]>
Commit | Line | Data |
---|---|---|
2d21ac55 | 1 | /* |
6d2010ae | 2 | * Copyright (c) 2007-2010 Apple Inc. All rights reserved. |
2d21ac55 A |
3 | * |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | ||
29 | /************* | |
30 | * These functions implement RPCSEC_GSS security for the NFS client and server. | |
31 | * The code is specific to the use of Kerberos v5 and the use of DES MAC MD5 | |
32 | * protection as described in Internet RFC 2203 and 2623. | |
33 | * | |
34 | * In contrast to the original AUTH_SYS authentication, RPCSEC_GSS is stateful. | |
35 | * It requires the client and server negotiate a secure connection as part of a | |
36 | * security context. The context state is maintained in client and server structures. | |
37 | * On the client side, each user of an NFS mount is assigned their own context, | |
38 | * identified by UID, on their first use of the mount, and it persists until the | |
39 | * unmount or until the context is renewed. Each user context has a corresponding | |
40 | * server context which the server maintains until the client destroys it, or | |
41 | * until the context expires. | |
42 | * | |
43 | * The client and server contexts are set up dynamically. When a user attempts | |
44 | * to send an NFS request, if there is no context for the user, then one is | |
45 | * set up via an exchange of NFS null procedure calls as described in RFC 2203. | |
46 | * During this exchange, the client and server pass a security token that is | |
47 | * forwarded via Mach upcall to the gssd, which invokes the GSS-API to authenticate | |
48 | * the user to the server (and vice-versa). The client and server also receive | |
49 | * a unique session key that can be used to digitally sign the credentials and | |
50 | * verifier or optionally to provide data integrity and/or privacy. | |
51 | * | |
52 | * Once the context is complete, the client and server enter a normal data | |
53 | * exchange phase - beginning with the NFS request that prompted the context | |
54 | * creation. During this phase, the client's RPC header contains an RPCSEC_GSS | |
55 | * credential and verifier, and the server returns a verifier as well. | |
56 | * For simple authentication, the verifier contains a signed checksum of the | |
57 | * RPC header, including the credential. The server's verifier has a signed | |
58 | * checksum of the current sequence number. | |
59 | * | |
60 | * Each client call contains a sequence number that nominally increases by one | |
61 | * on each request. The sequence number is intended to prevent replay attacks. | |
62 | * Since the protocol can be used over UDP, there is some allowance for | |
63 | * out-of-sequence requests, so the server checks whether the sequence numbers | |
64 | * are within a sequence "window". If a sequence number is outside the lower | |
65 | * bound of the window, the server silently drops the request. This has some | |
66 | * implications for retransmission. If a request needs to be retransmitted, the | |
67 | * client must bump the sequence number even if the request XID is unchanged. | |
68 | * | |
69 | * When the NFS mount is unmounted, the client sends a "destroy" credential | |
70 | * to delete the server's context for each user of the mount. Since it's | |
71 | * possible for the client to crash or disconnect without sending the destroy | |
72 | * message, the server has a thread that reaps contexts that have been idle | |
73 | * too long. | |
74 | */ | |
75 | ||
76 | #include <stdint.h> | |
77 | #include <sys/param.h> | |
78 | #include <sys/systm.h> | |
79 | #include <sys/proc.h> | |
80 | #include <sys/kauth.h> | |
81 | #include <sys/kernel.h> | |
82 | #include <sys/mount_internal.h> | |
83 | #include <sys/vnode.h> | |
84 | #include <sys/ubc.h> | |
85 | #include <sys/malloc.h> | |
86 | #include <sys/kpi_mbuf.h> | |
87 | ||
88 | #include <kern/host.h> | |
89 | #include <libkern/libkern.h> | |
90 | ||
91 | #include <mach/task.h> | |
316670eb | 92 | #include <mach/host_special_ports.h> |
2d21ac55 A |
93 | #include <mach/host_priv.h> |
94 | #include <mach/thread_act.h> | |
95 | #include <mach/mig_errors.h> | |
96 | #include <mach/vm_map.h> | |
97 | #include <vm/vm_map.h> | |
98 | #include <vm/vm_kern.h> | |
99 | #include <gssd/gssd_mach.h> | |
100 | ||
101 | #include <nfs/rpcv2.h> | |
102 | #include <nfs/nfsproto.h> | |
103 | #include <nfs/nfs.h> | |
104 | #include <nfs/nfsnode.h> | |
105 | #include <nfs/nfs_gss.h> | |
106 | #include <nfs/nfsmount.h> | |
107 | #include <nfs/xdr_subs.h> | |
108 | #include <nfs/nfsm_subs.h> | |
109 | #include <nfs/nfs_gss.h> | |
110 | ||
b0d623f7 A |
111 | #include "nfs_gss_crypto.h" |
112 | ||
2d21ac55 A |
113 | #define NFS_GSS_MACH_MAX_RETRIES 3 |
114 | ||
b0d623f7 A |
115 | typedef struct { |
116 | int type; | |
117 | union { | |
118 | MD5_DESCBC_CTX m_ctx; | |
119 | HMAC_SHA1_DES3KD_CTX h_ctx; | |
120 | }; | |
121 | } GSS_DIGEST_CTX; | |
122 | ||
123 | #define MAX_DIGEST SHA_DIGEST_LENGTH | |
124 | #ifdef NFS_KERNEL_DEBUG | |
125 | #define HASHLEN(ki) (((ki)->hash_len > MAX_DIGEST) ? \ | |
126 | (panic("nfs_gss.c:%d ki->hash_len is invalid = %d\n", __LINE__, (ki)->hash_len), MAX_DIGEST) : (ki)->hash_len) | |
127 | #else | |
128 | #define HASHLEN(ki) (((ki)->hash_len > MAX_DIGEST) ? \ | |
129 | (printf("nfs_gss.c:%d ki->hash_len is invalid = %d\n", __LINE__, (ki)->hash_len), MAX_DIGEST) : (ki)->hash_len) | |
130 | #endif | |
131 | ||
2d21ac55 A |
132 | #if NFSSERVER |
133 | u_long nfs_gss_svc_ctx_hash; | |
134 | struct nfs_gss_svc_ctx_hashhead *nfs_gss_svc_ctx_hashtbl; | |
135 | lck_mtx_t *nfs_gss_svc_ctx_mutex; | |
136 | lck_grp_t *nfs_gss_svc_grp; | |
b0d623f7 A |
137 | uint32_t nfsrv_gss_context_ttl = GSS_CTX_EXPIRE; |
138 | #define GSS_SVC_CTX_TTL ((uint64_t)max(2*GSS_CTX_PEND, nfsrv_gss_context_ttl) * NSEC_PER_SEC) | |
2d21ac55 A |
139 | #endif /* NFSSERVER */ |
140 | ||
141 | #if NFSCLIENT | |
142 | lck_grp_t *nfs_gss_clnt_grp; | |
b0d623f7 | 143 | int nfs_single_des; |
2d21ac55 A |
144 | #endif /* NFSCLIENT */ |
145 | ||
146 | /* | |
147 | * These octet strings are used to encode/decode ASN.1 tokens | |
148 | * in the RPCSEC_GSS verifiers. | |
149 | */ | |
6d2010ae A |
150 | static u_char krb5_tokhead[] __attribute__((unused)) = { 0x60, 0x23 }; |
151 | u_char krb5_mech[11] = { 0x06, 0x09, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x01, 0x02, 0x02 }; | |
2d21ac55 | 152 | static u_char krb5_mic[] = { 0x01, 0x01, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff }; |
b0d623f7 | 153 | static u_char krb5_mic3[] = { 0x01, 0x01, 0x04, 0x00, 0xff, 0xff, 0xff, 0xff }; |
2d21ac55 | 154 | static u_char krb5_wrap[] = { 0x02, 0x01, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff }; |
b0d623f7 | 155 | static u_char krb5_wrap3[] = { 0x02, 0x01, 0x04, 0x00, 0x02, 0x00, 0xff, 0xff }; |
2d21ac55 A |
156 | static u_char iv0[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; // DES MAC Initialization Vector |
157 | ||
b0d623f7 A |
158 | #define ALG_MIC(ki) (((ki)->type == NFS_GSS_1DES) ? krb5_mic : krb5_mic3) |
159 | #define ALG_WRAP(ki) (((ki)->type == NFS_GSS_1DES) ? krb5_wrap : krb5_wrap3) | |
160 | ||
2d21ac55 A |
161 | /* |
162 | * The size of the Kerberos v5 ASN.1 token | |
163 | * in the verifier. | |
164 | * | |
165 | * Note that the second octet of the krb5_tokhead (0x23) is a | |
166 | * DER-encoded size field that has variable length. If the size | |
167 | * is 128 bytes or greater, then it uses two bytes, three bytes | |
168 | * if 65536 or greater, and so on. Since the MIC tokens are | |
169 | * separate from the data, the size is always the same: 35 bytes (0x23). | |
170 | * However, the wrap token is different. Its size field includes the | |
171 | * size of the token + the encrypted data that follows. So the size | |
172 | * field may be two, three or four bytes. | |
173 | */ | |
174 | #define KRB5_SZ_TOKHEAD sizeof(krb5_tokhead) | |
175 | #define KRB5_SZ_MECH sizeof(krb5_mech) | |
176 | #define KRB5_SZ_ALG sizeof(krb5_mic) // 8 - same as krb5_wrap | |
177 | #define KRB5_SZ_SEQ 8 | |
2d21ac55 | 178 | #define KRB5_SZ_EXTRA 3 // a wrap token may be longer by up to this many octets |
b0d623f7 A |
179 | #define KRB5_SZ_TOKEN_NOSUM (KRB5_SZ_TOKHEAD + KRB5_SZ_MECH + KRB5_SZ_ALG + KRB5_SZ_SEQ) |
180 | #define KRB5_SZ_TOKEN(cksumlen) ((cksumlen) + KRB5_SZ_TOKEN_NOSUM) | |
181 | #define KRB5_SZ_TOKMAX(cksumlen) (KRB5_SZ_TOKEN(cksumlen) + KRB5_SZ_EXTRA) | |
2d21ac55 A |
182 | |
183 | #if NFSCLIENT | |
184 | static int nfs_gss_clnt_ctx_find(struct nfsreq *); | |
185 | static int nfs_gss_clnt_ctx_failover(struct nfsreq *); | |
186 | static int nfs_gss_clnt_ctx_init(struct nfsreq *, struct nfs_gss_clnt_ctx *); | |
6d2010ae | 187 | static int nfs_gss_clnt_ctx_init_retry(struct nfsreq *, struct nfs_gss_clnt_ctx *); |
2d21ac55 A |
188 | static int nfs_gss_clnt_ctx_callserver(struct nfsreq *, struct nfs_gss_clnt_ctx *); |
189 | static char *nfs_gss_clnt_svcname(struct nfsmount *); | |
190 | static int nfs_gss_clnt_gssd_upcall(struct nfsreq *, struct nfs_gss_clnt_ctx *); | |
191 | static void nfs_gss_clnt_ctx_remove(struct nfsmount *, struct nfs_gss_clnt_ctx *); | |
2d21ac55 A |
192 | #endif /* NFSCLIENT */ |
193 | ||
194 | #if NFSSERVER | |
195 | static struct nfs_gss_svc_ctx *nfs_gss_svc_ctx_find(uint32_t); | |
196 | static void nfs_gss_svc_ctx_insert(struct nfs_gss_svc_ctx *); | |
197 | static void nfs_gss_svc_ctx_timer(void *, void *); | |
198 | static int nfs_gss_svc_gssd_upcall(struct nfs_gss_svc_ctx *); | |
199 | static int nfs_gss_svc_seqnum_valid(struct nfs_gss_svc_ctx *, uint32_t); | |
200 | #endif /* NFSSERVER */ | |
201 | ||
316670eb A |
202 | static void host_release_special_port(mach_port_t); |
203 | static mach_port_t host_copy_special_port(mach_port_t); | |
2d21ac55 A |
204 | static void nfs_gss_mach_alloc_buffer(u_char *, uint32_t, vm_map_copy_t *); |
205 | static int nfs_gss_mach_vmcopyout(vm_map_copy_t, uint32_t, u_char *); | |
b0d623f7 A |
206 | static int nfs_gss_token_get(gss_key_info *ki, u_char *, u_char *, int, uint32_t *, u_char *); |
207 | static int nfs_gss_token_put(gss_key_info *ki, u_char *, u_char *, int, int, u_char *); | |
2d21ac55 A |
208 | static int nfs_gss_der_length_size(int); |
209 | static void nfs_gss_der_length_put(u_char **, int); | |
210 | static int nfs_gss_der_length_get(u_char **); | |
211 | static int nfs_gss_mchain_length(mbuf_t); | |
212 | static int nfs_gss_append_chain(struct nfsm_chain *, mbuf_t); | |
213 | static void nfs_gss_nfsm_chain(struct nfsm_chain *, mbuf_t); | |
b0d623f7 A |
214 | static void nfs_gss_cksum_mchain(gss_key_info *, mbuf_t, u_char *, int, int, u_char *); |
215 | static void nfs_gss_cksum_chain(gss_key_info *, struct nfsm_chain *, u_char *, int, int, u_char *); | |
216 | static void nfs_gss_cksum_rep(gss_key_info *, uint32_t, u_char *); | |
217 | static void nfs_gss_encrypt_mchain(gss_key_info *, mbuf_t, int, int, int); | |
218 | static void nfs_gss_encrypt_chain(gss_key_info *, struct nfsm_chain *, int, int, int); | |
219 | ||
220 | static void gss_digest_Init(GSS_DIGEST_CTX *, gss_key_info *); | |
221 | static void gss_digest_Update(GSS_DIGEST_CTX *, void *, size_t); | |
222 | static void gss_digest_Final(GSS_DIGEST_CTX *, void *); | |
223 | static void gss_des_crypt(gss_key_info *, des_cblock *, des_cblock *, | |
224 | int32_t, des_cblock *, des_cblock *, int, int); | |
225 | static int gss_key_init(gss_key_info *, uint32_t); | |
2d21ac55 A |
226 | |
227 | #if NFSSERVER | |
228 | thread_call_t nfs_gss_svc_ctx_timer_call; | |
229 | int nfs_gss_timer_on = 0; | |
230 | uint32_t nfs_gss_ctx_count = 0; | |
231 | const uint32_t nfs_gss_ctx_max = GSS_SVC_MAXCONTEXTS; | |
232 | #endif /* NFSSERVER */ | |
233 | ||
234 | /* | |
235 | * Initialization when NFS starts | |
236 | */ | |
237 | void | |
238 | nfs_gss_init(void) | |
239 | { | |
240 | #if NFSCLIENT | |
241 | nfs_gss_clnt_grp = lck_grp_alloc_init("rpcsec_gss_clnt", LCK_GRP_ATTR_NULL); | |
242 | #endif /* NFSCLIENT */ | |
243 | ||
244 | #if NFSSERVER | |
245 | nfs_gss_svc_grp = lck_grp_alloc_init("rpcsec_gss_svc", LCK_GRP_ATTR_NULL); | |
246 | ||
247 | nfs_gss_svc_ctx_hashtbl = hashinit(SVC_CTX_HASHSZ, M_TEMP, &nfs_gss_svc_ctx_hash); | |
248 | nfs_gss_svc_ctx_mutex = lck_mtx_alloc_init(nfs_gss_svc_grp, LCK_ATTR_NULL); | |
249 | ||
250 | nfs_gss_svc_ctx_timer_call = thread_call_allocate(nfs_gss_svc_ctx_timer, NULL); | |
251 | #endif /* NFSSERVER */ | |
252 | } | |
253 | ||
254 | #if NFSCLIENT | |
255 | ||
6d2010ae A |
256 | /* |
257 | * Is it OK to fall back to using AUTH_SYS? | |
258 | */ | |
259 | static int | |
260 | nfs_gss_sysok(struct nfsreq *req) | |
261 | { | |
262 | struct nfsmount *nmp = req->r_nmp; | |
263 | int i; | |
264 | ||
265 | if (req->r_wrongsec) /* Not OK if we're trying to handle a wrongsec error */ | |
266 | return (0); | |
267 | if (!nmp->nm_sec.count) /* assume it's OK if we don't have a set of flavors */ | |
268 | return (1); | |
269 | for (i=0; i < nmp->nm_sec.count; i++) | |
270 | if (nmp->nm_sec.flavors[i] == RPCAUTH_SYS) | |
271 | return (1); | |
272 | return (0); | |
273 | } | |
274 | ||
2d21ac55 A |
275 | /* |
276 | * Find the context for a particular user. | |
277 | * | |
278 | * If the context doesn't already exist | |
279 | * then create a new context for this user. | |
280 | * | |
281 | * Note that the code allows superuser (uid == 0) | |
282 | * to adopt the context of another user. | |
283 | */ | |
284 | static int | |
285 | nfs_gss_clnt_ctx_find(struct nfsreq *req) | |
286 | { | |
287 | struct nfsmount *nmp = req->r_nmp; | |
288 | struct nfs_gss_clnt_ctx *cp; | |
289 | uid_t uid = kauth_cred_getuid(req->r_cred); | |
290 | int error = 0; | |
2d21ac55 | 291 | |
2d21ac55 A |
292 | lck_mtx_lock(&nmp->nm_lock); |
293 | TAILQ_FOREACH(cp, &nmp->nm_gsscl, gss_clnt_entries) { | |
294 | if (cp->gss_clnt_uid == uid) { | |
295 | if (cp->gss_clnt_flags & GSS_CTX_INVAL) | |
296 | continue; | |
2d21ac55 | 297 | nfs_gss_clnt_ctx_ref(req, cp); |
6d2010ae | 298 | lck_mtx_unlock(&nmp->nm_lock); |
2d21ac55 A |
299 | return (0); |
300 | } | |
301 | } | |
302 | ||
303 | if (uid == 0) { | |
304 | /* | |
305 | * If superuser is trying to get access, then co-opt | |
306 | * the first valid context in the list. | |
307 | * XXX Ultimately, we need to allow superuser to | |
308 | * go ahead and attempt to set up its own context | |
309 | * in case one is set up for it. | |
310 | */ | |
311 | TAILQ_FOREACH(cp, &nmp->nm_gsscl, gss_clnt_entries) { | |
312 | if (!(cp->gss_clnt_flags & GSS_CTX_INVAL)) { | |
2d21ac55 | 313 | nfs_gss_clnt_ctx_ref(req, cp); |
6d2010ae | 314 | lck_mtx_unlock(&nmp->nm_lock); |
2d21ac55 A |
315 | return (0); |
316 | } | |
317 | } | |
318 | } | |
319 | ||
320 | /* | |
321 | * Not found - create a new context | |
322 | */ | |
323 | ||
324 | /* | |
325 | * If the thread is async, then it cannot get | |
326 | * kerberos creds and set up a proper context. | |
327 | * If no sec= mount option is given, attempt | |
328 | * to failover to sec=sys. | |
329 | */ | |
330 | if (req->r_thread == NULL) { | |
6d2010ae | 331 | if (nfs_gss_sysok(req)) { |
2d21ac55 A |
332 | error = nfs_gss_clnt_ctx_failover(req); |
333 | } else { | |
334 | printf("nfs_gss_clnt_ctx_find: no context for async\n"); | |
b0d623f7 | 335 | error = NFSERR_EAUTH; |
2d21ac55 A |
336 | } |
337 | ||
338 | lck_mtx_unlock(&nmp->nm_lock); | |
339 | return (error); | |
340 | } | |
2d21ac55 A |
341 | |
342 | MALLOC(cp, struct nfs_gss_clnt_ctx *, sizeof(*cp), M_TEMP, M_WAITOK|M_ZERO); | |
343 | if (cp == NULL) { | |
344 | lck_mtx_unlock(&nmp->nm_lock); | |
345 | return (ENOMEM); | |
346 | } | |
347 | ||
348 | cp->gss_clnt_uid = uid; | |
349 | cp->gss_clnt_mtx = lck_mtx_alloc_init(nfs_gss_clnt_grp, LCK_ATTR_NULL); | |
350 | cp->gss_clnt_thread = current_thread(); | |
351 | nfs_gss_clnt_ctx_ref(req, cp); | |
352 | TAILQ_INSERT_TAIL(&nmp->nm_gsscl, cp, gss_clnt_entries); | |
353 | lck_mtx_unlock(&nmp->nm_lock); | |
354 | ||
6d2010ae | 355 | error = nfs_gss_clnt_ctx_init_retry(req, cp); // Initialize new context |
b0d623f7 A |
356 | if (error) |
357 | nfs_gss_clnt_ctx_unref(req); | |
358 | ||
2d21ac55 A |
359 | /* |
360 | * If we failed to set up a Kerberos context for this | |
b0d623f7 A |
361 | * user and no sec= mount option was given, but the |
362 | * server indicated that it could support AUTH_SYS, then set | |
2d21ac55 A |
363 | * up a dummy context that allows this user to attempt |
364 | * sec=sys calls. | |
365 | */ | |
6d2010ae | 366 | if (error && nfs_gss_sysok(req) && |
b0d623f7 | 367 | (error != ENXIO) && (error != ETIMEDOUT)) { |
2d21ac55 A |
368 | lck_mtx_lock(&nmp->nm_lock); |
369 | error = nfs_gss_clnt_ctx_failover(req); | |
370 | lck_mtx_unlock(&nmp->nm_lock); | |
371 | } | |
372 | ||
373 | return (error); | |
374 | } | |
375 | ||
376 | /* | |
377 | * Set up a dummy context to allow the use of sec=sys | |
378 | * for this user, if the server allows sec=sys. | |
