Commit | Line | Data |
---|---|---|
39236c6e | 1 | /* |
fe8ab488 | 2 | * Copyright (c) 2012-2014 Apple Inc. All rights reserved. |
39236c6e A |
3 | * |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | ||
29 | #include <string.h> | |
30 | #include <sys/types.h> | |
31 | #include <sys/syslog.h> | |
32 | #include <sys/queue.h> | |
33 | #include <sys/malloc.h> | |
34 | #include <sys/socket.h> | |
35 | #include <sys/kpi_mbuf.h> | |
36 | #include <sys/mbuf.h> | |
37 | #include <sys/domain.h> | |
38 | #include <sys/protosw.h> | |
39 | #include <sys/socketvar.h> | |
40 | #include <sys/kernel.h> | |
41 | #include <sys/systm.h> | |
42 | #include <sys/kern_control.h> | |
43 | #include <sys/ubc.h> | |
44 | #include <sys/codesign.h> | |
45 | #include <libkern/tree.h> | |
46 | #include <kern/locks.h> | |
47 | #include <kern/debug.h> | |
48 | #include <net/if_var.h> | |
49 | #include <net/route.h> | |
50 | #include <net/flowhash.h> | |
51 | #include <net/ntstat.h> | |
52 | #include <netinet/in.h> | |
53 | #include <netinet/in_var.h> | |
54 | #include <netinet/tcp.h> | |
55 | #include <netinet/tcp_var.h> | |
56 | #include <netinet/tcp_fsm.h> | |
57 | #include <netinet/flow_divert.h> | |
58 | #include <netinet/flow_divert_proto.h> | |
59 | #if INET6 | |
60 | #include <netinet6/ip6protosw.h> | |
61 | #endif /* INET6 */ | |
62 | #include <dev/random/randomdev.h> | |
63 | #include <libkern/crypto/sha1.h> | |
64 | #include <libkern/crypto/crypto_internal.h> | |
65 | ||
66 | #define FLOW_DIVERT_CONNECT_STARTED 0x00000001 | |
67 | #define FLOW_DIVERT_READ_CLOSED 0x00000002 | |
68 | #define FLOW_DIVERT_WRITE_CLOSED 0x00000004 | |
69 | #define FLOW_DIVERT_TUNNEL_RD_CLOSED 0x00000008 | |
70 | #define FLOW_DIVERT_TUNNEL_WR_CLOSED 0x00000010 | |
71 | #define FLOW_DIVERT_TRANSFERRED 0x00000020 | |
72 | ||
73 | #define FDLOG(level, pcb, format, ...) do { \ | |
74 | if (level <= (pcb)->log_level) { \ | |
75 | log((level > LOG_NOTICE ? LOG_NOTICE : level), "%s (%u): " format "\n", __FUNCTION__, (pcb)->hash, __VA_ARGS__); \ | |
76 | } \ | |
77 | } while (0) | |
78 | ||
79 | #define FDLOG0(level, pcb, msg) do { \ | |
80 | if (level <= (pcb)->log_level) { \ | |
81 | log((level > LOG_NOTICE ? LOG_NOTICE : level), "%s (%u): %s\n", __FUNCTION__, (pcb)->hash, msg); \ | |
82 | } \ | |
83 | } while (0) | |
84 | ||
85 | #define FDRETAIN(pcb) if ((pcb) != NULL) OSIncrementAtomic(&(pcb)->ref_count) | |
86 | #define FDRELEASE(pcb) \ | |
87 | do { \ | |
88 | if ((pcb) != NULL && 1 == OSDecrementAtomic(&(pcb)->ref_count)) { \ | |
89 | flow_divert_pcb_destroy(pcb); \ | |
90 | } \ | |
91 | } while (0) | |
92 | ||
93 | #define FDLOCK(pcb) lck_mtx_lock(&(pcb)->mtx) | |
94 | #define FDUNLOCK(pcb) lck_mtx_unlock(&(pcb)->mtx) | |
95 | ||
96 | #define FD_CTL_SENDBUFF_SIZE (2 * FLOW_DIVERT_CHUNK_SIZE) | |
97 | #define FD_CTL_RCVBUFF_SIZE (128 * 1024) | |
98 | ||
99 | #define GROUP_BIT_CTL_ENQUEUE_BLOCKED 0 | |
100 | ||
101 | #define GROUP_COUNT_MAX 32 | |
102 | #define FLOW_DIVERT_MAX_NAME_SIZE 4096 | |
103 | #define FLOW_DIVERT_MAX_KEY_SIZE 1024 | |
104 | ||
105 | #define DNS_SERVICE_GROUP_UNIT (GROUP_COUNT_MAX + 1) | |
106 | ||
107 | struct flow_divert_trie_node | |
108 | { | |
109 | uint16_t start; | |
110 | uint16_t length; | |
111 | uint16_t child_map; | |
112 | uint32_t group_unit; | |
113 | }; | |
114 | ||
115 | struct flow_divert_trie | |
116 | { | |
117 | struct flow_divert_trie_node *nodes; | |
118 | uint16_t *child_maps; | |
119 | uint8_t *bytes; | |
120 | void *memory; | |
121 | size_t nodes_count; | |
122 | size_t child_maps_count; | |
123 | size_t bytes_count; | |
124 | size_t nodes_free_next; | |
125 | size_t child_maps_free_next; | |
126 | size_t bytes_free_next; | |
127 | uint16_t root; | |
128 | }; | |
129 | ||
130 | #define CHILD_MAP_SIZE 256 | |
131 | #define NULL_TRIE_IDX 0xffff | |
132 | #define TRIE_NODE(t, i) ((t)->nodes[(i)]) | |
133 | #define TRIE_CHILD(t, i, b) (((t)->child_maps + (CHILD_MAP_SIZE * TRIE_NODE(t, i).child_map))[(b)]) | |
134 | #define TRIE_BYTE(t, i) ((t)->bytes[(i)]) | |
135 | ||
136 | static struct flow_divert_pcb nil_pcb; | |
137 | ||
138 | decl_lck_rw_data(static, g_flow_divert_group_lck); | |
139 | static struct flow_divert_group **g_flow_divert_groups = NULL; | |
140 | static uint32_t g_active_group_count = 0; | |
141 | static struct flow_divert_trie g_signing_id_trie; | |
142 | ||
143 | static lck_grp_attr_t *flow_divert_grp_attr = NULL; | |
144 | static lck_attr_t *flow_divert_mtx_attr = NULL; | |
145 | static lck_grp_t *flow_divert_mtx_grp = NULL; | |
146 | static errno_t g_init_result = 0; | |
147 | ||
148 | static kern_ctl_ref g_flow_divert_kctl_ref = NULL; | |
149 | ||
150 | static struct protosw g_flow_divert_in_protosw; | |
151 | static struct pr_usrreqs g_flow_divert_in_usrreqs; | |
152 | #if INET6 | |
153 | static struct ip6protosw g_flow_divert_in6_protosw; | |
154 | static struct pr_usrreqs g_flow_divert_in6_usrreqs; | |
155 | #endif /* INET6 */ | |
156 | ||
157 | static struct protosw *g_tcp_protosw = NULL; | |
158 | static struct ip6protosw *g_tcp6_protosw = NULL; | |
159 | ||
160 | static inline int | |
161 | flow_divert_pcb_cmp(const struct flow_divert_pcb *pcb_a, const struct flow_divert_pcb *pcb_b) | |
162 | { | |
163 | return memcmp(&pcb_a->hash, &pcb_b->hash, sizeof(pcb_a->hash)); | |
164 | } | |
165 | ||
166 | RB_PROTOTYPE(fd_pcb_tree, flow_divert_pcb, rb_link, flow_divert_pcb_cmp); | |
167 | RB_GENERATE(fd_pcb_tree, flow_divert_pcb, rb_link, flow_divert_pcb_cmp); | |
168 | ||
169 | static const char * | |
170 | flow_divert_packet_type2str(uint8_t packet_type) | |
171 | { | |
172 | switch (packet_type) { | |
173 | case FLOW_DIVERT_PKT_CONNECT: | |
174 | return "connect"; | |
175 | case FLOW_DIVERT_PKT_CONNECT_RESULT: | |
176 | return "connect result"; | |
177 | case FLOW_DIVERT_PKT_DATA: | |
178 | return "data"; | |
179 | case FLOW_DIVERT_PKT_CLOSE: | |
180 | return "close"; | |
181 | case FLOW_DIVERT_PKT_READ_NOTIFY: | |
182 | return "read notification"; | |
183 | case FLOW_DIVERT_PKT_PROPERTIES_UPDATE: | |
184 | return "properties update"; | |
185 | case FLOW_DIVERT_PKT_APP_MAP_UPDATE: | |
186 | return "app map update"; | |
187 | case FLOW_DIVERT_PKT_APP_MAP_CREATE: | |
188 | return "app map create"; | |
189 | default: | |
190 | return "unknown"; | |
191 | } | |
192 | } | |
193 | ||
194 | static struct flow_divert_pcb * | |
195 | flow_divert_pcb_lookup(uint32_t hash, struct flow_divert_group *group) | |
196 | { | |
197 | struct flow_divert_pcb key_item; | |
198 | struct flow_divert_pcb *fd_cb = NULL; | |
199 | ||
200 | key_item.hash = hash; | |
201 | ||
202 | lck_rw_lock_shared(&group->lck); | |
203 | fd_cb = RB_FIND(fd_pcb_tree, &group->pcb_tree, &key_item); | |
204 | FDRETAIN(fd_cb); | |
205 | lck_rw_done(&group->lck); | |
206 | ||
207 | return fd_cb; | |
208 | } | |
209 | ||
210 | static errno_t | |
211 | flow_divert_pcb_insert(struct flow_divert_pcb *fd_cb, uint32_t ctl_unit) | |
212 | { | |
213 | int error = 0; | |
214 | struct flow_divert_pcb *exist = NULL; | |
215 | struct flow_divert_group *group; | |
216 | static uint32_t g_nextkey = 1; | |
217 | static uint32_t g_hash_seed = 0; | |
218 | errno_t result = 0; | |
219 | int try_count = 0; | |
220 | ||
221 | if (ctl_unit == 0 || ctl_unit >= GROUP_COUNT_MAX) { | |
222 | return EINVAL; | |
223 | } | |
224 | ||
225 | socket_unlock(fd_cb->so, 0); | |
226 | lck_rw_lock_shared(&g_flow_divert_group_lck); | |
227 | ||
228 | if (g_flow_divert_groups == NULL || g_active_group_count == 0) { | |
229 | FDLOG0(LOG_ERR, &nil_pcb, "No active groups, flow divert cannot be used for this socket"); | |
230 | error = ENETUNREACH; | |
231 | goto done; | |
232 | } | |
233 | ||
234 | group = g_flow_divert_groups[ctl_unit]; | |
235 | if (group == NULL) { | |
236 | FDLOG(LOG_ERR, &nil_pcb, "Group for control unit %u is NULL, flow divert cannot be used for this socket", ctl_unit); | |
237 | error = ENETUNREACH; | |
238 | goto done; | |
239 | } | |
240 | ||
241 | socket_lock(fd_cb->so, 0); | |
242 | ||
243 | do { | |
244 | uint32_t key[2]; | |
245 | uint32_t idx; | |
246 | ||
247 | key[0] = g_nextkey++; | |
