]> git.saurik.com Git - apple/xnu.git/blame - bsd/kern/kern_ntptime.c
xnu-4570.71.2.tar.gz
[apple/xnu.git] / bsd / kern / kern_ntptime.c
CommitLineData
5ba3f43e
A
1/*-
2 ***********************************************************************
3 * *
4 * Copyright (c) David L. Mills 1993-2001 *
5 * *
6 * Permission to use, copy, modify, and distribute this software and *
7 * its documentation for any purpose and without fee is hereby *
8 * granted, provided that the above copyright notice appears in all *
9 * copies and that both the copyright notice and this permission *
10 * notice appear in supporting documentation, and that the name *
11 * University of Delaware not be used in advertising or publicity *
12 * pertaining to distribution of the software without specific, *
13 * written prior permission. The University of Delaware makes no *
14 * representations about the suitability this software for any *
15 * purpose. It is provided "as is" without express or implied *
16 * warranty. *
17 * *
18 **********************************************************************/
19
20
21/*
22 * Adapted from the original sources for FreeBSD and timecounters by:
23 * Poul-Henning Kamp <phk@FreeBSD.org>.
24 *
25 * The 32bit version of the "LP" macros seems a bit past its "sell by"
26 * date so I have retained only the 64bit version and included it directly
27 * in this file.
28 *
29 * Only minor changes done to interface with the timecounters over in
30 * sys/kern/kern_clock.c. Some of the comments below may be (even more)
31 * confusing and/or plain wrong in that context.
32 */
33
34/*
35 * Copyright (c) 2017 Apple Computer, Inc. All rights reserved.
36 *
37 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
38 *
39 * This file contains Original Code and/or Modifications of Original Code
40 * as defined in and that are subject to the Apple Public Source License
41 * Version 2.0 (the 'License'). You may not use this file except in
42 * compliance with the License. The rights granted to you under the License
43 * may not be used to create, or enable the creation or redistribution of,
44 * unlawful or unlicensed copies of an Apple operating system, or to
45 * circumvent, violate, or enable the circumvention or violation of, any
46 * terms of an Apple operating system software license agreement.
47 *
48 * Please obtain a copy of the License at
49 * http://www.opensource.apple.com/apsl/ and read it before using this file.
50 *
51 * The Original Code and all software distributed under the License are
52 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
53 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
54 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
55 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
56 * Please see the License for the specific language governing rights and
57 * limitations under the License.
58 *
59 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
60 */
61
62#include <sys/cdefs.h>
63#include <sys/param.h>
64#include <sys/systm.h>
65#include <sys/eventhandler.h>
66#include <sys/kernel.h>
67#include <sys/priv.h>
68#include <sys/proc.h>
69#include <sys/lock.h>
70#include <sys/time.h>
71#include <sys/timex.h>
72#include <kern/clock.h>
73#include <sys/sysctl.h>
74#include <sys/sysproto.h>
75#include <sys/kauth.h>
76#include <kern/thread_call.h>
77#include <kern/timer_call.h>
78#include <machine/machine_routines.h>
79#if CONFIG_MACF
80#include <security/mac_framework.h>
81#endif
82#include <IOKit/IOBSD.h>
cc8bc92a 83#include <os/log.h>
5ba3f43e
A
84
85typedef int64_t l_fp;
86#define L_ADD(v, u) ((v) += (u))
87#define L_SUB(v, u) ((v) -= (u))
88#define L_ADDHI(v, a) ((v) += (int64_t)(a) << 32)
89#define L_NEG(v) ((v) = -(v))
90#define L_RSHIFT(v, n) \
91 do { \
92 if ((v) < 0) \
93 (v) = -(-(v) >> (n)); \
94 else \
95 (v) = (v) >> (n); \
96 } while (0)
97#define L_MPY(v, a) ((v) *= (a))
98#define L_CLR(v) ((v) = 0)
99#define L_ISNEG(v) ((v) < 0)
100#define L_LINT(v, a) \
101 do { \
102 if ((a) > 0) \
103 ((v) = (int64_t)(a) << 32); \
104 else \
105 ((v) = -((int64_t)(-(a)) << 32)); \
106 } while (0)
107#define L_GINT(v) ((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
108
109/*
110 * Generic NTP kernel interface
111 *
112 * These routines constitute the Network Time Protocol (NTP) interfaces
113 * for user and daemon application programs. The ntp_gettime() routine
114 * provides the time, maximum error (synch distance) and estimated error
115 * (dispersion) to client user application programs. The ntp_adjtime()
116 * routine is used by the NTP daemon to adjust the calendar clock to an
117 * externally derived time. The time offset and related variables set by
118 * this routine are used by other routines in this module to adjust the
119 * phase and frequency of the clock discipline loop which controls the
120 * system clock.