379 | * The context is valid for GSS_CLNT_SYS_VALID seconds, | |
380 | * so that the user will periodically attempt to fail back | |
381 | * and get a real credential. | |
382 | * | |
383 | * Assumes context list (nm_lock) is locked | |
384 | */ | |
385 | static int | |
386 | nfs_gss_clnt_ctx_failover(struct nfsreq *req) | |
387 | { | |
388 | struct nfsmount *nmp = req->r_nmp; | |
389 | struct nfs_gss_clnt_ctx *cp; | |
390 | uid_t uid = kauth_cred_getuid(req->r_cred); | |
391 | struct timeval now; | |
392 | ||
393 | MALLOC(cp, struct nfs_gss_clnt_ctx *, sizeof(*cp), M_TEMP, M_WAITOK|M_ZERO); | |
394 | if (cp == NULL) | |
395 | return (ENOMEM); | |
396 | ||
397 | cp->gss_clnt_service = RPCSEC_GSS_SVC_SYS; | |
398 | cp->gss_clnt_uid = uid; | |
399 | cp->gss_clnt_mtx = lck_mtx_alloc_init(nfs_gss_clnt_grp, LCK_ATTR_NULL); | |
400 | microuptime(&now); | |
401 | cp->gss_clnt_ctime = now.tv_sec; // time stamp | |
402 | nfs_gss_clnt_ctx_ref(req, cp); | |
403 | TAILQ_INSERT_TAIL(&nmp->nm_gsscl, cp, gss_clnt_entries); | |
404 | ||
405 | return (0); | |
406 | } | |
407 | ||
408 | /* | |
409 | * Inserts an RPCSEC_GSS credential into an RPC header. | |
410 | * After the credential is inserted, the code continues | |
411 | * to build the verifier which contains a signed checksum | |
412 | * of the RPC header. | |
413 | */ | |
414 | int | |
415 | nfs_gss_clnt_cred_put(struct nfsreq *req, struct nfsm_chain *nmc, mbuf_t args) | |
416 | { | |
2d21ac55 A |
417 | struct nfs_gss_clnt_ctx *cp; |
418 | uint32_t seqnum = 0; | |
419 | int error = 0; | |
b0d623f7 | 420 | int slpflag, recordmark = 0; |
2d21ac55 A |
421 | int start, len, offset = 0; |
422 | int pad, toklen; | |
423 | struct nfsm_chain nmc_tmp; | |
424 | struct gss_seq *gsp; | |
b0d623f7 A |
425 | u_char tokbuf[KRB5_SZ_TOKMAX(MAX_DIGEST)]; |
426 | u_char cksum[MAX_DIGEST]; | |
2d21ac55 | 427 | struct timeval now; |
b0d623f7 A |
428 | gss_key_info *ki; |
429 | ||
430 | slpflag = (PZERO-1); | |
431 | if (req->r_nmp) { | |
6d2010ae | 432 | slpflag |= (NMFLAG(req->r_nmp, INTR) && req->r_thread && !(req->r_flags & R_NOINTR)) ? PCATCH : 0; |
b0d623f7 A |
433 | recordmark = (req->r_nmp->nm_sotype == SOCK_STREAM); |
434 | } | |
2d21ac55 A |
435 | retry: |
436 | if (req->r_gss_ctx == NULL) { | |
437 | /* | |
438 | * Find the context for this user. | |
439 | * If no context is found, one will | |
440 | * be created. | |
441 | */ | |
442 | error = nfs_gss_clnt_ctx_find(req); | |
443 | if (error) | |
444 | return (error); | |
445 | } | |
446 | cp = req->r_gss_ctx; | |
447 | ||
448 | /* | |
449 | * If it's a dummy context for a user that's using | |
450 | * a fallback to sec=sys, then just return an error | |
451 | * so rpchead can encode an RPCAUTH_UNIX cred. | |
452 | */ | |
453 | if (cp->gss_clnt_service == RPCSEC_GSS_SVC_SYS) { | |
454 | /* | |
455 | * The dummy context is valid for just | |
456 | * GSS_CLNT_SYS_VALID seconds. If the context | |
457 | * is older than this, mark it invalid and try | |
458 | * again to get a real one. | |
459 | */ | |
460 | lck_mtx_lock(cp->gss_clnt_mtx); | |
461 | microuptime(&now); | |
462 | if (now.tv_sec > cp->gss_clnt_ctime + GSS_CLNT_SYS_VALID) { | |
463 | cp->gss_clnt_flags |= GSS_CTX_INVAL; | |
464 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
465 | nfs_gss_clnt_ctx_unref(req); | |
466 | goto retry; | |
467 | } | |
468 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
469 | return (ENEEDAUTH); | |
470 | } | |
471 | ||
472 | /* | |
473 | * If the context thread isn't null, then the context isn't | |
474 | * yet complete and is for the exclusive use of the thread | |
475 | * doing the context setup. Wait until the context thread | |
476 | * is null. | |
477 | */ | |
478 | lck_mtx_lock(cp->gss_clnt_mtx); | |
479 | if (cp->gss_clnt_thread && cp->gss_clnt_thread != current_thread()) { | |
480 | cp->gss_clnt_flags |= GSS_NEEDCTX; | |
b0d623f7 | 481 | msleep(cp, cp->gss_clnt_mtx, slpflag | PDROP, "ctxwait", NULL); |
6d2010ae | 482 | slpflag &= ~PCATCH; |
b0d623f7 | 483 | if ((error = nfs_sigintr(req->r_nmp, req, req->r_thread, 0))) |
2d21ac55 A |
484 | return (error); |
485 | nfs_gss_clnt_ctx_unref(req); | |
486 | goto retry; | |
487 | } | |
488 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
489 | ||
b0d623f7 | 490 | ki = &cp->gss_clnt_kinfo; |
2d21ac55 A |
491 | if (cp->gss_clnt_flags & GSS_CTX_COMPLETE) { |
492 | /* | |
493 | * Get a sequence number for this request. | |
494 | * Check whether the oldest request in the window is complete. | |
495 | * If it's still pending, then wait until it's done before | |
496 | * we allocate a new sequence number and allow this request | |
497 | * to proceed. | |
498 | */ | |
499 | lck_mtx_lock(cp->gss_clnt_mtx); | |
500 | while (win_getbit(cp->gss_clnt_seqbits, | |
501 | ((cp->gss_clnt_seqnum - cp->gss_clnt_seqwin) + 1) % cp->gss_clnt_seqwin)) { | |
502 | cp->gss_clnt_flags |= GSS_NEEDSEQ; | |
ebb1b9f4 | 503 | msleep(cp, cp->gss_clnt_mtx, slpflag | PDROP, "seqwin", NULL); |
6d2010ae | 504 | slpflag &= ~PCATCH; |
b0d623f7 | 505 | if ((error = nfs_sigintr(req->r_nmp, req, req->r_thread, 0))) { |
2d21ac55 A |
506 | return (error); |
507 | } | |
ebb1b9f4 | 508 | lck_mtx_lock(cp->gss_clnt_mtx); |
2d21ac55 A |
509 | if (cp->gss_clnt_flags & GSS_CTX_INVAL) { |
510 | /* Renewed while while we were waiting */ | |
511 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
512 | nfs_gss_clnt_ctx_unref(req); | |
513 | goto retry; | |
514 | } | |
515 | } | |
516 | seqnum = ++cp->gss_clnt_seqnum; | |
517 | win_setbit(cp->gss_clnt_seqbits, seqnum % cp->gss_clnt_seqwin); | |
518 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
519 | ||
520 | MALLOC(gsp, struct gss_seq *, sizeof(*gsp), M_TEMP, M_WAITOK|M_ZERO); | |
521 | if (gsp == NULL) | |
522 | return (ENOMEM); | |
523 | gsp->gss_seqnum = seqnum; | |
524 | SLIST_INSERT_HEAD(&req->r_gss_seqlist, gsp, gss_seqnext); | |
525 | } | |
526 | ||
527 | /* Insert the credential */ | |
528 | nfsm_chain_add_32(error, nmc, RPCSEC_GSS); | |
529 | nfsm_chain_add_32(error, nmc, 5 * NFSX_UNSIGNED + cp->gss_clnt_handle_len); | |
530 | nfsm_chain_add_32(error, nmc, RPCSEC_GSS_VERS_1); | |
531 | nfsm_chain_add_32(error, nmc, cp->gss_clnt_proc); | |
532 | nfsm_chain_add_32(error, nmc, seqnum); | |
533 | nfsm_chain_add_32(error, nmc, cp->gss_clnt_service); | |
534 | nfsm_chain_add_32(error, nmc, cp->gss_clnt_handle_len); | |
b0d623f7 A |
535 | if (cp->gss_clnt_handle_len > 0) { |
536 | if (cp->gss_clnt_handle == NULL) | |
537 | return (EBADRPC); | |
538 | nfsm_chain_add_opaque(error, nmc, cp->gss_clnt_handle, cp->gss_clnt_handle_len); | |
539 | } | |
540 | if (error) | |
541 | return(error); | |
2d21ac55 A |
542 | /* |
543 | * Now add the verifier | |
544 | */ | |
545 | if (cp->gss_clnt_proc == RPCSEC_GSS_INIT || | |
546 | cp->gss_clnt_proc == RPCSEC_GSS_CONTINUE_INIT) { | |
547 | /* | |
548 | * If the context is still being created | |
549 | * then use a null verifier. | |
550 | */ | |
551 | nfsm_chain_add_32(error, nmc, RPCAUTH_NULL); // flavor | |
552 | nfsm_chain_add_32(error, nmc, 0); // length | |
553 | nfsm_chain_build_done(error, nmc); | |
554 | if (!error) | |
555 | nfs_gss_append_chain(nmc, args); | |
556 | return (error); | |
557 | } | |
558 | ||
b0d623f7 | 559 | offset = recordmark ? NFSX_UNSIGNED : 0; // record mark |
2d21ac55 | 560 | nfsm_chain_build_done(error, nmc); |
b0d623f7 | 561 | nfs_gss_cksum_chain(ki, nmc, ALG_MIC(ki), offset, 0, cksum); |
2d21ac55 | 562 | |
b0d623f7 | 563 | toklen = nfs_gss_token_put(ki, ALG_MIC(ki), tokbuf, 1, 0, cksum); |
2d21ac55 A |
564 | nfsm_chain_add_32(error, nmc, RPCSEC_GSS); // flavor |
565 | nfsm_chain_add_32(error, nmc, toklen); // length | |
566 | nfsm_chain_add_opaque(error, nmc, tokbuf, toklen); | |
567 | nfsm_chain_build_done(error, nmc); | |
568 | if (error) | |
569 | return (error); | |
570 | ||
571 | /* | |
572 | * Now we may have to compute integrity or encrypt the call args | |
573 | * per RFC 2203 Section 5.3.2 | |
574 | */ | |
575 | switch (cp->gss_clnt_service) { | |
576 | case RPCSEC_GSS_SVC_NONE: | |
577 | nfs_gss_append_chain(nmc, args); | |
578 | break; | |
579 | case RPCSEC_GSS_SVC_INTEGRITY: | |
580 | len = nfs_gss_mchain_length(args); // Find args length | |
581 | req->r_gss_arglen = len; // Stash the args len | |
582 | len += NFSX_UNSIGNED; // Add seqnum length | |
583 | nfsm_chain_add_32(error, nmc, len); // and insert it | |
584 | start = nfsm_chain_offset(nmc); | |
585 | nfsm_chain_add_32(error, nmc, seqnum); // Insert seqnum | |
586 | req->r_gss_argoff = nfsm_chain_offset(nmc); // Offset to args | |
587 | nfsm_chain_build_done(error, nmc); | |
588 | if (error) | |
589 | return (error); | |
590 | nfs_gss_append_chain(nmc, args); // Append the args mbufs | |
591 | ||
592 | /* Now compute a checksum over the seqnum + args */ | |
b0d623f7 | 593 | nfs_gss_cksum_chain(ki, nmc, ALG_MIC(ki), start, len, cksum); |
2d21ac55 A |
594 | |
595 | /* Insert it into a token and append to the request */ | |
b0d623f7 | 596 | toklen = nfs_gss_token_put(ki, ALG_MIC(ki), tokbuf, 1, 0, cksum); |
2d21ac55 A |
597 | nfsm_chain_finish_mbuf(error, nmc); // force checksum into new mbuf |
598 | nfsm_chain_add_32(error, nmc, toklen); | |
599 | nfsm_chain_add_opaque(error, nmc, tokbuf, toklen); | |
600 | nfsm_chain_build_done(error, nmc); | |
601 | break; | |
602 | case RPCSEC_GSS_SVC_PRIVACY: | |
603 | /* Prepend a new mbuf with the confounder & sequence number */ | |
604 | nfsm_chain_build_alloc_init(error, &nmc_tmp, 3 * NFSX_UNSIGNED); | |
605 | nfsm_chain_add_32(error, &nmc_tmp, random()); // confounder bytes 1-4 | |
606 | nfsm_chain_add_32(error, &nmc_tmp, random()); // confounder bytes 4-8 | |
607 | nfsm_chain_add_32(error, &nmc_tmp, seqnum); | |
608 | nfsm_chain_build_done(error, &nmc_tmp); | |
609 | if (error) | |
610 | return (error); | |
611 | nfs_gss_append_chain(&nmc_tmp, args); // Append the args mbufs | |
612 | ||
613 | len = nfs_gss_mchain_length(args); // Find args length | |
614 | len += 3 * NFSX_UNSIGNED; // add confounder & seqnum | |
615 | req->r_gss_arglen = len; // Stash length | |
616 | ||
617 | /* | |
618 | * Append a pad trailer - per RFC 1964 section 1.2.2.3 | |
619 | * Since XDR data is always 32-bit aligned, it | |
620 | * needs to be padded either by 4 bytes or 8 bytes. | |
621 | */ | |
622 | nfsm_chain_finish_mbuf(error, &nmc_tmp); // force padding into new mbuf | |
623 | if (len % 8 > 0) { | |
624 | nfsm_chain_add_32(error, &nmc_tmp, 0x04040404); | |
625 | len += NFSX_UNSIGNED; | |
626 | } else { | |
627 | nfsm_chain_add_32(error, &nmc_tmp, 0x08080808); | |
628 | nfsm_chain_add_32(error, &nmc_tmp, 0x08080808); | |
629 | len += 2 * NFSX_UNSIGNED; | |
630 | } | |
631 | nfsm_chain_build_done(error, &nmc_tmp); | |
632 | ||
633 | /* Now compute a checksum over the confounder + seqnum + args */ | |
b0d623f7 | 634 | nfs_gss_cksum_chain(ki, &nmc_tmp, ALG_WRAP(ki), 0, len, cksum); |
2d21ac55 A |
635 | |
636 | /* Insert it into a token */ | |
b0d623f7 | 637 | toklen = nfs_gss_token_put(ki, ALG_WRAP(ki), tokbuf, 1, len, cksum); |
2d21ac55 A |
638 | nfsm_chain_add_32(error, nmc, toklen + len); // token + args length |
639 | nfsm_chain_add_opaque_nopad(error, nmc, tokbuf, toklen); | |
640 | req->r_gss_argoff = nfsm_chain_offset(nmc); // Stash offset | |
641 | nfsm_chain_build_done(error, nmc); | |
642 | if (error) | |
643 | return (error); | |
644 | nfs_gss_append_chain(nmc, nmc_tmp.nmc_mhead); // Append the args mbufs | |
645 | ||
646 | /* Finally, encrypt the args */ | |
b0d623f7 | 647 | nfs_gss_encrypt_chain(ki, &nmc_tmp, 0, len, DES_ENCRYPT); |
2d21ac55 A |
648 | |
649 | /* Add null XDR pad if the ASN.1 token misaligned the data */ | |
650 | pad = nfsm_pad(toklen + len); | |
651 | if (pad > 0) { | |
652 | nfsm_chain_add_opaque_nopad(error, nmc, iv0, pad); | |
653 | nfsm_chain_build_done(error, nmc); | |
654 | } | |
655 | break; | |
656 | } | |
657 | ||
658 | return (error); | |
659 | } | |
660 | ||
661 | /* | |
662 | * When receiving a reply, the client checks the verifier | |
663 | * returned by the server. Check that the verifier is the | |
664 | * correct type, then extract the sequence number checksum | |
665 | * from the token in the credential and compare it with a | |
666 | * computed checksum of the sequence number in the request | |
667 | * that was sent. | |
668 | */ | |
669 | int | |
670 | nfs_gss_clnt_verf_get( | |
671 | struct nfsreq *req, | |
672 | struct nfsm_chain *nmc, | |
673 | uint32_t verftype, | |
674 | uint32_t verflen, | |
675 | uint32_t *accepted_statusp) | |
676 | { | |
b0d623f7 A |
677 | u_char tokbuf[KRB5_SZ_TOKMAX(MAX_DIGEST)]; |
678 | u_char cksum1[MAX_DIGEST], cksum2[MAX_DIGEST]; | |
2d21ac55 A |
679 | uint32_t seqnum = 0; |
680 | struct nfs_gss_clnt_ctx *cp = req->r_gss_ctx; | |
681 | struct nfsm_chain nmc_tmp; | |
682 | struct gss_seq *gsp; | |
683 | uint32_t reslen, start, cksumlen, toklen; | |
684 | int error = 0; | |
b0d623f7 | 685 | gss_key_info *ki = &cp->gss_clnt_kinfo; |
2d21ac55 A |
686 | |
687 | reslen = cksumlen = 0; | |
688 | *accepted_statusp = 0; | |
689 | ||
690 | if (cp == NULL) | |
b0d623f7 | 691 | return (NFSERR_EAUTH); |
2d21ac55 A |
692 | /* |
693 | * If it's not an RPCSEC_GSS verifier, then it has to | |
694 | * be a null verifier that resulted from either | |
695 | * a CONTINUE_NEEDED reply during context setup or | |
696 | * from the reply to an AUTH_UNIX call from a dummy | |
697 | * context that resulted from a fallback to sec=sys. | |
698 | */ | |
699 | if (verftype != RPCSEC_GSS) { | |
700 | if (verftype != RPCAUTH_NULL) | |
b0d623f7 | 701 | return (NFSERR_EAUTH); |
2d21ac55 A |
702 | if (cp->gss_clnt_flags & GSS_CTX_COMPLETE && |
703 | cp->gss_clnt_service != RPCSEC_GSS_SVC_SYS) | |
b0d623f7 | 704 | return (NFSERR_EAUTH); |
2d21ac55 A |
705 | if (verflen > 0) |
706 | nfsm_chain_adv(error, nmc, nfsm_rndup(verflen)); | |
707 | nfsm_chain_get_32(error, nmc, *accepted_statusp); | |
708 | return (error); | |
709 | } | |
710 | ||
2d21ac55 A |
711 | /* |
712 | * If we received an RPCSEC_GSS verifier but the | |
713 | * context isn't yet complete, then it must be | |
714 | * the context complete message from the server. | |
715 | * The verifier will contain an encrypted checksum | |
716 | * of the window but we don't have the session key | |
717 | * yet so we can't decrypt it. Stash the verifier | |
718 | * and check it later in nfs_gss_clnt_ctx_init() when | |
719 | * the context is complete. | |
720 | */ | |
721 | if (!(cp->gss_clnt_flags & GSS_CTX_COMPLETE)) { | |
722 | MALLOC(cp->gss_clnt_verf, u_char *, verflen, M_TEMP, M_WAITOK|M_ZERO); | |
723 | if (cp->gss_clnt_verf == NULL) | |
724 | return (ENOMEM); | |
725 | nfsm_chain_get_opaque(error, nmc, verflen, cp->gss_clnt_verf); | |
726 | nfsm_chain_get_32(error, nmc, *accepted_statusp); | |
727 | return (error); | |
728 | } | |
729 | ||
b0d623f7 A |
730 | if (verflen != KRB5_SZ_TOKEN(ki->hash_len)) |
731 | return (NFSERR_EAUTH); | |
732 | ||
2d21ac55 A |
733 | /* |
734 | * Get the 8 octet sequence number | |
735 | * checksum out of the verifier token. | |
736 | */ | |
737 | nfsm_chain_get_opaque(error, nmc, verflen, tokbuf); | |
738 | if (error) | |
739 | goto nfsmout; | |
b0d623f7 | 740 | error = nfs_gss_token_get(ki, ALG_MIC(ki), tokbuf, 0, NULL, cksum1); |
2d21ac55 A |
741 | if (error) |
742 | goto nfsmout; | |
743 | ||
744 | /* | |
745 | * Search the request sequence numbers for this reply, starting | |
746 | * with the most recent, looking for a checksum that matches | |
747 | * the one in the verifier returned by the server. | |
748 | */ | |
749 | SLIST_FOREACH(gsp, &req->r_gss_seqlist, gss_seqnext) { | |
b0d623f7 A |
750 | nfs_gss_cksum_rep(ki, gsp->gss_seqnum, cksum2); |
751 | if (bcmp(cksum1, cksum2, HASHLEN(ki)) == 0) | |
2d21ac55 A |
752 | break; |
753 | } | |
754 | if (gsp == NULL) | |
b0d623f7 | 755 | return (NFSERR_EAUTH); |
2d21ac55 A |
756 | |
757 | /* | |
758 | * Get the RPC accepted status | |
759 | */ | |
760 | nfsm_chain_get_32(error, nmc, *accepted_statusp); | |
761 | if (*accepted_statusp != RPC_SUCCESS) | |
762 | return (0); | |
763 | ||
764 | /* | |
765 | * Now we may have to check integrity or decrypt the results | |
766 | * per RFC 2203 Section 5.3.2 | |
767 | */ | |
768 | switch (cp->gss_clnt_service) { | |
769 | case RPCSEC_GSS_SVC_NONE: | |
770 | /* nothing to do */ | |
771 | break; | |
772 | case RPCSEC_GSS_SVC_INTEGRITY: | |
773 | /* | |
774 | * Here's what we expect in the integrity results: | |
775 | * | |
776 | * - length of seq num + results (4 bytes) | |
777 | * - sequence number (4 bytes) | |
778 | * - results (variable bytes) | |
779 | * - length of checksum token (37) | |
780 | * - checksum of seqnum + results (37 bytes) | |
781 | */ | |
782 | nfsm_chain_get_32(error, nmc, reslen); // length of results | |
783 | if (reslen > NFS_MAXPACKET) { | |
784 | error = EBADRPC; | |
785 | goto nfsmout; | |
786 | } | |
787 | ||
788 | /* Compute a checksum over the sequence number + results */ | |