248 | key[1] = RandomULong(); | |
249 | ||
250 | if (g_hash_seed == 0) { | |
251 | g_hash_seed = RandomULong(); | |
252 | } | |
253 | ||
254 | fd_cb->hash = net_flowhash(key, sizeof(key), g_hash_seed); | |
255 | ||
256 | for (idx = 1; idx < GROUP_COUNT_MAX; idx++) { | |
257 | struct flow_divert_group *curr_group = g_flow_divert_groups[idx]; | |
258 | if (curr_group != NULL && curr_group != group) { | |
259 | lck_rw_lock_shared(&curr_group->lck); | |
260 | exist = RB_FIND(fd_pcb_tree, &curr_group->pcb_tree, fd_cb); | |
261 | lck_rw_done(&curr_group->lck); | |
262 | if (exist != NULL) { | |
263 | break; | |
264 | } | |
265 | } | |
266 | } | |
267 | ||
268 | if (exist == NULL) { | |
269 | lck_rw_lock_exclusive(&group->lck); | |
270 | exist = RB_INSERT(fd_pcb_tree, &group->pcb_tree, fd_cb); | |
271 | lck_rw_done(&group->lck); | |
272 | } | |
273 | } while (exist != NULL && try_count++ < 3); | |
274 | ||
275 | if (exist == NULL) { | |
276 | fd_cb->group = group; | |
277 | FDRETAIN(fd_cb); /* The group now has a reference */ | |
278 | } else { | |
279 | fd_cb->hash = 0; | |
280 | result = EEXIST; | |
281 | } | |
282 | ||
283 | socket_unlock(fd_cb->so, 0); | |
284 | ||
285 | done: | |
286 | lck_rw_done(&g_flow_divert_group_lck); | |
287 | socket_lock(fd_cb->so, 0); | |
288 | ||
289 | return result; | |
290 | } | |
291 | ||
292 | static struct flow_divert_pcb * | |
293 | flow_divert_pcb_create(socket_t so) | |
294 | { | |
295 | struct flow_divert_pcb *new_pcb = NULL; | |
296 | ||
297 | MALLOC_ZONE(new_pcb, struct flow_divert_pcb *, sizeof(*new_pcb), M_FLOW_DIVERT_PCB, M_WAITOK); | |
298 | if (new_pcb == NULL) { | |
299 | FDLOG0(LOG_ERR, &nil_pcb, "failed to allocate a pcb"); | |
300 | return NULL; | |
301 | } | |
302 | ||
303 | memset(new_pcb, 0, sizeof(*new_pcb)); | |
304 | ||
305 | lck_mtx_init(&new_pcb->mtx, flow_divert_mtx_grp, flow_divert_mtx_attr); | |
306 | new_pcb->so = so; | |
307 | new_pcb->log_level = nil_pcb.log_level; | |
308 | ||
309 | FDRETAIN(new_pcb); /* Represents the socket's reference */ | |
310 | ||
311 | return new_pcb; | |
312 | } | |
313 | ||
314 | static void | |
315 | flow_divert_pcb_destroy(struct flow_divert_pcb *fd_cb) | |
316 | { | |
317 | FDLOG(LOG_INFO, fd_cb, "Destroying, app tx %u, app rx %u, tunnel tx %u, tunnel rx %u", | |
318 | fd_cb->bytes_written_by_app, fd_cb->bytes_read_by_app, fd_cb->bytes_sent, fd_cb->bytes_received); | |
319 | ||
320 | if (fd_cb->local_address != NULL) { | |
321 | FREE(fd_cb->local_address, M_SONAME); | |
322 | } | |
323 | if (fd_cb->remote_address != NULL) { | |
324 | FREE(fd_cb->remote_address, M_SONAME); | |
325 | } | |
326 | if (fd_cb->connect_token != NULL) { | |
327 | mbuf_freem(fd_cb->connect_token); | |
328 | } | |
329 | FREE_ZONE(fd_cb, sizeof(*fd_cb), M_FLOW_DIVERT_PCB); | |
330 | } | |
331 | ||
332 | static void | |
333 | flow_divert_pcb_remove(struct flow_divert_pcb *fd_cb) | |
334 | { | |
335 | if (fd_cb->group != NULL) { | |
336 | struct flow_divert_group *group = fd_cb->group; | |
337 | lck_rw_lock_exclusive(&group->lck); | |
338 | FDLOG(LOG_INFO, fd_cb, "Removing from group %d, ref count = %d", group->ctl_unit, fd_cb->ref_count); | |
339 | RB_REMOVE(fd_pcb_tree, &group->pcb_tree, fd_cb); | |
340 | fd_cb->group = NULL; | |
341 | FDRELEASE(fd_cb); /* Release the group's reference */ | |
342 | lck_rw_done(&group->lck); | |
343 | } | |
344 | } | |
345 | ||
346 | static int | |
347 | flow_divert_packet_init(struct flow_divert_pcb *fd_cb, uint8_t packet_type, mbuf_t *packet) | |
348 | { | |
349 | struct flow_divert_packet_header hdr; | |
350 | int error = 0; | |
351 | ||
352 | error = mbuf_gethdr(MBUF_DONTWAIT, MBUF_TYPE_HEADER, packet); | |
353 | if (error) { | |
354 | FDLOG(LOG_ERR, fd_cb, "failed to allocate the header mbuf: %d", error); | |
355 | return error; | |
356 | } | |
357 | ||
358 | hdr.packet_type = packet_type; | |
359 | hdr.conn_id = htonl(fd_cb->hash); | |
360 | ||
361 | /* Lay down the header */ | |
362 | error = mbuf_copyback(*packet, 0, sizeof(hdr), &hdr, MBUF_DONTWAIT); | |
363 | if (error) { | |
364 | FDLOG(LOG_ERR, fd_cb, "mbuf_copyback(hdr) failed: %d", error); | |
365 | mbuf_freem(*packet); | |
366 | *packet = NULL; | |
367 | return error; | |
368 | } | |
369 | ||
370 | return 0; | |
371 | } | |
372 | ||
373 | static int | |
374 | flow_divert_packet_append_tlv(mbuf_t packet, uint8_t type, size_t length, const void *value) | |
375 | { | |
376 | size_t net_length = htonl(length); | |
377 | int error = 0; | |
378 | ||
379 | error = mbuf_copyback(packet, mbuf_pkthdr_len(packet), sizeof(type), &type, MBUF_DONTWAIT); | |
380 | if (error) { | |
381 | FDLOG(LOG_ERR, &nil_pcb, "failed to append the type (%d)", type); | |
382 | return error; | |
383 | } | |
384 | ||
385 | error = mbuf_copyback(packet, mbuf_pkthdr_len(packet), sizeof(net_length), &net_length, MBUF_DONTWAIT); | |
386 | if (error) { | |
387 | FDLOG(LOG_ERR, &nil_pcb, "failed to append the length (%lu)", length); | |
388 | return error; | |
389 | } | |
390 | ||
391 | error = mbuf_copyback(packet, mbuf_pkthdr_len(packet), length, value, MBUF_DONTWAIT); | |
392 | if (error) { | |
393 | FDLOG0(LOG_ERR, &nil_pcb, "failed to append the value"); | |
394 | return error; | |
395 | } | |
396 | ||
397 | return error; | |
398 | } | |
399 | ||
400 | static int | |
401 | flow_divert_packet_find_tlv(mbuf_t packet, int offset, uint8_t type, int *err, int next) | |
402 | { | |
403 | size_t cursor = offset; | |
404 | int error = 0; | |
405 | size_t curr_length; | |
406 | uint8_t curr_type; | |
407 | ||
408 | *err = 0; | |
409 | ||
410 | do { | |
411 | if (!next) { | |
412 | error = mbuf_copydata(packet, cursor, sizeof(curr_type), &curr_type); | |
413 | if (error) { | |
414 | *err = ENOENT; | |
415 | return -1; | |
416 | } | |
417 | } else { | |
418 | next = 0; | |
419 | curr_type = FLOW_DIVERT_TLV_NIL; | |
420 | } | |
421 | ||
422 | if (curr_type != type) { | |
423 | cursor += sizeof(curr_type); | |
424 | error = mbuf_copydata(packet, cursor, sizeof(curr_length), &curr_length); | |
425 | if (error) { | |
426 | *err = error; | |
427 | return -1; | |
428 | } | |
429 | ||
430 | cursor += (sizeof(curr_length) + ntohl(curr_length)); | |
431 | } | |
432 | } while (curr_type != type); | |
433 | ||
434 | return cursor; | |
435 | } | |
436 | ||
437 | static int | |
438 | flow_divert_packet_get_tlv(mbuf_t packet, int offset, uint8_t type, size_t buff_len, void *buff, size_t *val_size) | |
439 | { | |
440 | int error = 0; | |
441 | size_t length; | |
442 | int tlv_offset; | |
443 | ||
444 | tlv_offset = flow_divert_packet_find_tlv(packet, offset, type, &error, 0); | |
445 | if (tlv_offset < 0) { | |
446 | return error; | |
447 | } | |
448 | ||
449 | error = mbuf_copydata(packet, tlv_offset + sizeof(type), sizeof(length), &length); | |
450 | if (error) { | |
451 | return error; | |
452 | } | |
453 | ||
454 | length = ntohl(length); | |
455 | ||
456 | if (val_size != NULL) { | |
457 | *val_size = length; | |
458 | } | |
459 | ||
460 | if (buff != NULL && buff_len > 0) { | |
461 | size_t to_copy = (length < buff_len) ? length : buff_len; | |
462 | error = mbuf_copydata(packet, tlv_offset + sizeof(type) + sizeof(length), to_copy, buff); | |
463 | if (error) { | |
464 | return error; | |
465 | } | |
466 | } | |
467 | ||
468 | return 0; | |
469 | } | |
470 | ||
471 | static int | |
472 | flow_divert_packet_compute_hmac(mbuf_t packet, struct flow_divert_group *group, uint8_t *hmac) | |
473 | { | |
474 | mbuf_t curr_mbuf = packet; | |
475 | ||
476 | if (g_crypto_funcs == NULL || group->token_key == NULL) { | |
477 | return ENOPROTOOPT; | |
478 | } | |
479 | ||
480 | cchmac_di_decl(g_crypto_funcs->ccsha1_di, hmac_ctx); | |
481 | g_crypto_funcs->cchmac_init_fn(g_crypto_funcs->ccsha1_di, hmac_ctx, group->token_key_size, group->token_key); | |
482 | ||
483 | while (curr_mbuf != NULL) { | |
484 | g_crypto_funcs->cchmac_update_fn(g_crypto_funcs->ccsha1_di, hmac_ctx, mbuf_len(curr_mbuf), mbuf_data(curr_mbuf)); | |
485 | curr_mbuf = mbuf_next(curr_mbuf); | |
486 | } | |
487 | ||
488 | g_crypto_funcs->cchmac_final_fn(g_crypto_funcs->ccsha1_di, hmac_ctx, hmac); | |