121 *
122 * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
123 * defined), the time at each tick interrupt is derived directly from
124 * the kernel time variable. When the kernel time is reckoned in
125 * microseconds, (NTP_NANO undefined), the time is derived from the
126 * kernel time variable together with a variable representing the
127 * leftover nanoseconds at the last tick interrupt. In either case, the
128 * current nanosecond time is reckoned from these values plus an
129 * interpolated value derived by the clock routines in another
130 * architecture-specific module. The interpolation can use either a
131 * dedicated counter or a processor cycle counter (PCC) implemented in
132 * some architectures.
133 *
134 */
135/*
136 * Phase/frequency-lock loop (PLL/FLL) definitions
137 *
138 * The nanosecond clock discipline uses two variable types, time
139 * variables and frequency variables. Both types are represented as 64-
140 * bit fixed-point quantities with the decimal point between two 32-bit
141 * halves. On a 32-bit machine, each half is represented as a single
142 * word and mathematical operations are done using multiple-precision
143 * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
144 * used.
145 *
146 * A time variable is a signed 64-bit fixed-point number in ns and
147 * fraction. It represents the remaining time offset to be amortized
148 * over succeeding tick interrupts. The maximum time offset is about
149 * 0.5 s and the resolution is about 2.3e-10 ns.
150 *
151 * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
152 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
153 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
154 * |s s s| ns |
155 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
156 * | fraction |
157 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
158 *
159 * A frequency variable is a signed 64-bit fixed-point number in ns/s
160 * and fraction. It represents the ns and fraction to be added to the
161 * kernel time variable at each second. The maximum frequency offset is
162 * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
163 *
164 * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
165 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
166 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
167 * |s s s s s s s s s s s s s| ns/s |
168 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
169 * | fraction |
170 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
171 */
172
173#define SHIFT_PLL 4
174#define SHIFT_FLL 2
175
176static int time_state = TIME_OK;
177int time_status = STA_UNSYNC;
178static long time_tai;
179static long time_constant;
180static long time_precision = 1;
181static long time_maxerror = MAXPHASE / 1000;
182static unsigned long last_time_maxerror_update;
183long time_esterror = MAXPHASE / 1000;
184static long time_reftime;
185static l_fp time_offset;
186static l_fp time_freq;
187static int64_t time_adjtime;
188static int updated;
189
190static lck_spin_t * ntp_lock;
191static lck_grp_t * ntp_lock_grp;
192static lck_attr_t * ntp_lock_attr;
193static lck_grp_attr_t *ntp_lock_grp_attr;
194
195#define NTP_LOCK(enable) \
196 enable = ml_set_interrupts_enabled(FALSE); \
197 lck_spin_lock(ntp_lock);
198
199#define NTP_UNLOCK(enable) \
200 lck_spin_unlock(ntp_lock);\
201 ml_set_interrupts_enabled(enable);
202
203#define NTP_ASSERT_LOCKED() LCK_SPIN_ASSERT(ntp_lock, LCK_ASSERT_OWNED)
204
205static timer_call_data_t ntp_loop_update;
206static uint64_t ntp_loop_deadline;
207static uint32_t ntp_loop_active;
208static uint32_t ntp_loop_period;
209#define NTP_LOOP_PERIOD_INTERVAL (NSEC_PER_SEC) /*1 second interval*/
210
211void ntp_init(void);
212static void hardupdate(long offset);
213static void ntp_gettime1(struct ntptimeval *ntvp);
214static bool ntp_is_time_error(int tsl);
215
216static void ntp_loop_update_call(void);