789 | start = nfsm_chain_offset(nmc); | |
b0d623f7 | 790 | nfs_gss_cksum_chain(ki, nmc, ALG_MIC(ki), start, reslen, cksum1); |
2d21ac55 A |
791 | |
792 | /* | |
793 | * Get the sequence number prepended to the results | |
794 | * and compare it against the list in the request. | |
795 | */ | |
796 | nfsm_chain_get_32(error, nmc, seqnum); | |
797 | SLIST_FOREACH(gsp, &req->r_gss_seqlist, gss_seqnext) { | |
798 | if (seqnum == gsp->gss_seqnum) | |
799 | break; | |
800 | } | |
801 | if (gsp == NULL) { | |
802 | error = EBADRPC; | |
803 | goto nfsmout; | |
804 | } | |
805 | ||
806 | /* | |
807 | * Advance to the end of the results and | |
808 | * fetch the checksum computed by the server. | |
809 | */ | |
810 | nmc_tmp = *nmc; | |
811 | reslen -= NFSX_UNSIGNED; // already skipped seqnum | |
812 | nfsm_chain_adv(error, &nmc_tmp, reslen); // skip over the results | |
813 | nfsm_chain_get_32(error, &nmc_tmp, cksumlen); // length of checksum | |
b0d623f7 | 814 | if (cksumlen != KRB5_SZ_TOKEN(ki->hash_len)) { |
2d21ac55 A |
815 | error = EBADRPC; |
816 | goto nfsmout; | |
817 | } | |
818 | nfsm_chain_get_opaque(error, &nmc_tmp, cksumlen, tokbuf); | |
819 | if (error) | |
820 | goto nfsmout; | |
b0d623f7 | 821 | error = nfs_gss_token_get(ki, ALG_MIC(ki), tokbuf, 0, NULL, cksum2); |
2d21ac55 A |
822 | if (error) |
823 | goto nfsmout; | |
824 | ||
825 | /* Verify that the checksums are the same */ | |
b0d623f7 | 826 | if (bcmp(cksum1, cksum2, HASHLEN(ki)) != 0) { |
2d21ac55 A |
827 | error = EBADRPC; |
828 | goto nfsmout; | |
829 | } | |
830 | break; | |
831 | case RPCSEC_GSS_SVC_PRIVACY: | |
832 | /* | |
833 | * Here's what we expect in the privacy results: | |
834 | * | |
835 | * - length of confounder + seq num + token + results | |
836 | * - wrap token (37-40 bytes) | |
837 | * - confounder (8 bytes) | |
838 | * - sequence number (4 bytes) | |
839 | * - results (encrypted) | |
840 | */ | |
841 | nfsm_chain_get_32(error, nmc, reslen); // length of results | |
842 | if (reslen > NFS_MAXPACKET) { | |
843 | error = EBADRPC; | |
844 | goto nfsmout; | |
845 | } | |
846 | ||
847 | /* Get the token that prepends the encrypted results */ | |
b0d623f7 | 848 | nfsm_chain_get_opaque(error, nmc, KRB5_SZ_TOKMAX(ki->hash_len), tokbuf); |
2d21ac55 A |
849 | if (error) |
850 | goto nfsmout; | |
b0d623f7 | 851 | error = nfs_gss_token_get(ki, ALG_WRAP(ki), tokbuf, 0, |
2d21ac55 A |
852 | &toklen, cksum1); |
853 | if (error) | |
854 | goto nfsmout; | |
855 | nfsm_chain_reverse(nmc, nfsm_pad(toklen)); | |
856 | reslen -= toklen; // size of confounder + seqnum + results | |
857 | ||
858 | /* decrypt the confounder + sequence number + results */ | |
859 | start = nfsm_chain_offset(nmc); | |
b0d623f7 | 860 | nfs_gss_encrypt_chain(ki, nmc, start, reslen, DES_DECRYPT); |
2d21ac55 A |
861 | |
862 | /* Compute a checksum over the confounder + sequence number + results */ | |
b0d623f7 | 863 | nfs_gss_cksum_chain(ki, nmc, ALG_WRAP(ki), start, reslen, cksum2); |
2d21ac55 A |
864 | |
865 | /* Verify that the checksums are the same */ | |
b0d623f7 | 866 | if (bcmp(cksum1, cksum2, HASHLEN(ki)) != 0) { |
2d21ac55 A |
867 | error = EBADRPC; |
868 | goto nfsmout; | |
869 | } | |
870 | ||
871 | nfsm_chain_adv(error, nmc, 8); // skip over the confounder | |
872 | ||
873 | /* | |
874 | * Get the sequence number prepended to the results | |
875 | * and compare it against the list in the request. | |
876 | */ | |
877 | nfsm_chain_get_32(error, nmc, seqnum); | |
878 | SLIST_FOREACH(gsp, &req->r_gss_seqlist, gss_seqnext) { | |
879 | if (seqnum == gsp->gss_seqnum) | |
880 | break; | |
881 | } | |
882 | if (gsp == NULL) { | |
883 | error = EBADRPC; | |
884 | goto nfsmout; | |
885 | } | |
886 | ||
887 | break; | |
888 | } | |
889 | nfsmout: | |
890 | return (error); | |
891 | } | |
892 | ||
893 | /* | |
894 | * An RPCSEC_GSS request with no integrity or privacy consists | |
895 | * of just the header mbufs followed by the arg mbufs. | |
896 | * | |
897 | * However, integrity or privacy both trailer mbufs to the args, | |
898 | * which means we have to do some work to restore the arg mbuf | |
899 | * chain to its previous state in case we need to retransmit. | |
900 | * | |
901 | * The location and length of the args is marked by two fields | |
902 | * in the request structure: r_gss_argoff and r_gss_arglen, | |
903 | * which are stashed when the NFS request is built. | |
904 | */ | |
905 | int | |
906 | nfs_gss_clnt_args_restore(struct nfsreq *req) | |
907 | { | |
908 | struct nfs_gss_clnt_ctx *cp = req->r_gss_ctx; | |
909 | struct nfsm_chain mchain, *nmc = &mchain; | |
910 | int len, error = 0; | |
911 | ||
912 | if (cp == NULL) | |
b0d623f7 | 913 | return (NFSERR_EAUTH); |
2d21ac55 A |
914 | |
915 | if ((cp->gss_clnt_flags & GSS_CTX_COMPLETE) == 0) | |
916 | return (ENEEDAUTH); | |
917 | ||
918 | nfsm_chain_dissect_init(error, nmc, req->r_mhead); // start at RPC header | |
919 | nfsm_chain_adv(error, nmc, req->r_gss_argoff); // advance to args | |
920 | if (error) | |
921 | return (error); | |
922 | ||
923 | switch (cp->gss_clnt_service) { | |
924 | case RPCSEC_GSS_SVC_NONE: | |
925 | /* nothing to do */ | |
926 | break; | |
927 | case RPCSEC_GSS_SVC_INTEGRITY: | |
928 | /* | |
929 | * All we have to do here is remove the appended checksum mbufs. | |
930 | * We know that the checksum starts in a new mbuf beyond the end | |
931 | * of the args. | |
932 | */ | |
933 | nfsm_chain_adv(error, nmc, req->r_gss_arglen); // adv to last args mbuf | |
934 | if (error) | |
935 | return (error); | |
936 | ||
937 | mbuf_freem(mbuf_next(nmc->nmc_mcur)); // free the cksum mbuf | |
938 | error = mbuf_setnext(nmc->nmc_mcur, NULL); | |
939 | break; | |
940 | case RPCSEC_GSS_SVC_PRIVACY: | |
941 | /* | |
942 | * The args are encrypted along with prepended confounders and seqnum. | |
943 | * First we decrypt, the confounder, seqnum and args then skip to the | |
944 | * final mbuf of the args. | |
945 | * The arglen includes 8 bytes of confounder and 4 bytes of seqnum. | |
946 | * Finally, we remove between 4 and 8 bytes of encryption padding | |
947 | * as well as any alignment padding in the trailing mbuf. | |
948 | */ | |
949 | len = req->r_gss_arglen; | |
950 | len += len % 8 > 0 ? 4 : 8; // add DES padding length | |
b0d623f7 A |
951 | nfs_gss_encrypt_chain(&cp->gss_clnt_kinfo, nmc, |
952 | req->r_gss_argoff, len, DES_DECRYPT); | |
2d21ac55 A |
953 | nfsm_chain_adv(error, nmc, req->r_gss_arglen); |
954 | if (error) | |
955 | return (error); | |
956 | mbuf_freem(mbuf_next(nmc->nmc_mcur)); // free the pad mbuf | |
957 | error = mbuf_setnext(nmc->nmc_mcur, NULL); | |
958 | break; | |
959 | } | |
960 | ||
961 | return (error); | |
962 | } | |
963 | ||
964 | /* | |
965 | * This function sets up a new context on the client. | |
966 | * Context setup alternates upcalls to the gssd with NFS nullproc calls | |
967 | * to the server. Each of these calls exchanges an opaque token, obtained | |
968 | * via the gssd's calls into the GSS-API on either the client or the server. | |
969 | * This cycle of calls ends when the client's upcall to the gssd and the | |
970 | * server's response both return GSS_S_COMPLETE. At this point, the client | |
971 | * should have its session key and a handle that it can use to refer to its | |
972 | * new context on the server. | |
973 | */ | |
974 | static int | |
975 | nfs_gss_clnt_ctx_init(struct nfsreq *req, struct nfs_gss_clnt_ctx *cp) | |
976 | { | |
977 | struct nfsmount *nmp = req->r_nmp; | |
978 | int client_complete = 0; | |
979 | int server_complete = 0; | |
b0d623f7 | 980 | u_char cksum1[MAX_DIGEST], cksum2[MAX_DIGEST]; |
2d21ac55 A |
981 | int error = 0; |
982 | struct timeval now; | |
b0d623f7 | 983 | gss_key_info *ki = &cp->gss_clnt_kinfo; |
2d21ac55 A |
984 | |
985 | /* Initialize a new client context */ | |
986 | ||
987 | cp->gss_clnt_svcname = nfs_gss_clnt_svcname(nmp); | |
988 | if (cp->gss_clnt_svcname == NULL) { | |
b0d623f7 | 989 | error = NFSERR_EAUTH; |
2d21ac55 A |
990 | goto nfsmout; |
991 | } | |
b0d623f7 | 992 | |
2d21ac55 A |
993 | cp->gss_clnt_proc = RPCSEC_GSS_INIT; |
994 | ||
995 | cp->gss_clnt_service = | |
6d2010ae A |
996 | req->r_auth == RPCAUTH_KRB5 ? RPCSEC_GSS_SVC_NONE : |
997 | req->r_auth == RPCAUTH_KRB5I ? RPCSEC_GSS_SVC_INTEGRITY : | |
998 | req->r_auth == RPCAUTH_KRB5P ? RPCSEC_GSS_SVC_PRIVACY : 0; | |
2d21ac55 | 999 | |
b0d623f7 | 1000 | cp->gss_clnt_gssd_flags = (nfs_single_des ? GSSD_NFS_1DES : 0); |
2d21ac55 A |
1001 | /* |
1002 | * Now loop around alternating gss_init_sec_context and | |
1003 | * gss_accept_sec_context upcalls to the gssd on the client | |
1004 | * and server side until the context is complete - or fails. | |
1005 | */ | |
1006 | for (;;) { | |
1007 | ||
b0d623f7 | 1008 | retry: |
2d21ac55 A |
1009 | /* Upcall to the gss_init_sec_context in the gssd */ |
1010 | error = nfs_gss_clnt_gssd_upcall(req, cp); | |
1011 | if (error) | |
1012 | goto nfsmout; | |
1013 | ||
1014 | if (cp->gss_clnt_major == GSS_S_COMPLETE) { | |
1015 | client_complete = 1; | |
1016 | if (server_complete) | |
1017 | break; | |
1018 | } else if (cp->gss_clnt_major != GSS_S_CONTINUE_NEEDED) { | |
b0d623f7 | 1019 | error = NFSERR_EAUTH; |
2d21ac55 A |
1020 | goto nfsmout; |
1021 | } | |
1022 | ||
1023 | /* | |
1024 | * Pass the token to the server. | |
1025 | */ | |
1026 | error = nfs_gss_clnt_ctx_callserver(req, cp); | |
b0d623f7 A |
1027 | if (error) { |
1028 | if (cp->gss_clnt_proc == RPCSEC_GSS_INIT && | |
1029 | (cp->gss_clnt_gssd_flags & (GSSD_RESTART | GSSD_NFS_1DES)) == 0) { | |
1030 | cp->gss_clnt_gssd_flags = (GSSD_RESTART | GSSD_NFS_1DES); | |
1031 | if (cp->gss_clnt_token) | |
1032 | FREE(cp->gss_clnt_token, M_TEMP); | |
1033 | cp->gss_clnt_token = NULL; | |
1034 | cp->gss_clnt_tokenlen = 0; | |
1035 | goto retry; | |
1036 | } | |
1037 | // Reset flags, if error = ENEEDAUTH we will try 3des again | |
1038 | cp->gss_clnt_gssd_flags = 0; | |
2d21ac55 | 1039 | goto nfsmout; |
b0d623f7 | 1040 | } |
2d21ac55 A |
1041 | if (cp->gss_clnt_major == GSS_S_COMPLETE) { |
1042 | server_complete = 1; | |
1043 | if (client_complete) | |
1044 | break; | |
1045 | } else if (cp->gss_clnt_major != GSS_S_CONTINUE_NEEDED) { | |
b0d623f7 | 1046 | error = NFSERR_EAUTH; |
2d21ac55 A |
1047 | goto nfsmout; |
1048 | } | |
1049 | ||
1050 | cp->gss_clnt_proc = RPCSEC_GSS_CONTINUE_INIT; | |
1051 | } | |
1052 | ||
1053 | /* | |
1054 | * The context is apparently established successfully | |
1055 | */ | |
6d2010ae | 1056 | lck_mtx_lock(cp->gss_clnt_mtx); |
2d21ac55 | 1057 | cp->gss_clnt_flags |= GSS_CTX_COMPLETE; |
6d2010ae | 1058 | lck_mtx_unlock(cp->gss_clnt_mtx); |
2d21ac55 A |
1059 | cp->gss_clnt_proc = RPCSEC_GSS_DATA; |
1060 | microuptime(&now); | |
1061 | cp->gss_clnt_ctime = now.tv_sec; // time stamp | |
1062 | ||
2d21ac55 A |
1063 | |
1064 | /* | |
1065 | * Compute checksum of the server's window | |
1066 | */ | |
b0d623f7 | 1067 | nfs_gss_cksum_rep(ki, cp->gss_clnt_seqwin, cksum1); |
2d21ac55 A |
1068 | |
1069 | /* | |
1070 | * and see if it matches the one in the | |
1071 | * verifier the server returned. | |
1072 | */ | |
b0d623f7 | 1073 | error = nfs_gss_token_get(ki, ALG_MIC(ki), cp->gss_clnt_verf, 0, |
2d21ac55 A |
1074 | NULL, cksum2); |
1075 | FREE(cp->gss_clnt_verf, M_TEMP); | |
1076 | cp->gss_clnt_verf = NULL; | |
1077 | ||
b0d623f7 A |
1078 | if (error || bcmp(cksum1, cksum2, HASHLEN(ki)) != 0) { |
1079 | error = NFSERR_EAUTH; | |
2d21ac55 A |
1080 | goto nfsmout; |
1081 | } | |
1082 | ||
1083 | /* | |
1084 | * Set an initial sequence number somewhat randomized. | |
1085 | * Start small so we don't overflow GSS_MAXSEQ too quickly. | |
1086 | * Add the size of the sequence window so seqbits arithmetic | |
1087 | * doesn't go negative. | |
1088 | */ | |
1089 | cp->gss_clnt_seqnum = (random() & 0xffff) + cp->gss_clnt_seqwin; | |
1090 | ||
1091 | /* | |
1092 | * Allocate a bitmap to keep track of which requests | |
1093 | * are pending within the sequence number window. | |
1094 | */ | |
1095 | MALLOC(cp->gss_clnt_seqbits, uint32_t *, | |
1096 | nfsm_rndup((cp->gss_clnt_seqwin + 7) / 8), M_TEMP, M_WAITOK|M_ZERO); | |
1097 | if (cp->gss_clnt_seqbits == NULL) | |
b0d623f7 | 1098 | error = NFSERR_EAUTH; |
2d21ac55 | 1099 | nfsmout: |
b0d623f7 A |
1100 | /* |
1101 | * If the error is ENEEDAUTH we're not done, so no need | |
1102 | * to wake up other threads again. This thread will retry in | |
1103 | * the find or renew routines. | |
1104 | */ | |
1105 | if (error == ENEEDAUTH) | |
1106 | return (error); | |
1107 | ||
2d21ac55 A |
1108 | /* |
1109 | * If there's an error, just mark it as invalid. | |
1110 | * It will be removed when the reference count | |
1111 | * drops to zero. | |
1112 | */ | |
6d2010ae | 1113 | lck_mtx_lock(cp->gss_clnt_mtx); |
2d21ac55 A |
1114 | if (error) |
1115 | cp->gss_clnt_flags |= GSS_CTX_INVAL; | |
1116 | ||
1117 | /* | |
1118 | * Wake any threads waiting to use the context | |
1119 | */ | |
2d21ac55 A |
1120 | cp->gss_clnt_thread = NULL; |
1121 | if (cp->gss_clnt_flags & GSS_NEEDCTX) { | |
1122 | cp->gss_clnt_flags &= ~GSS_NEEDCTX; | |
1123 | wakeup(cp); | |
1124 | } | |
1125 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
1126 | ||
1127 | return (error); | |
1128 | } | |
1129 | ||
6d2010ae A |
1130 | /* |
1131 | * This function calls nfs_gss_clnt_ctx_init() to set up a new context. | |
1132 | * But if there's a failure in trying to establish the context it keeps | |
1133 | * retrying at progressively longer intervals in case the failure is | |
1134 | * due to some transient condition. For instance, the server might be | |
1135 | * failing the context setup because directory services is not coming | |
1136 | * up in a timely fashion. | |
1137 | */ | |
1138 | static int | |
1139 | nfs_gss_clnt_ctx_init_retry(struct nfsreq *req, struct nfs_gss_clnt_ctx *cp) | |
1140 | { | |
1141 | struct nfsmount *nmp = req->r_nmp; | |
1142 | struct timeval now; | |
1143 | time_t waituntil; | |
1144 | int error, slpflag; | |
1145 | int retries = 0; | |
1146 | int timeo = NFS_TRYLATERDEL; | |
1147 | ||
1148 | if (nmp == NULL) { | |
1149 | error = ENXIO; | |
1150 | goto bad; | |
1151 | } | |
1152 | ||
1153 | /* For an "intr" mount allow a signal to interrupt the retries */ | |
1154 | slpflag = (NMFLAG(nmp, INTR) && !(req->r_flags & R_NOINTR)) ? PCATCH : 0; | |
1155 | ||
1156 | while ((error = nfs_gss_clnt_ctx_init(req, cp)) == ENEEDAUTH) { | |
1157 | microuptime(&now); | |
1158 | waituntil = now.tv_sec + timeo; | |
1159 | while (now.tv_sec < waituntil) { | |
1160 | tsleep(&lbolt, PSOCK | slpflag, "nfs_gss_clnt_ctx_init_retry", 0); | |
1161 | slpflag = 0; | |
1162 | error = nfs_sigintr(req->r_nmp, req, current_thread(), 0); | |
1163 | if (error) | |
1164 | goto bad; | |
1165 | microuptime(&now); | |
1166 | } | |
1167 | ||
1168 | retries++; | |
1169 | /* If it's a soft mount just give up after a while */ | |
1170 | if (NMFLAG(nmp, SOFT) && (retries > nmp->nm_retry)) { | |
1171 | error = ETIMEDOUT; | |
1172 | goto bad; | |
1173 | } | |
1174 | timeo *= 2; | |
1175 | if (timeo > 60) | |
1176 | timeo = 60; | |
1177 | } | |
1178 | ||
1179 | if (error == 0) | |
1180 | return 0; // success | |
1181 | bad: | |
1182 | /* | |
1183 | * Give up on this context | |
1184 | */ | |
1185 | lck_mtx_lock(cp->gss_clnt_mtx); | |
1186 | cp->gss_clnt_flags |= GSS_CTX_INVAL; | |
1187 | ||
1188 | /* | |
1189 | * Wake any threads waiting to use the context | |
1190 | */ | |
1191 | cp->gss_clnt_thread = NULL; | |
1192 | if (cp->gss_clnt_flags & GSS_NEEDCTX) { | |
1193 | cp->gss_clnt_flags &= ~GSS_NEEDCTX; | |
1194 | wakeup(cp); | |
1195 | } | |
1196 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
1197 | ||
1198 | return error; | |
1199 | } | |
1200 | ||
2d21ac55 A |
1201 | /* |
1202 | * Call the NFS server using a null procedure for context setup. | |
1203 | * Even though it's a null procedure and nominally has no arguments | |
1204 | * RFC 2203 requires that the GSS-API token be passed as an argument | |
1205 | * and received as a reply. | |
1206 | */ | |
1207 | static int | |
1208 | nfs_gss_clnt_ctx_callserver(struct nfsreq *req, struct nfs_gss_clnt_ctx *cp) | |
1209 | { | |
2d21ac55 A |
1210 | struct nfsm_chain nmreq, nmrep; |
1211 | int error = 0, status; | |
2d21ac55 A |
1212 | int sz; |
1213 | ||
b0d623f7 A |
1214 | if (!req->r_nmp) |
1215 | return (ENXIO); | |
2d21ac55 A |
1216 | nfsm_chain_null(&nmreq); |
1217 | nfsm_chain_null(&nmrep); | |
1218 | sz = NFSX_UNSIGNED + nfsm_rndup(cp->gss_clnt_tokenlen); | |
1219 | nfsm_chain_build_alloc_init(error, &nmreq, sz); | |
1220 | nfsm_chain_add_32(error, &nmreq, cp->gss_clnt_tokenlen); | |
b0d623f7 A |
1221 | if (cp->gss_clnt_tokenlen > 0) |
1222 | nfsm_chain_add_opaque(error, &nmreq, cp->gss_clnt_token, cp->gss_clnt_tokenlen); | |
2d21ac55 A |
1223 | nfsm_chain_build_done(error, &nmreq); |
1224 | if (error) | |
1225 | goto nfsmout; | |
1226 | ||
1227 | /* Call the server */ | |
b0d623f7 A |
