | |
1628 | assert(asid_bitmap[asid_bitmap_index] & (1 << temp2)); | |
1629 | ||
1630 | /* Grab the second ASID. */ | |
1631 | asid_bitmap[asid_bitmap_index] &= ~(1 << temp2); | |
1632 | #endif /* __ARM_KERNEL_PROTECT__ */ | |
5ba3f43e A |
1633 | simple_unlock(&pmaps_lock); |
1634 | ||
5c9f4661 A |
1635 | /* |
1636 | * We should never vend out physical ASID 0 through this | |
1637 | * method, as it belongs to the kernel. | |
1638 | */ | |
5ba3f43e A |
1639 | assert(((asid_bitmap_index * sizeof(uint32_t) * NBBY + temp) % ARM_MAX_ASID) != 0); |
1640 | ||
5c9f4661 A |
1641 | #if __ARM_KERNEL_PROTECT__ |
1642 | /* Or the kernel EL1 ASID. */ | |
1643 | assert(((asid_bitmap_index * sizeof(uint32_t) * NBBY + temp) % ARM_MAX_ASID) != 1); | |
1644 | #endif /* __ARM_KERNEL_PROTECT__ */ | |
1645 | ||
5ba3f43e A |
1646 | return (asid_bitmap_index * sizeof(uint32_t) * NBBY + temp); |
1647 | } | |
1648 | } | |
1649 | simple_unlock(&pmaps_lock); | |
1650 | /* | |
1651 | * ToDo: Add code to deal with pmap with no asid panic for now. Not | |
1652 | * an issue with the small config process hard limit | |
1653 | */ | |
1654 | panic("alloc_asid(): out of ASID number"); | |
1655 | return MAX_ASID; | |
1656 | } | |
1657 | ||
1658 | static void | |
1659 | free_asid( | |
1660 | int asid) | |
1661 | { | |
1662 | /* Don't free up any alias of physical ASID 0. */ | |
1663 | assert((asid % ARM_MAX_ASID) != 0); | |
1664 | ||
1665 | simple_lock(&pmaps_lock); | |
1666 | setbit(asid, (int *) asid_bitmap); | |
5c9f4661 A |
1667 | |
1668 | #if __ARM_KERNEL_PROTECT__ | |
1669 | assert((asid | 1) < MAX_ASID); | |
1670 | assert((asid | 1) != asid); | |
1671 | setbit(asid | 1, (int *) asid_bitmap); | |
1672 | #endif /* __ARM_KERNEL_PROTECT__ */ | |
1673 | ||
5ba3f43e A |
1674 | simple_unlock(&pmaps_lock); |
1675 | } | |
1676 | ||
1677 | #define PV_LOW_WATER_MARK_DEFAULT 0x200 | |
1678 | #define PV_KERN_LOW_WATER_MARK_DEFAULT 0x200 | |
1679 | #define PV_ALLOC_CHUNK_INITIAL 0x200 | |
1680 | #define PV_KERN_ALLOC_CHUNK_INITIAL 0x200 | |
1681 | #define PV_ALLOC_INITIAL_TARGET (PV_ALLOC_CHUNK_INITIAL * 5) | |
1682 | #define PV_KERN_ALLOC_INITIAL_TARGET (PV_KERN_ALLOC_CHUNK_INITIAL) | |
1683 | ||
1684 | ||
1685 | uint32_t pv_free_count MARK_AS_PMAP_DATA = 0; | |
1686 | uint32_t pv_page_count MARK_AS_PMAP_DATA = 0; | |
1687 | uint32_t pv_kern_free_count MARK_AS_PMAP_DATA = 0; | |
1688 | ||
1689 | uint32_t pv_low_water_mark MARK_AS_PMAP_DATA; | |
1690 | uint32_t pv_kern_low_water_mark MARK_AS_PMAP_DATA; | |
1691 | uint32_t pv_alloc_chunk MARK_AS_PMAP_DATA; | |
1692 | uint32_t pv_kern_alloc_chunk MARK_AS_PMAP_DATA; | |
1693 | ||
1694 | thread_t mapping_replenish_thread; | |
1695 | event_t mapping_replenish_event; | |
1696 | event_t pmap_user_pv_throttle_event; | |
1697 | volatile uint32_t mappingrecurse = 0; | |
1698 | ||
1699 | uint64_t pmap_pv_throttle_stat; | |
1700 | uint64_t pmap_pv_throttled_waiters; | |
1701 | ||
1702 | unsigned pmap_mapping_thread_wakeups; | |
1703 | unsigned pmap_kernel_reserve_replenish_stat MARK_AS_PMAP_DATA; | |
1704 | unsigned pmap_user_reserve_replenish_stat MARK_AS_PMAP_DATA; | |
1705 | unsigned pmap_kern_reserve_alloc_stat MARK_AS_PMAP_DATA; | |
1706 | ||
1707 | ||
1708 | static void | |
1709 | pv_init( | |
1710 | void) | |
1711 | { | |
1712 | simple_lock_init(&pv_free_list_lock, 0); | |
1713 | simple_lock_init(&pv_kern_free_list_lock, 0); | |
1714 | pv_free_list = PV_ENTRY_NULL; | |
1715 | pv_free_count = 0x0U; | |
1716 | pv_kern_free_list = PV_ENTRY_NULL; | |
1717 | pv_kern_free_count = 0x0U; | |
1718 | } | |
1719 | ||
1720 | static inline void PV_ALLOC(pv_entry_t **pv_ep); | |
1721 | static inline void PV_KERN_ALLOC(pv_entry_t **pv_e); | |
1722 | static inline void PV_FREE_LIST(pv_entry_t *pv_eh, pv_entry_t *pv_et, int pv_cnt); | |
1723 | static inline void PV_KERN_FREE_LIST(pv_entry_t *pv_eh, pv_entry_t *pv_et, int pv_cnt); | |
1724 | ||
1725 | static inline void pmap_pv_throttle(pmap_t p); | |
1726 | ||
1727 | static boolean_t | |
1728 | pv_alloc( | |
1729 | pmap_t pmap, | |
1730 | unsigned int pai, | |
1731 | pv_entry_t **pvepp) | |
1732 | { | |
1733 | PMAP_ASSERT_LOCKED(pmap); | |
1734 | ASSERT_PVH_LOCKED(pai); | |
1735 | PV_ALLOC(pvepp); | |
1736 | if (PV_ENTRY_NULL == *pvepp) { | |
1737 | ||
1738 | if (kernel_pmap == pmap) { | |
1739 | ||
1740 | PV_KERN_ALLOC(pvepp); | |
1741 | ||
1742 | if (PV_ENTRY_NULL == *pvepp) { | |
1743 | pv_entry_t *pv_e; | |
1744 | pv_entry_t *pv_eh; | |
1745 | pv_entry_t *pv_et; | |
1746 | int pv_cnt; | |
1747 | unsigned j; | |
1748 | pmap_paddr_t pa; | |
1749 | kern_return_t ret; | |
1750 | ||
1751 | UNLOCK_PVH(pai); | |
1752 | PMAP_UNLOCK(pmap); | |
1753 | ||
1754 | ret = pmap_pages_alloc(&pa, PAGE_SIZE, PMAP_PAGES_ALLOCATE_NOWAIT); | |
1755 | ||
1756 | if (ret == KERN_RESOURCE_SHORTAGE) { | |
1757 | ret = pmap_pages_alloc(&pa, PAGE_SIZE, PMAP_PAGES_RECLAIM_NOWAIT); | |
1758 | } | |
1759 | ||
1760 | if (ret != KERN_SUCCESS) { | |
1761 | panic("%s: failed to alloc page for kernel, ret=%d, " | |
1762 | "pmap=%p, pai=%u, pvepp=%p", | |
1763 | __FUNCTION__, ret, | |
1764 | pmap, pai, pvepp); | |
1765 | } | |
1766 | ||
1767 | pv_page_count++; | |
1768 | ||
1769 | pv_e = (pv_entry_t *)phystokv(pa); | |
1770 | pv_cnt = 0; | |
1771 | pv_eh = pv_et = PV_ENTRY_NULL; | |
1772 | *pvepp = pv_e; | |
1773 | pv_e++; | |
1774 | ||
1775 | for (j = 1; j < (PAGE_SIZE/sizeof(pv_entry_t)) ; j++) { | |
1776 | pv_e->pve_next = pv_eh; | |
1777 | pv_eh = pv_e; | |
1778 | ||
1779 | if (pv_et == PV_ENTRY_NULL) | |
1780 | pv_et = pv_e; | |
1781 | pv_cnt++; | |
1782 | pv_e++; | |
1783 | } | |
1784 | PV_KERN_FREE_LIST(pv_eh, pv_et, pv_cnt); | |
1785 | PMAP_LOCK(pmap); | |
1786 | LOCK_PVH(pai); | |
1787 | return FALSE; | |
1788 | } | |
1789 | } else { | |
1790 | UNLOCK_PVH(pai); | |
1791 | PMAP_UNLOCK(pmap); | |
1792 | pmap_pv_throttle(pmap); | |
1793 | { | |
1794 | pv_entry_t *pv_e; | |
1795 | pv_entry_t *pv_eh; | |
1796 | pv_entry_t *pv_et; | |
1797 | int pv_cnt; | |
1798 | unsigned j; | |
1799 | pmap_paddr_t pa; | |
1800 | kern_return_t ret; | |
1801 | ||
1802 | ret = pmap_pages_alloc(&pa, PAGE_SIZE, 0); | |
1803 | ||
1804 | if (ret != KERN_SUCCESS) { | |
1805 | panic("%s: failed to alloc page, ret=%d, " | |
1806 | "pmap=%p, pai=%u, pvepp=%p", | |
1807 | __FUNCTION__, ret, | |
1808 | pmap, pai, pvepp); | |
1809 | } | |
1810 | ||
1811 | pv_page_count++; | |
1812 | ||
1813 | pv_e = (pv_entry_t *)phystokv(pa); | |
1814 | pv_cnt = 0; | |
1815 | pv_eh = pv_et = PV_ENTRY_NULL; | |
1816 | *pvepp = pv_e; | |
1817 | pv_e++; | |
1818 | ||
1819 | for (j = 1; j < (PAGE_SIZE/sizeof(pv_entry_t)) ; j++) { | |
1820 | pv_e->pve_next = pv_eh; | |
1821 | pv_eh = pv_e; | |
1822 | ||
1823 | if (pv_et == PV_ENTRY_NULL) | |
1824 | pv_et = pv_e; | |
1825 | pv_cnt++; | |
1826 | pv_e++; | |
1827 | } | |
1828 | PV_FREE_LIST(pv_eh, pv_et, pv_cnt); | |
1829 | } | |
1830 | PMAP_LOCK(pmap); | |
1831 | LOCK_PVH(pai); | |
1832 | return FALSE; | |
1833 | } | |
1834 | } | |
1835 | assert(PV_ENTRY_NULL != *pvepp); | |
1836 | return TRUE; | |
1837 | } | |
1838 | ||
1839 | static void | |
1840 | pv_free( | |
1841 | pv_entry_t *pvep) | |
1842 | { | |
1843 | PV_FREE_LIST(pvep, pvep, 1); | |
1844 | } | |
1845 | ||
1846 | static void | |
1847 | pv_list_free( | |
1848 | pv_entry_t *pvehp, | |
1849 | pv_entry_t *pvetp, | |
1850 | unsigned int cnt) | |
1851 | { | |
1852 | PV_FREE_LIST(pvehp, pvetp, cnt); | |
1853 | } | |
1854 | ||
1855 | ||
1856 | ||
1857 | static inline void PV_ALLOC(pv_entry_t **pv_ep) { | |
1858 | assert(*pv_ep == PV_ENTRY_NULL); | |
1859 | simple_lock(&pv_free_list_lock); | |
1860 | /* | |
1861 | * If the kernel reserved pool is low, let non-kernel mappings allocate | |
1862 | * synchronously, possibly subject to a throttle. | |
1863 | */ | |
1864 | if ((pv_kern_free_count >= pv_kern_low_water_mark) && ((*pv_ep = pv_free_list) != 0)) { | |
1865 | pv_free_list = (pv_entry_t *)(*pv_ep)->pve_next; | |
1866 | (*pv_ep)->pve_next = PV_ENTRY_NULL; | |
1867 | pv_free_count--; | |
1868 | } | |
1869 | ||
1870 | simple_unlock(&pv_free_list_lock); | |
1871 | ||
1872 | if ((pv_free_count < pv_low_water_mark) || (pv_kern_free_count < pv_kern_low_water_mark)) { | |
1873 | if (!mappingrecurse && hw_compare_and_store(0,1, &mappingrecurse)) | |
1874 | thread_wakeup(&mapping_replenish_event); | |
1875 | } | |
1876 | } | |
1877 | ||
1878 | static inline void PV_FREE_LIST(pv_entry_t *pv_eh, pv_entry_t *pv_et, int pv_cnt) { | |
1879 | simple_lock(&pv_free_list_lock); | |
1880 | pv_et->pve_next = (pv_entry_t *)pv_free_list; | |
1881 | pv_free_list = pv_eh; | |
1882 | pv_free_count += pv_cnt; | |
1883 | simple_unlock(&pv_free_list_lock); | |
1884 | } | |
1885 | ||
1886 | static inline void PV_KERN_ALLOC(pv_entry_t **pv_e) { | |
1887 | assert(*pv_e == PV_ENTRY_NULL); | |
1888 | simple_lock(&pv_kern_free_list_lock); | |
1889 | ||
1890 | if ((*pv_e = pv_kern_free_list) != 0) { | |
1891 | pv_kern_free_list = (pv_entry_t *)(*pv_e)->pve_next; | |
1892 | (*pv_e)->pve_next = PV_ENTRY_NULL; | |
1893 | pv_kern_free_count--; | |
1894 | pmap_kern_reserve_alloc_stat++; | |
1895 | } | |
1896 | ||
1897 | simple_unlock(&pv_kern_free_list_lock); | |
1898 | ||
1899 | if (pv_kern_free_count < pv_kern_low_water_mark) { | |
1900 | if (!mappingrecurse && hw_compare_and_store(0,1, &mappingrecurse)) { | |
1901 | thread_wakeup(&mapping_replenish_event); | |
1902 | } | |
1903 | } | |
1904 | } | |
1905 | ||
1906 | static inline void PV_KERN_FREE_LIST(pv_entry_t *pv_eh, pv_entry_t *pv_et, int pv_cnt) { | |
1907 | simple_lock(&pv_kern_free_list_lock); | |
1908 | pv_et->pve_next = pv_kern_free_list; | |
1909 | pv_kern_free_list = pv_eh; | |
1910 | pv_kern_free_count += pv_cnt; | |
1911 | simple_unlock(&pv_kern_free_list_lock); | |
1912 | } | |
1913 | ||
1914 | static inline void pmap_pv_throttle(__unused pmap_t p) { | |
1915 | assert(p != kernel_pmap); | |
1916 | /* Apply throttle on non-kernel mappings */ | |
1917 | if (pv_kern_free_count < (pv_kern_low_water_mark / 2)) { | |
1918 | pmap_pv_throttle_stat++; | |
1919 | /* This doesn't need to be strictly accurate, merely a hint | |
1920 | * to eliminate the timeout when the reserve is replenished. | |
1921 | */ | |
1922 | pmap_pv_throttled_waiters++; | |
1923 | assert_wait_timeout(&pmap_user_pv_throttle_event, THREAD_UNINT, 1, 1000 * NSEC_PER_USEC); | |
1924 | thread_block(THREAD_CONTINUE_NULL); | |
1925 | } | |
1926 | } | |
1927 | ||
1928 | /* | |
1929 | * Creates a target number of free pv_entry_t objects for the kernel free list | |
1930 | * and the general free list. | |
1931 | */ | |
1932 | static kern_return_t | |
1933 | mapping_free_prime_internal(void) | |
1934 | { | |
1935 | unsigned j; | |
1936 | pmap_paddr_t pa; | |
1937 | kern_return_t ret; | |
1938 | pv_entry_t *pv_e; | |
1939 | pv_entry_t *pv_eh; | |
1940 | pv_entry_t *pv_et; | |
1941 | int pv_cnt; | |
1942 | int alloc_options = 0; | |
1943 | int needed_pv_cnt = 0; | |
1944 | int target_pv_free_cnt = 0; | |
1945 | ||
1946 | SECURITY_READ_ONLY_LATE(static boolean_t) mapping_free_prime_internal_called = FALSE; | |
1947 | SECURITY_READ_ONLY_LATE(static boolean_t) mapping_free_prime_internal_done = FALSE; | |
1948 | ||
1949 | if (mapping_free_prime_internal_done) { | |
1950 | return KERN_FAILURE; | |
1951 | } | |
1952 | ||
1953 | if (!mapping_free_prime_internal_called) { | |
1954 | mapping_free_prime_internal_called = TRUE; | |
1955 | ||
1956 | pv_low_water_mark = PV_LOW_WATER_MARK_DEFAULT; | |
1957 | ||
1958 | /* Alterable via sysctl */ | |
1959 | pv_kern_low_water_mark = PV_KERN_LOW_WATER_MARK_DEFAULT; | |
1960 | ||
1961 | pv_kern_alloc_chunk = PV_KERN_ALLOC_CHUNK_INITIAL; | |
1962 | pv_alloc_chunk = PV_ALLOC_CHUNK_INITIAL; | |
1963 | } | |
1964 | ||
1965 | pv_cnt = 0; | |
1966 | pv_eh = pv_et = PV_ENTRY_NULL; | |
1967 | target_pv_free_cnt = PV_ALLOC_INITIAL_TARGET; | |
1968 | ||
1969 | /* | |
1970 | * We don't take the lock to read pv_free_count, as we should not be | |
1971 | * invoking this from a multithreaded context. | |
1972 | */ | |
1973 | needed_pv_cnt = target_pv_free_cnt - pv_free_count; | |
1974 | ||
1975 | if (needed_pv_cnt > target_pv_free_cnt) { | |
1976 | needed_pv_cnt = 0; | |
1977 | } | |
1978 | ||
1979 | while (pv_cnt < needed_pv_cnt) { | |
1980 | ret = pmap_pages_alloc(&pa, PAGE_SIZE, alloc_options); | |
1981 | ||
1982 | assert(ret == KERN_SUCCESS); | |
1983 | ||
1984 | pv_page_count++; | |
1985 | ||
1986 | pv_e = (pv_entry_t *)phystokv(pa); | |
1987 | ||
1988 | for (j = 0; j < (PAGE_SIZE/sizeof(pv_entry_t)) ; j++) { | |
1989 | pv_e->pve_next = pv_eh; | |
1990 | pv_eh = pv_e; | |
1991 | ||
1992 | if (pv_et == PV_ENTRY_NULL) | |
1993 | pv_et = pv_e; | |
1994 | pv_cnt++; | |
1995 | pv_e++; | |
1996 | } | |
1997 | } | |
1998 | ||
1999 | if (pv_cnt) { | |
2000 | PV_FREE_LIST(pv_eh, pv_et, pv_cnt); | |
2001 | } | |
2002 | ||
2003 | pv_cnt = 0; | |
2004 | pv_eh = pv_et = PV_ENTRY_NULL; | |
2005 | target_pv_free_cnt = PV_KERN_ALLOC_INITIAL_TARGET; | |
2006 | ||
2007 | /* | |
2008 | * We don't take the lock to read pv_kern_free_count, as we should not | |
2009 | * be invoking this from a multithreaded context. | |
2010 | */ | |
2011 | needed_pv_cnt = target_pv_free_cnt - pv_kern_free_count; | |
2012 | ||
2013 | if (needed_pv_cnt > target_pv_free_cnt) { | |
2014 | needed_pv_cnt = 0; | |
2015 | } | |
2016 | ||
2017 | while (pv_cnt < needed_pv_cnt) { | |
2018 | ||
2019 | ret = pmap_pages_alloc(&pa, PAGE_SIZE, alloc_options); | |
2020 | ||
2021 | assert(ret == KERN_SUCCESS); | |
2022 | pv_page_count++; | |
2023 | ||
2024 | pv_e = (pv_entry_t *)phystokv(pa); | |
2025 | ||
2026 | for (j = 0; j < (PAGE_SIZE/sizeof(pv_entry_t)) ; j++) { | |
2027 | pv_e->pve_next = pv_eh; | |
2028 | pv_eh = pv_e; | |
2029 | ||
2030 | if (pv_et == PV_ENTRY_NULL) | |
2031 | pv_et = pv_e; | |
2032 | pv_cnt++; | |
2033 | pv_e++; | |
2034 | } | |
2035 | } | |
2036 | ||
2037 | if (pv_cnt) { | |
2038 | PV_KERN_FREE_LIST(pv_eh, pv_et, pv_cnt); | |
2039 | } | |
2040 | ||
2041 | mapping_free_prime_internal_done = TRUE; | |
2042 | return KERN_SUCCESS; | |
2043 | } | |
2044 | ||
2045 | void | |
2046 | mapping_free_prime(void) | |
2047 | { | |
2048 | kern_return_t kr = KERN_FAILURE; | |
2049 | ||
2050 | kr = mapping_free_prime_internal(); | |
2051 | ||
2052 | if (kr != KERN_SUCCESS) { | |
2053 | panic("%s: failed, kr=%d", __FUNCTION__, kr); | |
2054 | } | |
2055 | } | |
2056 | ||
2057 | void mapping_replenish(void); | |
2058 | ||
2059 | void mapping_adjust(void) { | |
2060 | kern_return_t mres; | |
2061 | ||
2062 | mres = kernel_thread_start_priority((thread_continue_t)mapping_replenish, NULL, MAXPRI_KERNEL, &mapping_replenish_thread); | |
2063 | if (mres != KERN_SUCCESS) { | |
2064 | panic("pmap: mapping_replenish thread creation failed"); | |
2065 | } | |
2066 | thread_deallocate(mapping_replenish_thread); | |
2067 | } | |
2068 | ||
2069 | /* | |
2070 | * Fills the kernel and general PV free lists back up to their low watermarks. | |
2071 | */ | |
2072 | static kern_return_t | |
2073 | mapping_replenish_internal(void) | |
2074 | { | |
2075 | pv_entry_t *pv_e; | |
2076 | pv_entry_t *pv_eh; | |
2077 | pv_entry_t *pv_et; | |
2078 | int pv_cnt; | |
2079 | unsigned j; | |
2080 | pmap_paddr_t pa; | |
2081 | kern_return_t ret = KERN_SUCCESS; | |
2082 | ||
2083 | while (pv_kern_free_count < pv_kern_low_water_mark) { | |
2084 | pv_cnt = 0; | |
2085 | pv_eh = pv_et = PV_ENTRY_NULL; | |
2086 | ||
2087 | ret = pmap_pages_alloc(&pa, PAGE_SIZE, 0); | |
2088 | assert(ret == KERN_SUCCESS); | |
2089 | ||
2090 | pv_page_count++; | |
2091 | ||
2092 | pv_e = (pv_entry_t *)phystokv(pa); | |
2093 | ||
2094 | for (j = 0; j < (PAGE_SIZE/sizeof(pv_entry_t)) ; j++) { | |
2095 | pv_e->pve_next = pv_eh; | |
2096 | pv_eh = pv_e; | |
2097 | ||
2098 | if (pv_et == PV_ENTRY_NULL) | |
2099 | pv_et = pv_e; | |
2100 | pv_cnt++; | |
2101 | pv_e++; | |
2102 | } | |
2103 | pmap_kernel_reserve_replenish_stat += pv_cnt; | |
2104 | PV_KERN_FREE_LIST(pv_eh, pv_et, pv_cnt); | |
2105 | } | |
2106 | ||
2107 | while (pv_free_count < pv_low_water_mark) { | |
2108 | pv_cnt = 0; | |
2109 | pv_eh = pv_et = PV_ENTRY_NULL; | |
2110 | ||
2111 | ret = pmap_pages_alloc(&pa, PAGE_SIZE, 0); | |
2112 | assert(ret == KERN_SUCCESS); | |
2113 | ||
2114 | pv_page_count++; | |
2115 | ||
2116 | pv_e = (pv_entry_t *)phystokv(pa); | |
2117 | ||
2118 | for (j = 0; j < (PAGE_SIZE/sizeof(pv_entry_t)) ; j++) { | |
2119 | pv_e->pve_next = pv_eh; | |
2120 | pv_eh = pv_e; | |
2121 | ||
2122 | if (pv_et == PV_ENTRY_NULL) | |
2123 | pv_et = pv_e; | |
2124 | pv_cnt++; | |
2125 | pv_e++; | |
2126 | } | |
2127 | pmap_user_reserve_replenish_stat += pv_cnt; | |
2128 | PV_FREE_LIST(pv_eh, pv_et, pv_cnt); | |
2129 | } | |
2130 | ||
2131 | return ret; | |
2132 | } | |
2133 | ||
2134 | /* | |
2135 | * Continuation function that keeps the PV free lists from running out of free | |
2136 | * elements. | |
2137 | */ | |
2138 | __attribute__((noreturn)) | |
2139 | void | |
2140 | mapping_replenish(void) | |
2141 | { | |
2142 | kern_return_t kr; | |
2143 | ||
2144 | /* We qualify for VM privileges...*/ | |
2145 | current_thread()->options |= TH_OPT_VMPRIV; | |
2146 | ||
2147 | for (;;) { | |
2148 | kr = mapping_replenish_internal(); | |
2149 | ||
2150 | if (kr != KERN_SUCCESS) { | |
2151 | panic("%s: failed, kr=%d", __FUNCTION__, kr); | |
2152 | } | |
2153 | ||
2154 | /* | |
2155 | * Wake threads throttled while the kernel reserve was being replenished. | |
2156 | */ | |
2157 | if (pmap_pv_throttled_waiters) { | |
2158 | pmap_pv_throttled_waiters = 0; | |
2159 | thread_wakeup(&pmap_user_pv_throttle_event); | |
2160 | } | |
2161 | ||
2162 | /* Check if the kernel pool has been depleted since the | |
2163 | * first pass, to reduce refill latency. | |
2164 | */ | |
2165 | if (pv_kern_free_count < pv_kern_low_water_mark) | |
2166 | continue; | |
2167 | /* Block sans continuation to avoid yielding kernel stack */ | |
2168 | assert_wait(&mapping_replenish_event, THREAD_UNINT); | |
2169 | mappingrecurse = 0; | |
2170 | thread_block(THREAD_CONTINUE_NULL); | |
2171 | pmap_mapping_thread_wakeups++; | |
2172 | } | |
2173 | } | |
2174 | ||
2175 | ||
2176 | static void | |
2177 | ptd_bootstrap( | |
2178 | pt_desc_t *ptdp, | |
2179 | unsigned int ptd_cnt) | |
2180 | { | |
2181 | simple_lock_init(&ptd_free_list_lock, 0); | |
2182 | while (ptd_cnt != 0) { | |
2183 | (*(void **)ptdp) = (void *)ptd_free_list; | |
2184 | ptd_free_list = ptdp; | |
2185 | ptdp++; | |
2186 | ptd_cnt--; | |
2187 | ptd_free_count++; | |
2188 | } | |
2189 | ptd_preboot = FALSE; | |
2190 | } | |
2191 | ||
2192 | static pt_desc_t | |
2193 | *ptd_alloc( | |
2194 | pmap_t pmap) | |
2195 | { | |
2196 | pt_desc_t *ptdp; | |
2197 | unsigned i; | |
2198 | ||
2199 | if (!ptd_preboot) | |
2200 | simple_lock(&ptd_free_list_lock); | |
2201 | ||
2202 | if (ptd_free_count == 0) { | |
2203 | unsigned int ptd_cnt; | |
2204 | pt_desc_t *ptdp_next; | |
2205 | ||
2206 | if (ptd_preboot) { | |
2207 | ptdp = (pt_desc_t *)avail_start; | |
2208 | avail_start += ARM_PGBYTES; | |
2209 | ptdp_next = ptdp; | |
2210 | ptd_cnt = ARM_PGBYTES/sizeof(pt_desc_t); | |
2211 | } else { | |
2212 | pmap_paddr_t pa; | |
2213 | kern_return_t ret; | |
2214 | ||
2215 | simple_unlock(&ptd_free_list_lock); | |
2216 | ||
2217 | if (pmap_pages_alloc(&pa, PAGE_SIZE, PMAP_PAGES_ALLOCATE_NOWAIT) != KERN_SUCCESS) { | |
2218 | ret = pmap_pages_alloc(&pa, PAGE_SIZE, PMAP_PAGES_RECLAIM_NOWAIT); | |
2219 | assert(ret == KERN_SUCCESS); | |
2220 | } | |
2221 | ptdp = (pt_desc_t *)phystokv(pa); | |
2222 | ||
2223 | simple_lock(&ptd_free_list_lock); | |
2224 | ptdp_next = ptdp; | |
2225 | ptd_cnt = PAGE_SIZE/sizeof(pt_desc_t); | |
2226 | } | |
2227 | ||
2228 | while (ptd_cnt != 0) { | |
2229 | (*(void **)ptdp_next) = (void *)ptd_free_list; | |
2230 | ptd_free_list = ptdp_next; | |
2231 | ptdp_next++; | |
2232 | ptd_cnt--; | |
2233 | ptd_free_count++; | |
2234 | } | |
2235 | } | |
2236 | ||
2237 | if ((ptdp = ptd_free_list) != PTD_ENTRY_NULL) { | |
2238 | ptd_free_list = (pt_desc_t *)(*(void **)ptdp); | |
2239 | ptd_free_count--; | |
2240 | } else { | |
2241 | panic("out of ptd entry\n"); | |
2242 | } | |
2243 | ||
2244 | if (!ptd_preboot) | |
2245 | simple_unlock(&ptd_free_list_lock); | |
2246 | ||
2247 | ptdp->pt_page.next = NULL; | |
2248 | ptdp->pt_page.prev = NULL; | |
2249 | ptdp->pmap = pmap; | |
2250 | ||
2251 | for (i = 0 ; i < PT_INDEX_MAX ; i++) { | |
2252 | ptdp->pt_map[i].va = 0; | |
2253 | ptdp->pt_cnt[i].refcnt = 0; | |
2254 | ptdp->pt_cnt[i].wiredcnt = 0; | |
2255 | } | |
2256 | simple_lock(&pt_pages_lock); | |
2257 | queue_enter(&pt_page_list, ptdp, pt_desc_t *, pt_page); | |
2258 | simple_unlock(&pt_pages_lock); | |
2259 | ||
2260 | pmap_tt_ledger_credit(pmap, sizeof(*ptdp)); | |
2261 | ||
2262 | return(ptdp); | |
2263 | } | |
2264 | ||
2265 | static void | |
2266 | ptd_deallocate( | |
2267 | pt_desc_t *ptdp) | |
2268 | { | |
2269 | unsigned i; | |
2270 | pmap_t pmap = ptdp->pmap; | |
2271 | ||
2272 | if (ptd_preboot) { | |
2273 | panic("ptd_deallocate(): early boot\n"); | |
2274 | } | |
2275 | for (i = 0 ; i < PT_INDEX_MAX ; i++) { | |
2276 | if (ptdp->pt_cnt[i].refcnt != 0) | |
2277 | panic("ptd_deallocate(): ptdp=%p refcnt=0x%x \n", ptdp, ptdp->pt_cnt[i].refcnt); | |
2278 | } | |
2279 | ||
2280 | if (ptdp->pt_page.next != NULL) { | |
2281 | simple_lock(&pt_pages_lock); | |
2282 | queue_remove(&pt_page_list, ptdp, pt_desc_t *, pt_page); | |
2283 | simple_unlock(&pt_pages_lock); | |
2284 | } | |
2285 | simple_lock(&ptd_free_list_lock); | |
2286 | (*(void **)ptdp) = (void *)ptd_free_list; | |
2287 | ptd_free_list = (pt_desc_t *)ptdp; | |
2288 | ptd_free_count++; | |
2289 | simple_unlock(&ptd_free_list_lock); | |
2290 | pmap_tt_ledger_debit(pmap, sizeof(*ptdp)); | |
2291 | } | |
2292 | ||
2293 | static void | |
2294 | ptd_init( | |
2295 | pt_desc_t *ptdp, | |
2296 | pmap_t pmap, | |
2297 | vm_map_address_t va, | |
2298 | unsigned int level, | |
2299 | pt_entry_t *pte_p) | |
2300 | { | |
2301 | if (ptdp->pmap != pmap) | |
2302 | panic("ptd_init(): pmap mismatch\n"); | |
2303 | ||
2304 | #if (__ARM_VMSA__ == 7) | |
2305 | assert(level == 2); | |
2306 | ptdp->pt_map[ARM_PT_DESC_INDEX(pte_p)].va = (vm_offset_t) va & ~(ARM_TT_L1_PT_OFFMASK); | |
2307 | #else | |
2308 | if (level == 3) { | |
2309 | ptdp->pt_map[ARM_PT_DESC_INDEX(pte_p)].va = (vm_offset_t) va & ~ARM_TT_L2_OFFMASK ; | |
2310 | } else if (level == 2) | |
2311 | ptdp->pt_map[ARM_PT_DESC_INDEX(pte_p)].va = (vm_offset_t) va & ~ARM_TT_L1_OFFMASK ; | |
2312 | #endif | |
2313 | if (level < PMAP_TT_MAX_LEVEL) | |
2314 | ptdp->pt_cnt[ARM_PT_DESC_INDEX(pte_p)].refcnt = PT_DESC_REFCOUNT; | |
2315 | ||
2316 | } | |
2317 | ||
2318 | ||
2319 | boolean_t | |
2320 | pmap_valid_address( | |
2321 | pmap_paddr_t addr) | |
2322 | { | |
2323 | return pa_valid(addr); | |
2324 | } | |
2325 | ||
2326 | #if (__ARM_VMSA__ == 7) | |
2327 | ||
2328 | /* | |
2329 | * Given an offset and a map, compute the address of the | |
2330 | * corresponding translation table entry. | |
2331 | */ | |
2332 | static inline tt_entry_t * | |
2333 | pmap_tte(pmap_t pmap, | |
2334 | vm_map_address_t addr) | |
2335 | { | |
2336 | if (!(tte_index(pmap, addr) < pmap->tte_index_max)) | |
2337 | return (tt_entry_t *)NULL; | |
2338 | return (&pmap->tte[tte_index(pmap, addr)]); | |
2339 | } | |
2340 | ||
2341 | ||
2342 | /* | |
2343 | * Given an offset and a map, compute the address of the | |
2344 | * pte. If the address is invalid with respect to the map | |
2345 | * then PT_ENTRY_NULL is returned (and the map may need to grow). | |
2346 | * | |
2347 | * This is only used internally. | |
2348 | */ | |
2349 | static inline pt_entry_t * | |
2350 | pmap_pte( | |
2351 | pmap_t pmap, | |
2352 | vm_map_address_t addr) | |
2353 | { | |
2354 | pt_entry_t *ptp; | |
2355 | tt_entry_t *ttp; | |
2356 | tt_entry_t tte; | |
2357 | ||
2358 | ttp = pmap_tte(pmap, addr); | |
2359 | if (ttp == (tt_entry_t *)NULL) | |
2360 | return (PT_ENTRY_NULL); | |
2361 | tte = *ttp; | |
2362 | #if MACH_ASSERT | |
2363 | if ((tte & ARM_TTE_TYPE_MASK) == ARM_TTE_TYPE_BLOCK) | |
2364 | panic("Attempt to demote L1 block: pmap=%p, va=0x%llx, tte=0x%llx\n", pmap, (uint64_t)addr, (uint64_t)tte); | |
2365 | #endif | |
2366 | if ((tte & ARM_TTE_TYPE_MASK) != ARM_TTE_TYPE_TABLE) | |
2367 | return (PT_ENTRY_NULL); | |
2368 | ptp = (pt_entry_t *) ttetokv(tte) + ptenum(addr); | |
2369 | return (ptp); | |
2370 | } | |
2371 | ||
2372 | #else | |
2373 | ||
2374 | /* | |
2375 | * Given an offset and a map, compute the address of level 1 translation table entry. | |
2376 | * If the tranlation is invalid then PT_ENTRY_NULL is returned. | |
2377 | */ | |
2378 | static inline tt_entry_t * | |
2379 | pmap_tt1e(pmap_t pmap, | |
2380 | vm_map_address_t addr) | |
2381 | { | |
2382 | #if __ARM64_TWO_LEVEL_PMAP__ | |
2383 | #pragma unused(pmap, addr) | |
2384 | panic("pmap_tt1e called on a two level pmap"); | |
2385 | return (NULL); | |
2386 | #else | |
2387 | return (&pmap->tte[tt1_index(pmap, addr)]); | |
2388 | #endif | |
2389 | } | |
2390 | ||
2391 | /* | |
2392 | * Given an offset and a map, compute the address of level 2 translation table entry. | |
2393 | * If the tranlation is invalid then PT_ENTRY_NULL is returned. | |
2394 | */ | |
2395 | static inline tt_entry_t * | |
2396 | pmap_tt2e(pmap_t pmap, | |
2397 | vm_map_address_t addr) | |
2398 | { | |
2399 | #if __ARM64_TWO_LEVEL_PMAP__ | |
2400 | return (&pmap->tte[tt2_index(pmap, addr)]); | |
2401 | #else | |
2402 | tt_entry_t *ttp; | |
2403 | tt_entry_t tte; | |
2404 | ||
2405 | ttp = pmap_tt1e(pmap, addr); | |
2406 | tte = *ttp; | |
2407 | #if MACH_ASSERT | |
2408 | if ((tte & (ARM_TTE_TYPE_MASK | ARM_TTE_VALID)) == (ARM_TTE_TYPE_BLOCK | ARM_TTE_VALID)) | |
2409 | panic("Attempt to demote L1 block (?!): pmap=%p, va=0x%llx, tte=0x%llx\n", pmap, (uint64_t)addr, (uint64_t)tte); | |
2410 | #endif | |
2411 | if ((tte & (ARM_TTE_TYPE_MASK | ARM_TTE_VALID)) != (ARM_TTE_TYPE_TABLE | ARM_TTE_VALID)) | |
2412 | return (PT_ENTRY_NULL); | |
2413 | ||
2414 | ttp = &((tt_entry_t*) phystokv(tte & ARM_TTE_TABLE_MASK))[tt2_index(pmap, addr)]; | |
2415 | return ((tt_entry_t *)ttp); | |
2416 | #endif | |
2417 | } | |
2418 | ||
2419 | ||
2420 | /* | |
2421 | * Given an offset and a map, compute the address of level 3 translation table entry. | |
2422 | * If the tranlation is invalid then PT_ENTRY_NULL is returned. | |
2423 | */ | |
2424 | static inline pt_entry_t * | |
2425 | pmap_tt3e( | |
2426 | pmap_t pmap, | |
2427 | vm_map_address_t addr) | |
2428 | { | |
2429 | pt_entry_t *ptp; | |
2430 | tt_entry_t *ttp; | |
2431 | tt_entry_t tte; | |
2432 | ||
2433 | /* Level 0 currently unused */ | |
2434 | #if __ARM64_TWO_LEVEL_PMAP__ | |
2435 | ttp = pmap_tt2e(pmap, addr); | |
2436 | tte = *ttp; | |
2437 | #else | |
2438 | /* Get first-level (1GB) entry */ | |
2439 | ttp = pmap_tt1e(pmap, addr); | |
2440 | tte = *ttp; | |
2441 | #if MACH_ASSERT | |
2442 | if ((tte & (ARM_TTE_TYPE_MASK | ARM_TTE_VALID)) == (ARM_TTE_TYPE_BLOCK | ARM_TTE_VALID)) | |
2443 | panic("Attempt to demote L1 block (?!): pmap=%p, va=0x%llx, tte=0x%llx\n", pmap, (uint64_t)addr, (uint64_t)tte); | |
2444 | #endif | |
2445 | if ((tte & (ARM_TTE_TYPE_MASK | ARM_TTE_VALID)) != (ARM_TTE_TYPE_TABLE | ARM_TTE_VALID)) | |
2446 | return (PT_ENTRY_NULL); | |
2447 | ||
2448 | tte = ((tt_entry_t*) phystokv(tte & ARM_TTE_TABLE_MASK))[tt2_index(pmap, addr)]; | |
2449 | #endif | |
2450 | #if MACH_ASSERT | |
2451 | if ((tte & (ARM_TTE_TYPE_MASK | ARM_TTE_VALID)) == (ARM_TTE_TYPE_BLOCK | ARM_TTE_VALID)) | |
2452 | panic("Attempt to demote L2 block: pmap=%p, va=0x%llx, tte=0x%llx\n", pmap, (uint64_t)addr, (uint64_t)tte); | |
2453 | #endif | |
2454 | if ((tte & (ARM_TTE_TYPE_MASK | ARM_TTE_VALID)) != (ARM_TTE_TYPE_TABLE | ARM_TTE_VALID)) { | |
2455 | return (PT_ENTRY_NULL); | |
2456 | } | |
2457 | ||
2458 | /* Get third-level (4KB) entry */ | |
2459 | ptp = &(((pt_entry_t*) phystokv(tte & ARM_TTE_TABLE_MASK))[tt3_index(pmap, addr)]); | |
2460 | return (ptp); | |
2461 | } | |
2462 | ||
2463 | ||
2464 | static inline tt_entry_t * | |
2465 | pmap_tte( | |
2466 | pmap_t pmap, | |
2467 | vm_map_address_t addr) | |
2468 | { | |
2469 | return(pmap_tt2e(pmap, addr)); | |
2470 | } | |
2471 | ||
2472 | ||
2473 | static inline pt_entry_t * | |
2474 | pmap_pte( | |
2475 | pmap_t pmap, | |
2476 | vm_map_address_t addr) | |
2477 | { | |
2478 | return(pmap_tt3e(pmap, addr)); | |
2479 | } | |
2480 | ||
2481 | #endif | |
2482 | ||
2483 | ||
2484 | /* | |
2485 | * Map memory at initialization. The physical addresses being | |
2486 | * mapped are not managed and are never unmapped. | |
2487 | * | |
2488 | * For now, VM is already on, we only need to map the | |
2489 | * specified memory. | |
2490 | */ | |
2491 | vm_map_address_t | |
2492 | pmap_map( | |
2493 | vm_map_address_t virt, | |
2494 | vm_offset_t start, | |
2495 | vm_offset_t end, | |
2496 | vm_prot_t prot, | |
2497 | unsigned int flags) | |
2498 | { | |
2499 | kern_return_t kr; | |
2500 | vm_size_t ps; | |
2501 | ||
2502 | ps = PAGE_SIZE; | |
2503 | while (start < end) { | |
2504 | kr = pmap_enter(kernel_pmap, virt, (ppnum_t)atop(start), | |
2505 | prot, VM_PROT_NONE, flags, FALSE); | |
2506 | ||
2507 | if (kr != KERN_SUCCESS) { | |
2508 | panic("%s: failed pmap_enter, " | |
2509 | "virt=%p, start_addr=%p, end_addr=%p, prot=%#x, flags=%#x", | |
2510 | __FUNCTION__, | |
2511 | (void *) virt, (void *) start, (void *) end, prot, flags); | |
2512 | } | |
2513 | ||
2514 | virt += ps; | |
2515 | start += ps; | |
2516 | } | |
2517 | return (virt); | |
2518 | } | |
2519 | ||
2520 | vm_map_address_t | |
2521 | pmap_map_bd_with_options( | |
2522 | vm_map_address_t virt, | |
2523 | vm_offset_t start, | |
2524 | vm_offset_t end, | |
2525 | vm_prot_t prot, | |
2526 | int32_t options) | |
2527 | { | |
2528 | pt_entry_t tmplate; | |
2529 | pt_entry_t *ptep; | |
2530 | vm_map_address_t vaddr; | |
2531 | vm_offset_t paddr; | |
2532 | pt_entry_t mem_attr; | |
2533 | ||
2534 | switch (options & PMAP_MAP_BD_MASK) { | |
2535 | case PMAP_MAP_BD_WCOMB: | |
2536 | mem_attr = ARM_PTE_ATTRINDX(CACHE_ATTRINDX_WRITECOMB); | |
2537 | #if (__ARM_VMSA__ > 7) | |
2538 | mem_attr |= ARM_PTE_SH(SH_OUTER_MEMORY); | |
2539 | #else | |
2540 | mem_attr |= ARM_PTE_SH; | |
2541 | #endif | |
2542 | break; | |
2543 | case PMAP_MAP_BD_POSTED: | |
2544 | mem_attr = ARM_PTE_ATTRINDX(CACHE_ATTRINDX_POSTED); | |
2545 | break; | |
2546 | default: | |
2547 | mem_attr = ARM_PTE_ATTRINDX(CACHE_ATTRINDX_DISABLE); | |
2548 | break; | |
2549 | } | |
2550 | ||
2551 | tmplate = pa_to_pte(start) | ARM_PTE_AP((prot & VM_PROT_WRITE) ? AP_RWNA : AP_RONA) | | |
2552 | mem_attr | ARM_PTE_TYPE | ARM_PTE_NX | ARM_PTE_PNX | ARM_PTE_AF; | |
5c9f4661 A |
2553 | #if __ARM_KERNEL_PROTECT__ |
2554 | tmplate |= ARM_PTE_NG; | |
2555 | #endif /* __ARM_KERNEL_PROTECT__ */ | |
5ba3f43e A |
2556 | |
2557 | vaddr = virt; | |
2558 | paddr = start; | |
2559 | while (paddr < end) { | |
2560 | ||
2561 | ptep = pmap_pte(kernel_pmap, vaddr); | |
2562 | if (ptep == PT_ENTRY_NULL) { | |
2563 | panic("pmap_map_bd"); | |
2564 | } | |
2565 | assert(!ARM_PTE_IS_COMPRESSED(*ptep)); | |
2566 | WRITE_PTE(ptep, tmplate); | |
2567 | ||
2568 | pte_increment_pa(tmplate); | |
2569 | vaddr += PAGE_SIZE; | |
2570 | paddr += PAGE_SIZE; | |
2571 | } | |
2572 | ||
2573 | if (end >= start) | |
2574 | flush_mmu_tlb_region(virt, (unsigned)(end - start)); | |
2575 | ||
2576 | return (vaddr); | |
2577 | } | |
2578 | ||
2579 | /* | |
2580 | * Back-door routine for mapping kernel VM at initialization. | |
2581 | * Useful for mapping memory outside the range | |
2582 | * [vm_first_phys, vm_last_phys] (i.e., devices). | |
2583 | * Otherwise like pmap_map. | |
2584 | */ | |
2585 | vm_map_address_t | |
2586 | pmap_map_bd( | |
2587 | vm_map_address_t virt, | |
2588 | vm_offset_t start, | |
2589 | vm_offset_t end, | |
2590 | vm_prot_t prot) | |
2591 | { | |
2592 | pt_entry_t tmplate; | |
2593 | pt_entry_t *ptep; | |
2594 | vm_map_address_t vaddr; | |
2595 | vm_offset_t paddr; | |
2596 | ||
2597 | /* not cacheable and not buffered */ | |
2598 | tmplate = pa_to_pte(start) | |
2599 | | ARM_PTE_TYPE | ARM_PTE_AF | ARM_PTE_NX | ARM_PTE_PNX | |
5c9f4661 | 2600 | | ARM_PTE_AP((prot & VM_PROT_WRITE) ? AP_RWNA : AP_RONA) |
5ba3f43e | 2601 | | ARM_PTE_ATTRINDX(CACHE_ATTRINDX_DISABLE); |
5c9f4661 A |
2602 | #if __ARM_KERNEL_PROTECT__ |
2603 | tmplate |= ARM_PTE_NG; | |
2604 | #endif /* __ARM_KERNEL_PROTECT__ */ | |
5ba3f43e A |
2605 | |
2606 | vaddr = virt; | |
2607 | paddr = start; | |
2608 | while (paddr < end) { | |
2609 | ||
2610 | ptep = pmap_pte(kernel_pmap, vaddr); | |
2611 | if (ptep == PT_ENTRY_NULL) { | |
2612 | panic("pmap_map_bd"); | |
2613 | } | |
2614 | assert(!ARM_PTE_IS_COMPRESSED(*ptep)); | |
2615 | WRITE_PTE(ptep, tmplate); | |
2616 | ||
2617 | pte_increment_pa(tmplate); | |
2618 | vaddr += PAGE_SIZE; | |
2619 | paddr += PAGE_SIZE; | |
2620 | } | |
2621 | ||
2622 | if (end >= start) | |
2623 | flush_mmu_tlb_region(virt, (unsigned)(end - start)); | |
2624 | ||
2625 | return (vaddr); | |
2626 | } | |
2627 | ||
2628 | /* | |
2629 | * Back-door routine for mapping kernel VM at initialization. | |
2630 | * Useful for mapping memory specific physical addresses in early | |
2631 | * boot (i.e., before kernel_map is initialized). | |
2632 | * | |
2633 | * Maps are in the VM_HIGH_KERNEL_WINDOW area. | |
2634 | */ | |
2635 | ||
2636 | vm_map_address_t | |
2637 | pmap_map_high_window_bd( | |
2638 | vm_offset_t pa_start, | |
2639 | vm_size_t len, | |
2640 | vm_prot_t prot) | |
2641 | { | |
2642 | pt_entry_t *ptep, pte; | |
2643 | #if (__ARM_VMSA__ == 7) | |
2644 | vm_map_address_t va_start = VM_HIGH_KERNEL_WINDOW; | |
2645 | vm_map_address_t va_max = VM_MAX_KERNEL_ADDRESS; | |
2646 | #else | |
2647 | vm_map_address_t va_start = VREGION1_START; | |
2648 | vm_map_address_t va_max = VREGION1_START + VREGION1_SIZE; | |
2649 | #endif | |
2650 | vm_map_address_t va_end; | |
2651 | vm_map_address_t va; | |
2652 | vm_size_t offset; | |
2653 | ||
2654 | offset = pa_start & PAGE_MASK; | |
2655 | pa_start -= offset; | |
2656 | len += offset; | |
2657 | ||
2658 | if (len > (va_max - va_start)) { | |
2659 | panic("pmap_map_high_window_bd: area too large\n"); | |
2660 | } | |
2661 | ||
2662 | scan: | |
2663 | for ( ; va_start < va_max; va_start += PAGE_SIZE) { | |
2664 | ptep = pmap_pte(kernel_pmap, va_start); | |
2665 | assert(!ARM_PTE_IS_COMPRESSED(*ptep)); | |
2666 | if (*ptep == ARM_PTE_TYPE_FAULT) | |
2667 | break; | |
2668 | } | |
2669 | if (va_start > va_max) { | |
2670 | panic("pmap_map_high_window_bd: insufficient pages\n"); | |
2671 | } | |
2672 | ||
2673 | for (va_end = va_start + PAGE_SIZE; va_end < va_start + len; va_end += PAGE_SIZE) { | |
2674 | ptep = pmap_pte(kernel_pmap, va_end); | |
2675 | assert(!ARM_PTE_IS_COMPRESSED(*ptep)); | |
2676 | if (*ptep != ARM_PTE_TYPE_FAULT) { | |
2677 | va_start = va_end + PAGE_SIZE; | |
2678 | goto scan; | |
2679 | } | |
2680 | } | |
2681 | ||
2682 | for (va = va_start; va < va_end; va += PAGE_SIZE, pa_start += PAGE_SIZE) { | |
2683 | ptep = pmap_pte(kernel_pmap, va); | |
2684 | pte = pa_to_pte(pa_start) | |
2685 | | ARM_PTE_TYPE | ARM_PTE_AF | ARM_PTE_NX | ARM_PTE_PNX | |
2686 | | ARM_PTE_AP((prot & VM_PROT_WRITE) ? AP_RWNA : AP_RONA) | |
2687 | | ARM_PTE_ATTRINDX(CACHE_ATTRINDX_DEFAULT); | |
2688 | #if (__ARM_VMSA__ > 7) | |
2689 | pte |= ARM_PTE_SH(SH_OUTER_MEMORY); | |
2690 | #else | |
2691 | pte |= ARM_PTE_SH; | |
2692 | #endif | |
5c9f4661 A |
2693 | #if __ARM_KERNEL_PROTECT__ |
2694 | pte |= ARM_PTE_NG; | |
2695 | #endif /* __ARM_KERNEL_PROTECT__ */ | |
5ba3f43e A |
2696 | WRITE_PTE(ptep, pte); |
2697 | } | |
2698 | PMAP_UPDATE_TLBS(kernel_pmap, va_start, va_start + len); | |
2699 | #if KASAN | |
2700 | kasan_notify_address(va_start, len); | |
2701 | #endif | |
2702 | return va_start; | |
2703 | } | |
2704 | ||
2705 | #define PMAP_ALIGN(addr, align) ((addr) + ((align) - 1) & ~((align) - 1)) | |
2706 | ||
2707 | typedef struct pmap_io_range | |
2708 | { | |
2709 | uint64_t addr; | |
2710 | uint32_t len; | |
2711 | uint32_t wimg; | |
2712 | } __attribute__((packed)) pmap_io_range_t; | |
2713 | ||
2714 | static unsigned int | |
2715 | pmap_compute_io_rgns(void) | |
2716 | { | |
2717 | DTEntry entry; | |
2718 | pmap_io_range_t *ranges; | |
2719 | void *prop = NULL; | |
2720 | int err; | |
2721 | unsigned int prop_size; | |
2722 | ||
2723 | err = DTLookupEntry(NULL, "/defaults", &entry); | |
2724 | assert(err == kSuccess); | |
2725 | ||
2726 | if (kSuccess != DTGetProperty(entry, "pmap-io-granule", &prop, &prop_size)) | |
2727 | return 0; | |
2728 | ||
2729 | io_rgn_granule = *((uint32_t*)prop); | |
2730 | ||
2731 | if (kSuccess != DTGetProperty(entry, "pmap-io-ranges", &prop, &prop_size)) | |
2732 | return 0; | |
2733 | ||
2734 | if ((io_rgn_granule == 0) || (io_rgn_granule & PAGE_MASK)) | |
2735 | panic("pmap I/O region granularity is not page-aligned!\n"); | |
2736 | ||
2737 | ranges = prop; | |
2738 | for (unsigned int i = 0; i < (prop_size / sizeof(*ranges)); ++i) { | |
2739 | if ((i == 0) || (ranges[i].addr < io_rgn_start)) | |
2740 | io_rgn_start = ranges[i].addr; | |
2741 | if ((i == 0) || ((ranges[i].addr + ranges[i].len) > io_rgn_end)) | |
2742 | io_rgn_end = ranges[i].addr + ranges[i].len; | |
2743 | } | |
2744 | ||
2745 | if (io_rgn_start & PAGE_MASK) | |
2746 | panic("pmap I/O region start is not page-aligned!\n"); | |
2747 | ||
2748 | if (io_rgn_end & PAGE_MASK) | |
2749 | panic("pmap I/O region end is not page-aligned!\n"); | |
2750 | ||
2751 | if (((io_rgn_start < gPhysBase) && (io_rgn_end >= gPhysBase)) || | |
2752 | ((io_rgn_start < avail_end) && (io_rgn_end >= avail_end))) | |
2753 | panic("pmap I/O region overlaps physical memory!\n"); | |
2754 | ||
2755 | return (unsigned int)((io_rgn_end - io_rgn_start) / io_rgn_granule); | |
2756 | } | |
2757 | ||
2758 | static void | |
2759 | pmap_load_io_rgns(void) | |
2760 | { | |
2761 | DTEntry entry; | |
2762 | pmap_io_range_t *ranges; | |
2763 | void *prop = NULL; | |
2764 | int err; | |
2765 | unsigned int prop_size; | |
2766 | ||
2767 | if (io_rgn_granule == 0) | |
2768 | return; | |
2769 | ||
2770 | err = DTLookupEntry(NULL, "/defaults", &entry); | |
2771 | assert(err == kSuccess); | |
2772 | ||
2773 | err = DTGetProperty(entry, "pmap-io-ranges", &prop, &prop_size); | |
2774 | assert(err == kSuccess); | |
2775 | ||
2776 | ranges = prop; | |
2777 | for (unsigned int i = 0; i < (prop_size / sizeof(*ranges)); ++i) { | |
2778 | if ((ranges[i].addr - io_rgn_start) % io_rgn_granule) | |
2779 | panic("pmap I/O region %d is not aligned to I/O granularity!\n", i); | |
2780 | if (ranges[i].len % io_rgn_granule) | |
2781 | panic("pmap I/O region %d size is not a multiple of I/O granularity!\n", i); | |
2782 | for (uint32_t offs = 0; offs < ranges[i].len; offs += io_rgn_granule) { | |
2783 | io_attr_table[(ranges[i].addr + offs - io_rgn_start) / io_rgn_granule] = | |
2784 | IO_ATTR_WIMG(ranges[i].wimg); | |
2785 | } | |
2786 | } | |
2787 | } | |
2788 | ||
2789 | ||
2790 | /* | |
2791 | * Bootstrap the system enough to run with virtual memory. | |
2792 | * | |