217static void refresh_ntp_loop(void);
218static void start_ntp_loop(void);
219
cc8bc92a
A
220#if DEVELOPMENT || DEBUG
221uint32_t g_should_log_clock_adjustments = 0;
222SYSCTL_INT(_kern, OID_AUTO, log_clock_adjustments, CTLFLAG_RW | CTLFLAG_LOCKED, &g_should_log_clock_adjustments, 0, "enable kernel clock adjustment logging");
223#endif
224
5ba3f43e
A
225static bool
226ntp_is_time_error(int tsl)
227{
228
229 if (tsl & (STA_UNSYNC | STA_CLOCKERR))
230 return (true);
231
232 return (false);
233}
234
235static void
236ntp_gettime1(struct ntptimeval *ntvp)
237{
238 struct timespec atv;
239
240 NTP_ASSERT_LOCKED();
241
242 nanotime(&atv);
243 ntvp->time.tv_sec = atv.tv_sec;
244 ntvp->time.tv_nsec = atv.tv_nsec;
245 if ((unsigned long)atv.tv_sec > last_time_maxerror_update) {
246 time_maxerror += (MAXFREQ / 1000)*(atv.tv_sec-last_time_maxerror_update);
247 last_time_maxerror_update = atv.tv_sec;
248 }
249 ntvp->maxerror = time_maxerror;
250 ntvp->esterror = time_esterror;
251 ntvp->tai = time_tai;
252 ntvp->time_state = time_state;
253
254 if (ntp_is_time_error(time_status))
255 ntvp->time_state = TIME_ERROR;
256}
257
258int
259ntp_gettime(struct proc *p, struct ntp_gettime_args *uap, __unused int32_t *retval)
260{
261 struct ntptimeval ntv;
262 int error;
263 boolean_t enable;
264
265 NTP_LOCK(enable);
266 ntp_gettime1(&ntv);
267 NTP_UNLOCK(enable);
268
269 if (IS_64BIT_PROCESS(p)) {
527f9951 270 struct user64_ntptimeval user_ntv = {};
5ba3f43e
A
271 user_ntv.time.tv_sec = ntv.time.tv_sec;
272 user_ntv.time.tv_nsec = ntv.time.tv_nsec;
273 user_ntv.maxerror = ntv.maxerror;
274 user_ntv.esterror = ntv.esterror;
275 user_ntv.tai = ntv.tai;
276 user_ntv.time_state = ntv.time_state;
277 error = copyout(&user_ntv, uap->ntvp, sizeof(user_ntv));
278 } else {
527f9951 279 struct user32_ntptimeval user_ntv = {};
5ba3f43e
A
280 user_ntv.time.tv_sec = ntv.time.tv_sec;
281 user_ntv.time.tv_nsec = ntv.time.tv_nsec;
282 user_ntv.maxerror = ntv.maxerror;
283 user_ntv.esterror = ntv.esterror;
284 user_ntv.tai = ntv.tai;
285 user_ntv.time_state = ntv.time_state;
286 error = copyout(&user_ntv, uap->ntvp, sizeof(user_ntv));
287 }
288
289 if (error)
290 return error;
291
292 return ntv.time_state;
293}
294
295int
296ntp_adjtime(struct proc *p, struct ntp_adjtime_args *uap, __unused int32_t *retval)
297{
298 struct timex ntv;
299 long freq;
300 int modes;
301 int error, ret = 0;
302 clock_sec_t sec;
303 clock_usec_t microsecs;
304 boolean_t enable;
305
306 if (IS_64BIT_PROCESS(p)) {
307 struct user64_timex user_ntv;
308 error = copyin(uap->tp, &user_ntv, sizeof(user_ntv));
309 ntv.modes = user_ntv.modes;
310 ntv.offset = user_ntv.offset;
311 ntv.freq = user_ntv.freq;
312 ntv.maxerror = user_ntv.maxerror;
313 ntv.esterror = user_ntv.esterror;
314 ntv.status = user_ntv.status;
315 ntv.constant = user_ntv.constant;
316 ntv.precision = user_ntv.precision;
317 ntv.tolerance = user_ntv.tolerance;
318
319 } else {
320 struct user32_timex user_ntv;
321 error = copyin(uap->tp, &user_ntv, sizeof(user_ntv));
322 ntv.modes = user_ntv.modes;
323 ntv.offset = user_ntv.offset;
324 ntv.freq = user_ntv.freq;
325 ntv.maxerror = user_ntv.maxerror;
326 ntv.esterror = user_ntv.esterror;
327 ntv.status = user_ntv.status;
328 ntv.constant = user_ntv.constant;
329 ntv.precision = user_ntv.precision;
330 ntv.tolerance = user_ntv.tolerance;
331 }
332 if (error)
333 return (error);
334
cc8bc92a
A
335#if DEVELOPEMNT || DEBUG
336 if (g_should_log_clock_adjustments) {
337 os_log(OS_LOG_DEFAULT, "%s:BEFORE modes %u offset %ld freq %ld status %d constant %ld time_adjtime %lld\n",
338 __func__, ntv.modes, ntv.offset, ntv.freq, ntv.status, ntv.constant, time_adjtime);
339 }
340#endif
5ba3f43e
A
341 /*
342 * Update selected clock variables - only the superuser can
343 * change anything. Note that there is no error checking here on
344 * the assumption the superuser should know what it is doing.