1228 | error = nfs_request_gss(req->r_nmp->nm_mountp, &nmreq, req->r_thread, req->r_cred, |
1229 | (req->r_flags & R_OPTMASK), cp, &nmrep, &status); | |
2d21ac55 A |
1230 | if (cp->gss_clnt_token != NULL) { |
1231 | FREE(cp->gss_clnt_token, M_TEMP); | |
1232 | cp->gss_clnt_token = NULL; | |
1233 | } | |
1234 | if (!error) | |
1235 | error = status; | |
1236 | if (error) | |
1237 | goto nfsmout; | |
1238 | ||
1239 | /* Get the server's reply */ | |
1240 | ||
1241 | nfsm_chain_get_32(error, &nmrep, cp->gss_clnt_handle_len); | |
b0d623f7 | 1242 | if (cp->gss_clnt_handle != NULL) { |
2d21ac55 | 1243 | FREE(cp->gss_clnt_handle, M_TEMP); |
b0d623f7 A |
1244 | cp->gss_clnt_handle = NULL; |
1245 | } | |
2d21ac55 A |
1246 | if (cp->gss_clnt_handle_len > 0) { |
1247 | MALLOC(cp->gss_clnt_handle, u_char *, cp->gss_clnt_handle_len, M_TEMP, M_WAITOK); | |
1248 | if (cp->gss_clnt_handle == NULL) { | |
1249 | error = ENOMEM; | |
1250 | goto nfsmout; | |
1251 | } | |
1252 | nfsm_chain_get_opaque(error, &nmrep, cp->gss_clnt_handle_len, cp->gss_clnt_handle); | |
1253 | } | |
1254 | nfsm_chain_get_32(error, &nmrep, cp->gss_clnt_major); | |
1255 | nfsm_chain_get_32(error, &nmrep, cp->gss_clnt_minor); | |
1256 | nfsm_chain_get_32(error, &nmrep, cp->gss_clnt_seqwin); | |
1257 | nfsm_chain_get_32(error, &nmrep, cp->gss_clnt_tokenlen); | |
1258 | if (error) | |
1259 | goto nfsmout; | |
1260 | if (cp->gss_clnt_tokenlen > 0) { | |
1261 | MALLOC(cp->gss_clnt_token, u_char *, cp->gss_clnt_tokenlen, M_TEMP, M_WAITOK); | |
1262 | if (cp->gss_clnt_token == NULL) { | |
1263 | error = ENOMEM; | |
1264 | goto nfsmout; | |
1265 | } | |
1266 | nfsm_chain_get_opaque(error, &nmrep, cp->gss_clnt_tokenlen, cp->gss_clnt_token); | |
1267 | } | |
1268 | ||
1269 | /* | |
1270 | * Make sure any unusual errors are expanded and logged by gssd | |
1271 | */ | |
1272 | if (cp->gss_clnt_major != GSS_S_COMPLETE && | |
1273 | cp->gss_clnt_major != GSS_S_CONTINUE_NEEDED) { | |
1274 | char who[] = "server"; | |
b0d623f7 | 1275 | char unknown[] = "<unknown>"; |
2d21ac55 A |
1276 | |
1277 | (void) mach_gss_log_error( | |
1278 | cp->gss_clnt_mport, | |
b0d623f7 A |
1279 | !req->r_nmp ? unknown : |
1280 | vfs_statfs(req->r_nmp->nm_mountp)->f_mntfromname, | |
2d21ac55 A |
1281 | cp->gss_clnt_uid, |
1282 | who, | |
1283 | cp->gss_clnt_major, | |
1284 | cp->gss_clnt_minor); | |
1285 | } | |
1286 | ||
1287 | nfsmout: | |
1288 | nfsm_chain_cleanup(&nmreq); | |
1289 | nfsm_chain_cleanup(&nmrep); | |
1290 | ||
1291 | return (error); | |
1292 | } | |
1293 | ||
1294 | /* | |
1295 | * Ugly hack to get the service principal from the f_mntfromname field in | |
1296 | * the statfs struct. We assume a format of server:path. We don't currently | |
1297 | * support url's or other bizarre formats like path@server. A better solution | |
1298 | * here might be to allow passing the service principal down in the mount args. | |
1299 | * For kerberos we just use the default realm. | |
1300 | */ | |
1301 | static char * | |
1302 | nfs_gss_clnt_svcname(struct nfsmount *nmp) | |
1303 | { | |
b0d623f7 | 1304 | char *svcname, *d, *mntfromhere; |
2d21ac55 A |
1305 | int len; |
1306 | ||
b0d623f7 A |
1307 | if (!nmp) |
1308 | return (NULL); | |
1309 | mntfromhere = &vfs_statfs(nmp->nm_mountp)->f_mntfromname[0]; | |
2d21ac55 A |
1310 | len = strlen(mntfromhere) + 5; /* "nfs/" plus null */ |
1311 | MALLOC(svcname, char *, len, M_TEMP, M_NOWAIT); | |
1312 | if (svcname == NULL) | |
1313 | return (NULL); | |
1314 | strlcpy(svcname, "nfs/", len); | |
1315 | strlcat(svcname, mntfromhere, len); | |
1316 | d = strchr(svcname, ':'); | |
1317 | if (d) | |
1318 | *d = '\0'; | |
1319 | ||
1320 | return (svcname); | |
1321 | } | |
1322 | ||
316670eb A |
1323 | /* |
1324 | * Get a mach port to talk to gssd. | |
1325 | * gssd lives in the root bootstrap, so we call gssd's lookup routine | |
1326 | * to get a send right to talk to a new gssd instance that launchd has launched | |
1327 | * based on the cred's uid and audit session id. | |
1328 | */ | |
1329 | #define kauth_cred_getasid(cred) ((cred)->cr_audit.as_aia_p->ai_asid) | |
1330 | #define kauth_cred_getauid(cred) ((cred)->cr_audit.as_aia_p->ai_auid) | |
1331 | ||
1332 | static mach_port_t | |
1333 | nfs_gss_clnt_get_upcall_port(kauth_cred_t credp) | |
1334 | { | |
1335 | mach_port_t gssd_host_port, uc_port = IPC_PORT_NULL; | |
1336 | kern_return_t kr; | |
1337 | au_asid_t asid; | |
1338 | uid_t uid; | |
1339 | ||
1340 | kr = host_get_gssd_port(host_priv_self(), &gssd_host_port); | |
1341 | if (kr != KERN_SUCCESS) { | |
1342 | printf("nfs_gss_get_upcall_port: can't get gssd port, status %x (%d)\n", kr, kr); | |
1343 | return (IPC_PORT_NULL); | |
1344 | } | |
1345 | if (!IPC_PORT_VALID(gssd_host_port)) { | |
1346 | printf("nfs_gss_get_upcall_port: gssd port not valid\n"); | |
1347 | return (IPC_PORT_NULL); | |
1348 | } | |
1349 | ||
1350 | asid = kauth_cred_getasid(credp); | |
1351 | uid = kauth_cred_getauid(credp); | |
1352 | if (uid == AU_DEFAUDITID) | |
1353 | uid = kauth_cred_getuid(credp); | |
1354 | kr = mach_gss_lookup(gssd_host_port, uid, asid, &uc_port); | |
1355 | if (kr != KERN_SUCCESS) | |
1356 | printf("nfs_gss_clnt_get_upcall_port: mach_gssd_lookup failed: status %x (%d)\n", kr, kr); | |
1357 | ||
1358 | return (uc_port); | |
1359 | } | |
1360 | ||
2d21ac55 A |
1361 | /* |
1362 | * Make an upcall to the gssd using Mach RPC | |
316670eb | 1363 | * The upcall is made using a host special port. |
2d21ac55 A |
1364 | * This allows launchd to fire up the gssd in the |
1365 | * user's session. This is important, since gssd | |
1366 | * must have access to the user's credential cache. | |
1367 | */ | |
1368 | static int | |
1369 | nfs_gss_clnt_gssd_upcall(struct nfsreq *req, struct nfs_gss_clnt_ctx *cp) | |
1370 | { | |
1371 | kern_return_t kr; | |
6d2010ae | 1372 | gssd_byte_buffer okey = NULL; |
2d21ac55 A |
1373 | uint32_t skeylen = 0; |
1374 | int retry_cnt = 0; | |
1375 | vm_map_copy_t itoken = NULL; | |
6d2010ae | 1376 | gssd_byte_buffer otoken = NULL; |
b0d623f7 | 1377 | mach_msg_type_number_t otokenlen; |
2d21ac55 A |
1378 | int error = 0; |
1379 | char uprinc[1]; | |
b0d623f7 | 1380 | uint32_t ret_flags; |
2d21ac55 A |
1381 | |
1382 | /* | |
1383 | * NFS currently only supports default principals or | |
1384 | * principals based on the uid of the caller. | |
1385 | * | |
1386 | * N.B. Note we define a one character array for the principal | |
1387 | * so that we can hold an empty string required by mach, since | |
1388 | * the kernel is being compiled with -Wwrite-strings. | |
1389 | */ | |
1390 | uprinc[0] = '\0'; | |
6d2010ae | 1391 | if (!IPC_PORT_VALID(cp->gss_clnt_mport)) { |
316670eb A |
1392 | cp->gss_clnt_mport = nfs_gss_clnt_get_upcall_port(req->r_cred); |
1393 | if (cp->gss_clnt_mport == IPC_PORT_NULL) | |
b0d623f7 | 1394 | goto out; |
2d21ac55 A |
1395 | } |
1396 | ||
1397 | if (cp->gss_clnt_tokenlen > 0) | |
1398 | nfs_gss_mach_alloc_buffer(cp->gss_clnt_token, cp->gss_clnt_tokenlen, &itoken); | |
1399 | ||
1400 | retry: | |
1401 | kr = mach_gss_init_sec_context( | |
1402 | cp->gss_clnt_mport, | |
6d2010ae A |
1403 | GSSD_KRB5_MECH, |
1404 | (gssd_byte_buffer) itoken, (mach_msg_type_number_t) cp->gss_clnt_tokenlen, | |
2d21ac55 A |
1405 | cp->gss_clnt_uid, |
1406 | uprinc, | |
1407 | cp->gss_clnt_svcname, | |
b0d623f7 A |
1408 | GSSD_MUTUAL_FLAG, |
1409 | cp->gss_clnt_gssd_flags, | |
2d21ac55 A |
1410 | &cp->gss_clnt_context, |
1411 | &cp->gss_clnt_cred_handle, | |
b0d623f7 | 1412 | &ret_flags, |
2d21ac55 | 1413 | &okey, (mach_msg_type_number_t *) &skeylen, |
b0d623f7 | 1414 | &otoken, &otokenlen, |
2d21ac55 A |
1415 | &cp->gss_clnt_major, |
1416 | &cp->gss_clnt_minor); | |
1417 | ||
b0d623f7 A |
1418 | cp->gss_clnt_gssd_flags &= ~GSSD_RESTART; |
1419 | ||
1420 | if (kr != KERN_SUCCESS) { | |
1421 | printf("nfs_gss_clnt_gssd_upcall: mach_gss_init_sec_context failed: %x (%d)\n", kr, kr); | |
2d21ac55 | 1422 | if (kr == MIG_SERVER_DIED && cp->gss_clnt_cred_handle == 0 && |
b0d623f7 A |
1423 | retry_cnt++ < NFS_GSS_MACH_MAX_RETRIES) { |
1424 | if (cp->gss_clnt_tokenlen > 0) | |
1425 | nfs_gss_mach_alloc_buffer(cp->gss_clnt_token, cp->gss_clnt_tokenlen, &itoken); | |
2d21ac55 | 1426 | goto retry; |
b0d623f7 | 1427 | } |
316670eb A |
1428 | |
1429 | host_release_special_port(cp->gss_clnt_mport); | |
1430 | cp->gss_clnt_mport = IPC_PORT_NULL; | |
b0d623f7 | 1431 | goto out; |
2d21ac55 A |
1432 | } |
1433 | ||
1434 | /* | |
1435 | * Make sure any unusual errors are expanded and logged by gssd | |
1436 | */ | |
1437 | if (cp->gss_clnt_major != GSS_S_COMPLETE && | |
1438 | cp->gss_clnt_major != GSS_S_CONTINUE_NEEDED) { | |
1439 | char who[] = "client"; | |
b0d623f7 | 1440 | char unknown[] = "<unknown>"; |
2d21ac55 A |
1441 | |
1442 | (void) mach_gss_log_error( | |
1443 | cp->gss_clnt_mport, | |
b0d623f7 | 1444 | !req->r_nmp ? unknown : |
2d21ac55 A |
1445 | vfs_statfs(req->r_nmp->nm_mountp)->f_mntfromname, |
1446 | cp->gss_clnt_uid, | |
1447 | who, | |
1448 | cp->gss_clnt_major, | |
1449 | cp->gss_clnt_minor); | |
1450 | } | |
1451 | ||
1452 | if (skeylen > 0) { | |
b0d623f7 | 1453 | if (skeylen != SKEYLEN && skeylen != SKEYLEN3) { |
2d21ac55 | 1454 | printf("nfs_gss_clnt_gssd_upcall: bad key length (%d)\n", skeylen); |
b0d623f7 A |
1455 | vm_map_copy_discard((vm_map_copy_t) okey); |
1456 | vm_map_copy_discard((vm_map_copy_t) otoken); | |
1457 | goto out; | |
1458 | } | |
1459 | error = nfs_gss_mach_vmcopyout((vm_map_copy_t) okey, skeylen, | |
1460 | cp->gss_clnt_kinfo.skey); | |
1461 | if (error) { | |
1462 | vm_map_copy_discard((vm_map_copy_t) otoken); | |
1463 | goto out; | |
2d21ac55 | 1464 | } |
b0d623f7 A |
1465 | |
1466 | error = gss_key_init(&cp->gss_clnt_kinfo, skeylen); | |
2d21ac55 | 1467 | if (error) |
b0d623f7 | 1468 | goto out; |
2d21ac55 A |
1469 | } |
1470 | ||
b0d623f7 A |
1471 | /* Free context token used as input */ |
1472 | if (cp->gss_clnt_token) | |
1473 | FREE(cp->gss_clnt_token, M_TEMP); | |
1474 | cp->gss_clnt_token = NULL; | |
1475 | cp->gss_clnt_tokenlen = 0; | |
1476 | ||
1477 | if (otokenlen > 0) { | |
1478 | /* Set context token to gss output token */ | |
1479 | MALLOC(cp->gss_clnt_token, u_char *, otokenlen, M_TEMP, M_WAITOK); | |
1480 | if (cp->gss_clnt_token == NULL) { | |
1481 | printf("nfs_gss_clnt_gssd_upcall: could not allocate %d bytes\n", otokenlen); | |
1482 | vm_map_copy_discard((vm_map_copy_t) otoken); | |
2d21ac55 | 1483 | return (ENOMEM); |
b0d623f7 A |
1484 | } |
1485 | error = nfs_gss_mach_vmcopyout((vm_map_copy_t) otoken, otokenlen, cp->gss_clnt_token); | |
1486 | if (error) { | |
1487 | FREE(cp->gss_clnt_token, M_TEMP); | |
1488 | cp->gss_clnt_token = NULL; | |
1489 | return (NFSERR_EAUTH); | |
1490 | } | |
1491 | cp->gss_clnt_tokenlen = otokenlen; | |
2d21ac55 A |
1492 | } |
1493 | ||
1494 | return (0); | |
b0d623f7 A |
1495 | |
1496 | out: | |
1497 | if (cp->gss_clnt_token) | |
1498 | FREE(cp->gss_clnt_token, M_TEMP); | |
1499 | cp->gss_clnt_token = NULL; | |
1500 | cp->gss_clnt_tokenlen = 0; | |
1501 | ||
1502 | return (NFSERR_EAUTH); | |
2d21ac55 A |
1503 | } |
1504 | ||
1505 | /* | |
1506 | * Invoked at the completion of an RPC call that uses an RPCSEC_GSS | |
1507 | * credential. The sequence number window that the server returns | |
1508 | * at context setup indicates the maximum number of client calls that | |
1509 | * can be outstanding on a context. The client maintains a bitmap that | |
1510 | * represents the server's window. Each pending request has a bit set | |
1511 | * in the window bitmap. When a reply comes in or times out, we reset | |
1512 | * the bit in the bitmap and if there are any other threads waiting for | |
1513 | * a context slot we notify the waiting thread(s). | |
1514 | * | |
1515 | * Note that if a request is retransmitted, it will have a single XID | |
1516 | * but it may be associated with multiple sequence numbers. So we | |
1517 | * may have to reset multiple sequence number bits in the window bitmap. | |
1518 | */ | |
1519 | void | |
1520 | nfs_gss_clnt_rpcdone(struct nfsreq *req) | |
1521 | { | |
1522 | struct nfs_gss_clnt_ctx *cp = req->r_gss_ctx; | |
1523 | struct gss_seq *gsp, *ngsp; | |
1524 | int i = 0; | |
1525 | ||
1526 | if (cp == NULL || !(cp->gss_clnt_flags & GSS_CTX_COMPLETE)) | |
1527 | return; // no context - don't bother | |
1528 | /* | |
1529 | * Reset the bit for this request in the | |
1530 | * sequence number window to indicate it's done. | |
1531 | * We do this even if the request timed out. | |
1532 | */ | |
1533 | lck_mtx_lock(cp->gss_clnt_mtx); | |
1534 | gsp = SLIST_FIRST(&req->r_gss_seqlist); | |
1535 | if (gsp && gsp->gss_seqnum > (cp->gss_clnt_seqnum - cp->gss_clnt_seqwin)) | |
1536 | win_resetbit(cp->gss_clnt_seqbits, | |
1537 | gsp->gss_seqnum % cp->gss_clnt_seqwin); | |
1538 | ||
1539 | /* | |
1540 | * Limit the seqnum list to GSS_CLNT_SEQLISTMAX entries | |
1541 | */ | |
1542 | SLIST_FOREACH_SAFE(gsp, &req->r_gss_seqlist, gss_seqnext, ngsp) { | |
1543 | if (++i > GSS_CLNT_SEQLISTMAX) { | |
1544 | SLIST_REMOVE(&req->r_gss_seqlist, gsp, gss_seq, gss_seqnext); | |
1545 | FREE(gsp, M_TEMP); | |
1546 | } | |
1547 | } | |
1548 | ||
1549 | /* | |
1550 | * If there's a thread waiting for | |
1551 | * the window to advance, wake it up. | |
1552 | */ | |
1553 | if (cp->gss_clnt_flags & GSS_NEEDSEQ) { | |
1554 | cp->gss_clnt_flags &= ~GSS_NEEDSEQ; | |
1555 | wakeup(cp); | |
1556 | } | |
1557 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
1558 | } | |
1559 | ||
1560 | /* | |
1561 | * Create a reference to a context from a request | |
1562 | * and bump the reference count | |
1563 | */ | |
1564 | void | |
1565 | nfs_gss_clnt_ctx_ref(struct nfsreq *req, struct nfs_gss_clnt_ctx *cp) | |
1566 | { | |
1567 | req->r_gss_ctx = cp; | |
1568 | ||
1569 | lck_mtx_lock(cp->gss_clnt_mtx); | |
1570 | cp->gss_clnt_refcnt++; | |
1571 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
1572 | } | |
1573 | ||
1574 | /* | |
1575 | * Remove a context reference from a request | |
1576 | * If the reference count drops to zero, and the | |
1577 | * context is invalid, destroy the context | |
1578 | */ | |
1579 | void | |
1580 | nfs_gss_clnt_ctx_unref(struct nfsreq *req) | |
1581 | { | |
1582 | struct nfsmount *nmp = req->r_nmp; | |
1583 | struct nfs_gss_clnt_ctx *cp = req->r_gss_ctx; | |
1584 | ||
1585 | if (cp == NULL) | |
1586 | return; | |
1587 | ||
1588 | req->r_gss_ctx = NULL; | |
1589 | ||
1590 | lck_mtx_lock(cp->gss_clnt_mtx); | |
1591 | if (--cp->gss_clnt_refcnt == 0 | |
1592 | && cp->gss_clnt_flags & GSS_CTX_INVAL) { | |
1593 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
1594 | ||
1595 | if (nmp) | |
1596 | lck_mtx_lock(&nmp->nm_lock); | |
1597 | nfs_gss_clnt_ctx_remove(nmp, cp); | |
1598 | if (nmp) | |
1599 | lck_mtx_unlock(&nmp->nm_lock); | |
1600 | ||
1601 | return; | |
1602 | } | |
1603 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
1604 | } | |
1605 | ||
1606 | /* | |
1607 | * Remove a context | |
1608 | */ | |
1609 | static void | |
1610 | nfs_gss_clnt_ctx_remove(struct nfsmount *nmp, struct nfs_gss_clnt_ctx *cp) | |
1611 | { | |
1612 | /* | |
1613 | * If dequeueing, assume nmp->nm_lock is held | |
1614 | */ | |
1615 | if (nmp != NULL) | |
1616 | TAILQ_REMOVE(&nmp->nm_gsscl, cp, gss_clnt_entries); | |
1617 | ||
316670eb | 1618 | host_release_special_port(cp->gss_clnt_mport); |
6d2010ae | 1619 | |
2d21ac55 A |
1620 | if (cp->gss_clnt_mtx) |
1621 | lck_mtx_destroy(cp->gss_clnt_mtx, nfs_gss_clnt_grp); | |
1622 | if (cp->gss_clnt_handle) | |
1623 | FREE(cp->gss_clnt_handle, M_TEMP); | |
1624 | if (cp->gss_clnt_seqbits) | |
1625 | FREE(cp->gss_clnt_seqbits, M_TEMP); | |
1626 | if (cp->gss_clnt_token) | |
1627 | FREE(cp->gss_clnt_token, M_TEMP); | |
1628 | if (cp->gss_clnt_svcname) | |
1629 | FREE(cp->gss_clnt_svcname, M_TEMP); | |
1630 | FREE(cp, M_TEMP); | |
1631 | } | |
1632 | ||
1633 | /* | |
1634 | * The context for a user is invalid. | |
1635 | * Mark the context as invalid, then | |
1636 | * create a new context. | |
1637 | */ | |
1638 | int | |
1639 | nfs_gss_clnt_ctx_renew(struct nfsreq *req) | |
1640 | { | |
1641 | struct nfs_gss_clnt_ctx *cp = req->r_gss_ctx; | |
1642 | struct nfsmount *nmp = req->r_nmp; | |
1643 | struct nfs_gss_clnt_ctx *ncp; | |
1644 | int error = 0; | |
1645 | uid_t saved_uid; | |
1646 | mach_port_t saved_mport; | |
2d21ac55 | 1647 | |
b0d623f7 | 1648 | if (cp == NULL) |
2d21ac55 A |
1649 | return (0); |
1650 | ||
1651 | lck_mtx_lock(cp->gss_clnt_mtx); | |
1652 | if (cp->gss_clnt_flags & GSS_CTX_INVAL) { | |
1653 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
1654 | nfs_gss_clnt_ctx_unref(req); | |
1655 | return (0); // already being renewed | |
1656 | } | |
1657 | saved_uid = cp->gss_clnt_uid; | |
316670eb | 1658 | saved_mport = host_copy_special_port(cp->gss_clnt_mport); |
2d21ac55 A |
1659 | |
1660 | /* Remove the old context */ | |
2d21ac55 | 1661 | cp->gss_clnt_flags |= GSS_CTX_INVAL; |
2d21ac55 A |
1662 | |