489 | ||
490 | return 0; | |
491 | } | |
492 | ||
493 | static int | |
494 | flow_divert_packet_verify_hmac(mbuf_t packet, uint32_t ctl_unit) | |
495 | { | |
496 | int error = 0; | |
497 | struct flow_divert_group *group = NULL; | |
498 | int hmac_offset; | |
499 | uint8_t packet_hmac[SHA_DIGEST_LENGTH]; | |
500 | uint8_t computed_hmac[SHA_DIGEST_LENGTH]; | |
501 | mbuf_t tail; | |
502 | ||
503 | lck_rw_lock_shared(&g_flow_divert_group_lck); | |
504 | ||
505 | if (g_flow_divert_groups != NULL && g_active_group_count > 0) { | |
506 | group = g_flow_divert_groups[ctl_unit]; | |
507 | } | |
508 | ||
509 | if (group == NULL) { | |
510 | lck_rw_done(&g_flow_divert_group_lck); | |
511 | return ENOPROTOOPT; | |
512 | } | |
513 | ||
514 | lck_rw_lock_shared(&group->lck); | |
515 | ||
516 | if (group->token_key == NULL) { | |
517 | error = ENOPROTOOPT; | |
518 | goto done; | |
519 | } | |
520 | ||
521 | hmac_offset = flow_divert_packet_find_tlv(packet, 0, FLOW_DIVERT_TLV_HMAC, &error, 0); | |
522 | if (hmac_offset < 0) { | |
523 | goto done; | |
524 | } | |
525 | ||
526 | error = flow_divert_packet_get_tlv(packet, hmac_offset, FLOW_DIVERT_TLV_HMAC, sizeof(packet_hmac), packet_hmac, NULL); | |
527 | if (error) { | |
528 | goto done; | |
529 | } | |
530 | ||
531 | /* Chop off the HMAC TLV */ | |
532 | error = mbuf_split(packet, hmac_offset, MBUF_WAITOK, &tail); | |
533 | if (error) { | |
534 | goto done; | |
535 | } | |
536 | ||
537 | mbuf_free(tail); | |
538 | ||
539 | error = flow_divert_packet_compute_hmac(packet, group, computed_hmac); | |
540 | if (error) { | |
541 | goto done; | |
542 | } | |
543 | ||
544 | if (memcmp(packet_hmac, computed_hmac, sizeof(packet_hmac))) { | |
545 | FDLOG0(LOG_WARNING, &nil_pcb, "HMAC in token does not match computed HMAC"); | |
546 | error = EINVAL; | |
547 | goto done; | |
548 | } | |
549 | ||
550 | done: | |
551 | lck_rw_done(&group->lck); | |
552 | lck_rw_done(&g_flow_divert_group_lck); | |
553 | return error; | |
554 | } | |
555 | ||
556 | static void | |
557 | flow_divert_add_data_statistics(struct flow_divert_pcb *fd_cb, int data_len, Boolean send) | |
558 | { | |
559 | struct inpcb *inp = NULL; | |
560 | struct ifnet *ifp = NULL; | |
561 | Boolean cell = FALSE; | |
562 | Boolean wifi = FALSE; | |
fe8ab488 | 563 | Boolean wired = FALSE; |
39236c6e A |
564 | |
565 | inp = sotoinpcb(fd_cb->so); | |
566 | if (inp == NULL) { | |
567 | return; | |
568 | } | |
569 | ||
570 | ifp = inp->inp_last_outifp; | |
571 | if (ifp != NULL) { | |
572 | cell = IFNET_IS_CELLULAR(ifp); | |
573 | wifi = (!cell && IFNET_IS_WIFI(ifp)); | |
fe8ab488 | 574 | wired = (!wifi && IFNET_IS_WIRED(ifp)); |
39236c6e A |
575 | } |
576 | ||
577 | if (send) { | |
fe8ab488 A |
578 | INP_ADD_STAT(inp, cell, wifi, wired, txpackets, 1); |
579 | INP_ADD_STAT(inp, cell, wifi, wired, txbytes, data_len); | |
39236c6e | 580 | } else { |
fe8ab488 A |
581 | INP_ADD_STAT(inp, cell, wifi, wired, rxpackets, 1); |
582 | INP_ADD_STAT(inp, cell, wifi, wired, rxbytes, data_len); | |
39236c6e A |
583 | } |
584 | } | |
585 | ||
586 | static errno_t | |
587 | flow_divert_check_no_cellular(struct flow_divert_pcb *fd_cb) | |
588 | { | |
589 | struct inpcb *inp = NULL; | |
39236c6e A |
590 | |
591 | inp = sotoinpcb(fd_cb->so); | |
fe8ab488 A |
592 | if (inp && INP_NO_CELLULAR(inp) && inp->inp_last_outifp && |
593 | IFNET_IS_CELLULAR(inp->inp_last_outifp)) | |
594 | return EHOSTUNREACH; | |
595 | ||
596 | return 0; | |
597 | } | |
598 | ||
599 | static errno_t | |
600 | flow_divert_check_no_expensive(struct flow_divert_pcb *fd_cb) | |
601 | { | |
602 | struct inpcb *inp = NULL; | |
603 | ||
604 | inp = sotoinpcb(fd_cb->so); | |
605 | if (inp && INP_NO_EXPENSIVE(inp) && inp->inp_last_outifp && | |
606 | IFNET_IS_EXPENSIVE(inp->inp_last_outifp)) | |
607 | return EHOSTUNREACH; | |
39236c6e A |
608 | |
609 | return 0; | |
610 | } | |
611 | ||
612 | static void | |
613 | flow_divert_update_closed_state(struct flow_divert_pcb *fd_cb, int how, Boolean tunnel) | |
614 | { | |
615 | if (how != SHUT_RD) { | |
616 | fd_cb->flags |= FLOW_DIVERT_WRITE_CLOSED; | |
617 | if (tunnel || !(fd_cb->flags & FLOW_DIVERT_CONNECT_STARTED)) { | |
618 | fd_cb->flags |= FLOW_DIVERT_TUNNEL_WR_CLOSED; | |
619 | /* If the tunnel is not accepting writes any more, then flush the send buffer */ | |
620 | sbflush(&fd_cb->so->so_snd); | |
621 | } | |
622 | } | |
623 | if (how != SHUT_WR) { | |
624 | fd_cb->flags |= FLOW_DIVERT_READ_CLOSED; | |
625 | if (tunnel || !(fd_cb->flags & FLOW_DIVERT_CONNECT_STARTED)) { | |
626 | fd_cb->flags |= FLOW_DIVERT_TUNNEL_RD_CLOSED; | |
627 | } | |
628 | } | |
629 | } | |
630 | ||
631 | static uint16_t | |
632 | trie_node_alloc(struct flow_divert_trie *trie) | |
633 | { | |
634 | if (trie->nodes_free_next < trie->nodes_count) { | |
635 | uint16_t node_idx = trie->nodes_free_next++; | |
636 | TRIE_NODE(trie, node_idx).child_map = NULL_TRIE_IDX; | |
637 | return node_idx; | |
638 | } else { | |
639 | return NULL_TRIE_IDX; | |
640 | } | |
641 | } | |
642 | ||
643 | static uint16_t | |
644 | trie_child_map_alloc(struct flow_divert_trie *trie) | |
645 | { | |
646 | if (trie->child_maps_free_next < trie->child_maps_count) { | |
647 | return trie->child_maps_free_next++; | |
648 | } else { | |
649 | return NULL_TRIE_IDX; | |
650 | } | |
651 | } | |
652 | ||
653 | static uint16_t | |
654 | trie_bytes_move(struct flow_divert_trie *trie, uint16_t bytes_idx, size_t bytes_size) | |
655 | { | |
656 | uint16_t start = trie->bytes_free_next; | |
657 | if (start + bytes_size <= trie->bytes_count) { | |
658 | if (start != bytes_idx) { | |
659 | memmove(&TRIE_BYTE(trie, start), &TRIE_BYTE(trie, bytes_idx), bytes_size); | |
660 | } | |
661 | trie->bytes_free_next += bytes_size; | |
662 | return start; | |
663 | } else { | |
664 | return NULL_TRIE_IDX; | |
665 | } | |
666 | } | |
667 | ||
668 | static uint16_t | |
669 | flow_divert_trie_insert(struct flow_divert_trie *trie, uint16_t string_start, size_t string_len) | |
670 | { | |
671 | uint16_t current = trie->root; | |
672 | uint16_t child = trie->root; | |
673 | uint16_t string_end = string_start + string_len; | |
674 | uint16_t string_idx = string_start; | |
675 | uint16_t string_remainder = string_len; | |
676 | ||
677 | while (child != NULL_TRIE_IDX) { | |
678 | uint16_t parent = current; | |
679 | uint16_t node_idx; | |
680 | uint16_t current_end; | |
681 | ||
682 | current = child; | |
683 | child = NULL_TRIE_IDX; | |
684 | ||
685 | current_end = TRIE_NODE(trie, current).start + TRIE_NODE(trie, current).length; | |
686 | ||
687 | for (node_idx = TRIE_NODE(trie, current).start; | |
688 | node_idx < current_end && | |
689 | string_idx < string_end && | |
690 | TRIE_BYTE(trie, node_idx) == TRIE_BYTE(trie, string_idx); | |
691 | node_idx++, string_idx++); | |
692 | ||
693 | string_remainder = string_end - string_idx; | |
694 | ||
695 | if (node_idx < (TRIE_NODE(trie, current).start + TRIE_NODE(trie, current).length)) { | |
696 | /* | |
697 | * We did not reach the end of the current node's string. | |
698 | * We need to split the current node into two: | |
699 | * 1. A new node that contains the prefix of the node that matches | |
700 | * the prefix of the string being inserted. | |
701 | * 2. The current node modified to point to the remainder | |
702 | * of the current node's string. | |
703 | */ | |
704 | uint16_t prefix = trie_node_alloc(trie); | |
705 | if (prefix == NULL_TRIE_IDX) { | |
706 | FDLOG0(LOG_ERR, &nil_pcb, "Ran out of trie nodes while splitting an existing node"); | |
707 | return NULL_TRIE_IDX; | |
708 | } | |
709 | ||
710 | /* | |
711 | * Prefix points to the portion of the current nodes's string that has matched | |
712 | * the input string thus far. | |
713 | */ | |
714 | TRIE_NODE(trie, prefix).start = TRIE_NODE(trie, current).start; | |
715 | TRIE_NODE(trie, prefix).length = (node_idx - TRIE_NODE(trie, current).start); | |
716 | ||
717 | /* | |
718 | * Prefix has the current node as the child corresponding to the first byte | |
719 | * after the split. | |
720 | */ | |
721 | TRIE_NODE(trie, prefix).child_map = trie_child_map_alloc(trie); | |