345 * Note that either the time constant or TAI offset are loaded
346 * from the ntv.constant member, depending on the mode bits. If
347 * the STA_PLL bit in the status word is cleared, the state and
348 * status words are reset to the initial values at boot.
349 */
350 modes = ntv.modes;
351 if (modes) {
352 /* Check that this task is entitled to set the time or it is root */
353 if (!IOTaskHasEntitlement(current_task(), SETTIME_ENTITLEMENT)) {
354#if CONFIG_MACF
355 error = mac_system_check_settime(kauth_cred_get());
356 if (error)
357 return (error);
358#endif
359 if ((error = priv_check_cred(kauth_cred_get(), PRIV_ADJTIME, 0)))
360 return (error);
361
362 }
363 }
364
365 NTP_LOCK(enable);
366
367 if (modes & MOD_MAXERROR) {
368 clock_gettimeofday(&sec, &microsecs);
369 time_maxerror = ntv.maxerror;
370 last_time_maxerror_update = sec;
371 }
372 if (modes & MOD_ESTERROR)
373 time_esterror = ntv.esterror;
374 if (modes & MOD_STATUS) {
375 if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
376 time_state = TIME_OK;
377 time_status = STA_UNSYNC;
378 }
379 time_status &= STA_RONLY;
380 time_status |= ntv.status & ~STA_RONLY;
381 /*
382 * Nor PPS or leaps seconds are supported.
383 * Filter out unsupported bits.
384 */
385 time_status &= STA_SUPPORTED;
386 }
387 if (modes & MOD_TIMECONST) {
388 if (ntv.constant < 0)
389 time_constant = 0;
390 else if (ntv.constant > MAXTC)
391 time_constant = MAXTC;
392 else
393 time_constant = ntv.constant;
394 }
395 if (modes & MOD_TAI) {
396 if (ntv.constant > 0)
397 time_tai = ntv.constant;
398 }
399 if (modes & MOD_NANO)
400 time_status |= STA_NANO;
401 if (modes & MOD_MICRO)
402 time_status &= ~STA_NANO;
403 if (modes & MOD_CLKB)
404 time_status |= STA_CLK;
405 if (modes & MOD_CLKA)
406 time_status &= ~STA_CLK;
407 if (modes & MOD_FREQUENCY) {
408 freq = (ntv.freq * 1000LL) >> 16;
409 if (freq > MAXFREQ)
410 L_LINT(time_freq, MAXFREQ);
411 else if (freq < -MAXFREQ)
412 L_LINT(time_freq, -MAXFREQ);
413 else {
414 /*
415 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
416 * time_freq is [ns/s * 2^32]
417 */
418 time_freq = ntv.freq * 1000LL * 65536LL;
419 }
420 }
421 if (modes & MOD_OFFSET) {
422 if (time_status & STA_NANO)
423 hardupdate(ntv.offset);
424 else
425 hardupdate(ntv.offset * 1000);
426 }
427
428 ret = ntp_is_time_error(time_status) ? TIME_ERROR : time_state;
429
cc8bc92a
A
430#if DEVELOPEMNT || DEBUG
431 if (g_should_log_clock_adjustments) {
432 os_log(OS_LOG_DEFAULT, "%s:AFTER offset %lld freq %lld status %d constant %ld time_adjtime %lld\n",
433 __func__, time_offset, time_freq, time_status, time_constant, time_adjtime);
434 }
435#endif
436
5ba3f43e
A
437 /*
438 * Retrieve all clock variables. Note that the TAI offset is
439 * returned only by ntp_gettime();
440 */
441 if (IS_64BIT_PROCESS(p)) {
527f9951 442 struct user64_timex user_ntv = {};
5ba3f43e
A
443
444 if (time_status & STA_NANO)
445 user_ntv.offset = L_GINT(time_offset);
446 else
447 user_ntv.offset = L_GINT(time_offset) / 1000;
448 user_ntv.freq = L_GINT((time_freq / 1000LL) << 16);
449 user_ntv.maxerror = time_maxerror;
450 user_ntv.esterror = time_esterror;
451 user_ntv.status = time_status;
452 user_ntv.constant = time_constant;
453 if (time_status & STA_NANO)
454 user_ntv.precision = time_precision;
455 else
456 user_ntv.precision = time_precision / 1000;