2793 | * The early VM initialization code has already allocated | |
2794 | * the first CPU's translation table and made entries for | |
2795 | * all the one-to-one mappings to be found there. | |
2796 | * | |
2797 | * We must set up the kernel pmap structures, the | |
2798 | * physical-to-virtual translation lookup tables for the | |
2799 | * physical memory to be managed (between avail_start and | |
2800 | * avail_end). | |
2801 | ||
2802 | * Map the kernel's code and data, and allocate the system page table. | |
2803 | * Page_size must already be set. | |
2804 | * | |
2805 | * Parameters: | |
2806 | * first_avail first available physical page - | |
2807 | * after kernel page tables | |
2808 | * avail_start PA of first managed physical page | |
2809 | * avail_end PA of last managed physical page | |
2810 | */ | |
2811 | ||
2812 | void | |
2813 | pmap_bootstrap( | |
2814 | vm_offset_t vstart) | |
2815 | { | |
2816 | pmap_paddr_t pmap_struct_start; | |
2817 | vm_size_t pv_head_size; | |
2818 | vm_size_t pv_lock_table_size; | |
2819 | vm_size_t ptd_root_table_size; | |
2820 | vm_size_t pp_attr_table_size; | |
2821 | vm_size_t io_attr_table_size; | |
2822 | unsigned int niorgns; | |
2823 | unsigned int npages; | |
2824 | unsigned int i; | |
2825 | vm_map_offset_t maxoffset; | |
2826 | ||
2827 | ||
2828 | #ifdef PMAP_TRACES | |
2829 | if (PE_parse_boot_argn("-pmap_trace", &pmap_trace, sizeof (pmap_trace))) { | |
2830 | kprintf("Kernel traces for pmap operations enabled\n"); | |
2831 | } | |
2832 | #endif | |
2833 | ||
2834 | /* | |
2835 | * Initialize the kernel pmap. | |
2836 | */ | |
2837 | pmap_stamp = 1; | |
2838 | kernel_pmap->tte = cpu_tte; | |
2839 | kernel_pmap->ttep = cpu_ttep; | |
2840 | #if (__ARM_VMSA__ > 7) | |
2841 | kernel_pmap->min = ARM64_TTBR1_MIN_ADDR; | |
2842 | #else | |
2843 | kernel_pmap->min = VM_MIN_KERNEL_AND_KEXT_ADDRESS; | |
2844 | #endif | |
2845 | kernel_pmap->max = VM_MAX_KERNEL_ADDRESS; | |
2846 | kernel_pmap->wired = 0; | |
2847 | kernel_pmap->ref_count = 1; | |
2848 | kernel_pmap->gc_status = 0; | |
2849 | kernel_pmap->nx_enabled = TRUE; | |
2850 | #ifdef __arm64__ | |
2851 | kernel_pmap->is_64bit = TRUE; | |
2852 | #else | |
2853 | kernel_pmap->is_64bit = FALSE; | |
2854 | #endif | |
2855 | kernel_pmap->stamp = hw_atomic_add(&pmap_stamp, 1); | |
2856 | ||
2857 | kernel_pmap->nested_region_grand_addr = 0x0ULL; | |
2858 | kernel_pmap->nested_region_subord_addr = 0x0ULL; | |
2859 | kernel_pmap->nested_region_size = 0x0ULL; | |
2860 | kernel_pmap->nested_region_asid_bitmap = NULL; | |
2861 | kernel_pmap->nested_region_asid_bitmap_size = 0x0UL; | |
2862 | ||
2863 | #if (__ARM_VMSA__ == 7) | |
2864 | kernel_pmap->tte_index_max = 4*NTTES; | |
2865 | #else | |
2866 | kernel_pmap->tte_index_max = (ARM_PGBYTES / sizeof(tt_entry_t)); | |
2867 | #endif | |
2868 | kernel_pmap->prev_tte = (tt_entry_t *) NULL; | |
2869 | kernel_pmap->cpu_ref = 0; | |
2870 | ||
2871 | PMAP_LOCK_INIT(kernel_pmap); | |
2872 | #if (__ARM_VMSA__ == 7) | |
2873 | simple_lock_init(&kernel_pmap->tt1_lock, 0); | |
2874 | #endif | |
2875 | memset((void *) &kernel_pmap->stats, 0, sizeof(kernel_pmap->stats)); | |
2876 | ||
2877 | /* allocate space for and initialize the bookkeeping structures */ | |
2878 | niorgns = pmap_compute_io_rgns(); | |
2879 | npages = (unsigned int)atop(mem_size); | |
2880 | pp_attr_table_size = npages * sizeof(pp_attr_t); | |
2881 | io_attr_table_size = niorgns * sizeof(io_attr_t); | |
2882 | pv_lock_table_size = npages; | |
2883 | pv_head_size = round_page(sizeof(pv_entry_t *) * npages); | |
2884 | #if (__ARM_VMSA__ == 7) | |
2885 | ptd_root_table_size = sizeof(pt_desc_t) * (1<<((mem_size>>30)+12)); | |
2886 | #else | |
2887 | ptd_root_table_size = sizeof(pt_desc_t) * (1<<((mem_size>>30)+13)); | |
2888 | #endif | |
2889 | ||
2890 | pmap_struct_start = avail_start; | |
2891 | ||
2892 | pp_attr_table = (pp_attr_t *) phystokv(avail_start); | |
2893 | avail_start = PMAP_ALIGN(avail_start + pp_attr_table_size, __alignof(pp_attr_t)); | |
2894 | io_attr_table = (io_attr_t *) phystokv(avail_start); | |
2895 | avail_start = PMAP_ALIGN(avail_start + io_attr_table_size + pv_lock_table_size, __alignof(pv_entry_t*)); | |
2896 | pv_head_table = (pv_entry_t **) phystokv(avail_start); | |
2897 | avail_start = PMAP_ALIGN(avail_start + pv_head_size, __alignof(pt_desc_t)); | |
2898 | ptd_root_table = (pt_desc_t *)phystokv(avail_start); | |
2899 | avail_start = round_page(avail_start + ptd_root_table_size); | |
2900 | ||
2901 | memset((char *)phystokv(pmap_struct_start), 0, avail_start - pmap_struct_start); | |
2902 | ||
2903 | pmap_load_io_rgns(); | |
2904 | ptd_bootstrap(ptd_root_table, (unsigned int)(ptd_root_table_size/sizeof(pt_desc_t))); | |
2905 | ||
2906 | pmap_cpu_data_array_init(); | |
2907 | ||
2908 | vm_first_phys = gPhysBase; | |
2909 | vm_last_phys = trunc_page(avail_end); | |
2910 | ||
2911 | simple_lock_init(&pmaps_lock, 0); | |
2912 | queue_init(&map_pmap_list); | |
2913 | queue_enter(&map_pmap_list, kernel_pmap, pmap_t, pmaps); | |
2914 | queue_init(&tt_pmap_list); | |
2915 | tt_pmap_count = 0; | |
2916 | tt_pmap_max = 0; | |
2917 | free_page_size_tt_list = TT_FREE_ENTRY_NULL; | |
2918 | free_page_size_tt_count = 0; | |
2919 | free_page_size_tt_max = 0; | |
2920 | free_two_page_size_tt_list = TT_FREE_ENTRY_NULL; | |
2921 | free_two_page_size_tt_count = 0; | |
2922 | free_two_page_size_tt_max = 0; | |
2923 | free_tt_list = TT_FREE_ENTRY_NULL; | |
2924 | free_tt_count = 0; | |
2925 | free_tt_max = 0; | |
2926 | ||
2927 | simple_lock_init(&pt_pages_lock, 0); | |
2928 | queue_init(&pt_page_list); | |
2929 | ||
2930 | simple_lock_init(&pmap_pages_lock, 0); | |
2931 | pmap_pages_request_count = 0; | |
2932 | pmap_pages_request_acum = 0; | |
2933 | pmap_pages_reclaim_list = PAGE_FREE_ENTRY_NULL; | |
2934 | ||
2935 | virtual_space_start = vstart; | |
2936 | virtual_space_end = VM_MAX_KERNEL_ADDRESS; | |
2937 | ||
2938 | /* mark all the address spaces in use */ | |
2939 | for (i = 0; i < MAX_ASID / (sizeof(uint32_t) * NBBY); i++) | |
2940 | asid_bitmap[i] = 0xffffffff; | |
2941 | ||
2942 | /* | |
2943 | * The kernel gets ASID 0, and all aliases of it. This is | |
2944 | * important because ASID 0 is global; if we vend ASID 0 | |
2945 | * out to a user pmap, those translations will show up in | |
2946 | * other processes through the TLB. | |
2947 | */ | |
2948 | for (i = 0; i < MAX_ASID; i += ARM_MAX_ASID) { | |
2949 | asid_bitmap[i / (sizeof(uint32_t) * NBBY)] &= ~(1 << (i % (sizeof(uint32_t) * NBBY))); | |
5c9f4661 A |
2950 | |
2951 | #if __ARM_KERNEL_PROTECT__ | |
2952 | assert((i + 1) < MAX_ASID); | |
2953 | asid_bitmap[(i + 1) / (sizeof(uint32_t) * NBBY)] &= ~(1 << ((i + 1) % (sizeof(uint32_t) * NBBY))); | |
2954 | #endif /* __ARM_KERNEL_PROTECT__ */ | |
5ba3f43e A |
2955 | } |
2956 | ||
2957 | kernel_pmap->asid = 0; | |
2958 | kernel_pmap->vasid = 0; | |
2959 | ||
2960 | if (PE_parse_boot_argn("arm_maxoffset", &maxoffset, sizeof (maxoffset))) { | |
2961 | maxoffset = trunc_page(maxoffset); | |
2962 | if ((maxoffset >= pmap_max_offset(FALSE, ARM_PMAP_MAX_OFFSET_MIN)) | |
2963 | && (maxoffset <= pmap_max_offset(FALSE, ARM_PMAP_MAX_OFFSET_MAX))) { | |
2964 | arm_pmap_max_offset_default = maxoffset; | |
2965 | } | |
2966 | } | |
2967 | #if defined(__arm64__) | |
2968 | if (PE_parse_boot_argn("arm64_maxoffset", &maxoffset, sizeof (maxoffset))) { | |
2969 | maxoffset = trunc_page(maxoffset); | |
2970 | if ((maxoffset >= pmap_max_offset(TRUE, ARM_PMAP_MAX_OFFSET_MIN)) | |
2971 | && (maxoffset <= pmap_max_offset(TRUE, ARM_PMAP_MAX_OFFSET_MAX))) { | |
2972 | arm64_pmap_max_offset_default = maxoffset; | |
2973 | } | |
2974 | } | |
2975 | #endif | |
2976 | ||
2977 | #if DEVELOPMENT || DEBUG | |
2978 | PE_parse_boot_argn("panic_on_unsigned_execute", &panic_on_unsigned_execute, sizeof (panic_on_unsigned_execute)); | |
2979 | #endif /* DEVELOPMENT || DEBUG */ | |
2980 | ||
2981 | pmap_nesting_size_min = ARM_NESTING_SIZE_MIN; | |
2982 | pmap_nesting_size_max = ARM_NESTING_SIZE_MAX; | |
2983 | ||
2984 | simple_lock_init(&phys_backup_lock, 0); | |
5c9f4661 A |
2985 | |
2986 | #if MACH_ASSERT | |
2987 | PE_parse_boot_argn("pmap_stats_assert", | |
2988 | &pmap_stats_assert, | |
2989 | sizeof (pmap_stats_assert)); | |
2990 | #endif /* MACH_ASSERT */ | |
a39ff7e2 A |
2991 | |
2992 | #if KASAN | |
2993 | /* Shadow the CPU copy windows, as they fall outside of the physical aperture */ | |
2994 | kasan_map_shadow(CPUWINDOWS_BASE, CPUWINDOWS_TOP - CPUWINDOWS_BASE, true); | |
2995 | #endif /* KASAN */ | |
5ba3f43e A |
2996 | } |
2997 | ||
2998 | ||
2999 | void | |
3000 | pmap_virtual_space( | |
3001 | vm_offset_t *startp, | |
3002 | vm_offset_t *endp | |
3003 | ) | |
3004 | { | |
3005 | *startp = virtual_space_start; | |
3006 | *endp = virtual_space_end; | |
3007 | } | |
3008 | ||
3009 | ||
3010 | boolean_t | |
3011 | pmap_virtual_region( | |
3012 | unsigned int region_select, | |
3013 | vm_map_offset_t *startp, | |
3014 | vm_map_size_t *size | |
3015 | ) | |
3016 | { | |
3017 | boolean_t ret = FALSE; | |
3018 | #if __ARM64_PMAP_SUBPAGE_L1__ && __ARM_16K_PG__ | |
3019 | if (region_select == 0) { | |
3020 | /* | |
3021 | * In this config, the bootstrap mappings should occupy their own L2 | |
3022 | * TTs, as they should be immutable after boot. Having the associated | |
3023 | * TTEs and PTEs in their own pages allows us to lock down those pages, | |
3024 | * while allowing the rest of the kernel address range to be remapped. | |
3025 | */ | |
3026 | #if (__ARM_VMSA__ > 7) | |
3027 | *startp = LOW_GLOBAL_BASE_ADDRESS & ~ARM_TT_L2_OFFMASK; | |
3028 | #else | |
3029 | #error Unsupported configuration | |
3030 | #endif | |
3031 | *size = ((VM_MAX_KERNEL_ADDRESS - *startp) & ~PAGE_MASK); | |
3032 | ret = TRUE; | |
3033 | } | |
3034 | #else | |
3035 | #if (__ARM_VMSA__ > 7) | |
3036 | unsigned long low_global_vr_mask = 0; | |
3037 | vm_map_size_t low_global_vr_size = 0; | |
3038 | #endif | |
3039 | ||
3040 | if (region_select == 0) { | |
3041 | #if (__ARM_VMSA__ == 7) | |
3042 | *startp = gVirtBase & 0xFFC00000; | |
3043 | *size = ((virtual_space_start-(gVirtBase & 0xFFC00000)) + ~0xFFC00000) & 0xFFC00000; | |
3044 | #else | |
3045 | /* Round to avoid overlapping with the V=P area; round to at least the L2 block size. */ | |
3046 | if (!TEST_PAGE_SIZE_4K) { | |
3047 | *startp = gVirtBase & 0xFFFFFFFFFE000000; | |
3048 | *size = ((virtual_space_start-(gVirtBase & 0xFFFFFFFFFE000000)) + ~0xFFFFFFFFFE000000) & 0xFFFFFFFFFE000000; | |
3049 | } else { | |
3050 | *startp = gVirtBase & 0xFFFFFFFFFF800000; | |
3051 | *size = ((virtual_space_start-(gVirtBase & 0xFFFFFFFFFF800000)) + ~0xFFFFFFFFFF800000) & 0xFFFFFFFFFF800000; | |
3052 | } | |
3053 | #endif | |
3054 | ret = TRUE; | |
3055 | } | |
3056 | if (region_select == 1) { | |
3057 | *startp = VREGION1_START; | |
3058 | *size = VREGION1_SIZE; | |
3059 | ret = TRUE; | |
3060 | } | |
3061 | #if (__ARM_VMSA__ > 7) | |
3062 | /* We need to reserve a range that is at least the size of an L2 block mapping for the low globals */ | |
3063 | if (!TEST_PAGE_SIZE_4K) { | |
3064 | low_global_vr_mask = 0xFFFFFFFFFE000000; | |
3065 | low_global_vr_size = 0x2000000; | |
3066 | } else { | |
3067 | low_global_vr_mask = 0xFFFFFFFFFF800000; | |
3068 | low_global_vr_size = 0x800000; | |
3069 | } | |
3070 | ||
3071 | if (((gVirtBase & low_global_vr_mask) != LOW_GLOBAL_BASE_ADDRESS) && (region_select == 2)) { | |
3072 | *startp = LOW_GLOBAL_BASE_ADDRESS; | |
3073 | *size = low_global_vr_size; | |
3074 | ret = TRUE; | |
3075 | } | |
3076 | ||
3077 | if (region_select == 3) { | |
3078 | /* In this config, we allow the bootstrap mappings to occupy the same | |
3079 | * page table pages as the heap. | |
3080 | */ | |
3081 | *startp = VM_MIN_KERNEL_ADDRESS; | |
3082 | *size = LOW_GLOBAL_BASE_ADDRESS - *startp; | |
3083 | ret = TRUE; | |
3084 | } | |
3085 | #endif | |
3086 | #endif | |
3087 | return ret; | |
3088 | } | |
3089 | ||
3090 | unsigned int | |
3091 | pmap_free_pages( | |
3092 | void) | |
3093 | { | |
3094 | return (unsigned int)atop(avail_end - first_avail); | |
3095 | } | |
3096 | ||
3097 | ||
3098 | boolean_t | |
3099 | pmap_next_page_hi( | |
3100 | ppnum_t * pnum) | |
3101 | { | |
3102 | return pmap_next_page(pnum); | |
3103 | } | |
3104 | ||
3105 | ||
3106 | boolean_t | |
3107 | pmap_next_page( | |
3108 | ppnum_t *pnum) | |
3109 | { | |
3110 | if (first_avail != avail_end) { | |
3111 | *pnum = (ppnum_t)atop(first_avail); | |
3112 | first_avail += PAGE_SIZE; | |
3113 | return TRUE; | |
3114 | } | |
3115 | return FALSE; | |
3116 | } | |
3117 | ||
3118 | ||
3119 | /* | |
3120 | * Initialize the pmap module. | |
3121 | * Called by vm_init, to initialize any structures that the pmap | |
3122 | * system needs to map virtual memory. | |
3123 | */ | |
3124 | void | |
3125 | pmap_init( | |
3126 | void) | |
3127 | { | |
3128 | /* | |
3129 | * Protect page zero in the kernel map. | |
3130 | * (can be overruled by permanent transltion | |
3131 | * table entries at page zero - see arm_vm_init). | |
3132 | */ | |
3133 | vm_protect(kernel_map, 0, PAGE_SIZE, TRUE, VM_PROT_NONE); | |
3134 | ||
3135 | pmap_initialized = TRUE; | |
3136 | ||
3137 | pmap_zone_init(); | |
3138 | ||
3139 | ||
3140 | /* | |
3141 | * Initialize the pmap object (for tracking the vm_page_t | |
3142 | * structures for pages we allocate to be page tables in | |
3143 | * pmap_expand(). | |
3144 | */ | |
3145 | _vm_object_allocate(mem_size, pmap_object); | |
3146 | pmap_object->copy_strategy = MEMORY_OBJECT_COPY_NONE; | |
3147 | ||
3148 | pv_init(); | |
3149 | ||
3150 | /* | |
3151 | * The value of hard_maxproc may have been scaled, make sure | |
3152 | * it is still less than the value of MAX_ASID. | |
3153 | */ | |
3154 | assert(hard_maxproc < MAX_ASID); | |
3155 | ||
3156 | #if CONFIG_PGTRACE | |
3157 | pmap_pgtrace_init(); | |
3158 | #endif | |
3159 | } | |
3160 | ||
3161 | boolean_t | |
3162 | pmap_verify_free( | |
3163 | ppnum_t ppnum) | |
3164 | { | |
3165 | pv_entry_t **pv_h; | |
3166 | int pai; | |
3167 | boolean_t result = TRUE; | |
3168 | pmap_paddr_t phys = ptoa(ppnum); | |
3169 | ||
3170 | assert(phys != vm_page_fictitious_addr); | |
3171 | ||
3172 | if (!pa_valid(phys)) | |
3173 | return (FALSE); | |
3174 | ||
3175 | pai = (int)pa_index(phys); | |
3176 | pv_h = pai_to_pvh(pai); | |
3177 | ||
3178 | result = (pvh_list(pv_h) == PV_ENTRY_NULL); | |
3179 | ||
3180 | return (result); | |
3181 | } | |
3182 | ||
3183 | ||
3184 | /* | |
3185 | * Initialize zones used by pmap. | |
3186 | */ | |
3187 | static void | |
3188 | pmap_zone_init( | |
3189 | void) | |
3190 | { | |
3191 | /* | |
3192 | * Create the zone of physical maps | |
3193 | * and the physical-to-virtual entries. | |
3194 | */ | |
3195 | pmap_zone = zinit((vm_size_t) sizeof(struct pmap), (vm_size_t) sizeof(struct pmap)*256, | |
3196 | PAGE_SIZE, "pmap"); | |
3197 | } | |
3198 | ||
3199 | ||
3200 | /* | |
3201 | * Create and return a physical map. | |
3202 | * | |
3203 | * If the size specified for the map | |
3204 | * is zero, the map is an actual physical | |
3205 | * map, and may be referenced by the | |
3206 | * hardware. | |
3207 | * | |
3208 | * If the size specified is non-zero, | |
3209 | * the map will be used in software only, and | |
3210 | * is bounded by that size. | |
3211 | */ | |
3212 | static pmap_t | |
3213 | pmap_create_internal( | |
3214 | ledger_t ledger, | |
3215 | vm_map_size_t size, | |
3216 | boolean_t is_64bit) | |
3217 | { | |
3218 | unsigned i; | |
3219 | pmap_t p; | |
3220 | ||
3221 | /* | |
3222 | * A software use-only map doesn't even need a pmap. | |
3223 | */ | |
3224 | if (size != 0) { | |
3225 | return (PMAP_NULL); | |
3226 | } | |
3227 | ||
3228 | ||
3229 | /* | |
3230 | * Allocate a pmap struct from the pmap_zone. Then allocate | |
3231 | * the translation table of the right size for the pmap. | |
3232 | */ | |
3233 | if ((p = (pmap_t) zalloc(pmap_zone)) == PMAP_NULL) | |
3234 | return (PMAP_NULL); | |
3235 | ||
3236 | if (is_64bit) { | |
3237 | p->min = MACH_VM_MIN_ADDRESS; | |
3238 | p->max = MACH_VM_MAX_ADDRESS; | |
3239 | } else { | |
3240 | p->min = VM_MIN_ADDRESS; | |
3241 | p->max = VM_MAX_ADDRESS; | |
3242 | } | |
3243 | ||
3244 | p->wired = 0; | |
3245 | p->ref_count = 1; | |
3246 | p->gc_status = 0; | |
3247 | p->stamp = hw_atomic_add(&pmap_stamp, 1); | |
3248 | p->nx_enabled = TRUE; | |
3249 | p->is_64bit = is_64bit; | |
3250 | p->nested = FALSE; | |
3251 | p->nested_pmap = PMAP_NULL; | |
3252 | ||
3253 | ||
3254 | ledger_reference(ledger); | |
3255 | p->ledger = ledger; | |
3256 | ||
3257 | PMAP_LOCK_INIT(p); | |
3258 | #if (__ARM_VMSA__ == 7) | |
3259 | simple_lock_init(&p->tt1_lock, 0); | |
3260 | #endif | |
3261 | memset((void *) &p->stats, 0, sizeof(p->stats)); | |
3262 | ||
3263 | p->tt_entry_free = (tt_entry_t *)0; | |
3264 | ||
3265 | p->tte = pmap_tt1_allocate(p, PMAP_ROOT_ALLOC_SIZE, 0); | |
3266 | p->ttep = ml_static_vtop((vm_offset_t)p->tte); | |
3267 | ||
3268 | #if (__ARM_VMSA__ == 7) | |
3269 | p->tte_index_max = NTTES; | |
3270 | #else | |
3271 | p->tte_index_max = (PMAP_ROOT_ALLOC_SIZE / sizeof(tt_entry_t)); | |
3272 | #endif | |
3273 | p->prev_tte = (tt_entry_t *) NULL; | |
3274 | p->cpu_ref = 0; | |
3275 | ||
3276 | /* nullify the translation table */ | |
3277 | for (i = 0; i < p->tte_index_max; i++) | |
3278 | p->tte[i] = ARM_TTE_TYPE_FAULT; | |
3279 | ||
3280 | #ifndef __ARM_L1_PTW__ | |
3281 | CleanPoU_DcacheRegion((vm_offset_t) (p->tte), PMAP_ROOT_ALLOC_SIZE); | |
3282 | #else | |
3283 | __asm__ volatile("dsb ish"); | |
3284 | #endif | |
3285 | /* assign a asid */ | |
3286 | p->vasid = alloc_asid(); | |
3287 | p->asid = p->vasid % ARM_MAX_ASID; | |
3288 | ||
3289 | /* | |
3290 | * initialize the rest of the structure | |
3291 | */ | |
3292 | p->nested_region_grand_addr = 0x0ULL; | |
3293 | p->nested_region_subord_addr = 0x0ULL; | |
3294 | p->nested_region_size = 0x0ULL; | |
3295 | p->nested_region_asid_bitmap = NULL; | |
3296 | p->nested_region_asid_bitmap_size = 0x0UL; | |
3297 | ||
3298 | #if MACH_ASSERT | |
5c9f4661 | 3299 | p->pmap_stats_assert = TRUE; |
5ba3f43e A |
3300 | p->pmap_pid = 0; |
3301 | strlcpy(p->pmap_procname, "<nil>", sizeof (p->pmap_procname)); | |
3302 | #endif /* MACH_ASSERT */ | |
3303 | #if DEVELOPMENT || DEBUG | |
3304 | p->footprint_suspended = FALSE; | |
3305 | p->footprint_was_suspended = FALSE; | |
3306 | #endif /* DEVELOPMENT || DEBUG */ | |
3307 | ||
3308 | simple_lock(&pmaps_lock); | |
3309 | queue_enter(&map_pmap_list, p, pmap_t, pmaps); | |
3310 | simple_unlock(&pmaps_lock); | |
3311 | ||
3312 | return (p); | |
3313 | } | |
3314 | ||
3315 | pmap_t | |
3316 | pmap_create( | |
3317 | ledger_t ledger, | |
3318 | vm_map_size_t size, | |
3319 | boolean_t is_64bit) | |
3320 | { | |
3321 | pmap_t pmap; | |
3322 | ||
3323 | PMAP_TRACE(PMAP_CODE(PMAP__CREATE) | DBG_FUNC_START, size, is_64bit); | |
3324 | ||
3325 | pmap = pmap_create_internal(ledger, size, is_64bit); | |
3326 | ||
3327 | PMAP_TRACE(PMAP_CODE(PMAP__CREATE) | DBG_FUNC_END, | |
3328 | VM_KERNEL_ADDRHIDE(pmap)); | |
3329 | ||
3330 | return pmap; | |
3331 | } | |
3332 | ||
3333 | #if MACH_ASSERT | |
3334 | static void | |
3335 | pmap_set_process_internal( | |
3336 | __unused pmap_t pmap, | |
3337 | __unused int pid, | |
3338 | __unused char *procname) | |
3339 | { | |
3340 | #if MACH_ASSERT | |
3341 | if (pmap == NULL) { | |
3342 | return; | |
3343 | } | |
3344 | ||
3345 | pmap->pmap_pid = pid; | |
3346 | strlcpy(pmap->pmap_procname, procname, sizeof (pmap->pmap_procname)); | |
5c9f4661 A |
3347 | if (!strncmp(procname, "corecaptured", sizeof (pmap->pmap_procname))) { |
3348 | /* | |
3349 | * XXX FBDP | |
3350 | * "corecaptured" somehow triggers some issues that make | |
3351 | * the pmap stats and ledgers to go off track, causing | |
3352 | * some assertion failures and ledger panics. | |
3353 | * Turn that off if the terminating process is "corecaptured". | |
3354 | */ | |
3355 | pmap->pmap_stats_assert = FALSE; | |
3356 | ledger_disable_panic_on_negative(pmap->ledger, | |
3357 | task_ledgers.phys_footprint); | |
3358 | ledger_disable_panic_on_negative(pmap->ledger, | |
3359 | task_ledgers.internal); | |
3360 | ledger_disable_panic_on_negative(pmap->ledger, | |
3361 | task_ledgers.internal_compressed); | |
3362 | ledger_disable_panic_on_negative(pmap->ledger, | |
3363 | task_ledgers.iokit_mapped); | |
3364 | ledger_disable_panic_on_negative(pmap->ledger, | |
3365 | task_ledgers.alternate_accounting); | |
3366 | ledger_disable_panic_on_negative(pmap->ledger, | |
3367 | task_ledgers.alternate_accounting_compressed); | |
3368 | } | |
3369 | #endif /* MACH_ASSERT */ | |
5ba3f43e | 3370 | } |
5c9f4661 | 3371 | #endif /* MACH_ASSERT*/ |
5ba3f43e A |
3372 | |
3373 | #if MACH_ASSERT | |
3374 | void | |
3375 | pmap_set_process( | |
3376 | pmap_t pmap, | |
3377 | int pid, | |
3378 | char *procname) | |
3379 | { | |
3380 | pmap_set_process_internal(pmap, pid, procname); | |
3381 | } | |
3382 | ||
3383 | /* | |
3384 | * We maintain stats and ledgers so that a task's physical footprint is: | |
3385 | * phys_footprint = ((internal - alternate_accounting) | |
3386 | * + (internal_compressed - alternate_accounting_compressed) | |
3387 | * + iokit_mapped | |
3388 | * + purgeable_nonvolatile | |
3389 | * + purgeable_nonvolatile_compressed | |
3390 | * + page_table) | |
3391 | * where "alternate_accounting" includes "iokit" and "purgeable" memory. | |
3392 | */ | |
3393 | ||
3394 | struct { | |
3395 | uint64_t num_pmaps_checked; | |
3396 | ||
3397 | int phys_footprint_over; | |
3398 | ledger_amount_t phys_footprint_over_total; | |
3399 | ledger_amount_t phys_footprint_over_max; | |
3400 | int phys_footprint_under; | |
3401 | ledger_amount_t phys_footprint_under_total; | |
3402 | ledger_amount_t phys_footprint_under_max; | |
3403 | ||
3404 | int internal_over; | |
3405 | ledger_amount_t internal_over_total; | |
3406 | ledger_amount_t internal_over_max; | |
3407 | int internal_under; | |
3408 | ledger_amount_t internal_under_total; | |
3409 | ledger_amount_t internal_under_max; | |
3410 | ||
3411 | int internal_compressed_over; | |
3412 | ledger_amount_t internal_compressed_over_total; | |
3413 | ledger_amount_t internal_compressed_over_max; | |
3414 | int internal_compressed_under; | |
3415 | ledger_amount_t internal_compressed_under_total; | |
3416 | ledger_amount_t internal_compressed_under_max; | |
3417 | ||
3418 | int iokit_mapped_over; | |
3419 | ledger_amount_t iokit_mapped_over_total; | |
3420 | ledger_amount_t iokit_mapped_over_max; | |
3421 | int iokit_mapped_under; | |
3422 | ledger_amount_t iokit_mapped_under_total; | |
3423 | ledger_amount_t iokit_mapped_under_max; | |
3424 | ||
3425 | int alternate_accounting_over; | |
3426 | ledger_amount_t alternate_accounting_over_total; | |
3427 | ledger_amount_t alternate_accounting_over_max; | |
3428 | int alternate_accounting_under; | |
3429 | ledger_amount_t alternate_accounting_under_total; | |
3430 | ledger_amount_t alternate_accounting_under_max; | |
3431 | ||
3432 | int alternate_accounting_compressed_over; | |
3433 | ledger_amount_t alternate_accounting_compressed_over_total; | |
3434 | ledger_amount_t alternate_accounting_compressed_over_max; | |
3435 | int alternate_accounting_compressed_under; | |
3436 | ledger_amount_t alternate_accounting_compressed_under_total; | |
3437 | ledger_amount_t alternate_accounting_compressed_under_max; | |
3438 | ||
3439 | int page_table_over; | |
3440 | ledger_amount_t page_table_over_total; | |
3441 | ledger_amount_t page_table_over_max; | |
3442 | int page_table_under; | |
3443 | ledger_amount_t page_table_under_total; | |
3444 | ledger_amount_t page_table_under_max; | |
3445 | ||
3446 | int purgeable_volatile_over; | |
3447 | ledger_amount_t purgeable_volatile_over_total; | |
3448 | ledger_amount_t purgeable_volatile_over_max; | |
3449 | int purgeable_volatile_under; | |
3450 | ledger_amount_t purgeable_volatile_under_total; | |
3451 | ledger_amount_t purgeable_volatile_under_max; | |
3452 | ||
3453 | int purgeable_nonvolatile_over; | |
3454 | ledger_amount_t purgeable_nonvolatile_over_total; | |
3455 | ledger_amount_t purgeable_nonvolatile_over_max; | |
3456 | int purgeable_nonvolatile_under; | |
3457 | ledger_amount_t purgeable_nonvolatile_under_total; | |
3458 | ledger_amount_t purgeable_nonvolatile_under_max; | |
3459 | ||
3460 | int purgeable_volatile_compressed_over; | |
3461 | ledger_amount_t purgeable_volatile_compressed_over_total; | |
3462 | ledger_amount_t purgeable_volatile_compressed_over_max; | |
3463 | int purgeable_volatile_compressed_under; | |
3464 | ledger_amount_t purgeable_volatile_compressed_under_total; | |
3465 | ledger_amount_t purgeable_volatile_compressed_under_max; | |
3466 | ||
3467 | int purgeable_nonvolatile_compressed_over; | |
3468 | ledger_amount_t purgeable_nonvolatile_compressed_over_total; | |
3469 | ledger_amount_t purgeable_nonvolatile_compressed_over_max; | |
3470 | int purgeable_nonvolatile_compressed_under; | |
3471 | ledger_amount_t purgeable_nonvolatile_compressed_under_total; | |
3472 | ledger_amount_t purgeable_nonvolatile_compressed_under_max; | |
3473 | } pmap_ledgers_drift; | |
3474 | #endif /* MACH_ASSERT */ | |
3475 | ||
3476 | /* | |
3477 | * Retire the given physical map from service. | |
3478 | * Should only be called if the map contains | |
3479 | * no valid mappings. | |
3480 | */ | |
3481 | static void | |
3482 | pmap_destroy_internal( | |
3483 | pmap_t pmap) | |
3484 | { | |
3485 | #if (__ARM_VMSA__ == 7) | |
3486 | pt_entry_t *ttep; | |
3487 | unsigned int i; | |
3488 | pmap_t tmp_pmap, tt_pmap; | |
3489 | queue_head_t tmp_pmap_list; | |
3490 | ||
3491 | queue_init(&tmp_pmap_list); | |
3492 | simple_lock(&pmaps_lock); | |
3493 | tt_pmap = CAST_DOWN_EXPLICIT(pmap_t, queue_first(&tt_pmap_list)); | |
3494 | while (!queue_end(&tt_pmap_list, (queue_entry_t)tt_pmap)) { | |
3495 | if (tt_pmap->cpu_ref == 0 ) { | |
3496 | tmp_pmap = tt_pmap; | |
3497 | tt_pmap = CAST_DOWN_EXPLICIT(pmap_t, queue_next(&tmp_pmap->pmaps)); | |
3498 | queue_remove(&tt_pmap_list, tmp_pmap, pmap_t, pmaps); | |
3499 | tt_pmap_count--; | |
3500 | queue_enter(&tmp_pmap_list, tmp_pmap, pmap_t, pmaps); | |
3501 | } else { | |
3502 | tmp_pmap = tt_pmap; | |
3503 | tt_pmap = CAST_DOWN_EXPLICIT(pmap_t, queue_next(&tmp_pmap->pmaps)); | |
3504 | } | |
3505 | } | |
3506 | simple_unlock(&pmaps_lock); | |
3507 | ||
3508 | tmp_pmap = CAST_DOWN_EXPLICIT(pmap_t, queue_first(&tmp_pmap_list)); | |
3509 | while (!queue_end(&tmp_pmap_list, (queue_entry_t)tmp_pmap)) { | |
3510 | tt_pmap = tmp_pmap; | |
3511 | tmp_pmap = CAST_DOWN_EXPLICIT(pmap_t, queue_next(&tt_pmap->pmaps)); | |
3512 | queue_remove(&tmp_pmap_list, tt_pmap, pmap_t, pmaps); | |
3513 | if (tt_pmap->tte) { | |
3514 | pmap_tt1_deallocate(pmap, tt_pmap->tte, tt_pmap->tte_index_max*sizeof(tt_entry_t), 0); | |
3515 | tt_pmap->tte = (tt_entry_t *) NULL; | |
3516 | tt_pmap->ttep = 0; | |
3517 | tt_pmap->tte_index_max = 0; | |
3518 | } | |
3519 | if (tt_pmap->prev_tte) { | |
3520 | pmap_tt1_deallocate(pmap, tt_pmap->prev_tte, PMAP_ROOT_ALLOC_SIZE, 0); | |
3521 | tt_pmap->prev_tte = (tt_entry_t *) NULL; | |
3522 | } | |
3523 | assert((tt_free_entry_t*)pmap->tt_entry_free == NULL); | |
3524 | free_asid(tt_pmap->vasid); | |
3525 | ||
3526 | pmap_check_ledgers(tt_pmap); | |
3527 | ledger_dereference(tt_pmap->ledger); | |
3528 | ||
3529 | zfree(pmap_zone, tt_pmap); | |
3530 | } | |
3531 | ||
3532 | if (pmap == PMAP_NULL) | |
3533 | return; | |
3534 | ||
3535 | if (hw_atomic_sub(&pmap->ref_count, 1) != 0) | |
3536 | return; | |
3537 | ||
3538 | simple_lock(&pmaps_lock); | |
3539 | ||
3540 | while (pmap->gc_status & PMAP_GC_INFLIGHT) { | |
3541 | pmap->gc_status |= PMAP_GC_WAIT; | |
3542 | assert_wait((event_t) & pmap->gc_status, THREAD_UNINT); | |
3543 | simple_unlock(&pmaps_lock); | |
3544 | (void) thread_block(THREAD_CONTINUE_NULL); | |
3545 | simple_lock(&pmaps_lock); | |
3546 | ||
3547 | } | |
3548 | ||
3549 | queue_remove(&map_pmap_list, pmap, pmap_t, pmaps); | |
3550 | simple_unlock(&pmaps_lock); | |
3551 | ||
3552 | /* | |
3553 | * Free the memory maps, then the | |
3554 | * pmap structure. | |
3555 | */ | |
3556 | PMAP_LOCK(pmap); | |
3557 | for (i = 0; i < pmap->tte_index_max; i++) { | |
3558 | ttep = &pmap->tte[i]; | |
3559 | if ((*ttep & ARM_TTE_TYPE_MASK) == ARM_TTE_TYPE_TABLE) { | |
3560 | pmap_tte_deallocate(pmap, ttep, PMAP_TT_L1_LEVEL); | |
3561 | flush_mmu_tlb_entry((i<<ARM_TT_L1_SHIFT) | (pmap->asid & 0xff)); | |
3562 | } | |
3563 | } | |
3564 | PMAP_UNLOCK(pmap); | |
3565 | ||
3566 | if (pmap->cpu_ref == 0) { | |
3567 | if (pmap->tte) { | |
3568 | pmap_tt1_deallocate(pmap, pmap->tte, pmap->tte_index_max*sizeof(tt_entry_t), 0); | |
3569 | pmap->tte = (tt_entry_t *) NULL; | |
3570 | pmap->ttep = 0; | |
3571 | pmap->tte_index_max = 0; | |
3572 | } | |
3573 | if (pmap->prev_tte) { | |
3574 | pmap_tt1_deallocate(pmap, pmap->prev_tte, PMAP_ROOT_ALLOC_SIZE, 0); | |
3575 | pmap->prev_tte = (tt_entry_t *) NULL; | |
3576 | } | |
3577 | assert((tt_free_entry_t*)pmap->tt_entry_free == NULL); | |
3578 | ||
3579 | /* return its asid to the pool */ | |
3580 | free_asid(pmap->vasid); | |
3581 | pmap_check_ledgers(pmap); | |
3582 | ||
3583 | ledger_dereference(pmap->ledger); | |
3584 | if (pmap->nested_region_asid_bitmap) | |
3585 | kfree(pmap->nested_region_asid_bitmap, pmap->nested_region_asid_bitmap_size*sizeof(unsigned int)); | |
3586 | zfree(pmap_zone, pmap); | |
3587 | } else { | |
3588 | simple_lock(&pmaps_lock); | |
3589 | queue_enter(&tt_pmap_list, pmap, pmap_t, pmaps); | |
3590 | tt_pmap_count++; | |
3591 | if (tt_pmap_count > tt_pmap_max) | |
3592 | tt_pmap_max = tt_pmap_count; | |
3593 | simple_unlock(&pmaps_lock); | |
3594 | } | |
3595 | #else | |
3596 | pt_entry_t *ttep; | |
3597 | pmap_paddr_t pa; | |
3598 | vm_map_address_t c; | |
3599 | ||
3600 | if (pmap == PMAP_NULL) { | |
3601 | return; | |
3602 | } | |
3603 | ||
5c9f4661 | 3604 | pmap_unmap_sharedpage(pmap); |
5ba3f43e A |
3605 | |
3606 | if (hw_atomic_sub(&pmap->ref_count, 1) == 0) { | |
3607 | ||
3608 | simple_lock(&pmaps_lock); | |
3609 | while (pmap->gc_status & PMAP_GC_INFLIGHT) { | |
3610 | pmap->gc_status |= PMAP_GC_WAIT; | |
3611 | assert_wait((event_t) & pmap->gc_status, THREAD_UNINT); | |
3612 | simple_unlock(&pmaps_lock); | |
3613 | (void) thread_block(THREAD_CONTINUE_NULL); | |
3614 | simple_lock(&pmaps_lock); | |
3615 | } | |
3616 | queue_remove(&map_pmap_list, pmap, pmap_t, pmaps); | |
3617 | simple_unlock(&pmaps_lock); | |
3618 | ||
3619 | /* | |
3620 | * Free the memory maps, then the | |
3621 | * pmap structure. | |
3622 | */ | |
3623 | for (c = pmap->min; c < pmap->max; c += ARM_TT_L2_SIZE) { | |
3624 | ttep = pmap_tt2e(pmap, c); | |
3625 | if ((ttep != PT_ENTRY_NULL) && (*ttep & ARM_TTE_TYPE_MASK) == ARM_TTE_TYPE_TABLE) { | |
3626 | PMAP_LOCK(pmap); | |
3627 | pmap_tte_deallocate(pmap, ttep, PMAP_TT_L2_LEVEL); | |
3628 | PMAP_UNLOCK(pmap); | |
3629 | flush_mmu_tlb_entry(tlbi_addr(c) | tlbi_asid(pmap->asid)); | |
3630 | } | |
3631 | } | |
3632 | #if !__ARM64_TWO_LEVEL_PMAP__ | |
3633 | for (c = pmap->min; c < pmap->max; c += ARM_TT_L1_SIZE) { | |
3634 | ttep = pmap_tt1e(pmap, c); | |
3635 | if ((ttep != PT_ENTRY_NULL) && (*ttep & ARM_TTE_TYPE_MASK) == ARM_TTE_TYPE_TABLE) { | |
3636 | PMAP_LOCK(pmap); | |
3637 | pmap_tte_deallocate(pmap, ttep, PMAP_TT_L1_LEVEL); | |
3638 | PMAP_UNLOCK(pmap); | |
3639 | } | |
3640 | } | |
3641 | #endif | |
3642 | ||
3643 | if (pmap->tte) { | |
3644 | pa = pmap->ttep; | |
3645 | pmap_tt1_deallocate(pmap, (tt_entry_t *)phystokv(pa), PMAP_ROOT_ALLOC_SIZE, 0); | |
3646 | } | |
3647 | ||
3648 | ||
3649 | assert((tt_free_entry_t*)pmap->tt_entry_free == NULL); | |
5ba3f43e A |
3650 | flush_mmu_tlb_asid((uint64_t)(pmap->asid) << TLBI_ASID_SHIFT); |
3651 | free_asid(pmap->vasid); | |
3652 | ||
3653 | if (pmap->nested_region_asid_bitmap) { | |
3654 | kfree(pmap->nested_region_asid_bitmap, pmap->nested_region_asid_bitmap_size*sizeof(unsigned int)); | |
3655 | } | |
3656 | ||
3657 | pmap_check_ledgers(pmap); | |
3658 | ledger_dereference(pmap->ledger); | |
3659 | ||
3660 | zfree(pmap_zone, pmap); | |
3661 | } | |
3662 | ||
3663 | #endif | |
3664 | } | |
3665 | ||
3666 | void | |
3667 | pmap_destroy( | |
3668 | pmap_t pmap) | |
3669 | { | |
3670 | PMAP_TRACE(PMAP_CODE(PMAP__DESTROY) | DBG_FUNC_START, | |
3671 | VM_KERNEL_ADDRHIDE(pmap)); | |
3672 | ||
3673 | pmap_destroy_internal(pmap); | |
3674 | ||
3675 | PMAP_TRACE(PMAP_CODE(PMAP__DESTROY) | DBG_FUNC_END); | |
3676 | } | |
3677 | ||
3678 | ||
3679 | /* | |
3680 | * Add a reference to the specified pmap. | |
3681 | */ | |
3682 | static void | |
3683 | pmap_reference_internal( | |
3684 | pmap_t pmap) | |
3685 | { | |
3686 | if (pmap != PMAP_NULL) { | |
3687 | (void) hw_atomic_add(&pmap->ref_count, 1); | |
3688 | } | |
3689 | } | |
3690 | ||
3691 | void | |
3692 | pmap_reference( | |
3693 | pmap_t pmap) | |
3694 | { | |
3695 | pmap_reference_internal(pmap); | |
3696 | } | |
3697 | ||
3698 | static tt_entry_t * | |
3699 | pmap_tt1_allocate( | |
3700 | pmap_t pmap, | |
3701 | vm_size_t size, | |
3702 | unsigned option) | |
3703 | { | |
3704 | tt_entry_t *tt1; | |
3705 | tt_free_entry_t *tt1_free; | |
3706 | pmap_paddr_t pa; | |
3707 | vm_address_t va; | |
3708 | vm_address_t va_end; | |
3709 | kern_return_t ret; | |
3710 | ||
3711 | simple_lock(&pmaps_lock); | |
3712 | if ((size == PAGE_SIZE) && (free_page_size_tt_count != 0)) { | |
3713 | free_page_size_tt_count--; | |
3714 | tt1 = (tt_entry_t *)free_page_size_tt_list; | |
3715 | free_page_size_tt_list = ((tt_free_entry_t *)tt1)->next; | |
3716 | simple_unlock(&pmaps_lock); | |
3717 | pmap_tt_ledger_credit(pmap, size); | |
3718 | return (tt_entry_t *)tt1; | |
3719 | }; | |
3720 | if ((size == 2*PAGE_SIZE) && (free_two_page_size_tt_count != 0)) { | |
3721 | free_two_page_size_tt_count--; | |
3722 | tt1 = (tt_entry_t *)free_two_page_size_tt_list; | |
3723 | free_two_page_size_tt_list = ((tt_free_entry_t *)tt1)->next; | |
3724 | simple_unlock(&pmaps_lock); | |
3725 | pmap_tt_ledger_credit(pmap, size); | |
3726 | return (tt_entry_t *)tt1; | |
3727 | }; | |
3728 | if (free_tt_count != 0) { | |
3729 | free_tt_count--; | |
3730 | tt1 = (tt_entry_t *)free_tt_list; | |
3731 | free_tt_list = (tt_free_entry_t *)((tt_free_entry_t *)tt1)->next; | |
3732 | simple_unlock(&pmaps_lock); | |
3733 | pmap_tt_ledger_credit(pmap, size); | |
3734 | return (tt_entry_t *)tt1; | |
3735 | } | |
3736 | ||
3737 | simple_unlock(&pmaps_lock); | |
3738 | ||
3739 | ret = pmap_pages_alloc(&pa, (unsigned)((size < PAGE_SIZE)? PAGE_SIZE : size), ((option & PMAP_TT_ALLOCATE_NOWAIT)? PMAP_PAGES_ALLOCATE_NOWAIT : 0)); | |
3740 | ||
3741 | if(ret == KERN_RESOURCE_SHORTAGE) | |
3742 | return (tt_entry_t *)0; | |
3743 | ||
3744 | ||
3745 | if (size < PAGE_SIZE) { | |
3746 | simple_lock(&pmaps_lock); | |
3747 | ||
3748 | for (va_end = phystokv(pa) + PAGE_SIZE, va = phystokv(pa) + size; va < va_end; va = va+size) { | |
3749 | tt1_free = (tt_free_entry_t *)va; | |
3750 | tt1_free->next = free_tt_list; | |
3751 | free_tt_list = tt1_free; | |
3752 | free_tt_count++; | |
3753 | } | |
3754 | if (free_tt_count > free_tt_max) | |
3755 | free_tt_max = free_tt_count; | |
3756 | ||
3757 | simple_unlock(&pmaps_lock); | |
3758 | } | |
3759 | ||
3760 | /* Always report root allocations in units of PMAP_ROOT_ALLOC_SIZE, which can be obtained by sysctl arm_pt_root_size. | |
3761 | * Depending on the device, this can vary between 512b and 16K. */ | |
3762 | OSAddAtomic((uint32_t)(size / PMAP_ROOT_ALLOC_SIZE), (pmap == kernel_pmap ? &inuse_kernel_tteroot_count : &inuse_user_tteroot_count)); | |
3763 | OSAddAtomic64(size / PMAP_ROOT_ALLOC_SIZE, &alloc_tteroot_count); | |
3764 | pmap_tt_ledger_credit(pmap, size); | |
3765 | ||
3766 | return (tt_entry_t *) phystokv(pa); | |
3767 | } | |
3768 | ||
3769 | static void | |
3770 | pmap_tt1_deallocate( | |
3771 | pmap_t pmap, | |
3772 | tt_entry_t *tt, | |
3773 | vm_size_t size, | |
3774 | unsigned option) | |
3775 | { | |
3776 | tt_free_entry_t *tt_entry; | |
3777 | ||
3778 | tt_entry = (tt_free_entry_t *)tt; | |
3779 | if (not_in_kdp) | |
3780 | simple_lock(&pmaps_lock); | |
3781 | ||
3782 | if (size < PAGE_SIZE) { | |
3783 | free_tt_count++; | |
3784 | if (free_tt_count > free_tt_max) | |
3785 | free_tt_max = free_tt_count; | |
3786 | tt_entry->next = free_tt_list; | |
3787 | free_tt_list = tt_entry; | |
3788 | } | |
3789 | ||
3790 | if (size == PAGE_SIZE) { | |
3791 | free_page_size_tt_count++; | |
3792 | if (free_page_size_tt_count > free_page_size_tt_max) | |
3793 | free_page_size_tt_max = free_page_size_tt_count; | |
3794 | tt_entry->next = free_page_size_tt_list; | |
3795 | free_page_size_tt_list = tt_entry; | |
3796 | } | |
3797 | ||
3798 | if (size == 2*PAGE_SIZE) { | |
3799 | free_two_page_size_tt_count++; | |
3800 | if (free_two_page_size_tt_count > free_two_page_size_tt_max) | |
3801 | free_two_page_size_tt_max = free_two_page_size_tt_count; | |
3802 | tt_entry->next = free_two_page_size_tt_list; | |
3803 | free_two_page_size_tt_list = tt_entry; | |
3804 | } | |
3805 | ||
3806 | if ((option & PMAP_TT_DEALLOCATE_NOBLOCK) || (!not_in_kdp)) { | |
3807 | if (not_in_kdp) | |
3808 | simple_unlock(&pmaps_lock); | |
3809 | pmap_tt_ledger_debit(pmap, size); | |
3810 | return; | |
3811 | } | |
3812 | ||
3813 | while (free_page_size_tt_count > FREE_PAGE_SIZE_TT_MAX) { | |
3814 | ||
3815 | free_page_size_tt_count--; | |
3816 | tt = (tt_entry_t *)free_page_size_tt_list; | |
3817 | free_page_size_tt_list = ((tt_free_entry_t *)tt)->next; | |
3818 | ||
3819 | simple_unlock(&pmaps_lock); | |
3820 | ||
3821 | pmap_pages_free(ml_static_vtop((vm_offset_t)tt), PAGE_SIZE); | |
3822 | ||
3823 | OSAddAtomic(-(int32_t)(PAGE_SIZE / PMAP_ROOT_ALLOC_SIZE), (pmap == kernel_pmap ? &inuse_kernel_tteroot_count : &inuse_user_tteroot_count)); | |
3824 | ||
3825 | simple_lock(&pmaps_lock); | |
3826 | } | |
3827 | ||
3828 | while (free_two_page_size_tt_count > FREE_TWO_PAGE_SIZE_TT_MAX) { | |
3829 | free_two_page_size_tt_count--; | |
3830 | tt = (tt_entry_t *)free_two_page_size_tt_list; | |
3831 | free_two_page_size_tt_list = ((tt_free_entry_t *)tt)->next; | |
3832 | ||
3833 | simple_unlock(&pmaps_lock); | |
3834 | ||
3835 | pmap_pages_free(ml_static_vtop((vm_offset_t)tt), 2*PAGE_SIZE); | |
3836 | ||
3837 | OSAddAtomic(-2 * (int32_t)(PAGE_SIZE / PMAP_ROOT_ALLOC_SIZE), (pmap == kernel_pmap ? &inuse_kernel_tteroot_count : &inuse_user_tteroot_count)); | |
3838 | ||
3839 | simple_lock(&pmaps_lock); | |
3840 | } | |
3841 | simple_unlock(&pmaps_lock); | |
3842 | pmap_tt_ledger_debit(pmap, size); | |
3843 | } | |
3844 | ||
3845 | static kern_return_t | |
3846 | pmap_tt_allocate( | |
3847 | pmap_t pmap, | |
3848 | tt_entry_t **ttp, | |
3849 | unsigned int level, | |
3850 | unsigned int options) | |
3851 | { | |
3852 | pmap_paddr_t pa; | |
3853 | *ttp = NULL; | |
3854 | ||
3855 | PMAP_LOCK(pmap); | |
3856 | if ((tt_free_entry_t *)pmap->tt_entry_free != NULL) { | |
3857 | tt_free_entry_t *tt_free_next; | |
3858 | ||
3859 | tt_free_next = ((tt_free_entry_t *)pmap->tt_entry_free)->next; | |