722 | if (TRIE_NODE(trie, prefix).child_map == NULL_TRIE_IDX) { | |
723 | FDLOG0(LOG_ERR, &nil_pcb, "Ran out of child maps while splitting an existing node"); | |
724 | return NULL_TRIE_IDX; | |
725 | } | |
726 | TRIE_CHILD(trie, prefix, TRIE_BYTE(trie, node_idx)) = current; | |
727 | ||
728 | /* Parent has the prefix as the child correspoding to the first byte in the prefix */ | |
729 | TRIE_CHILD(trie, parent, TRIE_BYTE(trie, TRIE_NODE(trie, prefix).start)) = prefix; | |
730 | ||
731 | /* Current node is adjusted to point to the remainder */ | |
732 | TRIE_NODE(trie, current).start = node_idx; | |
733 | TRIE_NODE(trie, current).length -= TRIE_NODE(trie, prefix).length; | |
734 | ||
735 | /* We want to insert the new leaf (if any) as a child of the prefix */ | |
736 | current = prefix; | |
737 | } | |
738 | ||
739 | if (string_remainder > 0) { | |
740 | /* | |
741 | * We still have bytes in the string that have not been matched yet. | |
742 | * If the current node has children, iterate to the child corresponding | |
743 | * to the next byte in the string. | |
744 | */ | |
745 | if (TRIE_NODE(trie, current).child_map != NULL_TRIE_IDX) { | |
746 | child = TRIE_CHILD(trie, current, TRIE_BYTE(trie, string_idx)); | |
747 | } | |
748 | } | |
749 | } /* while (child != NULL_TRIE_IDX) */ | |
750 | ||
751 | if (string_remainder > 0) { | |
752 | /* Add a new leaf containing the remainder of the string */ | |
753 | uint16_t leaf = trie_node_alloc(trie); | |
754 | if (leaf == NULL_TRIE_IDX) { | |
755 | FDLOG0(LOG_ERR, &nil_pcb, "Ran out of trie nodes while inserting a new leaf"); | |
756 | return NULL_TRIE_IDX; | |
757 | } | |
758 | ||
759 | TRIE_NODE(trie, leaf).start = trie_bytes_move(trie, string_idx, string_remainder); | |
760 | if (TRIE_NODE(trie, leaf).start == NULL_TRIE_IDX) { | |
761 | FDLOG0(LOG_ERR, &nil_pcb, "Ran out of bytes while inserting a new leaf"); | |
762 | return NULL_TRIE_IDX; | |
763 | } | |
764 | TRIE_NODE(trie, leaf).length = string_remainder; | |
765 | ||
766 | /* Set the new leaf as the child of the current node */ | |
767 | if (TRIE_NODE(trie, current).child_map == NULL_TRIE_IDX) { | |
768 | TRIE_NODE(trie, current).child_map = trie_child_map_alloc(trie); | |
769 | if (TRIE_NODE(trie, current).child_map == NULL_TRIE_IDX) { | |
770 | FDLOG0(LOG_ERR, &nil_pcb, "Ran out of child maps while inserting a new leaf"); | |
771 | return NULL_TRIE_IDX; | |
772 | } | |
773 | } | |
774 | TRIE_CHILD(trie, current, TRIE_BYTE(trie, TRIE_NODE(trie, leaf).start)) = leaf; | |
775 | current = leaf; | |
776 | } /* else duplicate or this string is a prefix of one of the existing strings */ | |
777 | ||
778 | return current; | |
779 | } | |
780 | ||
781 | static uint16_t | |
782 | flow_divert_trie_search(struct flow_divert_trie *trie, const uint8_t *string_bytes) | |
783 | { | |
784 | uint16_t current = trie->root; | |
785 | uint16_t string_idx = 0; | |
786 | ||
787 | while (current != NULL_TRIE_IDX) { | |
788 | uint16_t next = NULL_TRIE_IDX; | |
789 | uint16_t node_end = TRIE_NODE(trie, current).start + TRIE_NODE(trie, current).length; | |
790 | uint16_t node_idx; | |
791 | ||
792 | for (node_idx = TRIE_NODE(trie, current).start; | |
793 | node_idx < node_end && string_bytes[string_idx] != '\0' && string_bytes[string_idx] == TRIE_BYTE(trie, node_idx); | |
794 | node_idx++, string_idx++); | |
795 | ||
796 | if (node_idx == node_end) { | |
797 | if (string_bytes[string_idx] == '\0') { | |
798 | return current; /* Got an exact match */ | |
799 | } else if (TRIE_NODE(trie, current).child_map != NULL_TRIE_IDX) { | |
800 | next = TRIE_CHILD(trie, current, string_bytes[string_idx]); | |
801 | } | |
802 | } | |
803 | current = next; | |
804 | } | |
805 | ||
806 | return NULL_TRIE_IDX; | |
807 | } | |
808 | ||
809 | static int | |
810 | flow_divert_get_src_proc(struct socket *so, proc_t *proc, boolean_t match_delegate) | |
811 | { | |
812 | int release = 0; | |
813 | ||
814 | if (!match_delegate && | |
815 | (so->so_flags & SOF_DELEGATED) && | |
816 | (*proc == PROC_NULL || (*proc)->p_pid != so->e_pid)) | |
817 | { | |
818 | *proc = proc_find(so->e_pid); | |
819 | release = 1; | |
820 | } else if (*proc == PROC_NULL) { | |
821 | *proc = current_proc(); | |
822 | } | |
823 | ||
824 | if (*proc != PROC_NULL) { | |
825 | if ((*proc)->p_pid == 0) { | |
826 | if (release) { | |
827 | proc_rele(*proc); | |
828 | } | |
829 | release = 0; | |
830 | *proc = PROC_NULL; | |
831 | } | |
832 | } | |
833 | ||
834 | return release; | |
835 | } | |
836 | ||
837 | static int | |
838 | flow_divert_send_packet(struct flow_divert_pcb *fd_cb, mbuf_t packet, Boolean enqueue) | |
839 | { | |
840 | int error; | |
841 | ||
842 | if (fd_cb->group == NULL) { | |
843 | fd_cb->so->so_error = ECONNABORTED; | |
844 | soisdisconnected(fd_cb->so); | |
845 | return ECONNABORTED; | |
846 | } | |
847 | ||
848 | lck_rw_lock_shared(&fd_cb->group->lck); | |
849 | ||
850 | if (MBUFQ_EMPTY(&fd_cb->group->send_queue)) { | |
851 | error = ctl_enqueuembuf(g_flow_divert_kctl_ref, fd_cb->group->ctl_unit, packet, CTL_DATA_EOR); | |
852 | } else { | |
853 | error = ENOBUFS; | |
854 | } | |
855 | ||
856 | if (error == ENOBUFS) { | |
857 | if (enqueue) { | |
858 | if (!lck_rw_lock_shared_to_exclusive(&fd_cb->group->lck)) { | |
859 | lck_rw_lock_exclusive(&fd_cb->group->lck); | |
860 | } | |
861 | MBUFQ_ENQUEUE(&fd_cb->group->send_queue, packet); | |
862 | error = 0; | |
863 | } | |
864 | OSTestAndSet(GROUP_BIT_CTL_ENQUEUE_BLOCKED, &fd_cb->group->atomic_bits); | |
865 | } | |
866 | ||
867 | lck_rw_done(&fd_cb->group->lck); | |
868 | ||
869 | return error; | |
870 | } | |
871 | ||
872 | static int | |
fe8ab488 | 873 | flow_divert_send_connect(struct flow_divert_pcb *fd_cb, struct sockaddr *to, mbuf_t connect_packet) |
39236c6e | 874 | { |
39236c6e A |
875 | int error = 0; |
876 | ||
39236c6e A |
877 | error = flow_divert_packet_append_tlv(connect_packet, |
878 | FLOW_DIVERT_TLV_TRAFFIC_CLASS, | |
879 | sizeof(fd_cb->so->so_traffic_class), | |
880 | &fd_cb->so->so_traffic_class); | |
881 | if (error) { | |
882 | goto done; | |
883 | } | |
884 | ||
885 | if (fd_cb->so->so_flags & SOF_DELEGATED) { | |
886 | error = flow_divert_packet_append_tlv(connect_packet, | |
887 | FLOW_DIVERT_TLV_PID, | |
888 | sizeof(fd_cb->so->e_pid), | |
889 | &fd_cb->so->e_pid); | |
890 | if (error) { | |
891 | goto done; | |
892 | } | |
893 | ||
894 | error = flow_divert_packet_append_tlv(connect_packet, | |
895 | FLOW_DIVERT_TLV_UUID, | |
896 | sizeof(fd_cb->so->e_uuid), | |
897 | &fd_cb->so->e_uuid); | |
898 | if (error) { | |
899 | goto done; | |
900 | } | |
901 | } else { | |
902 | error = flow_divert_packet_append_tlv(connect_packet, | |
903 | FLOW_DIVERT_TLV_PID, | |
904 | sizeof(fd_cb->so->e_pid), | |
905 | &fd_cb->so->last_pid); | |
906 | if (error) { | |
907 | goto done; | |
908 | } | |
909 | ||
910 | error = flow_divert_packet_append_tlv(connect_packet, | |
911 | FLOW_DIVERT_TLV_UUID, | |
912 | sizeof(fd_cb->so->e_uuid), | |
913 | &fd_cb->so->last_uuid); | |
914 | if (error) { | |
915 | goto done; | |
916 | } | |
917 | } | |
918 | ||
919 | if (fd_cb->connect_token != NULL) { | |
920 | unsigned int token_len = m_length(fd_cb->connect_token); | |
921 | mbuf_concatenate(connect_packet, fd_cb->connect_token); | |
922 | mbuf_pkthdr_adjustlen(connect_packet, token_len); | |
923 | fd_cb->connect_token = NULL; | |
924 | } else { | |
925 | uint32_t ctl_unit = htonl(fd_cb->control_group_unit); | |
926 | int port; | |
39236c6e A |
927 | |
928 | error = flow_divert_packet_append_tlv(connect_packet, FLOW_DIVERT_TLV_CTL_UNIT, sizeof(ctl_unit), &ctl_unit); | |
929 | if (error) { | |
930 | goto done; | |
931 | } | |
932 | ||
933 | error = flow_divert_packet_append_tlv(connect_packet, FLOW_DIVERT_TLV_TARGET_ADDRESS, to->sa_len, to); | |
934 | if (error) { | |
935 | goto done; | |
936 | } | |
937 | ||
938 | if (to->sa_family == AF_INET) { | |
939 | port = ntohs((satosin(to))->sin_port); | |
940 | } | |
941 | #if INET6 | |
942 | else { | |
943 | port = ntohs((satosin6(to))->sin6_port); | |
944 | } | |
945 | #endif | |