457 user_ntv.tolerance = MAXFREQ * SCALE_PPM;
458
459 /* unlock before copyout */
460 NTP_UNLOCK(enable);
461
462 error = copyout(&user_ntv, uap->tp, sizeof(user_ntv));
463
464 }
465 else{
527f9951 466 struct user32_timex user_ntv = {};
5ba3f43e
A
467
468 if (time_status & STA_NANO)
469 user_ntv.offset = L_GINT(time_offset);
470 else
471 user_ntv.offset = L_GINT(time_offset) / 1000;
472 user_ntv.freq = L_GINT((time_freq / 1000LL) << 16);
473 user_ntv.maxerror = time_maxerror;
474 user_ntv.esterror = time_esterror;
475 user_ntv.status = time_status;
476 user_ntv.constant = time_constant;
477 if (time_status & STA_NANO)
478 user_ntv.precision = time_precision;
479 else
480 user_ntv.precision = time_precision / 1000;
481 user_ntv.tolerance = MAXFREQ * SCALE_PPM;
482
483 /* unlock before copyout */
484 NTP_UNLOCK(enable);
485
486 error = copyout(&user_ntv, uap->tp, sizeof(user_ntv));
487 }
488
489 if (modes)
490 start_ntp_loop();
491
492 if (error == 0)
493 *retval = ret;
494
495 return (error);
496}
497
498int64_t
499ntp_get_freq(void){
500 return time_freq;
501}
502
503/*
504 * Compute the adjustment to add to the next second.
505 */
506void
507ntp_update_second(int64_t *adjustment, clock_sec_t secs)
508{
509 int tickrate;
510 l_fp time_adj;
511 l_fp ftemp, old_time_adjtime, old_offset;
512
513 NTP_ASSERT_LOCKED();
514
515 if (secs > last_time_maxerror_update) {
516 time_maxerror += (MAXFREQ / 1000)*(secs-last_time_maxerror_update);
517 last_time_maxerror_update = secs;
518 }
519
520 old_offset = time_offset;
521 old_time_adjtime = time_adjtime;
522
523 ftemp = time_offset;
524 L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
525 time_adj = ftemp;
526 L_SUB(time_offset, ftemp);
527 L_ADD(time_adj, time_freq);
528
529 /*
530 * Apply any correction from adjtime. If more than one second
531 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
532 * until the last second is slewed the final < 500 usecs.
533 */
534 if (time_adjtime != 0) {
535 if (time_adjtime > 1000000)
536 tickrate = 5000;
537 else if (time_adjtime < -1000000)
538 tickrate = -5000;
539 else if (time_adjtime > 500)
540 tickrate = 500;
541 else if (time_adjtime < -500)
542 tickrate = -500;
543 else
544 tickrate = time_adjtime;
545 time_adjtime -= tickrate;
546 L_LINT(ftemp, tickrate * 1000);
547 L_ADD(time_adj, ftemp);
548 }
549
550 if (old_time_adjtime || ((time_offset || old_offset) && (time_offset != old_offset))) {
551 updated = 1;
552 }
553 else{
554 updated = 0;
555 }
556
cc8bc92a
A
557#if DEVELOPEMNT || DEBUG
558 if (g_should_log_clock_adjustments) {
559 int64_t nano = (time_adj > 0)? time_adj >> 32 : -((-time_adj) >> 32);
560 int64_t frac = (time_adj > 0)? ((uint32_t) time_adj) : -((uint32_t) (-time_adj));
561
562 os_log(OS_LOG_DEFAULT, "%s:AFTER offset %lld (%lld) freq %lld status %d "
563 "constant %ld time_adjtime %lld nano %lld frac %lld adj %lld\n",
564 __func__, time_offset, (time_offset > 0)? time_offset >> 32 : -((-time_offset) >> 32),
565 time_freq, time_status, time_constant, time_adjtime, nano, frac, time_adj);
566 }
567#endif
568
5ba3f43e
A
569 *adjustment = time_adj;
570}
571
572/*
573 * hardupdate() - local clock update
574 *
575 * This routine is called by ntp_adjtime() when an offset is provided
576 * to update the local clock phase and frequency.