3860 | *ttp = (tt_entry_t *)pmap->tt_entry_free; | |
3861 | pmap->tt_entry_free = (tt_entry_t *)tt_free_next; | |
3862 | } | |
3863 | PMAP_UNLOCK(pmap); | |
3864 | ||
3865 | if (*ttp == NULL) { | |
3866 | pt_desc_t *ptdp; | |
3867 | ||
3868 | /* | |
3869 | * Allocate a VM page for the level x page table entries. | |
3870 | */ | |
3871 | while (pmap_pages_alloc(&pa, PAGE_SIZE, ((options & PMAP_TT_ALLOCATE_NOWAIT)? PMAP_PAGES_ALLOCATE_NOWAIT : 0)) != KERN_SUCCESS) { | |
3872 | if(options & PMAP_OPTIONS_NOWAIT) { | |
3873 | return KERN_RESOURCE_SHORTAGE; | |
3874 | } | |
3875 | VM_PAGE_WAIT(); | |
3876 | } | |
3877 | ||
3878 | if (level < PMAP_TT_MAX_LEVEL) { | |
3879 | OSAddAtomic64(1, &alloc_ttepages_count); | |
3880 | OSAddAtomic(1, (pmap == kernel_pmap ? &inuse_kernel_ttepages_count : &inuse_user_ttepages_count)); | |
3881 | } else { | |
3882 | OSAddAtomic64(1, &alloc_ptepages_count); | |
3883 | OSAddAtomic(1, (pmap == kernel_pmap ? &inuse_kernel_ptepages_count : &inuse_user_ptepages_count)); | |
3884 | } | |
3885 | ||
3886 | pmap_tt_ledger_credit(pmap, PAGE_SIZE); | |
3887 | ||
3888 | PMAP_ZINFO_PALLOC(pmap, PAGE_SIZE); | |
3889 | ||
3890 | ptdp = ptd_alloc(pmap); | |
3891 | *(pt_desc_t **)pai_to_pvh(pa_index(pa)) = ptdp; | |
3892 | ||
3893 | __unreachable_ok_push | |
3894 | if (TEST_PAGE_RATIO_4) { | |
3895 | vm_address_t va; | |
3896 | vm_address_t va_end; | |
3897 | ||
3898 | PMAP_LOCK(pmap); | |
3899 | ||
3900 | for (va_end = phystokv(pa) + PAGE_SIZE, va = phystokv(pa) + ARM_PGBYTES; va < va_end; va = va+ARM_PGBYTES) { | |
3901 | ((tt_free_entry_t *)va)->next = (tt_free_entry_t *)pmap->tt_entry_free; | |
3902 | pmap->tt_entry_free = (tt_entry_t *)va; | |
3903 | } | |
3904 | PMAP_UNLOCK(pmap); | |
3905 | } | |
3906 | __unreachable_ok_pop | |
3907 | ||
3908 | *ttp = (tt_entry_t *)phystokv(pa); | |
3909 | } | |
3910 | ||
3911 | ||
3912 | return KERN_SUCCESS; | |
3913 | } | |
3914 | ||
3915 | ||
3916 | static void | |
3917 | pmap_tt_deallocate( | |
3918 | pmap_t pmap, | |
3919 | tt_entry_t *ttp, | |
3920 | unsigned int level) | |
3921 | { | |
3922 | pt_desc_t *ptdp; | |
3923 | unsigned pt_acc_cnt; | |
3924 | unsigned i, max_pt_index = PAGE_RATIO; | |
3925 | vm_offset_t free_page=0; | |
3926 | ||
3927 | PMAP_LOCK(pmap); | |
3928 | ||
3929 | ptdp = ptep_get_ptd((vm_offset_t)ttp); | |
3930 | ||
3931 | if (level < PMAP_TT_MAX_LEVEL) { | |
3932 | ||
3933 | if (ptdp->pt_cnt[ARM_PT_DESC_INDEX(ttp)].refcnt == PT_DESC_REFCOUNT) | |
3934 | ptdp->pt_cnt[ARM_PT_DESC_INDEX(ttp)].refcnt = 0; | |
3935 | } | |
3936 | ||
3937 | ptdp->pt_map[ARM_PT_DESC_INDEX(ttp)].va = 0; | |
3938 | ||
3939 | if (ptdp->pt_cnt[ARM_PT_DESC_INDEX(ttp)].refcnt != 0) | |
3940 | panic("pmap_tt_deallocate(): ptdp %p, count %d\n", ptdp, ptdp->pt_cnt[ARM_PT_DESC_INDEX(ttp)].refcnt); | |
3941 | ||
3942 | for (i = 0, pt_acc_cnt = 0 ; i < max_pt_index ; i++) | |
3943 | pt_acc_cnt += ptdp->pt_cnt[i].refcnt; | |
3944 | ||
3945 | if (pt_acc_cnt == 0) { | |
3946 | tt_free_entry_t *tt_free_list = (tt_free_entry_t *)&pmap->tt_entry_free; | |
3947 | unsigned pt_free_entry_cnt = 1; | |
3948 | ||
3949 | while (pt_free_entry_cnt < max_pt_index && tt_free_list) { | |
3950 | tt_free_entry_t *tt_free_list_next; | |
3951 | ||
3952 | tt_free_list_next = tt_free_list->next; | |
3953 | if ((((vm_offset_t)tt_free_list_next) - ((vm_offset_t)ttp & ~PAGE_MASK)) < PAGE_SIZE) { | |
3954 | pt_free_entry_cnt++; | |
3955 | } | |
3956 | tt_free_list = tt_free_list_next; | |
3957 | } | |
3958 | if (pt_free_entry_cnt == max_pt_index) { | |
3959 | tt_free_entry_t *tt_free_list_cur; | |
3960 | ||
3961 | free_page = (vm_offset_t)ttp & ~PAGE_MASK; | |
3962 | tt_free_list = (tt_free_entry_t *)&pmap->tt_entry_free; | |
3963 | tt_free_list_cur = (tt_free_entry_t *)&pmap->tt_entry_free; | |
3964 | ||
3965 | while (tt_free_list_cur) { | |
3966 | tt_free_entry_t *tt_free_list_next; | |
3967 | ||
3968 | tt_free_list_next = tt_free_list_cur->next; | |
3969 | if ((((vm_offset_t)tt_free_list_next) - free_page) < PAGE_SIZE) { | |
3970 | tt_free_list->next = tt_free_list_next->next; | |
3971 | } else { | |
3972 | tt_free_list = tt_free_list_next; | |
3973 | } | |
3974 | tt_free_list_cur = tt_free_list_next; | |
3975 | } | |
3976 | } else { | |
3977 | ((tt_free_entry_t *)ttp)->next = (tt_free_entry_t *)pmap->tt_entry_free; | |
3978 | pmap->tt_entry_free = ttp; | |
3979 | } | |
3980 | } else { | |
3981 | ((tt_free_entry_t *)ttp)->next = (tt_free_entry_t *)pmap->tt_entry_free; | |
3982 | pmap->tt_entry_free = ttp; | |
3983 | } | |
3984 | ||
3985 | PMAP_UNLOCK(pmap); | |
3986 | ||
3987 | if (free_page != 0) { | |
3988 | ||
3989 | ptd_deallocate(ptep_get_ptd((vm_offset_t)free_page)); | |
3990 | *(pt_desc_t **)pai_to_pvh(pa_index(ml_static_vtop(free_page))) = NULL; | |
3991 | pmap_pages_free(ml_static_vtop(free_page), PAGE_SIZE); | |
3992 | if (level < PMAP_TT_MAX_LEVEL) | |
3993 | OSAddAtomic(-1, (pmap == kernel_pmap ? &inuse_kernel_ttepages_count : &inuse_user_ttepages_count)); | |
3994 | else | |
3995 | OSAddAtomic(-1, (pmap == kernel_pmap ? &inuse_kernel_ptepages_count : &inuse_user_ptepages_count)); | |
3996 | PMAP_ZINFO_PFREE(pmap, PAGE_SIZE); | |
3997 | pmap_tt_ledger_debit(pmap, PAGE_SIZE); | |
3998 | } | |
3999 | } | |
4000 | ||
4001 | static void | |
4002 | pmap_tte_deallocate( | |
4003 | pmap_t pmap, | |
4004 | tt_entry_t *ttep, | |
4005 | unsigned int level) | |
4006 | { | |
4007 | pmap_paddr_t pa; | |
4008 | tt_entry_t tte; | |
4009 | ||
4010 | PMAP_ASSERT_LOCKED(pmap); | |
4011 | ||
4012 | tte = *ttep; | |
4013 | ||
4014 | if (tte == 0) { | |
4015 | panic("pmap_tte_deallocate(): null tt_entry ttep==%p\n", ttep); | |
4016 | } | |
4017 | ||
4018 | #if MACH_ASSERT | |
4019 | if (tte_get_ptd(tte)->pmap != pmap) { | |
4020 | panic("pmap_tte_deallocate(): ptd=%p ptd->pmap=%p pmap=%p \n", | |
4021 | tte_get_ptd(tte), tte_get_ptd(tte)->pmap, pmap); | |
4022 | } | |
4023 | #endif | |
4024 | if (((level+1) == PMAP_TT_MAX_LEVEL) && (tte_get_ptd(tte)->pt_cnt[ARM_PT_DESC_INDEX(ttetokv(*ttep))].refcnt != 0)) { | |
4025 | panic("pmap_tte_deallocate(): pmap=%p ttep=%p ptd=%p refcnt=0x%x \n", pmap, ttep, | |
4026 | tte_get_ptd(tte), (tte_get_ptd(tte)->pt_cnt[ARM_PT_DESC_INDEX(ttetokv(*ttep))].refcnt)); | |
4027 | } | |
4028 | ||
4029 | #if (__ARM_VMSA__ == 7) | |
4030 | { | |
4031 | tt_entry_t *ttep_4M = (tt_entry_t *) ((vm_offset_t)ttep & 0xFFFFFFF0); | |
4032 | unsigned i; | |
4033 | ||
4034 | for (i = 0; i<4; i++, ttep_4M++) | |
4035 | *ttep_4M = (tt_entry_t) 0; | |
4036 | } | |
4037 | #else | |
4038 | *ttep = (tt_entry_t) 0; | |
4039 | #endif | |
4040 | ||
4041 | #ifndef __ARM_L1_PTW__ | |
4042 | CleanPoU_DcacheRegion((vm_offset_t) ttep, sizeof(tt_entry_t)); | |
4043 | #else | |
4044 | __asm__ volatile("dsb ish"); | |
4045 | #endif | |
4046 | if ((tte & ARM_TTE_TYPE_MASK) == ARM_TTE_TYPE_TABLE) { | |
4047 | #if MACH_ASSERT | |
4048 | { | |
4049 | pt_entry_t *pte_p = ((pt_entry_t *) (ttetokv(tte) & ~ARM_PGMASK)); | |
4050 | unsigned i; | |
4051 | ||
4052 | for (i = 0; i < (ARM_PGBYTES / sizeof(*pte_p)); i++,pte_p++) { | |
4053 | if (ARM_PTE_IS_COMPRESSED(*pte_p)) { | |
4054 | panic("pmap_tte_deallocate: tte=0x%llx pmap=%p, pte_p=%p, pte=0x%llx compressed\n", | |
4055 | (uint64_t)tte, pmap, pte_p, (uint64_t)(*pte_p)); | |
4056 | } else if (((*pte_p) & ARM_PTE_TYPE_MASK) != ARM_PTE_TYPE_FAULT) { | |
4057 | panic("pmap_tte_deallocate: tte=0x%llx pmap=%p, pte_p=%p, pte=0x%llx\n", | |
4058 | (uint64_t)tte, pmap, pte_p, (uint64_t)(*pte_p)); | |
4059 | } | |
4060 | } | |
4061 | } | |
4062 | #endif | |
4063 | PMAP_UNLOCK(pmap); | |
4064 | ||
4065 | /* Clear any page offset: we mean to free the whole page, but armv7 TTEs may only be | |
4066 | * aligned on 1K boundaries. We clear the surrounding "chunk" of 4 TTEs above. */ | |
4067 | pa = tte_to_pa(tte) & ~ARM_PGMASK; | |
4068 | pmap_tt_deallocate(pmap, (tt_entry_t *) phystokv(pa), level+1); | |
4069 | PMAP_LOCK(pmap); | |
4070 | } | |
4071 | } | |
4072 | ||
4073 | /* | |
4074 | * Remove a range of hardware page-table entries. | |
4075 | * The entries given are the first (inclusive) | |
4076 | * and last (exclusive) entries for the VM pages. | |
4077 | * The virtual address is the va for the first pte. | |
4078 | * | |
4079 | * The pmap must be locked. | |
4080 | * If the pmap is not the kernel pmap, the range must lie | |
4081 | * entirely within one pte-page. This is NOT checked. | |
4082 | * Assumes that the pte-page exists. | |
4083 | * | |
4084 | * Returns the number of PTE changed, and sets *rmv_cnt | |
4085 | * to the number of SPTE changed. | |
4086 | */ | |
4087 | static int | |
4088 | pmap_remove_range( | |
4089 | pmap_t pmap, | |
4090 | vm_map_address_t va, | |
4091 | pt_entry_t *bpte, | |
4092 | pt_entry_t *epte, | |
4093 | uint32_t *rmv_cnt) | |
4094 | { | |
4095 | return pmap_remove_range_options(pmap, va, bpte, epte, rmv_cnt, | |
4096 | PMAP_OPTIONS_REMOVE); | |
4097 | } | |
4098 | ||
4099 | #if MACH_ASSERT | |
4100 | int num_reusable_mismatch = 0; | |
4101 | #endif /* MACH_ASSERT */ | |
4102 | ||
4103 | static int | |
4104 | pmap_remove_range_options( | |
4105 | pmap_t pmap, | |
4106 | vm_map_address_t va, | |
4107 | pt_entry_t *bpte, | |
4108 | pt_entry_t *epte, | |
4109 | uint32_t *rmv_cnt, | |
4110 | int options) | |
4111 | { | |
4112 | pt_entry_t *cpte; | |
4113 | int num_removed, num_unwired; | |
4114 | int num_pte_changed; | |
4115 | int pai = 0; | |
4116 | pmap_paddr_t pa; | |
4117 | int num_external, num_internal, num_reusable; | |
4118 | int num_alt_internal; | |
4119 | uint64_t num_compressed, num_alt_compressed; | |
4120 | ||
4121 | PMAP_ASSERT_LOCKED(pmap); | |
4122 | ||
4123 | num_removed = 0; | |
4124 | num_unwired = 0; | |
4125 | num_pte_changed = 0; | |
4126 | num_external = 0; | |
4127 | num_internal = 0; | |
4128 | num_reusable = 0; | |
4129 | num_compressed = 0; | |
4130 | num_alt_internal = 0; | |
4131 | num_alt_compressed = 0; | |
4132 | ||
4133 | for (cpte = bpte; cpte < epte; | |
4134 | cpte += PAGE_SIZE/ARM_PGBYTES, va += PAGE_SIZE) { | |
4135 | pv_entry_t **pv_h, **pve_pp; | |
4136 | pv_entry_t *pve_p; | |
4137 | pt_entry_t spte; | |
4138 | boolean_t managed=FALSE; | |
4139 | ||
4140 | spte = *cpte; | |
4141 | ||
4142 | #if CONFIG_PGTRACE | |
4143 | if (pgtrace_enabled) { | |
4144 | pmap_pgtrace_remove_clone(pmap, pte_to_pa(spte), va); | |
4145 | } | |
4146 | #endif | |
4147 | ||
4148 | while (!managed) { | |
4149 | if (pmap != kernel_pmap && | |
4150 | (options & PMAP_OPTIONS_REMOVE) && | |
4151 | (ARM_PTE_IS_COMPRESSED(spte))) { | |
4152 | /* | |
4153 | * "pmap" must be locked at this point, | |
4154 | * so this should not race with another | |
4155 | * pmap_remove_range() or pmap_enter(). | |
4156 | */ | |
4157 | ||
4158 | /* one less "compressed"... */ | |
4159 | num_compressed++; | |
4160 | if (spte & ARM_PTE_COMPRESSED_ALT) { | |
4161 | /* ... but it used to be "ALTACCT" */ | |
4162 | num_alt_compressed++; | |
4163 | } | |
4164 | ||
4165 | /* clear marker */ | |
4166 | WRITE_PTE_FAST(cpte, ARM_PTE_TYPE_FAULT); | |
4167 | /* | |
4168 | * "refcnt" also accounts for | |
4169 | * our "compressed" markers, | |
4170 | * so let's update it here. | |
4171 | */ | |
4172 | if (OSAddAtomic16(-1, (SInt16 *) &(ptep_get_ptd(cpte)->pt_cnt[ARM_PT_DESC_INDEX(cpte)].refcnt)) <= 0) | |
4173 | panic("pmap_remove_range_options: over-release of ptdp %p for pte %p\n", ptep_get_ptd(cpte), cpte); | |
4174 | spte = *cpte; | |
4175 | } | |
4176 | /* | |
4177 | * It may be possible for the pte to transition from managed | |
4178 | * to unmanaged in this timeframe; for now, elide the assert. | |
4179 | * We should break out as a consequence of checking pa_valid. | |
4180 | */ | |
4181 | //assert(!ARM_PTE_IS_COMPRESSED(spte)); | |
4182 | pa = pte_to_pa(spte); | |
4183 | if (!pa_valid(pa)) { | |
4184 | break; | |
4185 | } | |
4186 | pai = (int)pa_index(pa); | |
4187 | LOCK_PVH(pai); | |
4188 | spte = *cpte; | |
4189 | pa = pte_to_pa(spte); | |
4190 | if (pai == (int)pa_index(pa)) { | |
4191 | managed =TRUE; | |
4192 | break; // Leave pai locked as we will unlock it after we free the PV entry | |
4193 | } | |
4194 | UNLOCK_PVH(pai); | |
4195 | } | |
4196 | ||
4197 | if (ARM_PTE_IS_COMPRESSED(*cpte)) { | |
4198 | /* | |
4199 | * There used to be a valid mapping here but it | |
4200 | * has already been removed when the page was | |
4201 | * sent to the VM compressor, so nothing left to | |
4202 | * remove now... | |
4203 | */ | |
4204 | continue; | |
4205 | } | |
4206 | ||
4207 | /* remove the translation, do not flush the TLB */ | |
4208 | if (*cpte != ARM_PTE_TYPE_FAULT) { | |
4209 | assert(!ARM_PTE_IS_COMPRESSED(*cpte)); | |
4210 | #if MACH_ASSERT | |
4211 | if (managed && (pmap != kernel_pmap) && (ptep_get_va(cpte) != va)) { | |
4212 | panic("pmap_remove_range_options(): cpte=%p ptd=%p pte=0x%llx va=0x%llx\n", | |
4213 | cpte, ptep_get_ptd(cpte), (uint64_t)*cpte, (uint64_t)va); | |
4214 | } | |
4215 | #endif | |
4216 | WRITE_PTE_FAST(cpte, ARM_PTE_TYPE_FAULT); | |
4217 | num_pte_changed++; | |
4218 | } | |
4219 | ||
4220 | if ((spte != ARM_PTE_TYPE_FAULT) && | |
4221 | (pmap != kernel_pmap)) { | |
4222 | assert(!ARM_PTE_IS_COMPRESSED(spte)); | |
4223 | if (OSAddAtomic16(-1, (SInt16 *) &(ptep_get_ptd(cpte)->pt_cnt[ARM_PT_DESC_INDEX(cpte)].refcnt)) <= 0) | |
4224 | panic("pmap_remove_range_options: over-release of ptdp %p for pte %p\n", ptep_get_ptd(cpte), cpte); | |
4225 | if(rmv_cnt) (*rmv_cnt)++; | |
4226 | } | |
4227 | ||
4228 | if (pte_is_wired(spte)) { | |
4229 | pte_set_wired(cpte, 0); | |
4230 | num_unwired++; | |
4231 | } | |
4232 | /* | |
4233 | * if not managed, we're done | |
4234 | */ | |
4235 | if (!managed) | |
4236 | continue; | |
4237 | /* | |
4238 | * find and remove the mapping from the chain for this | |
4239 | * physical address. | |
4240 | */ | |
4241 | ASSERT_PVH_LOCKED(pai); // Should have been locked when we found the managed PTE above | |
4242 | pv_h = pai_to_pvh(pai); | |
4243 | ||
4244 | if (pvh_test_type(pv_h, PVH_TYPE_PTEP)) { | |
4245 | if (__builtin_expect((cpte != pvh_ptep(pv_h)), 0)) | |
4246 | panic("pmap_remove_range(): cpte=%p (0x%llx) does not match pv_h=%p (%p)\n", cpte, (uint64_t)spte, pv_h, pvh_ptep(pv_h)); | |
4247 | if (IS_ALTACCT_PAGE(pai, PV_ENTRY_NULL)) { | |
4248 | assert(IS_INTERNAL_PAGE(pai)); | |
4249 | num_internal++; | |
4250 | num_alt_internal++; | |
4251 | CLR_ALTACCT_PAGE(pai, PV_ENTRY_NULL); | |
4252 | } else if (IS_INTERNAL_PAGE(pai)) { | |
4253 | if (IS_REUSABLE_PAGE(pai)) { | |
4254 | num_reusable++; | |
4255 | } else { | |
4256 | num_internal++; | |
4257 | } | |
4258 | } else { | |
4259 | num_external++; | |
4260 | } | |
4261 | pvh_update_head(pv_h, PV_ENTRY_NULL, PVH_TYPE_NULL); | |
4262 | } else if (pvh_test_type(pv_h, PVH_TYPE_PVEP)) { | |
4263 | ||
4264 | pve_pp = pv_h; | |
4265 | pve_p = pvh_list(pv_h); | |
4266 | ||
4267 | while (pve_p != PV_ENTRY_NULL && | |
4268 | (pve_get_ptep(pve_p) != cpte)) { | |
4269 | pve_pp = pve_link_field(pve_p); | |
4270 | pve_p = PVE_NEXT_PTR(pve_next(pve_p)); | |
4271 | } | |
4272 | ||
4273 | if (__builtin_expect((pve_p == PV_ENTRY_NULL), 0)) { | |
4274 | UNLOCK_PVH(pai); | |
4275 | panic("pmap_remove_range(): cpte=%p (0x%llx) not in pv_h=%p\n", cpte, (uint64_t)spte, pv_h); | |
4276 | } | |
4277 | ||
4278 | #if MACH_ASSERT | |
4279 | if (kern_feature_override(KF_PMAPV_OVRD) == FALSE) { | |
4280 | pv_entry_t *check_pve_p = PVE_NEXT_PTR(pve_next(pve_p)); | |
4281 | while (check_pve_p != PV_ENTRY_NULL) { | |
4282 | if (pve_get_ptep(check_pve_p) == cpte) { | |
4283 | panic("pmap_remove_range(): duplicate pve entry cpte=%p pmap=%p, pv_h=%p, pve_p=%p, pte=0x%llx, va=0x%llx\n", | |
4284 | cpte, pmap, pv_h, pve_p, (uint64_t)spte, (uint64_t)va); | |
4285 | } | |
4286 | check_pve_p = PVE_NEXT_PTR(pve_next(check_pve_p)); | |
4287 | } | |
4288 | } | |
4289 | #endif | |
4290 | ||
4291 | if (IS_ALTACCT_PAGE(pai, pve_p)) { | |
4292 | assert(IS_INTERNAL_PAGE(pai)); | |
4293 | num_internal++; | |
4294 | num_alt_internal++; | |
4295 | CLR_ALTACCT_PAGE(pai, pve_p); | |
4296 | } else if (IS_INTERNAL_PAGE(pai)) { | |
4297 | if (IS_REUSABLE_PAGE(pai)) { | |
4298 | num_reusable++; | |
4299 | } else { | |
4300 | num_internal++; | |
4301 | } | |
4302 | } else { | |
4303 | num_external++; | |
4304 | } | |
4305 | ||
4306 | pvh_remove(pv_h, pve_pp, pve_p) ; | |
4307 | pv_free(pve_p); | |
4308 | } else { | |
4309 | panic("pmap_remove_range(): unexpected PV head %p, cpte=%p pmap=%p pv_h=%p pte=0x%llx va=0x%llx\n", | |
4310 | *pv_h, cpte, pmap, pv_h, (uint64_t)spte, (uint64_t)va); | |
4311 | } | |
4312 | ||
4313 | UNLOCK_PVH(pai); | |
4314 | num_removed++; | |
4315 | } | |
4316 | ||
4317 | /* | |
4318 | * Update the counts | |
4319 | */ | |
4320 | OSAddAtomic(-num_removed, (SInt32 *) &pmap->stats.resident_count); | |
4321 | pmap_ledger_debit(pmap, task_ledgers.phys_mem, machine_ptob(num_removed)); | |
4322 | ||
4323 | if (pmap != kernel_pmap) { | |
4324 | /* sanity checks... */ | |
4325 | #if MACH_ASSERT | |
4326 | if (pmap->stats.internal < num_internal) { | |
a39ff7e2 A |
4327 | if ((! pmap_stats_assert || |
4328 | ! pmap->pmap_stats_assert) || | |
5c9f4661 | 4329 | (pmap->stats.internal + pmap->stats.reusable) == |
5ba3f43e A |
4330 | (num_internal + num_reusable)) { |
4331 | num_reusable_mismatch++; | |
4332 | printf("pmap_remove_range_options(%p,0x%llx,%p,%p,0x%x): num_internal=%d num_removed=%d num_unwired=%d num_external=%d num_reusable=%d num_compressed=%lld num_alt_internal=%d num_alt_compressed=%lld num_pte_changed=%d stats.internal=%d stats.reusable=%d\n", | |
4333 | pmap, | |
4334 | (uint64_t) va, | |
4335 | bpte, | |
4336 | epte, | |
4337 | options, | |
4338 | num_internal, | |
4339 | num_removed, | |
4340 | num_unwired, | |
4341 | num_external, | |
4342 | num_reusable, | |
4343 | num_compressed, | |
4344 | num_alt_internal, | |
4345 | num_alt_compressed, | |
4346 | num_pte_changed, | |
4347 | pmap->stats.internal, | |
4348 | pmap->stats.reusable); | |
4349 | /* slight mismatch: fix it... */ | |
4350 | num_internal = pmap->stats.internal; | |
4351 | num_reusable = pmap->stats.reusable; | |
4352 | } else { | |
4353 | panic("pmap_remove_range_options(%p,0x%llx,%p,%p,0x%x): num_internal=%d num_removed=%d num_unwired=%d num_external=%d num_reusable=%d num_compressed=%lld num_alt_internal=%d num_alt_compressed=%lld num_pte_changed=%d stats.internal=%d stats.reusable=%d", | |
4354 | pmap, | |
4355 | (uint64_t) va, | |
4356 | bpte, | |
4357 | epte, | |
4358 | options, | |
4359 | num_internal, | |
4360 | num_removed, | |
4361 | num_unwired, | |
4362 | num_external, | |
4363 | num_reusable, | |
4364 | num_compressed, | |
4365 | num_alt_internal, | |
4366 | num_alt_compressed, | |
4367 | num_pte_changed, | |
4368 | pmap->stats.internal, | |
4369 | pmap->stats.reusable); | |
4370 | } | |
4371 | } | |
4372 | #endif /* MACH_ASSERT */ | |
5c9f4661 A |
4373 | PMAP_STATS_ASSERTF(pmap->stats.external >= num_external, |
4374 | pmap, | |
4375 | "pmap=%p num_external=%d stats.external=%d", | |
4376 | pmap, num_external, pmap->stats.external); | |
4377 | PMAP_STATS_ASSERTF(pmap->stats.internal >= num_internal, | |
4378 | pmap, | |
4379 | "pmap=%p num_internal=%d stats.internal=%d num_reusable=%d stats.reusable=%d", | |
4380 | pmap, | |
4381 | num_internal, pmap->stats.internal, | |
4382 | num_reusable, pmap->stats.reusable); | |
4383 | PMAP_STATS_ASSERTF(pmap->stats.reusable >= num_reusable, | |
4384 | pmap, | |
4385 | "pmap=%p num_internal=%d stats.internal=%d num_reusable=%d stats.reusable=%d", | |
4386 | pmap, | |
4387 | num_internal, pmap->stats.internal, | |
4388 | num_reusable, pmap->stats.reusable); | |
4389 | PMAP_STATS_ASSERTF(pmap->stats.compressed >= num_compressed, | |
4390 | pmap, | |
4391 | "pmap=%p num_compressed=%lld num_alt_compressed=%lld stats.compressed=%lld", | |
4392 | pmap, num_compressed, num_alt_compressed, | |
4393 | pmap->stats.compressed); | |
5ba3f43e A |
4394 | |
4395 | /* update pmap stats... */ | |
4396 | OSAddAtomic(-num_unwired, (SInt32 *) &pmap->stats.wired_count); | |
4397 | if (num_external) | |
4398 | OSAddAtomic(-num_external, &pmap->stats.external); | |
4399 | if (num_internal) | |
4400 | OSAddAtomic(-num_internal, &pmap->stats.internal); | |
4401 | if (num_reusable) | |
4402 | OSAddAtomic(-num_reusable, &pmap->stats.reusable); | |
4403 | if (num_compressed) | |
4404 | OSAddAtomic64(-num_compressed, &pmap->stats.compressed); | |
4405 | /* ... and ledgers */ | |
4406 | pmap_ledger_debit(pmap, task_ledgers.wired_mem, machine_ptob(num_unwired)); | |
4407 | pmap_ledger_debit(pmap, task_ledgers.internal, machine_ptob(num_internal)); | |
4408 | pmap_ledger_debit(pmap, task_ledgers.alternate_accounting, machine_ptob(num_alt_internal)); | |
4409 | pmap_ledger_debit(pmap, task_ledgers.alternate_accounting_compressed, machine_ptob(num_alt_compressed)); | |
4410 | pmap_ledger_debit(pmap, task_ledgers.internal_compressed, machine_ptob(num_compressed)); | |
4411 | /* make needed adjustments to phys_footprint */ | |
4412 | pmap_ledger_debit(pmap, task_ledgers.phys_footprint, | |
4413 | machine_ptob((num_internal - | |
4414 | num_alt_internal) + | |
4415 | (num_compressed - | |
4416 | num_alt_compressed))); | |
4417 | } | |
4418 | ||
4419 | /* flush the ptable entries we have written */ | |
4420 | if (num_pte_changed > 0) | |
4421 | FLUSH_PTE_RANGE(bpte, epte); | |
4422 | ||
4423 | return num_pte_changed; | |
4424 | } | |
4425 | ||
4426 | ||
4427 | /* | |
4428 | * Remove the given range of addresses | |
4429 | * from the specified map. | |
4430 | * | |
4431 | * It is assumed that the start and end are properly | |
4432 | * rounded to the hardware page size. | |
4433 | */ | |
4434 | void | |
4435 | pmap_remove( | |
4436 | pmap_t pmap, | |
4437 | vm_map_address_t start, | |
4438 | vm_map_address_t end) | |
4439 | { | |
4440 | pmap_remove_options(pmap, start, end, PMAP_OPTIONS_REMOVE); | |
4441 | } | |
4442 | ||
4443 | static int | |
4444 | pmap_remove_options_internal(pmap_t pmap, | |
4445 | vm_map_address_t start, | |
4446 | vm_map_address_t end, | |
4447 | int options) | |
4448 | { | |
4449 | int remove_count = 0; | |
4450 | pt_entry_t *bpte, *epte; | |
4451 | pt_entry_t *pte_p; | |
4452 | tt_entry_t *tte_p; | |
4453 | uint32_t rmv_spte=0; | |
4454 | ||
4455 | PMAP_LOCK(pmap); | |
4456 | ||
4457 | tte_p = pmap_tte(pmap, start); | |
4458 | ||
4459 | if (tte_p == (tt_entry_t *) NULL) { | |
4460 | goto done; | |
4461 | } | |
4462 | ||
4463 | if ((*tte_p & ARM_TTE_TYPE_MASK) == ARM_TTE_TYPE_TABLE) { | |
4464 | pte_p = (pt_entry_t *) ttetokv(*tte_p); | |
4465 | bpte = &pte_p[ptenum(start)]; | |
4466 | epte = bpte + ((end - start) >> ARM_TT_LEAF_SHIFT); | |
4467 | ||
4468 | remove_count += pmap_remove_range_options(pmap, start, bpte, epte, | |
4469 | &rmv_spte, options); | |
4470 | ||
4471 | #if (__ARM_VMSA__ == 7) | |
4472 | if (rmv_spte && (ptep_get_ptd(pte_p)->pt_cnt[ARM_PT_DESC_INDEX(pte_p)].refcnt == 0) && | |
4473 | (pmap != kernel_pmap) && (pmap->nested == FALSE)) { | |
4474 | pmap_tte_deallocate(pmap, tte_p, PMAP_TT_L1_LEVEL); | |
4475 | flush_mmu_tlb_entry((start & ~ARM_TT_L1_OFFMASK) | (pmap->asid & 0xff)); | |
4476 | } | |
4477 | #else | |
4478 | if (rmv_spte && (ptep_get_ptd(pte_p)->pt_cnt[ARM_PT_DESC_INDEX(pte_p)].refcnt == 0) && | |
4479 | (pmap != kernel_pmap) && (pmap->nested == FALSE)) { | |
4480 | pmap_tte_deallocate(pmap, tte_p, PMAP_TT_L2_LEVEL); | |
4481 | flush_mmu_tlb_entry(tlbi_addr(start & ~ARM_TT_L2_OFFMASK) | tlbi_asid(pmap->asid)); | |
4482 | } | |
4483 | #endif | |
4484 | } | |
4485 | ||
4486 | done: | |
4487 | PMAP_UNLOCK(pmap); | |
4488 | ||
4489 | return remove_count; | |
4490 | } | |
4491 | ||
4492 | void | |
4493 | pmap_remove_options( | |
4494 | pmap_t pmap, | |
4495 | vm_map_address_t start, | |
4496 | vm_map_address_t end, | |
4497 | int options) | |
4498 | { | |
4499 | int remove_count = 0; | |
4500 | vm_map_address_t va; | |
4501 | ||
4502 | if (pmap == PMAP_NULL) | |
4503 | return; | |
4504 | ||
4505 | PMAP_TRACE(PMAP_CODE(PMAP__REMOVE) | DBG_FUNC_START, | |
4506 | VM_KERNEL_ADDRHIDE(pmap), VM_KERNEL_ADDRHIDE(start), | |
4507 | VM_KERNEL_ADDRHIDE(end)); | |
4508 | ||
4509 | #if MACH_ASSERT | |
4510 | if ((start|end) & PAGE_MASK) { | |
4511 | panic("pmap_remove_options() pmap %p start 0x%llx end 0x%llx\n", | |
4512 | pmap, (uint64_t)start, (uint64_t)end); | |
4513 | } | |
4514 | if ((end < start) || (start < pmap->min) || (end > pmap->max)) { | |
4515 | panic("pmap_remove_options(): invalid address range, pmap=%p, start=0x%llx, end=0x%llx\n", | |
4516 | pmap, (uint64_t)start, (uint64_t)end); | |
4517 | } | |
4518 | #endif | |
4519 | ||
4520 | /* | |
4521 | * Invalidate the translation buffer first | |
4522 | */ | |
4523 | va = start; | |
4524 | while (va < end) { | |
4525 | vm_map_address_t l; | |
4526 | ||
4527 | #if (__ARM_VMSA__ == 7) | |
4528 | l = ((va + ARM_TT_L1_SIZE) & ~ARM_TT_L1_OFFMASK); | |
4529 | #else | |
4530 | l = ((va + ARM_TT_L2_SIZE) & ~ARM_TT_L2_OFFMASK); | |
4531 | #endif | |
4532 | if (l > end) | |
4533 | l = end; | |
4534 | ||
4535 | remove_count += pmap_remove_options_internal(pmap, va, l, options); | |
4536 | ||
4537 | va = l; | |
4538 | } | |
4539 | ||
4540 | ||
4541 | if (remove_count > 0) | |
4542 | PMAP_UPDATE_TLBS(pmap, start, end); | |
4543 | ||
4544 | PMAP_TRACE(PMAP_CODE(PMAP__REMOVE) | DBG_FUNC_END); | |
4545 | } | |
4546 | ||
4547 | ||
4548 | /* | |
4549 | * Remove phys addr if mapped in specified map | |
4550 | */ | |
4551 | void | |
4552 | pmap_remove_some_phys( | |
4553 | __unused pmap_t map, | |
4554 | __unused ppnum_t pn) | |
4555 | { | |
4556 | /* Implement to support working set code */ | |
4557 | } | |
4558 | ||
4559 | ||
4560 | void | |
4561 | pmap_set_pmap( | |
4562 | pmap_t pmap, | |
4563 | #if !__ARM_USER_PROTECT__ | |
4564 | __unused | |
4565 | #endif | |
4566 | thread_t thread) | |
4567 | { | |
4568 | pmap_switch(pmap); | |
4569 | #if __ARM_USER_PROTECT__ | |
4570 | if (pmap->tte_index_max == NTTES) { | |
4571 | thread->machine.uptw_ttc = 2; | |
4572 | thread->machine.uptw_ttb = ((unsigned int) pmap->ttep) | TTBR_SETUP; | |
4573 | } else { | |
4574 | thread->machine.uptw_ttc = 1; \ | |
4575 | thread->machine.uptw_ttb = ((unsigned int) pmap->ttep ) | TTBR_SETUP; | |
4576 | } | |
4577 | thread->machine.asid = pmap->asid; | |
4578 | #endif | |
4579 | } | |
4580 | ||
4581 | static void | |
4582 | pmap_flush_core_tlb_asid(pmap_t pmap) | |
4583 | { | |
4584 | #if (__ARM_VMSA__ == 7) | |
4585 | flush_core_tlb_asid(pmap->asid); | |
4586 | #else | |
4587 | flush_core_tlb_asid(((uint64_t) pmap->asid) << TLBI_ASID_SHIFT); | |
5c9f4661 A |
4588 | #if __ARM_KERNEL_PROTECT__ |
4589 | flush_core_tlb_asid(((uint64_t) pmap->asid + 1) << TLBI_ASID_SHIFT); | |
4590 | #endif /* __ARM_KERNEL_PROTECT__ */ | |
5ba3f43e A |
4591 | #endif |
4592 | } | |
4593 | ||
4594 | static void | |
4595 | pmap_switch_internal( | |
4596 | pmap_t pmap) | |
4597 | { | |
4598 | pmap_cpu_data_t *cpu_data_ptr = pmap_get_cpu_data(); | |
4599 | uint32_t last_asid_high_bits, asid_high_bits; | |
4600 | pmap_t cur_pmap; | |
4601 | pmap_t cur_user_pmap; | |
4602 | boolean_t do_asid_flush = FALSE; | |
4603 | ||
4604 | #if (__ARM_VMSA__ == 7) | |
4605 | if (not_in_kdp) | |
4606 | simple_lock(&pmap->tt1_lock); | |
4607 | #endif | |
4608 | ||
4609 | cur_pmap = current_pmap(); | |
4610 | cur_user_pmap = cpu_data_ptr->cpu_user_pmap; | |
4611 | ||
4612 | /* Paranoia. */ | |
4613 | assert(pmap->asid < (sizeof(cpu_data_ptr->cpu_asid_high_bits) / sizeof(*cpu_data_ptr->cpu_asid_high_bits))); | |
4614 | ||
4615 | /* Extract the "virtual" bits of the ASIDs (which could cause us to alias). */ | |
4616 | asid_high_bits = pmap->vasid >> ARM_ASID_SHIFT; | |
4617 | last_asid_high_bits = (uint32_t) cpu_data_ptr->cpu_asid_high_bits[pmap->asid]; | |
4618 | ||
4619 | if (asid_high_bits != last_asid_high_bits) { | |
4620 | /* | |
4621 | * If the virtual ASID of the new pmap does not match the virtual ASID | |
4622 | * last seen on this CPU for the physical ASID (that was a mouthful), | |
4623 | * then this switch runs the risk of aliasing. We need to flush the | |
4624 | * TLB for this phyiscal ASID in this case. | |
4625 | */ | |
4626 | cpu_data_ptr->cpu_asid_high_bits[pmap->asid] = (uint8_t) asid_high_bits; | |
4627 | do_asid_flush = TRUE; | |
4628 | } | |
4629 | ||
4630 | if ((cur_user_pmap == cur_pmap) && (cur_pmap == pmap)) { | |
4631 | if (cpu_data_ptr->cpu_user_pmap_stamp == pmap->stamp) { | |
4632 | pmap_switch_user_ttb_internal(pmap); | |
4633 | ||
4634 | #if (__ARM_VMSA__ == 7) | |
4635 | if (not_in_kdp) | |
4636 | simple_unlock(&pmap->tt1_lock); | |
4637 | #endif | |
4638 | ||
4639 | if (do_asid_flush) { | |
4640 | pmap_flush_core_tlb_asid(pmap); | |
4641 | } | |
4642 | ||
4643 | return; | |
4644 | } else | |
4645 | cur_user_pmap = NULL; | |
4646 | } else if ((cur_user_pmap == pmap) && (cpu_data_ptr->cpu_user_pmap_stamp != pmap->stamp)) | |
4647 | cur_user_pmap = NULL; | |
4648 | ||
4649 | pmap_switch_user_ttb_internal(pmap); | |
4650 | ||
4651 | if (do_asid_flush) { | |
4652 | pmap_flush_core_tlb_asid(pmap); | |
4653 | } | |
4654 | ||
4655 | #if (__ARM_VMSA__ == 7) | |
4656 | if (not_in_kdp) | |
4657 | simple_unlock(&pmap->tt1_lock); | |
4658 | #else | |
4659 | if (pmap != kernel_pmap) { | |
4660 | ||
4661 | if (cur_user_pmap != PMAP_NULL) { | |
4662 | /* | |
4663 | * We have a low-address global mapping for the commpage | |
4664 | * for 32-bit processes; flush it if we switch to a 64-bot | |
4665 | * process. | |
4666 | */ | |
4667 | if (pmap_is_64bit(pmap) && !pmap_is_64bit(cur_user_pmap)) { | |
4668 | pmap_sharedpage_flush_32_to_64(); | |
4669 | } | |
4670 | ||
4671 | } else | |
4672 | flush_core_tlb(); | |
4673 | } | |
4674 | #endif | |
4675 | } | |
4676 | ||
4677 | void | |
4678 | pmap_switch( | |
4679 | pmap_t pmap) | |
4680 | { | |
4681 | pmap_switch_internal(pmap); | |
4682 | } | |
4683 | ||
4684 | void | |
4685 | pmap_page_protect( | |
4686 | ppnum_t ppnum, | |
4687 | vm_prot_t prot) | |
4688 | { | |
4689 | pmap_page_protect_options(ppnum, prot, 0, NULL); | |
4690 | } | |
4691 | ||
4692 | /* | |
4693 | * Routine: pmap_page_protect_options | |
4694 | * | |
4695 | * Function: | |
4696 | * Lower the permission for all mappings to a given | |
4697 | * page. | |
4698 | */ | |
4699 | static void | |
4700 | pmap_page_protect_options_internal( | |
4701 | ppnum_t ppnum, | |
4702 | vm_prot_t prot, | |
4703 | unsigned int options) | |
4704 | { | |
4705 | pmap_paddr_t phys = ptoa(ppnum); | |
4706 | pv_entry_t **pv_h; | |
4707 | pv_entry_t *pve_p; | |
4708 | pv_entry_t *pveh_p; | |
4709 | pv_entry_t *pvet_p; | |
4710 | pt_entry_t *pte_p; | |
4711 | int pai; | |
4712 | boolean_t remove; | |
4713 | boolean_t set_NX; | |
4714 | unsigned int pvh_cnt = 0; | |
4715 | ||
4716 | assert(ppnum != vm_page_fictitious_addr); | |
4717 | ||
4718 | /* Only work with managed pages. */ | |
4719 | if (!pa_valid(phys)) { | |
4720 | return; | |
4721 | } | |
4722 | ||
4723 | /* | |
4724 | * Determine the new protection. | |
4725 | */ | |
4726 | switch (prot) { | |
4727 | case VM_PROT_ALL: | |
4728 | return; /* nothing to do */ | |
4729 | case VM_PROT_READ: | |
4730 | case VM_PROT_READ | VM_PROT_EXECUTE: | |
4731 | remove = FALSE; | |
4732 | break; | |
4733 | default: | |
4734 | remove = TRUE; | |
4735 | break; | |
4736 | } | |
4737 | ||
4738 | pai = (int)pa_index(phys); | |
4739 | LOCK_PVH(pai); | |
4740 | pv_h = pai_to_pvh(pai); | |
4741 | ||
4742 | pte_p = PT_ENTRY_NULL; | |
4743 | pve_p = PV_ENTRY_NULL; | |
4744 | pveh_p = PV_ENTRY_NULL; | |
4745 | pvet_p = PV_ENTRY_NULL; | |
4746 | if (pvh_test_type(pv_h, PVH_TYPE_PTEP)) { | |
4747 | pte_p = pvh_ptep(pv_h); | |
4748 | } else if (pvh_test_type(pv_h, PVH_TYPE_PVEP)) { | |
4749 | pve_p = pvh_list(pv_h); | |
4750 | pveh_p = pve_p; | |
4751 | } | |
4752 | ||
4753 | while ((pve_p != PV_ENTRY_NULL) || (pte_p != PT_ENTRY_NULL)) { | |
4754 | vm_map_address_t va; | |
4755 | pmap_t pmap; | |
4756 | pt_entry_t tmplate; | |
4757 | boolean_t update = FALSE; | |
4758 | ||
4759 | if (pve_p != PV_ENTRY_NULL) | |
4760 | pte_p = pve_get_ptep(pve_p); | |
4761 | ||
4762 | pmap = ptep_get_pmap(pte_p); | |
4763 | va = ptep_get_va(pte_p); | |
4764 | ||
4765 | if (pte_p == PT_ENTRY_NULL) { | |
4766 | panic("pmap_page_protect: pmap=%p prot=%d options=%u, pv_h=%p, pveh_p=%p, pve_p=%p, va=0x%llx ppnum: 0x%x\n", | |
4767 | pmap, prot, options, pv_h, pveh_p, pve_p, (uint64_t)va, ppnum); | |
4768 | } else if ((pmap == NULL) || (atop(pte_to_pa(*pte_p)) != ppnum)) { | |
4769 | #if MACH_ASSERT | |
4770 | if (kern_feature_override(KF_PMAPV_OVRD) == FALSE) { | |
4771 | ||
4772 | pv_entry_t *check_pve_p = pveh_p; | |
4773 | while (check_pve_p != PV_ENTRY_NULL) { | |
4774 | if ((check_pve_p != pve_p) && (pve_get_ptep(check_pve_p) == pte_p)) { | |
4775 | panic("pmap_page_protect: duplicate pve entry pte_p=%p pmap=%p prot=%d options=%u, pv_h=%p, pveh_p=%p, pve_p=%p, pte=0x%llx, va=0x%llx ppnum: 0x%x\n", | |
4776 | pte_p, pmap, prot, options, pv_h, pveh_p, pve_p, (uint64_t)*pte_p, (uint64_t)va, ppnum); | |
4777 | } | |
4778 | check_pve_p = PVE_NEXT_PTR(pve_next(check_pve_p)); | |
4779 | } | |
4780 | } | |
4781 | #endif | |
4782 | panic("pmap_page_protect: bad pve entry pte_p=%p pmap=%p prot=%d options=%u, pv_h=%p, pveh_p=%p, pve_p=%p, pte=0x%llx, va=0x%llx ppnum: 0x%x\n", | |
4783 | pte_p, pmap, prot, options, pv_h, pveh_p, pve_p, (uint64_t)*pte_p, (uint64_t)va, ppnum); | |
4784 | } | |
4785 | ||
4786 | #if DEVELOPMENT || DEBUG | |
4787 | if ((prot & VM_PROT_EXECUTE) || !nx_enabled || !pmap->nx_enabled) | |
4788 | #else | |
4789 | if ((prot & VM_PROT_EXECUTE)) | |
4790 | #endif | |
4791 | set_NX = FALSE; | |
4792 | else | |
4793 | set_NX = TRUE; | |
4794 | ||
4795 | /* Remove the mapping if new protection is NONE */ | |
4796 | if (remove) { | |
4797 | boolean_t is_altacct = FALSE; | |
4798 | ||
4799 | if (IS_ALTACCT_PAGE(pai, pve_p)) { | |
4800 | is_altacct = TRUE; | |
4801 | } else { | |
4802 | is_altacct = FALSE; | |
4803 | } | |
4804 | ||
4805 | if (pte_is_wired(*pte_p)) { | |
4806 | pte_set_wired(pte_p, 0); | |
4807 | if (pmap != kernel_pmap) { | |
4808 | pmap_ledger_debit(pmap, task_ledgers.wired_mem, PAGE_SIZE); | |
4809 | OSAddAtomic(-1, (SInt32 *) &pmap->stats.wired_count); | |
4810 | } | |
4811 | } | |
4812 | ||
4813 | if (*pte_p != ARM_PTE_TYPE_FAULT && | |
4814 | pmap != kernel_pmap && | |
4815 | (options & PMAP_OPTIONS_COMPRESSOR) && | |
4816 | IS_INTERNAL_PAGE(pai)) { | |
4817 | assert(!ARM_PTE_IS_COMPRESSED(*pte_p)); | |
4818 | /* mark this PTE as having been "compressed" */ | |
4819 | tmplate = ARM_PTE_COMPRESSED; | |
4820 | if (is_altacct) { | |
4821 | tmplate |= ARM_PTE_COMPRESSED_ALT; | |
4822 | is_altacct = TRUE; | |
4823 | } | |
4824 | } else { | |
4825 | tmplate = ARM_PTE_TYPE_FAULT; | |
4826 | } | |
4827 | ||
4828 | if ((*pte_p != ARM_PTE_TYPE_FAULT) && | |
4829 | tmplate == ARM_PTE_TYPE_FAULT && | |
4830 | (pmap != kernel_pmap)) { | |
4831 | if (OSAddAtomic16(-1, (SInt16 *) &(ptep_get_ptd(pte_p)->pt_cnt[ARM_PT_DESC_INDEX(pte_p)].refcnt)) <= 0) | |
4832 | panic("pmap_page_protect_options(): over-release of ptdp %p for pte %p\n", ptep_get_ptd(pte_p), pte_p); | |
4833 | } | |
4834 | ||
4835 | if (*pte_p != tmplate) { | |
4836 | WRITE_PTE(pte_p, tmplate); | |
4837 | update = TRUE; | |
4838 | } | |
4839 | pvh_cnt++; | |
4840 | pmap_ledger_debit(pmap, task_ledgers.phys_mem, PAGE_SIZE); | |
4841 | OSAddAtomic(-1, (SInt32 *) &pmap->stats.resident_count); | |
4842 | ||
4843 | #if MACH_ASSERT | |
4844 | /* | |
4845 | * We only ever compress internal pages. | |
4846 | */ | |
4847 | if (options & PMAP_OPTIONS_COMPRESSOR) { | |
4848 | assert(IS_INTERNAL_PAGE(pai)); | |
4849 | } | |
4850 | #endif | |
4851 | ||
4852 | if (pmap != kernel_pmap) { | |
4853 | if (IS_REUSABLE_PAGE(pai) && | |
4854 | IS_INTERNAL_PAGE(pai) && | |
4855 | !is_altacct) { | |
5c9f4661 | 4856 | PMAP_STATS_ASSERTF(pmap->stats.reusable > 0, pmap, "stats.reusable %d", pmap->stats.reusable); |
5ba3f43e A |
4857 | OSAddAtomic(-1, &pmap->stats.reusable); |
4858 | } else if (IS_INTERNAL_PAGE(pai)) { | |
5c9f4661 | 4859 | PMAP_STATS_ASSERTF(pmap->stats.internal > 0, pmap, "stats.internal %d", pmap->stats.internal); |
5ba3f43e A |
4860 | OSAddAtomic(-1, &pmap->stats.internal); |
4861 | } else { | |
5c9f4661 | 4862 | PMAP_STATS_ASSERTF(pmap->stats.external > 0, pmap, "stats.external %d", pmap->stats.external); |
5ba3f43e A |
4863 | OSAddAtomic(-1, &pmap->stats.external); |
4864 | } | |
4865 | if ((options & PMAP_OPTIONS_COMPRESSOR) && | |
4866 | IS_INTERNAL_PAGE(pai)) { | |
4867 | /* adjust "compressed" stats */ | |
4868 | OSAddAtomic64(+1, &pmap->stats.compressed); | |
4869 | PMAP_STATS_PEAK(pmap->stats.compressed); | |
4870 | pmap->stats.compressed_lifetime++; | |
4871 | } | |
4872 | ||
4873 | if (IS_ALTACCT_PAGE(pai, pve_p)) { | |
4874 | assert(IS_INTERNAL_PAGE(pai)); | |
4875 | pmap_ledger_debit(pmap, task_ledgers.internal, PAGE_SIZE); | |
4876 | pmap_ledger_debit(pmap, task_ledgers.alternate_accounting, PAGE_SIZE); | |
4877 | if (options & PMAP_OPTIONS_COMPRESSOR) { | |
4878 | pmap_ledger_credit(pmap, task_ledgers.internal_compressed, PAGE_SIZE); | |
4879 | pmap_ledger_credit(pmap, task_ledgers.alternate_accounting_compressed, PAGE_SIZE); | |
4880 | } | |
4881 | ||
4882 | /* | |
4883 | * Cleanup our marker before | |
4884 | * we free this pv_entry. | |
4885 | */ | |
4886 | CLR_ALTACCT_PAGE(pai, pve_p); | |
4887 | ||
4888 | } else if (IS_REUSABLE_PAGE(pai)) { | |
4889 | assert(IS_INTERNAL_PAGE(pai)); | |
4890 | if (options & PMAP_OPTIONS_COMPRESSOR) { | |
4891 | pmap_ledger_credit(pmap, task_ledgers.internal_compressed, PAGE_SIZE); | |
4892 | /* was not in footprint, but is now */ | |
4893 | pmap_ledger_credit(pmap, task_ledgers.phys_footprint, PAGE_SIZE); | |
4894 | } | |
4895 | ||
4896 | } else if (IS_INTERNAL_PAGE(pai)) { | |
4897 | pmap_ledger_debit(pmap, task_ledgers.internal, PAGE_SIZE); | |
4898 | ||
4899 | /* | |
4900 | * Update all stats related to physical footprint, which only | |
4901 | * deals with internal pages. | |
4902 | */ | |
4903 | if (options & PMAP_OPTIONS_COMPRESSOR) { | |
4904 | /* | |
4905 | * This removal is only being done so we can send this page to | |
4906 | * the compressor; therefore it mustn't affect total task footprint. | |
4907 | */ | |
4908 | pmap_ledger_credit(pmap, task_ledgers.internal_compressed, PAGE_SIZE); | |
4909 | } else { | |
4910 | /* | |
4911 | * This internal page isn't going to the compressor, so adjust stats to keep | |
4912 | * phys_footprint up to date. | |
4913 | */ | |
4914 | pmap_ledger_debit(pmap, task_ledgers.phys_footprint, PAGE_SIZE); | |
4915 | } | |
4916 | } else { | |
4917 | /* external page: no impact on ledgers */ | |
4918 | } | |
4919 | } | |
4920 | ||
4921 | if (pve_p != PV_ENTRY_NULL) { | |
4922 | assert(pve_next(pve_p) == PVE_NEXT_PTR(pve_next(pve_p))); | |
4923 | } | |
4924 | ||
4925 | } else { | |
4926 | pt_entry_t spte; | |
4927 | ||
4928 | spte = *pte_p; | |
4929 | ||
4930 | if (pmap == kernel_pmap) | |
4931 | tmplate = ((spte & ~ARM_PTE_APMASK) | ARM_PTE_AP(AP_RONA)); | |
4932 | else | |
4933 | tmplate = ((spte & ~ARM_PTE_APMASK) | ARM_PTE_AP(AP_RORO)); | |
4934 | ||
4935 | pte_set_ffr(tmplate, 0); | |