1663 | /* | |
1664 | * If there's a thread waiting | |
1665 | * in the old context, wake it up. | |
1666 | */ | |
1667 | if (cp->gss_clnt_flags & (GSS_NEEDCTX | GSS_NEEDSEQ)) { | |
1668 | cp->gss_clnt_flags &= ~GSS_NEEDSEQ; | |
1669 | wakeup(cp); | |
1670 | } | |
1671 | lck_mtx_unlock(cp->gss_clnt_mtx); | |
1672 | ||
2d21ac55 A |
1673 | /* |
1674 | * Create a new context | |
1675 | */ | |
1676 | MALLOC(ncp, struct nfs_gss_clnt_ctx *, sizeof(*ncp), | |
1677 | M_TEMP, M_WAITOK|M_ZERO); | |
1678 | if (ncp == NULL) { | |
b0d623f7 A |
1679 | error = ENOMEM; |
1680 | goto out; | |
2d21ac55 A |
1681 | } |
1682 | ||
1683 | ncp->gss_clnt_uid = saved_uid; | |
316670eb | 1684 | ncp->gss_clnt_mport = host_copy_special_port(saved_mport); // re-use the gssd port |
2d21ac55 A |
1685 | ncp->gss_clnt_mtx = lck_mtx_alloc_init(nfs_gss_clnt_grp, LCK_ATTR_NULL); |
1686 | ncp->gss_clnt_thread = current_thread(); | |
1687 | lck_mtx_lock(&nmp->nm_lock); | |
1688 | TAILQ_INSERT_TAIL(&nmp->nm_gsscl, ncp, gss_clnt_entries); | |
1689 | lck_mtx_unlock(&nmp->nm_lock); | |
1690 | ||
1691 | /* Adjust reference counts to new and old context */ | |
1692 | nfs_gss_clnt_ctx_unref(req); | |
1693 | nfs_gss_clnt_ctx_ref(req, ncp); | |
1694 | ||
6d2010ae | 1695 | error = nfs_gss_clnt_ctx_init_retry(req, ncp); // Initialize new context |
b0d623f7 | 1696 | out: |
316670eb | 1697 | host_release_special_port(saved_mport); |
2d21ac55 A |
1698 | if (error) |
1699 | nfs_gss_clnt_ctx_unref(req); | |
1700 | ||
1701 | return (error); | |
1702 | } | |
1703 | ||
1704 | /* | |
1705 | * Destroy all the contexts associated with a mount. | |
1706 | * The contexts are also destroyed by the server. | |
1707 | */ | |
1708 | void | |
6d2010ae | 1709 | nfs_gss_clnt_ctx_unmount(struct nfsmount *nmp) |
2d21ac55 A |
1710 | { |
1711 | struct nfs_gss_clnt_ctx *cp; | |
2d21ac55 | 1712 | struct nfsm_chain nmreq, nmrep; |
2d21ac55 A |
1713 | int error, status; |
1714 | struct nfsreq req; | |
1715 | ||
2d21ac55 A |
1716 | req.r_nmp = nmp; |
1717 | ||
1718 | for (;;) { | |
1719 | lck_mtx_lock(&nmp->nm_lock); | |
1720 | cp = TAILQ_FIRST(&nmp->nm_gsscl); | |
1721 | lck_mtx_unlock(&nmp->nm_lock); | |
1722 | if (cp == NULL) | |
1723 | break; | |
1724 | ||
1725 | nfs_gss_clnt_ctx_ref(&req, cp); | |
1726 | ||
1727 | /* | |
1728 | * Tell the server to destroy its context. | |
1729 | * But don't bother if it's a forced unmount | |
1730 | * or if it's a dummy sec=sys context. | |
1731 | */ | |
6d2010ae A |
1732 | if (!(nmp->nm_state & NFSSTA_FORCE) && (cp->gss_clnt_service != RPCSEC_GSS_SVC_SYS)) { |
1733 | kauth_cred_t cred; | |
1734 | struct posix_cred temp_pcred; | |
1735 | ||
1736 | bzero((caddr_t) &temp_pcred, sizeof(temp_pcred)); | |
1737 | temp_pcred.cr_ngroups = 1; | |
1738 | temp_pcred.cr_uid = cp->gss_clnt_uid; | |
1739 | cred = posix_cred_create(&temp_pcred); | |
2d21ac55 A |
1740 | cp->gss_clnt_proc = RPCSEC_GSS_DESTROY; |
1741 | ||
1742 | error = 0; | |
1743 | nfsm_chain_null(&nmreq); | |
1744 | nfsm_chain_null(&nmrep); | |
1745 | nfsm_chain_build_alloc_init(error, &nmreq, 0); | |
1746 | nfsm_chain_build_done(error, &nmreq); | |
1747 | if (!error) | |
b0d623f7 A |
1748 | nfs_request_gss(nmp->nm_mountp, &nmreq, |
1749 | current_thread(), cred, 0, cp, &nmrep, &status); | |
2d21ac55 A |
1750 | nfsm_chain_cleanup(&nmreq); |
1751 | nfsm_chain_cleanup(&nmrep); | |
1752 | kauth_cred_unref(&cred); | |
1753 | } | |
1754 | ||
1755 | /* | |
1756 | * Mark the context invalid then drop | |
1757 | * the reference to remove it if its | |
1758 | * refcount is zero. | |
1759 | */ | |
6d2010ae | 1760 | lck_mtx_lock(cp->gss_clnt_mtx); |
2d21ac55 | 1761 | cp->gss_clnt_flags |= GSS_CTX_INVAL; |
6d2010ae | 1762 | lck_mtx_unlock(cp->gss_clnt_mtx); |
2d21ac55 A |
1763 | nfs_gss_clnt_ctx_unref(&req); |
1764 | } | |
1765 | } | |
1766 | ||
2d21ac55 A |
1767 | #endif /* NFSCLIENT */ |
1768 | ||
1769 | /************* | |
1770 | * | |
1771 | * Server functions | |
1772 | */ | |
1773 | ||
1774 | #if NFSSERVER | |
1775 | ||
1776 | /* | |
1777 | * Find a server context based on a handle value received | |
1778 | * in an RPCSEC_GSS credential. | |
1779 | */ | |
1780 | static struct nfs_gss_svc_ctx * | |
1781 | nfs_gss_svc_ctx_find(uint32_t handle) | |
1782 | { | |
1783 | struct nfs_gss_svc_ctx_hashhead *head; | |
1784 | struct nfs_gss_svc_ctx *cp; | |
b0d623f7 A |
1785 | uint64_t timenow; |
1786 | ||
1787 | if (handle == 0) | |
1788 | return (NULL); | |
1789 | ||
2d21ac55 | 1790 | head = &nfs_gss_svc_ctx_hashtbl[SVC_CTX_HASH(handle)]; |
b0d623f7 A |
1791 | /* |
1792 | * Don't return a context that is going to expire in GSS_CTX_PEND seconds | |
1793 | */ | |
1794 | clock_interval_to_deadline(GSS_CTX_PEND, NSEC_PER_SEC, &timenow); | |
2d21ac55 A |
1795 | |
1796 | lck_mtx_lock(nfs_gss_svc_ctx_mutex); | |
b0d623f7 | 1797 | |
6d2010ae | 1798 | LIST_FOREACH(cp, head, gss_svc_entries) { |
b0d623f7 A |
1799 | if (cp->gss_svc_handle == handle) { |
1800 | if (timenow > cp->gss_svc_incarnation + GSS_SVC_CTX_TTL) { | |
1801 | /* | |
1802 | * Context has or is about to expire. Don't use. | |
1803 | * We'll return null and the client will have to create | |
1804 | * a new context. | |
1805 | */ | |
1806 | cp->gss_svc_handle = 0; | |
1807 | /* | |
6d2010ae | 1808 | * Make sure though that we stay around for GSS_CTX_PEND seconds |
b0d623f7 A |
1809 | * for other threads that might be using the context. |
1810 | */ | |
1811 | cp->gss_svc_incarnation = timenow; | |
6d2010ae | 1812 | |
b0d623f7 | 1813 | cp = NULL; |
6d2010ae | 1814 | break; |
b0d623f7 | 1815 | } |
6d2010ae A |
1816 | lck_mtx_lock(cp->gss_svc_mtx); |
1817 | cp->gss_svc_refcnt++; | |
1818 | lck_mtx_unlock(cp->gss_svc_mtx); | |
2d21ac55 | 1819 | break; |
b0d623f7 | 1820 | } |
6d2010ae | 1821 | } |
b0d623f7 | 1822 | |
2d21ac55 A |
1823 | lck_mtx_unlock(nfs_gss_svc_ctx_mutex); |
1824 | ||
1825 | return (cp); | |
1826 | } | |
1827 | ||
1828 | /* | |
1829 | * Insert a new server context into the hash table | |
1830 | * and start the context reap thread if necessary. | |
1831 | */ | |
1832 | static void | |
1833 | nfs_gss_svc_ctx_insert(struct nfs_gss_svc_ctx *cp) | |
1834 | { | |
1835 | struct nfs_gss_svc_ctx_hashhead *head; | |
6d2010ae | 1836 | struct nfs_gss_svc_ctx *p; |
2d21ac55 | 1837 | |
6d2010ae A |
1838 | lck_mtx_lock(nfs_gss_svc_ctx_mutex); |
1839 | ||
1840 | /* | |
1841 | * Give the client a random handle so that if we reboot | |
1842 | * it's unlikely the client will get a bad context match. | |
1843 | * Make sure it's not zero or already assigned. | |
1844 | */ | |
1845 | retry: | |
1846 | cp->gss_svc_handle = random(); | |
1847 | if (cp->gss_svc_handle == 0) | |
1848 | goto retry; | |
2d21ac55 | 1849 | head = &nfs_gss_svc_ctx_hashtbl[SVC_CTX_HASH(cp->gss_svc_handle)]; |
6d2010ae A |
1850 | LIST_FOREACH(p, head, gss_svc_entries) |
1851 | if (p->gss_svc_handle == cp->gss_svc_handle) | |
1852 | goto retry; | |
2d21ac55 | 1853 | |
6d2010ae A |
1854 | clock_interval_to_deadline(GSS_CTX_PEND, NSEC_PER_SEC, |
1855 | &cp->gss_svc_incarnation); | |
2d21ac55 A |
1856 | LIST_INSERT_HEAD(head, cp, gss_svc_entries); |
1857 | nfs_gss_ctx_count++; | |
1858 | ||
1859 | if (!nfs_gss_timer_on) { | |
1860 | nfs_gss_timer_on = 1; | |
b0d623f7 | 1861 | |
2d21ac55 | 1862 | nfs_interval_timer_start(nfs_gss_svc_ctx_timer_call, |
6d2010ae | 1863 | min(GSS_TIMER_PERIOD, max(GSS_CTX_TTL_MIN, nfsrv_gss_context_ttl)) * MSECS_PER_SEC); |
2d21ac55 | 1864 | } |
b0d623f7 | 1865 | |
2d21ac55 A |
1866 | lck_mtx_unlock(nfs_gss_svc_ctx_mutex); |
1867 | } | |
1868 | ||
1869 | /* | |
1870 | * This function is called via the kernel's callout | |
1871 | * mechanism. It runs only when there are | |
1872 | * cached RPCSEC_GSS contexts. | |
1873 | */ | |
1874 | void | |
1875 | nfs_gss_svc_ctx_timer(__unused void *param1, __unused void *param2) | |
1876 | { | |
2d21ac55 A |
1877 | struct nfs_gss_svc_ctx *cp, *next; |
1878 | uint64_t timenow; | |
1879 | int contexts = 0; | |
1880 | int i; | |
1881 | ||
1882 | lck_mtx_lock(nfs_gss_svc_ctx_mutex); | |
1883 | clock_get_uptime(&timenow); | |
1884 | ||
1885 | /* | |
1886 | * Scan all the hash chains | |
2d21ac55 A |
1887 | */ |
1888 | for (i = 0; i < SVC_CTX_HASHSZ; i++) { | |
1889 | /* | |
1890 | * For each hash chain, look for entries | |
1891 | * that haven't been used in a while. | |
1892 | */ | |
6d2010ae | 1893 | LIST_FOREACH_SAFE(cp, &nfs_gss_svc_ctx_hashtbl[i], gss_svc_entries, next) { |
2d21ac55 | 1894 | contexts++; |
6d2010ae A |
1895 | if (timenow > cp->gss_svc_incarnation + |
1896 | (cp->gss_svc_handle ? GSS_SVC_CTX_TTL : 0) | |
1897 | && cp->gss_svc_refcnt == 0) { | |
2d21ac55 A |
1898 | /* |
1899 | * A stale context - remove it | |
1900 | */ | |
1901 | LIST_REMOVE(cp, gss_svc_entries); | |
1902 | if (cp->gss_svc_seqbits) | |
1903 | FREE(cp->gss_svc_seqbits, M_TEMP); | |
1904 | lck_mtx_destroy(cp->gss_svc_mtx, nfs_gss_svc_grp); | |
1905 | FREE(cp, M_TEMP); | |
1906 | contexts--; | |
1907 | } | |
1908 | } | |
1909 | } | |
1910 | ||
1911 | nfs_gss_ctx_count = contexts; | |
1912 | ||
1913 | /* | |
1914 | * If there are still some cached contexts left, | |
1915 | * set up another callout to check on them later. | |
1916 | */ | |
1917 | nfs_gss_timer_on = nfs_gss_ctx_count > 0; | |
1918 | if (nfs_gss_timer_on) | |
1919 | nfs_interval_timer_start(nfs_gss_svc_ctx_timer_call, | |
6d2010ae | 1920 | min(GSS_TIMER_PERIOD, max(GSS_CTX_TTL_MIN, nfsrv_gss_context_ttl)) * MSECS_PER_SEC); |
2d21ac55 A |
1921 | |
1922 | lck_mtx_unlock(nfs_gss_svc_ctx_mutex); | |
1923 | } | |
1924 | ||
1925 | /* | |
1926 | * Here the server receives an RPCSEC_GSS credential in an | |
1927 | * RPC call header. First there's some checking to make sure | |
1928 | * the credential is appropriate - whether the context is still | |
1929 | * being set up, or is complete. Then we use the handle to find | |
1930 | * the server's context and validate the verifier, which contains | |
1931 | * a signed checksum of the RPC header. If the verifier checks | |
1932 | * out, we extract the user's UID and groups from the context | |
1933 | * and use it to set up a UNIX credential for the user's request. | |
1934 | */ | |
1935 | int | |
1936 | nfs_gss_svc_cred_get(struct nfsrv_descript *nd, struct nfsm_chain *nmc) | |
1937 | { | |
1938 | uint32_t vers, proc, seqnum, service; | |
1939 | uint32_t handle, handle_len; | |
1940 | struct nfs_gss_svc_ctx *cp = NULL; | |
1941 | uint32_t flavor = 0, verflen = 0; | |
1942 | int error = 0; | |
1943 | uint32_t arglen, start, toklen, cksumlen; | |
b0d623f7 A |
1944 | u_char tokbuf[KRB5_SZ_TOKMAX(MAX_DIGEST)]; |
1945 | u_char cksum1[MAX_DIGEST], cksum2[MAX_DIGEST]; | |
2d21ac55 | 1946 | struct nfsm_chain nmc_tmp; |
b0d623f7 A |
1947 | gss_key_info *ki; |
1948 | ||
2d21ac55 A |
1949 | vers = proc = seqnum = service = handle_len = 0; |
1950 | arglen = cksumlen = 0; | |
1951 | ||
1952 | nfsm_chain_get_32(error, nmc, vers); | |
1953 | if (vers != RPCSEC_GSS_VERS_1) { | |
1954 | error = NFSERR_AUTHERR | AUTH_REJECTCRED; | |
1955 | goto nfsmout; | |
1956 | } | |
1957 | ||
1958 | nfsm_chain_get_32(error, nmc, proc); | |
1959 | nfsm_chain_get_32(error, nmc, seqnum); | |
1960 | nfsm_chain_get_32(error, nmc, service); | |
1961 | nfsm_chain_get_32(error, nmc, handle_len); | |
1962 | if (error) | |
1963 | goto nfsmout; | |
1964 | ||
1965 | /* | |
1966 | * Make sure context setup/destroy is being done with a nullproc | |
1967 | */ | |
1968 | if (proc != RPCSEC_GSS_DATA && nd->nd_procnum != NFSPROC_NULL) { | |
1969 | error = NFSERR_AUTHERR | RPCSEC_GSS_CREDPROBLEM; | |
1970 | goto nfsmout; | |
1971 | } | |
1972 | ||
1973 | /* | |
1974 | * If the sequence number is greater than the max | |
1975 | * allowable, reject and have the client init a | |
1976 | * new context. | |
1977 | */ | |
1978 | if (seqnum > GSS_MAXSEQ) { | |
1979 | error = NFSERR_AUTHERR | RPCSEC_GSS_CTXPROBLEM; | |
1980 | goto nfsmout; | |
1981 | } | |
1982 | ||
1983 | nd->nd_sec = | |
1984 | service == RPCSEC_GSS_SVC_NONE ? RPCAUTH_KRB5 : | |
1985 | service == RPCSEC_GSS_SVC_INTEGRITY ? RPCAUTH_KRB5I : | |
1986 | service == RPCSEC_GSS_SVC_PRIVACY ? RPCAUTH_KRB5P : 0; | |
1987 | ||
1988 | if (proc == RPCSEC_GSS_INIT) { | |
1989 | /* | |
1990 | * Limit the total number of contexts | |
1991 | */ | |
1992 | if (nfs_gss_ctx_count > nfs_gss_ctx_max) { | |
1993 | error = NFSERR_AUTHERR | RPCSEC_GSS_CTXPROBLEM; | |
1994 | goto nfsmout; | |
1995 | } | |
1996 | ||
1997 | /* | |
1998 | * Set up a new context | |
1999 | */ | |
2000 | MALLOC(cp, struct nfs_gss_svc_ctx *, sizeof(*cp), M_TEMP, M_WAITOK|M_ZERO); | |
2001 | if (cp == NULL) { | |
2002 | error = ENOMEM; | |
2003 | goto nfsmout; | |
2004 | } | |
6d2010ae A |
2005 | cp->gss_svc_mtx = lck_mtx_alloc_init(nfs_gss_svc_grp, LCK_ATTR_NULL); |
2006 | cp->gss_svc_refcnt = 1; | |
2d21ac55 A |
2007 | } else { |
2008 | ||
2009 | /* | |
2010 | * Use the handle to find the context | |
2011 | */ | |
2012 | if (handle_len != sizeof(handle)) { | |
2013 | error = NFSERR_AUTHERR | RPCSEC_GSS_CREDPROBLEM; | |
2014 | goto nfsmout; | |
2015 | } | |
2016 | nfsm_chain_get_32(error, nmc, handle); | |
2017 | if (error) | |
2018 | goto nfsmout; | |
2019 | cp = nfs_gss_svc_ctx_find(handle); | |
2020 | if (cp == NULL) { | |
2021 | error = NFSERR_AUTHERR | RPCSEC_GSS_CTXPROBLEM; | |
2022 | goto nfsmout; | |
2023 | } | |
2024 | } | |
2025 | ||
2026 | cp->gss_svc_proc = proc; | |
b0d623f7 | 2027 | ki = &cp->gss_svc_kinfo; |
2d21ac55 A |
2028 | |
2029 | if (proc == RPCSEC_GSS_DATA || proc == RPCSEC_GSS_DESTROY) { | |
6d2010ae | 2030 | struct posix_cred temp_pcred; |
2d21ac55 A |
2031 | |
2032 | if (cp->gss_svc_seqwin == 0) { | |
2033 | /* | |
2034 | * Context isn't complete | |
2035 | */ | |
2036 | error = NFSERR_AUTHERR | RPCSEC_GSS_CTXPROBLEM; | |
2037 | goto nfsmout; | |
2038 | } | |
2039 | ||
2040 | if (!nfs_gss_svc_seqnum_valid(cp, seqnum)) { | |
2041 | /* | |
2042 | * Sequence number is bad | |
2043 | */ | |
2044 | error = EINVAL; // drop the request | |
2045 | goto nfsmout; | |
2046 | } | |
2047 | ||
2048 | /* Now compute the client's call header checksum */ | |
b0d623f7 | 2049 | nfs_gss_cksum_chain(ki, nmc, ALG_MIC(ki), 0, 0, cksum1); |
2d21ac55 A |
2050 | |
2051 | /* | |
2052 | * Validate the verifier. | |
2053 | * The verifier contains an encrypted checksum | |
2054 | * of the call header from the XID up to and | |
2055 | * including the credential. We compute the | |
2056 | * checksum and compare it with what came in | |
2057 | * the verifier. | |
2058 | */ | |
2059 | nfsm_chain_get_32(error, nmc, flavor); | |
2060 | nfsm_chain_get_32(error, nmc, verflen); | |
6d2010ae A |
2061 | if (error) |
2062 | goto nfsmout; | |
b0d623f7 | 2063 | if (flavor != RPCSEC_GSS || verflen != KRB5_SZ_TOKEN(ki->hash_len)) |
2d21ac55 A |
2064 | error = NFSERR_AUTHERR | AUTH_BADVERF; |
2065 | nfsm_chain_get_opaque(error, nmc, verflen, tokbuf); | |
2066 | if (error) | |
2067 | goto nfsmout; | |
2068 | ||
2069 | /* Get the checksum from the token inside the verifier */ | |
b0d623f7 | 2070 | error = nfs_gss_token_get(ki, ALG_MIC(ki), tokbuf, 1, |
2d21ac55 A |
2071 | NULL, cksum2); |
2072 | if (error) | |
2073 | goto nfsmout; | |
2074 | ||
b0d623f7 | 2075 | if (bcmp(cksum1, cksum2, HASHLEN(ki)) != 0) { |
2d21ac55 A |
2076 | error = NFSERR_AUTHERR | RPCSEC_GSS_CTXPROBLEM; |
2077 | goto nfsmout; | |
2078 | } | |
2079 | ||
2080 | nd->nd_gss_seqnum = seqnum; | |
2081 | ||
2082 | /* | |
2083 | * Set up the user's cred | |
2084 | */ | |
6d2010ae A |
2085 | bzero(&temp_pcred, sizeof(temp_pcred)); |
2086 | temp_pcred.cr_uid = cp->gss_svc_uid; | |
2087 | bcopy(cp->gss_svc_gids, temp_pcred.cr_groups, | |
2d21ac55 | 2088 | sizeof(gid_t) * cp->gss_svc_ngroups); |
6d2010ae | 2089 | temp_pcred.cr_ngroups = cp->gss_svc_ngroups; |
2d21ac55 | 2090 | |
6d2010ae | 2091 | nd->nd_cr = posix_cred_create(&temp_pcred); |
2d21ac55 A |
2092 | if (nd->nd_cr == NULL) { |
2093 | error = ENOMEM; | |
2094 | goto nfsmout; | |
2095 | } | |
b0d623f7 | 2096 | clock_get_uptime(&cp->gss_svc_incarnation); |
2d21ac55 A |
2097 | |
2098 | /* | |
2099 | * If the call arguments are integrity or privacy protected | |
2100 | * then we need to check them here. | |
2101 | */ | |
2102 | switch (service) { | |
2103 | case RPCSEC_GSS_SVC_NONE: | |
2104 | /* nothing to do */ | |
2105 | break; | |
2106 | case RPCSEC_GSS_SVC_INTEGRITY: | |
2107 | /* | |
2108 | * Here's what we expect in the integrity call args: | |
2109 | * | |
2110 | * - length of seq num + call args (4 bytes) | |
2111 | * - sequence number (4 bytes) | |
2112 | * - call args (variable bytes) | |
2113 | * - length of checksum token (37) | |
2114 | * - checksum of seqnum + call args (37 bytes) | |
2115 | */ | |
2116 | nfsm_chain_get_32(error, nmc, arglen); // length of args | |
2117 | if (arglen > NFS_MAXPACKET) { | |
2118 | error = EBADRPC; | |
2119 | goto nfsmout; | |
2120 | } | |
2121 | ||
2122 | /* Compute the checksum over the call args */ | |
2123 | start = nfsm_chain_offset(nmc); | |