577 * The implementation is of an adaptive-parameter, hybrid
578 * phase/frequency-lock loop (PLL/FLL). The routine computes new
579 * time and frequency offset estimates for each call.
580 * Presumably, calls to ntp_adjtime() occur only when the caller
581 * believes the local clock is valid within some bound (+-128 ms with
582 * NTP).
583 *
584 * For uncompensated quartz crystal oscillators and nominal update
585 * intervals less than 256 s, operation should be in phase-lock mode,
586 * where the loop is disciplined to phase. For update intervals greater
587 * than 1024 s, operation should be in frequency-lock mode, where the
588 * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
589 * is selected by the STA_MODE status bit.
590 */
591static void
592hardupdate(offset)
593 long offset;
594{
595 long mtemp = 0;
596 long time_monitor;
597 clock_sec_t time_uptime;
598 l_fp ftemp;
599
600 NTP_ASSERT_LOCKED();
601
602 if (!(time_status & STA_PLL))
603 return;
604
605 if (offset > MAXPHASE)
606 time_monitor = MAXPHASE;
607 else if (offset < -MAXPHASE)
608 time_monitor = -MAXPHASE;
609 else
610 time_monitor = offset;
611 L_LINT(time_offset, time_monitor);
612
613 clock_get_calendar_uptime(&time_uptime);
614
615 if (time_status & STA_FREQHOLD || time_reftime == 0) {
616 time_reftime = time_uptime;
617 }
618
619 mtemp = time_uptime - time_reftime;
620 L_LINT(ftemp, time_monitor);
621 L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
622 L_MPY(ftemp, mtemp);
623 L_ADD(time_freq, ftemp);
624 time_status &= ~STA_MODE;
625 if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
626 MAXSEC)) {
627 L_LINT(ftemp, (time_monitor << 4) / mtemp);
628 L_RSHIFT(ftemp, SHIFT_FLL + 4);
629 L_ADD(time_freq, ftemp);
630 time_status |= STA_MODE;
631 }
632 time_reftime = time_uptime;
633
634 if (L_GINT(time_freq) > MAXFREQ)
635 L_LINT(time_freq, MAXFREQ);
636 else if (L_GINT(time_freq) < -MAXFREQ)
637 L_LINT(time_freq, -MAXFREQ);
638}
639
640
641static int
642kern_adjtime(struct timeval *delta)
643{
644 struct timeval atv;
645 int64_t ltr, ltw;
646 boolean_t enable;
647
648 if (delta == NULL)
649 return (EINVAL);
650
651 ltw = (int64_t)delta->tv_sec * (int64_t)USEC_PER_SEC + delta->tv_usec;
652
653 NTP_LOCK(enable);
654 ltr = time_adjtime;
655 time_adjtime = ltw;
cc8bc92a
A
656#if DEVELOPEMNT || DEBUG
657 if (g_should_log_clock_adjustments) {
658 os_log(OS_LOG_DEFAULT, "%s:AFTER offset %lld freq %lld status %d constant %ld time_adjtime %lld\n",
659 __func__, time_offset, time_freq, time_status, time_constant, time_adjtime);
660 }
661#endif
5ba3f43e
A
662 NTP_UNLOCK(enable);
663
664 atv.tv_sec = ltr / (int64_t)USEC_PER_SEC;
665 atv.tv_usec = ltr % (int64_t)USEC_PER_SEC;
666 if (atv.tv_usec < 0) {
667 atv.tv_usec += (suseconds_t)USEC_PER_SEC;
668 atv.tv_sec--;
669 }
670
671 *delta = atv;
672
673 start_ntp_loop();
674
675 return (0);
676}
677
678int
679adjtime(struct proc *p, struct adjtime_args *uap, __unused int32_t *retval)
680{
681
682 struct timeval atv;
683 int error;
684
685 /* Check that this task is entitled to set the time or it is root */
686 if (!IOTaskHasEntitlement(current_task(), SETTIME_ENTITLEMENT)) {
687
688#if CONFIG_MACF
689 error = mac_system_check_settime(kauth_cred_get());
690 if (error)
691 return (error);
692#endif