946 | ||
947 | error = flow_divert_packet_append_tlv(connect_packet, FLOW_DIVERT_TLV_TARGET_PORT, sizeof(port), &port); | |
948 | if (error) { | |
949 | goto done; | |
950 | } | |
39236c6e A |
951 | } |
952 | ||
953 | error = flow_divert_send_packet(fd_cb, connect_packet, TRUE); | |
954 | if (error) { | |
955 | goto done; | |
956 | } | |
957 | ||
958 | done: | |
39236c6e A |
959 | return error; |
960 | } | |
961 | ||
962 | static int | |
963 | flow_divert_send_connect_result(struct flow_divert_pcb *fd_cb) | |
964 | { | |
965 | int error = 0; | |
966 | mbuf_t packet = NULL; | |
967 | int rbuff_space = 0; | |
968 | ||
969 | error = flow_divert_packet_init(fd_cb, FLOW_DIVERT_PKT_CONNECT_RESULT, &packet); | |
970 | if (error) { | |
971 | FDLOG(LOG_ERR, fd_cb, "failed to create a connect result packet: %d", error); | |
972 | goto done; | |
973 | } | |
974 | ||
975 | rbuff_space = sbspace(&fd_cb->so->so_rcv); | |
976 | if (rbuff_space < 0) { | |
977 | rbuff_space = 0; | |
978 | } | |
979 | rbuff_space = htonl(rbuff_space); | |
980 | error = flow_divert_packet_append_tlv(packet, | |
981 | FLOW_DIVERT_TLV_SPACE_AVAILABLE, | |
982 | sizeof(rbuff_space), | |
983 | &rbuff_space); | |
984 | if (error) { | |
985 | goto done; | |
986 | } | |
987 | ||
988 | error = flow_divert_send_packet(fd_cb, packet, TRUE); | |
989 | if (error) { | |
990 | goto done; | |
991 | } | |
992 | ||
993 | done: | |
994 | if (error && packet != NULL) { | |
995 | mbuf_free(packet); | |
996 | } | |
997 | ||
998 | return error; | |
999 | } | |
1000 | ||
1001 | static int | |
1002 | flow_divert_send_close(struct flow_divert_pcb *fd_cb, int how) | |
1003 | { | |
1004 | int error = 0; | |
1005 | mbuf_t packet = NULL; | |
1006 | uint32_t zero = 0; | |
1007 | ||
1008 | error = flow_divert_packet_init(fd_cb, FLOW_DIVERT_PKT_CLOSE, &packet); | |
1009 | if (error) { | |
1010 | FDLOG(LOG_ERR, fd_cb, "failed to create a close packet: %d", error); | |
1011 | goto done; | |
1012 | } | |
1013 | ||
1014 | error = flow_divert_packet_append_tlv(packet, FLOW_DIVERT_TLV_ERROR_CODE, sizeof(zero), &zero); | |
1015 | if (error) { | |
1016 | FDLOG(LOG_ERR, fd_cb, "failed to add the error code TLV: %d", error); | |
1017 | goto done; | |
1018 | } | |
1019 | ||
1020 | how = htonl(how); | |
1021 | error = flow_divert_packet_append_tlv(packet, FLOW_DIVERT_TLV_HOW, sizeof(how), &how); | |
1022 | if (error) { | |
1023 | FDLOG(LOG_ERR, fd_cb, "failed to add the how flag: %d", error); | |
1024 | goto done; | |
1025 | } | |
1026 | ||
1027 | error = flow_divert_send_packet(fd_cb, packet, TRUE); | |
1028 | if (error) { | |
1029 | goto done; | |
1030 | } | |
1031 | ||
1032 | done: | |
1033 | if (error && packet != NULL) { | |
1034 | mbuf_free(packet); | |
1035 | } | |
1036 | ||
1037 | return error; | |
1038 | } | |
1039 | ||
1040 | static int | |
1041 | flow_divert_tunnel_how_closed(struct flow_divert_pcb *fd_cb) | |
1042 | { | |
1043 | if ((fd_cb->flags & (FLOW_DIVERT_TUNNEL_RD_CLOSED|FLOW_DIVERT_TUNNEL_WR_CLOSED)) == | |
1044 | (FLOW_DIVERT_TUNNEL_RD_CLOSED|FLOW_DIVERT_TUNNEL_WR_CLOSED)) | |
1045 | { | |
1046 | return SHUT_RDWR; | |
1047 | } else if (fd_cb->flags & FLOW_DIVERT_TUNNEL_RD_CLOSED) { | |
1048 | return SHUT_RD; | |
1049 | } else if (fd_cb->flags & FLOW_DIVERT_TUNNEL_WR_CLOSED) { | |
1050 | return SHUT_WR; | |
1051 | } | |
1052 | ||
1053 | return -1; | |
1054 | } | |
1055 | ||
1056 | /* | |
1057 | * Determine what close messages if any need to be sent to the tunnel. Returns TRUE if the tunnel is closed for both reads and | |
1058 | * writes. Returns FALSE otherwise. | |
1059 | */ | |
1060 | static void | |
1061 | flow_divert_send_close_if_needed(struct flow_divert_pcb *fd_cb) | |
1062 | { | |
1063 | int how = -1; | |
1064 | ||
1065 | /* Do not send any close messages if there is still data in the send buffer */ | |
1066 | if (fd_cb->so->so_snd.sb_cc == 0) { | |
1067 | if ((fd_cb->flags & (FLOW_DIVERT_READ_CLOSED|FLOW_DIVERT_TUNNEL_RD_CLOSED)) == FLOW_DIVERT_READ_CLOSED) { | |
1068 | /* Socket closed reads, but tunnel did not. Tell tunnel to close reads */ | |
1069 | how = SHUT_RD; | |
1070 | } | |
1071 | if ((fd_cb->flags & (FLOW_DIVERT_WRITE_CLOSED|FLOW_DIVERT_TUNNEL_WR_CLOSED)) == FLOW_DIVERT_WRITE_CLOSED) { | |
1072 | /* Socket closed writes, but tunnel did not. Tell tunnel to close writes */ | |
1073 | if (how == SHUT_RD) { | |
1074 | how = SHUT_RDWR; | |
1075 | } else { | |
1076 | how = SHUT_WR; | |
1077 | } | |
1078 | } | |
1079 | } | |
1080 | ||
1081 | if (how != -1) { | |
1082 | FDLOG(LOG_INFO, fd_cb, "sending close, how = %d", how); | |
1083 | if (flow_divert_send_close(fd_cb, how) != ENOBUFS) { | |
1084 | /* Successfully sent the close packet. Record the ways in which the tunnel has been closed */ | |
1085 | if (how != SHUT_RD) { | |
1086 | fd_cb->flags |= FLOW_DIVERT_TUNNEL_WR_CLOSED; | |
1087 | } | |
1088 | if (how != SHUT_WR) { | |
1089 | fd_cb->flags |= FLOW_DIVERT_TUNNEL_RD_CLOSED; | |
1090 | } | |
1091 | } | |
1092 | } | |
1093 | ||
1094 | if (flow_divert_tunnel_how_closed(fd_cb) == SHUT_RDWR) { | |
1095 | soisdisconnected(fd_cb->so); | |
1096 | } | |
1097 | } | |
1098 | ||
1099 | static errno_t | |
1100 | flow_divert_send_data_packet(struct flow_divert_pcb *fd_cb, mbuf_t data, size_t data_len, Boolean force) | |
1101 | { | |
1102 | mbuf_t packet; | |
1103 | mbuf_t last; | |
1104 | int error = 0; | |
1105 | ||
1106 | error = flow_divert_packet_init(fd_cb, FLOW_DIVERT_PKT_DATA, &packet); | |
1107 | if (error) { | |
1108 | FDLOG(LOG_ERR, fd_cb, "flow_divert_packet_init failed: %d", error); | |
1109 | return error; | |
1110 | } | |
1111 | ||
1112 | last = m_last(packet); | |
1113 | mbuf_setnext(last, data); | |
1114 | mbuf_pkthdr_adjustlen(packet, data_len); | |
1115 | ||
1116 | error = flow_divert_send_packet(fd_cb, packet, force); | |
1117 | ||
1118 | if (error) { | |
1119 | mbuf_setnext(last, NULL); | |
1120 | mbuf_free(packet); | |
1121 | } else { | |
1122 | fd_cb->bytes_sent += data_len; | |
1123 | flow_divert_add_data_statistics(fd_cb, data_len, TRUE); | |
1124 | } | |
1125 | ||
1126 | return error; | |
1127 | } | |
1128 | ||
1129 | static void | |
1130 | flow_divert_send_buffered_data(struct flow_divert_pcb *fd_cb, Boolean force) | |
1131 | { | |
1132 | size_t to_send; | |
1133 | size_t sent = 0; | |
1134 | int error = 0; | |
1135 | mbuf_t buffer; | |
1136 | ||
1137 | to_send = fd_cb->so->so_snd.sb_cc; | |
1138 | buffer = fd_cb->so->so_snd.sb_mb; | |
1139 | ||
1140 | if (buffer == NULL && to_send > 0) { | |
1141 | FDLOG(LOG_ERR, fd_cb, "Send buffer is NULL, but size is supposed to be %lu", to_send); | |
1142 | return; | |
1143 | } | |
1144 | ||
1145 | /* Ignore the send window if force is enabled */ | |
1146 | if (!force && (to_send > fd_cb->send_window)) { | |
1147 | to_send = fd_cb->send_window; | |
1148 | } | |
1149 | ||
1150 | while (sent < to_send) { | |
1151 | mbuf_t data; | |
1152 | size_t data_len; | |
1153 | ||
1154 | data_len = to_send - sent; | |
1155 | if (data_len > FLOW_DIVERT_CHUNK_SIZE) { | |
1156 | data_len = FLOW_DIVERT_CHUNK_SIZE; | |
1157 | } | |
1158 | ||
1159 | error = mbuf_copym(buffer, sent, data_len, MBUF_DONTWAIT, &data); | |
1160 | if (error) { | |
1161 | FDLOG(LOG_ERR, fd_cb, "mbuf_copym failed: %d", error); | |
1162 | break; | |
1163 | } | |
1164 | ||
1165 | error = flow_divert_send_data_packet(fd_cb, data, data_len, force); | |
1166 | if (error) { | |
1167 | mbuf_free(data); | |
1168 | break; | |
1169 | } | |
1170 | ||
1171 | sent += data_len; | |
1172 | } | |
1173 | ||
1174 | if (sent > 0) { | |
1175 | FDLOG(LOG_DEBUG, fd_cb, "sent %lu bytes of buffered data", sent); | |
1176 | if (fd_cb->send_window >= sent) { | |
1177 | fd_cb->send_window -= sent; | |
1178 | } else { | |
1179 | fd_cb->send_window = 0; | |
1180 | } | |
1181 | sbdrop(&fd_cb->so->so_snd, sent); | |
1182 | sowwakeup(fd_cb->so); | |
1183 | } | |
1184 | } | |
1185 | ||
1186 | static int | |
1187 | flow_divert_send_app_data(struct flow_divert_pcb *fd_cb, mbuf_t data) | |
1188 | { | |
1189 | size_t to_send = mbuf_pkthdr_len(data); | |
1190 | size_t sent = 0; | |
1191 | int error = 0; | |