b0d623f7 | 2124 | nfs_gss_cksum_chain(ki, nmc, ALG_MIC(ki), start, arglen, cksum1); |
2d21ac55 A |
2125 | |
2126 | /* | |
2127 | * Get the sequence number prepended to the args | |
2128 | * and compare it against the one sent in the | |
2129 | * call credential. | |
2130 | */ | |
2131 | nfsm_chain_get_32(error, nmc, seqnum); | |
2132 | if (seqnum != nd->nd_gss_seqnum) { | |
2133 | error = EBADRPC; // returns as GARBAGEARGS | |
2134 | goto nfsmout; | |
2135 | } | |
2136 | ||
2137 | /* | |
2138 | * Advance to the end of the args and | |
2139 | * fetch the checksum computed by the client. | |
2140 | */ | |
2141 | nmc_tmp = *nmc; | |
2142 | arglen -= NFSX_UNSIGNED; // skipped seqnum | |
2143 | nfsm_chain_adv(error, &nmc_tmp, arglen); // skip args | |
2144 | nfsm_chain_get_32(error, &nmc_tmp, cksumlen); // length of checksum | |
b0d623f7 | 2145 | if (cksumlen != KRB5_SZ_TOKEN(ki->hash_len)) { |
2d21ac55 A |
2146 | error = EBADRPC; |
2147 | goto nfsmout; | |
2148 | } | |
2149 | nfsm_chain_get_opaque(error, &nmc_tmp, cksumlen, tokbuf); | |
2150 | if (error) | |
2151 | goto nfsmout; | |
b0d623f7 | 2152 | error = nfs_gss_token_get(ki, ALG_MIC(ki), tokbuf, 1, |
2d21ac55 A |
2153 | NULL, cksum2); |
2154 | ||
2155 | /* Verify that the checksums are the same */ | |
b0d623f7 | 2156 | if (error || bcmp(cksum1, cksum2, HASHLEN(ki)) != 0) { |
2d21ac55 A |
2157 | error = EBADRPC; |
2158 | goto nfsmout; | |
2159 | } | |
2160 | break; | |
2161 | case RPCSEC_GSS_SVC_PRIVACY: | |
2162 | /* | |
2163 | * Here's what we expect in the privacy call args: | |
2164 | * | |
2165 | * - length of confounder + seq num + token + call args | |
2166 | * - wrap token (37-40 bytes) | |
2167 | * - confounder (8 bytes) | |
2168 | * - sequence number (4 bytes) | |
2169 | * - call args (encrypted) | |
2170 | */ | |
2171 | nfsm_chain_get_32(error, nmc, arglen); // length of args | |
2172 | if (arglen > NFS_MAXPACKET) { | |
2173 | error = EBADRPC; | |
2174 | goto nfsmout; | |
2175 | } | |
2176 | ||
2177 | /* Get the token that prepends the encrypted args */ | |
b0d623f7 | 2178 | nfsm_chain_get_opaque(error, nmc, KRB5_SZ_TOKMAX(ki->hash_len), tokbuf); |
2d21ac55 A |
2179 | if (error) |
2180 | goto nfsmout; | |
b0d623f7 A |
2181 | error = nfs_gss_token_get(ki, ALG_WRAP(ki), tokbuf, 1, |
2182 | &toklen, cksum1); | |
2d21ac55 A |
2183 | if (error) |
2184 | goto nfsmout; | |
2185 | nfsm_chain_reverse(nmc, nfsm_pad(toklen)); | |
2186 | ||
2187 | /* decrypt the 8 byte confounder + seqnum + args */ | |
2188 | start = nfsm_chain_offset(nmc); | |
2189 | arglen -= toklen; | |
b0d623f7 | 2190 | nfs_gss_encrypt_chain(ki, nmc, start, arglen, DES_DECRYPT); |
2d21ac55 A |
2191 | |
2192 | /* Compute a checksum over the sequence number + results */ | |
b0d623f7 | 2193 | nfs_gss_cksum_chain(ki, nmc, ALG_WRAP(ki), start, arglen, cksum2); |
2d21ac55 A |
2194 | |
2195 | /* Verify that the checksums are the same */ | |
b0d623f7 | 2196 | if (bcmp(cksum1, cksum2, HASHLEN(ki)) != 0) { |
2d21ac55 A |
2197 | error = EBADRPC; |
2198 | goto nfsmout; | |
2199 | } | |
2200 | ||
2201 | /* | |
2202 | * Get the sequence number prepended to the args | |
2203 | * and compare it against the one sent in the | |
2204 | * call credential. | |
2205 | */ | |
2206 | nfsm_chain_adv(error, nmc, 8); // skip over the confounder | |
2207 | nfsm_chain_get_32(error, nmc, seqnum); | |
2208 | if (seqnum != nd->nd_gss_seqnum) { | |
2209 | error = EBADRPC; // returns as GARBAGEARGS | |
2210 | goto nfsmout; | |
2211 | } | |
2212 | break; | |
2213 | } | |
2214 | } else { | |
2215 | /* | |
2216 | * If the proc is RPCSEC_GSS_INIT or RPCSEC_GSS_CONTINUE_INIT | |
2217 | * then we expect a null verifier. | |
2218 | */ | |
2219 | nfsm_chain_get_32(error, nmc, flavor); | |
2220 | nfsm_chain_get_32(error, nmc, verflen); | |
2221 | if (error || flavor != RPCAUTH_NULL || verflen > 0) | |
2222 | error = NFSERR_AUTHERR | RPCSEC_GSS_CREDPROBLEM; | |
6d2010ae A |
2223 | if (error) { |
2224 | if (proc == RPCSEC_GSS_INIT) { | |
2225 | lck_mtx_destroy(cp->gss_svc_mtx, nfs_gss_svc_grp); | |
2226 | FREE(cp, M_TEMP); | |
2227 | cp = NULL; | |
2228 | } | |
2d21ac55 | 2229 | goto nfsmout; |
6d2010ae | 2230 | } |
2d21ac55 A |
2231 | } |
2232 | ||
2233 | nd->nd_gss_context = cp; | |
6d2010ae | 2234 | return 0; |
2d21ac55 | 2235 | nfsmout: |
6d2010ae A |
2236 | if (cp) |
2237 | nfs_gss_svc_ctx_deref(cp); | |
2d21ac55 A |
2238 | return (error); |
2239 | } | |
2240 | ||
2241 | /* | |
2242 | * Insert the server's verifier into the RPC reply header. | |
2243 | * It contains a signed checksum of the sequence number that | |
2244 | * was received in the RPC call. | |
2245 | * Then go on to add integrity or privacy if necessary. | |
2246 | */ | |
2247 | int | |
2248 | nfs_gss_svc_verf_put(struct nfsrv_descript *nd, struct nfsm_chain *nmc) | |
2249 | { | |
2250 | struct nfs_gss_svc_ctx *cp; | |
2251 | int error = 0; | |
b0d623f7 | 2252 | u_char tokbuf[KRB5_SZ_TOKEN(MAX_DIGEST)]; |
2d21ac55 | 2253 | int toklen; |
b0d623f7 A |
2254 | u_char cksum[MAX_DIGEST]; |
2255 | gss_key_info *ki; | |
2d21ac55 A |
2256 | |
2257 | cp = nd->nd_gss_context; | |
b0d623f7 A |
2258 | ki = &cp->gss_svc_kinfo; |
2259 | ||
2d21ac55 A |
2260 | if (cp->gss_svc_major != GSS_S_COMPLETE) { |
2261 | /* | |
2262 | * If the context isn't yet complete | |
2263 | * then return a null verifier. | |
2264 | */ | |
2265 | nfsm_chain_add_32(error, nmc, RPCAUTH_NULL); | |
2266 | nfsm_chain_add_32(error, nmc, 0); | |
2267 | return (error); | |
2268 | } | |
2269 | ||
2270 | /* | |
2271 | * Compute checksum of the request seq number | |
2272 | * If it's the final reply of context setup | |
2273 | * then return the checksum of the context | |
2274 | * window size. | |
2275 | */ | |
2276 | if (cp->gss_svc_proc == RPCSEC_GSS_INIT || | |
2277 | cp->gss_svc_proc == RPCSEC_GSS_CONTINUE_INIT) | |
b0d623f7 | 2278 | nfs_gss_cksum_rep(ki, cp->gss_svc_seqwin, cksum); |
2d21ac55 | 2279 | else |
b0d623f7 | 2280 | nfs_gss_cksum_rep(ki, nd->nd_gss_seqnum, cksum); |
2d21ac55 A |
2281 | /* |
2282 | * Now wrap it in a token and add | |
2283 | * the verifier to the reply. | |
2284 | */ | |
b0d623f7 | 2285 | toklen = nfs_gss_token_put(ki, ALG_MIC(ki), tokbuf, 0, 0, cksum); |
2d21ac55 A |
2286 | nfsm_chain_add_32(error, nmc, RPCSEC_GSS); |
2287 | nfsm_chain_add_32(error, nmc, toklen); | |
2288 | nfsm_chain_add_opaque(error, nmc, tokbuf, toklen); | |
2289 | ||
2290 | return (error); | |
2291 | } | |
2292 | ||
2293 | /* | |
2294 | * The results aren't available yet, but if they need to be | |
2295 | * checksummed for integrity protection or encrypted, then | |
2296 | * we can record the start offset here, insert a place-holder | |
2297 | * for the results length, as well as the sequence number. | |
2298 | * The rest of the work is done later by nfs_gss_svc_protect_reply() | |
2299 | * when the results are available. | |
2300 | */ | |
2301 | int | |
2302 | nfs_gss_svc_prepare_reply(struct nfsrv_descript *nd, struct nfsm_chain *nmc) | |
2303 | { | |
2304 | struct nfs_gss_svc_ctx *cp = nd->nd_gss_context; | |
2305 | int error = 0; | |
2306 | ||
2307 | if (cp->gss_svc_proc == RPCSEC_GSS_INIT || | |
2308 | cp->gss_svc_proc == RPCSEC_GSS_CONTINUE_INIT) | |
2309 | return (0); | |
2310 | ||
2311 | switch (nd->nd_sec) { | |
2312 | case RPCAUTH_KRB5: | |
2313 | /* Nothing to do */ | |
2314 | break; | |
2315 | case RPCAUTH_KRB5I: | |
2316 | nd->nd_gss_mb = nmc->nmc_mcur; // record current mbuf | |
2317 | nfsm_chain_finish_mbuf(error, nmc); // split the chain here | |
2318 | nfsm_chain_add_32(error, nmc, nd->nd_gss_seqnum); // req sequence number | |
2319 | break; | |
2320 | case RPCAUTH_KRB5P: | |
2321 | nd->nd_gss_mb = nmc->nmc_mcur; // record current mbuf | |
2322 | nfsm_chain_finish_mbuf(error, nmc); // split the chain here | |
2323 | nfsm_chain_add_32(error, nmc, random()); // confounder bytes 1-4 | |
2324 | nfsm_chain_add_32(error, nmc, random()); // confounder bytes 5-8 | |
2325 | nfsm_chain_add_32(error, nmc, nd->nd_gss_seqnum); // req sequence number | |
2326 | break; | |
2327 | } | |
2328 | ||
2329 | return (error); | |
2330 | } | |
2331 | ||
2332 | /* | |
2333 | * The results are checksummed or encrypted for return to the client | |
2334 | */ | |
2335 | int | |
2336 | nfs_gss_svc_protect_reply(struct nfsrv_descript *nd, mbuf_t mrep) | |
2337 | { | |
2338 | struct nfs_gss_svc_ctx *cp = nd->nd_gss_context; | |
2339 | struct nfsm_chain nmrep_res, *nmc_res = &nmrep_res; | |
2340 | struct nfsm_chain nmrep_pre, *nmc_pre = &nmrep_pre; | |
2341 | mbuf_t mb, results; | |
2342 | uint32_t reslen; | |
b0d623f7 | 2343 | u_char tokbuf[KRB5_SZ_TOKMAX(MAX_DIGEST)]; |
2d21ac55 | 2344 | int pad, toklen; |
b0d623f7 | 2345 | u_char cksum[MAX_DIGEST]; |
2d21ac55 | 2346 | int error = 0; |
b0d623f7 | 2347 | gss_key_info *ki = &cp->gss_svc_kinfo; |
2d21ac55 A |
2348 | |
2349 | /* | |
2350 | * Using a reference to the mbuf where we previously split the reply | |
2351 | * mbuf chain, we split the mbuf chain argument into two mbuf chains, | |
2352 | * one that allows us to prepend a length field or token, (nmc_pre) | |
2353 | * and the second which holds just the results that we're going to | |
2354 | * checksum and/or encrypt. When we're done, we join the chains back | |
2355 | * together. | |
2356 | */ | |
2357 | nfs_gss_nfsm_chain(nmc_res, mrep); // set up the results chain | |
2358 | mb = nd->nd_gss_mb; // the mbuf where we split | |
2359 | results = mbuf_next(mb); // first mbuf in the results | |
2360 | reslen = nfs_gss_mchain_length(results); // length of results | |
2361 | error = mbuf_setnext(mb, NULL); // disconnect the chains | |
2362 | if (error) | |
2363 | return (error); | |
2364 | nfs_gss_nfsm_chain(nmc_pre, mb); // set up the prepend chain | |
2365 | ||
2366 | if (nd->nd_sec == RPCAUTH_KRB5I) { | |
2367 | nfsm_chain_add_32(error, nmc_pre, reslen); | |
2368 | nfsm_chain_build_done(error, nmc_pre); | |
2369 | if (error) | |
2370 | return (error); | |
2371 | nfs_gss_append_chain(nmc_pre, results); // Append the results mbufs | |
2372 | ||
2373 | /* Now compute the checksum over the results data */ | |
b0d623f7 | 2374 | nfs_gss_cksum_mchain(ki, results, ALG_MIC(ki), 0, reslen, cksum); |
2d21ac55 A |
2375 | |
2376 | /* Put it into a token and append to the request */ | |
b0d623f7 | 2377 | toklen = nfs_gss_token_put(ki, ALG_MIC(ki), tokbuf, 0, 0, cksum); |
2d21ac55 A |
2378 | nfsm_chain_add_32(error, nmc_res, toklen); |
2379 | nfsm_chain_add_opaque(error, nmc_res, tokbuf, toklen); | |
2380 | nfsm_chain_build_done(error, nmc_res); | |
2381 | } else { | |
2382 | /* RPCAUTH_KRB5P */ | |
2383 | /* | |
2384 | * Append a pad trailer - per RFC 1964 section 1.2.2.3 | |
2385 | * Since XDR data is always 32-bit aligned, it | |
2386 | * needs to be padded either by 4 bytes or 8 bytes. | |
2387 | */ | |
2388 | if (reslen % 8 > 0) { | |
2389 | nfsm_chain_add_32(error, nmc_res, 0x04040404); | |
2390 | reslen += NFSX_UNSIGNED; | |
2391 | } else { | |
2392 | nfsm_chain_add_32(error, nmc_res, 0x08080808); | |
2393 | nfsm_chain_add_32(error, nmc_res, 0x08080808); | |
2394 | reslen += 2 * NFSX_UNSIGNED; | |
2395 | } | |
2396 | nfsm_chain_build_done(error, nmc_res); | |
2397 | ||
2398 | /* Now compute the checksum over the results data */ | |
b0d623f7 | 2399 | nfs_gss_cksum_mchain(ki, results, ALG_WRAP(ki), 0, reslen, cksum); |
2d21ac55 A |
2400 | |
2401 | /* Put it into a token and insert in the reply */ | |
b0d623f7 | 2402 | toklen = nfs_gss_token_put(ki, ALG_WRAP(ki), tokbuf, 0, reslen, cksum); |
2d21ac55 A |
2403 | nfsm_chain_add_32(error, nmc_pre, toklen + reslen); |
2404 | nfsm_chain_add_opaque_nopad(error, nmc_pre, tokbuf, toklen); | |
2405 | nfsm_chain_build_done(error, nmc_pre); | |
2406 | if (error) | |
2407 | return (error); | |
2408 | nfs_gss_append_chain(nmc_pre, results); // Append the results mbufs | |
2409 | ||
2410 | /* Encrypt the confounder + seqnum + results */ | |
b0d623f7 | 2411 | nfs_gss_encrypt_mchain(ki, results, 0, reslen, DES_ENCRYPT); |
2d21ac55 A |
2412 | |
2413 | /* Add null XDR pad if the ASN.1 token misaligned the data */ | |
2414 | pad = nfsm_pad(toklen + reslen); | |
2415 | if (pad > 0) { | |
2416 | nfsm_chain_add_opaque_nopad(error, nmc_pre, iv0, pad); | |
2417 | nfsm_chain_build_done(error, nmc_pre); | |
2418 | } | |
2419 | } | |
2420 | ||
2421 | return (error); | |
2422 | } | |
2423 | ||
2424 | /* | |
2425 | * This function handles the context setup calls from the client. | |
2426 | * Essentially, it implements the NFS null procedure calls when | |
2427 | * an RPCSEC_GSS credential is used. | |
2428 | * This is the context maintenance function. It creates and | |
2429 | * destroys server contexts at the whim of the client. | |
2430 | * During context creation, it receives GSS-API tokens from the | |
2431 | * client, passes them up to gssd, and returns a received token | |
2432 | * back to the client in the null procedure reply. | |
2433 | */ | |
2434 | int | |
2435 | nfs_gss_svc_ctx_init(struct nfsrv_descript *nd, struct nfsrv_sock *slp, mbuf_t *mrepp) | |
2436 | { | |
2437 | struct nfs_gss_svc_ctx *cp = NULL; | |
2d21ac55 A |
2438 | int error = 0; |
2439 | int autherr = 0; | |
2440 | struct nfsm_chain *nmreq, nmrep; | |
2441 | int sz; | |
2442 | ||
2443 | nmreq = &nd->nd_nmreq; | |
2444 | nfsm_chain_null(&nmrep); | |
2445 | *mrepp = NULL; | |
2446 | cp = nd->nd_gss_context; | |
2447 | nd->nd_repstat = 0; | |
2448 | ||
2449 | switch (cp->gss_svc_proc) { | |
2450 | case RPCSEC_GSS_INIT: | |
2d21ac55 | 2451 | nfs_gss_svc_ctx_insert(cp); |
2d21ac55 A |
2452 | /* FALLTHRU */ |
2453 | ||
2454 | case RPCSEC_GSS_CONTINUE_INIT: | |
2455 | /* Get the token from the request */ | |
2456 | nfsm_chain_get_32(error, nmreq, cp->gss_svc_tokenlen); | |
2457 | if (cp->gss_svc_tokenlen == 0) { | |
2458 | autherr = RPCSEC_GSS_CREDPROBLEM; | |
2459 | break; | |
2460 | } | |
2461 | MALLOC(cp->gss_svc_token, u_char *, cp->gss_svc_tokenlen, M_TEMP, M_WAITOK); | |
2462 | if (cp->gss_svc_token == NULL) { | |
2463 | autherr = RPCSEC_GSS_CREDPROBLEM; | |
2464 | break; | |
2465 | } | |
2466 | nfsm_chain_get_opaque(error, nmreq, cp->gss_svc_tokenlen, cp->gss_svc_token); | |
2467 | ||
2468 | /* Use the token in a gss_accept_sec_context upcall */ | |
2469 | error = nfs_gss_svc_gssd_upcall(cp); | |
2470 | if (error) { | |
2471 | autherr = RPCSEC_GSS_CREDPROBLEM; | |
b0d623f7 | 2472 | if (error == NFSERR_EAUTH) |
2d21ac55 A |
2473 | error = 0; |
2474 | break; | |
2475 | } | |
2476 | ||
2477 | /* | |
2478 | * If the context isn't complete, pass the new token | |
2479 | * back to the client for another round. | |
2480 | */ | |
2481 | if (cp->gss_svc_major != GSS_S_COMPLETE) | |
2482 | break; | |
2483 | ||
2484 | /* | |
2485 | * Now the server context is complete. | |
2486 | * Finish setup. | |
2487 | */ | |
b0d623f7 A |
2488 | clock_get_uptime(&cp->gss_svc_incarnation); |
2489 | ||
2d21ac55 A |
2490 | cp->gss_svc_seqwin = GSS_SVC_SEQWINDOW; |
2491 | MALLOC(cp->gss_svc_seqbits, uint32_t *, | |
2492 | nfsm_rndup((cp->gss_svc_seqwin + 7) / 8), M_TEMP, M_WAITOK|M_ZERO); | |
2493 | if (cp->gss_svc_seqbits == NULL) { | |
2494 | autherr = RPCSEC_GSS_CREDPROBLEM; | |
2495 | break; | |
2496 | } | |
2d21ac55 A |
2497 | break; |
2498 | ||
2499 | case RPCSEC_GSS_DATA: | |
2500 | /* Just a nullproc ping - do nothing */ | |
2501 | break; | |
2502 | ||
2503 | case RPCSEC_GSS_DESTROY: | |
2504 | /* | |
2505 | * Don't destroy the context immediately because | |
2506 | * other active requests might still be using it. | |
2507 | * Instead, schedule it for destruction after | |
2508 | * GSS_CTX_PEND time has elapsed. | |
2509 | */ | |
2510 | cp = nfs_gss_svc_ctx_find(cp->gss_svc_handle); | |
2511 | if (cp != NULL) { | |
2512 | cp->gss_svc_handle = 0; // so it can't be found | |
2513 | lck_mtx_lock(cp->gss_svc_mtx); | |
2514 | clock_interval_to_deadline(GSS_CTX_PEND, NSEC_PER_SEC, | |
b0d623f7 | 2515 | &cp->gss_svc_incarnation); |
2d21ac55 A |
2516 | lck_mtx_unlock(cp->gss_svc_mtx); |
2517 | } | |
2518 | break; | |
2519 | default: | |
2520 | autherr = RPCSEC_GSS_CREDPROBLEM; | |
2521 | break; | |
2522 | } | |
2523 | ||
2524 | /* Now build the reply */ | |
2525 | ||
2526 | if (nd->nd_repstat == 0) | |
2527 | nd->nd_repstat = autherr ? (NFSERR_AUTHERR | autherr) : NFSERR_RETVOID; | |
2528 | sz = 7 * NFSX_UNSIGNED + nfsm_rndup(cp->gss_svc_tokenlen); // size of results | |
2529 | error = nfsrv_rephead(nd, slp, &nmrep, sz); | |
2530 | *mrepp = nmrep.nmc_mhead; | |
2531 | if (error || autherr) | |
2532 | goto nfsmout; | |
2533 | ||
2534 | if (cp->gss_svc_proc == RPCSEC_GSS_INIT || | |
2535 | cp->gss_svc_proc == RPCSEC_GSS_CONTINUE_INIT) { | |
2536 | nfsm_chain_add_32(error, &nmrep, sizeof(cp->gss_svc_handle)); | |
2537 | nfsm_chain_add_32(error, &nmrep, cp->gss_svc_handle); | |
2538 | ||
2539 | nfsm_chain_add_32(error, &nmrep, cp->gss_svc_major); | |
2540 | nfsm_chain_add_32(error, &nmrep, cp->gss_svc_minor); | |
2541 | nfsm_chain_add_32(error, &nmrep, cp->gss_svc_seqwin); | |