693 if ((error = priv_check_cred(kauth_cred_get(), PRIV_ADJTIME, 0)))
694 return (error);
695 }
696
697 if (IS_64BIT_PROCESS(p)) {
698 struct user64_timeval user_atv;
699 error = copyin(uap->delta, &user_atv, sizeof(user_atv));
700 atv.tv_sec = user_atv.tv_sec;
701 atv.tv_usec = user_atv.tv_usec;
702 } else {
703 struct user32_timeval user_atv;
704 error = copyin(uap->delta, &user_atv, sizeof(user_atv));
705 atv.tv_sec = user_atv.tv_sec;
706 atv.tv_usec = user_atv.tv_usec;
707 }
708 if (error)
709 return (error);
710
711 kern_adjtime(&atv);
712
713 if (uap->olddelta) {
714 if (IS_64BIT_PROCESS(p)) {
527f9951 715 struct user64_timeval user_atv = {};
5ba3f43e
A
716 user_atv.tv_sec = atv.tv_sec;
717 user_atv.tv_usec = atv.tv_usec;
718 error = copyout(&user_atv, uap->olddelta, sizeof(user_atv));
719 } else {
527f9951 720 struct user32_timeval user_atv = {};
5ba3f43e
A
721 user_atv.tv_sec = atv.tv_sec;
722 user_atv.tv_usec = atv.tv_usec;
723 error = copyout(&user_atv, uap->olddelta, sizeof(user_atv));
724 }
725 }
726
727 return (error);
728
729}
730
731static void
732ntp_loop_update_call(void)
733{
734 boolean_t enable;
735
736 NTP_LOCK(enable);
737
738 /*
739 * Update the scale factor used by clock_calend.
740 * NOTE: clock_update_calendar will call ntp_update_second to compute the next adjustment.
741 */
742 clock_update_calendar();
743
744 refresh_ntp_loop();
745
746 NTP_UNLOCK(enable);
747}
748
749static void
750refresh_ntp_loop(void)
751{
752
753 NTP_ASSERT_LOCKED();
754 if (--ntp_loop_active == 0) {
755 /*
756 * Activate the timer only if the next second adjustment might change.
757 * ntp_update_second checks it and sets updated accordingly.
758 */
759 if (updated) {
760 clock_deadline_for_periodic_event(ntp_loop_period, mach_absolute_time(), &ntp_loop_deadline);
761
762 if (!timer_call_enter(&ntp_loop_update, ntp_loop_deadline, TIMER_CALL_SYS_CRITICAL))
763 ntp_loop_active++;
764 }
765 }
766
767}
768
769/*
770 * This function triggers a timer that each second will calculate the adjustment to
771 * provide to clock_calendar to scale the time (used by gettimeofday-family syscalls).
772 * The periodic timer will stop when the adjustment will reach a stable value.
773 */
774static void
775start_ntp_loop(void)
776{
777 boolean_t enable;
778
779 NTP_LOCK(enable);
780
781 ntp_loop_deadline = mach_absolute_time() + ntp_loop_period;
782
783 if (!timer_call_enter(&ntp_loop_update, ntp_loop_deadline, TIMER_CALL_SYS_CRITICAL)) {
784 ntp_loop_active++;
785 }
786
787 NTP_UNLOCK(enable);
788}
789
790
791static void
792init_ntp_loop(void)
793{
794 uint64_t abstime;
795
796 ntp_loop_active = 0;
797 nanoseconds_to_absolutetime(NTP_LOOP_PERIOD_INTERVAL, &abstime);
798 ntp_loop_period = (uint32_t)abstime;
799 timer_call_setup(&ntp_loop_update, (timer_call_func_t)ntp_loop_update_call, NULL);
800}
801
802void
803ntp_init(void)
804{
805
806 L_CLR(time_offset);
807 L_CLR(time_freq);
808
809 ntp_lock_grp_attr = lck_grp_attr_alloc_init();
810 ntp_lock_grp = lck_grp_alloc_init("ntp_lock", ntp_lock_grp_attr);
811 ntp_lock_attr = lck_attr_alloc_init();
812 ntp_lock = lck_spin_alloc_init(ntp_lock_grp, ntp_lock_attr);
813
814 updated = 0;
815
816 init_ntp_loop();
817}
818
819SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, ntp_init, NULL);