4936 | ||
4937 | #if (__ARM_VMSA__ == 7) | |
4938 | if (set_NX) { | |
4939 | tmplate |= ARM_PTE_NX; | |
4940 | } else { | |
4941 | /* | |
4942 | * While the naive implementation of this would serve to add execute | |
4943 | * permission, this is not how the VM uses this interface, or how | |
4944 | * x86_64 implements it. So ignore requests to add execute permissions. | |
4945 | */ | |
4946 | #if 0 | |
4947 | tmplate &= ~ARM_PTE_NX; | |
4948 | #else | |
4949 | ; | |
4950 | #endif | |
4951 | } | |
4952 | #else | |
4953 | if (set_NX) | |
4954 | tmplate |= ARM_PTE_NX | ARM_PTE_PNX; | |
4955 | else { | |
4956 | /* | |
4957 | * While the naive implementation of this would serve to add execute | |
4958 | * permission, this is not how the VM uses this interface, or how | |
4959 | * x86_64 implements it. So ignore requests to add execute permissions. | |
4960 | */ | |
4961 | #if 0 | |
4962 | if (pmap == kernel_pmap) { | |
4963 | tmplate &= ~ARM_PTE_PNX; | |
4964 | tmplate |= ARM_PTE_NX; | |
4965 | } else { | |
4966 | tmplate &= ~ARM_PTE_NX; | |
4967 | tmplate |= ARM_PTE_PNX; | |
4968 | } | |
4969 | #else | |
4970 | ; | |
4971 | #endif | |
4972 | } | |
4973 | #endif | |
4974 | ||
4975 | ||
4976 | if (*pte_p != ARM_PTE_TYPE_FAULT && | |
4977 | !ARM_PTE_IS_COMPRESSED(*pte_p) && | |
4978 | *pte_p != tmplate) { | |
4979 | WRITE_PTE(pte_p, tmplate); | |
4980 | update = TRUE; | |
4981 | } | |
4982 | } | |
4983 | ||
4984 | /* Invalidate TLBs for all CPUs using it */ | |
4985 | if (update) | |
4986 | PMAP_UPDATE_TLBS(pmap, va, va + PAGE_SIZE); | |
4987 | ||
4988 | pte_p = PT_ENTRY_NULL; | |
4989 | pvet_p = pve_p; | |
4990 | if (pve_p != PV_ENTRY_NULL) { | |
4991 | pvet_p = pve_p; | |
4992 | if (remove) { | |
4993 | assert(pve_next(pve_p) == PVE_NEXT_PTR(pve_next(pve_p))); | |
4994 | } | |
4995 | pve_p = PVE_NEXT_PTR(pve_next(pve_p)); | |
4996 | } | |
4997 | } | |
4998 | ||
4999 | /* if we removed a bunch of entries, take care of them now */ | |
5000 | if (remove) { | |
5001 | pvh_update_head(pv_h, PV_ENTRY_NULL, PVH_TYPE_NULL); | |
5002 | } | |
5003 | ||
5004 | UNLOCK_PVH(pai); | |
5005 | ||
5006 | if (remove && (pveh_p != PV_ENTRY_NULL)) { | |
5007 | pv_list_free(pveh_p, pvet_p, pvh_cnt); | |
5008 | } | |
5009 | } | |
5010 | ||
5011 | void | |
5012 | pmap_page_protect_options( | |
5013 | ppnum_t ppnum, | |
5014 | vm_prot_t prot, | |
5015 | unsigned int options, | |
5016 | __unused void *arg) | |
5017 | { | |
5018 | pmap_paddr_t phys = ptoa(ppnum); | |
5019 | ||
5020 | assert(ppnum != vm_page_fictitious_addr); | |
5021 | ||
5022 | /* Only work with managed pages. */ | |
5023 | if (!pa_valid(phys)) | |
5024 | return; | |
5025 | ||
5026 | /* | |
5027 | * Determine the new protection. | |
5028 | */ | |
5029 | if (prot == VM_PROT_ALL) { | |
5030 | return; /* nothing to do */ | |
5031 | } | |
5032 | ||
5033 | PMAP_TRACE(PMAP_CODE(PMAP__PAGE_PROTECT) | DBG_FUNC_START, ppnum, prot); | |
5034 | ||
5035 | pmap_page_protect_options_internal(ppnum, prot, options); | |
5036 | ||
5037 | PMAP_TRACE(PMAP_CODE(PMAP__PAGE_PROTECT) | DBG_FUNC_END); | |
5038 | } | |
5039 | ||
5040 | /* | |
5041 | * Indicates if the pmap layer enforces some additional restrictions on the | |
5042 | * given set of protections. | |
5043 | */ | |
5044 | bool pmap_has_prot_policy(__unused vm_prot_t prot) | |
5045 | { | |
5046 | return FALSE; | |
5047 | } | |
5048 | ||
5049 | /* | |
5050 | * Set the physical protection on the | |
5051 | * specified range of this map as requested. | |
5052 | * VERY IMPORTANT: Will not increase permissions. | |
5053 | * VERY IMPORTANT: Only pmap_enter() is allowed to grant permissions. | |
5054 | */ | |
5055 | void | |
5056 | pmap_protect( | |
5057 | pmap_t pmap, | |
5058 | vm_map_address_t b, | |
5059 | vm_map_address_t e, | |
5060 | vm_prot_t prot) | |
5061 | { | |
5062 | pmap_protect_options(pmap, b, e, prot, 0, NULL); | |
5063 | } | |
5064 | ||
5065 | static void | |
5066 | pmap_protect_options_internal(pmap_t pmap, | |
5067 | vm_map_address_t start, | |
5068 | vm_map_address_t end, | |
5069 | vm_prot_t prot, | |
5070 | unsigned int options, | |
5071 | __unused void *args) | |
5072 | { | |
5073 | tt_entry_t *tte_p; | |
5074 | pt_entry_t *bpte_p, *epte_p; | |
5075 | pt_entry_t *pte_p; | |
5076 | boolean_t set_NX = TRUE; | |
5077 | #if (__ARM_VMSA__ > 7) | |
5078 | boolean_t set_XO = FALSE; | |
5079 | #endif | |
5080 | boolean_t should_have_removed = FALSE; | |
5081 | ||
5082 | #ifndef __ARM_IC_NOALIAS_ICACHE__ | |
5083 | boolean_t InvalidatePoU_Icache_Done = FALSE; | |
5084 | #endif | |
5085 | ||
5086 | #if DEVELOPMENT || DEBUG | |
5087 | if (options & PMAP_OPTIONS_PROTECT_IMMEDIATE) { | |
5088 | if ((prot & VM_PROT_ALL) == VM_PROT_NONE) { | |
5089 | should_have_removed = TRUE; | |
5090 | } | |
5091 | } else | |
5092 | #endif | |
5093 | { | |
5094 | /* Determine the new protection. */ | |
5095 | switch (prot) { | |
5096 | #if (__ARM_VMSA__ > 7) | |
5097 | case VM_PROT_EXECUTE: | |
5098 | set_XO = TRUE; | |
5099 | /* fall through */ | |
5100 | #endif | |
5101 | case VM_PROT_READ: | |
5102 | case VM_PROT_READ | VM_PROT_EXECUTE: | |
5103 | break; | |
5104 | case VM_PROT_READ | VM_PROT_WRITE: | |
5105 | case VM_PROT_ALL: | |
5106 | return; /* nothing to do */ | |
5107 | default: | |
5108 | should_have_removed = TRUE; | |
5109 | } | |
5110 | } | |
5111 | ||
5112 | if (should_have_removed) { | |
5113 | panic("%s: should have been a remove operation, " | |
5114 | "pmap=%p, start=%p, end=%p, prot=%#x, options=%#x, args=%p", | |
5115 | __FUNCTION__, | |
5116 | pmap, (void *)start, (void *)end, prot, options, args); | |
5117 | } | |
5118 | ||
5119 | #if DEVELOPMENT || DEBUG | |
5120 | if ((prot & VM_PROT_EXECUTE) || !nx_enabled || !pmap->nx_enabled) | |
5121 | #else | |
5122 | if ((prot & VM_PROT_EXECUTE)) | |
5123 | #endif | |
5124 | { | |
5125 | set_NX = FALSE; | |
5126 | } else { | |
5127 | set_NX = TRUE; | |
5128 | } | |
5129 | ||
5130 | PMAP_LOCK(pmap); | |
5131 | tte_p = pmap_tte(pmap, start); | |
5132 | ||
5133 | if ((tte_p != (tt_entry_t *) NULL) && (*tte_p & ARM_TTE_TYPE_MASK) == ARM_TTE_TYPE_TABLE) { | |
5134 | bpte_p = (pt_entry_t *) ttetokv(*tte_p); | |
5135 | bpte_p = &bpte_p[ptenum(start)]; | |
5136 | epte_p = bpte_p + arm_atop(end - start); | |
5137 | pte_p = bpte_p; | |
5138 | ||
5139 | for (pte_p = bpte_p; | |
5140 | pte_p < epte_p; | |
5141 | pte_p += PAGE_SIZE/ARM_PGBYTES) { | |
5142 | pt_entry_t spte; | |
5143 | #if DEVELOPMENT || DEBUG | |
5144 | boolean_t force_write = FALSE; | |
5145 | #endif | |
5146 | ||
5147 | spte = *pte_p; | |
5148 | ||
5149 | if ((spte == ARM_PTE_TYPE_FAULT) || | |
5150 | ARM_PTE_IS_COMPRESSED(spte)) { | |
5151 | continue; | |
5152 | } | |
5153 | ||
5154 | pmap_paddr_t pa; | |
5155 | int pai=0; | |
5156 | boolean_t managed=FALSE; | |
5157 | ||
5158 | while (!managed) { | |
5159 | /* | |
5160 | * It may be possible for the pte to transition from managed | |
5161 | * to unmanaged in this timeframe; for now, elide the assert. | |
5162 | * We should break out as a consequence of checking pa_valid. | |
5163 | */ | |
5164 | // assert(!ARM_PTE_IS_COMPRESSED(spte)); | |
5165 | pa = pte_to_pa(spte); | |
5166 | if (!pa_valid(pa)) | |
5167 | break; | |
5168 | pai = (int)pa_index(pa); | |
5169 | LOCK_PVH(pai); | |
5170 | spte = *pte_p; | |
5171 | pa = pte_to_pa(spte); | |
5172 | if (pai == (int)pa_index(pa)) { | |
5173 | managed =TRUE; | |
5174 | break; // Leave the PVH locked as we will unlock it after we free the PTE | |
5175 | } | |
5176 | UNLOCK_PVH(pai); | |
5177 | } | |
5178 | ||
5179 | if ((spte == ARM_PTE_TYPE_FAULT) || | |
5180 | ARM_PTE_IS_COMPRESSED(spte)) { | |
5181 | continue; | |
5182 | } | |
5183 | ||
5184 | pt_entry_t tmplate; | |
5185 | ||
5186 | if (pmap == kernel_pmap) { | |
5187 | #if DEVELOPMENT || DEBUG | |
5188 | if ((options & PMAP_OPTIONS_PROTECT_IMMEDIATE) && (prot & VM_PROT_WRITE)) { | |
5189 | force_write = TRUE; | |
5190 | tmplate = ((spte & ~ARM_PTE_APMASK) | ARM_PTE_AP(AP_RWNA)); | |
5191 | } else | |
5192 | #endif | |
5193 | { | |
5194 | tmplate = ((spte & ~ARM_PTE_APMASK) | ARM_PTE_AP(AP_RONA)); | |
5195 | } | |
5196 | } else { | |
5197 | #if DEVELOPMENT || DEBUG | |
5198 | if ((options & PMAP_OPTIONS_PROTECT_IMMEDIATE) && (prot & VM_PROT_WRITE)) { | |
5199 | force_write = TRUE; | |
5200 | tmplate = ((spte & ~ARM_PTE_APMASK) | ARM_PTE_AP(AP_RWRW)); | |
5201 | } else | |
5202 | #endif | |
5203 | { | |
5204 | tmplate = ((spte & ~ARM_PTE_APMASK) | ARM_PTE_AP(AP_RORO)); | |
5205 | } | |
5206 | } | |
5207 | ||
5208 | /* | |
5209 | * XXX Removing "NX" would | |
5210 | * grant "execute" access | |
5211 | * immediately, bypassing any | |
5212 | * checks VM might want to do | |
5213 | * in its soft fault path. | |
5214 | * pmap_protect() and co. are | |
5215 | * not allowed to increase | |
5216 | * access permissions. | |
5217 | */ | |
5218 | #if (__ARM_VMSA__ == 7) | |
5219 | if (set_NX) | |
5220 | tmplate |= ARM_PTE_NX; | |
5221 | else { | |
5222 | /* do NOT clear "NX"! */ | |
5223 | } | |
5224 | #else | |
5225 | if (set_NX) | |
5226 | tmplate |= ARM_PTE_NX | ARM_PTE_PNX; | |
5227 | else { | |
5228 | if (pmap == kernel_pmap) { | |
5229 | /* | |
5230 | * TODO: Run CS/Monitor checks here; | |
5231 | * should we be clearing PNX here? Is | |
5232 | * this just for dtrace? | |
5233 | */ | |
5234 | tmplate &= ~ARM_PTE_PNX; | |
5235 | tmplate |= ARM_PTE_NX; | |
5236 | } else { | |
5237 | /* do NOT clear "NX"! */ | |
5238 | tmplate |= ARM_PTE_PNX; | |
5239 | if (set_XO) { | |
5240 | tmplate &= ~ARM_PTE_APMASK; | |
5241 | tmplate |= ARM_PTE_AP(AP_RONA); | |
5242 | } | |
5243 | } | |
5244 | } | |
5245 | #endif | |
5246 | ||
5247 | #if DEVELOPMENT || DEBUG | |
5248 | if (force_write) { | |
5249 | /* | |
5250 | * TODO: Run CS/Monitor checks here. | |
5251 | */ | |
5252 | if (managed) { | |
5253 | /* | |
5254 | * We are marking the page as writable, | |
5255 | * so we consider it to be modified and | |
5256 | * referenced. | |
5257 | */ | |
5258 | pa_set_bits(pa, PP_ATTR_REFERENCED | PP_ATTR_MODIFIED); | |
5259 | tmplate |= ARM_PTE_AF; | |
5260 | ||
5261 | if (IS_REFFAULT_PAGE(pai)) { | |
5262 | CLR_REFFAULT_PAGE(pai); | |
5263 | } | |
5264 | ||
5265 | if (IS_MODFAULT_PAGE(pai)) { | |
5266 | CLR_MODFAULT_PAGE(pai); | |
5267 | } | |
5268 | } | |
5269 | } else if (options & PMAP_OPTIONS_PROTECT_IMMEDIATE) { | |
5270 | /* | |
5271 | * An immediate request for anything other than | |
5272 | * write should still mark the page as | |
5273 | * referenced if managed. | |
5274 | */ | |
5275 | if (managed) { | |
5276 | pa_set_bits(pa, PP_ATTR_REFERENCED); | |
5277 | tmplate |= ARM_PTE_AF; | |
5278 | ||
5279 | if (IS_REFFAULT_PAGE(pai)) { | |
5280 | CLR_REFFAULT_PAGE(pai); | |
5281 | } | |
5282 | } | |
5283 | } | |
5284 | #endif | |
5285 | ||
5286 | /* We do not expect to write fast fault the entry. */ | |
5287 | pte_set_ffr(tmplate, 0); | |
5288 | ||
5289 | /* TODO: Doesn't this need to worry about PNX? */ | |
5290 | if (((spte & ARM_PTE_NX) == ARM_PTE_NX) && (prot & VM_PROT_EXECUTE)) { | |
5291 | CleanPoU_DcacheRegion((vm_offset_t) phystokv(pa), PAGE_SIZE); | |
5292 | #ifdef __ARM_IC_NOALIAS_ICACHE__ | |
5293 | InvalidatePoU_IcacheRegion((vm_offset_t) phystokv(pa), PAGE_SIZE); | |
5294 | #else | |
5295 | if (!InvalidatePoU_Icache_Done) { | |
5296 | InvalidatePoU_Icache(); | |
5297 | InvalidatePoU_Icache_Done = TRUE; | |
5298 | } | |
5299 | #endif | |
5300 | } | |
5301 | ||
5302 | WRITE_PTE_FAST(pte_p, tmplate); | |
5303 | ||
5304 | if (managed) { | |
5305 | ASSERT_PVH_LOCKED(pai); | |
5306 | UNLOCK_PVH(pai); | |
5307 | } | |
5308 | } | |
5309 | ||
5310 | FLUSH_PTE_RANGE(bpte_p, epte_p); | |
5311 | PMAP_UPDATE_TLBS(pmap, start, end); | |
5312 | } | |
5313 | ||
5314 | PMAP_UNLOCK(pmap); | |
5315 | } | |
5316 | ||
5317 | void | |
5318 | pmap_protect_options( | |
5319 | pmap_t pmap, | |
5320 | vm_map_address_t b, | |
5321 | vm_map_address_t e, | |
5322 | vm_prot_t prot, | |
5323 | unsigned int options, | |
5324 | __unused void *args) | |
5325 | { | |
5326 | vm_map_address_t l, beg; | |
5327 | ||
5328 | if ((b|e) & PAGE_MASK) { | |
5329 | panic("pmap_protect_options() pmap %p start 0x%llx end 0x%llx\n", | |
5330 | pmap, (uint64_t)b, (uint64_t)e); | |
5331 | } | |
5332 | ||
5333 | #if DEVELOPMENT || DEBUG | |
5334 | if (options & PMAP_OPTIONS_PROTECT_IMMEDIATE) { | |
5335 | if ((prot & VM_PROT_ALL) == VM_PROT_NONE) { | |
5336 | pmap_remove_options(pmap, b, e, options); | |
5337 | return; | |
5338 | } | |
5339 | } else | |
5340 | #endif | |
5341 | { | |
5342 | /* Determine the new protection. */ | |
5343 | switch (prot) { | |
5344 | case VM_PROT_EXECUTE: | |
5345 | case VM_PROT_READ: | |
5346 | case VM_PROT_READ | VM_PROT_EXECUTE: | |
5347 | break; | |
5348 | case VM_PROT_READ | VM_PROT_WRITE: | |
5349 | case VM_PROT_ALL: | |
5350 | return; /* nothing to do */ | |
5351 | default: | |
5352 | pmap_remove_options(pmap, b, e, options); | |
5353 | return; | |
5354 | } | |
5355 | } | |
5356 | ||
5357 | PMAP_TRACE(PMAP_CODE(PMAP__PROTECT) | DBG_FUNC_START, | |
5358 | VM_KERNEL_ADDRHIDE(pmap), VM_KERNEL_ADDRHIDE(b), | |
5359 | VM_KERNEL_ADDRHIDE(e)); | |
5360 | ||
5361 | beg = b; | |
5362 | ||
5363 | while (beg < e) { | |
5364 | l = ((beg + ARM_TT_TWIG_SIZE) & ~ARM_TT_TWIG_OFFMASK); | |
5365 | ||
5366 | if (l > e) | |
5367 | l = e; | |
5368 | ||
5369 | pmap_protect_options_internal(pmap, beg, l, prot, options, args); | |
5370 | ||
5371 | beg = l; | |
5372 | } | |
5373 | ||
5374 | PMAP_TRACE(PMAP_CODE(PMAP__PROTECT) | DBG_FUNC_END); | |
5375 | } | |
5376 | ||
5377 | /* Map a (possibly) autogenned block */ | |
5378 | kern_return_t | |
5379 | pmap_map_block( | |
5380 | pmap_t pmap, | |
5381 | addr64_t va, | |
5382 | ppnum_t pa, | |
5383 | uint32_t size, | |
5384 | vm_prot_t prot, | |
5385 | int attr, | |
5386 | __unused unsigned int flags) | |
5387 | { | |
5388 | kern_return_t kr; | |
5389 | addr64_t original_va = va; | |
5390 | uint32_t page; | |
5391 | ||
5392 | for (page = 0; page < size; page++) { | |
5393 | kr = pmap_enter(pmap, va, pa, prot, VM_PROT_NONE, attr, TRUE); | |
5394 | ||
5395 | if (kr != KERN_SUCCESS) { | |
5396 | /* | |
5397 | * This will panic for now, as it is unclear that | |
5398 | * removing the mappings is correct. | |
5399 | */ | |
5400 | panic("%s: failed pmap_enter, " | |
5401 | "pmap=%p, va=%#llx, pa=%u, size=%u, prot=%#x, flags=%#x", | |
5402 | __FUNCTION__, | |
5403 | pmap, va, pa, size, prot, flags); | |
5404 | ||
5405 | pmap_remove(pmap, original_va, va - original_va); | |
5406 | return kr; | |
5407 | } | |
5408 | ||
5409 | va += PAGE_SIZE; | |
5410 | pa++; | |
5411 | } | |
5412 | ||
5413 | return KERN_SUCCESS; | |
5414 | } | |
5415 | ||
5416 | /* | |
5417 | * Insert the given physical page (p) at | |
5418 | * the specified virtual address (v) in the | |
5419 | * target physical map with the protection requested. | |
5420 | * | |
5421 | * If specified, the page will be wired down, meaning | |
5422 | * that the related pte can not be reclaimed. | |
5423 | * | |
5424 | * NB: This is the only routine which MAY NOT lazy-evaluate | |
5425 | * or lose information. That is, this routine must actually | |
5426 | * insert this page into the given map eventually (must make | |
5427 | * forward progress eventually. | |
5428 | */ | |
5429 | kern_return_t | |
5430 | pmap_enter( | |
5431 | pmap_t pmap, | |
5432 | vm_map_address_t v, | |
5433 | ppnum_t pn, | |
5434 | vm_prot_t prot, | |
5435 | vm_prot_t fault_type, | |
5436 | unsigned int flags, | |
5437 | boolean_t wired) | |
5438 | { | |
5439 | return pmap_enter_options(pmap, v, pn, prot, fault_type, flags, wired, 0, NULL); | |
5440 | } | |
5441 | ||
5442 | ||
5443 | static inline void pmap_enter_pte(pmap_t pmap, pt_entry_t *pte_p, pt_entry_t pte, vm_map_address_t v) | |
5444 | { | |
5445 | if (pmap != kernel_pmap && ((pte & ARM_PTE_WIRED) != (*pte_p & ARM_PTE_WIRED))) | |
5446 | { | |
5447 | SInt16 *ptd_wiredcnt_ptr = (SInt16 *)&(ptep_get_ptd(pte_p)->pt_cnt[ARM_PT_DESC_INDEX(pte_p)].wiredcnt); | |
5448 | if (pte & ARM_PTE_WIRED) { | |
5449 | OSAddAtomic16(1, ptd_wiredcnt_ptr); | |
5450 | pmap_ledger_credit(pmap, task_ledgers.wired_mem, PAGE_SIZE); | |
5451 | OSAddAtomic(1, (SInt32 *) &pmap->stats.wired_count); | |
5452 | } else { | |
5453 | OSAddAtomic16(-1, ptd_wiredcnt_ptr); | |
5454 | pmap_ledger_debit(pmap, task_ledgers.wired_mem, PAGE_SIZE); | |
5455 | OSAddAtomic(-1, (SInt32 *) &pmap->stats.wired_count); | |
5456 | } | |
5457 | } | |
5458 | if (*pte_p != ARM_PTE_TYPE_FAULT && | |
5459 | !ARM_PTE_IS_COMPRESSED(*pte_p)) { | |
5460 | WRITE_PTE(pte_p, pte); | |
5461 | PMAP_UPDATE_TLBS(pmap, v, v + PAGE_SIZE); | |
5462 | } else { | |
5463 | WRITE_PTE(pte_p, pte); | |
5464 | __asm__ volatile("isb"); | |
5465 | } | |
5466 | } | |
5467 | ||
5468 | static pt_entry_t | |
5469 | wimg_to_pte(unsigned int wimg) | |
5470 | { | |
5471 | pt_entry_t pte; | |
5472 | ||
5473 | switch (wimg & (VM_WIMG_MASK)) { | |
5474 | case VM_WIMG_IO: | |
5475 | pte = ARM_PTE_ATTRINDX(CACHE_ATTRINDX_DISABLE); | |
5476 | pte |= ARM_PTE_NX | ARM_PTE_PNX; | |
5477 | break; | |
5478 | case VM_WIMG_POSTED: | |
5479 | pte = ARM_PTE_ATTRINDX(CACHE_ATTRINDX_POSTED); | |
5480 | pte |= ARM_PTE_NX | ARM_PTE_PNX; | |
5481 | break; | |
5482 | case VM_WIMG_WCOMB: | |
5483 | pte = ARM_PTE_ATTRINDX(CACHE_ATTRINDX_WRITECOMB); | |
5484 | pte |= ARM_PTE_NX | ARM_PTE_PNX; | |
5485 | break; | |
5486 | case VM_WIMG_WTHRU: | |
5487 | pte = ARM_PTE_ATTRINDX(CACHE_ATTRINDX_WRITETHRU); | |
5488 | #if (__ARM_VMSA__ > 7) | |
5489 | pte |= ARM_PTE_SH(SH_OUTER_MEMORY); | |
5490 | #else | |
5491 | pte |= ARM_PTE_SH; | |
5492 | #endif | |
5493 | break; | |
5494 | case VM_WIMG_COPYBACK: | |
5495 | pte = ARM_PTE_ATTRINDX(CACHE_ATTRINDX_WRITEBACK); | |
5496 | #if (__ARM_VMSA__ > 7) | |
5497 | pte |= ARM_PTE_SH(SH_OUTER_MEMORY); | |
5498 | #else | |
5499 | pte |= ARM_PTE_SH; | |
5500 | #endif | |
5501 | break; | |
5502 | case VM_WIMG_INNERWBACK: | |
5503 | pte = ARM_PTE_ATTRINDX(CACHE_ATTRINDX_INNERWRITEBACK); | |
5504 | #if (__ARM_VMSA__ > 7) | |
5505 | pte |= ARM_PTE_SH(SH_INNER_MEMORY); | |
5506 | #else | |
5507 | pte |= ARM_PTE_SH; | |
5508 | #endif | |
5509 | break; | |
5510 | default: | |
5511 | pte = ARM_PTE_ATTRINDX(CACHE_ATTRINDX_DEFAULT); | |
5512 | #if (__ARM_VMSA__ > 7) | |
5513 | pte |= ARM_PTE_SH(SH_OUTER_MEMORY); | |
5514 | #else | |
5515 | pte |= ARM_PTE_SH; | |
5516 | #endif | |
5517 | } | |
5518 | ||
5519 | return pte; | |
5520 | } | |
5521 | ||
5522 | static kern_return_t | |
5523 | pmap_enter_options_internal( | |
5524 | pmap_t pmap, | |
5525 | vm_map_address_t v, | |
5526 | ppnum_t pn, | |
5527 | vm_prot_t prot, | |
5528 | vm_prot_t fault_type, | |
5529 | unsigned int flags, | |
5530 | boolean_t wired, | |
5531 | unsigned int options) | |
5532 | { | |
a39ff7e2 A |
5533 | pmap_paddr_t pa = ptoa(pn); |
5534 | pt_entry_t pte; | |
5535 | pt_entry_t spte; | |
5536 | pt_entry_t *pte_p; | |
5537 | pv_entry_t *pve_p; | |
5538 | boolean_t set_NX; | |
5539 | boolean_t set_XO = FALSE; | |
5540 | boolean_t refcnt_updated; | |
5541 | boolean_t wiredcnt_updated; | |
5542 | unsigned int wimg_bits; | |
5543 | boolean_t was_compressed, was_alt_compressed; | |
5ba3f43e A |
5544 | |
5545 | if ((v) & PAGE_MASK) { | |
5546 | panic("pmap_enter_options() pmap %p v 0x%llx\n", | |
5547 | pmap, (uint64_t)v); | |
5548 | } | |
5549 | ||
5550 | if ((prot & VM_PROT_EXECUTE) && (prot & VM_PROT_WRITE) && (pmap == kernel_pmap)) { | |
5551 | panic("pmap_enter_options(): WX request on kernel_pmap"); | |
5552 | } | |
5553 | ||
5554 | #if DEVELOPMENT || DEBUG | |
5555 | if ((prot & VM_PROT_EXECUTE) || !nx_enabled || !pmap->nx_enabled) | |
5556 | #else | |
5557 | if ((prot & VM_PROT_EXECUTE)) | |
5558 | #endif | |
5559 | set_NX = FALSE; | |
5560 | else | |
5561 | set_NX = TRUE; | |
5562 | ||
5563 | #if (__ARM_VMSA__ > 7) | |
5564 | if (prot == VM_PROT_EXECUTE) { | |
5565 | set_XO = TRUE; | |
5566 | } | |
5567 | #endif | |
5568 | ||
5569 | assert(pn != vm_page_fictitious_addr); | |
5570 | ||
5571 | refcnt_updated = FALSE; | |
a39ff7e2 | 5572 | wiredcnt_updated = FALSE; |
5ba3f43e A |
5573 | pve_p = PV_ENTRY_NULL; |
5574 | was_compressed = FALSE; | |
5575 | was_alt_compressed = FALSE; | |
5576 | ||
5577 | PMAP_LOCK(pmap); | |
5578 | ||
5579 | /* | |
5580 | * Expand pmap to include this pte. Assume that | |
5581 | * pmap is always expanded to include enough hardware | |
5582 | * pages to map one VM page. | |
5583 | */ | |
5584 | while ((pte_p = pmap_pte(pmap, v)) == PT_ENTRY_NULL) { | |
5585 | /* Must unlock to expand the pmap. */ | |
5586 | PMAP_UNLOCK(pmap); | |
5587 | ||
5588 | kern_return_t kr=pmap_expand(pmap, v, options, PMAP_TT_MAX_LEVEL); | |
5589 | ||
5590 | if(kr) { | |
5591 | return kr; | |
5592 | } | |
5593 | ||
5594 | PMAP_LOCK(pmap); | |
5595 | } | |
5596 | ||
5597 | if (options & PMAP_OPTIONS_NOENTER) { | |
5598 | PMAP_UNLOCK(pmap); | |
5599 | return KERN_SUCCESS; | |
5600 | } | |
5601 | ||
5602 | Pmap_enter_retry: | |
5603 | ||
5604 | spte = *pte_p; | |
5605 | ||
5606 | if (ARM_PTE_IS_COMPRESSED(spte)) { | |
5607 | /* | |
5608 | * "pmap" should be locked at this point, so this should | |
5609 | * not race with another pmap_enter() or pmap_remove_range(). | |
5610 | */ | |
5611 | assert(pmap != kernel_pmap); | |
5612 | ||
5613 | /* one less "compressed" */ | |
5614 | OSAddAtomic64(-1, &pmap->stats.compressed); | |
5615 | pmap_ledger_debit(pmap, task_ledgers.internal_compressed, | |
5616 | PAGE_SIZE); | |
5617 | ||
5618 | was_compressed = TRUE; | |
5619 | if (spte & ARM_PTE_COMPRESSED_ALT) { | |
5620 | was_alt_compressed = TRUE; | |
5621 | pmap_ledger_debit( | |
5622 | pmap, | |
5623 | task_ledgers.alternate_accounting_compressed, | |
5624 | PAGE_SIZE); | |
5625 | } else { | |
5626 | /* was part of the footprint */ | |
5627 | pmap_ledger_debit(pmap, task_ledgers.phys_footprint, PAGE_SIZE); | |
5628 | } | |
5629 | ||
5630 | /* clear "compressed" marker */ | |
5631 | /* XXX is it necessary since we're about to overwrite it ? */ | |
5632 | WRITE_PTE_FAST(pte_p, ARM_PTE_TYPE_FAULT); | |
5633 | spte = ARM_PTE_TYPE_FAULT; | |
5634 | ||
5635 | /* | |
5636 | * We're replacing a "compressed" marker with a valid PTE, | |
5637 | * so no change for "refcnt". | |
5638 | */ | |
5639 | refcnt_updated = TRUE; | |
5640 | } | |
5641 | ||
5642 | if ((spte != ARM_PTE_TYPE_FAULT) && (pte_to_pa(spte) != pa)) { | |
5643 | pmap_remove_range(pmap, v, pte_p, pte_p + 1, 0); | |
5644 | PMAP_UPDATE_TLBS(pmap, v, v + PAGE_SIZE); | |
5645 | } | |
5646 | ||
5647 | pte = pa_to_pte(pa) | ARM_PTE_TYPE; | |
5648 | ||
5649 | /* Don't bother tracking wiring for kernel PTEs. We use ARM_PTE_WIRED to track | |
5650 | * wired memory statistics for user pmaps, but kernel PTEs are assumed | |
5651 | * to be wired in nearly all cases. For VM layer functionality, the wired | |
5652 | * count in vm_page_t is sufficient. */ | |
5653 | if (wired && pmap != kernel_pmap) | |
5654 | pte |= ARM_PTE_WIRED; | |
5655 | ||
5656 | #if (__ARM_VMSA__ == 7) | |
5657 | if (set_NX) | |
5658 | pte |= ARM_PTE_NX; | |
5659 | #else | |
5660 | if (set_NX) | |
5661 | pte |= ARM_PTE_NX | ARM_PTE_PNX; | |
5662 | else { | |
5663 | if (pmap == kernel_pmap) { | |
5664 | pte |= ARM_PTE_NX; | |
5665 | } else { | |
5666 | pte |= ARM_PTE_PNX; | |
5667 | } | |
5668 | } | |
5669 | #endif | |
5670 | ||
5671 | if ((flags & (VM_WIMG_MASK | VM_WIMG_USE_DEFAULT))) | |
5672 | wimg_bits = (flags & (VM_WIMG_MASK | VM_WIMG_USE_DEFAULT)); | |
5673 | else | |
5674 | wimg_bits = pmap_cache_attributes(pn); | |
5675 | ||
5676 | pte |= wimg_to_pte(wimg_bits); | |
5677 | ||
5678 | if (pmap == kernel_pmap) { | |
5c9f4661 A |
5679 | #if __ARM_KERNEL_PROTECT__ |
5680 | pte |= ARM_PTE_NG; | |
5681 | #endif /* __ARM_KERNEL_PROTECT__ */ | |
5ba3f43e A |
5682 | if (prot & VM_PROT_WRITE) { |
5683 | pte |= ARM_PTE_AP(AP_RWNA); | |
5684 | pa_set_bits(pa, PP_ATTR_MODIFIED | PP_ATTR_REFERENCED); | |
5685 | } else { | |
5686 | pte |= ARM_PTE_AP(AP_RONA); | |
5687 | pa_set_bits(pa, PP_ATTR_REFERENCED); | |
5688 | } | |
5689 | #if (__ARM_VMSA__ == 7) | |
5690 | if ((_COMM_PAGE_BASE_ADDRESS <= v) && (v < _COMM_PAGE_BASE_ADDRESS + _COMM_PAGE_AREA_LENGTH)) | |
5691 | pte = (pte & ~(ARM_PTE_APMASK)) | ARM_PTE_AP(AP_RORO); | |
5692 | #endif | |
5693 | } else { | |
5694 | if (!(pmap->nested)) { | |
5695 | pte |= ARM_PTE_NG; | |
5696 | } else if ((pmap->nested_region_asid_bitmap) | |
5697 | && (v >= pmap->nested_region_subord_addr) | |
5698 | && (v < (pmap->nested_region_subord_addr+pmap->nested_region_size))) { | |
5699 | ||
5700 | unsigned int index = (unsigned int)((v - pmap->nested_region_subord_addr) >> ARM_TT_TWIG_SHIFT); | |
5701 | ||
5702 | if ((pmap->nested_region_asid_bitmap) | |
5703 | && testbit(index, (int *)pmap->nested_region_asid_bitmap)) | |
5704 | pte |= ARM_PTE_NG; | |
5705 | } | |
5706 | #if MACH_ASSERT | |
5707 | if (pmap->nested_pmap != NULL) { | |
5708 | vm_map_address_t nest_vaddr; | |
5709 | pt_entry_t *nest_pte_p; | |
5710 | ||
5711 | nest_vaddr = v - pmap->nested_region_grand_addr + pmap->nested_region_subord_addr; | |
5712 | ||
5713 | if ((nest_vaddr >= pmap->nested_region_subord_addr) | |
5714 | && (nest_vaddr < (pmap->nested_region_subord_addr+pmap->nested_region_size)) | |
5715 | && ((nest_pte_p = pmap_pte(pmap->nested_pmap, nest_vaddr)) != PT_ENTRY_NULL) | |
5716 | && (*nest_pte_p != ARM_PTE_TYPE_FAULT) | |
5717 | && (!ARM_PTE_IS_COMPRESSED(*nest_pte_p)) | |
5718 | && (((*nest_pte_p) & ARM_PTE_NG) != ARM_PTE_NG)) { | |
5719 | unsigned int index = (unsigned int)((v - pmap->nested_region_subord_addr) >> ARM_TT_TWIG_SHIFT); | |
5720 | ||
5721 | if ((pmap->nested_pmap->nested_region_asid_bitmap) | |
5722 | && !testbit(index, (int *)pmap->nested_pmap->nested_region_asid_bitmap)) { | |
5723 | ||
5724 | panic("pmap_enter(): Global attribute conflict nest_pte_p=%p pmap=%p v=0x%llx spte=0x%llx \n", | |
5725 | nest_pte_p, pmap, (uint64_t)v, (uint64_t)*nest_pte_p); | |
5726 | } | |
5727 | } | |
5728 | ||
5729 | } | |
5730 | #endif | |
5731 | if (prot & VM_PROT_WRITE) { | |
5732 | ||
5733 | if (pa_valid(pa) && (!pa_test_bits(pa, PP_ATTR_MODIFIED))) { | |
5734 | if (fault_type & VM_PROT_WRITE) { | |
5735 | if (set_XO) | |
5736 | pte |= ARM_PTE_AP(AP_RWNA); | |
5737 | else | |
5738 | pte |= ARM_PTE_AP(AP_RWRW); | |
5739 | pa_set_bits(pa, PP_ATTR_REFERENCED | PP_ATTR_MODIFIED); | |
5740 | } else { | |
5741 | if (set_XO) | |
5742 | pte |= ARM_PTE_AP(AP_RONA); | |
5743 | else | |
5744 | pte |= ARM_PTE_AP(AP_RORO); | |
5745 | pa_set_bits(pa, PP_ATTR_REFERENCED); | |
5746 | pte_set_ffr(pte, 1); | |
5747 | } | |
5748 | } else { | |
5749 | if (set_XO) | |
5750 | pte |= ARM_PTE_AP(AP_RWNA); | |
5751 | else | |
5752 | pte |= ARM_PTE_AP(AP_RWRW); | |
5753 | pa_set_bits(pa, PP_ATTR_REFERENCED); | |
5754 | } | |
5755 | } else { | |
5756 | ||
5757 | if (set_XO) | |
5758 | pte |= ARM_PTE_AP(AP_RONA); | |
5759 | else | |
5760 | pte |= ARM_PTE_AP(AP_RORO); | |
5761 | pa_set_bits(pa, PP_ATTR_REFERENCED); | |
5762 | } | |
5763 | } | |
5764 | ||
5765 | pte |= ARM_PTE_AF; | |
5766 | ||
5767 | volatile uint16_t *refcnt = NULL; | |
a39ff7e2 | 5768 | volatile uint16_t *wiredcnt = NULL; |
5ba3f43e A |
5769 | if (pmap != kernel_pmap) { |
5770 | refcnt = &(ptep_get_ptd(pte_p)->pt_cnt[ARM_PT_DESC_INDEX(pte_p)].refcnt); | |
a39ff7e2 A |
5771 | wiredcnt = &(ptep_get_ptd(pte_p)->pt_cnt[ARM_PT_DESC_INDEX(pte_p)].wiredcnt); |
5772 | /* Bump the wired count to keep the PTE page from being reclaimed. We need this because | |
5ba3f43e | 5773 | * we may drop the PVH and pmap locks later in pmap_enter() if we need to allocate |
a39ff7e2 A |
5774 | * a new PV entry. */ |
5775 | if (!wiredcnt_updated) { | |
5776 | OSAddAtomic16(1, (volatile int16_t*)wiredcnt); | |
5777 | wiredcnt_updated = TRUE; | |
5778 | } | |
5ba3f43e A |
5779 | if (!refcnt_updated) { |
5780 | OSAddAtomic16(1, (volatile int16_t*)refcnt); | |
5781 | refcnt_updated = TRUE; | |
5782 | } | |
5783 | } | |
5784 | ||
5785 | if (pa_valid(pa)) { | |
5786 | pv_entry_t **pv_h; | |
5787 | int pai; | |
5788 | boolean_t is_altacct, is_internal; | |
5789 | ||
5790 | is_internal = FALSE; | |
5791 | is_altacct = FALSE; | |
5792 | ||
5793 | pai = (int)pa_index(pa); | |
5794 | pv_h = pai_to_pvh(pai); | |
5795 | ||
5796 | LOCK_PVH(pai); | |
5797 | Pmap_enter_loop: | |
5798 | ||
5799 | if (pte == *pte_p) { | |
5800 | /* | |
5801 | * This pmap_enter operation has been completed by another thread | |
5802 | * undo refcnt on pt and return | |
5803 | */ | |
5804 | if (refcnt != NULL) { | |
5805 | assert(refcnt_updated); | |
a39ff7e2 | 5806 | if (OSAddAtomic16(-1, (volatile int16_t*)refcnt) <= 0) |
5ba3f43e A |
5807 | panic("pmap_enter(): over-release of ptdp %p for pte %p\n", ptep_get_ptd(pte_p), pte_p); |
5808 | } | |
5809 | UNLOCK_PVH(pai); | |
5810 | goto Pmap_enter_return; | |
5811 | } else if (pte_to_pa(*pte_p) == pa) { | |
5812 | if (refcnt != NULL) { | |
5813 | assert(refcnt_updated); | |
a39ff7e2 | 5814 | if (OSAddAtomic16(-1, (volatile int16_t*)refcnt) <= 0) |
5ba3f43e A |
5815 | panic("pmap_enter(): over-release of ptdp %p for pte %p\n", ptep_get_ptd(pte_p), pte_p); |
5816 | } | |
5817 | pmap_enter_pte(pmap, pte_p, pte, v); | |
5818 | UNLOCK_PVH(pai); | |
5819 | goto Pmap_enter_return; | |
5820 | } else if (*pte_p != ARM_PTE_TYPE_FAULT) { | |
5821 | /* | |
5822 | * pte has been modified by another thread | |
5823 | * hold refcnt on pt and retry pmap_enter operation | |
5824 | */ | |
5825 | UNLOCK_PVH(pai); | |
5826 | goto Pmap_enter_retry; | |
5827 | } | |
5828 | if (pvh_test_type(pv_h, PVH_TYPE_NULL)) { | |
5829 | pvh_update_head(pv_h, pte_p, PVH_TYPE_PTEP); | |
5830 | /* 1st mapping: see what kind of page it is */ | |
5831 | if (options & PMAP_OPTIONS_INTERNAL) { | |
5832 | SET_INTERNAL_PAGE(pai); | |
5833 | } else { | |
5834 | CLR_INTERNAL_PAGE(pai); | |
5835 | } | |
5836 | if ((options & PMAP_OPTIONS_INTERNAL) && | |
5837 | (options & PMAP_OPTIONS_REUSABLE)) { | |
5838 | SET_REUSABLE_PAGE(pai); | |
5839 | } else { | |
5840 | CLR_REUSABLE_PAGE(pai); | |
5841 | } | |
5842 | if (pmap != kernel_pmap && | |
5843 | ((options & PMAP_OPTIONS_ALT_ACCT) || | |
5844 | PMAP_FOOTPRINT_SUSPENDED(pmap)) && | |
5845 | IS_INTERNAL_PAGE(pai)) { | |
5846 | /* | |
5847 | * Make a note to ourselves that this mapping is using alternative | |
5848 | * accounting. We'll need this in order to know which ledger to | |
5849 | * debit when the mapping is removed. | |
5850 | * | |
5851 | * The altacct bit must be set while the pv head is locked. Defer | |
5852 | * the ledger accounting until after we've dropped the lock. | |
5853 | */ | |
5854 | SET_ALTACCT_PAGE(pai, PV_ENTRY_NULL); | |
5855 | is_altacct = TRUE; | |
5856 | } else { | |
5857 | CLR_ALTACCT_PAGE(pai, PV_ENTRY_NULL); | |
5858 | } | |
5859 | } else { | |
5860 | if (pvh_test_type(pv_h, PVH_TYPE_PTEP)) { | |
5861 | pt_entry_t *pte1_p; | |
5862 | ||
5863 | /* | |
5864 | * convert pvh list from PVH_TYPE_PTEP to PVH_TYPE_PVEP | |
5865 | */ | |
5866 | pte1_p = pvh_ptep(pv_h); | |
5867 | if((pve_p == PV_ENTRY_NULL) && (!pv_alloc(pmap, pai, &pve_p))) { | |
5868 | goto Pmap_enter_loop; | |
5869 | } | |
5870 | pve_set_ptep(pve_p, pte1_p); | |
5871 | pve_p->pve_next = PV_ENTRY_NULL; | |
5872 | ||
5873 | if (IS_ALTACCT_PAGE(pai, PV_ENTRY_NULL)) { | |
5874 | /* | |
5875 | * transfer "altacct" from | |
5876 | * pp_attr to this pve | |
5877 | */ | |
5878 | CLR_ALTACCT_PAGE(pai, PV_ENTRY_NULL); | |
5879 | SET_ALTACCT_PAGE(pai, pve_p); | |
5880 | } | |
5881 | pvh_update_head(pv_h, pve_p, PVH_TYPE_PVEP); | |
5882 | pve_p = PV_ENTRY_NULL; | |
5883 | } | |
5884 | /* | |
5885 | * Set up pv_entry for this new mapping and then | |
5886 | * add it to the list for this physical page. | |
5887 | */ | |
5888 | if((pve_p == PV_ENTRY_NULL) && (!pv_alloc(pmap, pai, &pve_p))) { | |
5889 | goto Pmap_enter_loop; | |
5890 | } | |
5891 | pve_set_ptep(pve_p, pte_p); | |
5892 | pve_p->pve_next = PV_ENTRY_NULL; | |
5893 | ||
5894 | pvh_add(pv_h, pve_p); | |
5895 | ||
5896 | if (pmap != kernel_pmap && | |
5897 | ((options & PMAP_OPTIONS_ALT_ACCT) || | |
5898 | PMAP_FOOTPRINT_SUSPENDED(pmap)) && | |
5899 | IS_INTERNAL_PAGE(pai)) { | |
5900 | /* | |
5901 | * Make a note to ourselves that this | |
5902 | * mapping is using alternative | |
5903 | * accounting. We'll need this in order | |
5904 | * to know which ledger to debit when | |
5905 | * the mapping is removed. | |
5906 | * | |
5907 | * The altacct bit must be set while | |
5908 | * the pv head is locked. Defer the | |
5909 | * ledger accounting until after we've | |
5910 | * dropped the lock. | |
5911 | */ | |
5912 | SET_ALTACCT_PAGE(pai, pve_p); | |
5913 | is_altacct = TRUE; | |
5914 | } | |
5915 | ||
5916 | pve_p = PV_ENTRY_NULL; | |
5917 | } | |
5918 | ||
5919 | pmap_enter_pte(pmap, pte_p, pte, v); | |
5920 | ||
5921 | if (pmap != kernel_pmap) { | |
5922 | if (IS_REUSABLE_PAGE(pai) && | |
5923 | !is_altacct) { | |
5924 | assert(IS_INTERNAL_PAGE(pai)); | |
5925 | OSAddAtomic(+1, &pmap->stats.reusable); | |
5926 | PMAP_STATS_PEAK(pmap->stats.reusable); | |
5927 | } else if (IS_INTERNAL_PAGE(pai)) { | |
5928 | OSAddAtomic(+1, &pmap->stats.internal); | |
5929 | PMAP_STATS_PEAK(pmap->stats.internal); | |
5930 | is_internal = TRUE; | |
5931 | } else { | |
5932 | OSAddAtomic(+1, &pmap->stats.external); | |
5933 | PMAP_STATS_PEAK(pmap->stats.external); | |
5934 | } | |
5935 | } | |
5936 | ||
5937 | UNLOCK_PVH(pai); | |
5938 | ||
5939 | if (pmap != kernel_pmap) { | |
5940 | pmap_ledger_credit(pmap, task_ledgers.phys_mem, PAGE_SIZE); | |
5941 | ||
5942 | if (is_internal) { | |
5943 | /* | |
5944 | * Make corresponding adjustments to | |
5945 | * phys_footprint statistics. | |
5946 | */ | |
5947 | pmap_ledger_credit(pmap, task_ledgers.internal, PAGE_SIZE); | |
5948 | if (is_altacct) { | |
5949 | /* | |
5950 | * If this page is internal and | |
5951 | * in an IOKit region, credit | |
5952 | * the task's total count of | |
5953 | * dirty, internal IOKit pages. | |
5954 | * It should *not* count towards | |
5955 | * the task's total physical | |
5956 | * memory footprint, because | |
5957 | * this entire region was | |
5958 | * already billed to the task | |
5959 | * at the time the mapping was | |
5960 | * created. | |
5961 | * | |
5962 | * Put another way, this is | |
5963 | * internal++ and | |
5964 | * alternate_accounting++, so | |
5965 | * net effect on phys_footprint | |
5966 | * is 0. That means: don't | |
5967 | * touch phys_footprint here. | |
5968 | */ | |
5969 | pmap_ledger_credit(pmap, task_ledgers.alternate_accounting, PAGE_SIZE); | |
5970 | } else { | |
5971 | pmap_ledger_credit(pmap, task_ledgers.phys_footprint, PAGE_SIZE); | |
5972 | } | |
5973 | } | |
5974 | } | |
5975 | ||
5976 | OSAddAtomic(1, (SInt32 *) &pmap->stats.resident_count); | |
5977 | if (pmap->stats.resident_count > pmap->stats.resident_max) | |
5978 | pmap->stats.resident_max = pmap->stats.resident_count; | |
5979 | } else { | |
5980 | pmap_enter_pte(pmap, pte_p, pte, v); | |
5981 | } | |
5982 | ||
5983 | Pmap_enter_return: | |
5984 | ||
5985 | #if CONFIG_PGTRACE | |
a39ff7e2 A |
5986 | if (pgtrace_enabled) { |
5987 | // Clone and invalidate original mapping if eligible | |
5988 | for (int i = 0; i < PAGE_RATIO; i++) { | |
5989 | pmap_pgtrace_enter_clone(pmap, v + ARM_PGBYTES*i, 0, 0); | |
5990 | } | |
5991 | } | |
5ba3f43e A |
5992 | #endif |
5993 | ||
5994 | if (pve_p != PV_ENTRY_NULL) | |
5995 | pv_free(pve_p); | |
5996 | ||
a39ff7e2 A |
5997 | if (wiredcnt_updated && (OSAddAtomic16(-1, (volatile int16_t*)wiredcnt) <= 0)) |
5998 | panic("pmap_enter(): over-unwire of ptdp %p for pte %p\n", ptep_get_ptd(pte_p), pte_p); | |
5999 | ||
5ba3f43e A |
6000 | PMAP_UNLOCK(pmap); |
6001 | ||
6002 | return KERN_SUCCESS; | |
6003 | } | |
6004 | ||
6005 | kern_return_t | |
6006 | pmap_enter_options( | |
6007 | pmap_t pmap, | |
6008 | vm_map_address_t v, | |
6009 | ppnum_t pn, | |
6010 | vm_prot_t prot, | |
6011 | vm_prot_t fault_type, | |
6012 | unsigned int flags, | |
6013 | boolean_t wired, | |
6014 | unsigned int options, | |
6015 | __unused void *arg) | |
6016 | { | |
6017 | kern_return_t kr = KERN_FAILURE; | |
6018 | ||
6019 | PMAP_TRACE(PMAP_CODE(PMAP__ENTER) | DBG_FUNC_START, | |
6020 | VM_KERNEL_ADDRHIDE(pmap), VM_KERNEL_ADDRHIDE(v), pn, prot); | |
6021 | ||
6022 | kr = pmap_enter_options_internal(pmap, v, pn, prot, fault_type, flags, wired, options); | |
6023 | ||
6024 | PMAP_TRACE(PMAP_CODE(PMAP__ENTER) | DBG_FUNC_END, kr); | |
6025 | ||
6026 | return kr; | |
6027 | } | |
6028 | ||
6029 | /* | |
6030 | * Routine: pmap_change_wiring | |
6031 | * Function: Change the wiring attribute for a map/virtual-address | |
6032 | * pair. | |
6033 | * In/out conditions: | |
6034 | * The mapping must already exist in the pmap. | |
6035 | */ | |
6036 | static void | |
6037 | pmap_change_wiring_internal( | |
6038 | pmap_t pmap, | |
6039 | vm_map_address_t v, | |
6040 | boolean_t wired) | |
6041 | { | |
6042 | pt_entry_t *pte_p; | |
6043 | pmap_paddr_t pa; | |
6044 | ||
6045 | /* Don't bother tracking wiring for kernel PTEs. We use ARM_PTE_WIRED to track | |
6046 | * wired memory statistics for user pmaps, but kernel PTEs are assumed | |
6047 | * to be wired in nearly all cases. For VM layer functionality, the wired | |
6048 | * count in vm_page_t is sufficient. */ | |
6049 | if (pmap == kernel_pmap) { | |
6050 | return; | |
6051 | } | |
6052 | ||
6053 | PMAP_LOCK(pmap); | |
6054 | pte_p = pmap_pte(pmap, v); | |
6055 | assert(pte_p != PT_ENTRY_NULL); | |
6056 | pa = pte_to_pa(*pte_p); | |
6057 | if (pa_valid(pa)) | |
6058 | LOCK_PVH((int)pa_index(pa)); | |
6059 | ||
6060 | if (wired && !pte_is_wired(*pte_p)) { | |
6061 | pte_set_wired(pte_p, wired); | |
6062 | OSAddAtomic(+1, (SInt32 *) &pmap->stats.wired_count); | |
6063 | pmap_ledger_credit(pmap, task_ledgers.wired_mem, PAGE_SIZE); | |
6064 | } else if (!wired && pte_is_wired(*pte_p)) { | |
5c9f4661 | 6065 | PMAP_STATS_ASSERTF(pmap->stats.wired_count >= 1, pmap, "stats.wired_count %d", pmap->stats.wired_count); |
5ba3f43e A |
6066 | pte_set_wired(pte_p, wired); |
6067 | OSAddAtomic(-1, (SInt32 *) &pmap->stats.wired_count); | |
6068 | pmap_ledger_debit(pmap, task_ledgers.wired_mem, PAGE_SIZE); | |
6069 | } | |
6070 | ||
6071 | if (pa_valid(pa)) | |
6072 | UNLOCK_PVH((int)pa_index(pa)); | |
6073 | ||
6074 | PMAP_UNLOCK(pmap); | |
6075 | } | |
6076 | ||
6077 | void | |
6078 | pmap_change_wiring( | |
6079 | pmap_t pmap, | |
6080 | vm_map_address_t v, | |
6081 | boolean_t wired) | |
6082 | { | |
6083 | pmap_change_wiring_internal(pmap, v, wired); | |
6084 | } | |
6085 | ||
6086 | static ppnum_t | |
6087 | pmap_find_phys_internal( | |
6088 | pmap_t pmap, | |
6089 | addr64_t va) | |
6090 | { | |
6091 | ppnum_t ppn=0; | |
6092 | ||
6093 | if (pmap != kernel_pmap) { | |
6094 | PMAP_LOCK(pmap); | |
6095 | } | |
6096 | ||
6097 | ppn = pmap_vtophys(pmap, va); | |
6098 | ||
6099 | if (pmap != kernel_pmap) { | |
6100 | PMAP_UNLOCK(pmap); | |
6101 | } | |
6102 | ||
6103 | return ppn; | |
6104 | } | |
6105 | ||
6106 | ppnum_t | |
6107 | pmap_find_phys( | |
6108 | pmap_t pmap, | |
6109 | addr64_t va) | |
6110 | { | |
6111 | pmap_paddr_t pa=0; | |
6112 | ||
6113 | if (pmap == kernel_pmap) | |