2542 | ||
2543 | nfsm_chain_add_32(error, &nmrep, cp->gss_svc_tokenlen); | |
2d21ac55 | 2544 | if (cp->gss_svc_token != NULL) { |
b0d623f7 | 2545 | nfsm_chain_add_opaque(error, &nmrep, cp->gss_svc_token, cp->gss_svc_tokenlen); |
2d21ac55 A |
2546 | FREE(cp->gss_svc_token, M_TEMP); |
2547 | cp->gss_svc_token = NULL; | |
2548 | } | |
2549 | } | |
2550 | ||
2551 | nfsmout: | |
2552 | if (autherr != 0) { | |
b0d623f7 | 2553 | nd->nd_gss_context = NULL; |
2d21ac55 A |
2554 | LIST_REMOVE(cp, gss_svc_entries); |
2555 | if (cp->gss_svc_seqbits != NULL) | |
2556 | FREE(cp->gss_svc_seqbits, M_TEMP); | |
2557 | if (cp->gss_svc_token != NULL) | |
2558 | FREE(cp->gss_svc_token, M_TEMP); | |
2559 | lck_mtx_destroy(cp->gss_svc_mtx, nfs_gss_svc_grp); | |
2560 | FREE(cp, M_TEMP); | |
2561 | } | |
2562 | ||
2563 | nfsm_chain_build_done(error, &nmrep); | |
2564 | if (error) { | |
2565 | nfsm_chain_cleanup(&nmrep); | |
2566 | *mrepp = NULL; | |
2567 | } | |
2568 | return (error); | |
2569 | } | |
2570 | ||
2571 | /* | |
2572 | * This is almost a mirror-image of the client side upcall. | |
2573 | * It passes and receives a token, but invokes gss_accept_sec_context. | |
2574 | * If it's the final call of the context setup, then gssd also returns | |
2575 | * the session key and the user's UID. | |
2576 | */ | |
2577 | static int | |
2578 | nfs_gss_svc_gssd_upcall(struct nfs_gss_svc_ctx *cp) | |
2579 | { | |
2580 | kern_return_t kr; | |
2581 | mach_port_t mp; | |
2582 | int retry_cnt = 0; | |
6d2010ae | 2583 | gssd_byte_buffer okey = NULL; |
2d21ac55 | 2584 | uint32_t skeylen = 0; |
b0d623f7 | 2585 | uint32_t ret_flags; |
2d21ac55 | 2586 | vm_map_copy_t itoken = NULL; |
6d2010ae | 2587 | gssd_byte_buffer otoken = NULL; |
b0d623f7 | 2588 | mach_msg_type_number_t otokenlen; |
2d21ac55 A |
2589 | int error = 0; |
2590 | char svcname[] = "nfs"; | |
2591 | ||
316670eb | 2592 | kr = host_get_gssd_port(host_priv_self(), &mp); |
2d21ac55 | 2593 | if (kr != KERN_SUCCESS) { |
b0d623f7 A |
2594 | printf("nfs_gss_svc_gssd_upcall: can't get gssd port, status %x (%d)\n", kr, kr); |
2595 | goto out; | |
2d21ac55 A |
2596 | } |
2597 | if (!IPC_PORT_VALID(mp)) { | |
2598 | printf("nfs_gss_svc_gssd_upcall: gssd port not valid\n"); | |
b0d623f7 | 2599 | goto out; |
2d21ac55 A |
2600 | } |
2601 | ||
2602 | if (cp->gss_svc_tokenlen > 0) | |
2603 | nfs_gss_mach_alloc_buffer(cp->gss_svc_token, cp->gss_svc_tokenlen, &itoken); | |
2604 | ||
2605 | retry: | |
2606 | kr = mach_gss_accept_sec_context( | |
2607 | mp, | |
6d2010ae | 2608 | (gssd_byte_buffer) itoken, (mach_msg_type_number_t) cp->gss_svc_tokenlen, |
2d21ac55 A |
2609 | svcname, |
2610 | 0, | |
2d21ac55 A |
2611 | &cp->gss_svc_context, |
2612 | &cp->gss_svc_cred_handle, | |
b0d623f7 | 2613 | &ret_flags, |
2d21ac55 A |
2614 | &cp->gss_svc_uid, |
2615 | cp->gss_svc_gids, | |
2616 | &cp->gss_svc_ngroups, | |
2617 | &okey, (mach_msg_type_number_t *) &skeylen, | |
b0d623f7 | 2618 | &otoken, &otokenlen, |
2d21ac55 A |
2619 | &cp->gss_svc_major, |
2620 | &cp->gss_svc_minor); | |
2621 | ||
2622 | if (kr != KERN_SUCCESS) { | |
b0d623f7 | 2623 | printf("nfs_gss_svc_gssd_upcall failed: %x (%d)\n", kr, kr); |
2d21ac55 | 2624 | if (kr == MIG_SERVER_DIED && cp->gss_svc_context == 0 && |
b0d623f7 A |
2625 | retry_cnt++ < NFS_GSS_MACH_MAX_RETRIES) { |
2626 | if (cp->gss_svc_tokenlen > 0) | |
2627 | nfs_gss_mach_alloc_buffer(cp->gss_svc_token, cp->gss_svc_tokenlen, &itoken); | |
2d21ac55 | 2628 | goto retry; |
b0d623f7 | 2629 | } |
316670eb | 2630 | host_release_special_port(mp); |
b0d623f7 | 2631 | goto out; |
2d21ac55 A |
2632 | } |
2633 | ||
316670eb | 2634 | host_release_special_port(mp); |
b0d623f7 | 2635 | |
2d21ac55 | 2636 | if (skeylen > 0) { |
b0d623f7 | 2637 | if (skeylen != SKEYLEN && skeylen != SKEYLEN3) { |
2d21ac55 | 2638 | printf("nfs_gss_svc_gssd_upcall: bad key length (%d)\n", skeylen); |
b0d623f7 A |
2639 | vm_map_copy_discard((vm_map_copy_t) okey); |
2640 | vm_map_copy_discard((vm_map_copy_t) otoken); | |
2641 | goto out; | |
2d21ac55 | 2642 | } |
b0d623f7 A |
2643 | error = nfs_gss_mach_vmcopyout((vm_map_copy_t) okey, skeylen, cp->gss_svc_kinfo.skey); |
2644 | if (error) { | |
2645 | vm_map_copy_discard((vm_map_copy_t) otoken); | |
2646 | goto out; | |
2647 | } | |
2648 | error = gss_key_init(&cp->gss_svc_kinfo, skeylen); | |
2d21ac55 | 2649 | if (error) |
b0d623f7 A |
2650 | goto out; |
2651 | ||
2d21ac55 A |
2652 | } |
2653 | ||
b0d623f7 A |
2654 | /* Free context token used as input */ |
2655 | if (cp->gss_svc_token) | |
2656 | FREE(cp->gss_svc_token, M_TEMP); | |
2657 | cp->gss_svc_token = NULL; | |
2658 | cp->gss_svc_tokenlen = 0; | |
2659 | ||
2660 | if (otokenlen > 0) { | |
2661 | /* Set context token to gss output token */ | |
2662 | MALLOC(cp->gss_svc_token, u_char *, otokenlen, M_TEMP, M_WAITOK); | |
2663 | if (cp->gss_svc_token == NULL) { | |
2664 | printf("nfs_gss_svc_gssd_upcall: could not allocate %d bytes\n", otokenlen); | |
2665 | vm_map_copy_discard((vm_map_copy_t) otoken); | |
2d21ac55 | 2666 | return (ENOMEM); |
b0d623f7 A |
2667 | } |
2668 | error = nfs_gss_mach_vmcopyout((vm_map_copy_t) otoken, otokenlen, cp->gss_svc_token); | |
2669 | if (error) { | |
2670 | FREE(cp->gss_svc_token, M_TEMP); | |
2671 | cp->gss_svc_token = NULL; | |
2672 | return (NFSERR_EAUTH); | |
2673 | } | |
2674 | cp->gss_svc_tokenlen = otokenlen; | |
2d21ac55 A |
2675 | } |
2676 | ||
b0d623f7 A |
2677 | return (0); |
2678 | ||
2679 | out: | |
2680 | FREE(cp->gss_svc_token, M_TEMP); | |
2681 | cp->gss_svc_tokenlen = 0; | |
2682 | cp->gss_svc_token = NULL; | |
2683 | ||
2684 | return (NFSERR_EAUTH); | |
2d21ac55 A |
2685 | } |
2686 | ||
2687 | /* | |
2688 | * Validate the sequence number in the credential as described | |
2689 | * in RFC 2203 Section 5.3.3.1 | |
2690 | * | |
2691 | * Here the window of valid sequence numbers is represented by | |
2692 | * a bitmap. As each sequence number is received, its bit is | |
2693 | * set in the bitmap. An invalid sequence number lies below | |
2694 | * the lower bound of the window, or is within the window but | |
2695 | * has its bit already set. | |
2696 | */ | |
2697 | static int | |
2698 | nfs_gss_svc_seqnum_valid(struct nfs_gss_svc_ctx *cp, uint32_t seq) | |
2699 | { | |
2700 | uint32_t *bits = cp->gss_svc_seqbits; | |
2701 | uint32_t win = cp->gss_svc_seqwin; | |
2702 | uint32_t i; | |
2703 | ||
2704 | lck_mtx_lock(cp->gss_svc_mtx); | |
2705 | ||
2706 | /* | |
2707 | * If greater than the window upper bound, | |
2708 | * move the window up, and set the bit. | |
2709 | */ | |
2710 | if (seq > cp->gss_svc_seqmax) { | |
2711 | if (seq - cp->gss_svc_seqmax > win) | |
2712 | bzero(bits, nfsm_rndup((win + 7) / 8)); | |
2713 | else | |
2714 | for (i = cp->gss_svc_seqmax + 1; i < seq; i++) | |
2715 | win_resetbit(bits, i % win); | |
2716 | win_setbit(bits, seq % win); | |
2717 | cp->gss_svc_seqmax = seq; | |
2718 | lck_mtx_unlock(cp->gss_svc_mtx); | |
2719 | return (1); | |
2720 | } | |
2721 | ||
2722 | /* | |
2723 | * Invalid if below the lower bound of the window | |
2724 | */ | |
2725 | if (seq <= cp->gss_svc_seqmax - win) { | |
2726 | lck_mtx_unlock(cp->gss_svc_mtx); | |
2727 | return (0); | |
2728 | } | |
2729 | ||
2730 | /* | |
2731 | * In the window, invalid if the bit is already set | |
2732 | */ | |
2733 | if (win_getbit(bits, seq % win)) { | |
2734 | lck_mtx_unlock(cp->gss_svc_mtx); | |
2735 | return (0); | |
2736 | } | |
2737 | win_setbit(bits, seq % win); | |
2738 | lck_mtx_unlock(cp->gss_svc_mtx); | |
2739 | return (1); | |
2740 | } | |
2741 | ||
6d2010ae A |
2742 | /* |
2743 | * Drop a reference to a context | |
2744 | * | |
2745 | * Note that it's OK for the context to exist | |
2746 | * with a refcount of zero. The refcount isn't | |
2747 | * checked until we're about to reap an expired one. | |
2748 | */ | |
2749 | void | |
2750 | nfs_gss_svc_ctx_deref(struct nfs_gss_svc_ctx *cp) | |
2751 | { | |
2752 | lck_mtx_lock(cp->gss_svc_mtx); | |
2753 | if (cp->gss_svc_refcnt > 0) | |
2754 | cp->gss_svc_refcnt--; | |
2755 | else | |
2756 | printf("nfs_gss_ctx_deref: zero refcount\n"); | |
2757 | lck_mtx_unlock(cp->gss_svc_mtx); | |
2758 | } | |
2759 | ||
2d21ac55 A |
2760 | /* |
2761 | * Called at NFS server shutdown - destroy all contexts | |
2762 | */ | |
2763 | void | |
2764 | nfs_gss_svc_cleanup(void) | |
2765 | { | |
2766 | struct nfs_gss_svc_ctx_hashhead *head; | |
2767 | struct nfs_gss_svc_ctx *cp, *ncp; | |
2768 | int i; | |
2769 | ||
2770 | lck_mtx_lock(nfs_gss_svc_ctx_mutex); | |
2771 | ||
2772 | /* | |
2773 | * Run through all the buckets | |
2774 | */ | |
2775 | for (i = 0; i < SVC_CTX_HASHSZ; i++) { | |
2776 | /* | |
2777 | * Remove and free all entries in the bucket | |
2778 | */ | |
2779 | head = &nfs_gss_svc_ctx_hashtbl[i]; | |
2780 | LIST_FOREACH_SAFE(cp, head, gss_svc_entries, ncp) { | |
2781 | LIST_REMOVE(cp, gss_svc_entries); | |
2782 | if (cp->gss_svc_seqbits) | |
2783 | FREE(cp->gss_svc_seqbits, M_TEMP); | |
2784 | lck_mtx_destroy(cp->gss_svc_mtx, nfs_gss_svc_grp); | |
2785 | FREE(cp, M_TEMP); | |
2786 | } | |
2787 | } | |
2788 | ||
2789 | lck_mtx_unlock(nfs_gss_svc_ctx_mutex); | |
2790 | } | |
2791 | ||
2792 | #endif /* NFSSERVER */ | |
2793 | ||
2794 | ||
2795 | /************* | |
2796 | * The following functions are used by both client and server. | |
2797 | */ | |
2798 | ||
2799 | /* | |
316670eb A |
2800 | * Release a host special port that was obtained by host_get_special_port |
2801 | * or one of its macros (host_get_gssd_port in this case). | |
2d21ac55 A |
2802 | * This really should be in a public kpi. |
2803 | */ | |
2804 | ||
2805 | /* This should be in a public header if this routine is not */ | |
2806 | extern void ipc_port_release_send(ipc_port_t); | |
2807 | extern ipc_port_t ipc_port_copy_send(ipc_port_t); | |
2808 | ||
2809 | static void | |
316670eb | 2810 | host_release_special_port(mach_port_t mp) |
2d21ac55 | 2811 | { |
6d2010ae A |
2812 | if (IPC_PORT_VALID(mp)) |
2813 | ipc_port_release_send(mp); | |
2d21ac55 A |
2814 | } |
2815 | ||
2816 | static mach_port_t | |
316670eb | 2817 | host_copy_special_port(mach_port_t mp) |
2d21ac55 | 2818 | { |
316670eb | 2819 | return (ipc_port_copy_send(mp)); |
2d21ac55 A |
2820 | } |
2821 | ||
2822 | /* | |
2823 | * The token that is sent and received in the gssd upcall | |
2824 | * has unbounded variable length. Mach RPC does not pass | |
2825 | * the token in-line. Instead it uses page mapping to handle | |
2826 | * these parameters. This function allocates a VM buffer | |
2827 | * to hold the token for an upcall and copies the token | |
2828 | * (received from the client) into it. The VM buffer is | |
2829 | * marked with a src_destroy flag so that the upcall will | |
2830 | * automatically de-allocate the buffer when the upcall is | |
2831 | * complete. | |
2832 | */ | |
2833 | static void | |
2834 | nfs_gss_mach_alloc_buffer(u_char *buf, uint32_t buflen, vm_map_copy_t *addr) | |
2835 | { | |
2836 | kern_return_t kr; | |
2837 | vm_offset_t kmem_buf; | |
2838 | vm_size_t tbuflen; | |
2839 | ||
2840 | *addr = NULL; | |
2841 | if (buf == NULL || buflen == 0) | |
2842 | return; | |
2843 | ||
2844 | tbuflen = round_page(buflen); | |
2845 | kr = vm_allocate(ipc_kernel_map, &kmem_buf, tbuflen, VM_FLAGS_ANYWHERE); | |
2846 | if (kr != 0) { | |
2847 | printf("nfs_gss_mach_alloc_buffer: vm_allocate failed\n"); | |
2848 | return; | |
2849 | } | |
2850 | ||
2851 | kr = vm_map_wire(ipc_kernel_map, vm_map_trunc_page(kmem_buf), | |
2852 | vm_map_round_page(kmem_buf + tbuflen), | |
2853 | VM_PROT_READ|VM_PROT_WRITE, FALSE); | |
b0d623f7 A |
2854 | if (kr != 0) { |
2855 | printf("nfs_gss_mach_alloc_buffer: vm_map_wire failed\n"); | |
2856 | return; | |
2857 | } | |
2858 | ||
2d21ac55 | 2859 | bcopy(buf, (void *) kmem_buf, buflen); |
b0d623f7 A |
2860 | // Shouldn't need to bzero below since vm_allocate returns zeroed pages |
2861 | // bzero(kmem_buf + buflen, tbuflen - buflen); | |
2862 | ||
2d21ac55 A |
2863 | kr = vm_map_unwire(ipc_kernel_map, vm_map_trunc_page(kmem_buf), |
2864 | vm_map_round_page(kmem_buf + tbuflen), FALSE); | |
2865 | if (kr != 0) { | |
2866 | printf("nfs_gss_mach_alloc_buffer: vm_map_unwire failed\n"); | |
2867 | return; | |
2868 | } | |
2869 | ||
2870 | kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t) kmem_buf, | |
2871 | (vm_map_size_t) buflen, TRUE, addr); | |
2872 | if (kr != 0) { | |
2873 | printf("nfs_gss_mach_alloc_buffer: vm_map_copyin failed\n"); | |
2874 | return; | |
2875 | } | |
2d21ac55 A |
2876 | } |
2877 | ||
2878 | /* | |
2879 | * Here we handle a token received from the gssd via an upcall. | |
2880 | * The received token resides in an allocate VM buffer. | |
2881 | * We copy the token out of this buffer to a chunk of malloc'ed | |
2882 | * memory of the right size, then de-allocate the VM buffer. | |
2883 | */ | |
2884 | static int | |
2885 | nfs_gss_mach_vmcopyout(vm_map_copy_t in, uint32_t len, u_char *out) | |
2886 | { | |
2887 | vm_map_offset_t map_data; | |
2888 | vm_offset_t data; | |
2889 | int error; | |
2890 | ||
2891 | error = vm_map_copyout(ipc_kernel_map, &map_data, in); | |
2892 | if (error) | |
2893 | return (error); | |
2894 | ||
2895 | data = CAST_DOWN(vm_offset_t, map_data); | |
2896 | bcopy((void *) data, out, len); | |
2897 | vm_deallocate(ipc_kernel_map, data, len); | |
2898 | ||
2899 | return (0); | |
2900 | } | |
2901 | ||
2902 | /* | |
2903 | * Encode an ASN.1 token to be wrapped in an RPCSEC_GSS verifier. | |
2904 | * Returns the size of the token, since it contains a variable | |
2905 | * length DER encoded size field. | |
2906 | */ | |
2907 | static int | |
2908 | nfs_gss_token_put( | |
b0d623f7 | 2909 | gss_key_info *ki, |
2d21ac55 A |
2910 | u_char *alg, |
2911 | u_char *p, | |
2912 | int initiator, | |
2913 | int datalen, | |
2914 | u_char *cksum) | |
2915 | { | |
2916 | static uint32_t seqnum = 0; | |
2917 | u_char *psave = p; | |
2918 | u_char plain[8]; | |
2919 | int toklen, i; | |
2920 | ||
2921 | /* | |
2922 | * Fill in the token header: 2 octets. | |
2923 | * This is 0x06 - an ASN.1 tag for APPLICATION, 0, SEQUENCE | |
2924 | * followed by the length of the token: 35 + 0 octets for a | |
2925 | * MIC token, or 35 + encrypted octets for a wrap token; | |
2926 | */ | |
2927 | *p++ = 0x060; | |
b0d623f7 | 2928 | toklen = KRB5_SZ_MECH + KRB5_SZ_ALG + KRB5_SZ_SEQ + HASHLEN(ki); |
2d21ac55 A |
2929 | nfs_gss_der_length_put(&p, toklen + datalen); |
2930 | ||
2931 | /* | |
2932 | * Fill in the DER encoded mech OID for Kerberos v5. | |
2933 | * This represents the Kerberos OID 1.2.840.113554.1.2.2 | |
2934 | * described in RFC 2623, section 4.2 | |
2935 | */ | |
2936 | bcopy(krb5_mech, p, sizeof(krb5_mech)); | |
2937 | p += sizeof(krb5_mech); | |
2938 | ||
2939 | /* | |
2940 | * Now at the token described in RFC 1964, section 1.2.1 | |
2941 | * Fill in the token ID, integrity algorithm indicator, | |
2942 | * for DES MAC MD5, and four filler octets. | |
2943 | * The alg string encodes the bytes to represent either | |
2944 | * a MIC token or a WRAP token for Kerberos. | |
2945 | */ | |
2946 | bcopy(alg, p, KRB5_SZ_ALG); | |
2947 | p += KRB5_SZ_ALG; | |
2948 | ||
2949 | /* | |
2950 | * Now encode the sequence number according to | |
2951 | * RFC 1964, section 1.2.1.2 which dictates 4 octets | |
2952 | * of sequence number followed by 4 bytes of direction | |
2953 | * indicator: 0x00 for initiator or 0xff for acceptor. | |
2954 | * We DES CBC encrypt the sequence number using the first | |
2955 | * 8 octets of the checksum field as an initialization | |
2956 | * vector. | |
2957 | * Note that this sequence number is not at all related | |
2958 | * to the RPCSEC_GSS protocol sequence number. This | |
2959 | * number is private to the ASN.1 token. The only | |
2960 | * requirement is that it not be repeated in case the | |
2961 | * server has replay detection on, which normally should | |
2962 | * not be the case, since RFC 2203 section 5.2.3 says that | |
2963 | * replay detection and sequence checking must be turned off. | |
2964 | */ | |
2965 | seqnum++; | |
2966 | for (i = 0; i < 4; i++) | |
2967 | plain[i] = (u_char) ((seqnum >> (i * 8)) & 0xff); | |
2968 | for (i = 4; i < 8; i++) | |
2969 | plain[i] = initiator ? 0x00 : 0xff; | |
b0d623f7 A |
2970 | gss_des_crypt(ki, (des_cblock *) plain, (des_cblock *) p, 8, |
2971 | (des_cblock *) cksum, NULL, DES_ENCRYPT, KG_USAGE_SEQ); | |
2d21ac55 A |
2972 | p += 8; |
2973 | ||
2974 | /* | |
b0d623f7 | 2975 | * Finally, append the octets of the |
2d21ac55 A |
2976 | * checksum of the alg + plaintext data. |
2977 | * The plaintext could be an RPC call header, | |
2978 | * the window value, or a sequence number. | |
2979 | */ | |
b0d623f7 A |
2980 | bcopy(cksum, p, HASHLEN(ki)); |
2981 | p += HASHLEN(ki); | |
2d21ac55 A |
2982 | |
2983 | return (p - psave); | |
2984 | } | |
2985 | ||
2986 | /* | |
2987 | * Determine size of ASN.1 DER length | |
2988 | */ | |
2989 | static int | |