1192 | mbuf_t remaining_data = data; | |
1193 | mbuf_t pkt_data = NULL; | |
1194 | ||
1195 | if (to_send > fd_cb->send_window) { | |
1196 | to_send = fd_cb->send_window; | |
1197 | } | |
1198 | ||
1199 | if (fd_cb->so->so_snd.sb_cc > 0) { | |
1200 | to_send = 0; /* If the send buffer is non-empty, then we can't send anything */ | |
1201 | } | |
1202 | ||
1203 | while (sent < to_send) { | |
1204 | size_t pkt_data_len; | |
1205 | ||
1206 | pkt_data = remaining_data; | |
1207 | ||
1208 | if ((to_send - sent) > FLOW_DIVERT_CHUNK_SIZE) { | |
1209 | pkt_data_len = FLOW_DIVERT_CHUNK_SIZE; | |
1210 | error = mbuf_split(pkt_data, pkt_data_len, MBUF_DONTWAIT, &remaining_data); | |
1211 | if (error) { | |
1212 | FDLOG(LOG_ERR, fd_cb, "mbuf_split failed: %d", error); | |
1213 | pkt_data = NULL; | |
1214 | break; | |
1215 | } | |
1216 | } else { | |
1217 | pkt_data_len = to_send - sent; | |
1218 | remaining_data = NULL; | |
1219 | } | |
1220 | ||
1221 | error = flow_divert_send_data_packet(fd_cb, pkt_data, pkt_data_len, FALSE); | |
1222 | ||
1223 | if (error) { | |
1224 | break; | |
1225 | } | |
1226 | ||
1227 | pkt_data = NULL; | |
1228 | sent += pkt_data_len; | |
1229 | } | |
1230 | ||
1231 | fd_cb->send_window -= sent; | |
1232 | ||
1233 | error = 0; | |
1234 | ||
1235 | if (pkt_data != NULL) { | |
1236 | if (sbspace(&fd_cb->so->so_snd) > 0) { | |
1237 | if (!sbappendstream(&fd_cb->so->so_snd, pkt_data)) { | |
1238 | FDLOG(LOG_ERR, fd_cb, "sbappendstream failed with pkt_data, send buffer size = %u, send_window = %u\n", | |
1239 | fd_cb->so->so_snd.sb_cc, fd_cb->send_window); | |
1240 | } | |
1241 | } else { | |
1242 | error = ENOBUFS; | |
1243 | } | |
1244 | } | |
1245 | ||
1246 | if (remaining_data != NULL) { | |
1247 | if (sbspace(&fd_cb->so->so_snd) > 0) { | |
1248 | if (!sbappendstream(&fd_cb->so->so_snd, remaining_data)) { | |
1249 | FDLOG(LOG_ERR, fd_cb, "sbappendstream failed with remaining_data, send buffer size = %u, send_window = %u\n", | |
1250 | fd_cb->so->so_snd.sb_cc, fd_cb->send_window); | |
1251 | } | |
1252 | } else { | |
1253 | error = ENOBUFS; | |
1254 | } | |
1255 | } | |
1256 | ||
1257 | return error; | |
1258 | } | |
1259 | ||
1260 | static int | |
1261 | flow_divert_send_read_notification(struct flow_divert_pcb *fd_cb, uint32_t read_count) | |
1262 | { | |
1263 | int error = 0; | |
1264 | mbuf_t packet = NULL; | |
1265 | uint32_t net_read_count = htonl(read_count); | |
1266 | ||
1267 | error = flow_divert_packet_init(fd_cb, FLOW_DIVERT_PKT_READ_NOTIFY, &packet); | |
1268 | if (error) { | |
1269 | FDLOG(LOG_ERR, fd_cb, "failed to create a read notification packet: %d", error); | |
1270 | goto done; | |
1271 | } | |
1272 | ||
1273 | error = flow_divert_packet_append_tlv(packet, FLOW_DIVERT_TLV_READ_COUNT, sizeof(net_read_count), &net_read_count); | |
1274 | if (error) { | |
1275 | FDLOG(LOG_ERR, fd_cb, "failed to add the read count: %d", error); | |
1276 | goto done; | |
1277 | } | |
1278 | ||
1279 | error = flow_divert_send_packet(fd_cb, packet, TRUE); | |
1280 | if (error) { | |
1281 | goto done; | |
1282 | } | |
1283 | ||
1284 | done: | |
1285 | if (error && packet != NULL) { | |
1286 | mbuf_free(packet); | |
1287 | } | |
1288 | ||
1289 | return error; | |
1290 | } | |
1291 | ||
1292 | static int | |
1293 | flow_divert_send_traffic_class_update(struct flow_divert_pcb *fd_cb, int traffic_class) | |
1294 | { | |
1295 | int error = 0; | |
1296 | mbuf_t packet = NULL; | |
1297 | ||
1298 | error = flow_divert_packet_init(fd_cb, FLOW_DIVERT_PKT_PROPERTIES_UPDATE, &packet); | |
1299 | if (error) { | |
1300 | FDLOG(LOG_ERR, fd_cb, "failed to create a properties update packet: %d", error); | |
1301 | goto done; | |
1302 | } | |
1303 | ||
1304 | error = flow_divert_packet_append_tlv(packet, FLOW_DIVERT_TLV_TRAFFIC_CLASS, sizeof(traffic_class), &traffic_class); | |
1305 | if (error) { | |
1306 | FDLOG(LOG_ERR, fd_cb, "failed to add the traffic class: %d", error); | |
1307 | goto done; | |
1308 | } | |
1309 | ||
1310 | error = flow_divert_send_packet(fd_cb, packet, TRUE); | |
1311 | if (error) { | |
1312 | goto done; | |
1313 | } | |
1314 | ||
1315 | done: | |
1316 | if (error && packet != NULL) { | |
1317 | mbuf_free(packet); | |
1318 | } | |
1319 | ||
1320 | return error; | |
1321 | } | |
1322 | ||
1323 | static void | |
1324 | flow_divert_handle_connect_result(struct flow_divert_pcb *fd_cb, mbuf_t packet, int offset) | |
1325 | { | |
1326 | uint32_t connect_error; | |
1327 | uint32_t ctl_unit = 0; | |
1328 | int error = 0; | |
1329 | struct flow_divert_group *grp = NULL; | |
1330 | struct sockaddr_storage local_address; | |
1331 | int out_if_index = 0; | |
1332 | struct sockaddr_storage remote_address; | |
1333 | uint32_t send_window; | |
1334 | ||
1335 | memset(&local_address, 0, sizeof(local_address)); | |
1336 | memset(&remote_address, 0, sizeof(remote_address)); | |
1337 | ||
1338 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_ERROR_CODE, sizeof(connect_error), &connect_error, NULL); | |
1339 | if (error) { | |
1340 | FDLOG(LOG_ERR, fd_cb, "failed to get the connect result: %d", error); | |
1341 | return; | |
1342 | } | |
1343 | ||
1344 | FDLOG(LOG_INFO, fd_cb, "received connect result %u", connect_error); | |
1345 | ||
1346 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_SPACE_AVAILABLE, sizeof(send_window), &send_window, NULL); | |
1347 | if (error) { | |
1348 | FDLOG(LOG_ERR, fd_cb, "failed to get the send window: %d", error); | |
1349 | return; | |
1350 | } | |
1351 | ||
1352 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_CTL_UNIT, sizeof(ctl_unit), &ctl_unit, NULL); | |
1353 | if (error) { | |
1354 | FDLOG(LOG_ERR, fd_cb, "failed to get the control unit: %d", error); | |
1355 | return; | |
1356 | } | |
1357 | ||
1358 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_LOCAL_ADDR, sizeof(local_address), &local_address, NULL); | |
1359 | if (error) { | |
1360 | FDLOG0(LOG_NOTICE, fd_cb, "No local address provided"); | |
1361 | } | |
1362 | ||
1363 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_REMOTE_ADDR, sizeof(remote_address), &remote_address, NULL); | |
1364 | if (error) { | |
1365 | FDLOG0(LOG_NOTICE, fd_cb, "No remote address provided"); | |
1366 | } | |
1367 | ||
1368 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_OUT_IF_INDEX, sizeof(out_if_index), &out_if_index, NULL); | |
1369 | if (error) { | |
1370 | FDLOG0(LOG_NOTICE, fd_cb, "No output if index provided"); | |
1371 | } | |
1372 | ||
1373 | connect_error = ntohl(connect_error); | |
1374 | ctl_unit = ntohl(ctl_unit); | |
1375 | ||
1376 | lck_rw_lock_shared(&g_flow_divert_group_lck); | |
1377 | ||
1378 | if (connect_error == 0) { | |
1379 | if (ctl_unit == 0 || ctl_unit >= GROUP_COUNT_MAX) { | |
1380 | FDLOG(LOG_ERR, fd_cb, "Connect result contains an invalid control unit: %u", ctl_unit); | |
1381 | error = EINVAL; | |
1382 | } else if (g_flow_divert_groups == NULL || g_active_group_count == 0) { | |
1383 | FDLOG0(LOG_ERR, fd_cb, "No active groups, dropping connection"); | |
1384 | error = EINVAL; | |
1385 | } else { | |
1386 | grp = g_flow_divert_groups[ctl_unit]; | |
1387 | if (grp == NULL) { | |
1388 | error = ECONNRESET; | |
1389 | } | |
1390 | } | |
1391 | } | |
1392 | ||
1393 | FDLOCK(fd_cb); | |
1394 | if (fd_cb->so != NULL) { | |
1395 | struct inpcb *inp = NULL; | |
1396 | struct ifnet *ifp = NULL; | |
1397 | struct flow_divert_group *old_group; | |
1398 | ||
1399 | socket_lock(fd_cb->so, 0); | |
1400 | ||
1401 | if (!(fd_cb->so->so_state & SS_ISCONNECTING)) { | |
1402 | goto done; | |
1403 | } | |
1404 | ||
1405 | inp = sotoinpcb(fd_cb->so); | |
1406 | ||
1407 | if (connect_error || error) { | |
1408 | goto set_socket_state; | |
1409 | } | |
1410 | ||
1411 | if (local_address.ss_family != 0) { | |
1412 | if (local_address.ss_len > sizeof(local_address)) { | |
1413 | local_address.ss_len = sizeof(local_address); | |
1414 | } | |
1415 | fd_cb->local_address = dup_sockaddr((struct sockaddr *)&local_address, 1); | |
1416 | } else { | |
1417 | error = EINVAL; | |
1418 | goto set_socket_state; | |
1419 | } | |
1420 | ||
1421 | if (remote_address.ss_family != 0) { | |