6114 | pa = mmu_kvtop(va); | |
6115 | else if ((current_thread()->map) && (pmap == vm_map_pmap(current_thread()->map))) | |
6116 | pa = mmu_uvtop(va); | |
6117 | ||
6118 | if (pa) return (ppnum_t)(pa >> PAGE_SHIFT); | |
6119 | ||
6120 | if (not_in_kdp) { | |
6121 | return pmap_find_phys_internal(pmap, va); | |
6122 | } else { | |
6123 | return pmap_vtophys(pmap, va); | |
6124 | } | |
6125 | } | |
6126 | ||
6127 | pmap_paddr_t | |
6128 | kvtophys( | |
6129 | vm_offset_t va) | |
6130 | { | |
6131 | pmap_paddr_t pa; | |
6132 | ||
6133 | pa = mmu_kvtop(va); | |
6134 | if (pa) return pa; | |
6135 | pa = ((pmap_paddr_t)pmap_vtophys(kernel_pmap, va)) << PAGE_SHIFT; | |
6136 | if (pa) | |
6137 | pa |= (va & PAGE_MASK); | |
6138 | ||
6139 | return ((pmap_paddr_t)pa); | |
6140 | } | |
6141 | ||
6142 | ppnum_t | |
6143 | pmap_vtophys( | |
6144 | pmap_t pmap, | |
6145 | addr64_t va) | |
6146 | { | |
6147 | if ((va < pmap->min) || (va >= pmap->max)) { | |
6148 | return 0; | |
6149 | } | |
6150 | ||
6151 | #if (__ARM_VMSA__ == 7) | |
6152 | tt_entry_t *tte_p, tte; | |
6153 | pt_entry_t *pte_p; | |
6154 | ppnum_t ppn; | |
6155 | ||
6156 | tte_p = pmap_tte(pmap, va); | |
6157 | if (tte_p == (tt_entry_t *) NULL) | |
6158 | return (ppnum_t) 0; | |
6159 | ||
6160 | tte = *tte_p; | |
6161 | if ((tte & ARM_TTE_TYPE_MASK) == ARM_TTE_TYPE_TABLE) { | |
6162 | pte_p = (pt_entry_t *) ttetokv(tte) + ptenum(va); | |
6163 | ppn = (ppnum_t) atop(pte_to_pa(*pte_p) | (va & ARM_PGMASK)); | |
6164 | #if DEVELOPMENT || DEBUG | |
6165 | if (ppn != 0 && | |
6166 | ARM_PTE_IS_COMPRESSED(*pte_p)) { | |
6167 | panic("pmap_vtophys(%p,0x%llx): compressed pte_p=%p 0x%llx with ppn=0x%x\n", | |
6168 | pmap, va, pte_p, (uint64_t) (*pte_p), ppn); | |
6169 | } | |
6170 | #endif /* DEVELOPMENT || DEBUG */ | |
6171 | } else if ((tte & ARM_TTE_TYPE_MASK) == ARM_TTE_TYPE_BLOCK) | |
6172 | if ((tte & ARM_TTE_BLOCK_SUPER) == ARM_TTE_BLOCK_SUPER) | |
6173 | ppn = (ppnum_t) atop(suptte_to_pa(tte) | (va & ARM_TT_L1_SUPER_OFFMASK)); | |
6174 | else | |
6175 | ppn = (ppnum_t) atop(sectte_to_pa(tte) | (va & ARM_TT_L1_BLOCK_OFFMASK)); | |
6176 | else | |
6177 | ppn = 0; | |
6178 | #else | |
6179 | tt_entry_t *ttp; | |
6180 | tt_entry_t tte; | |
6181 | ppnum_t ppn=0; | |
6182 | ||
6183 | /* Level 0 currently unused */ | |
6184 | ||
6185 | #if __ARM64_TWO_LEVEL_PMAP__ | |
6186 | /* We have no L1 entry; go straight to the L2 entry */ | |
6187 | ttp = pmap_tt2e(pmap, va); | |
6188 | tte = *ttp; | |
6189 | #else | |
6190 | /* Get first-level (1GB) entry */ | |
6191 | ttp = pmap_tt1e(pmap, va); | |
6192 | tte = *ttp; | |
6193 | if ((tte & (ARM_TTE_TYPE_MASK | ARM_TTE_VALID)) != (ARM_TTE_TYPE_TABLE | ARM_TTE_VALID)) | |
6194 | return (ppn); | |
6195 | ||
6196 | tte = ((tt_entry_t*) phystokv(tte & ARM_TTE_TABLE_MASK))[tt2_index(pmap, va)]; | |
6197 | #endif | |
6198 | if ((tte & ARM_TTE_VALID) != (ARM_TTE_VALID)) | |
6199 | return (ppn); | |
6200 | ||
6201 | if ((tte & ARM_TTE_TYPE_MASK) == ARM_TTE_TYPE_BLOCK) { | |
6202 | ppn = (ppnum_t) atop((tte & ARM_TTE_BLOCK_L2_MASK)| (va & ARM_TT_L2_OFFMASK)); | |
6203 | return(ppn); | |
6204 | } | |
6205 | tte = ((tt_entry_t*) phystokv(tte & ARM_TTE_TABLE_MASK))[tt3_index(pmap, va)]; | |
6206 | ppn = (ppnum_t) atop((tte & ARM_PTE_MASK)| (va & ARM_TT_L3_OFFMASK)); | |
6207 | #endif | |
6208 | ||
6209 | return ppn; | |
6210 | } | |
6211 | ||
6212 | static vm_offset_t | |
6213 | pmap_extract_internal( | |
6214 | pmap_t pmap, | |
6215 | vm_map_address_t va) | |
6216 | { | |
6217 | pmap_paddr_t pa=0; | |
6218 | ppnum_t ppn=0; | |
6219 | ||
6220 | if (pmap == NULL) { | |
6221 | return 0; | |
6222 | } | |
6223 | ||
6224 | PMAP_LOCK(pmap); | |
6225 | ||
6226 | ppn = pmap_vtophys(pmap, va); | |
6227 | ||
6228 | if (ppn != 0) | |
6229 | pa = ptoa(ppn)| ((va) & PAGE_MASK); | |
6230 | ||
6231 | PMAP_UNLOCK(pmap); | |
6232 | ||
6233 | return pa; | |
6234 | } | |
6235 | ||
6236 | /* | |
6237 | * Routine: pmap_extract | |
6238 | * Function: | |
6239 | * Extract the physical page address associated | |
6240 | * with the given map/virtual_address pair. | |
6241 | * | |
6242 | */ | |
6243 | vm_offset_t | |
6244 | pmap_extract( | |
6245 | pmap_t pmap, | |
6246 | vm_map_address_t va) | |
6247 | { | |
6248 | pmap_paddr_t pa=0; | |
6249 | ||
6250 | if (pmap == kernel_pmap) | |
6251 | pa = mmu_kvtop(va); | |
6252 | else if (pmap == vm_map_pmap(current_thread()->map)) | |
6253 | pa = mmu_uvtop(va); | |
6254 | ||
6255 | if (pa) return pa; | |
6256 | ||
6257 | return pmap_extract_internal(pmap, va); | |
6258 | } | |
6259 | ||
6260 | /* | |
6261 | * pmap_init_pte_page - Initialize a page table page. | |
6262 | */ | |
6263 | void | |
6264 | pmap_init_pte_page( | |
6265 | pmap_t pmap, | |
6266 | pt_entry_t *pte_p, | |
6267 | vm_offset_t va, | |
6268 | unsigned int ttlevel, | |
6269 | boolean_t alloc_ptd) | |
6270 | { | |
6271 | pt_desc_t *ptdp; | |
6272 | ||
6273 | ptdp = *(pt_desc_t **)pai_to_pvh(pa_index((((vm_offset_t)pte_p) - gVirtBase + gPhysBase))); | |
6274 | ||
6275 | if (ptdp == NULL) { | |
6276 | if (alloc_ptd) { | |
6277 | /* | |
6278 | * This path should only be invoked from arm_vm_init. If we are emulating 16KB pages | |
6279 | * on 4KB hardware, we may already have allocated a page table descriptor for a | |
6280 | * bootstrap request, so we check for an existing PTD here. | |
6281 | */ | |
6282 | ptdp = ptd_alloc(pmap); | |
6283 | *(pt_desc_t **)pai_to_pvh(pa_index((((vm_offset_t)pte_p) - gVirtBase + gPhysBase))) = ptdp; | |
6284 | } else { | |
6285 | panic("pmap_init_pte_page(): pte_p %p\n", pte_p); | |
6286 | } | |
6287 | } | |
6288 | ||
6289 | pmap_init_pte_page_internal(pmap, pte_p, va, ttlevel, &ptdp); | |
6290 | } | |
6291 | ||
6292 | /* | |
6293 | * pmap_init_pte_page_internal - Initialize page table page and page table descriptor | |
6294 | */ | |
6295 | void | |
6296 | pmap_init_pte_page_internal( | |
6297 | pmap_t pmap, | |
6298 | pt_entry_t *pte_p, | |
6299 | vm_offset_t va, | |
6300 | unsigned int ttlevel, | |
6301 | pt_desc_t **ptdp) | |
6302 | { | |
6303 | bzero(pte_p, ARM_PGBYTES); | |
6304 | // below barrier ensures the page zeroing is visible to PTW before | |
6305 | // it is linked to the PTE of previous level | |
6306 | __asm__ volatile("DMB ST" : : : "memory"); | |
6307 | ptd_init(*ptdp, pmap, va, ttlevel, pte_p); | |
6308 | } | |
6309 | ||
6310 | /* | |
6311 | * pmap_init_pte_static_page - for static mappings to a known contiguous range of pa's | |
6312 | * Called from arm_vm_init(). | |
6313 | */ | |
6314 | void | |
6315 | pmap_init_pte_static_page( | |
6316 | __unused pmap_t pmap, | |
6317 | pt_entry_t * pte_p, | |
6318 | pmap_paddr_t pa) | |
6319 | { | |
6320 | #if (__ARM_VMSA__ == 7) | |
6321 | unsigned int i; | |
6322 | pt_entry_t *pte_cur; | |
6323 | ||
6324 | for (i = 0, pte_cur = pte_p; | |
6325 | i < (ARM_PGBYTES / sizeof(*pte_p)); | |
6326 | i++, pa += PAGE_SIZE) { | |
6327 | if (pa >= avail_end) { | |
6328 | /* We don't want to map memory xnu does not own through this routine. */ | |
6329 | break; | |
6330 | } | |
6331 | ||
6332 | *pte_cur = pa_to_pte(pa) | |
6333 | | ARM_PTE_TYPE | ARM_PTE_AF | ARM_PTE_SH | ARM_PTE_AP(AP_RONA) | |
6334 | | ARM_PTE_ATTRINDX(CACHE_ATTRINDX_DEFAULT); | |
6335 | pte_cur++; | |
6336 | } | |
6337 | #else | |
6338 | unsigned int i; | |
6339 | pt_entry_t *pte_cur; | |
6340 | pt_entry_t template; | |
6341 | ||
6342 | template = ARM_PTE_TYPE | ARM_PTE_AF | ARM_PTE_SH(SH_OUTER_MEMORY) | ARM_PTE_AP(AP_RONA) | ARM_PTE_ATTRINDX(CACHE_ATTRINDX_DEFAULT) | ARM_PTE_NX; | |
6343 | ||
6344 | for (i = 0, pte_cur = pte_p; | |
6345 | i < (ARM_PGBYTES / sizeof(*pte_p)); | |
6346 | i++, pa += PAGE_SIZE) { | |
6347 | if (pa >= avail_end) { | |
6348 | /* We don't want to map memory xnu does not own through this routine. */ | |
6349 | break; | |
6350 | } | |
6351 | ||
6352 | /* TEST_PAGE_RATIO_4 may be pre-processor defined to 0 */ | |
6353 | __unreachable_ok_push | |
6354 | if (TEST_PAGE_RATIO_4) { | |
6355 | *pte_cur = pa_to_pte(pa) | template; | |
6356 | *(pte_cur+1) = pa_to_pte(pa+0x1000) | template; | |
6357 | *(pte_cur+2) = pa_to_pte(pa+0x2000) | template; | |
6358 | *(pte_cur+3) = pa_to_pte(pa+0x3000) | template; | |
6359 | pte_cur += 4; | |
6360 | } else { | |
6361 | *pte_cur = pa_to_pte(pa) | template; | |
6362 | pte_cur++; | |
6363 | } | |
6364 | __unreachable_ok_pop | |
6365 | } | |
6366 | #endif | |
6367 | bzero(pte_cur, ARM_PGBYTES - ((vm_offset_t)pte_cur - (vm_offset_t)pte_p)); | |
6368 | } | |
6369 | ||
6370 | ||
6371 | /* | |
6372 | * Routine: pmap_expand | |
6373 | * | |
6374 | * Expands a pmap to be able to map the specified virtual address. | |
6375 | * | |
6376 | * Allocates new memory for the default (COARSE) translation table | |
6377 | * entry, initializes all the pte entries to ARM_PTE_TYPE_FAULT and | |
6378 | * also allocates space for the corresponding pv entries. | |
6379 | * | |
6380 | * Nothing should be locked. | |
6381 | */ | |
6382 | static kern_return_t | |
6383 | pmap_expand( | |
6384 | pmap_t pmap, | |
6385 | vm_map_address_t v, | |
6386 | unsigned int options, | |
6387 | unsigned int level) | |
6388 | { | |
6389 | #if (__ARM_VMSA__ == 7) | |
6390 | vm_offset_t pa; | |
6391 | tt_entry_t *tte_p; | |
6392 | tt_entry_t *tt_p; | |
6393 | unsigned int i; | |
6394 | ||
6395 | ||
6396 | while (tte_index(pmap, v) >= pmap->tte_index_max) { | |
6397 | tte_p = pmap_tt1_allocate(pmap, 2*ARM_PGBYTES, ((options & PMAP_OPTIONS_NOWAIT)? PMAP_TT_ALLOCATE_NOWAIT : 0)); | |
6398 | if (tte_p == (tt_entry_t *)0) | |
6399 | return KERN_RESOURCE_SHORTAGE; | |
6400 | ||
6401 | PMAP_LOCK(pmap); | |
6402 | if (pmap->tte_index_max > NTTES) { | |
6403 | pmap_tt1_deallocate(pmap, tte_p, 2*ARM_PGBYTES, PMAP_TT_DEALLOCATE_NOBLOCK); | |
6404 | PMAP_UNLOCK(pmap); | |
6405 | break; | |
6406 | } | |
6407 | ||
6408 | simple_lock(&pmap->tt1_lock); | |
6409 | for (i = 0; i < pmap->tte_index_max; i++) | |
6410 | tte_p[i] = pmap->tte[i]; | |
6411 | for (i = NTTES; i < 2*NTTES; i++) | |
6412 | tte_p[i] = ARM_TTE_TYPE_FAULT; | |
6413 | ||
6414 | pmap->prev_tte = pmap->tte; | |
6415 | pmap->tte = tte_p; | |
6416 | pmap->ttep = ml_static_vtop((vm_offset_t)pmap->tte); | |
6417 | #ifndef __ARM_L1_PTW__ | |
6418 | CleanPoU_DcacheRegion((vm_offset_t) pmap->tte, 2*NTTES * sizeof(tt_entry_t)); | |
6419 | #else | |
6420 | __builtin_arm_dsb(DSB_ISH); | |
6421 | #endif | |
6422 | pmap->tte_index_max = 2*NTTES; | |
6423 | pmap->stamp = hw_atomic_add(&pmap_stamp, 1); | |
6424 | ||
6425 | for (i = 0; i < NTTES; i++) | |
6426 | pmap->prev_tte[i] = ARM_TTE_TYPE_FAULT; | |
6427 | #ifndef __ARM_L1_PTW__ | |
6428 | CleanPoU_DcacheRegion((vm_offset_t) pmap->prev_tte, NTTES * sizeof(tt_entry_t)); | |
6429 | #else | |
6430 | __builtin_arm_dsb(DSB_ISH); | |
6431 | #endif | |
6432 | ||
6433 | simple_unlock(&pmap->tt1_lock); | |
6434 | PMAP_UNLOCK(pmap); | |
6435 | pmap_set_pmap(pmap, current_thread()); | |
6436 | ||
6437 | } | |
6438 | ||
6439 | if (level == 1) | |
6440 | return (KERN_SUCCESS); | |
6441 | ||
6442 | { | |
6443 | tt_entry_t *tte_next_p; | |
6444 | ||
6445 | PMAP_LOCK(pmap); | |
6446 | pa = 0; | |
6447 | if (pmap_pte(pmap, v) != PT_ENTRY_NULL) { | |
6448 | PMAP_UNLOCK(pmap); | |
6449 | return (KERN_SUCCESS); | |
6450 | } | |
6451 | tte_p = &pmap->tte[ttenum(v & ~ARM_TT_L1_PT_OFFMASK)]; | |
6452 | for (i = 0, tte_next_p = tte_p; i<4; i++) { | |
6453 | if (tte_to_pa(*tte_next_p)) { | |
6454 | pa = tte_to_pa(*tte_next_p); | |
6455 | break; | |
6456 | } | |
6457 | tte_next_p++; | |
6458 | } | |
6459 | pa = pa & ~PAGE_MASK; | |
6460 | if (pa) { | |
6461 | tte_p = &pmap->tte[ttenum(v)]; | |
6462 | *tte_p = pa_to_tte(pa) | (((v >> ARM_TT_L1_SHIFT) & 0x3) << 10) | ARM_TTE_TYPE_TABLE; | |
6463 | #ifndef __ARM_L1_PTW__ | |
6464 | CleanPoU_DcacheRegion((vm_offset_t) tte_p, sizeof(tt_entry_t)); | |
6465 | #endif | |
6466 | PMAP_UNLOCK(pmap); | |
6467 | return (KERN_SUCCESS); | |
6468 | } | |
6469 | PMAP_UNLOCK(pmap); | |
6470 | } | |
6471 | v = v & ~ARM_TT_L1_PT_OFFMASK; | |
6472 | ||
6473 | ||
6474 | while (pmap_pte(pmap, v) == PT_ENTRY_NULL) { | |
6475 | /* | |
6476 | * Allocate a VM page for the level 2 page table entries. | |
6477 | */ | |
6478 | while (pmap_tt_allocate(pmap, &tt_p, PMAP_TT_L2_LEVEL, ((options & PMAP_TT_ALLOCATE_NOWAIT)? PMAP_PAGES_ALLOCATE_NOWAIT : 0)) != KERN_SUCCESS) { | |
6479 | if(options & PMAP_OPTIONS_NOWAIT) { | |
6480 | return KERN_RESOURCE_SHORTAGE; | |
6481 | } | |
6482 | VM_PAGE_WAIT(); | |
6483 | } | |
6484 | ||
6485 | PMAP_LOCK(pmap); | |
6486 | /* | |
6487 | * See if someone else expanded us first | |
6488 | */ | |
6489 | if (pmap_pte(pmap, v) == PT_ENTRY_NULL) { | |
6490 | tt_entry_t *tte_next_p; | |
6491 | ||
6492 | pmap_init_pte_page(pmap, (pt_entry_t *) tt_p, v, PMAP_TT_L2_LEVEL, FALSE); | |
6493 | pa = kvtophys((vm_offset_t)tt_p); | |
6494 | #ifndef __ARM_L1_PTW__ | |
6495 | CleanPoU_DcacheRegion((vm_offset_t) phystokv(pa), PAGE_SIZE); | |
6496 | #endif | |
6497 | tte_p = &pmap->tte[ttenum(v)]; | |
6498 | for (i = 0, tte_next_p = tte_p; i<4; i++) { | |
6499 | *tte_next_p = pa_to_tte(pa) | ARM_TTE_TYPE_TABLE; | |
6500 | tte_next_p++; | |
6501 | pa = pa +0x400; | |
6502 | } | |
6503 | #ifndef __ARM_L1_PTW__ | |
6504 | CleanPoU_DcacheRegion((vm_offset_t) tte_p, 4*sizeof(tt_entry_t)); | |
6505 | #endif | |
6506 | pa = 0x0ULL; | |
6507 | tt_p = (tt_entry_t *)NULL; | |
6508 | } | |
6509 | PMAP_UNLOCK(pmap); | |
6510 | if (tt_p != (tt_entry_t *)NULL) { | |
6511 | pmap_tt_deallocate(pmap, tt_p, PMAP_TT_L2_LEVEL); | |
6512 | tt_p = (tt_entry_t *)NULL; | |
6513 | } | |
6514 | } | |
6515 | return (KERN_SUCCESS); | |
6516 | #else | |
6517 | pmap_paddr_t pa; | |
6518 | #if __ARM64_TWO_LEVEL_PMAP__ | |
6519 | /* If we are using a two level page table, we'll start at L2. */ | |
6520 | unsigned int ttlevel = 2; | |
6521 | #else | |
6522 | /* Otherwise, we start at L1 (we use 3 levels by default). */ | |
6523 | unsigned int ttlevel = 1; | |
6524 | #endif | |
6525 | tt_entry_t *tte_p; | |
6526 | tt_entry_t *tt_p; | |
6527 | ||
6528 | pa = 0x0ULL; | |
6529 | tt_p = (tt_entry_t *)NULL; | |
6530 | ||
6531 | for (; ttlevel < level; ttlevel++) { | |
6532 | ||
6533 | PMAP_LOCK(pmap); | |
6534 | ||
6535 | if (ttlevel == 1) { | |
6536 | if ((pmap_tt2e(pmap, v) == PT_ENTRY_NULL)) { | |
6537 | PMAP_UNLOCK(pmap); | |
6538 | while (pmap_tt_allocate(pmap, &tt_p, PMAP_TT_L2_LEVEL, ((options & PMAP_TT_ALLOCATE_NOWAIT)? PMAP_PAGES_ALLOCATE_NOWAIT : 0)) != KERN_SUCCESS) { | |
6539 | if(options & PMAP_OPTIONS_NOWAIT) { | |
6540 | return KERN_RESOURCE_SHORTAGE; | |
6541 | } | |
6542 | VM_PAGE_WAIT(); | |
6543 | } | |
6544 | PMAP_LOCK(pmap); | |
6545 | if ((pmap_tt2e(pmap, v) == PT_ENTRY_NULL)) { | |
6546 | pmap_init_pte_page(pmap, (pt_entry_t *) tt_p, v, PMAP_TT_L2_LEVEL, FALSE); | |
6547 | pa = kvtophys((vm_offset_t)tt_p); | |
6548 | tte_p = pmap_tt1e( pmap, v); | |
6549 | *tte_p = (pa & ARM_TTE_TABLE_MASK) | ARM_TTE_TYPE_TABLE | ARM_TTE_VALID; | |
6550 | pa = 0x0ULL; | |
6551 | tt_p = (tt_entry_t *)NULL; | |
6552 | if ((pmap == kernel_pmap) && (VM_MIN_KERNEL_ADDRESS < 0x00000000FFFFFFFFULL)) | |
6553 | current_pmap()->tte[v>>ARM_TT_L1_SHIFT] = kernel_pmap->tte[v>>ARM_TT_L1_SHIFT]; | |
6554 | } | |
6555 | ||
6556 | } | |
6557 | } else if (ttlevel == 2) { | |
6558 | if (pmap_tt3e(pmap, v) == PT_ENTRY_NULL) { | |
6559 | PMAP_UNLOCK(pmap); | |
6560 | while (pmap_tt_allocate(pmap, &tt_p, PMAP_TT_L3_LEVEL, ((options & PMAP_TT_ALLOCATE_NOWAIT)? PMAP_PAGES_ALLOCATE_NOWAIT : 0)) != KERN_SUCCESS) { | |
6561 | if(options & PMAP_OPTIONS_NOWAIT) { | |
6562 | return KERN_RESOURCE_SHORTAGE; | |
6563 | } | |
6564 | VM_PAGE_WAIT(); | |
6565 | } | |
6566 | PMAP_LOCK(pmap); | |
6567 | if ((pmap_tt3e(pmap, v) == PT_ENTRY_NULL)) { | |
6568 | pmap_init_pte_page(pmap, (pt_entry_t *) tt_p, v , PMAP_TT_L3_LEVEL, FALSE); | |
6569 | pa = kvtophys((vm_offset_t)tt_p); | |
6570 | tte_p = pmap_tt2e( pmap, v); | |
6571 | *tte_p = (pa & ARM_TTE_TABLE_MASK) | ARM_TTE_TYPE_TABLE | ARM_TTE_VALID; | |
6572 | pa = 0x0ULL; | |
6573 | tt_p = (tt_entry_t *)NULL; | |
6574 | } | |
6575 | } | |
6576 | } | |
6577 | ||
6578 | PMAP_UNLOCK(pmap); | |
6579 | ||
6580 | if (tt_p != (tt_entry_t *)NULL) { | |
6581 | pmap_tt_deallocate(pmap, tt_p, ttlevel+1); | |
6582 | tt_p = (tt_entry_t *)NULL; | |
6583 | } | |
6584 | } | |
6585 | ||
6586 | return (KERN_SUCCESS); | |
6587 | #endif | |
6588 | } | |
6589 | ||
6590 | /* | |
6591 | * Routine: pmap_collect | |
6592 | * Function: | |
6593 | * Garbage collects the physical map system for | |
6594 | * pages which are no longer used. | |
6595 | * Success need not be guaranteed -- that is, there | |
6596 | * may well be pages which are not referenced, but | |
6597 | * others may be collected. | |
6598 | */ | |
6599 | void | |
6600 | pmap_collect(pmap_t pmap) | |
6601 | { | |
6602 | if (pmap == PMAP_NULL) | |
6603 | return; | |
6604 | ||
6605 | #if 0 | |
6606 | PMAP_LOCK(pmap); | |
6607 | if ((pmap->nested == FALSE) && (pmap != kernel_pmap)) { | |
6608 | /* TODO: Scan for vm page assigned to top level page tables with no reference */ | |
6609 | } | |
6610 | PMAP_UNLOCK(pmap); | |
6611 | #endif | |
6612 | ||
6613 | return; | |
6614 | } | |
6615 | ||
6616 | /* | |
6617 | * Routine: pmap_gc | |
6618 | * Function: | |
6619 | * Pmap garbage collection | |
6620 | * Called by the pageout daemon when pages are scarce. | |
6621 | * | |
6622 | */ | |
6623 | void | |
6624 | pmap_gc( | |
6625 | void) | |
6626 | { | |
6627 | pmap_t pmap, pmap_next; | |
6628 | boolean_t gc_wait; | |
6629 | ||
6630 | if (pmap_gc_allowed && | |
6631 | (pmap_gc_allowed_by_time_throttle || | |
6632 | pmap_gc_forced)) { | |
6633 | pmap_gc_forced = FALSE; | |
6634 | pmap_gc_allowed_by_time_throttle = FALSE; | |
6635 | simple_lock(&pmaps_lock); | |
6636 | pmap = CAST_DOWN_EXPLICIT(pmap_t, queue_first(&map_pmap_list)); | |
6637 | while (!queue_end(&map_pmap_list, (queue_entry_t)pmap)) { | |
6638 | if (!(pmap->gc_status & PMAP_GC_INFLIGHT)) | |
6639 | pmap->gc_status |= PMAP_GC_INFLIGHT; | |
6640 | simple_unlock(&pmaps_lock); | |
6641 | ||
6642 | pmap_collect(pmap); | |
6643 | ||
6644 | simple_lock(&pmaps_lock); | |
6645 | gc_wait = (pmap->gc_status & PMAP_GC_WAIT); | |
6646 | pmap->gc_status &= ~(PMAP_GC_INFLIGHT|PMAP_GC_WAIT); | |
6647 | pmap_next = CAST_DOWN_EXPLICIT(pmap_t, queue_next(&pmap->pmaps)); | |
6648 | if (gc_wait) { | |
6649 | if (!queue_end(&map_pmap_list, (queue_entry_t)pmap_next)) | |
6650 | pmap_next->gc_status |= PMAP_GC_INFLIGHT; | |
6651 | simple_unlock(&pmaps_lock); | |
6652 | thread_wakeup((event_t) & pmap->gc_status); | |
6653 | simple_lock(&pmaps_lock); | |
6654 | } | |
6655 | pmap = pmap_next; | |
6656 | } | |
6657 | simple_unlock(&pmaps_lock); | |
6658 | } | |
6659 | } | |
6660 | ||
6661 | /* | |
6662 | * Called by the VM to reclaim pages that we can reclaim quickly and cheaply. | |
6663 | */ | |
6664 | void | |
6665 | pmap_release_pages_fast(void) | |
6666 | { | |
6667 | } | |
6668 | ||
6669 | /* | |
6670 | * By default, don't attempt pmap GC more frequently | |
6671 | * than once / 1 minutes. | |
6672 | */ | |
6673 | ||
6674 | void | |
6675 | compute_pmap_gc_throttle( | |
6676 | void *arg __unused) | |
6677 | { | |
6678 | pmap_gc_allowed_by_time_throttle = TRUE; | |
6679 | } | |
6680 | ||
6681 | /* | |
6682 | * pmap_attribute_cache_sync(vm_offset_t pa) | |
6683 | * | |
6684 | * Invalidates all of the instruction cache on a physical page and | |
6685 | * pushes any dirty data from the data cache for the same physical page | |
6686 | */ | |
6687 | ||
6688 | kern_return_t | |
6689 | pmap_attribute_cache_sync( | |
6690 | ppnum_t pp, | |
6691 | vm_size_t size, | |
6692 | __unused vm_machine_attribute_t attribute, | |
6693 | __unused vm_machine_attribute_val_t * value) | |
6694 | { | |
6695 | if (size > PAGE_SIZE) { | |
6696 | panic("pmap_attribute_cache_sync size: 0x%llx\n", (uint64_t)size); | |
6697 | } else | |
6698 | cache_sync_page(pp); | |
6699 | ||
6700 | return KERN_SUCCESS; | |
6701 | } | |
6702 | ||
6703 | /* | |
6704 | * pmap_sync_page_data_phys(ppnum_t pp) | |
6705 | * | |
6706 | * Invalidates all of the instruction cache on a physical page and | |
6707 | * pushes any dirty data from the data cache for the same physical page | |
6708 | */ | |
6709 | void | |
6710 | pmap_sync_page_data_phys( | |
6711 | ppnum_t pp) | |
6712 | { | |
6713 | cache_sync_page(pp); | |
6714 | } | |
6715 | ||
6716 | /* | |
6717 | * pmap_sync_page_attributes_phys(ppnum_t pp) | |
6718 | * | |
6719 | * Write back and invalidate all cachelines on a physical page. | |
6720 | */ | |
6721 | void | |
6722 | pmap_sync_page_attributes_phys( | |
6723 | ppnum_t pp) | |
6724 | { | |
6725 | flush_dcache((vm_offset_t) (pp << PAGE_SHIFT), PAGE_SIZE, TRUE); | |
6726 | } | |
6727 | ||
6728 | #if CONFIG_COREDUMP | |
6729 | /* temporary workaround */ | |
6730 | boolean_t | |
6731 | coredumpok( | |
6732 | vm_map_t map, | |
6733 | vm_offset_t va) | |
6734 | { | |
6735 | pt_entry_t *pte_p; | |
6736 | pt_entry_t spte; | |
6737 | ||
6738 | pte_p = pmap_pte(map->pmap, va); | |
6739 | if (0 == pte_p) | |
6740 | return FALSE; | |
6741 | spte = *pte_p; | |
6742 | return ((spte & ARM_PTE_ATTRINDXMASK) == ARM_PTE_ATTRINDX(CACHE_ATTRINDX_DEFAULT)); | |
6743 | } | |
6744 | #endif | |
6745 | ||
6746 | void | |
6747 | fillPage( | |
6748 | ppnum_t pn, | |
6749 | unsigned int fill) | |
6750 | { | |
6751 | unsigned int *addr; | |
6752 | int count; | |
6753 | ||
6754 | addr = (unsigned int *) phystokv(ptoa(pn)); | |
6755 | count = PAGE_SIZE / sizeof(unsigned int); | |
6756 | while (count--) | |
6757 | *addr++ = fill; | |
6758 | } | |
6759 | ||
6760 | extern void mapping_set_mod(ppnum_t pn); | |
6761 | ||
6762 | void | |
6763 | mapping_set_mod( | |
6764 | ppnum_t pn) | |
6765 | { | |
6766 | pmap_set_modify(pn); | |
6767 | } | |
6768 | ||
6769 | extern void mapping_set_ref(ppnum_t pn); | |
6770 | ||
6771 | void | |
6772 | mapping_set_ref( | |
6773 | ppnum_t pn) | |
6774 | { | |
6775 | pmap_set_reference(pn); | |
6776 | } | |
6777 | ||
6778 | /* | |
6779 | * Clear specified attribute bits. | |
6780 | * | |
6781 | * Try to force an arm_fast_fault() for all mappings of | |
6782 | * the page - to force attributes to be set again at fault time. | |
6783 | * If the forcing succeeds, clear the cached bits at the head. | |
6784 | * Otherwise, something must have been wired, so leave the cached | |
6785 | * attributes alone. | |
6786 | */ | |
6787 | static void | |
6788 | phys_attribute_clear_internal( | |
6789 | ppnum_t pn, | |
6790 | unsigned int bits, | |
6791 | int options, | |
6792 | void *arg) | |
6793 | { | |
6794 | pmap_paddr_t pa = ptoa(pn); | |
6795 | vm_prot_t allow_mode = VM_PROT_ALL; | |
6796 | ||
6797 | ||
6798 | if ((bits & PP_ATTR_MODIFIED) && | |
6799 | (options & PMAP_OPTIONS_NOFLUSH) && | |
6800 | (arg == NULL)) { | |
6801 | panic("phys_attribute_clear(0x%x,0x%x,0x%x,%p): " | |
6802 | "should not clear 'modified' without flushing TLBs\n", | |
6803 | pn, bits, options, arg); | |
6804 | } | |
6805 | ||
6806 | assert(pn != vm_page_fictitious_addr); | |
6807 | if (bits & PP_ATTR_REFERENCED) | |
6808 | allow_mode &= ~(VM_PROT_READ | VM_PROT_EXECUTE); | |
6809 | if (bits & PP_ATTR_MODIFIED) | |
6810 | allow_mode &= ~VM_PROT_WRITE; | |
6811 | ||
6812 | if (bits == PP_ATTR_NOENCRYPT) { | |
6813 | /* | |
6814 | * We short circuit this case; it should not need to | |
6815 | * invoke arm_force_fast_fault, so just clear and | |
6816 | * return. On ARM, this bit is just a debugging aid. | |
6817 | */ | |
6818 | pa_clear_bits(pa, bits); | |
6819 | return; | |
6820 | } | |
6821 | ||
6822 | if (arm_force_fast_fault_internal(pn, allow_mode, options)) | |
6823 | pa_clear_bits(pa, bits); | |
6824 | return; | |
6825 | } | |
6826 | ||
6827 | static void | |
6828 | phys_attribute_clear( | |
6829 | ppnum_t pn, | |
6830 | unsigned int bits, | |
6831 | int options, | |
6832 | void *arg) | |
6833 | { | |
6834 | /* | |
6835 | * Do we really want this tracepoint? It will be extremely chatty. | |
6836 | * Also, should we have a corresponding trace point for the set path? | |
6837 | */ | |
6838 | PMAP_TRACE(PMAP_CODE(PMAP__ATTRIBUTE_CLEAR) | DBG_FUNC_START, pn, bits); | |
6839 | ||
6840 | phys_attribute_clear_internal(pn, bits, options, arg); | |
6841 | ||
6842 | PMAP_TRACE(PMAP_CODE(PMAP__ATTRIBUTE_CLEAR) | DBG_FUNC_END); | |
6843 | } | |
6844 | ||
6845 | /* | |
6846 | * Set specified attribute bits. | |
6847 | * | |
6848 | * Set cached value in the pv head because we have | |
6849 | * no per-mapping hardware support for referenced and | |
6850 | * modify bits. | |
6851 | */ | |
6852 | static void | |
6853 | phys_attribute_set_internal( | |
6854 | ppnum_t pn, | |
6855 | unsigned int bits) | |
6856 | { | |
6857 | pmap_paddr_t pa = ptoa(pn); | |
6858 | assert(pn != vm_page_fictitious_addr); | |
6859 | ||
6860 | ||
6861 | pa_set_bits(pa, bits); | |
6862 | ||
6863 | return; | |
6864 | } | |
6865 | ||
6866 | static void | |
6867 | phys_attribute_set( | |
6868 | ppnum_t pn, | |
6869 | unsigned int bits) | |
6870 | { | |
6871 | phys_attribute_set_internal(pn, bits); | |
6872 | } | |
6873 | ||
6874 | ||
6875 | /* | |
6876 | * Check specified attribute bits. | |
6877 | * | |
6878 | * use the software cached bits (since no hw support). | |
6879 | */ | |
6880 | static boolean_t | |
6881 | phys_attribute_test( | |
6882 | ppnum_t pn, | |
6883 | unsigned int bits) | |
6884 | { | |
6885 | pmap_paddr_t pa = ptoa(pn); | |
6886 | assert(pn != vm_page_fictitious_addr); | |
6887 | return pa_test_bits(pa, bits); | |
6888 | } | |
6889 | ||
6890 | ||
6891 | /* | |
6892 | * Set the modify/reference bits on the specified physical page. | |
6893 | */ | |
6894 | void | |
6895 | pmap_set_modify(ppnum_t pn) | |
6896 | { | |
6897 | phys_attribute_set(pn, PP_ATTR_MODIFIED); | |
6898 | } | |
6899 | ||
6900 | ||
6901 | /* | |
6902 | * Clear the modify bits on the specified physical page. | |
6903 | */ | |
6904 | void | |
6905 | pmap_clear_modify( | |
6906 | ppnum_t pn) | |
6907 | { | |
6908 | phys_attribute_clear(pn, PP_ATTR_MODIFIED, 0, NULL); | |
6909 | } | |
6910 | ||
6911 | ||
6912 | /* | |
6913 | * pmap_is_modified: | |
6914 | * | |
6915 | * Return whether or not the specified physical page is modified | |
6916 | * by any physical maps. | |
6917 | */ | |
6918 | boolean_t | |
6919 | pmap_is_modified( | |
6920 | ppnum_t pn) | |
6921 | { | |
6922 | return phys_attribute_test(pn, PP_ATTR_MODIFIED); | |
6923 | } | |
6924 | ||
6925 | ||
6926 | /* | |
6927 | * Set the reference bit on the specified physical page. | |
6928 | */ | |
6929 | static void | |
6930 | pmap_set_reference( | |
6931 | ppnum_t pn) | |
6932 | { | |
6933 | phys_attribute_set(pn, PP_ATTR_REFERENCED); | |
6934 | } | |
6935 | ||
6936 | /* | |
6937 | * Clear the reference bits on the specified physical page. | |
6938 | */ | |
6939 | void | |
6940 | pmap_clear_reference( | |
6941 | ppnum_t pn) | |
6942 | { | |
6943 | phys_attribute_clear(pn, PP_ATTR_REFERENCED, 0, NULL); | |
6944 | } | |
6945 | ||
6946 | ||
6947 | /* | |
6948 | * pmap_is_referenced: | |
6949 | * | |
6950 | * Return whether or not the specified physical page is referenced | |
6951 | * by any physical maps. | |
6952 | */ | |
6953 | boolean_t | |
6954 | pmap_is_referenced( | |
6955 | ppnum_t pn) | |
6956 | { | |
6957 | return phys_attribute_test(pn, PP_ATTR_REFERENCED); | |
6958 | } | |
6959 | ||
6960 | /* | |
6961 | * pmap_get_refmod(phys) | |
6962 | * returns the referenced and modified bits of the specified | |
6963 | * physical page. | |
6964 | */ | |
6965 | unsigned int | |
6966 | pmap_get_refmod( | |
6967 | ppnum_t pn) | |
6968 | { | |
6969 | return (((phys_attribute_test(pn, PP_ATTR_MODIFIED)) ? VM_MEM_MODIFIED : 0) | |
6970 | | ((phys_attribute_test(pn, PP_ATTR_REFERENCED)) ? VM_MEM_REFERENCED : 0)); | |
6971 | } | |
6972 | ||
6973 | /* | |
6974 | * pmap_clear_refmod(phys, mask) | |
6975 | * clears the referenced and modified bits as specified by the mask | |
6976 | * of the specified physical page. | |
6977 | */ | |
6978 | void | |
6979 | pmap_clear_refmod_options( | |
6980 | ppnum_t pn, | |
6981 | unsigned int mask, | |
6982 | unsigned int options, | |
6983 | void *arg) | |
6984 | { | |
6985 | unsigned int bits; | |
6986 | ||
6987 | bits = ((mask & VM_MEM_MODIFIED) ? PP_ATTR_MODIFIED : 0) | | |
6988 | ((mask & VM_MEM_REFERENCED) ? PP_ATTR_REFERENCED : 0); | |
6989 | phys_attribute_clear(pn, bits, options, arg); | |
6990 | } | |
6991 | ||
6992 | void | |
6993 | pmap_clear_refmod( | |
6994 | ppnum_t pn, | |
6995 | unsigned int mask) | |
6996 | { | |
6997 | pmap_clear_refmod_options(pn, mask, 0, NULL); | |
6998 | } | |
6999 | ||
7000 | unsigned int | |
7001 | pmap_disconnect_options( | |
7002 | ppnum_t pn, | |
7003 | unsigned int options, | |
7004 | void *arg) | |
7005 | { | |
7006 | if ((options & PMAP_OPTIONS_COMPRESSOR_IFF_MODIFIED)) { | |
7007 | /* | |
7008 | * On ARM, the "modified" bit is managed by software, so | |
7009 | * we know up-front if the physical page is "modified", | |
7010 | * without having to scan all the PTEs pointing to it. | |
7011 | * The caller should have made the VM page "busy" so noone | |
7012 | * should be able to establish any new mapping and "modify" | |
7013 | * the page behind us. | |
7014 | */ | |
7015 | if (pmap_is_modified(pn)) { | |
7016 | /* | |
7017 | * The page has been modified and will be sent to | |
7018 | * the VM compressor. | |
7019 | */ | |
7020 | options |= PMAP_OPTIONS_COMPRESSOR; | |
7021 | } else { | |
7022 | /* | |
7023 | * The page hasn't been modified and will be freed | |
7024 | * instead of compressed. | |
7025 | */ | |
7026 | } | |
7027 | } | |
7028 | ||
7029 | /* disconnect the page */ | |
7030 | pmap_page_protect_options(pn, 0, options, arg); | |
7031 | ||
7032 | /* return ref/chg status */ | |
7033 | return (pmap_get_refmod(pn)); | |
7034 | } | |
7035 | ||
7036 | /* | |
7037 | * Routine: | |
7038 | * pmap_disconnect | |
7039 | * | |
7040 | * Function: | |
7041 | * Disconnect all mappings for this page and return reference and change status | |
7042 | * in generic format. | |
7043 | * | |
7044 | */ | |
7045 | unsigned int | |
7046 | pmap_disconnect( | |
7047 | ppnum_t pn) | |
7048 | { | |
7049 | pmap_page_protect(pn, 0); /* disconnect the page */ | |
7050 | return (pmap_get_refmod(pn)); /* return ref/chg status */ | |
7051 | } | |
7052 | ||
7053 | boolean_t | |
7054 | pmap_has_managed_page(ppnum_t first, ppnum_t last) | |
7055 | { | |
7056 | if (ptoa(first) >= vm_last_phys) return (FALSE); | |
7057 | if (ptoa(last) < vm_first_phys) return (FALSE); | |
7058 | ||
7059 | return (TRUE); | |
7060 | } | |
7061 | ||
7062 | /* | |
7063 | * The state maintained by the noencrypt functions is used as a | |
7064 | * debugging aid on ARM. This incurs some overhead on the part | |
7065 | * of the caller. A special case check in phys_attribute_clear | |
7066 | * (the most expensive path) currently minimizes this overhead, | |
7067 | * but stubbing these functions out on RELEASE kernels yields | |
7068 | * further wins. | |
7069 | */ | |
7070 | boolean_t | |
7071 | pmap_is_noencrypt( | |
7072 | ppnum_t pn) | |
7073 | { | |
7074 | #if DEVELOPMENT || DEBUG | |
7075 | boolean_t result = FALSE; | |
7076 | ||
7077 | if (!pa_valid(ptoa(pn))) return FALSE; | |
7078 | ||
7079 | result = (phys_attribute_test(pn, PP_ATTR_NOENCRYPT)); | |
7080 | ||
7081 | return result; | |
7082 | #else | |
7083 | #pragma unused(pn) | |
7084 | return FALSE; | |
7085 | #endif | |
7086 | } | |
7087 | ||
7088 | void | |
7089 | pmap_set_noencrypt( | |
7090 | ppnum_t pn) | |
7091 | { | |
7092 | #if DEVELOPMENT || DEBUG | |
7093 | if (!pa_valid(ptoa(pn))) return; | |
7094 | ||
7095 | phys_attribute_set(pn, PP_ATTR_NOENCRYPT); | |
7096 | #else | |
7097 | #pragma unused(pn) | |
7098 | #endif | |
7099 | } | |
7100 | ||
7101 | void | |
7102 | pmap_clear_noencrypt( | |
7103 | ppnum_t pn) | |
7104 | { | |
7105 | #if DEVELOPMENT || DEBUG | |
7106 | if (!pa_valid(ptoa(pn))) return; | |
7107 | ||
7108 | phys_attribute_clear(pn, PP_ATTR_NOENCRYPT, 0, NULL); | |
7109 | #else | |
7110 | #pragma unused(pn) | |
7111 | #endif | |
7112 | } | |
7113 | ||
7114 | ||
7115 | void | |
7116 | pmap_lock_phys_page(ppnum_t pn) | |
7117 | { | |
7118 | int pai; | |
7119 | pmap_paddr_t phys = ptoa(pn); | |
7120 | ||
7121 | if (pa_valid(phys)) { | |
7122 | pai = (int)pa_index(phys); | |
7123 | LOCK_PVH(pai); | |
7124 | } else | |
7125 | simple_lock(&phys_backup_lock); | |
7126 | } | |
7127 | ||
7128 | ||
7129 | void | |
7130 | pmap_unlock_phys_page(ppnum_t pn) | |
7131 | { | |
7132 | int pai; | |
7133 | pmap_paddr_t phys = ptoa(pn); | |
7134 | ||
7135 | if (pa_valid(phys)) { | |
7136 | pai = (int)pa_index(phys); | |
7137 | UNLOCK_PVH(pai); | |
7138 | } else | |
7139 | simple_unlock(&phys_backup_lock); | |
7140 | } | |
7141 | ||
7142 | static void | |
7143 | pmap_switch_user_ttb_internal( | |
7144 | pmap_t pmap) | |
7145 | { | |
7146 | #if (__ARM_VMSA__ == 7) | |
7147 | pmap_cpu_data_t *cpu_data_ptr; | |
7148 | ||
7149 | cpu_data_ptr = pmap_get_cpu_data(); | |
7150 | ||
7151 | if ((cpu_data_ptr->cpu_user_pmap != PMAP_NULL) | |
7152 | && (cpu_data_ptr->cpu_user_pmap != kernel_pmap)) { | |
7153 | unsigned int c; | |
7154 | ||
7155 | c = hw_atomic_sub((volatile uint32_t *)&cpu_data_ptr->cpu_user_pmap->cpu_ref, 1); | |
7156 | if ((c == 0) && (cpu_data_ptr->cpu_user_pmap->prev_tte != 0)) { | |
7157 | /* We saved off the old 1-page tt1 in pmap_expand() in case other cores were still using it. | |
7158 | * Now that the user pmap's cpu_ref is 0, we should be able to safely free it.*/ | |
7159 | tt_entry_t *tt_entry; | |
7160 | ||
7161 | tt_entry = cpu_data_ptr->cpu_user_pmap->prev_tte; | |
7162 | cpu_data_ptr->cpu_user_pmap->prev_tte = (tt_entry_t *) NULL; | |
7163 | pmap_tt1_deallocate(cpu_data_ptr->cpu_user_pmap, tt_entry, ARM_PGBYTES, PMAP_TT_DEALLOCATE_NOBLOCK); | |
7164 | } | |
7165 | } | |
7166 | cpu_data_ptr->cpu_user_pmap = pmap; | |
7167 | cpu_data_ptr->cpu_user_pmap_stamp = pmap->stamp; | |
7168 | (void) hw_atomic_add((volatile uint32_t *)&pmap->cpu_ref, 1); | |
7169 | ||
7170 | #if MACH_ASSERT && __ARM_USER_PROTECT__ | |
7171 | { | |
7172 | unsigned int ttbr0_val, ttbr1_val; | |
7173 | __asm__ volatile("mrc p15,0,%0,c2,c0,0\n" : "=r"(ttbr0_val)); | |
7174 | __asm__ volatile("mrc p15,0,%0,c2,c0,1\n" : "=r"(ttbr1_val)); | |
7175 | if (ttbr0_val != ttbr1_val) { | |
7176 | panic("Misaligned ttbr0 %08X\n", ttbr0_val); | |
7177 | } | |
7178 | } | |
7179 | #endif | |
7180 | if (pmap->tte_index_max == NTTES) { | |
7181 | /* Setting TTBCR.N for TTBR0 TTBR1 boundary at 0x40000000 */ | |
7182 | __asm__ volatile("mcr p15,0,%0,c2,c0,2" : : "r"(2)); | |
7183 | __asm__ volatile("isb"); | |
7184 | #if !__ARM_USER_PROTECT__ | |
7185 | set_mmu_ttb(pmap->ttep); | |
7186 | #endif | |
7187 | } else { | |
7188 | #if !__ARM_USER_PROTECT__ | |
7189 | set_mmu_ttb(pmap->ttep); | |
7190 | #endif | |
7191 | /* Setting TTBCR.N for TTBR0 TTBR1 boundary at 0x80000000 */ | |
7192 | __asm__ volatile("mcr p15,0,%0,c2,c0,2" : : "r"(1)); | |
7193 | __asm__ volatile("isb"); | |
7194 | #if MACH_ASSERT && __ARM_USER_PROTECT__ | |
7195 | if (pmap->ttep & 0x1000) { | |
7196 | panic("Misaligned ttbr0 %08X\n", pmap->ttep); | |
7197 | } | |
7198 | #endif | |
7199 | } | |
7200 | ||
7201 | #if !__ARM_USER_PROTECT__ | |
7202 | set_context_id(pmap->asid); | |
7203 | #endif | |
7204 | #else | |
7205 | ||
7206 | pmap_get_cpu_data()->cpu_user_pmap = pmap; | |
7207 | pmap_get_cpu_data()->cpu_user_pmap_stamp = pmap->stamp; | |
7208 | ||
7209 | #if !__arm64__ | |
7210 | set_context_id(pmap->asid); /* Not required */ | |
7211 | #endif | |
7212 | if (pmap == kernel_pmap) { | |
7213 | set_mmu_ttb(invalid_ttep & TTBR_BADDR_MASK); | |
7214 | } else { | |
7215 | set_mmu_ttb((pmap->ttep & TTBR_BADDR_MASK)|(((uint64_t)pmap->asid) << TTBR_ASID_SHIFT)); | |
7216 | } | |
7217 | #endif | |
7218 | } | |
7219 | ||
7220 | void | |
7221 | pmap_switch_user_ttb( | |
7222 | pmap_t pmap) | |
7223 | { | |
7224 | pmap_switch_user_ttb_internal(pmap); | |
7225 | } | |
7226 | ||
7227 | /* | |
7228 | * Try to "intuit" whether we need to raise a VM_PROT_WRITE fault | |
7229 | * for the given address when a "swp" instruction raised the fault. | |
7230 | * We have to look at the existing pte for the address to see | |
7231 | * if it needs to get bumped, or just added. If just added, do it | |
7232 | * as a read-only mapping first (this could result in extra faults - | |
7233 | * but better that than extra copy-on-write evaluations). | |
7234 | */ | |
7235 | ||
7236 | #if (__ARM_VMSA__ == 7) | |
7237 | boolean_t | |
7238 | arm_swap_readable_type( | |
7239 | vm_map_address_t addr, | |
7240 | unsigned int spsr) | |
7241 | { | |
7242 | int ap; | |
7243 | pt_entry_t spte; | |
7244 | pt_entry_t *ptep; | |
7245 | ||
7246 | ptep = pmap_pte(current_pmap(), addr); | |
7247 | if (ptep == PT_ENTRY_NULL) | |
7248 | return (FALSE); | |
7249 | ||
7250 | spte = *ptep; | |
7251 | if (spte == ARM_PTE_TYPE_FAULT || | |
7252 | ARM_PTE_IS_COMPRESSED(spte)) | |
7253 | return (FALSE); | |
7254 | ||
7255 | /* get the access permission bitmaps */ | |
7256 | /* (all subpages should be the same) */ | |
7257 | ap = (spte & ARM_PTE_APMASK); | |
7258 | ||
7259 | if (spsr & 0xf) { /* Supervisor mode */ | |
7260 | panic("arm_swap_readable_type supv"); | |
7261 | return TRUE; | |
7262 | } else { /* User mode */ | |
7263 | if ((ap == ARM_PTE_AP(AP_RWRW)) || (ap == ARM_PTE_AP(AP_RORO))) | |
7264 | return (FALSE); | |
7265 | else | |
7266 | return (TRUE); | |
7267 | } | |
7268 | } | |
7269 | #endif | |
7270 | ||
7271 | /* | |
7272 | * Routine: arm_force_fast_fault | |
7273 | * | |
7274 | * Function: | |
7275 | * Force all mappings for this page to fault according | |
7276 | * to the access modes allowed, so we can gather ref/modify | |
7277 | * bits again. | |
7278 | */ | |
7279 | static boolean_t | |
7280 | arm_force_fast_fault_internal( | |
7281 | ppnum_t ppnum, | |
7282 | vm_prot_t allow_mode, | |
7283 | int options) | |
7284 | { | |
7285 | pmap_paddr_t phys = ptoa(ppnum); | |
7286 | pv_entry_t *pve_p; | |
7287 | pt_entry_t *pte_p; | |
7288 | int pai; | |
7289 | boolean_t result; | |
7290 | pv_entry_t **pv_h; | |
7291 | boolean_t is_reusable, is_internal; | |
7292 | boolean_t ref_fault; | |
7293 | boolean_t mod_fault; | |
7294 | ||
7295 | assert(ppnum != vm_page_fictitious_addr); | |
7296 | ||
7297 | if (!pa_valid(phys)) { | |
7298 | return FALSE; /* Not a managed page. */ | |
7299 | } | |
7300 | ||
7301 | result = TRUE; | |
7302 | ref_fault = FALSE; | |
7303 | mod_fault = FALSE; | |
7304 | pai = (int)pa_index(phys); | |
7305 | LOCK_PVH(pai); | |
7306 | pv_h = pai_to_pvh(pai); | |
7307 | ||
7308 | pte_p = PT_ENTRY_NULL; | |
7309 | pve_p = PV_ENTRY_NULL; | |
7310 | if (pvh_test_type(pv_h, PVH_TYPE_PTEP)) { | |
7311 | pte_p = pvh_ptep(pv_h); | |
7312 | } else if (pvh_test_type(pv_h, PVH_TYPE_PVEP)) { | |
7313 | pve_p = pvh_list(pv_h); | |
7314 | } | |
7315 | ||
7316 | is_reusable = IS_REUSABLE_PAGE(pai); | |
7317 | is_internal = IS_INTERNAL_PAGE(pai); | |
7318 | ||
7319 | while ((pve_p != PV_ENTRY_NULL) || (pte_p != PT_ENTRY_NULL)) { | |
7320 | vm_map_address_t va; | |
7321 | pt_entry_t spte; | |
7322 | pt_entry_t tmplate; | |