2990 | nfs_gss_der_length_size(int len) | |
2991 | { | |
2992 | return | |
2993 | len < (1 << 7) ? 1 : | |
2994 | len < (1 << 8) ? 2 : | |
2995 | len < (1 << 16) ? 3 : | |
2996 | len < (1 << 24) ? 4 : 5; | |
2997 | } | |
2998 | ||
2999 | /* | |
3000 | * Encode an ASN.1 DER length field | |
3001 | */ | |
3002 | static void | |
3003 | nfs_gss_der_length_put(u_char **pp, int len) | |
3004 | { | |
3005 | int sz = nfs_gss_der_length_size(len); | |
3006 | u_char *p = *pp; | |
3007 | ||
3008 | if (sz == 1) { | |
3009 | *p++ = (u_char) len; | |
3010 | } else { | |
3011 | *p++ = (u_char) ((sz-1) | 0x80); | |
3012 | sz -= 1; | |
3013 | while (sz--) | |
3014 | *p++ = (u_char) ((len >> (sz * 8)) & 0xff); | |
3015 | } | |
3016 | ||
3017 | *pp = p; | |
3018 | } | |
3019 | ||
3020 | /* | |
3021 | * Decode an ASN.1 DER length field | |
3022 | */ | |
3023 | static int | |
3024 | nfs_gss_der_length_get(u_char **pp) | |
3025 | { | |
3026 | u_char *p = *pp; | |
3027 | uint32_t flen, len = 0; | |
3028 | ||
3029 | flen = *p & 0x7f; | |
3030 | ||
3031 | if ((*p++ & 0x80) == 0) | |
3032 | len = flen; | |
3033 | else { | |
3034 | if (flen > sizeof(uint32_t)) | |
3035 | return (-1); | |
3036 | while (flen--) | |
3037 | len = (len << 8) + *p++; | |
3038 | } | |
3039 | *pp = p; | |
3040 | return (len); | |
3041 | } | |
3042 | ||
3043 | /* | |
3044 | * Decode an ASN.1 token from an RPCSEC_GSS verifier. | |
3045 | */ | |
3046 | static int | |
3047 | nfs_gss_token_get( | |
b0d623f7 | 3048 | gss_key_info *ki, |
2d21ac55 A |
3049 | u_char *alg, |
3050 | u_char *p, | |
3051 | int initiator, | |
3052 | uint32_t *len, | |
3053 | u_char *cksum) | |
3054 | { | |
3055 | u_char d, plain[8]; | |
3056 | u_char *psave = p; | |
3057 | int seqnum, i; | |
3058 | ||
3059 | /* | |
3060 | * Check that we have a valid token header | |
3061 | */ | |
3062 | if (*p++ != 0x60) | |
3063 | return (AUTH_BADCRED); | |
3064 | (void) nfs_gss_der_length_get(&p); // ignore the size | |
3065 | ||
3066 | /* | |
3067 | * Check that we have the DER encoded Kerberos v5 mech OID | |
3068 | */ | |
3069 | if (bcmp(p, krb5_mech, sizeof(krb5_mech) != 0)) | |
3070 | return (AUTH_BADCRED); | |
3071 | p += sizeof(krb5_mech); | |
3072 | ||
3073 | /* | |
3074 | * Now check the token ID, DES MAC MD5 algorithm | |
3075 | * indicator, and filler octets. | |
3076 | */ | |
3077 | if (bcmp(p, alg, KRB5_SZ_ALG) != 0) | |
3078 | return (AUTH_BADCRED); | |
3079 | p += KRB5_SZ_ALG; | |
3080 | ||
3081 | /* | |
3082 | * Now decrypt the sequence number. | |
b0d623f7 | 3083 | * Note that the gss decryption uses the first 8 octets |
2d21ac55 A |
3084 | * of the checksum field as an initialization vector (p + 8). |
3085 | * Per RFC 2203 section 5.2.2 we don't check the sequence number | |
3086 | * in the ASN.1 token because the RPCSEC_GSS protocol has its | |
3087 | * own sequence number described in section 5.3.3.1 | |
3088 | */ | |
3089 | seqnum = 0; | |
b0d623f7 A |
3090 | gss_des_crypt(ki, (des_cblock *)p, (des_cblock *) plain, 8, |
3091 | (des_cblock *) (p + 8), NULL, DES_DECRYPT, KG_USAGE_SEQ); | |
2d21ac55 A |
3092 | p += 8; |
3093 | for (i = 0; i < 4; i++) | |
3094 | seqnum |= plain[i] << (i * 8); | |
3095 | ||
3096 | /* | |
3097 | * Make sure the direction | |
3098 | * indicator octets are correct. | |
3099 | */ | |
3100 | d = initiator ? 0x00 : 0xff; | |
3101 | for (i = 4; i < 8; i++) | |
3102 | if (plain[i] != d) | |
3103 | return (AUTH_BADCRED); | |
3104 | ||
3105 | /* | |
3106 | * Finally, get the checksum | |
3107 | */ | |
b0d623f7 A |
3108 | bcopy(p, cksum, HASHLEN(ki)); |
3109 | p += HASHLEN(ki); | |
2d21ac55 A |
3110 | |
3111 | if (len != NULL) | |
3112 | *len = p - psave; | |
3113 | ||
3114 | return (0); | |
3115 | } | |
3116 | ||
3117 | /* | |
3118 | * Return the number of bytes in an mbuf chain. | |
3119 | */ | |
3120 | static int | |
3121 | nfs_gss_mchain_length(mbuf_t mhead) | |
3122 | { | |
3123 | mbuf_t mb; | |
3124 | int len = 0; | |
3125 | ||
3126 | for (mb = mhead; mb; mb = mbuf_next(mb)) | |
3127 | len += mbuf_len(mb); | |
3128 | ||
3129 | return (len); | |
3130 | } | |
3131 | ||
3132 | /* | |
3133 | * Append an args or results mbuf chain to the header chain | |
3134 | */ | |
3135 | static int | |
3136 | nfs_gss_append_chain(struct nfsm_chain *nmc, mbuf_t mc) | |
3137 | { | |
3138 | int error = 0; | |
3139 | mbuf_t mb, tail; | |
3140 | ||
3141 | /* Connect the mbuf chains */ | |
3142 | error = mbuf_setnext(nmc->nmc_mcur, mc); | |
3143 | if (error) | |
3144 | return (error); | |
3145 | ||
3146 | /* Find the last mbuf in the chain */ | |
3147 | tail = NULL; | |
3148 | for (mb = mc; mb; mb = mbuf_next(mb)) | |
3149 | tail = mb; | |
3150 | ||
3151 | nmc->nmc_mcur = tail; | |
3152 | nmc->nmc_ptr = (caddr_t) mbuf_data(tail) + mbuf_len(tail); | |
3153 | nmc->nmc_left = mbuf_trailingspace(tail); | |
3154 | ||
3155 | return (0); | |
3156 | } | |
3157 | ||
3158 | /* | |
3159 | * Convert an mbuf chain to an NFS mbuf chain | |
3160 | */ | |
3161 | static void | |
3162 | nfs_gss_nfsm_chain(struct nfsm_chain *nmc, mbuf_t mc) | |
3163 | { | |
3164 | mbuf_t mb, tail; | |
3165 | ||
3166 | /* Find the last mbuf in the chain */ | |
3167 | tail = NULL; | |
3168 | for (mb = mc; mb; mb = mbuf_next(mb)) | |
3169 | tail = mb; | |
3170 | ||
3171 | nmc->nmc_mhead = mc; | |
3172 | nmc->nmc_mcur = tail; | |
3173 | nmc->nmc_ptr = (caddr_t) mbuf_data(tail) + mbuf_len(tail); | |
3174 | nmc->nmc_left = mbuf_trailingspace(tail); | |
3175 | nmc->nmc_flags = 0; | |
3176 | } | |
3177 | ||
3178 | ||
3179 | /* | |
3180 | * Compute a checksum over an mbuf chain. | |
3181 | * Start building an MD5 digest at the given offset and keep | |
3182 | * going until the end of data in the current mbuf is reached. | |
3183 | * Then convert the 16 byte MD5 digest to an 8 byte DES CBC | |
3184 | * checksum. | |
3185 | */ | |
3186 | static void | |
3187 | nfs_gss_cksum_mchain( | |
b0d623f7 | 3188 | gss_key_info *ki, |
2d21ac55 A |
3189 | mbuf_t mhead, |
3190 | u_char *alg, | |
3191 | int offset, | |
3192 | int len, | |
b0d623f7 | 3193 | u_char *digest) |
2d21ac55 A |
3194 | { |
3195 | mbuf_t mb; | |
3196 | u_char *ptr; | |
3197 | int left, bytes; | |
b0d623f7 | 3198 | GSS_DIGEST_CTX context; |
2d21ac55 | 3199 | |
b0d623f7 | 3200 | gss_digest_Init(&context, ki); |
2d21ac55 A |
3201 | |
3202 | /* | |
3203 | * Logically prepend the first 8 bytes of the algorithm | |
3204 | * field as required by RFC 1964, section 1.2.1.1 | |
3205 | */ | |
b0d623f7 | 3206 | gss_digest_Update(&context, alg, KRB5_SZ_ALG); |
2d21ac55 A |
3207 | |
3208 | /* | |
3209 | * Move down the mbuf chain until we reach the given | |
3210 | * byte offset, then start MD5 on the mbuf data until | |
3211 | * we've done len bytes. | |
3212 | */ | |
3213 | ||
3214 | for (mb = mhead; mb && len > 0; mb = mbuf_next(mb)) { | |
3215 | ptr = mbuf_data(mb); | |
3216 | left = mbuf_len(mb); | |
3217 | if (offset >= left) { | |
3218 | /* Offset not yet reached */ | |
3219 | offset -= left; | |
3220 | continue; | |
3221 | } | |
3222 | /* At or beyond offset - checksum data */ | |
3223 | ptr += offset; | |
3224 | left -= offset; | |
3225 | offset = 0; | |
3226 | ||
3227 | bytes = left < len ? left : len; | |
3228 | if (bytes > 0) | |
b0d623f7 | 3229 | gss_digest_Update(&context, ptr, bytes); |
2d21ac55 A |
3230 | len -= bytes; |
3231 | } | |
3232 | ||
b0d623f7 | 3233 | gss_digest_Final(&context, digest); |
2d21ac55 A |
3234 | } |
3235 | ||
3236 | /* | |
3237 | * Compute a checksum over an NFS mbuf chain. | |
3238 | * Start building an MD5 digest at the given offset and keep | |
3239 | * going until the end of data in the current mbuf is reached. | |
3240 | * Then convert the 16 byte MD5 digest to an 8 byte DES CBC | |
3241 | * checksum. | |
3242 | */ | |
3243 | static void | |
3244 | nfs_gss_cksum_chain( | |
b0d623f7 | 3245 | gss_key_info *ki, |
2d21ac55 A |
3246 | struct nfsm_chain *nmc, |
3247 | u_char *alg, | |
3248 | int offset, | |
3249 | int len, | |
3250 | u_char *cksum) | |
3251 | { | |
3252 | /* | |
3253 | * If the length parameter is zero, then we need | |
3254 | * to use the length from the offset to the current | |
3255 | * encode/decode offset. | |
3256 | */ | |
3257 | if (len == 0) | |
3258 | len = nfsm_chain_offset(nmc) - offset; | |
3259 | ||
b0d623f7 | 3260 | return (nfs_gss_cksum_mchain(ki, nmc->nmc_mhead, alg, offset, len, cksum)); |
2d21ac55 A |
3261 | } |
3262 | ||
3263 | /* | |
3264 | * Compute a checksum of the sequence number (or sequence window) | |
3265 | * of an RPCSEC_GSS reply. | |
3266 | */ | |
3267 | static void | |
b0d623f7 | 3268 | nfs_gss_cksum_rep(gss_key_info *ki, uint32_t seqnum, u_char *cksum) |
2d21ac55 | 3269 | { |
b0d623f7 | 3270 | GSS_DIGEST_CTX context; |
2d21ac55 A |
3271 | uint32_t val = htonl(seqnum); |
3272 | ||
b0d623f7 | 3273 | gss_digest_Init(&context, ki); |
2d21ac55 A |
3274 | |
3275 | /* | |
3276 | * Logically prepend the first 8 bytes of the MIC | |
3277 | * token as required by RFC 1964, section 1.2.1.1 | |
3278 | */ | |
b0d623f7 | 3279 | gss_digest_Update(&context, ALG_MIC(ki), KRB5_SZ_ALG); |
2d21ac55 A |
3280 | |
3281 | /* | |
3282 | * Compute the digest of the seqnum in network order | |
3283 | */ | |
b0d623f7 A |
3284 | gss_digest_Update(&context, &val, 4); |
3285 | gss_digest_Final(&context, cksum); | |
2d21ac55 A |
3286 | } |
3287 | ||
3288 | /* | |
3289 | * Encrypt or decrypt data in an mbuf chain with des-cbc. | |
3290 | */ | |
3291 | static void | |
3292 | nfs_gss_encrypt_mchain( | |
b0d623f7 | 3293 | gss_key_info *ki, |
2d21ac55 A |
3294 | mbuf_t mhead, |
3295 | int offset, | |
3296 | int len, | |
3297 | int encrypt) | |
3298 | { | |
2d21ac55 A |
3299 | mbuf_t mb, mbn; |
3300 | u_char *ptr, *nptr; | |
3301 | u_char tmp[8], ivec[8]; | |
b0d623f7 | 3302 | int left, left8, remain; |
2d21ac55 | 3303 | |
2d21ac55 | 3304 | |
b0d623f7 | 3305 | bzero(ivec, 8); |
2d21ac55 A |
3306 | |
3307 | /* | |
3308 | * Move down the mbuf chain until we reach the given | |
3309 | * byte offset, then start encrypting the mbuf data until | |
3310 | * we've done len bytes. | |
3311 | */ | |
3312 | ||
3313 | for (mb = mhead; mb && len > 0; mb = mbn) { | |
3314 | mbn = mbuf_next(mb); | |
3315 | ptr = mbuf_data(mb); | |
3316 | left = mbuf_len(mb); | |
3317 | if (offset >= left) { | |
3318 | /* Offset not yet reached */ | |
3319 | offset -= left; | |
3320 | continue; | |
3321 | } | |
3322 | /* At or beyond offset - encrypt data */ | |
3323 | ptr += offset; | |
3324 | left -= offset; | |
3325 | offset = 0; | |
3326 | ||
3327 | /* | |
b0d623f7 | 3328 | * DES or DES3 CBC has to encrypt 8 bytes at a time. |
2d21ac55 A |
3329 | * If the number of bytes to be encrypted in this |
3330 | * mbuf isn't some multiple of 8 bytes, encrypt all | |
3331 | * the 8 byte blocks, then combine the remaining | |
3332 | * bytes with enough from the next mbuf to make up | |
3333 | * an 8 byte block and encrypt that block separately, | |
3334 | * i.e. that block is split across two mbufs. | |
3335 | */ | |
3336 | remain = left % 8; | |
3337 | left8 = left - remain; | |
3338 | left = left8 < len ? left8 : len; | |
3339 | if (left > 0) { | |
b0d623f7 A |
3340 | gss_des_crypt(ki, (des_cblock *) ptr, (des_cblock *) ptr, |
3341 | left, &ivec, &ivec, encrypt, KG_USAGE_SEAL); | |
2d21ac55 A |
3342 | len -= left; |
3343 | } | |
3344 | ||
3345 | if (mbn && remain > 0) { | |
3346 | nptr = mbuf_data(mbn); | |
3347 | offset = 8 - remain; | |
3348 | bcopy(ptr + left, tmp, remain); // grab from this mbuf | |
3349 | bcopy(nptr, tmp + remain, offset); // grab from next mbuf | |
b0d623f7 A |
3350 | gss_des_crypt(ki, (des_cblock *) tmp, (des_cblock *) tmp, 8, |
3351 | &ivec, &ivec, encrypt, KG_USAGE_SEAL); | |
2d21ac55 A |
3352 | bcopy(tmp, ptr + left, remain); // return to this mbuf |
3353 | bcopy(tmp + remain, nptr, offset); // return to next mbuf | |
3354 | len -= 8; | |
3355 | } | |
3356 | } | |
3357 | } | |
3358 | ||
3359 | /* | |
3360 | * Encrypt or decrypt data in an NFS mbuf chain with des-cbc. | |
3361 | */ | |
3362 | static void | |
3363 | nfs_gss_encrypt_chain( | |
b0d623f7 | 3364 | gss_key_info *ki, |
2d21ac55 A |
3365 | struct nfsm_chain *nmc, |
3366 | int offset, | |
3367 | int len, | |
3368 | int encrypt) | |
3369 | { | |
3370 | /* | |
3371 | * If the length parameter is zero, then we need | |
3372 | * to use the length from the offset to the current | |
3373 | * encode/decode offset. | |
3374 | */ | |
3375 | if (len == 0) | |
3376 | len = nfsm_chain_offset(nmc) - offset; | |
3377 | ||
b0d623f7 | 3378 | return (nfs_gss_encrypt_mchain(ki, nmc->nmc_mhead, offset, len, encrypt)); |
2d21ac55 A |
3379 | } |
3380 | ||
3381 | /* | |
b0d623f7 | 3382 | * The routines that follow provide abstractions for doing digests and crypto. |
2d21ac55 | 3383 | */ |
b0d623f7 A |
3384 | |
3385 | static void | |
3386 | gss_digest_Init(GSS_DIGEST_CTX *ctx, gss_key_info *ki) | |
2d21ac55 | 3387 | { |
b0d623f7 A |
3388 | ctx->type = ki->type; |
3389 | switch (ki->type) { | |
3390 | case NFS_GSS_1DES: MD5_DESCBC_Init(&ctx->m_ctx, &ki->ks_u.des.gss_sched); | |
3391 | break; | |
3392 | case NFS_GSS_3DES: HMAC_SHA1_DES3KD_Init(&ctx->h_ctx, ki->ks_u.des3.ckey, 0); | |
3393 | break; | |
3394 | default: | |
3395 | printf("gss_digest_Init: Unknown key info type %d\n", ki->type); | |
3396 | } | |
2d21ac55 A |
3397 | } |
3398 | ||
2d21ac55 | 3399 | static void |
b0d623f7 | 3400 | gss_digest_Update(GSS_DIGEST_CTX *ctx, void *data, size_t len) |
2d21ac55 | 3401 | { |
b0d623f7 A |
3402 | switch (ctx->type) { |
3403 | case NFS_GSS_1DES: MD5_DESCBC_Update(&ctx->m_ctx, data, len); | |
3404 | break; | |
3405 | case NFS_GSS_3DES: HMAC_SHA1_DES3KD_Update(&ctx->h_ctx, data, len); | |
3406 | break; | |
3407 | } | |
3408 | } | |
3409 | ||
3410 | static void | |
3411 | gss_digest_Final(GSS_DIGEST_CTX *ctx, void *digest) | |
3412 | { | |
3413 | switch (ctx->type) { | |
3414 | case NFS_GSS_1DES: MD5_DESCBC_Final(digest, &ctx->m_ctx); | |
3415 | break; | |
3416 | case NFS_GSS_3DES: HMAC_SHA1_DES3KD_Final(digest, &ctx->h_ctx); | |
3417 | break; | |
3418 | } | |
3419 | } | |
3420 | ||
3421 | static void | |
3422 | gss_des_crypt(gss_key_info *ki, des_cblock *in, des_cblock *out, | |
3423 | int32_t len, des_cblock *iv, des_cblock *retiv, int encrypt, int usage) | |
3424 | { | |
3425 | switch (ki->type) { | |
3426 | case NFS_GSS_1DES: | |
3427 | { | |
316670eb | 3428 | des_cbc_key_schedule *sched = ((usage == KG_USAGE_SEAL) ? |
b0d623f7 A |
3429 | &ki->ks_u.des.gss_sched_Ke : |
3430 | &ki->ks_u.des.gss_sched); | |
316670eb | 3431 | des_cbc_encrypt(in, out, len, sched, iv, retiv, encrypt); |
b0d623f7 A |
3432 | } |
3433 | break; | |
3434 | case NFS_GSS_3DES: | |
3435 | ||
316670eb | 3436 | des3_cbc_encrypt(in, out, len, &ki->ks_u.des3.gss_sched, iv, retiv, encrypt); |
b0d623f7 A |
3437 | break; |
3438 | } | |
3439 | } | |
3440 | ||
3441 | static int | |
3442 | gss_key_init(gss_key_info *ki, uint32_t skeylen) | |
3443 | { | |
3444 | size_t i; | |
3445 | int rc; | |
3446 | des_cblock k[3]; | |
3447 | ||
3448 | ki->keybytes = skeylen; | |
3449 | switch (skeylen) { | |
3450 | case sizeof(des_cblock): | |
3451 | ki->type = NFS_GSS_1DES; | |
3452 | ki->hash_len = MD5_DESCBC_DIGEST_LENGTH; | |
3453 | ki->ks_u.des.key = (des_cblock *)ki->skey; | |
316670eb | 3454 | rc = des_cbc_key_sched(ki->ks_u.des.key, &ki->ks_u.des.gss_sched); |
b0d623f7 A |
3455 | if (rc) |
3456 | return (rc); | |
3457 | for (i = 0; i < ki->keybytes; i++) | |
3458 | k[0][i] = 0xf0 ^ (*ki->ks_u.des.key)[i]; | |
316670eb | 3459 | rc = des_cbc_key_sched(&k[0], &ki->ks_u.des.gss_sched_Ke); |
b0d623f7 A |
3460 | break; |
3461 | case 3*sizeof(des_cblock): | |
3462 | ki->type = NFS_GSS_3DES; | |
3463 | ki->hash_len = SHA_DIGEST_LENGTH; | |
3464 | ki->ks_u.des3.key = (des_cblock (*)[3])ki->skey; | |
3465 | des3_derive_key(*ki->ks_u.des3.key, ki->ks_u.des3.ckey, | |
3466 | KEY_USAGE_DES3_SIGN, KEY_USAGE_LEN); | |
316670eb | 3467 | rc = des3_cbc_key_sched(*ki->ks_u.des3.key, &ki->ks_u.des3.gss_sched); |
b0d623f7 A |
3468 | if (rc) |
3469 | return (rc); | |
3470 | break; | |
3471 | default: | |
3472 | printf("gss_key_init: Invalid key length %d\n", skeylen); | |
3473 | rc = EINVAL; | |
3474 | break; | |
3475 | } | |
3476 | ||
3477 | return (rc); | |
3478 | } | |
3479 | ||
3480 | #if 0 | |
3481 | #define DISPLAYLEN 16 | |
3482 | #define MAXDISPLAYLEN 256 | |
3483 | ||
3484 | static void | |
3485 | hexdump(const char *msg, void *data, size_t len) | |
3486 | { | |
3487 | size_t i, j; | |
3488 | u_char *d = data; | |
3489 | char *p, disbuf[3*DISPLAYLEN+1]; | |
3490 | ||
3491 | printf("NFS DEBUG %s len=%d:\n", msg, (uint32_t)len); | |
3492 | if (len > MAXDISPLAYLEN) | |
3493 | len = MAXDISPLAYLEN; | |
3494 | ||
3495 | for (i = 0; i < len; i += DISPLAYLEN) { | |
3496 | for (p = disbuf, j = 0; (j + i) < len && j < DISPLAYLEN; j++, p += 3) | |
3497 | snprintf(p, 4, "%02x ", d[i + j]); | |
3498 | printf("\t%s\n", disbuf); | |
2d21ac55 | 3499 | } |
2d21ac55 | 3500 | } |
b0d623f7 | 3501 | #endif |