1422 | if (remote_address.ss_len > sizeof(remote_address)) { | |
1423 | remote_address.ss_len = sizeof(remote_address); | |
1424 | } | |
1425 | fd_cb->remote_address = dup_sockaddr((struct sockaddr *)&remote_address, 1); | |
1426 | } else { | |
1427 | error = EINVAL; | |
1428 | goto set_socket_state; | |
1429 | } | |
1430 | ||
1431 | ifnet_head_lock_shared(); | |
1432 | if (out_if_index > 0 && out_if_index <= if_index) { | |
1433 | ifp = ifindex2ifnet[out_if_index]; | |
1434 | } | |
1435 | ||
1436 | if (ifp != NULL) { | |
1437 | inp->inp_last_outifp = ifp; | |
1438 | } else { | |
1439 | error = EINVAL; | |
1440 | } | |
1441 | ifnet_head_done(); | |
1442 | ||
1443 | if (error) { | |
1444 | goto set_socket_state; | |
1445 | } | |
1446 | ||
1447 | if (fd_cb->group == NULL) { | |
1448 | error = EINVAL; | |
1449 | goto set_socket_state; | |
1450 | } | |
1451 | ||
1452 | old_group = fd_cb->group; | |
1453 | ||
1454 | lck_rw_lock_exclusive(&old_group->lck); | |
1455 | lck_rw_lock_exclusive(&grp->lck); | |
1456 | ||
1457 | RB_REMOVE(fd_pcb_tree, &old_group->pcb_tree, fd_cb); | |
1458 | if (RB_INSERT(fd_pcb_tree, &grp->pcb_tree, fd_cb) != NULL) { | |
1459 | panic("group with unit %u already contains a connection with hash %u", grp->ctl_unit, fd_cb->hash); | |
1460 | } | |
1461 | ||
1462 | fd_cb->group = grp; | |
1463 | ||
1464 | lck_rw_done(&grp->lck); | |
1465 | lck_rw_done(&old_group->lck); | |
1466 | ||
1467 | fd_cb->send_window = ntohl(send_window); | |
1468 | flow_divert_send_buffered_data(fd_cb, FALSE); | |
1469 | ||
1470 | set_socket_state: | |
1471 | if (!connect_error && !error) { | |
1472 | FDLOG0(LOG_INFO, fd_cb, "sending connect result"); | |
1473 | error = flow_divert_send_connect_result(fd_cb); | |
1474 | } | |
1475 | ||
1476 | if (connect_error || error) { | |
1477 | if (!connect_error) { | |
1478 | flow_divert_update_closed_state(fd_cb, SHUT_RDWR, FALSE); | |
1479 | fd_cb->so->so_error = error; | |
1480 | flow_divert_send_close_if_needed(fd_cb); | |
1481 | } else { | |
1482 | flow_divert_update_closed_state(fd_cb, SHUT_RDWR, TRUE); | |
1483 | fd_cb->so->so_error = connect_error; | |
1484 | } | |
1485 | soisdisconnected(fd_cb->so); | |
1486 | } else { | |
1487 | soisconnected(fd_cb->so); | |
1488 | } | |
1489 | ||
1490 | done: | |
1491 | socket_unlock(fd_cb->so, 0); | |
1492 | } | |
1493 | FDUNLOCK(fd_cb); | |
1494 | ||
1495 | lck_rw_done(&g_flow_divert_group_lck); | |
1496 | } | |
1497 | ||
1498 | static void | |
1499 | flow_divert_handle_close(struct flow_divert_pcb *fd_cb, mbuf_t packet, int offset) | |
1500 | { | |
1501 | uint32_t close_error; | |
1502 | int error = 0; | |
1503 | int how; | |
1504 | ||
1505 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_ERROR_CODE, sizeof(close_error), &close_error, NULL); | |
1506 | if (error) { | |
1507 | FDLOG(LOG_ERR, fd_cb, "failed to get the close error: %d", error); | |
1508 | return; | |
1509 | } | |
1510 | ||
1511 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_HOW, sizeof(how), &how, NULL); | |
1512 | if (error) { | |
1513 | FDLOG(LOG_ERR, fd_cb, "failed to get the close how flag: %d", error); | |
1514 | return; | |
1515 | } | |
1516 | ||
1517 | how = ntohl(how); | |
1518 | ||
1519 | FDLOG(LOG_INFO, fd_cb, "close received, how = %d", how); | |
1520 | ||
1521 | FDLOCK(fd_cb); | |
1522 | if (fd_cb->so != NULL) { | |
1523 | socket_lock(fd_cb->so, 0); | |
1524 | ||
1525 | fd_cb->so->so_error = ntohl(close_error); | |
1526 | ||
1527 | flow_divert_update_closed_state(fd_cb, how, TRUE); | |
1528 | ||
1529 | how = flow_divert_tunnel_how_closed(fd_cb); | |
1530 | if (how == SHUT_RDWR) { | |
1531 | soisdisconnected(fd_cb->so); | |
1532 | } else if (how == SHUT_RD) { | |
1533 | socantrcvmore(fd_cb->so); | |
1534 | } else if (how == SHUT_WR) { | |
1535 | socantsendmore(fd_cb->so); | |
1536 | } | |
1537 | ||
1538 | socket_unlock(fd_cb->so, 0); | |
1539 | } | |
1540 | FDUNLOCK(fd_cb); | |
1541 | } | |
1542 | ||
1543 | static void | |
1544 | flow_divert_handle_data(struct flow_divert_pcb *fd_cb, mbuf_t packet, size_t offset) | |
1545 | { | |
1546 | int error = 0; | |
1547 | mbuf_t data = NULL; | |
1548 | size_t data_size; | |
1549 | ||
1550 | data_size = (mbuf_pkthdr_len(packet) - offset); | |
1551 | ||
1552 | FDLOG(LOG_DEBUG, fd_cb, "received %lu bytes of data", data_size); | |
1553 | ||
1554 | error = mbuf_split(packet, offset, MBUF_DONTWAIT, &data); | |
1555 | if (error || data == NULL) { | |
1556 | FDLOG(LOG_ERR, fd_cb, "mbuf_split failed: %d", error); | |
1557 | return; | |
1558 | } | |
1559 | ||
1560 | FDLOCK(fd_cb); | |
1561 | if (fd_cb->so != NULL) { | |
1562 | socket_lock(fd_cb->so, 0); | |
fe8ab488 A |
1563 | if (flow_divert_check_no_cellular(fd_cb) || |
1564 | flow_divert_check_no_expensive(fd_cb)) { | |
39236c6e A |
1565 | flow_divert_update_closed_state(fd_cb, SHUT_RDWR, TRUE); |
1566 | flow_divert_send_close(fd_cb, SHUT_RDWR); | |
1567 | soisdisconnected(fd_cb->so); | |
1568 | } else if (!(fd_cb->so->so_state & SS_CANTRCVMORE)) { | |
1569 | if (sbappendstream(&fd_cb->so->so_rcv, data)) { | |
1570 | fd_cb->bytes_received += data_size; | |
1571 | flow_divert_add_data_statistics(fd_cb, data_size, FALSE); | |
1572 | fd_cb->sb_size = fd_cb->so->so_rcv.sb_cc; | |
1573 | sorwakeup(fd_cb->so); | |
1574 | data = NULL; | |
1575 | } else { | |
1576 | FDLOG0(LOG_ERR, fd_cb, "received data, but appendstream failed"); | |
1577 | } | |
1578 | } | |
1579 | socket_unlock(fd_cb->so, 0); | |
1580 | } | |
1581 | FDUNLOCK(fd_cb); | |
1582 | ||
1583 | if (data != NULL) { | |
1584 | mbuf_free(data); | |
1585 | } | |
1586 | } | |
1587 | ||
1588 | static void | |
1589 | flow_divert_handle_read_notification(struct flow_divert_pcb *fd_cb, mbuf_t packet, int offset) | |
1590 | { | |
1591 | uint32_t read_count; | |
1592 | int error = 0; | |
1593 | ||
1594 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_READ_COUNT, sizeof(read_count), &read_count, NULL); | |
1595 | if (error) { | |
1596 | FDLOG(LOG_ERR, fd_cb, "failed to get the read count: %d", error); | |
1597 | return; | |
1598 | } | |
1599 | ||
1600 | FDLOG(LOG_DEBUG, fd_cb, "received a read notification for %u bytes", read_count); | |
1601 | ||
1602 | FDLOCK(fd_cb); | |
1603 | if (fd_cb->so != NULL) { | |
1604 | socket_lock(fd_cb->so, 0); | |
1605 | fd_cb->send_window += ntohl(read_count); | |
1606 | flow_divert_send_buffered_data(fd_cb, FALSE); | |
1607 | socket_unlock(fd_cb->so, 0); | |
1608 | } | |
1609 | FDUNLOCK(fd_cb); | |
1610 | } | |
1611 | ||
1612 | static void | |
1613 | flow_divert_handle_group_init(struct flow_divert_group *group, mbuf_t packet, int offset) | |
1614 | { | |
1615 | int error = 0; | |
1616 | size_t key_size = 0; | |
1617 | int log_level; | |
1618 | ||
1619 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_TOKEN_KEY, 0, NULL, &key_size); | |
1620 | if (error) { | |
1621 | FDLOG(LOG_ERR, &nil_pcb, "failed to get the key size: %d", error); | |
1622 | return; | |
1623 | } | |
1624 | ||
1625 | if (key_size == 0 || key_size > FLOW_DIVERT_MAX_KEY_SIZE) { | |
1626 | FDLOG(LOG_ERR, &nil_pcb, "Invalid key size: %lu", key_size); | |
1627 | return; | |
1628 | } | |
1629 | ||
1630 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_LOG_LEVEL, sizeof(log_level), &log_level, NULL); | |
1631 | if (!error) { | |
1632 | nil_pcb.log_level = log_level; | |
1633 | } | |
1634 | ||
1635 | lck_rw_lock_exclusive(&group->lck); | |
1636 | ||
1637 | MALLOC(group->token_key, uint8_t *, key_size, M_TEMP, M_WAITOK); | |
1638 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_TOKEN_KEY, key_size, group->token_key, NULL); | |
1639 | if (error) { | |
1640 | FDLOG(LOG_ERR, &nil_pcb, "failed to get the token key: %d", error); | |
1641 | FREE(group->token_key, M_TEMP); | |
1642 | group->token_key = NULL; | |
1643 | lck_rw_done(&group->lck); | |
1644 | return; | |
1645 | } | |
1646 | ||
1647 | group->token_key_size = key_size; | |
1648 | ||
1649 | lck_rw_done(&group->lck); | |
1650 | } | |
1651 | ||
1652 | static void | |
1653 | flow_divert_handle_properties_update(struct flow_divert_pcb *fd_cb, mbuf_t packet, int offset) | |
1654 | { | |