7323 | pmap_t pmap; | |
7324 | boolean_t update_pte; | |
7325 | ||
7326 | if (pve_p != PV_ENTRY_NULL) | |
7327 | pte_p = pve_get_ptep(pve_p); | |
7328 | ||
7329 | if (pte_p == PT_ENTRY_NULL) { | |
7330 | panic("pte_p is NULL: pve_p=%p ppnum=0x%x\n", pve_p, ppnum); | |
7331 | } | |
7332 | if (*pte_p == ARM_PTE_EMPTY) { | |
7333 | panic("pte is NULL: pte_p=%p ppnum=0x%x\n", pte_p, ppnum); | |
7334 | } | |
7335 | if (ARM_PTE_IS_COMPRESSED(*pte_p)) { | |
7336 | panic("pte is COMPRESSED: pte_p=%p ppnum=0x%x\n", pte_p, ppnum); | |
7337 | } | |
7338 | ||
7339 | pmap = ptep_get_pmap(pte_p); | |
7340 | va = ptep_get_va(pte_p); | |
7341 | ||
7342 | assert(va >= pmap->min && va < pmap->max); | |
7343 | ||
7344 | if (pte_is_wired(*pte_p) || pmap == kernel_pmap) { | |
7345 | result = FALSE; | |
7346 | break; | |
7347 | } | |
7348 | ||
7349 | spte = *pte_p; | |
7350 | tmplate = spte; | |
7351 | update_pte = FALSE; | |
7352 | ||
7353 | if ((allow_mode & VM_PROT_READ) != VM_PROT_READ) { | |
7354 | /* read protection sets the pte to fault */ | |
7355 | tmplate = tmplate & ~ARM_PTE_AF; | |
7356 | update_pte = TRUE; | |
7357 | ref_fault = TRUE; | |
7358 | } | |
7359 | if ((allow_mode & VM_PROT_WRITE) != VM_PROT_WRITE) { | |
7360 | /* take away write permission if set */ | |
7361 | if (pmap == kernel_pmap) { | |
7362 | if ((tmplate & ARM_PTE_APMASK) == ARM_PTE_AP(AP_RWNA)) { | |
7363 | tmplate = ((tmplate & ~ARM_PTE_APMASK) | ARM_PTE_AP(AP_RONA)); | |
7364 | } | |
7365 | } else { | |
7366 | if ((tmplate & ARM_PTE_APMASK) == ARM_PTE_AP(AP_RWRW)) { | |
7367 | tmplate = ((tmplate & ~ARM_PTE_APMASK) | ARM_PTE_AP(AP_RORO)); | |
7368 | } | |
7369 | } | |
7370 | ||
7371 | pte_set_ffr(tmplate, 1); | |
7372 | update_pte = TRUE; | |
7373 | mod_fault = TRUE; | |
7374 | } | |
7375 | ||
7376 | ||
7377 | if (update_pte) { | |
7378 | if (*pte_p != ARM_PTE_TYPE_FAULT && | |
7379 | !ARM_PTE_IS_COMPRESSED(*pte_p)) { | |
7380 | WRITE_PTE(pte_p, tmplate); | |
7381 | PMAP_UPDATE_TLBS(pmap, va, va + PAGE_SIZE); | |
7382 | } else { | |
7383 | WRITE_PTE(pte_p, tmplate); | |
7384 | __asm__ volatile("isb"); | |
7385 | } | |
7386 | } | |
7387 | ||
7388 | /* update pmap stats and ledgers */ | |
7389 | if (IS_ALTACCT_PAGE(pai, pve_p)) { | |
7390 | /* | |
7391 | * We do not track "reusable" status for | |
7392 | * "alternate accounting" mappings. | |
7393 | */ | |
7394 | } else if ((options & PMAP_OPTIONS_CLEAR_REUSABLE) && | |
7395 | is_reusable && | |
7396 | is_internal && | |
7397 | pmap != kernel_pmap) { | |
7398 | /* one less "reusable" */ | |
5c9f4661 | 7399 | PMAP_STATS_ASSERTF(pmap->stats.reusable > 0, pmap, "stats.reusable %d", pmap->stats.reusable); |
5ba3f43e A |
7400 | OSAddAtomic(-1, &pmap->stats.reusable); |
7401 | /* one more "internal" */ | |
7402 | OSAddAtomic(+1, &pmap->stats.internal); | |
7403 | PMAP_STATS_PEAK(pmap->stats.internal); | |
5c9f4661 | 7404 | PMAP_STATS_ASSERTF(pmap->stats.internal > 0, pmap, "stats.internal %d", pmap->stats.internal); |
5ba3f43e A |
7405 | pmap_ledger_credit(pmap, |
7406 | task_ledgers.internal, | |
7407 | machine_ptob(1)); | |
7408 | assert(!IS_ALTACCT_PAGE(pai, pve_p)); | |
7409 | assert(IS_INTERNAL_PAGE(pai)); | |
7410 | pmap_ledger_credit(pmap, | |
7411 | task_ledgers.phys_footprint, | |
7412 | machine_ptob(1)); | |
7413 | ||
7414 | /* | |
7415 | * Avoid the cost of another trap to handle the fast | |
7416 | * fault when we next write to this page: let's just | |
7417 | * handle that now since we already have all the | |
7418 | * necessary information. | |
7419 | */ | |
7420 | { | |
7421 | arm_clear_fast_fault(ppnum, VM_PROT_WRITE); | |
7422 | } | |
7423 | } else if ((options & PMAP_OPTIONS_SET_REUSABLE) && | |
7424 | !is_reusable && | |
7425 | is_internal && | |
7426 | pmap != kernel_pmap) { | |
7427 | /* one more "reusable" */ | |
7428 | OSAddAtomic(+1, &pmap->stats.reusable); | |
7429 | PMAP_STATS_PEAK(pmap->stats.reusable); | |
5c9f4661 | 7430 | PMAP_STATS_ASSERTF(pmap->stats.reusable > 0, pmap, "stats.reusable %d", pmap->stats.reusable); |
5ba3f43e | 7431 | /* one less "internal" */ |
5c9f4661 | 7432 | PMAP_STATS_ASSERTF(pmap->stats.internal > 0, pmap, "stats.internal %d", pmap->stats.internal); |
5ba3f43e A |
7433 | OSAddAtomic(-1, &pmap->stats.internal); |
7434 | pmap_ledger_debit(pmap, | |
7435 | task_ledgers.internal, | |
7436 | machine_ptob(1)); | |
7437 | assert(!IS_ALTACCT_PAGE(pai, pve_p)); | |
7438 | assert(IS_INTERNAL_PAGE(pai)); | |
7439 | pmap_ledger_debit(pmap, | |
7440 | task_ledgers.phys_footprint, | |
7441 | machine_ptob(1)); | |
7442 | } | |
7443 | ||
7444 | pte_p = PT_ENTRY_NULL; | |
7445 | if (pve_p != PV_ENTRY_NULL) | |
7446 | pve_p = PVE_NEXT_PTR(pve_next(pve_p)); | |
7447 | } | |
7448 | ||
7449 | /* update global "reusable" status for this page */ | |
7450 | if (is_internal) { | |
7451 | if ((options & PMAP_OPTIONS_CLEAR_REUSABLE) && | |
7452 | is_reusable) { | |
7453 | CLR_REUSABLE_PAGE(pai); | |
7454 | } else if ((options & PMAP_OPTIONS_SET_REUSABLE) && | |
7455 | !is_reusable) { | |
7456 | SET_REUSABLE_PAGE(pai); | |
7457 | } | |
7458 | } | |
7459 | ||
7460 | if (mod_fault) { | |
7461 | SET_MODFAULT_PAGE(pai); | |
7462 | } | |
7463 | if (ref_fault) { | |
7464 | SET_REFFAULT_PAGE(pai); | |
7465 | } | |
7466 | ||
7467 | UNLOCK_PVH(pai); | |
7468 | return result; | |
7469 | } | |
7470 | ||
7471 | boolean_t | |
7472 | arm_force_fast_fault( | |
7473 | ppnum_t ppnum, | |
7474 | vm_prot_t allow_mode, | |
7475 | int options, | |
7476 | __unused void *arg) | |
7477 | { | |
7478 | pmap_paddr_t phys = ptoa(ppnum); | |
7479 | ||
7480 | assert(ppnum != vm_page_fictitious_addr); | |
7481 | ||
7482 | if (!pa_valid(phys)) { | |
7483 | return FALSE; /* Not a managed page. */ | |
7484 | } | |
7485 | ||
7486 | return arm_force_fast_fault_internal(ppnum, allow_mode, options); | |
7487 | } | |
7488 | ||
7489 | /* | |
7490 | * Routine: arm_clear_fast_fault | |
7491 | * | |
7492 | * Function: | |
7493 | * Clear pending force fault for all mappings for this page based on | |
7494 | * the observed fault type, update ref/modify bits. | |
7495 | */ | |
7496 | boolean_t | |
7497 | arm_clear_fast_fault( | |
7498 | ppnum_t ppnum, | |
7499 | vm_prot_t fault_type) | |
7500 | { | |
7501 | pmap_paddr_t pa = ptoa(ppnum); | |
7502 | pv_entry_t *pve_p; | |
7503 | pt_entry_t *pte_p; | |
7504 | int pai; | |
7505 | boolean_t result; | |
7506 | pv_entry_t **pv_h; | |
7507 | ||
7508 | assert(ppnum != vm_page_fictitious_addr); | |
7509 | ||
7510 | if (!pa_valid(pa)) { | |
7511 | return FALSE; /* Not a managed page. */ | |
7512 | } | |
7513 | ||
7514 | result = FALSE; | |
7515 | pai = (int)pa_index(pa); | |
7516 | ASSERT_PVH_LOCKED(pai); | |
7517 | pv_h = pai_to_pvh(pai); | |
7518 | ||
7519 | pte_p = PT_ENTRY_NULL; | |
7520 | pve_p = PV_ENTRY_NULL; | |
7521 | if (pvh_test_type(pv_h, PVH_TYPE_PTEP)) { | |
7522 | pte_p = pvh_ptep(pv_h); | |
7523 | } else if (pvh_test_type(pv_h, PVH_TYPE_PVEP)) { | |
7524 | pve_p = pvh_list(pv_h); | |
7525 | } | |
7526 | ||
7527 | while ((pve_p != PV_ENTRY_NULL) || (pte_p != PT_ENTRY_NULL)) { | |
7528 | vm_map_address_t va; | |
7529 | pt_entry_t spte; | |
7530 | pt_entry_t tmplate; | |
7531 | pmap_t pmap; | |
7532 | ||
7533 | if (pve_p != PV_ENTRY_NULL) | |
7534 | pte_p = pve_get_ptep(pve_p); | |
7535 | ||
7536 | if (pte_p == PT_ENTRY_NULL) { | |
7537 | panic("pte_p is NULL: pve_p=%p ppnum=0x%x\n", pve_p, ppnum); | |
7538 | } | |
7539 | if (*pte_p == ARM_PTE_EMPTY) { | |
7540 | panic("pte is NULL: pte_p=%p ppnum=0x%x\n", pte_p, ppnum); | |
7541 | } | |
7542 | ||
7543 | pmap = ptep_get_pmap(pte_p); | |
7544 | va = ptep_get_va(pte_p); | |
7545 | ||
7546 | assert(va >= pmap->min && va < pmap->max); | |
7547 | ||
7548 | spte = *pte_p; | |
7549 | tmplate = spte; | |
7550 | ||
7551 | if ((fault_type & VM_PROT_WRITE) && (pte_is_ffr(spte))) { | |
7552 | { | |
7553 | if (pmap == kernel_pmap) | |
7554 | tmplate = ((spte & ~ARM_PTE_APMASK) | ARM_PTE_AP(AP_RWNA)); | |
7555 | else | |
7556 | tmplate = ((spte & ~ARM_PTE_APMASK) | ARM_PTE_AP(AP_RWRW)); | |
7557 | } | |
7558 | ||
7559 | tmplate |= ARM_PTE_AF; | |
7560 | ||
7561 | pte_set_ffr(tmplate, 0); | |
7562 | pa_set_bits(pa, PP_ATTR_REFERENCED | PP_ATTR_MODIFIED); | |
7563 | ||
7564 | } else if ((fault_type & VM_PROT_READ) && ((spte & ARM_PTE_AF) != ARM_PTE_AF)) { | |
7565 | tmplate = spte | ARM_PTE_AF; | |
7566 | ||
7567 | { | |
7568 | pa_set_bits(pa, PP_ATTR_REFERENCED); | |
7569 | } | |
7570 | } | |
7571 | ||
7572 | ||
7573 | if (spte != tmplate) { | |
7574 | if (spte != ARM_PTE_TYPE_FAULT) { | |
7575 | WRITE_PTE(pte_p, tmplate); | |
7576 | PMAP_UPDATE_TLBS(pmap, va, va + PAGE_SIZE); | |
7577 | } else { | |
7578 | WRITE_PTE(pte_p, tmplate); | |
7579 | __asm__ volatile("isb"); | |
7580 | } | |
7581 | result = TRUE; | |
7582 | } | |
7583 | ||
7584 | pte_p = PT_ENTRY_NULL; | |
7585 | if (pve_p != PV_ENTRY_NULL) | |
7586 | pve_p = PVE_NEXT_PTR(pve_next(pve_p)); | |
7587 | } | |
7588 | return result; | |
7589 | } | |
7590 | ||
7591 | /* | |
7592 | * Determine if the fault was induced by software tracking of | |
7593 | * modify/reference bits. If so, re-enable the mapping (and set | |
7594 | * the appropriate bits). | |
7595 | * | |
7596 | * Returns KERN_SUCCESS if the fault was induced and was | |
7597 | * successfully handled. | |
7598 | * | |
7599 | * Returns KERN_FAILURE if the fault was not induced and | |
7600 | * the function was unable to deal with it. | |
7601 | * | |
7602 | * Returns KERN_PROTECTION_FAILURE if the pmap layer explictly | |
7603 | * disallows this type of access. | |
7604 | */ | |
7605 | static kern_return_t | |
7606 | arm_fast_fault_internal( | |
7607 | pmap_t pmap, | |
7608 | vm_map_address_t va, | |
7609 | vm_prot_t fault_type, | |
7610 | __unused boolean_t from_user) | |
7611 | { | |
7612 | kern_return_t result = KERN_FAILURE; | |
7613 | pt_entry_t *ptep; | |
7614 | pt_entry_t spte = ARM_PTE_TYPE_FAULT; | |
7615 | int pai; | |
7616 | pmap_paddr_t pa; | |
7617 | ||
7618 | PMAP_LOCK(pmap); | |
7619 | ||
7620 | /* | |
7621 | * If the entry doesn't exist, is completely invalid, or is already | |
7622 | * valid, we can't fix it here. | |
7623 | */ | |
7624 | ||
7625 | ptep = pmap_pte(pmap, va); | |
7626 | if (ptep != PT_ENTRY_NULL) { | |
7627 | spte = *ptep; | |
7628 | ||
7629 | pa = pte_to_pa(spte); | |
7630 | ||
7631 | if ((spte == ARM_PTE_TYPE_FAULT) || | |
7632 | ARM_PTE_IS_COMPRESSED(spte) || | |
7633 | (!pa_valid(pa))) { | |
7634 | PMAP_UNLOCK(pmap); | |
7635 | return result; | |
7636 | } | |
7637 | ||
7638 | pai = (int)pa_index(pa); | |
7639 | LOCK_PVH(pai); | |
7640 | } else { | |
7641 | PMAP_UNLOCK(pmap); | |
7642 | return result; | |
7643 | } | |
7644 | ||
7645 | ||
7646 | if ((IS_REFFAULT_PAGE(pai)) || | |
7647 | ((fault_type & VM_PROT_WRITE) && IS_MODFAULT_PAGE(pai))) { | |
7648 | /* | |
7649 | * An attempted access will always clear ref/mod fault state, as | |
7650 | * appropriate for the fault type. arm_clear_fast_fault will | |
7651 | * update the associated PTEs for the page as appropriate; if | |
7652 | * any PTEs are updated, we redrive the access. If the mapping | |
7653 | * does not actually allow for the attempted access, the | |
7654 | * following fault will (hopefully) fail to update any PTEs, and | |
7655 | * thus cause arm_fast_fault to decide that it failed to handle | |
7656 | * the fault. | |
7657 | */ | |
7658 | if (IS_REFFAULT_PAGE(pai)) { | |
7659 | CLR_REFFAULT_PAGE(pai); | |
7660 | } | |
7661 | if ( (fault_type & VM_PROT_WRITE) && IS_MODFAULT_PAGE(pai)) { | |
7662 | CLR_MODFAULT_PAGE(pai); | |
7663 | } | |
7664 | ||
7665 | if (arm_clear_fast_fault((ppnum_t)atop(pa),fault_type)) { | |
7666 | /* | |
7667 | * Should this preserve KERN_PROTECTION_FAILURE? The | |
7668 | * cost of not doing so is a another fault in a case | |
7669 | * that should already result in an exception. | |
7670 | */ | |
7671 | result = KERN_SUCCESS; | |
7672 | } | |
7673 | } | |
7674 | ||
7675 | UNLOCK_PVH(pai); | |
7676 | PMAP_UNLOCK(pmap); | |
7677 | return result; | |
7678 | } | |
7679 | ||
7680 | kern_return_t | |
7681 | arm_fast_fault( | |
7682 | pmap_t pmap, | |
7683 | vm_map_address_t va, | |
7684 | vm_prot_t fault_type, | |
7685 | __unused boolean_t from_user) | |
7686 | { | |
7687 | kern_return_t result = KERN_FAILURE; | |
7688 | ||
7689 | if (va < pmap->min || va >= pmap->max) | |
7690 | return result; | |
7691 | ||
7692 | PMAP_TRACE(PMAP_CODE(PMAP__FAST_FAULT) | DBG_FUNC_START, | |
7693 | VM_KERNEL_ADDRHIDE(pmap), VM_KERNEL_ADDRHIDE(va), fault_type, | |
7694 | from_user); | |
7695 | ||
7696 | #if (__ARM_VMSA__ == 7) | |
7697 | if (pmap != kernel_pmap) { | |
7698 | pmap_cpu_data_t *cpu_data_ptr = pmap_get_cpu_data(); | |
7699 | pmap_t cur_pmap; | |
7700 | pmap_t cur_user_pmap; | |
7701 | ||
7702 | cur_pmap = current_pmap(); | |
7703 | cur_user_pmap = cpu_data_ptr->cpu_user_pmap; | |
7704 | ||
7705 | if ((cur_user_pmap == cur_pmap) && (cur_pmap == pmap)) { | |
7706 | if (cpu_data_ptr->cpu_user_pmap_stamp != pmap->stamp) { | |
7707 | pmap_set_pmap(pmap, current_thread()); | |
7708 | result = KERN_SUCCESS; | |
7709 | goto done; | |
7710 | } | |
7711 | } | |
7712 | } | |
7713 | #endif | |
7714 | ||
7715 | result = arm_fast_fault_internal(pmap, va, fault_type, from_user); | |
7716 | ||
7717 | #if (__ARM_VMSA__ == 7) | |
7718 | done: | |
7719 | #endif | |
7720 | ||
7721 | PMAP_TRACE(PMAP_CODE(PMAP__FAST_FAULT) | DBG_FUNC_END, result); | |
7722 | ||
7723 | return result; | |
7724 | } | |
7725 | ||
7726 | void | |
7727 | pmap_copy_page( | |
7728 | ppnum_t psrc, | |
7729 | ppnum_t pdst) | |
7730 | { | |
7731 | bcopy_phys((addr64_t) (ptoa(psrc)), | |
7732 | (addr64_t) (ptoa(pdst)), | |
7733 | PAGE_SIZE); | |
7734 | } | |
7735 | ||
7736 | ||
7737 | /* | |
7738 | * pmap_copy_page copies the specified (machine independent) pages. | |
7739 | */ | |
7740 | void | |
7741 | pmap_copy_part_page( | |
7742 | ppnum_t psrc, | |
7743 | vm_offset_t src_offset, | |
7744 | ppnum_t pdst, | |
7745 | vm_offset_t dst_offset, | |
7746 | vm_size_t len) | |
7747 | { | |
7748 | bcopy_phys((addr64_t) (ptoa(psrc) + src_offset), | |
7749 | (addr64_t) (ptoa(pdst) + dst_offset), | |
7750 | len); | |
7751 | } | |
7752 | ||
7753 | ||
7754 | /* | |
7755 | * pmap_zero_page zeros the specified (machine independent) page. | |
7756 | */ | |
7757 | void | |
7758 | pmap_zero_page( | |
7759 | ppnum_t pn) | |
7760 | { | |
7761 | assert(pn != vm_page_fictitious_addr); | |
7762 | bzero_phys((addr64_t) ptoa(pn), PAGE_SIZE); | |
7763 | } | |
7764 | ||
7765 | /* | |
7766 | * pmap_zero_part_page | |
7767 | * zeros the specified (machine independent) part of a page. | |
7768 | */ | |
7769 | void | |
7770 | pmap_zero_part_page( | |
7771 | ppnum_t pn, | |
7772 | vm_offset_t offset, | |
7773 | vm_size_t len) | |
7774 | { | |
7775 | assert(pn != vm_page_fictitious_addr); | |
7776 | assert(offset + len <= PAGE_SIZE); | |
7777 | bzero_phys((addr64_t) (ptoa(pn) + offset), len); | |
7778 | } | |
7779 | ||
7780 | ||
7781 | /* | |
7782 | * nop in current arm implementation | |
7783 | */ | |
7784 | void | |
7785 | inval_copy_windows( | |
7786 | __unused thread_t t) | |
7787 | { | |
7788 | } | |
7789 | ||
7790 | void | |
7791 | pmap_map_globals( | |
7792 | void) | |
7793 | { | |
7794 | pt_entry_t *ptep, pte; | |
7795 | ||
7796 | ptep = pmap_pte(kernel_pmap, LOWGLOBAL_ALIAS); | |
7797 | assert(ptep != PT_ENTRY_NULL); | |
7798 | assert(*ptep == ARM_PTE_EMPTY); | |
7799 | ||
7800 | pte = pa_to_pte(ml_static_vtop((vm_offset_t)&lowGlo)) | AP_RONA | ARM_PTE_NX | ARM_PTE_PNX | ARM_PTE_AF | ARM_PTE_TYPE; | |
5c9f4661 A |
7801 | #if __ARM_KERNEL_PROTECT__ |
7802 | pte |= ARM_PTE_NG; | |
7803 | #endif /* __ARM_KERNEL_PROTECT__ */ | |
5ba3f43e A |
7804 | pte |= ARM_PTE_ATTRINDX(CACHE_ATTRINDX_WRITEBACK); |
7805 | #if (__ARM_VMSA__ > 7) | |
7806 | pte |= ARM_PTE_SH(SH_OUTER_MEMORY); | |
7807 | #else | |
7808 | pte |= ARM_PTE_SH; | |
7809 | #endif | |
7810 | *ptep = pte; | |
7811 | FLUSH_PTE_RANGE(ptep,(ptep+1)); | |
7812 | PMAP_UPDATE_TLBS(kernel_pmap, LOWGLOBAL_ALIAS, LOWGLOBAL_ALIAS + PAGE_SIZE); | |
7813 | } | |
7814 | ||
7815 | vm_offset_t | |
7816 | pmap_cpu_windows_copy_addr(int cpu_num, unsigned int index) | |
7817 | { | |
7818 | return (vm_offset_t)(CPUWINDOWS_BASE + (PAGE_SIZE * ((CPUWINDOWS_MAX * cpu_num) + index))); | |
7819 | } | |
7820 | ||
7821 | static unsigned int | |
7822 | pmap_map_cpu_windows_copy_internal( | |
7823 | ppnum_t pn, | |
7824 | vm_prot_t prot, | |
7825 | unsigned int wimg_bits) | |
7826 | { | |
7827 | pt_entry_t *ptep = NULL, pte; | |
7828 | unsigned int cpu_num; | |
7829 | unsigned int i; | |
7830 | vm_offset_t cpu_copywindow_vaddr = 0; | |
7831 | ||
7832 | cpu_num = pmap_get_cpu_data()->cpu_number; | |
7833 | ||
7834 | for (i = 0; i<CPUWINDOWS_MAX; i++) { | |
7835 | cpu_copywindow_vaddr = pmap_cpu_windows_copy_addr(cpu_num, i); | |
7836 | ptep = pmap_pte(kernel_pmap, cpu_copywindow_vaddr); | |
7837 | assert(!ARM_PTE_IS_COMPRESSED(*ptep)); | |
7838 | if (*ptep == ARM_PTE_TYPE_FAULT) | |
7839 | break; | |
7840 | } | |
7841 | if (i == CPUWINDOWS_MAX) { | |
7842 | panic("pmap_map_cpu_windows_copy: out of window\n"); | |
7843 | } | |
7844 | ||
7845 | pte = pa_to_pte(ptoa(pn)) | ARM_PTE_TYPE | ARM_PTE_AF | ARM_PTE_NX | ARM_PTE_PNX; | |
5c9f4661 A |
7846 | #if __ARM_KERNEL_PROTECT__ |
7847 | pte |= ARM_PTE_NG; | |
7848 | #endif /* __ARM_KERNEL_PROTECT__ */ | |
5ba3f43e A |
7849 | |
7850 | pte |= wimg_to_pte(wimg_bits); | |
7851 | ||
7852 | if (prot & VM_PROT_WRITE) { | |
7853 | pte |= ARM_PTE_AP(AP_RWNA); | |
7854 | } else { | |
7855 | pte |= ARM_PTE_AP(AP_RONA); | |
7856 | } | |
7857 | ||
7858 | WRITE_PTE(ptep, pte); | |
7859 | /* | |
7860 | * Invalidate tlb. Cover nested cpu_copywindow_vaddr usage with the interrupted context | |
7861 | * in pmap_unmap_cpu_windows_copy() after clearing the pte and before tlb invalidate. | |
7862 | */ | |
7863 | PMAP_UPDATE_TLBS(kernel_pmap, cpu_copywindow_vaddr, cpu_copywindow_vaddr + PAGE_SIZE); | |
7864 | ||
7865 | return(i); | |
7866 | } | |
7867 | ||
7868 | unsigned int | |
7869 | pmap_map_cpu_windows_copy( | |
7870 | ppnum_t pn, | |
7871 | vm_prot_t prot, | |
7872 | unsigned int wimg_bits) | |
7873 | { | |
7874 | return pmap_map_cpu_windows_copy_internal(pn, prot, wimg_bits); | |
7875 | } | |
7876 | ||
7877 | static void | |
7878 | pmap_unmap_cpu_windows_copy_internal( | |
7879 | unsigned int index) | |
7880 | { | |
7881 | pt_entry_t *ptep; | |
7882 | unsigned int cpu_num; | |
7883 | vm_offset_t cpu_copywindow_vaddr = 0; | |
7884 | ||
7885 | cpu_num = pmap_get_cpu_data()->cpu_number; | |
7886 | ||
7887 | cpu_copywindow_vaddr = pmap_cpu_windows_copy_addr(cpu_num, index); | |
7888 | __asm__ volatile("dsb sy"); | |
7889 | ptep = pmap_pte(kernel_pmap, cpu_copywindow_vaddr); | |
7890 | WRITE_PTE(ptep, ARM_PTE_TYPE_FAULT); | |
7891 | PMAP_UPDATE_TLBS(kernel_pmap, cpu_copywindow_vaddr, cpu_copywindow_vaddr + PAGE_SIZE); | |
7892 | } | |
7893 | ||
7894 | void | |
7895 | pmap_unmap_cpu_windows_copy( | |
7896 | unsigned int index) | |
7897 | { | |
7898 | return pmap_unmap_cpu_windows_copy_internal(index); | |
7899 | } | |
7900 | ||
7901 | /* | |
7902 | * Marked a pmap has nested | |
7903 | */ | |
7904 | static void | |
7905 | pmap_set_nested_internal( | |
7906 | pmap_t pmap) | |
7907 | { | |
7908 | pmap->nested = TRUE; | |
7909 | } | |
7910 | ||
7911 | void | |
7912 | pmap_set_nested( | |
7913 | pmap_t pmap) | |
7914 | { | |
7915 | pmap_set_nested_internal(pmap); | |
7916 | } | |
7917 | ||
7918 | /* | |
7919 | * kern_return_t pmap_nest(grand, subord, vstart, size) | |
7920 | * | |
7921 | * grand = the pmap that we will nest subord into | |
7922 | * subord = the pmap that goes into the grand | |
7923 | * vstart = start of range in pmap to be inserted | |
7924 | * nstart = start of range in pmap nested pmap | |
7925 | * size = Size of nest area (up to 16TB) | |
7926 | * | |
7927 | * Inserts a pmap into another. This is used to implement shared segments. | |
7928 | * | |
7929 | */ | |
7930 | ||
7931 | static kern_return_t | |
7932 | pmap_nest_internal( | |
7933 | pmap_t grand, | |
7934 | pmap_t subord, | |
7935 | addr64_t vstart, | |
7936 | addr64_t nstart, | |
7937 | uint64_t size) | |
7938 | { | |
7939 | kern_return_t kr = KERN_FAILURE; | |
7940 | vm_map_offset_t vaddr, nvaddr; | |
7941 | tt_entry_t *stte_p; | |
7942 | tt_entry_t *gtte_p; | |
7943 | unsigned int i; | |
7944 | unsigned int num_tte; | |
7945 | unsigned int nested_region_asid_bitmap_size; | |
7946 | unsigned int* nested_region_asid_bitmap; | |
7947 | int expand_options = 0; | |
7948 | ||
7949 | ||
7950 | #if (__ARM_VMSA__ == 7) | |
7951 | if (((size|vstart|nstart) & ARM_TT_L1_PT_OFFMASK) != 0x0ULL) { | |
7952 | return KERN_INVALID_VALUE; /* Nest 4MB region */ | |
7953 | } | |
7954 | #else | |
7955 | if (((size|vstart|nstart) & (ARM_TT_L2_OFFMASK)) != 0x0ULL) { | |
7956 | panic("pmap_nest() pmap %p has a nested pmap 0x%llx, 0x%llx, 0x%llx\n", grand, vstart, nstart, size); | |
7957 | } | |
7958 | #endif | |
7959 | ||
7960 | if ((grand->nested_pmap != PMAP_NULL) && (grand->nested_pmap != subord)) { | |
7961 | panic("pmap_nest() pmap %p has a nested pmap\n", grand); | |
7962 | } | |
7963 | ||
7964 | if (subord->nested_region_asid_bitmap == NULL) { | |
7965 | nested_region_asid_bitmap_size = (unsigned int)(size>>ARM_TT_TWIG_SHIFT)/(sizeof(unsigned int)*NBBY); | |
7966 | ||
7967 | nested_region_asid_bitmap = kalloc(nested_region_asid_bitmap_size*sizeof(unsigned int)); | |
7968 | bzero(nested_region_asid_bitmap, nested_region_asid_bitmap_size*sizeof(unsigned int)); | |
7969 | ||
7970 | PMAP_LOCK(subord); | |
7971 | if (subord->nested_region_asid_bitmap == NULL) { | |
7972 | subord->nested_region_asid_bitmap = nested_region_asid_bitmap; | |
7973 | subord->nested_region_asid_bitmap_size = nested_region_asid_bitmap_size; | |
7974 | subord->nested_region_subord_addr = nstart; | |
7975 | subord->nested_region_size = (mach_vm_offset_t) size; | |
7976 | nested_region_asid_bitmap = NULL; | |
7977 | } | |
7978 | PMAP_UNLOCK(subord); | |
7979 | if (nested_region_asid_bitmap != NULL) { | |
7980 | kfree(nested_region_asid_bitmap, nested_region_asid_bitmap_size*sizeof(unsigned int)); | |
7981 | } | |
7982 | } | |
7983 | if ((subord->nested_region_subord_addr + subord->nested_region_size) < (nstart+size)) { | |
7984 | uint64_t new_size; | |
7985 | unsigned int new_nested_region_asid_bitmap_size; | |
7986 | unsigned int* new_nested_region_asid_bitmap; | |
7987 | ||
7988 | nested_region_asid_bitmap = NULL; | |
7989 | nested_region_asid_bitmap_size = 0; | |
7990 | new_size = nstart + size - subord->nested_region_subord_addr; | |
7991 | ||
7992 | /* We explicitly add 1 to the bitmap allocation size in order to avoid issues with truncation. */ | |
7993 | new_nested_region_asid_bitmap_size = (unsigned int)((new_size>>ARM_TT_TWIG_SHIFT)/(sizeof(unsigned int)*NBBY)) + 1; | |
7994 | ||
7995 | new_nested_region_asid_bitmap = kalloc(new_nested_region_asid_bitmap_size*sizeof(unsigned int)); | |
7996 | PMAP_LOCK(subord); | |
7997 | if (subord->nested_region_size < new_size) { | |
7998 | bzero(new_nested_region_asid_bitmap, new_nested_region_asid_bitmap_size*sizeof(unsigned int)); | |
7999 | bcopy(subord->nested_region_asid_bitmap, new_nested_region_asid_bitmap, subord->nested_region_asid_bitmap_size); | |
8000 | nested_region_asid_bitmap_size = subord->nested_region_asid_bitmap_size; | |
8001 | nested_region_asid_bitmap = subord->nested_region_asid_bitmap; | |
8002 | subord->nested_region_asid_bitmap = new_nested_region_asid_bitmap; | |
8003 | subord->nested_region_asid_bitmap_size = new_nested_region_asid_bitmap_size; | |
8004 | subord->nested_region_size = new_size; | |
8005 | new_nested_region_asid_bitmap = NULL; | |
8006 | } | |
8007 | PMAP_UNLOCK(subord); | |
8008 | if (nested_region_asid_bitmap != NULL) | |
8009 | kfree(nested_region_asid_bitmap, nested_region_asid_bitmap_size*sizeof(unsigned int)); | |
8010 | if (new_nested_region_asid_bitmap != NULL) | |
8011 | kfree(new_nested_region_asid_bitmap, new_nested_region_asid_bitmap_size*sizeof(unsigned int)); | |
8012 | } | |
8013 | ||
8014 | PMAP_LOCK(subord); | |
8015 | if (grand->nested_pmap == PMAP_NULL) { | |
8016 | grand->nested_pmap = subord; | |
8017 | grand->nested_region_grand_addr = vstart; | |
8018 | grand->nested_region_subord_addr = nstart; | |
8019 | grand->nested_region_size = (mach_vm_offset_t) size; | |
8020 | } else { | |
8021 | if ((grand->nested_region_grand_addr > vstart)) { | |
8022 | panic("pmap_nest() pmap %p : attempt to nest outside the nested region\n", grand); | |
8023 | } | |
8024 | else if ((grand->nested_region_grand_addr + grand->nested_region_size) < (vstart+size)) { | |
8025 | grand->nested_region_size = (mach_vm_offset_t)(vstart - grand->nested_region_grand_addr + size); | |
8026 | } | |
8027 | } | |
8028 | ||
8029 | #if (__ARM_VMSA__ == 7) | |
8030 | nvaddr = (vm_map_offset_t) nstart; | |
8031 | vaddr = (vm_map_offset_t) vstart; | |
8032 | num_tte = size >> ARM_TT_L1_SHIFT; | |
8033 | ||
8034 | for (i = 0; i < num_tte; i++) { | |
8035 | stte_p = pmap_tte(subord, nvaddr); | |
8036 | if ((stte_p == (tt_entry_t *)NULL) || (((*stte_p) & ARM_TTE_TYPE_MASK) != ARM_TTE_TYPE_TABLE)) { | |
8037 | PMAP_UNLOCK(subord); | |
8038 | kr = pmap_expand(subord, nvaddr, expand_options, PMAP_TT_L2_LEVEL); | |
8039 | ||
8040 | if (kr != KERN_SUCCESS) { | |
8041 | PMAP_LOCK(grand); | |
8042 | goto done; | |
8043 | } | |
8044 | ||
8045 | PMAP_LOCK(subord); | |
8046 | } | |
8047 | PMAP_UNLOCK(subord); | |
8048 | PMAP_LOCK(grand); | |
8049 | stte_p = pmap_tte(grand, vaddr); | |
8050 | if (stte_p == (tt_entry_t *)NULL) { | |
8051 | PMAP_UNLOCK(grand); | |
8052 | kr = pmap_expand(grand, vaddr, expand_options, PMAP_TT_L1_LEVEL); | |
8053 | ||
8054 | if (kr != KERN_SUCCESS) { | |
8055 | PMAP_LOCK(grand); | |
8056 | goto done; | |
8057 | } | |
8058 | } else { | |
8059 | PMAP_UNLOCK(grand); | |
8060 | kr = KERN_SUCCESS; | |
8061 | } | |
8062 | PMAP_LOCK(subord); | |
8063 | ||
8064 | ||
8065 | nvaddr += ARM_TT_L1_SIZE; | |
8066 | vaddr += ARM_TT_L1_SIZE; | |
8067 | } | |
8068 | ||
8069 | #else | |
8070 | nvaddr = (vm_map_offset_t) nstart; | |
8071 | num_tte = (unsigned int)(size >> ARM_TT_L2_SHIFT); | |
8072 | ||
8073 | for (i = 0; i < num_tte; i++) { | |
8074 | stte_p = pmap_tt2e(subord, nvaddr); | |
8075 | if (stte_p == PT_ENTRY_NULL || *stte_p == ARM_TTE_EMPTY) { | |
8076 | PMAP_UNLOCK(subord); | |
8077 | kr = pmap_expand(subord, nvaddr, expand_options, PMAP_TT_L3_LEVEL); | |
8078 | ||
8079 | if (kr != KERN_SUCCESS) { | |
8080 | PMAP_LOCK(grand); | |
8081 | goto done; | |
8082 | } | |
8083 | ||
8084 | PMAP_LOCK(subord); | |
8085 | } | |
8086 | nvaddr += ARM_TT_L2_SIZE; | |
8087 | } | |
8088 | #endif | |
8089 | PMAP_UNLOCK(subord); | |
8090 | ||
8091 | /* | |
8092 | * copy tte's from subord pmap into grand pmap | |
8093 | */ | |
8094 | ||
8095 | PMAP_LOCK(grand); | |
8096 | nvaddr = (vm_map_offset_t) nstart; | |
8097 | vaddr = (vm_map_offset_t) vstart; | |
8098 | ||
8099 | ||
8100 | #if (__ARM_VMSA__ == 7) | |
8101 | for (i = 0; i < num_tte; i++) { | |
8102 | ||
8103 | stte_p = pmap_tte(subord, nvaddr); | |
8104 | gtte_p = pmap_tte(grand, vaddr); | |
8105 | *gtte_p = *stte_p; | |
8106 | ||
8107 | nvaddr += ARM_TT_L1_SIZE; | |
8108 | vaddr += ARM_TT_L1_SIZE; | |
8109 | } | |
8110 | #else | |
8111 | for (i = 0; i < num_tte; i++) { | |
8112 | ||
8113 | stte_p = pmap_tt2e(subord, nstart); | |
8114 | gtte_p = pmap_tt2e(grand, vaddr); | |
8115 | if (gtte_p == PT_ENTRY_NULL) { | |
8116 | PMAP_UNLOCK(grand); | |
8117 | kr = pmap_expand(grand, vaddr, expand_options, PMAP_TT_L2_LEVEL); | |
8118 | PMAP_LOCK(grand); | |
8119 | ||
8120 | if (kr != KERN_SUCCESS) { | |
8121 | goto done; | |
8122 | } | |
8123 | ||
8124 | gtte_p = pmap_tt2e(grand, vaddr); | |
8125 | } | |
8126 | *gtte_p = *stte_p; | |
8127 | vaddr += ARM_TT_L2_SIZE; | |
8128 | nstart += ARM_TT_L2_SIZE; | |
8129 | } | |
8130 | #endif | |
8131 | ||
8132 | kr = KERN_SUCCESS; | |
8133 | done: | |
8134 | ||
8135 | #ifndef __ARM_L1_PTW__ | |
8136 | CleanPoU_DcacheRegion((vm_offset_t) pmap_tte(grand, vstart), num_tte * sizeof(tt_entry_t)); | |
8137 | #endif | |
8138 | ||
8139 | #if (__ARM_VMSA__ > 7) | |
8140 | /* | |
8141 | * check for overflow on LP64 arch | |
8142 | */ | |
8143 | assert((size & 0xFFFFFFFF00000000ULL) == 0); | |
8144 | #endif | |
8145 | PMAP_UPDATE_TLBS(grand, vstart, vstart + size); | |
8146 | ||
8147 | PMAP_UNLOCK(grand); | |
8148 | return kr; | |
8149 | } | |
8150 | ||
8151 | kern_return_t pmap_nest( | |
8152 | pmap_t grand, | |
8153 | pmap_t subord, | |
8154 | addr64_t vstart, | |
8155 | addr64_t nstart, | |
8156 | uint64_t size) | |
8157 | { | |
8158 | kern_return_t kr = KERN_FAILURE; | |
8159 | ||
8160 | PMAP_TRACE(PMAP_CODE(PMAP__NEST) | DBG_FUNC_START, | |
8161 | VM_KERNEL_ADDRHIDE(grand), VM_KERNEL_ADDRHIDE(subord), | |
8162 | VM_KERNEL_ADDRHIDE(vstart)); | |
8163 | ||
8164 | kr = pmap_nest_internal(grand, subord, vstart, nstart, size); | |
8165 | ||
8166 | PMAP_TRACE(PMAP_CODE(PMAP__NEST) | DBG_FUNC_END, kr); | |
8167 | ||
8168 | return kr; | |
8169 | } | |
8170 | ||
8171 | /* | |
8172 | * kern_return_t pmap_unnest(grand, vaddr) | |
8173 | * | |
8174 | * grand = the pmap that we will nest subord into | |
8175 | * vaddr = start of range in pmap to be unnested | |
8176 | * size = size of range in pmap to be unnested | |
8177 | * | |
8178 | */ | |
8179 | ||
8180 | kern_return_t | |
8181 | pmap_unnest( | |
8182 | pmap_t grand, | |
8183 | addr64_t vaddr, | |
8184 | uint64_t size) | |
8185 | { | |
8186 | return(pmap_unnest_options(grand, vaddr, size, 0)); | |
8187 | } | |
8188 | ||
8189 | static kern_return_t | |
8190 | pmap_unnest_options_internal( | |
8191 | pmap_t grand, | |
8192 | addr64_t vaddr, | |
8193 | uint64_t size, | |
8194 | unsigned int option) | |
8195 | { | |
8196 | vm_map_offset_t start; | |
8197 | vm_map_offset_t addr; | |
8198 | tt_entry_t *tte_p; | |
8199 | unsigned int current_index; | |
8200 | unsigned int start_index; | |
8201 | unsigned int max_index; | |
8202 | unsigned int num_tte; | |
8203 | unsigned int i; | |
8204 | ||
8205 | #if (__ARM_VMSA__ == 7) | |
8206 | if (((size|vaddr) & ARM_TT_L1_PT_OFFMASK) != 0x0ULL) { | |
8207 | panic("pmap_unnest(): unaligned request\n"); | |
8208 | } | |
8209 | #else | |
8210 | if (((size|vaddr) & ARM_TT_L2_OFFMASK) != 0x0ULL) { | |
8211 | panic("pmap_unnest(): unaligned request\n"); | |
8212 | } | |
8213 | #endif | |
8214 | ||
8215 | if ((option & PMAP_UNNEST_CLEAN) == 0) | |
8216 | { | |
8217 | PMAP_LOCK(grand->nested_pmap); | |
8218 | ||
8219 | start = vaddr - grand->nested_region_grand_addr + grand->nested_region_subord_addr ; | |
8220 | start_index = (unsigned int)((vaddr - grand->nested_region_grand_addr) >> ARM_TT_TWIG_SHIFT); | |
8221 | max_index = (unsigned int)(start_index + (size >> ARM_TT_TWIG_SHIFT)); | |
8222 | num_tte = (unsigned int)(size >> ARM_TT_TWIG_SHIFT); | |
8223 | ||
8224 | if (size > grand->nested_region_size) { | |
8225 | panic("pmap_unnest() pmap %p %llu, %llu\n", grand, size, (uint64_t)grand->nested_region_size); | |
8226 | } | |
8227 | ||
8228 | for (current_index = start_index, addr = start; current_index < max_index; current_index++) { | |
8229 | pt_entry_t *bpte, *epte, *cpte; | |
8230 | ||
8231 | ||
8232 | if(!testbit(current_index, (int *)grand->nested_pmap->nested_region_asid_bitmap)) { | |
8233 | ||
8234 | setbit(current_index, (int *)grand->nested_pmap->nested_region_asid_bitmap); | |
8235 | bpte = pmap_pte(grand->nested_pmap, addr); | |
8236 | epte = bpte + (ARM_TT_LEAF_INDEX_MASK>>ARM_TT_LEAF_SHIFT); | |
8237 | ||
8238 | for (cpte = bpte; cpte <= epte; cpte++) { | |
8239 | pmap_paddr_t pa; | |
8240 | int pai=0; | |
8241 | boolean_t managed=FALSE; | |
8242 | pt_entry_t spte; | |
8243 | ||
8244 | if ((*cpte != ARM_PTE_TYPE_FAULT) | |
8245 | && (!ARM_PTE_IS_COMPRESSED(*cpte))) { | |
8246 | ||
8247 | spte = *cpte; | |
8248 | while (!managed) { | |
8249 | pa = pte_to_pa(spte); | |
8250 | if (!pa_valid(pa)) | |
8251 | break; | |
8252 | pai = (int)pa_index(pa); | |
8253 | LOCK_PVH(pai); | |
8254 | spte = *cpte; | |
8255 | pa = pte_to_pa(spte); | |
8256 | if (pai == (int)pa_index(pa)) { | |
8257 | managed =TRUE; | |
8258 | break; // Leave the PVH locked as we'll unlock it after we update the PTE | |
8259 | } | |
8260 | UNLOCK_PVH(pai); | |
8261 | } | |
8262 | ||
8263 | if (((spte & ARM_PTE_NG) != ARM_PTE_NG)) { | |
8264 | ||
8265 | WRITE_PTE(cpte, (spte | ARM_PTE_NG)); | |
8266 | } | |
8267 | ||
8268 | if (managed) | |
8269 | { | |
8270 | ASSERT_PVH_LOCKED(pai); | |
8271 | UNLOCK_PVH(pai); | |
8272 | } | |
8273 | } | |
8274 | } | |
8275 | } | |
8276 | ||
8277 | addr += ARM_TT_TWIG_SIZE; | |
8278 | ||
8279 | #ifndef __ARM_L1_PTW__ | |
8280 | CleanPoU_DcacheRegion((vm_offset_t) pmap_pte(grand->nested_pmap, start), num_tte * sizeof(tt_entry_t)); | |
8281 | #endif | |
8282 | PMAP_UPDATE_TLBS(grand->nested_pmap, start, start + size); | |
8283 | } | |
8284 | ||
8285 | PMAP_UNLOCK(grand->nested_pmap); | |
8286 | } | |
8287 | ||
8288 | PMAP_LOCK(grand); | |
8289 | ||
8290 | /* | |
8291 | * invalidate all pdes for segment at vaddr in pmap grand | |
8292 | */ | |
8293 | start = vaddr; | |
8294 | addr = vaddr; | |
8295 | ||
8296 | num_tte = (unsigned int)(size >> ARM_TT_TWIG_SHIFT); | |
8297 | ||
8298 | for (i = 0; i < num_tte; i++) { | |
8299 | tte_p = pmap_tte(grand, addr); | |
8300 | *tte_p = ARM_TTE_TYPE_FAULT; | |
8301 | ||
8302 | addr += ARM_TT_TWIG_SIZE; | |
8303 | } | |
8304 | ||
8305 | #ifndef __ARM_L1_PTW__ | |
8306 | CleanPoU_DcacheRegion((vm_offset_t) pmap_tte(grand, start), num_tte * sizeof(tt_entry_t)); | |
8307 | #endif | |
8308 | PMAP_UPDATE_TLBS(grand, start, start + size); | |
8309 | ||
8310 | PMAP_UNLOCK(grand); | |
8311 | ||
8312 | return KERN_SUCCESS; | |
8313 | } | |
8314 | ||
8315 | kern_return_t | |
8316 | pmap_unnest_options( | |
8317 | pmap_t grand, | |
8318 | addr64_t vaddr, | |
8319 | uint64_t size, | |
8320 | unsigned int option) | |
8321 | { | |
8322 | kern_return_t kr = KERN_FAILURE; | |
8323 | ||
8324 | PMAP_TRACE(PMAP_CODE(PMAP__UNNEST) | DBG_FUNC_START, | |
8325 | VM_KERNEL_ADDRHIDE(grand), VM_KERNEL_ADDRHIDE(vaddr)); | |
8326 | ||
8327 | kr = pmap_unnest_options_internal(grand, vaddr, size, option); | |
8328 | ||
8329 | PMAP_TRACE(PMAP_CODE(PMAP__UNNEST) | DBG_FUNC_END, kr); | |
8330 | ||
8331 | return kr; | |
8332 | } | |
8333 | ||
8334 | boolean_t | |
8335 | pmap_adjust_unnest_parameters( | |
8336 | __unused pmap_t p, | |
8337 | __unused vm_map_offset_t *s, | |
8338 | __unused vm_map_offset_t *e) | |
8339 | { | |
8340 | return TRUE; /* to get to log_unnest_badness()... */ | |
8341 | } | |
8342 | ||
8343 | /* | |
8344 | * disable no-execute capability on | |
8345 | * the specified pmap | |
8346 | */ | |
8347 | #if DEVELOPMENT || DEBUG | |
8348 | void | |
8349 | pmap_disable_NX( | |
8350 | pmap_t pmap) | |
8351 | { | |
8352 | pmap->nx_enabled = FALSE; | |
8353 | } | |
8354 | #else | |
8355 | void | |
8356 | pmap_disable_NX( | |
8357 | __unused pmap_t pmap) | |
8358 | { | |
8359 | } | |
8360 | #endif | |
8361 | ||
8362 | void | |
8363 | pt_fake_zone_init( | |
8364 | int zone_index) | |
8365 | { | |
8366 | pt_fake_zone_index = zone_index; | |
8367 | } | |
8368 | ||
8369 | void | |
8370 | pt_fake_zone_info( | |
8371 | int *count, | |
8372 | vm_size_t *cur_size, vm_size_t *max_size, vm_size_t *elem_size, vm_size_t *alloc_size, | |
8373 | uint64_t *sum_size, int *collectable, int *exhaustable, int *caller_acct) | |
8374 | { | |
8375 | *count = inuse_pmap_pages_count; | |
8376 | *cur_size = PAGE_SIZE * (inuse_pmap_pages_count); | |
8377 | *max_size = PAGE_SIZE * (inuse_pmap_pages_count + vm_page_inactive_count + vm_page_active_count + vm_page_free_count); | |
8378 | *elem_size = PAGE_SIZE; | |
8379 | *alloc_size = PAGE_SIZE; | |
8380 | *sum_size = (alloc_pmap_pages_count) * PAGE_SIZE; | |
8381 | ||
8382 | *collectable = 1; | |
8383 | *exhaustable = 0; | |
8384 | *caller_acct = 1; | |
8385 | } | |
8386 | ||
8387 | /* | |
8388 | * flush a range of hardware TLB entries. | |
8389 | * NOTE: assumes the smallest TLB entry in use will be for | |
8390 | * an ARM small page (4K). | |
8391 | */ | |
8392 | ||
8393 | #define ARM_FULL_TLB_FLUSH_THRESHOLD 64 | |
8394 | #define ARM64_FULL_TLB_FLUSH_THRESHOLD 256 | |
8395 | ||
8396 | static void | |
8397 | flush_mmu_tlb_region_asid( | |
8398 | vm_offset_t va, | |
8399 | unsigned length, | |
8400 | pmap_t pmap) | |
8401 | { | |
8402 | #if (__ARM_VMSA__ == 7) | |
8403 | vm_offset_t end = va + length; | |
8404 | uint32_t asid; | |
8405 | ||
8406 | asid = pmap->asid; | |
8407 | ||
8408 | if (length / ARM_SMALL_PAGE_SIZE > ARM_FULL_TLB_FLUSH_THRESHOLD) { | |
8409 | boolean_t flush_all = FALSE; | |
8410 | ||
8411 | if ((asid == 0) || (pmap->nested == TRUE)) | |
8412 | flush_all = TRUE; | |
8413 | if (flush_all) | |
8414 | flush_mmu_tlb(); | |
8415 | else | |
8416 | flush_mmu_tlb_asid(asid); | |
8417 | ||
8418 | return; | |
8419 | } | |
8420 | if (pmap->nested == TRUE) { | |
8421 | #if !__ARM_MP_EXT__ | |
8422 | flush_mmu_tlb(); | |
8423 | #else | |
8424 | va = arm_trunc_page(va); | |
8425 | while (va < end) { | |
8426 | flush_mmu_tlb_mva_entries(va); | |
8427 | va += ARM_SMALL_PAGE_SIZE; | |
8428 | } | |
8429 | #endif | |
8430 | return; | |
8431 | } | |
8432 | va = arm_trunc_page(va) | (asid & 0xff); | |
8433 | flush_mmu_tlb_entries(va, end); | |
8434 | ||
8435 | #else | |
8436 | vm_offset_t end = va + length; | |
8437 | uint32_t asid; | |
8438 | ||
8439 | asid = pmap->asid; | |
8440 | ||
8441 | if ((length >> ARM_TT_L3_SHIFT) > ARM64_FULL_TLB_FLUSH_THRESHOLD) { | |
8442 | boolean_t flush_all = FALSE; | |
8443 | ||
8444 | if ((asid == 0) || (pmap->nested == TRUE)) | |
8445 | flush_all = TRUE; | |
8446 | if (flush_all) | |
8447 | flush_mmu_tlb(); | |
8448 | else | |
8449 | flush_mmu_tlb_asid((uint64_t)asid << TLBI_ASID_SHIFT); | |
8450 | return; | |
8451 | } | |
8452 | va = tlbi_asid(asid) | tlbi_addr(va); | |
8453 | end = tlbi_asid(asid) | tlbi_addr(end); | |
8454 | if (pmap->nested == TRUE) { | |
8455 | flush_mmu_tlb_allentries(va, end); | |
8456 | } else { | |
8457 | flush_mmu_tlb_entries(va, end); | |
8458 | } | |
8459 | ||
8460 | #endif | |
8461 | } | |
8462 | ||
8463 | void | |
8464 | flush_mmu_tlb_region( | |
8465 | vm_offset_t va, | |
8466 | unsigned length) | |
8467 | { | |
8468 | flush_mmu_tlb_region_asid(va, length, kernel_pmap); | |
8469 | } | |
8470 | ||
8471 | unsigned int | |
8472 | pmap_cache_attributes( | |
8473 | ppnum_t pn) | |
8474 | { | |
8475 | pmap_paddr_t paddr; | |
8476 | int pai; | |
8477 | unsigned int result; | |
8478 | pp_attr_t pp_attr_current; | |
8479 | ||
8480 | paddr = ptoa(pn); | |
8481 | ||
8482 | if ((paddr >= io_rgn_start) && (paddr < io_rgn_end)) { | |
8483 | unsigned int attr = IO_ATTR_WIMG(io_attr_table[(paddr - io_rgn_start) / io_rgn_granule]); | |
8484 | if (attr) | |
8485 | return attr; | |
8486 | else | |
8487 | return (VM_WIMG_IO); | |
8488 | } | |
8489 | ||
8490 | ||
8491 | if (!pmap_initialized) { | |
8492 | if ((paddr >= gPhysBase) && (paddr < gPhysBase+gPhysSize)) | |
8493 | return (VM_WIMG_DEFAULT); | |
8494 | else | |
8495 | return (VM_WIMG_IO); | |
8496 | } | |
8497 | ||
8498 | ||
8499 | if (!pa_valid(paddr)) | |
8500 | return (VM_WIMG_IO); | |
8501 | ||
8502 | result = VM_WIMG_DEFAULT; | |
8503 | ||
8504 | pai = (int)pa_index(paddr); | |
8505 | ||
8506 | pp_attr_current = pp_attr_table[pai]; | |
8507 | if (pp_attr_current & PP_ATTR_WIMG_MASK) | |
8508 | result = pp_attr_current & PP_ATTR_WIMG_MASK; | |
8509 | return result; | |
8510 | } | |
8511 | ||
8512 | static boolean_t | |
8513 | pmap_batch_set_cache_attributes_internal( | |
8514 | ppnum_t pn, | |
8515 | unsigned int cacheattr, | |
8516 | unsigned int page_cnt, | |
8517 | unsigned int page_index, | |
8518 | boolean_t doit, | |
8519 | unsigned int *res) | |
8520 | { | |
8521 | pmap_paddr_t paddr; | |
8522 | int pai; | |
8523 | pp_attr_t pp_attr_current; | |
8524 | pp_attr_t pp_attr_template; | |
8525 | unsigned int wimg_bits_prev, wimg_bits_new; | |
8526 | ||
8527 | if (cacheattr & VM_WIMG_USE_DEFAULT) | |
8528 | cacheattr = VM_WIMG_DEFAULT; | |
8529 | ||
8530 | if ((doit == FALSE) && (*res == 0)) { | |
8531 | *res = page_cnt; | |
8532 | if (platform_cache_batch_wimg(cacheattr & (VM_WIMG_MASK), page_cnt<<PAGE_SHIFT) == FALSE) { | |
8533 | return FALSE; | |
8534 | } | |
8535 | } | |
8536 | ||
8537 | paddr = ptoa(pn); | |
8538 | ||
8539 | if (!pa_valid(paddr)) { | |
8540 | panic("pmap_batch_set_cache_attributes(): pn 0x%08x not managed\n", pn); | |
8541 | } | |
8542 | ||
8543 | pai = (int)pa_index(paddr); | |
8544 | ||
8545 | if (doit) | |
8546 | LOCK_PVH(pai); | |
8547 | ||
8548 | pp_attr_current = pp_attr_table[pai]; | |
8549 | wimg_bits_prev = VM_WIMG_DEFAULT; | |
8550 | if (pp_attr_current & PP_ATTR_WIMG_MASK) | |
8551 | wimg_bits_prev = pp_attr_current & PP_ATTR_WIMG_MASK; | |
8552 | ||
8553 | pp_attr_template = (pp_attr_current & ~PP_ATTR_WIMG_MASK) | PP_ATTR_WIMG(cacheattr & (VM_WIMG_MASK)); | |
8554 | ||
8555 | if (doit) | |
8556 | pp_attr_table[pai] = pp_attr_template; | |
8557 | ||
8558 | wimg_bits_new = VM_WIMG_DEFAULT; | |
8559 | if (pp_attr_template & PP_ATTR_WIMG_MASK) | |
8560 | wimg_bits_new = pp_attr_template & PP_ATTR_WIMG_MASK; | |
8561 | ||
8562 | if (doit) { | |
8563 | if (wimg_bits_new != wimg_bits_prev) | |
8564 | pmap_update_cache_attributes_locked(pn, cacheattr); | |
8565 | UNLOCK_PVH(pai); | |
8566 | } else { | |
8567 | if (wimg_bits_new == VM_WIMG_COPYBACK) { | |
8568 | return FALSE; | |
8569 | } | |
8570 | if (wimg_bits_prev == wimg_bits_new) { | |
8571 | *res = *res-1; | |
8572 | if (!platform_cache_batch_wimg(wimg_bits_new, (*res)<<PAGE_SHIFT)) { | |
8573 | return FALSE; | |
8574 | } | |
8575 | } | |
8576 | return TRUE; | |
8577 | } | |
8578 | ||
8579 | if (page_cnt == (page_index+1)) { | |
8580 | wimg_bits_prev = VM_WIMG_COPYBACK; | |
8581 | if (((page_cnt == (page_index+1)) && (wimg_bits_prev != wimg_bits_new)) | |
8582 | && ((wimg_bits_prev == VM_WIMG_COPYBACK) | |
8583 | || ((wimg_bits_prev == VM_WIMG_INNERWBACK) | |
8584 | && (wimg_bits_new != VM_WIMG_COPYBACK)) | |
8585 | || ((wimg_bits_prev == VM_WIMG_WTHRU) | |
8586 | && ((wimg_bits_new != VM_WIMG_COPYBACK) || (wimg_bits_new != VM_WIMG_INNERWBACK))))) { | |
8587 | platform_cache_flush_wimg(wimg_bits_new); | |
8588 | } | |
8589 | } | |
8590 | ||
8591 | return TRUE; | |
8592 | }; | |
8593 | ||
8594 | boolean_t | |
8595 | pmap_batch_set_cache_attributes( | |
8596 | ppnum_t pn, | |
8597 | unsigned int cacheattr, | |
8598 | unsigned int page_cnt, | |
8599 | unsigned int page_index, | |
8600 | boolean_t doit, | |
8601 | unsigned int *res) | |
8602 | { | |
8603 | return pmap_batch_set_cache_attributes_internal(pn, cacheattr, page_cnt, page_index, doit, res); | |
8604 | } | |
8605 | ||
8606 | static void | |
8607 | pmap_set_cache_attributes_internal( | |
8608 | ppnum_t pn, | |
8609 | unsigned int cacheattr) | |
8610 | { | |
8611 | pmap_paddr_t paddr; | |
8612 | int pai; | |
8613 | pp_attr_t pp_attr_current; | |
8614 | pp_attr_t pp_attr_template; | |
8615 | unsigned int wimg_bits_prev, wimg_bits_new; | |
8616 | ||
8617 | paddr = ptoa(pn); | |
8618 | ||
8619 | if (!pa_valid(paddr)) { | |
8620 | return; /* Not a managed page. */ | |
8621 | } | |
8622 | ||
8623 | if (cacheattr & VM_WIMG_USE_DEFAULT) | |
8624 | cacheattr = VM_WIMG_DEFAULT; | |
8625 | ||
8626 | pai = (int)pa_index(paddr); | |
8627 | ||
8628 | LOCK_PVH(pai); | |
8629 | ||
8630 | pp_attr_current = pp_attr_table[pai]; | |
8631 | wimg_bits_prev = VM_WIMG_DEFAULT; | |
8632 | if (pp_attr_current & PP_ATTR_WIMG_MASK) | |
8633 | wimg_bits_prev = pp_attr_current & PP_ATTR_WIMG_MASK; | |
8634 | ||
8635 | pp_attr_template = (pp_attr_current & ~PP_ATTR_WIMG_MASK) | PP_ATTR_WIMG(cacheattr & (VM_WIMG_MASK)) ; | |
8636 | ||
8637 | pp_attr_table[pai] = pp_attr_template; | |
8638 | wimg_bits_new = VM_WIMG_DEFAULT; | |
8639 | if (pp_attr_template & PP_ATTR_WIMG_MASK) | |
8640 | wimg_bits_new = pp_attr_template & PP_ATTR_WIMG_MASK; | |
8641 | ||
8642 | if (wimg_bits_new != wimg_bits_prev) | |
8643 | pmap_update_cache_attributes_locked(pn, cacheattr); | |
8644 | ||
8645 | UNLOCK_PVH(pai); | |
8646 | ||
8647 | if ((wimg_bits_prev != wimg_bits_new) | |
8648 | && ((wimg_bits_prev == VM_WIMG_COPYBACK) | |
8649 | || ((wimg_bits_prev == VM_WIMG_INNERWBACK) | |
8650 | && (wimg_bits_new != VM_WIMG_COPYBACK)) | |
8651 | || ((wimg_bits_prev == VM_WIMG_WTHRU) | |
8652 | && ((wimg_bits_new != VM_WIMG_COPYBACK) || (wimg_bits_new != VM_WIMG_INNERWBACK))))) | |
8653 | pmap_sync_page_attributes_phys(pn); | |
8654 | ||
8655 | } | |
8656 | ||
8657 | void | |
8658 | pmap_set_cache_attributes( | |
8659 | ppnum_t pn, | |
8660 | unsigned int cacheattr) | |
8661 | { | |
8662 | pmap_set_cache_attributes_internal(pn, cacheattr); | |
8663 | } | |
8664 | ||
8665 | void | |
8666 | pmap_update_cache_attributes_locked( | |
8667 | ppnum_t ppnum, | |
8668 | unsigned attributes) | |
8669 | { | |
8670 | pmap_paddr_t phys = ptoa(ppnum); | |
8671 | pv_entry_t *pve_p; | |
8672 | pt_entry_t *pte_p; | |
8673 | pv_entry_t **pv_h; | |
8674 | pt_entry_t tmplate; | |
8675 | unsigned int pai; | |
8676 | ||
8677 | #if (__ARM_VMSA__ == 7) | |
8678 | #define ARM_PTE_SHMASK ARM_PTE_SH | |
8679 | #endif | |
8680 | ||
8681 | #if __ARM_PTE_PHYSMAP__ | |
8682 | vm_offset_t kva = phystokv(phys); | |
8683 | pte_p = pmap_pte(kernel_pmap, kva); | |
8684 | ||
8685 | tmplate = *pte_p; | |
8686 | tmplate &= ~(ARM_PTE_ATTRINDXMASK | ARM_PTE_SHMASK); | |
8687 | tmplate |= wimg_to_pte(attributes); | |
8688 | ||
8689 | WRITE_PTE(pte_p, tmplate); | |
8690 | PMAP_UPDATE_TLBS(kernel_pmap, kva, kva + PAGE_SIZE); | |
8691 | #endif | |
8692 | ||
8693 | pai = (unsigned int)pa_index(phys); | |
8694 | ||
8695 | pv_h = pai_to_pvh(pai); | |
8696 | ||
8697 | pte_p = PT_ENTRY_NULL; | |
8698 | pve_p = PV_ENTRY_NULL; | |
8699 | if (pvh_test_type(pv_h, PVH_TYPE_PTEP)) { | |
8700 | pte_p = pvh_ptep(pv_h); | |
8701 | } else if (pvh_test_type(pv_h, PVH_TYPE_PVEP)) { | |
8702 | pve_p = pvh_list(pv_h); | |
8703 | pte_p = PT_ENTRY_NULL; | |
8704 | } | |
8705 | ||
8706 | while ((pve_p != PV_ENTRY_NULL) || (pte_p != PT_ENTRY_NULL)) { | |
8707 | vm_map_address_t va; | |
8708 | pmap_t pmap; | |
8709 | ||
8710 | if (pve_p != PV_ENTRY_NULL) | |
8711 | pte_p = pve_get_ptep(pve_p); | |
8712 | ||
8713 | pmap = ptep_get_pmap(pte_p); | |
8714 | va = ptep_get_va(pte_p); | |
8715 | ||
8716 | tmplate = *pte_p; | |
5c9f4661 | 8717 | tmplate &= ~(ARM_PTE_ATTRINDXMASK | ARM_PTE_SHMASK); |
5ba3f43e A |
8718 | tmplate |= wimg_to_pte(attributes); |
8719 | ||
8720 | WRITE_PTE(pte_p, tmplate); | |
8721 | PMAP_UPDATE_TLBS(pmap, va, va + PAGE_SIZE); | |
8722 | ||
8723 | pte_p = PT_ENTRY_NULL; | |
8724 | if (pve_p != PV_ENTRY_NULL) | |
8725 | pve_p = PVE_NEXT_PTR(pve_next(pve_p)); | |
8726 | ||
8727 | } | |
8728 | } | |
8729 | ||
8730 | #if (__ARM_VMSA__ == 7) | |
8731 | vm_map_address_t | |
8732 | pmap_create_sharedpage( | |
8733 | void) | |
8734 | { | |
8735 | pmap_paddr_t pa; | |
8736 | kern_return_t kr; | |
8737 | ||
8738 | (void) pmap_pages_alloc(&pa, PAGE_SIZE, 0); | |
8739 | memset((char *) phystokv(pa), 0, PAGE_SIZE); | |
8740 | ||
8741 | kr = pmap_enter(kernel_pmap, _COMM_PAGE_BASE_ADDRESS, atop(pa), VM_PROT_READ | VM_PROT_WRITE, VM_PROT_NONE, VM_WIMG_USE_DEFAULT, TRUE); | |
8742 | assert(kr == KERN_SUCCESS); | |
8743 | ||
8744 | return((vm_map_address_t)phystokv(pa)); | |
8745 | ||
8746 | } | |
8747 | #else | |
8748 | static void | |
8749 | pmap_update_tt3e( | |
8750 | pmap_t pmap, | |
8751 | vm_address_t address, | |
8752 | tt_entry_t template) | |
8753 | { | |
8754 | tt_entry_t *ptep, pte; | |
8755 | ||
8756 | ptep = pmap_tt3e(pmap, address); | |
8757 | if (ptep == NULL) { | |
8758 | panic("%s: no ptep?\n", __FUNCTION__); | |
8759 | } | |
8760 | ||
8761 | pte = *ptep; | |
8762 | pte = tte_to_pa(pte) | template; | |
8763 | WRITE_PTE(ptep, pte); | |
8764 | } | |
8765 | ||
8766 | /* Note absence of non-global bit */ | |
8767 | #define PMAP_COMM_PAGE_PTE_TEMPLATE (ARM_PTE_TYPE_VALID \ | |
8768 | | ARM_PTE_ATTRINDX(CACHE_ATTRINDX_WRITEBACK) \ | |
8769 | | ARM_PTE_SH(SH_INNER_MEMORY) | ARM_PTE_NX \ | |
8770 | | ARM_PTE_PNX | ARM_PTE_AP(AP_RORO) | ARM_PTE_AF) | |
8771 | ||
8772 | vm_map_address_t | |
8773 | pmap_create_sharedpage( | |
8774 | void | |
8775 | ) | |
8776 | { | |
8777 | kern_return_t kr; | |
8778 | pmap_paddr_t pa = 0; | |
8779 | ||
8780 | ||
5ba3f43e A |
8781 | (void) pmap_pages_alloc(&pa, PAGE_SIZE, 0); |
8782 | ||
8783 | memset((char *) phystokv(pa), 0, PAGE_SIZE); | |
8784 | ||
8785 | /* | |
5c9f4661 A |
8786 | * The kernel pmap maintains a user accessible mapping of the commpage |
8787 | * to test PAN. | |
5ba3f43e | 8788 | */ |
5c9f4661 A |
8789 | kr = pmap_expand(kernel_pmap, _COMM_HIGH_PAGE64_BASE_ADDRESS, 0, PMAP_TT_L3_LEVEL); |
8790 | assert(kr == KERN_SUCCESS); | |
8791 | kr = pmap_enter(kernel_pmap, _COMM_HIGH_PAGE64_BASE_ADDRESS, (ppnum_t)atop(pa), VM_PROT_READ, VM_PROT_NONE, VM_WIMG_USE_DEFAULT, TRUE); | |
5ba3f43e | 8792 | assert(kr == KERN_SUCCESS); |
5c9f4661 A |
8793 | |
8794 | /* | |
8795 | * This mapping should not be global (as we only expect to reference it | |
8796 | * during testing). | |
8797 | */ | |
8798 | pmap_update_tt3e(kernel_pmap, _COMM_HIGH_PAGE64_BASE_ADDRESS, PMAP_COMM_PAGE_PTE_TEMPLATE | ARM_PTE_NG); | |
5ba3f43e A |
8799 | |
8800 | /* | |
8801 | * With PAN enabled kernel drivers can no longer use the previous mapping which is user readable | |
8802 | * They should use the following mapping instead | |
8803 | */ | |
8804 | kr = pmap_expand(kernel_pmap, _COMM_PRIV_PAGE64_BASE_ADDRESS, 0, PMAP_TT_L3_LEVEL); | |
8805 | assert(kr == KERN_SUCCESS); | |
8806 | kr = pmap_enter(kernel_pmap, _COMM_PRIV_PAGE64_BASE_ADDRESS, (ppnum_t)atop(pa), VM_PROT_READ, VM_PROT_NONE, VM_WIMG_USE_DEFAULT, TRUE); | |
8807 | assert(kr == KERN_SUCCESS); | |
8808 | ||
8809 | /* | |
5c9f4661 A |
8810 | * In order to avoid burning extra pages on mapping the shared page, we |
8811 | * create a dedicated pmap for the shared page. We forcibly nest the | |
8812 | * translation tables from this pmap into other pmaps. The level we | |
8813 | * will nest at depends on the MMU configuration (page size, TTBR range, | |
8814 | * etc). | |
8815 | * | |
8816 | * Note that this is NOT "the nested pmap" (which is used to nest the | |
8817 | * shared cache). | |
5ba3f43e | 8818 | * |
5c9f4661 A |
8819 | * Note that we update parameters of the entry for our unique needs (NG |
8820 | * entry, etc.). | |
5ba3f43e | 8821 | */ |
5c9f4661 A |
8822 | sharedpage_pmap = pmap_create(NULL, 0x0, FALSE); |
8823 | assert(sharedpage_pmap != NULL); | |
8824 | ||
8825 | /* The user 64-bit mapping... */ | |
8826 | kr = pmap_enter(sharedpage_pmap, _COMM_PAGE64_BASE_ADDRESS, (ppnum_t)atop(pa), VM_PROT_READ, VM_PROT_NONE, VM_WIMG_USE_DEFAULT, TRUE); | |
8827 | assert(kr == KERN_SUCCESS); | |
8828 | pmap_update_tt3e(sharedpage_pmap, _COMM_PAGE64_BASE_ADDRESS, PMAP_COMM_PAGE_PTE_TEMPLATE); | |
8829 | ||
8830 | /* ...and the user 32-bit mapping. */ | |
8831 | kr = pmap_enter(sharedpage_pmap, _COMM_PAGE32_BASE_ADDRESS, (ppnum_t)atop(pa), VM_PROT_READ, VM_PROT_NONE, VM_WIMG_USE_DEFAULT, TRUE); | |
5ba3f43e | 8832 | assert(kr == KERN_SUCCESS); |
5c9f4661 | 8833 | pmap_update_tt3e(sharedpage_pmap, _COMM_PAGE32_BASE_ADDRESS, PMAP_COMM_PAGE_PTE_TEMPLATE); |
5ba3f43e A |
8834 | |
8835 | /* For manipulation in kernel, go straight to physical page */ | |
8836 | sharedpage_rw_addr = phystokv(pa); | |
8837 | return((vm_map_address_t)sharedpage_rw_addr); | |
8838 | } | |
8839 | ||
5c9f4661 A |
8840 | /* |
8841 | * Asserts to ensure that the TTEs we nest to map the shared page do not overlap | |
8842 | * with user controlled TTEs. | |
8843 | */ | |
8844 | #if (ARM_PGSHIFT == 14) || __ARM64_TWO_LEVEL_PMAP__ | |
8845 | static_assert((_COMM_PAGE64_BASE_ADDRESS & ~ARM_TT_L2_OFFMASK) >= MACH_VM_MAX_ADDRESS); | |
8846 | static_assert((_COMM_PAGE32_BASE_ADDRESS & ~ARM_TT_L2_OFFMASK) >= VM_MAX_ADDRESS); | |
8847 | #elif (ARM_PGSHIFT == 12) | |
8848 | static_assert((_COMM_PAGE64_BASE_ADDRESS & ~ARM_TT_L1_OFFMASK) >= MACH_VM_MAX_ADDRESS); | |
8849 | static_assert((_COMM_PAGE32_BASE_ADDRESS & ~ARM_TT_L1_OFFMASK) >= VM_MAX_ADDRESS); | |
8850 | #else | |
8851 | #error Nested shared page mapping is unsupported on this config | |
8852 | #endif | |
8853 | ||
5ba3f43e A |
8854 | static void |
8855 | pmap_insert_sharedpage_internal( | |
8856 | pmap_t pmap) | |
8857 | { | |
8858 | #if (ARM_PGSHIFT == 14) && !__ARM64_TWO_LEVEL_PMAP__ | |
8859 | kern_return_t kr; | |
8860 | #endif | |
5c9f4661 | 8861 | vm_offset_t sharedpage_vaddr; |
5ba3f43e A |
8862 | pt_entry_t *ttep, *src_ttep; |
8863 | #if _COMM_PAGE_AREA_LENGTH != PAGE_SIZE | |
8864 | #error We assume a single page. | |
8865 | #endif | |
8866 | ||
8867 | if (pmap_is_64bit(pmap)) { | |
5c9f4661 A |
8868 | sharedpage_vaddr = _COMM_PAGE64_BASE_ADDRESS; |
8869 | } else { | |
8870 | sharedpage_vaddr = _COMM_PAGE32_BASE_ADDRESS; | |
5ba3f43e A |
8871 | } |
8872 | ||
8873 | PMAP_LOCK(pmap); | |
8874 | ||
8875 | /* | |
8876 | * For 4KB pages, we can force the commpage to nest at the level one | |
8877 | * page table, as each entry is 1GB (i.e, there will be no overlap | |
8878 | * with regular userspace mappings). For 16KB pages, each level one | |
8879 | * entry is 64GB, so we must go to the second level entry (32MB) in | |
8880 | * order to nest. | |
8881 | */ | |
8882 | #if (ARM_PGSHIFT == 12) | |
8883 | #if __ARM64_TWO_LEVEL_PMAP__ | |
8884 | #error A two level page table with a page shift of 12 is not currently supported | |
8885 | #endif | |
8886 | /* Just slam in the L1 entry. */ | |
5c9f4661 A |
8887 | ttep = pmap_tt1e(pmap, sharedpage_vaddr); |
8888 | ||
5ba3f43e A |
8889 | if (*ttep != ARM_PTE_EMPTY) { |
8890 | panic("%s: Found something mapped at the commpage address?!", __FUNCTION__); | |
8891 | } | |
8892 | ||
5c9f4661 | 8893 | src_ttep = pmap_tt1e(sharedpage_pmap, sharedpage_vaddr); |
5ba3f43e A |
8894 | #elif (ARM_PGSHIFT == 14) |
8895 | #if !__ARM64_TWO_LEVEL_PMAP__ | |
8896 | /* Allocate for the L2 entry if necessary, and slam it into place. */ | |
8897 | /* | |
8898 | * As long as we are use a three level page table, the first level | |
8899 | * should always exist, so we don't need to check for it. | |
8900 | */ | |
5c9f4661 | 8901 | while (*pmap_tt1e(pmap, sharedpage_vaddr) == ARM_PTE_EMPTY) { |
5ba3f43e A |
8902 | PMAP_UNLOCK(pmap); |
8903 | ||
8904 | kr = pmap_expand(pmap, _COMM_PAGE32_BASE_ADDRESS, 0, PMAP_TT_L2_LEVEL); | |
8905 | ||
8906 | if (kr != KERN_SUCCESS) { | |
8907 | panic("Failed to pmap_expand for 32-bit commpage, pmap=%p", pmap); | |
8908 | } | |
8909 | ||
8910 | PMAP_LOCK(pmap); | |
8911 | } | |
8912 | #endif | |
8913 | ||
5c9f4661 A |
8914 | ttep = pmap_tt2e(pmap, sharedpage_vaddr); |
8915 | ||
5ba3f43e A |
8916 | if (*ttep != ARM_PTE_EMPTY) { |
8917 | panic("%s: Found something mapped at the commpage address?!", __FUNCTION__); | |
8918 | } | |
8919 | ||
5c9f4661 | 8920 | src_ttep = pmap_tt2e(sharedpage_pmap, sharedpage_vaddr); |
5ba3f43e A |
8921 | #endif |
8922 | ||
8923 | *ttep = *src_ttep; | |
8924 | #ifndef __ARM_L1_PTW__ | |
8925 | CleanPoU_DcacheRegion((vm_offset_t) ttep, sizeof(tt_entry_t)); | |
8926 | #endif | |
5c9f4661 A |
8927 | /* TODO: Should we flush in the 64-bit case? */ |
8928 | flush_mmu_tlb_region(sharedpage_vaddr, PAGE_SIZE); | |
8929 | ||
5ba3f43e | 8930 | #if (ARM_PGSHIFT == 12) && !__ARM64_TWO_LEVEL_PMAP__ |
5c9f4661 | 8931 | flush_mmu_tlb_entry(tlbi_addr(sharedpage_vaddr & ~ARM_TT_L1_OFFMASK) | tlbi_asid(pmap->asid)); |
5ba3f43e | 8932 | #elif (ARM_PGSHIFT == 14) |
5c9f4661 | 8933 | flush_mmu_tlb_entry(tlbi_addr(sharedpage_vaddr & ~ARM_TT_L2_OFFMASK) | tlbi_asid(pmap->asid)); |
5ba3f43e A |
8934 | #endif |
8935 | ||
8936 | PMAP_UNLOCK(pmap); | |
8937 | } | |
8938 | ||
8939 | static void | |
8940 | pmap_sharedpage_flush_32_to_64( | |
8941 | void) | |
8942 | { | |
8943 | flush_mmu_tlb_region(_COMM_PAGE32_BASE_ADDRESS, PAGE_SIZE); | |
8944 | } | |
8945 | ||
8946 | static void | |
5c9f4661 | 8947 | pmap_unmap_sharedpage( |
5ba3f43e A |
8948 | pmap_t pmap) |
8949 | { | |
8950 | pt_entry_t *ttep; | |
5c9f4661 | 8951 | vm_offset_t sharedpage_vaddr; |
5ba3f43e A |
8952 | |
8953 | #if _COMM_PAGE_AREA_LENGTH != PAGE_SIZE | |
8954 | #error We assume a single page. | |
8955 | #endif | |
8956 | ||
5c9f4661 A |
8957 | if (pmap_is_64bit(pmap)) { |
8958 | sharedpage_vaddr = _COMM_PAGE64_BASE_ADDRESS; | |
8959 | } else { | |
8960 | sharedpage_vaddr = _COMM_PAGE32_BASE_ADDRESS; | |
8961 | } | |
8962 | ||
5ba3f43e A |
8963 | #if (ARM_PGSHIFT == 12) |
8964 | #if __ARM64_TWO_LEVEL_PMAP__ | |
8965 | #error A two level page table with a page shift of 12 is not currently supported | |
8966 | #endif | |
5c9f4661 A |
8967 | ttep = pmap_tt1e(pmap, sharedpage_vaddr); |
8968 | ||
5ba3f43e A |
8969 | if (ttep == NULL) { |
8970 | return; | |
8971 | } | |
8972 | ||
8973 | /* It had better be mapped to the shared page */ | |
5c9f4661 | 8974 | if (*ttep != ARM_TTE_EMPTY && *ttep != *pmap_tt1e(sharedpage_pmap, sharedpage_vaddr)) { |
5ba3f43e A |
8975 | panic("%s: Something other than commpage mapped in shared page slot?", __FUNCTION__); |
8976 | } | |
8977 | #elif (ARM_PGSHIFT == 14) | |
5c9f4661 A |
8978 | ttep = pmap_tt2e(pmap, sharedpage_vaddr); |
8979 | ||
5ba3f43e A |
8980 | if (ttep == NULL) { |
8981 | return; | |
8982 | } | |
8983 | ||
8984 | /* It had better be mapped to the shared page */ | |
5c9f4661 | 8985 | if (*ttep != ARM_TTE_EMPTY && *ttep != *pmap_tt2e(sharedpage_pmap, sharedpage_vaddr)) { |
5ba3f43e A |
8986 | panic("%s: Something other than commpage mapped in shared page slot?", __FUNCTION__); |
8987 | } | |
8988 | #endif | |
8989 | ||
8990 | *ttep = ARM_TTE_EMPTY; | |
5c9f4661 | 8991 | flush_mmu_tlb_region(sharedpage_vaddr, PAGE_SIZE); |
5ba3f43e A |
8992 | |
8993 | #if (ARM_PGSHIFT == 12) | |
8994 | #if __ARM64_TWO_LEVEL_PMAP__ | |
8995 | #error A two level page table with a page shift of 12 is not currently supported | |
8996 | #endif | |
5c9f4661 | 8997 | flush_mmu_tlb_entry(tlbi_addr(sharedpage_vaddr & ~ARM_TT_L1_OFFMASK) | tlbi_asid(pmap->asid)); |
5ba3f43e | 8998 | #elif (ARM_PGSHIFT == 14) |
5c9f4661 | 8999 | flush_mmu_tlb_entry(tlbi_addr(sharedpage_vaddr & ~ARM_TT_L2_OFFMASK) | tlbi_asid(pmap->asid)); |
5ba3f43e A |
9000 | #endif |
9001 | } | |
9002 | ||
9003 | void | |
9004 | pmap_insert_sharedpage( | |
9005 | pmap_t pmap) | |
9006 | { | |
9007 | pmap_insert_sharedpage_internal(pmap); | |
9008 | } | |
9009 | ||
9010 | static boolean_t | |
9011 | pmap_is_64bit( | |
9012 | pmap_t pmap) | |
9013 | { | |
9014 | return (pmap->is_64bit); | |
9015 | } | |
9016 | ||
9017 | #endif | |
9018 | ||
9019 | /* ARMTODO -- an implementation that accounts for | |
9020 | * holes in the physical map, if any. | |
9021 | */ | |
9022 | boolean_t | |
9023 | pmap_valid_page( | |
9024 | ppnum_t pn) { | |
9025 | return pa_valid(ptoa(pn)); | |
9026 | } | |
9027 | ||
9028 | static boolean_t | |
9029 | pmap_is_empty_internal( | |
9030 | pmap_t pmap, | |
9031 | vm_map_offset_t va_start, | |
9032 | vm_map_offset_t va_end) | |
9033 | { | |
9034 | vm_map_offset_t block_start, block_end; | |
9035 | tt_entry_t *tte_p; | |
9036 | ||
9037 | if (pmap == NULL) { | |
9038 | return TRUE; | |
9039 | } | |
9040 | ||
9041 | if ((pmap != kernel_pmap) && (not_in_kdp)) { | |
9042 | PMAP_LOCK(pmap); | |
9043 | } | |
9044 | ||
9045 | #if (__ARM_VMSA__ == 7) | |
9046 | if (tte_index(pmap, va_end) >= pmap->tte_index_max) { | |
9047 | if ((pmap != kernel_pmap) && (not_in_kdp)) { | |
9048 | PMAP_UNLOCK(pmap); | |
9049 | } | |
9050 | return TRUE; | |
9051 | } | |
9052 | ||
9053 | block_start = va_start; | |
9054 | tte_p = pmap_tte(pmap, block_start); | |
9055 | while (block_start < va_end) { | |
9056 | block_end = (block_start + ARM_TT_L1_SIZE) & ~(ARM_TT_L1_OFFMASK); | |
9057 | if (block_end > va_end) | |
9058 | block_end = va_end; | |
9059 | ||
9060 | if ((*tte_p & ARM_TTE_TYPE_MASK) != 0) { | |
9061 | vm_map_offset_t offset; | |
9062 | ppnum_t phys_page = 0; | |
9063 | ||
9064 | for (offset = block_start; | |
9065 | offset < block_end; | |
9066 | offset += ARM_PGBYTES) { | |
9067 | // This does a pmap_find_phys() lookup but assumes lock is held | |
9068 | phys_page = pmap_vtophys(pmap, offset); | |
9069 | if (phys_page) { | |
9070 | if ((pmap != kernel_pmap) && (not_in_kdp)) { | |
9071 | PMAP_UNLOCK(pmap); | |
9072 | } | |
9073 | return FALSE; | |
9074 | } | |
9075 | } | |
9076 | } | |
9077 | ||
9078 | block_start = block_end; | |
9079 | tte_p++; | |
9080 | } | |
9081 | #else | |
9082 | block_start = va_start; | |
9083 | ||
9084 | while (block_start < va_end) { | |
9085 | pt_entry_t *bpte_p, *epte_p; | |
9086 | pt_entry_t *pte_p; | |
9087 | ||
9088 | block_end = (block_start + ARM_TT_L2_SIZE) & ~ARM_TT_L2_OFFMASK; | |
9089 | if (block_end > va_end) | |
9090 | block_end = va_end; | |
9091 | ||
9092 | tte_p = pmap_tt2e(pmap, block_start); | |
9093 | if ((tte_p != PT_ENTRY_NULL) | |
9094 | && ((*tte_p & ARM_TTE_TYPE_MASK) == ARM_TTE_TYPE_TABLE)) { | |
9095 | ||
9096 | pte_p = (pt_entry_t *) ttetokv(*tte_p); | |
9097 | bpte_p = &pte_p[tt3_index(pmap, block_start)]; | |
9098 | epte_p = bpte_p + (((block_end - block_start) & ARM_TT_L3_INDEX_MASK) >> ARM_TT_L3_SHIFT); | |
9099 | ||
9100 | for (pte_p = bpte_p; pte_p < epte_p; pte_p++) { | |
9101 | if (*pte_p != ARM_PTE_EMPTY) { | |
9102 | if ((pmap != kernel_pmap) && (not_in_kdp)) { | |
9103 | PMAP_UNLOCK(pmap); | |
9104 | } | |
9105 | return FALSE; | |
9106 | } | |
9107 | } | |
9108 | } | |
9109 | block_start = block_end; | |
9110 | } | |
9111 | #endif | |
9112 | ||
9113 | if ((pmap != kernel_pmap) && (not_in_kdp)) { | |
9114 | PMAP_UNLOCK(pmap); | |
9115 | } | |
9116 | ||
9117 | return TRUE; | |
9118 | } | |
9119 | ||
9120 | boolean_t | |
9121 | pmap_is_empty( | |
9122 | pmap_t pmap, | |
9123 | vm_map_offset_t va_start, | |
9124 | vm_map_offset_t va_end) | |
9125 | { | |
9126 | return pmap_is_empty_internal(pmap, va_start, va_end); | |
9127 | } | |
9128 | ||
9129 | vm_map_offset_t pmap_max_offset( | |
9130 | boolean_t is64 __unused, | |
9131 | unsigned int option) | |
9132 | { | |
9133 | vm_map_offset_t max_offset_ret = 0; | |
9134 | ||
9135 | #if defined(__arm64__) | |
9136 | assert (is64); | |
9137 | vm_map_offset_t min_max_offset = SHARED_REGION_BASE_ARM64 + SHARED_REGION_SIZE_ARM64 + 0x20000000; // end of shared region + 512MB for various purposes | |
9138 | if (option == ARM_PMAP_MAX_OFFSET_DEFAULT) { | |
9139 | max_offset_ret = arm64_pmap_max_offset_default; | |
9140 | } else if (option == ARM_PMAP_MAX_OFFSET_MIN) { | |
9141 | max_offset_ret = min_max_offset; | |
9142 | } else if (option == ARM_PMAP_MAX_OFFSET_MAX) { | |
9143 | max_offset_ret = MACH_VM_MAX_ADDRESS; | |
9144 | } else if (option == ARM_PMAP_MAX_OFFSET_DEVICE) { | |
9145 | if (arm64_pmap_max_offset_default) { | |
9146 | max_offset_ret = arm64_pmap_max_offset_default; | |
9147 | } else if (max_mem > 0xC0000000) { | |
9148 | max_offset_ret = 0x0000000318000000ULL; // Max offset is 12.375GB for devices with > 3GB of memory | |
9149 | } else if (max_mem > 0x40000000) { | |
9150 | max_offset_ret = 0x0000000218000000ULL; // Max offset is 8.375GB for devices with > 1GB and <= 3GB of memory | |
9151 | } else { | |
9152 | max_offset_ret = min_max_offset; | |
9153 | } | |
9154 | } else if (option == ARM_PMAP_MAX_OFFSET_JUMBO) { | |
a39ff7e2 A |
9155 | if (arm64_pmap_max_offset_default) { |
9156 | // Allow the boot-arg to override jumbo size | |
9157 | max_offset_ret = arm64_pmap_max_offset_default; | |
9158 | } else { | |
9159 | max_offset_ret = MACH_VM_MAX_ADDRESS; // Max offset is MACH_VM_MAX_ADDRESS for pmaps with special "jumbo" blessing | |
9160 | } | |
5ba3f43e A |
9161 | } else { |
9162 | panic("pmap_max_offset illegal option 0x%x\n", option); | |
9163 | } | |
9164 | ||
9165 | assert(max_offset_ret >= min_max_offset); | |
a39ff7e2 | 9166 | assert(max_offset_ret <= MACH_VM_MAX_ADDRESS); |
5ba3f43e A |
9167 | return max_offset_ret; |
9168 | #else | |
9169 | if (option == ARM_PMAP_MAX_OFFSET_DEFAULT) { | |
9170 | max_offset_ret = arm_pmap_max_offset_default; | |
9171 | } else if (option == ARM_PMAP_MAX_OFFSET_MIN) { | |
9172 | max_offset_ret = 0x66000000; | |
9173 | } else if (option == ARM_PMAP_MAX_OFFSET_MAX) { | |
9174 | max_offset_ret = VM_MAX_ADDRESS; | |
9175 | } else if (option == ARM_PMAP_MAX_OFFSET_DEVICE) { | |
9176 | if (arm_pmap_max_offset_default) { | |
9177 | max_offset_ret = arm_pmap_max_offset_default; | |
9178 | } else if (max_mem > 0x20000000) { | |
9179 | max_offset_ret = 0x80000000; | |
9180 | } else { | |
9181 | max_offset_ret = 0x66000000; | |
9182 | } | |
9183 | } else { | |
9184 | panic("pmap_max_offset illegal option 0x%x\n", option); | |
9185 | } | |
9186 | ||
a39ff7e2 | 9187 | assert(max_offset_ret <= VM_MAX_ADDRESS); |
5ba3f43e A |
9188 | return max_offset_ret; |
9189 | #endif | |
9190 | } | |
9191 | ||
9192 | #if CONFIG_DTRACE | |
9193 | /* | |
9194 | * Constrain DTrace copyin/copyout actions | |
9195 | */ | |
9196 | extern kern_return_t dtrace_copyio_preflight(addr64_t); | |
9197 | extern kern_return_t dtrace_copyio_postflight(addr64_t); | |
9198 | ||
9199 | kern_return_t dtrace_copyio_preflight( | |
9200 | __unused addr64_t va) | |
9201 | { | |
9202 | if (current_map() == kernel_map) | |
9203 | return KERN_FAILURE; | |
9204 | else | |
9205 | return KERN_SUCCESS; | |
9206 | } | |
9207 | ||
9208 | kern_return_t dtrace_copyio_postflight( | |
9209 | __unused addr64_t va) | |
9210 | { | |
9211 | return KERN_SUCCESS; | |
9212 | } | |
9213 | #endif /* CONFIG_DTRACE */ | |
9214 | ||
9215 | ||
9216 | void | |
9217 | pmap_flush_context_init(__unused pmap_flush_context *pfc) | |
9218 | { | |
9219 | } | |
9220 | ||
9221 | ||
9222 | void | |
9223 | pmap_flush( | |
9224 | __unused pmap_flush_context *cpus_to_flush) | |
9225 | { | |
9226 | /* not implemented yet */ | |
9227 | return; | |
9228 | } | |
9229 | ||
9230 | static boolean_t | |
9231 | pmap_query_resident_internal( | |
9232 | pmap_t pmap, | |
9233 | vm_map_address_t start, | |
9234 | vm_map_address_t end, | |
9235 | mach_vm_size_t *resident_bytes_p, | |
9236 | mach_vm_size_t *compressed_bytes_p) | |
9237 | { | |
9238 | mach_vm_size_t resident_bytes = 0; | |
9239 | mach_vm_size_t compressed_bytes = 0; | |
9240 | ||
9241 | pt_entry_t *bpte, *epte; | |
9242 | pt_entry_t *pte_p; | |
9243 | tt_entry_t *tte_p; | |
9244 | ||
9245 | if (pmap == NULL) { | |
9246 | return FALSE; | |
9247 | } | |
9248 | ||
9249 | /* Ensure that this request is valid, and addresses exactly one TTE. */ | |
9250 | assert(!(start % ARM_PGBYTES)); | |
9251 | assert(!(end % ARM_PGBYTES)); | |
9252 | assert(end >= start); | |
9253 | assert((end - start) <= (PTE_PGENTRIES * ARM_PGBYTES)); | |
9254 | ||
9255 | PMAP_LOCK(pmap); | |
9256 | tte_p = pmap_tte(pmap, start); | |
9257 | if (tte_p == (tt_entry_t *) NULL) { | |
9258 | PMAP_UNLOCK(pmap); | |
9259 | return FALSE; | |
9260 | } | |
9261 | if ((*tte_p & ARM_TTE_TYPE_MASK) == ARM_TTE_TYPE_TABLE) { | |
9262 | ||
9263 | #if (__ARM_VMSA__ == 7) | |
9264 | pte_p = (pt_entry_t *) ttetokv(*tte_p); | |
9265 | bpte = &pte_p[ptenum(start)]; | |
9266 | epte = bpte + atop(end - start); | |
9267 | #else | |
9268 | pte_p = (pt_entry_t *) ttetokv(*tte_p); | |
9269 | bpte = &pte_p[tt3_index(pmap, start)]; | |
9270 | epte = bpte + ((end - start) >> ARM_TT_L3_SHIFT); | |
9271 | #endif | |
9272 | ||
9273 | for (; bpte < epte; bpte++) { | |
9274 | if (ARM_PTE_IS_COMPRESSED(*bpte)) { | |
9275 | compressed_bytes += ARM_PGBYTES; | |
9276 | } else if (pa_valid(pte_to_pa(*bpte))) { | |
9277 | resident_bytes += ARM_PGBYTES; | |
9278 | } | |
9279 | } | |
9280 | } | |
9281 | PMAP_UNLOCK(pmap); | |
9282 | ||
9283 | if (compressed_bytes_p) { | |
9284 | *compressed_bytes_p += compressed_bytes; | |
9285 | } | |
9286 | ||
9287 | if (resident_bytes_p) { | |
9288 | *resident_bytes_p += resident_bytes; | |
9289 | } | |
9290 | ||
9291 | return TRUE; | |
9292 | } | |
9293 | ||
9294 | mach_vm_size_t | |
9295 | pmap_query_resident( | |
9296 | pmap_t pmap, | |
9297 | vm_map_address_t start, | |
9298 | vm_map_address_t end, | |
9299 | mach_vm_size_t *compressed_bytes_p) | |
9300 | { | |
9301 | mach_vm_size_t resident_bytes; | |
9302 | mach_vm_size_t compressed_bytes; | |
9303 | vm_map_address_t va; | |
9304 | ||
9305 | ||
9306 | if (pmap == PMAP_NULL) { | |
9307 | if (compressed_bytes_p) { | |
9308 | *compressed_bytes_p = 0; | |
9309 | } | |
9310 | return 0; | |
9311 | } | |
9312 | ||
9313 | resident_bytes = 0; | |
9314 | compressed_bytes = 0; | |
9315 | ||
9316 | PMAP_TRACE(PMAP_CODE(PMAP__QUERY_RESIDENT) | DBG_FUNC_START, | |
9317 | VM_KERNEL_ADDRHIDE(pmap), VM_KERNEL_ADDRHIDE(start), | |
9318 | VM_KERNEL_ADDRHIDE(end)); | |
9319 | ||
9320 | va = start; | |
9321 | while (va < end) { | |
9322 | vm_map_address_t l; | |
9323 | ||
9324 | l = ((va + ARM_TT_TWIG_SIZE) & ~ARM_TT_TWIG_OFFMASK); | |
9325 | ||
9326 | if (l > end) | |
9327 | l = end; | |
9328 | if (!pmap_query_resident_internal(pmap, va, l, &resident_bytes, compressed_bytes_p)) { | |
9329 | break; | |
9330 | } | |
9331 | ||
9332 | va = l; | |
9333 | } | |
9334 | ||
9335 | if (compressed_bytes_p) { | |
9336 | *compressed_bytes_p = compressed_bytes; | |
9337 | } | |
9338 | ||
9339 | PMAP_TRACE(PMAP_CODE(PMAP__QUERY_RESIDENT) | DBG_FUNC_END, | |
9340 | resident_bytes); | |
9341 | ||
9342 | return resident_bytes; | |
9343 | } | |
9344 | ||
9345 | #if MACH_ASSERT | |
9346 | extern int pmap_ledgers_panic; | |
9347 | static void | |
9348 | pmap_check_ledgers( | |
9349 | pmap_t pmap) | |
9350 | { | |
9351 | ledger_amount_t bal; | |
9352 | int pid; | |
9353 | char *procname; | |
9354 | boolean_t do_panic; | |
9355 | ||
9356 | if (pmap->pmap_pid == 0) { | |
9357 | /* | |
9358 | * This pmap was not or is no longer fully associated | |
9359 | * with a task (e.g. the old pmap after a fork()/exec() or | |
9360 | * spawn()). Its "ledger" still points at a task that is | |
9361 | * now using a different (and active) address space, so | |
9362 | * we can't check that all the pmap ledgers are balanced here. | |
9363 | * | |
9364 | * If the "pid" is set, that means that we went through | |
9365 | * pmap_set_process() in task_terminate_internal(), so | |
9366 | * this task's ledger should not have been re-used and | |
9367 | * all the pmap ledgers should be back to 0. | |
9368 | */ | |
9369 | return; | |
9370 | } | |
9371 | ||
9372 | do_panic = FALSE; | |
9373 | pid = pmap->pmap_pid; | |
9374 | procname = pmap->pmap_procname; | |
9375 | ||
9376 | pmap_ledgers_drift.num_pmaps_checked++; | |
9377 | ||
9378 | ledger_get_balance(pmap->ledger, | |
9379 | task_ledgers.phys_footprint, | |
9380 | &bal); | |
9381 | if (bal != 0) { | |
9382 | #if DEVELOPMENT || DEBUG | |
9383 | // if (!pmap->footprint_was_suspended) | |
9384 | #endif /* DEVELOPMENT || DEBUG */ | |
9385 | do_panic = TRUE; | |
9386 | printf("LEDGER BALANCE proc %d (%s) " | |
9387 | "\"phys_footprint\" = %lld\n", | |
9388 | pid, procname, bal); | |
9389 | if (bal > 0) { | |
9390 | pmap_ledgers_drift.phys_footprint_over++; | |
9391 | pmap_ledgers_drift.phys_footprint_over_total += bal; | |
9392 | if (bal > pmap_ledgers_drift.phys_footprint_over_max) { | |
9393 | pmap_ledgers_drift.phys_footprint_over_max = bal; | |
9394 | } | |
9395 | } else { | |
9396 | pmap_ledgers_drift.phys_footprint_under++; | |
9397 | pmap_ledgers_drift.phys_footprint_under_total += bal; | |
9398 | if (bal < pmap_ledgers_drift.phys_footprint_under_max) { | |
9399 | pmap_ledgers_drift.phys_footprint_under_max = bal; | |
9400 | } | |
9401 | } | |
9402 | } | |
9403 | ledger_get_balance(pmap->ledger, | |
9404 | task_ledgers.internal, | |
9405 | &bal); | |
9406 | if (bal != 0) { | |
9407 | do_panic = TRUE; | |
9408 | printf("LEDGER BALANCE proc %d (%s) " | |
9409 | "\"internal\" = %lld\n", | |
9410 | pid, procname, bal); | |
9411 | if (bal > 0) { | |
9412 | pmap_ledgers_drift.internal_over++; | |
9413 | pmap_ledgers_drift.internal_over_total += bal; | |
9414 | if (bal > pmap_ledgers_drift.internal_over_max) { | |
9415 | pmap_ledgers_drift.internal_over_max = bal; | |
9416 | } | |
9417 | } else { | |
9418 | pmap_ledgers_drift.internal_under++; | |
9419 | pmap_ledgers_drift.internal_under_total += bal; | |
9420 | if (bal < pmap_ledgers_drift.internal_under_max) { | |
9421 | pmap_ledgers_drift.internal_under_max = bal; | |
9422 | } | |
9423 | } | |
9424 | } | |
9425 | ledger_get_balance(pmap->ledger, | |
9426 | task_ledgers.internal_compressed, | |
9427 | &bal); | |
9428 | if (bal != 0) { | |
9429 | do_panic = TRUE; | |
9430 | printf("LEDGER BALANCE proc %d (%s) " | |
9431 | "\"internal_compressed\" = %lld\n", | |
9432 | pid, procname, bal); | |
9433 | if (bal > 0) { | |
9434 | pmap_ledgers_drift.internal_compressed_over++; | |
9435 | pmap_ledgers_drift.internal_compressed_over_total += bal; | |
9436 | if (bal > pmap_ledgers_drift.internal_compressed_over_max) { | |
9437 | pmap_ledgers_drift.internal_compressed_over_max = bal; | |
9438 | } | |
9439 | } else { | |
9440 | pmap_ledgers_drift.internal_compressed_under++; | |
9441 | pmap_ledgers_drift.internal_compressed_under_total += bal; | |
9442 | if (bal < pmap_ledgers_drift.internal_compressed_under_max) { | |
9443 | pmap_ledgers_drift.internal_compressed_under_max = bal; | |
9444 | } | |
9445 | } | |
9446 | } | |
9447 | ledger_get_balance(pmap->ledger, | |
9448 | task_ledgers.iokit_mapped, | |
9449 | &bal); | |
9450 | if (bal != 0) { | |
9451 | do_panic = TRUE; | |
9452 | printf("LEDGER BALANCE proc %d (%s) " | |
9453 | "\"iokit_mapped\" = %lld\n", | |
9454 | pid, procname, bal); | |
9455 | if (bal > 0) { | |
9456 | pmap_ledgers_drift.iokit_mapped_over++; | |
9457 | pmap_ledgers_drift.iokit_mapped_over_total += bal; | |
9458 | if (bal > pmap_ledgers_drift.iokit_mapped_over_max) { | |
9459 | pmap_ledgers_drift.iokit_mapped_over_max = bal; | |
9460 | } | |
9461 | } else { | |
9462 | pmap_ledgers_drift.iokit_mapped_under++; | |
9463 | pmap_ledgers_drift.iokit_mapped_under_total += bal; | |
9464 | if (bal < pmap_ledgers_drift.iokit_mapped_under_max) { | |
9465 | pmap_ledgers_drift.iokit_mapped_under_max = bal; | |
9466 | } | |
9467 | } | |
9468 | } | |
9469 | ledger_get_balance(pmap->ledger, | |
9470 | task_ledgers.alternate_accounting, | |
9471 | &bal); | |
9472 | if (bal != 0) { | |
9473 | do_panic = TRUE; | |
9474 | printf("LEDGER BALANCE proc %d (%s) " | |
9475 | "\"alternate_accounting\" = %lld\n", | |
9476 | pid, procname, bal); | |
9477 | if (bal > 0) { | |
9478 | pmap_ledgers_drift.alternate_accounting_over++; | |
9479 | pmap_ledgers_drift.alternate_accounting_over_total += bal; | |
9480 | if (bal > pmap_ledgers_drift.alternate_accounting_over_max) { | |
9481 | pmap_ledgers_drift.alternate_accounting_over_max = bal; | |
9482 | } | |
9483 | } else { | |
9484 | pmap_ledgers_drift.alternate_accounting_under++; | |
9485 | pmap_ledgers_drift.alternate_accounting_under_total += bal; | |
9486 | if (bal < pmap_ledgers_drift.alternate_accounting_under_max) { | |
9487 | pmap_ledgers_drift.alternate_accounting_under_max = bal; | |
9488 | } | |
9489 | } | |
9490 | } | |
9491 | ledger_get_balance(pmap->ledger, | |
9492 | task_ledgers.alternate_accounting_compressed, | |
9493 | &bal); | |
9494 | if (bal != 0) { | |
9495 | do_panic = TRUE; | |
9496 | printf("LEDGER BALANCE proc %d (%s) " | |
9497 | "\"alternate_accounting_compressed\" = %lld\n", | |
9498 | pid, procname, bal); | |
9499 | if (bal > 0) { | |
9500 | pmap_ledgers_drift.alternate_accounting_compressed_over++; | |
9501 | pmap_ledgers_drift.alternate_accounting_compressed_over_total += bal; | |
9502 | if (bal > pmap_ledgers_drift.alternate_accounting_compressed_over_max) { | |
9503 | pmap_ledgers_drift.alternate_accounting_compressed_over_max = bal; | |
9504 | } | |
9505 | } else { | |
9506 | pmap_ledgers_drift.alternate_accounting_compressed_under++; | |
9507 | pmap_ledgers_drift.alternate_accounting_compressed_under_total += bal; | |
9508 | if (bal < pmap_ledgers_drift.alternate_accounting_compressed_under_max) { | |
9509 | pmap_ledgers_drift.alternate_accounting_compressed_under_max = bal; | |
9510 | } | |
9511 | } | |
9512 | } | |
9513 | ledger_get_balance(pmap->ledger, | |
9514 | task_ledgers.page_table, | |
9515 | &bal); | |
9516 | if (bal != 0) { | |
9517 | do_panic = TRUE; | |
9518 | printf("LEDGER BALANCE proc %d (%s) " | |
9519 | "\"page_table\" = %lld\n", | |
9520 | pid, procname, bal); | |
9521 | if (bal > 0) { | |
9522 | pmap_ledgers_drift.page_table_over++; | |
9523 | pmap_ledgers_drift.page_table_over_total += bal; | |
9524 | if (bal > pmap_ledgers_drift.page_table_over_max) { | |
9525 | pmap_ledgers_drift.page_table_over_max = bal; | |
9526 | } | |
9527 | } else { | |
9528 | pmap_ledgers_drift.page_table_under++; | |
9529 | pmap_ledgers_drift.page_table_under_total += bal; | |
9530 | if (bal < pmap_ledgers_drift.page_table_under_max) { | |
9531 | pmap_ledgers_drift.page_table_under_max = bal; | |
9532 | } | |
9533 | } | |
9534 | } | |
9535 | ledger_get_balance(pmap->ledger, | |
9536 | task_ledgers.purgeable_volatile, | |
9537 | &bal); | |
9538 | if (bal != 0) { | |
9539 | do_panic = TRUE; | |
9540 | printf("LEDGER BALANCE proc %d (%s) " | |
9541 | "\"purgeable_volatile\" = %lld\n", | |
9542 | pid, procname, bal); | |
9543 | if (bal > 0) { | |
9544 | pmap_ledgers_drift.purgeable_volatile_over++; | |
9545 | pmap_ledgers_drift.purgeable_volatile_over_total += bal; | |
9546 | if (bal > pmap_ledgers_drift.purgeable_volatile_over_max) { | |
9547 | pmap_ledgers_drift.purgeable_volatile_over_max = bal; | |
9548 | } | |
9549 | } else { | |
9550 | pmap_ledgers_drift.purgeable_volatile_under++; | |
9551 | pmap_ledgers_drift.purgeable_volatile_under_total += bal; | |
9552 | if (bal < pmap_ledgers_drift.purgeable_volatile_under_max) { | |
9553 | pmap_ledgers_drift.purgeable_volatile_under_max = bal; | |
9554 | } | |
9555 | } | |
9556 | } | |
9557 | ledger_get_balance(pmap->ledger, | |
9558 | task_ledgers.purgeable_nonvolatile, | |
9559 | &bal); | |
9560 | if (bal != 0) { | |
9561 | do_panic = TRUE; | |
9562 | printf("LEDGER BALANCE proc %d (%s) " | |
9563 | "\"purgeable_nonvolatile\" = %lld\n", | |
9564 | pid, procname, bal); | |
9565 | if (bal > 0) { | |
9566 | pmap_ledgers_drift.purgeable_nonvolatile_over++; | |
9567 | pmap_ledgers_drift.purgeable_nonvolatile_over_total += bal; | |
9568 | if (bal > pmap_ledgers_drift.purgeable_nonvolatile_over_max) { | |
9569 | pmap_ledgers_drift.purgeable_nonvolatile_over_max = bal; | |
9570 | } | |
9571 | } else { | |
9572 | pmap_ledgers_drift.purgeable_nonvolatile_under++; | |
9573 | pmap_ledgers_drift.purgeable_nonvolatile_under_total += bal; | |
9574 | if (bal < pmap_ledgers_drift.purgeable_nonvolatile_under_max) { | |
9575 | pmap_ledgers_drift.purgeable_nonvolatile_under_max = bal; | |
9576 | } | |
9577 | } | |
9578 | } | |
9579 | ledger_get_balance(pmap->ledger, | |
9580 | task_ledgers.purgeable_volatile_compressed, | |
9581 | &bal); | |
9582 | if (bal != 0) { | |
9583 | do_panic = TRUE; | |
9584 | printf("LEDGER BALANCE proc %d (%s) " | |
9585 | "\"purgeable_volatile_compressed\" = %lld\n", | |
9586 | pid, procname, bal); | |
9587 | if (bal > 0) { | |
9588 | pmap_ledgers_drift.purgeable_volatile_compressed_over++; | |
9589 | pmap_ledgers_drift.purgeable_volatile_compressed_over_total += bal; | |
9590 | if (bal > pmap_ledgers_drift.purgeable_volatile_compressed_over_max) { | |
9591 | pmap_ledgers_drift.purgeable_volatile_compressed_over_max = bal; | |
9592 | } | |
9593 | } else { | |
9594 | pmap_ledgers_drift.purgeable_volatile_compressed_under++; | |
9595 | pmap_ledgers_drift.purgeable_volatile_compressed_under_total += bal; | |
9596 | if (bal < pmap_ledgers_drift.purgeable_volatile_compressed_under_max) { | |
9597 | pmap_ledgers_drift.purgeable_volatile_compressed_under_max = bal; | |
9598 | } | |
9599 | } | |
9600 | } | |
9601 | ledger_get_balance(pmap->ledger, | |
9602 | task_ledgers.purgeable_nonvolatile_compressed, | |
9603 | &bal); | |
9604 | if (bal != 0) { | |
9605 | do_panic = TRUE; | |
9606 | printf("LEDGER BALANCE proc %d (%s) " | |
9607 | "\"purgeable_nonvolatile_compressed\" = %lld\n", | |
9608 | pid, procname, bal); | |
9609 | if (bal > 0) { | |
9610 | pmap_ledgers_drift.purgeable_nonvolatile_compressed_over++; | |
9611 | pmap_ledgers_drift.purgeable_nonvolatile_compressed_over_total += bal; | |
9612 | if (bal > pmap_ledgers_drift.purgeable_nonvolatile_compressed_over_max) { | |
9613 | pmap_ledgers_drift.purgeable_nonvolatile_compressed_over_max = bal; | |
9614 | } | |
9615 | } else { | |
9616 | pmap_ledgers_drift.purgeable_nonvolatile_compressed_under++; | |
9617 | pmap_ledgers_drift.purgeable_nonvolatile_compressed_under_total += bal; | |
9618 | if (bal < pmap_ledgers_drift.purgeable_nonvolatile_compressed_under_max) { | |
9619 | pmap_ledgers_drift.purgeable_nonvolatile_compressed_under_max = bal; | |
9620 | } | |
9621 | } | |
9622 | } | |
9623 | ||
9624 | if (do_panic) { | |
a39ff7e2 A |
9625 | if (pmap_ledgers_panic && |
9626 | pmap->pmap_stats_assert) { | |
5ba3f43e A |
9627 | panic("pmap_destroy(%p) %d[%s] has imbalanced ledgers\n", |
9628 | pmap, pid, procname); | |
9629 | } else { | |
9630 | printf("pmap_destroy(%p) %d[%s] has imbalanced ledgers\n", | |
9631 | pmap, pid, procname); | |
9632 | } | |
9633 | } | |
9634 | ||
5c9f4661 | 9635 | PMAP_STATS_ASSERTF(pmap->stats.resident_count == 0, pmap, "stats.resident_count %d", pmap->stats.resident_count); |
5ba3f43e | 9636 | #if 00 |
5c9f4661 | 9637 | PMAP_STATS_ASSERTF(pmap->stats.wired_count == 0, pmap, "stats.wired_count %d", pmap->stats.wired_count); |
5ba3f43e | 9638 | #endif |
5c9f4661 A |
9639 | PMAP_STATS_ASSERTF(pmap->stats.device == 0, pmap, "stats.device %d", pmap->stats.device); |
9640 | PMAP_STATS_ASSERTF(pmap->stats.internal == 0, pmap, "stats.internal %d", pmap->stats.internal); | |
9641 | PMAP_STATS_ASSERTF(pmap->stats.external == 0, pmap, "stats.external %d", pmap->stats.external); | |
9642 | PMAP_STATS_ASSERTF(pmap->stats.reusable == 0, pmap, "stats.reusable %d", pmap->stats.reusable); | |
9643 | PMAP_STATS_ASSERTF(pmap->stats.compressed == 0, pmap, "stats.compressed %lld", pmap->stats.compressed); | |
5ba3f43e A |
9644 | } |
9645 | #endif /* MACH_ASSERT */ | |
9646 | ||
9647 | void pmap_advise_pagezero_range(__unused pmap_t p, __unused uint64_t a) { | |
9648 | } | |
9649 | ||
9650 | ||
9651 | #if CONFIG_PGTRACE | |
9652 | #define PROF_START uint64_t t, nanot;\ | |
9653 | t = mach_absolute_time(); | |
9654 | ||
9655 | #define PROF_END absolutetime_to_nanoseconds(mach_absolute_time()-t, &nanot);\ | |
9656 | kprintf("%s: took %llu ns\n", __func__, nanot); | |
9657 | ||
9658 | #define PMAP_PGTRACE_LOCK(p) \ | |
9659 | do { \ | |
9660 | *(p) = ml_set_interrupts_enabled(false); \ | |
9661 | if (simple_lock_try(&(pmap_pgtrace.lock))) break; \ | |
9662 | ml_set_interrupts_enabled(*(p)); \ | |
9663 | } while (true) | |
9664 | ||
9665 | #define PMAP_PGTRACE_UNLOCK(p) \ | |
9666 | do { \ | |
9667 | simple_unlock(&(pmap_pgtrace.lock)); \ | |
9668 | ml_set_interrupts_enabled(*(p)); \ | |
9669 | } while (0) | |
9670 | ||
9671 | #define PGTRACE_WRITE_PTE(pte_p, pte_entry) \ | |
9672 | do { \ | |
9673 | *(pte_p) = (pte_entry); \ | |
9674 | FLUSH_PTE(pte_p); \ | |
9675 | } while (0) | |
9676 | ||
9677 | #define PGTRACE_MAX_MAP 16 // maximum supported va to same pa | |
9678 | ||
9679 | typedef enum { | |
9680 | UNDEFINED, | |
9681 | PA_UNDEFINED, | |
9682 | VA_UNDEFINED, | |
9683 | DEFINED | |
9684 | } pmap_pgtrace_page_state_t; | |
9685 | ||
9686 | typedef struct { | |
9687 | queue_chain_t chain; | |
9688 | ||
9689 | /* | |
9690 | pa - pa | |
9691 | maps - list of va maps to upper pa | |
9692 | map_pool - map pool | |
9693 | map_waste - waste can | |
9694 | state - state | |
9695 | */ | |
9696 | pmap_paddr_t pa; | |
9697 | queue_head_t maps; | |
9698 | queue_head_t map_pool; | |
9699 | queue_head_t map_waste; | |
9700 | pmap_pgtrace_page_state_t state; | |
9701 | } pmap_pgtrace_page_t; | |
9702 | ||
9703 | static struct { | |
9704 | /* | |
9705 | pages - list of tracing page info | |
9706 | */ | |
9707 | queue_head_t pages; | |
9708 | decl_simple_lock_data(, lock); | |
9709 | } pmap_pgtrace = {}; | |
9710 | ||
9711 | static void pmap_pgtrace_init(void) | |
9712 | { | |
9713 | queue_init(&(pmap_pgtrace.pages)); | |
9714 | simple_lock_init(&(pmap_pgtrace.lock), 0); | |
9715 | ||
9716 | boolean_t enabled; | |
9717 | ||
9718 | if (PE_parse_boot_argn("pgtrace", &enabled, sizeof(enabled))) { | |
9719 | pgtrace_enabled = enabled; | |
9720 | } | |
9721 | } | |
9722 | ||
9723 | // find a page with given pa - pmap_pgtrace should be locked | |
9724 | inline static pmap_pgtrace_page_t *pmap_pgtrace_find_page(pmap_paddr_t pa) | |
9725 | { | |
9726 | queue_head_t *q = &(pmap_pgtrace.pages); | |
9727 | pmap_pgtrace_page_t *p; | |
9728 | ||
9729 | queue_iterate(q, p, pmap_pgtrace_page_t *, chain) { | |
9730 | if (p->state == UNDEFINED) { | |
9731 | continue; | |
9732 | } | |
9733 | if (p->state == PA_UNDEFINED) { | |
9734 | continue; | |
9735 | } | |
9736 | if (p->pa == pa) { | |
9737 | return p; | |
9738 | } | |
9739 | } | |
9740 | ||
9741 | return NULL; | |
9742 | } | |
9743 | ||
9744 | // enter clone of given pmap, va page and range - pmap should be locked | |
9745 | static bool pmap_pgtrace_enter_clone(pmap_t pmap, vm_map_offset_t va_page, vm_map_offset_t start, vm_map_offset_t end) | |
9746 | { | |
9747 | bool ints; | |
9748 | queue_head_t *q = &(pmap_pgtrace.pages); | |
9749 | pmap_paddr_t pa_page; | |
9750 | pt_entry_t *ptep, *cptep; | |
9751 | pmap_pgtrace_page_t *p; | |
9752 | bool found = false; | |
9753 | ||
9754 | PMAP_ASSERT_LOCKED(pmap); | |
9755 | assert(va_page == arm_trunc_page(va_page)); | |
9756 | ||
9757 | PMAP_PGTRACE_LOCK(&ints); | |
9758 | ||
9759 | ptep = pmap_pte(pmap, va_page); | |
9760 | ||
9761 | // target pte should exist | |
9762 | if (!ptep || !(*ptep & ARM_PTE_TYPE_VALID)) { | |
9763 | PMAP_PGTRACE_UNLOCK(&ints); | |
9764 | return false; | |
9765 | } | |
9766 | ||
9767 | queue_head_t *mapq; | |
9768 | queue_head_t *mappool; | |
9769 | pmap_pgtrace_map_t *map = NULL; | |
9770 | ||
9771 | pa_page = pte_to_pa(*ptep); | |
9772 | ||
9773 | // find if we have a page info defined for this | |
9774 | queue_iterate(q, p, pmap_pgtrace_page_t *, chain) { | |
9775 | mapq = &(p->maps); | |
9776 | mappool = &(p->map_pool); | |
9777 | ||
9778 | switch (p->state) { | |
9779 | case PA_UNDEFINED: | |
9780 | queue_iterate(mapq, map, pmap_pgtrace_map_t *, chain) { | |
9781 | if (map->cloned == false && map->pmap == pmap && map->ova == va_page) { | |
9782 | p->pa = pa_page; | |
9783 | map->range.start = start; | |
9784 | map->range.end = end; | |
9785 | found = true; | |
9786 | break; | |
9787 | } | |
9788 | } | |
9789 | break; | |
9790 | ||
9791 | case VA_UNDEFINED: | |
9792 | if (p->pa != pa_page) { | |
9793 | break; | |
9794 | } | |
9795 | queue_iterate(mapq, map, pmap_pgtrace_map_t *, chain) { | |
9796 | if (map->cloned == false) { | |
9797 | map->pmap = pmap; | |
9798 | map->ova = va_page; | |
9799 | map->range.start = start; | |
9800 | map->range.end = end; | |
9801 | found = true; | |
9802 | break; | |
9803 | } | |
9804 | } | |
9805 | break; | |
9806 | ||
9807 | case DEFINED: | |
9808 | if (p->pa != pa_page) { | |
9809 | break; | |
9810 | } | |
9811 | queue_iterate(mapq, map, pmap_pgtrace_map_t *, chain) { | |
9812 | if (map->cloned == true && map->pmap == pmap && map->ova == va_page) { | |
9813 | kprintf("%s: skip existing mapping at va=%llx\n", __func__, va_page); | |
9814 | break; | |
9815 | } else if (map->cloned == true && map->pmap == kernel_pmap && map->cva[1] == va_page) { | |
9816 | kprintf("%s: skip clone mapping at va=%llx\n", __func__, va_page); | |
9817 | break; | |
9818 | } else if (map->cloned == false && map->pmap == pmap && map->ova == va_page) { | |
9819 | // range should be already defined as well | |
9820 | found = true; | |
9821 | break; | |
9822 | } | |
9823 | } | |
9824 | break; | |
9825 | ||
9826 | default: | |
9827 | panic("invalid state p->state=%x\n", p->state); | |
9828 | } | |
9829 | ||
9830 | if (found == true) { | |
9831 | break; | |
9832 | } | |
9833 | } | |
9834 | ||
9835 | // do not clone if no page info found | |
9836 | if (found == false) { | |
9837 | PMAP_PGTRACE_UNLOCK(&ints); | |
9838 | return false; | |
9839 | } | |
9840 | ||
9841 | // copy pre, target and post ptes to clone ptes | |
9842 | for (int i = 0; i < 3; i++) { | |
9843 | ptep = pmap_pte(pmap, va_page + (i-1)*ARM_PGBYTES); | |
9844 | cptep = pmap_pte(kernel_pmap, map->cva[i]); | |
9845 | assert(cptep != NULL); | |
9846 | if (ptep == NULL) { | |
9847 | PGTRACE_WRITE_PTE(cptep, (pt_entry_t)NULL); | |
9848 | } else { | |
9849 | PGTRACE_WRITE_PTE(cptep, *ptep); | |
9850 | } | |
9851 | PMAP_UPDATE_TLBS(kernel_pmap, map->cva[i], map->cva[i]+ARM_PGBYTES); | |
9852 | } | |
9853 | ||
9854 | // get ptes for original and clone | |
9855 | ptep = pmap_pte(pmap, va_page); | |
9856 | cptep = pmap_pte(kernel_pmap, map->cva[1]); | |
9857 | ||
9858 | // invalidate original pte and mark it as a pgtrace page | |
9859 | PGTRACE_WRITE_PTE(ptep, (*ptep | ARM_PTE_PGTRACE) & ~ARM_PTE_TYPE_VALID); | |
9860 | PMAP_UPDATE_TLBS(pmap, map->ova, map->ova+ARM_PGBYTES); | |
9861 | ||
9862 | map->cloned = true; | |
9863 | p->state = DEFINED; | |
9864 | ||
9865 | kprintf("%s: pa_page=%llx va_page=%llx cva[1]=%llx pmap=%p ptep=%p cptep=%p\n", __func__, pa_page, va_page, map->cva[1], pmap, ptep, cptep); | |
9866 | ||
9867 | PMAP_PGTRACE_UNLOCK(&ints); | |
9868 | ||
9869 | return true; | |
9870 | } | |
9871 | ||
9872 | // This function removes trace bit and validate pte if applicable. Pmap must be locked. | |
9873 | static void pmap_pgtrace_remove_clone(pmap_t pmap, pmap_paddr_t pa, vm_map_offset_t va) | |
9874 | { | |
9875 | bool ints, found = false; | |
9876 | pmap_pgtrace_page_t *p; | |
9877 | pt_entry_t *ptep; | |
9878 | ||
9879 | PMAP_PGTRACE_LOCK(&ints); | |
9880 | ||
9881 | // we must have this page info | |
9882 | p = pmap_pgtrace_find_page(pa); | |
9883 | if (p == NULL) { | |
9884 | goto unlock_exit; | |
9885 | } | |
9886 | ||
9887 | // find matching map | |
9888 | queue_head_t *mapq = &(p->maps); | |
9889 | queue_head_t *mappool = &(p->map_pool); | |
9890 | pmap_pgtrace_map_t *map; | |
9891 | ||
9892 | queue_iterate(mapq, map, pmap_pgtrace_map_t *, chain) { | |
9893 | if (map->pmap == pmap && map->ova == va) { | |
9894 | found = true; | |
9895 | break; | |
9896 | } | |
9897 | } | |
9898 | ||
9899 | if (!found) { | |
9900 | goto unlock_exit; | |
9901 | } | |
9902 | ||
9903 | if (map->cloned == true) { | |
9904 | // Restore back the pte to original state | |
9905 | ptep = pmap_pte(pmap, map->ova); | |
9906 | assert(ptep); | |
9907 | PGTRACE_WRITE_PTE(ptep, *ptep | ARM_PTE_TYPE_VALID); | |
9908 | PMAP_UPDATE_TLBS(pmap, va, va+ARM_PGBYTES); | |
9909 | ||
9910 | // revert clone pages | |
9911 | for (int i = 0; i < 3; i++) { | |
9912 | ptep = pmap_pte(kernel_pmap, map->cva[i]); | |
9913 | assert(ptep != NULL); | |
9914 | PGTRACE_WRITE_PTE(ptep, map->cva_spte[i]); | |
9915 | PMAP_UPDATE_TLBS(kernel_pmap, map->cva[i], map->cva[i]+ARM_PGBYTES); | |
9916 | } | |
9917 | } | |
9918 | ||
9919 | queue_remove(mapq, map, pmap_pgtrace_map_t *, chain); | |
9920 | map->pmap = NULL; | |
9921 | map->ova = (vm_map_offset_t)NULL; | |
9922 | map->cloned = false; | |
9923 | queue_enter_first(mappool, map, pmap_pgtrace_map_t *, chain); | |
9924 | ||
9925 | kprintf("%s: p=%p pa=%llx va=%llx\n", __func__, p, pa, va); | |
9926 | ||
9927 | unlock_exit: | |
9928 | PMAP_PGTRACE_UNLOCK(&ints); | |
9929 | } | |
9930 | ||
9931 | // remove all clones of given pa - pmap must be locked | |
9932 | static void pmap_pgtrace_remove_all_clone(pmap_paddr_t pa) | |
9933 | { | |
9934 | bool ints; | |
9935 | pmap_pgtrace_page_t *p; | |
9936 | pt_entry_t *ptep; | |
9937 | ||
9938 | PMAP_PGTRACE_LOCK(&ints); | |
9939 | ||
9940 | // we must have this page info | |
9941 | p = pmap_pgtrace_find_page(pa); | |
9942 | if (p == NULL) { | |
9943 | PMAP_PGTRACE_UNLOCK(&ints); | |
9944 | return; | |
9945 | } | |
9946 | ||
9947 | queue_head_t *mapq = &(p->maps); | |
9948 | queue_head_t *mappool = &(p->map_pool); | |
9949 | queue_head_t *mapwaste = &(p->map_waste); | |
9950 | pmap_pgtrace_map_t *map; | |
9951 | ||
9952 | // move maps to waste | |
9953 | while (!queue_empty(mapq)) { | |
9954 | queue_remove_first(mapq, map, pmap_pgtrace_map_t *, chain); | |
9955 | queue_enter_first(mapwaste, map, pmap_pgtrace_map_t*, chain); | |
9956 | } | |
9957 | ||
9958 | PMAP_PGTRACE_UNLOCK(&ints); | |
9959 | ||
9960 | // sanitize maps in waste | |
9961 | queue_iterate(mapwaste, map, pmap_pgtrace_map_t *, chain) { | |
9962 | if (map->cloned == true) { | |
9963 | PMAP_LOCK(map->pmap); | |
9964 | ||
9965 | // restore back original pte | |
9966 | ptep = pmap_pte(map->pmap, map->ova); | |
9967 | assert(ptep); | |
9968 | PGTRACE_WRITE_PTE(ptep, *ptep | ARM_PTE_TYPE_VALID); | |
9969 | PMAP_UPDATE_TLBS(map->pmap, map->ova, map->ova+ARM_PGBYTES); | |
9970 | ||
9971 | // revert clone ptes | |
9972 | for (int i = 0; i < 3; i++) { | |
9973 | ptep = pmap_pte(kernel_pmap, map->cva[i]); | |
9974 | assert(ptep != NULL); | |
9975 | PGTRACE_WRITE_PTE(ptep, map->cva_spte[i]); | |
9976 | PMAP_UPDATE_TLBS(kernel_pmap, map->cva[i], map->cva[i]+ARM_PGBYTES); | |
9977 | } | |
9978 | ||
9979 | PMAP_UNLOCK(map->pmap); | |
9980 | } | |
9981 | ||
9982 | map->pmap = NULL; | |
9983 | map->ova = (vm_map_offset_t)NULL; | |
9984 | map->cloned = false; | |
9985 | } | |
9986 | ||
9987 | PMAP_PGTRACE_LOCK(&ints); | |
9988 | ||
9989 | // recycle maps back to map_pool | |
9990 | while (!queue_empty(mapwaste)) { | |
9991 | queue_remove_first(mapwaste, map, pmap_pgtrace_map_t *, chain); | |
9992 | queue_enter_first(mappool, map, pmap_pgtrace_map_t*, chain); | |
9993 | } | |
9994 | ||
9995 | PMAP_PGTRACE_UNLOCK(&ints); | |
9996 | } | |
9997 | ||
9998 | inline static void pmap_pgtrace_get_search_space(pmap_t pmap, vm_map_offset_t *startp, vm_map_offset_t *endp) | |
9999 | { | |
10000 | uint64_t tsz; | |
10001 | vm_map_offset_t end; | |
10002 | ||
10003 | if (pmap == kernel_pmap) { | |
10004 | tsz = (get_tcr() >> TCR_T1SZ_SHIFT) & TCR_TSZ_MASK; | |
10005 | *startp = MAX(VM_MIN_KERNEL_ADDRESS, (UINT64_MAX >> (64-tsz)) << (64-tsz)); | |
10006 | *endp = VM_MAX_KERNEL_ADDRESS; | |
10007 | } else { | |
10008 | tsz = (get_tcr() >> TCR_T0SZ_SHIFT) & TCR_TSZ_MASK; | |
10009 | if (tsz == 64) { | |
10010 | end = 0; | |
10011 | } else { | |
10012 | end = ((uint64_t)1 << (64-tsz)) - 1; | |
10013 | } | |
10014 | ||
10015 | *startp = 0; | |
10016 | *endp = end; | |
10017 | } | |
10018 | ||
10019 | assert(*endp > *startp); | |
10020 | ||
10021 | return; | |
10022 | } | |
10023 | ||
10024 | // has pa mapped in given pmap? then clone it | |
10025 | static uint64_t pmap_pgtrace_clone_from_pa(pmap_t pmap, pmap_paddr_t pa, vm_map_offset_t start_offset, vm_map_offset_t end_offset) { | |
10026 | uint64_t ret = 0; | |
10027 | vm_map_offset_t min, max; | |
10028 | vm_map_offset_t cur_page, end_page; | |
10029 | pt_entry_t *ptep; | |
10030 | tt_entry_t *ttep; | |
10031 | tt_entry_t tte; | |
10032 | ||
10033 | pmap_pgtrace_get_search_space(pmap, &min, &max); | |
10034 | ||
10035 | cur_page = arm_trunc_page(min); | |
10036 | end_page = arm_trunc_page(max); | |
10037 | while (cur_page <= end_page) { | |
10038 | vm_map_offset_t add = 0; | |
10039 | ||
10040 | PMAP_LOCK(pmap); | |
10041 | ||
10042 | // skip uninterested space | |
10043 | if (pmap == kernel_pmap && | |
10044 | ((vm_kernel_base <= cur_page && cur_page < vm_kernel_top) || | |
10045 | (vm_kext_base <= cur_page && cur_page < vm_kext_top))) { | |
10046 | add = ARM_PGBYTES; | |
10047 | goto unlock_continue; | |
10048 | } | |
10049 | ||
10050 | #if __ARM64_TWO_LEVEL_PMAP__ | |
10051 | // check whether we can skip l2 | |
10052 | ttep = pmap_tt2e(pmap, cur_page); | |
10053 | assert(ttep); | |
10054 | tte = *ttep; | |
10055 | #else | |
10056 | // check whether we can skip l1 | |
10057 | ttep = pmap_tt1e(pmap, cur_page); | |
10058 | assert(ttep); | |
10059 | tte = *ttep; | |
10060 | if ((tte & (ARM_TTE_TYPE_MASK | ARM_TTE_VALID)) != (ARM_TTE_TYPE_TABLE | ARM_TTE_VALID)) { | |
10061 | add = ARM_TT_L1_SIZE; | |
10062 | goto unlock_continue; | |
10063 | } | |
10064 | ||
10065 | // how about l2 | |
10066 | tte = ((tt_entry_t*) phystokv(tte & ARM_TTE_TABLE_MASK))[tt2_index(pmap, cur_page)]; | |
10067 | #endif | |
10068 | if ((tte & (ARM_TTE_TYPE_MASK | ARM_TTE_VALID)) != (ARM_TTE_TYPE_TABLE | ARM_TTE_VALID)) { | |
10069 | add = ARM_TT_L2_SIZE; | |
10070 | goto unlock_continue; | |
10071 | } | |
10072 | ||
10073 | // ptep finally | |
10074 | ptep = &(((pt_entry_t*) phystokv(tte & ARM_TTE_TABLE_MASK))[tt3_index(pmap, cur_page)]); | |
10075 | if (ptep == PT_ENTRY_NULL) { | |
10076 | add = ARM_TT_L3_SIZE; | |
10077 | goto unlock_continue; | |
10078 | } | |
10079 | ||
10080 | if (arm_trunc_page(pa) == pte_to_pa(*ptep)) { | |
10081 | if (pmap_pgtrace_enter_clone(pmap, cur_page, start_offset, end_offset) == true) { | |
10082 | ret++; | |
10083 | } | |
10084 | } | |
10085 | ||
10086 | add = ARM_PGBYTES; | |
10087 | ||
10088 | unlock_continue: | |
10089 | PMAP_UNLOCK(pmap); | |
10090 | ||
10091 | //overflow | |
10092 | if (cur_page + add < cur_page) { | |
10093 | break; | |
10094 | } | |
10095 | ||
10096 | cur_page += add; | |
10097 | } | |
10098 | ||
10099 | ||
10100 | return ret; | |
10101 | } | |
10102 | ||
10103 | // search pv table and clone vas of given pa | |
10104 | static uint64_t pmap_pgtrace_clone_from_pvtable(pmap_paddr_t pa, vm_map_offset_t start_offset, vm_map_offset_t end_offset) | |
10105 | { | |
10106 | uint64_t ret = 0; | |
10107 | unsigned long pai; | |
10108 | pv_entry_t **pvh; | |
10109 | pt_entry_t *ptep; | |
10110 | pmap_t pmap; | |
10111 | ||
10112 | typedef struct { | |
10113 | queue_chain_t chain; | |
10114 | pmap_t pmap; | |
10115 | vm_map_offset_t va; | |
10116 | } pmap_va_t; | |
10117 | ||
10118 | queue_head_t pmapvaq; | |
10119 | pmap_va_t *pmapva; | |
10120 | ||
10121 | queue_init(&pmapvaq); | |
10122 | ||
10123 | pai = pa_index(pa); | |
10124 | LOCK_PVH(pai); | |
10125 | pvh = pai_to_pvh(pai); | |
10126 | ||
10127 | // collect pmap/va pair from pvh | |
10128 | if (pvh_test_type(pvh, PVH_TYPE_PTEP)) { | |
10129 | ptep = pvh_ptep(pvh); | |
10130 | pmap = ptep_get_pmap(ptep); | |
10131 | ||
10132 | pmapva = (pmap_va_t *)kalloc(sizeof(pmap_va_t)); | |
10133 | pmapva->pmap = pmap; | |
10134 | pmapva->va = ptep_get_va(ptep); | |
10135 | ||
10136 | queue_enter_first(&pmapvaq, pmapva, pmap_va_t *, chain); | |
10137 | ||
10138 | } else if (pvh_test_type(pvh, PVH_TYPE_PVEP)) { | |
10139 | pv_entry_t *pvep; | |
10140 | ||
10141 | pvep = pvh_list(pvh); | |
10142 | while (pvep) { | |
10143 | ptep = pve_get_ptep(pvep); | |
10144 | pmap = ptep_get_pmap(ptep); | |
10145 | ||
10146 | pmapva = (pmap_va_t *)kalloc(sizeof(pmap_va_t)); | |
10147 | pmapva->pmap = pmap; | |
10148 | pmapva->va = ptep_get_va(ptep); | |
10149 | ||
10150 | queue_enter_first(&pmapvaq, pmapva, pmap_va_t *, chain); | |
10151 | ||
10152 | pvep = PVE_NEXT_PTR(pve_next(pvep)); | |
10153 | } | |
10154 | } | |
10155 | ||
10156 | UNLOCK_PVH(pai); | |
10157 | ||
10158 | // clone them while making sure mapping still exists | |
10159 | queue_iterate(&pmapvaq, pmapva, pmap_va_t *, chain) { | |
10160 | PMAP_LOCK(pmapva->pmap); | |
10161 | ptep = pmap_pte(pmapva->pmap, pmapva->va); | |
10162 | if (pte_to_pa(*ptep) == pa) { | |
10163 | if (pmap_pgtrace_enter_clone(pmapva->pmap, pmapva->va, start_offset, end_offset) == true) { | |
10164 | ret++; | |
10165 | } | |
10166 | } | |
10167 | PMAP_UNLOCK(pmapva->pmap); | |
10168 | ||
10169 | kfree(pmapva, sizeof(pmap_va_t)); | |
10170 | } | |
10171 | ||
10172 | return ret; | |
10173 | } | |
10174 | ||
10175 | // allocate a page info | |
10176 | static pmap_pgtrace_page_t *pmap_pgtrace_alloc_page(void) | |
10177 | { | |
10178 | pmap_pgtrace_page_t *p; | |
10179 | queue_head_t *mapq; | |
10180 | queue_head_t *mappool; | |
10181 | queue_head_t *mapwaste; | |
10182 | pmap_pgtrace_map_t *map; | |
10183 | ||
10184 | p = kalloc(sizeof(pmap_pgtrace_page_t)); | |
10185 | assert(p); | |
10186 | ||
10187 | p->state = UNDEFINED; | |
10188 | ||
10189 | mapq = &(p->maps); | |
10190 | mappool = &(p->map_pool); | |
10191 | mapwaste = &(p->map_waste); | |
10192 | queue_init(mapq); | |
10193 | queue_init(mappool); | |
10194 | queue_init(mapwaste); | |
10195 | ||
10196 | for (int i = 0; i < PGTRACE_MAX_MAP; i++) { | |
10197 | vm_map_offset_t newcva; | |
10198 | pt_entry_t *cptep; | |
10199 | kern_return_t kr; | |
10200 | vm_map_entry_t entry; | |
10201 | ||
10202 | // get a clone va | |
10203 | vm_object_reference(kernel_object); | |
10204 | kr = vm_map_find_space(kernel_map, &newcva, vm_map_round_page(3*ARM_PGBYTES, PAGE_MASK), 0, 0, VM_MAP_KERNEL_FLAGS_NONE, VM_KERN_MEMORY_DIAG, &entry); | |
10205 | if (kr != KERN_SUCCESS) { | |
10206 | panic("%s VM couldn't find any space kr=%d\n", __func__, kr); | |
10207 | } | |
10208 | VME_OBJECT_SET(entry, kernel_object); | |
10209 | VME_OFFSET_SET(entry, newcva); | |
10210 | vm_map_unlock(kernel_map); | |
10211 | ||
10212 | // fill default clone page info and add to pool | |
10213 | map = kalloc(sizeof(pmap_pgtrace_map_t)); | |
10214 | for (int j = 0; j < 3; j ++) { | |
10215 | vm_map_offset_t addr = newcva + j * ARM_PGBYTES; | |
10216 | ||
10217 | // pre-expand pmap while preemption enabled | |
10218 | kr = pmap_expand(kernel_pmap, addr, 0, PMAP_TT_MAX_LEVEL); | |
10219 | if (kr != KERN_SUCCESS) { | |
10220 | panic("%s: pmap_expand(kernel_pmap, addr=%llx) returns kr=%d\n", __func__, addr, kr); | |
10221 | } | |
10222 | ||
10223 | cptep = pmap_pte(kernel_pmap, addr); | |
10224 | assert(cptep != NULL); | |
10225 | ||
10226 | map->cva[j] = addr; | |
10227 | map->cva_spte[j] = *cptep; | |
10228 | } | |
10229 | map->range.start = map->range.end = 0; | |
10230 | map->cloned = false; | |
10231 | queue_enter_first(mappool, map, pmap_pgtrace_map_t *, chain); | |
10232 | } | |
10233 | ||
10234 | return p; | |
10235 | } | |
10236 | ||
10237 | // free a page info | |
10238 | static void pmap_pgtrace_free_page(pmap_pgtrace_page_t *p) | |
10239 | { | |
10240 | queue_head_t *mapq; | |
10241 | queue_head_t *mappool; | |
10242 | queue_head_t *mapwaste; | |
10243 | pmap_pgtrace_map_t *map; | |
10244 | ||
10245 | assert(p); | |
10246 | ||
10247 | mapq = &(p->maps); | |
10248 | mappool = &(p->map_pool); | |
10249 | mapwaste = &(p->map_waste); | |
10250 | ||
10251 | while (!queue_empty(mapq)) { | |
10252 | queue_remove_first(mapq, map, pmap_pgtrace_map_t *, chain); | |
10253 | kfree(map, sizeof(pmap_pgtrace_map_t)); | |
10254 | } | |
10255 | ||
10256 | while (!queue_empty(mappool)) { | |
10257 | queue_remove_first(mappool, map, pmap_pgtrace_map_t *, chain); | |
10258 | kfree(map, sizeof(pmap_pgtrace_map_t)); | |
10259 | } | |
10260 | ||
10261 | while (!queue_empty(mapwaste)) { | |
10262 | queue_remove_first(mapwaste, map, pmap_pgtrace_map_t *, chain); | |
10263 | kfree(map, sizeof(pmap_pgtrace_map_t)); | |
10264 | } | |
10265 | ||
10266 | kfree(p, sizeof(pmap_pgtrace_page_t)); | |
10267 | } | |
10268 | ||
10269 | // construct page infos with the given address range | |
10270 | int pmap_pgtrace_add_page(pmap_t pmap, vm_map_offset_t start, vm_map_offset_t end) | |
10271 | { | |
10272 | int ret = 0; | |
10273 | pt_entry_t *ptep; | |
10274 | queue_head_t *q = &(pmap_pgtrace.pages); | |
10275 | bool ints; | |
10276 | vm_map_offset_t cur_page, end_page; | |
10277 | ||
10278 | if (start > end) { | |
10279 | kprintf("%s: invalid start=%llx > end=%llx\n", __func__, start, end); | |
10280 | return -1; | |
10281 | } | |
10282 | ||
10283 | PROF_START | |
10284 | ||
10285 | // add each page in given range | |
10286 | cur_page = arm_trunc_page(start); | |
10287 | end_page = arm_trunc_page(end); | |
10288 | while (cur_page <= end_page) { | |
10289 | pmap_paddr_t pa_page = 0; | |
10290 | uint64_t num_cloned = 0; | |
10291 | pmap_pgtrace_page_t *p = NULL, *newp; | |
10292 | bool free_newp = true; | |
10293 | pmap_pgtrace_page_state_t state; | |
10294 | ||
10295 | // do all allocations outside of spinlocks | |
10296 | newp = pmap_pgtrace_alloc_page(); | |
10297 | ||
10298 | // keep lock orders in pmap, kernel_pmap and pgtrace lock | |
10299 | if (pmap != NULL) { | |
10300 | PMAP_LOCK(pmap); | |
10301 | } | |
10302 | if (pmap != kernel_pmap) { | |
10303 | PMAP_LOCK(kernel_pmap); | |
10304 | } | |
10305 | ||
10306 | // addresses are physical if pmap is null | |
10307 | if (pmap == NULL) { | |
10308 | ptep = NULL; | |
10309 | pa_page = cur_page; | |
10310 | state = VA_UNDEFINED; | |
10311 | } else { | |
10312 | ptep = pmap_pte(pmap, cur_page); | |
10313 | if (ptep != NULL) { | |
10314 | pa_page = pte_to_pa(*ptep); | |
10315 | state = DEFINED; | |
10316 | } else { | |
10317 | state = PA_UNDEFINED; | |
10318 | } | |
10319 | } | |
10320 | ||
10321 | // search if we have a page info already | |
10322 | PMAP_PGTRACE_LOCK(&ints); | |
10323 | if (state != PA_UNDEFINED) { | |
10324 | p = pmap_pgtrace_find_page(pa_page); | |
10325 | } | |
10326 | ||
10327 | // add pre-allocated page info if nothing found | |
10328 | if (p == NULL) { | |
10329 | queue_enter_first(q, newp, pmap_pgtrace_page_t *, chain); | |
10330 | p = newp; | |
10331 | free_newp = false; | |
10332 | } | |
10333 | ||
10334 | // now p points what we want | |
10335 | p->state = state; | |
10336 | ||
10337 | queue_head_t *mapq = &(p->maps); | |
10338 | queue_head_t *mappool = &(p->map_pool); | |
10339 | pmap_pgtrace_map_t *map; | |
10340 | vm_map_offset_t start_offset, end_offset; | |
10341 | ||
10342 | // calculate trace offsets in the page | |
10343 | if (cur_page > start) { | |
10344 | start_offset = 0; | |
10345 | } else { | |
10346 | start_offset = start-cur_page; | |
10347 | } | |
10348 | if (cur_page == end_page) { | |
10349 | end_offset = end-end_page; | |
10350 | } else { | |
10351 | end_offset = ARM_PGBYTES-1; | |
10352 | } | |
10353 | ||
10354 | kprintf("%s: pmap=%p cur_page=%llx ptep=%p state=%d start_offset=%llx end_offset=%llx\n", __func__, pmap, cur_page, ptep, state, start_offset, end_offset); | |
10355 | ||
10356 | // fill map info | |
10357 | assert(!queue_empty(mappool)); | |
10358 | queue_remove_first(mappool, map, pmap_pgtrace_map_t *, chain); | |
10359 | if (p->state == PA_UNDEFINED) { | |
10360 | map->pmap = pmap; | |
10361 | map->ova = cur_page; | |
10362 | map->range.start = start_offset; | |
10363 | map->range.end = end_offset; | |
10364 | } else if (p->state == VA_UNDEFINED) { | |
10365 | p->pa = pa_page; | |
10366 | map->range.start = start_offset; | |
10367 | map->range.end = end_offset; | |
10368 | } else if (p->state == DEFINED) { | |
10369 | p->pa = pa_page; | |
10370 | map->pmap = pmap; | |
10371 | map->ova = cur_page; | |
10372 | map->range.start = start_offset; | |
10373 | map->range.end = end_offset; | |
10374 | } else { | |
10375 | panic("invalid p->state=%d\n", p->state); | |
10376 | } | |
10377 | ||
10378 | // not cloned yet | |
10379 | map->cloned = false; | |
10380 | queue_enter(mapq, map, pmap_pgtrace_map_t *, chain); | |
10381 | ||
10382 | // unlock locks | |
10383 | PMAP_PGTRACE_UNLOCK(&ints); | |
10384 | if (pmap != kernel_pmap) { | |
10385 | PMAP_UNLOCK(kernel_pmap); | |
10386 | } | |
10387 | if (pmap != NULL) { | |
10388 | PMAP_UNLOCK(pmap); | |
10389 | } | |
10390 | ||
10391 | // now clone it | |
10392 | if (pa_valid(pa_page)) { | |
10393 | num_cloned = pmap_pgtrace_clone_from_pvtable(pa_page, start_offset, end_offset); | |
10394 | } | |
10395 | if (pmap == NULL) { | |
10396 | num_cloned += pmap_pgtrace_clone_from_pa(kernel_pmap, pa_page, start_offset, end_offset); | |
10397 | } else { | |
10398 | num_cloned += pmap_pgtrace_clone_from_pa(pmap, pa_page, start_offset, end_offset); | |
10399 | } | |
10400 | ||
10401 | // free pre-allocations if we didn't add it to the q | |
10402 | if (free_newp) { | |
10403 | pmap_pgtrace_free_page(newp); | |
10404 | } | |
10405 | ||
10406 | if (num_cloned == 0) { | |
10407 | kprintf("%s: no mapping found for pa_page=%llx but will be added when a page entered\n", __func__, pa_page); | |
10408 | } | |
10409 | ||
10410 | ret += num_cloned; | |
10411 | ||
10412 | // overflow | |
10413 | if (cur_page + ARM_PGBYTES < cur_page) { | |
10414 | break; | |
10415 | } else { | |
10416 | cur_page += ARM_PGBYTES; | |
10417 | } | |
10418 | } | |
10419 | ||
10420 | PROF_END | |
10421 | ||
10422 | return ret; | |
10423 | } | |
10424 | ||
10425 | // delete page infos for given address range | |
10426 | int pmap_pgtrace_delete_page(pmap_t pmap, vm_map_offset_t start, vm_map_offset_t end) | |
10427 | { | |
10428 | int ret = 0; | |
10429 | bool ints; | |
10430 | queue_head_t *q = &(pmap_pgtrace.pages); | |
10431 | pmap_pgtrace_page_t *p; | |
10432 | vm_map_offset_t cur_page, end_page; | |
10433 | ||
10434 | kprintf("%s start=%llx end=%llx\n", __func__, start, end); | |
10435 | ||
10436 | PROF_START | |
10437 | ||
10438 | pt_entry_t *ptep; | |
10439 | pmap_paddr_t pa_page; | |
10440 | ||
10441 | // remove page info from start to end | |
10442 | cur_page = arm_trunc_page(start); | |
10443 | end_page = arm_trunc_page(end); | |
10444 | while (cur_page <= end_page) { | |
10445 | p = NULL; | |
10446 | ||
10447 | if (pmap == NULL) { | |
10448 | pa_page = cur_page; | |
10449 | } else { | |
10450 | PMAP_LOCK(pmap); | |
10451 | ptep = pmap_pte(pmap, cur_page); | |
10452 | if (ptep == NULL) { | |
10453 | PMAP_UNLOCK(pmap); | |
10454 | goto cont; | |
10455 | } | |
10456 | pa_page = pte_to_pa(*ptep); | |
10457 | PMAP_UNLOCK(pmap); | |
10458 | } | |
10459 | ||
10460 | // remove all clones and validate | |
10461 | pmap_pgtrace_remove_all_clone(pa_page); | |
10462 | ||
10463 | // find page info and delete | |
10464 | PMAP_PGTRACE_LOCK(&ints); | |
10465 | p = pmap_pgtrace_find_page(pa_page); | |
10466 | if (p != NULL) { | |
10467 | queue_remove(q, p, pmap_pgtrace_page_t *, chain); | |
10468 | ret++; | |
10469 | } | |
10470 | PMAP_PGTRACE_UNLOCK(&ints); | |
10471 | ||
10472 | // free outside of locks | |
10473 | if (p != NULL) { | |
10474 | pmap_pgtrace_free_page(p); | |
10475 | } | |
10476 | ||
10477 | cont: | |
10478 | // overflow | |
10479 | if (cur_page + ARM_PGBYTES < cur_page) { | |
10480 | break; | |
10481 | } else { | |
10482 | cur_page += ARM_PGBYTES; | |
10483 | } | |
10484 | } | |
10485 | ||
10486 | PROF_END | |
10487 | ||
10488 | return ret; | |
10489 | } | |
10490 | ||
10491 | kern_return_t pmap_pgtrace_fault(pmap_t pmap, vm_map_offset_t va, arm_saved_state_t *ss) | |
10492 | { | |
10493 | pt_entry_t *ptep; | |
10494 | pgtrace_run_result_t res; | |
10495 | pmap_pgtrace_page_t *p; | |
10496 | bool ints, found = false; | |
10497 | pmap_paddr_t pa; | |
10498 | ||
10499 | // Quick check if we are interested | |
10500 | ptep = pmap_pte(pmap, va); | |
10501 | if (!ptep || !(*ptep & ARM_PTE_PGTRACE)) { | |
10502 | return KERN_FAILURE; | |
10503 | } | |
10504 | ||
10505 | PMAP_PGTRACE_LOCK(&ints); | |
10506 | ||
10507 | // Check again since access is serialized | |
10508 | ptep = pmap_pte(pmap, va); | |
10509 | if (!ptep || !(*ptep & ARM_PTE_PGTRACE)) { | |
10510 | PMAP_PGTRACE_UNLOCK(&ints); | |
10511 | return KERN_FAILURE; | |
10512 | ||
10513 | } else if ((*ptep & ARM_PTE_TYPE_VALID) == ARM_PTE_TYPE_VALID) { | |
10514 | // Somehow this cpu's tlb has not updated | |
10515 | kprintf("%s Somehow this cpu's tlb has not updated?\n", __func__); | |
10516 | PMAP_UPDATE_TLBS(pmap, va, va+ARM_PGBYTES); | |
10517 | ||
10518 | PMAP_PGTRACE_UNLOCK(&ints); | |
10519 | return KERN_SUCCESS; | |
10520 | } | |
10521 | ||
10522 | // Find if this pa is what we are tracing | |
10523 | pa = pte_to_pa(*ptep); | |
10524 | ||
10525 | p = pmap_pgtrace_find_page(arm_trunc_page(pa)); | |
10526 | if (p == NULL) { | |
10527 | panic("%s Can't find va=%llx pa=%llx from tracing pages\n", __func__, va, pa); | |
10528 | } | |
10529 | ||
10530 | // find if pmap and va are also matching | |
10531 | queue_head_t *mapq = &(p->maps); | |
10532 | queue_head_t *mapwaste = &(p->map_waste); | |
10533 | pmap_pgtrace_map_t *map; | |
10534 | ||
10535 | queue_iterate(mapq, map, pmap_pgtrace_map_t *, chain) { | |
10536 | if (map->pmap == pmap && map->ova == arm_trunc_page(va)) { | |
10537 | found = true; | |
10538 | break; | |
10539 | } | |
10540 | } | |
10541 | ||
10542 | // if not found, search map waste as they are still valid | |
10543 | if (!found) { | |
10544 | queue_iterate(mapwaste, map, pmap_pgtrace_map_t *, chain) { | |
10545 | if (map->pmap == pmap && map->ova == arm_trunc_page(va)) { | |
10546 | found = true; | |
10547 | break; | |
10548 | } | |
10549 | } | |
10550 | } | |
10551 | ||
10552 | if (!found) { | |
10553 | panic("%s Can't find va=%llx pa=%llx from tracing pages\n", __func__, va, pa); | |
10554 | } | |
10555 | ||
10556 | // Decode and run it on the clone map | |
10557 | bzero(&res, sizeof(res)); | |
10558 | pgtrace_decode_and_run(*(uint32_t *)get_saved_state_pc(ss), // instruction | |
10559 | va, map->cva, // fault va and clone page vas | |
10560 | ss, &res); | |
10561 | ||
10562 | // write a log if in range | |
10563 | vm_map_offset_t offset = va - map->ova; | |
10564 | if (map->range.start <= offset && offset <= map->range.end) { | |
10565 | pgtrace_write_log(res); | |
10566 | } | |
10567 | ||
10568 | PMAP_PGTRACE_UNLOCK(&ints); | |
10569 | ||
10570 | // Return to next instruction | |
10571 | set_saved_state_pc(ss, get_saved_state_pc(ss) + sizeof(uint32_t)); | |
10572 | ||
10573 | return KERN_SUCCESS; | |
10574 | } | |
10575 | #endif | |
10576 | ||
10577 | boolean_t | |
10578 | pmap_enforces_execute_only( | |
10579 | #if (__ARM_VMSA__ == 7) | |
10580 | __unused | |
10581 | #endif | |
10582 | pmap_t pmap) | |
10583 | { | |
10584 | #if (__ARM_VMSA__ > 7) | |
10585 | return (pmap != kernel_pmap); | |
10586 | #else | |
10587 | return FALSE; | |
10588 | #endif | |
10589 | } | |
10590 | ||
10591 | void | |
10592 | pmap_set_jit_entitled( | |
10593 | __unused pmap_t pmap) | |
10594 | { | |
10595 | return; | |
10596 | } | |
10597 | ||
10598 | static kern_return_t | |
10599 | pmap_query_page_info_internal( | |
10600 | pmap_t pmap, | |
10601 | vm_map_offset_t va, | |
10602 | int *disp_p) | |
10603 | { | |
10604 | int disp; | |
10605 | pmap_paddr_t pa; | |
10606 | int pai; | |
10607 | pt_entry_t *pte; | |
10608 | pv_entry_t **pv_h, *pve_p; | |
10609 | ||
10610 | if (pmap == PMAP_NULL || pmap == kernel_pmap) { | |
10611 | *disp_p = 0; | |
10612 | return KERN_INVALID_ARGUMENT; | |
10613 | } | |
10614 | ||
10615 | disp = 0; | |
10616 | ||
10617 | PMAP_LOCK(pmap); | |
10618 | ||
10619 | pte = pmap_pte(pmap, va); | |
10620 | if (pte == PT_ENTRY_NULL) { | |
10621 | goto done; | |
10622 | } | |
10623 | ||
10624 | pa = pte_to_pa(*pte); | |
10625 | if (pa == 0) { | |
10626 | if (ARM_PTE_IS_COMPRESSED(*pte)) { | |
10627 | disp |= PMAP_QUERY_PAGE_COMPRESSED; | |
10628 | if (*pte & ARM_PTE_COMPRESSED_ALT) { | |
10629 | disp |= PMAP_QUERY_PAGE_COMPRESSED_ALTACCT; | |
10630 | } | |
10631 | } | |
10632 | } else { | |
10633 | disp |= PMAP_QUERY_PAGE_PRESENT; | |
10634 | pai = (int) pa_index(pa); | |
10635 | if (!pa_valid(pa)) { | |
10636 | goto done; | |
10637 | } | |
10638 | LOCK_PVH(pai); | |
10639 | pv_h = pai_to_pvh(pai); | |
10640 | pve_p = PV_ENTRY_NULL; | |
10641 | if (pvh_test_type(pv_h, PVH_TYPE_PVEP)) { | |
10642 | pve_p = pvh_list(pv_h); | |
10643 | while (pve_p != PV_ENTRY_NULL && | |
10644 | pve_get_ptep(pve_p) != pte) { | |
a39ff7e2 | 10645 | pve_p = PVE_NEXT_PTR(pve_next(pve_p)); |
5ba3f43e A |
10646 | } |
10647 | } | |
10648 | if (IS_ALTACCT_PAGE(pai, pve_p)) { | |
10649 | disp |= PMAP_QUERY_PAGE_ALTACCT; | |
10650 | } else if (IS_REUSABLE_PAGE(pai)) { | |
10651 | disp |= PMAP_QUERY_PAGE_REUSABLE; | |
10652 | } else if (IS_INTERNAL_PAGE(pai)) { | |
10653 | disp |= PMAP_QUERY_PAGE_INTERNAL; | |
10654 | } | |
10655 | UNLOCK_PVH(pai); | |
10656 | } | |
10657 | ||
10658 | done: | |
10659 | PMAP_UNLOCK(pmap); | |
10660 | *disp_p = disp; | |
10661 | return KERN_SUCCESS; | |
10662 | } | |
10663 | ||
10664 | kern_return_t | |
10665 | pmap_query_page_info( | |
10666 | pmap_t pmap, | |
10667 | vm_map_offset_t va, | |
10668 | int *disp_p) | |
10669 | { | |
10670 | return pmap_query_page_info_internal(pmap, va, disp_p); | |
10671 | } | |
10672 | ||
10673 | kern_return_t | |
10674 | pmap_return_internal(__unused boolean_t do_panic, __unused boolean_t do_recurse) | |
10675 | { | |
10676 | ||
10677 | return KERN_SUCCESS; | |
10678 | } | |
10679 | ||
10680 | kern_return_t | |
10681 | pmap_return(boolean_t do_panic, boolean_t do_recurse) | |
10682 | { | |
10683 | return pmap_return_internal(do_panic, do_recurse); | |
10684 | } | |
10685 | ||
10686 | static void | |
10687 | pmap_footprint_suspend_internal( | |
10688 | vm_map_t map, | |
10689 | boolean_t suspend) | |
10690 | { | |
10691 | #if DEVELOPMENT || DEBUG | |
10692 | if (suspend) { | |
10693 | map->pmap->footprint_suspended = TRUE; | |
10694 | map->pmap->footprint_was_suspended = TRUE; | |
10695 | } else { | |
10696 | map->pmap->footprint_suspended = FALSE; | |
10697 | } | |
10698 | #else /* DEVELOPMENT || DEBUG */ | |
10699 | (void) map; | |
10700 | (void) suspend; | |
10701 | #endif /* DEVELOPMENT || DEBUG */ | |
10702 | } | |
10703 | void | |
10704 | pmap_footprint_suspend( | |
10705 | vm_map_t map, | |
10706 | boolean_t suspend) | |
10707 | { | |
10708 | pmap_footprint_suspend_internal(map, suspend); | |
10709 | } |