1655 | int error = 0; | |
1656 | struct sockaddr_storage local_address; | |
1657 | int out_if_index = 0; | |
1658 | struct sockaddr_storage remote_address; | |
1659 | ||
1660 | FDLOG0(LOG_INFO, fd_cb, "received a properties update"); | |
1661 | ||
1662 | memset(&local_address, 0, sizeof(local_address)); | |
1663 | memset(&remote_address, 0, sizeof(remote_address)); | |
1664 | ||
1665 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_LOCAL_ADDR, sizeof(local_address), &local_address, NULL); | |
1666 | if (error) { | |
1667 | FDLOG0(LOG_INFO, fd_cb, "No local address provided"); | |
1668 | } | |
1669 | ||
1670 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_REMOTE_ADDR, sizeof(remote_address), &remote_address, NULL); | |
1671 | if (error) { | |
1672 | FDLOG0(LOG_INFO, fd_cb, "No remote address provided"); | |
1673 | } | |
1674 | ||
1675 | error = flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_OUT_IF_INDEX, sizeof(out_if_index), &out_if_index, NULL); | |
1676 | if (error) { | |
1677 | FDLOG0(LOG_INFO, fd_cb, "No output if index provided"); | |
1678 | } | |
1679 | ||
1680 | FDLOCK(fd_cb); | |
1681 | if (fd_cb->so != NULL) { | |
1682 | struct inpcb *inp = NULL; | |
1683 | struct ifnet *ifp = NULL; | |
1684 | ||
1685 | socket_lock(fd_cb->so, 0); | |
1686 | ||
1687 | inp = sotoinpcb(fd_cb->so); | |
1688 | ||
1689 | if (local_address.ss_family != 0) { | |
1690 | if (local_address.ss_len > sizeof(local_address)) { | |
1691 | local_address.ss_len = sizeof(local_address); | |
1692 | } | |
1693 | fd_cb->local_address = dup_sockaddr((struct sockaddr *)&local_address, 1); | |
1694 | } | |
1695 | ||
1696 | if (remote_address.ss_family != 0) { | |
1697 | if (remote_address.ss_len > sizeof(remote_address)) { | |
1698 | remote_address.ss_len = sizeof(remote_address); | |
1699 | } | |
1700 | fd_cb->remote_address = dup_sockaddr((struct sockaddr *)&remote_address, 1); | |
1701 | } | |
1702 | ||
1703 | ifnet_head_lock_shared(); | |
1704 | if (out_if_index > 0 && out_if_index <= if_index) { | |
1705 | ifp = ifindex2ifnet[out_if_index]; | |
1706 | } | |
1707 | ||
1708 | if (ifp != NULL) { | |
1709 | inp->inp_last_outifp = ifp; | |
1710 | } | |
1711 | ifnet_head_done(); | |
1712 | ||
1713 | socket_unlock(fd_cb->so, 0); | |
1714 | } | |
1715 | FDUNLOCK(fd_cb); | |
1716 | } | |
1717 | ||
1718 | static void | |
1719 | flow_divert_handle_app_map_create(mbuf_t packet, int offset) | |
1720 | { | |
1721 | size_t bytes_mem_size; | |
1722 | size_t child_maps_mem_size; | |
1723 | int cursor; | |
1724 | int error = 0; | |
1725 | struct flow_divert_trie new_trie; | |
1726 | int insert_error = 0; | |
1727 | size_t nodes_mem_size; | |
1728 | int prefix_count = 0; | |
1729 | int signing_id_count = 0; | |
1730 | ||
1731 | lck_rw_lock_exclusive(&g_flow_divert_group_lck); | |
1732 | ||
1733 | /* Re-set the current trie */ | |
1734 | if (g_signing_id_trie.memory != NULL) { | |
1735 | FREE(g_signing_id_trie.memory, M_TEMP); | |
1736 | } | |
1737 | memset(&g_signing_id_trie, 0, sizeof(g_signing_id_trie)); | |
1738 | g_signing_id_trie.root = NULL_TRIE_IDX; | |
1739 | ||
1740 | memset(&new_trie, 0, sizeof(new_trie)); | |
1741 | ||
1742 | /* Get the number of shared prefixes in the new set of signing ID strings */ | |
1743 | flow_divert_packet_get_tlv(packet, offset, FLOW_DIVERT_TLV_PREFIX_COUNT, sizeof(prefix_count), &prefix_count, NULL); | |
1744 | ||
1745 | /* Compute the number of signing IDs and the total amount of bytes needed to store them */ | |
1746 | for (cursor = flow_divert_packet_find_tlv(packet, offset, FLOW_DIVERT_TLV_SIGNING_ID, &error, 0); | |
1747 | cursor >= 0; | |
1748 | cursor = flow_divert_packet_find_tlv(packet, cursor, FLOW_DIVERT_TLV_SIGNING_ID, &error, 1)) | |
1749 | { | |
1750 | size_t sid_size = 0; | |
1751 | flow_divert_packet_get_tlv(packet, cursor, FLOW_DIVERT_TLV_SIGNING_ID, 0, NULL, &sid_size); | |
1752 | new_trie.bytes_count += sid_size; | |
1753 | signing_id_count++; | |
1754 | } | |
1755 | ||
1756 | if (signing_id_count == 0) { | |
1757 | lck_rw_done(&g_flow_divert_group_lck); | |
1758 | return; | |
1759 | } | |
1760 | ||
1761 | new_trie.nodes_count = (prefix_count + signing_id_count + 1); /* + 1 for the root node */ | |
1762 | new_trie.child_maps_count = (prefix_count + 1); /* + 1 for the root node */ | |
1763 | ||
1764 | FDLOG(LOG_INFO, &nil_pcb, "Nodes count = %lu, child maps count = %lu, bytes_count = %lu", | |
1765 | new_trie.nodes_count, new_trie.child_maps_count, new_trie.bytes_count); | |
1766 | ||
1767 | nodes_mem_size = (sizeof(*new_trie.nodes) * new_trie.nodes_count); | |
1768 | child_maps_mem_size = (sizeof(*new_trie.child_maps) * CHILD_MAP_SIZE * new_trie.child_maps_count); | |
1769 | bytes_mem_size = (sizeof(*new_trie.bytes) * new_trie.bytes_count); | |
1770 | ||
1771 | MALLOC(new_trie.memory, void *, nodes_mem_size + child_maps_mem_size + bytes_mem_size, M_TEMP, M_WAITOK); | |
1772 | if (new_trie.memory == NULL) { | |
1773 | FDLOG(LOG_ERR, &nil_pcb, "Failed to allocate %lu bytes of memory for the signing ID trie", | |
1774 | nodes_mem_size + child_maps_mem_size + bytes_mem_size); | |
1775 | return; | |
1776 | } | |
1777 | ||
1778 | /* Initialize the free lists */ | |
1779 | new_trie.nodes = (struct flow_divert_trie_node *)new_trie.memory; | |
1780 | new_trie.nodes_free_next = 0; | |
1781 | memset(new_trie.nodes, 0, nodes_mem_size); | |
1782 | ||
1783 | new_trie.child_maps = (uint16_t *)(void *)((uint8_t *)new_trie.memory + nodes_mem_size); | |
1784 | new_trie.child_maps_free_next = 0; | |
1785 | memset(new_trie.child_maps, 0xff, child_maps_mem_size); | |
1786 | ||
1787 | new_trie.bytes = (uint8_t *)(void *)((uint8_t *)new_trie.memory + nodes_mem_size + child_maps_mem_size); | |
1788 | new_trie.bytes_free_next = 0; | |
1789 | ||
1790 | /* The root is an empty node */ | |
1791 | new_trie.root = trie_node_alloc(&new_trie); | |
1792 | ||
1793 | /* Add each signing ID to the trie */ | |
1794 | for (cursor = flow_divert_packet_find_tlv(packet, offset, FLOW_DIVERT_TLV_SIGNING_ID, &error, 0); | |
1795 | cursor >= 0; | |
1796 | cursor = flow_divert_packet_find_tlv(packet, cursor, FLOW_DIVERT_TLV_SIGNING_ID, &error, 1)) | |
1797 | { | |
1798 | size_t sid_size = 0; | |
1799 | flow_divert_packet_get_tlv(packet, cursor, FLOW_DIVERT_TLV_SIGNING_ID, 0, NULL, &sid_size); | |
1800 | if (new_trie.bytes_free_next + sid_size <= new_trie.bytes_count) { | |
1801 | boolean_t is_dns; | |
1802 | uint16_t new_node_idx; | |
1803 | flow_divert_packet_get_tlv(packet, cursor, FLOW_DIVERT_TLV_SIGNING_ID, sid_size, &TRIE_BYTE(&new_trie, new_trie.bytes_free_next), NULL); | |
1804 | is_dns = (sid_size == sizeof(FLOW_DIVERT_DNS_SERVICE_SIGNING_ID) - 1 && | |
1805 | !memcmp(&TRIE_BYTE(&new_trie, new_trie.bytes_free_next), | |
1806 | FLOW_DIVERT_DNS_SERVICE_SIGNING_ID, | |
1807 | sid_size)); | |
1808 | new_node_idx = flow_divert_trie_insert(&new_trie, new_trie.bytes_free_next, sid_size); | |
1809 | if (new_node_idx != NULL_TRIE_IDX) { | |
1810 | if (is_dns) { | |
fe8ab488 | 1811 | FDLOG(LOG_INFO, &nil_pcb, "Setting group unit for %s to %d", FLOW_DIVERT_DNS_SERVICE_SIGNING_ID, DNS_SERVICE_GROUP_UNIT); |
39236c6e A |
1812 | TRIE_NODE(&new_trie, new_node_idx).group_unit = DNS_SERVICE_GROUP_UNIT; |
1813 | } | |
1814 | } else { | |
1815 | insert_error = EINVAL; | |
1816 | break; | |
1817 | } | |
1818 | } else { | |
1819 | FDLOG0(LOG_ERR, &nil_pcb, "No place to put signing ID for insertion"); | |
1820 | insert_error = ENOBUFS; | |
1821 | break; | |
1822 | } | |
1823 | } | |
1824 | ||
1825 | if (!insert_error) { | |
1826 | g_signing_id_trie = new_trie; | |
1827 | } else { | |
1828 | FREE(new_trie.memory, M_TEMP); | |
1829 | } | |
1830 | ||
1831 | lck_rw_done(&g_flow_divert_group_lck); | |
1832 | } | |
1833 | ||
1834 | static void | |
1835 | flow_divert_handle_app_map_update(struct flow_divert_group *group, mbuf_t packet, int offset) | |
1836 | { | |
1837 | int error = 0; | |
1838 | int cursor; | |
1839 | size_t max_size = 0; | |
1840 | uint8_t *signing_id; | |
1841 | uint32_t ctl_unit; | |
1842 | ||
1843 | lck_rw_lock_shared(&group->lck); | |
1844 | ctl_unit = group->ctl_unit; | |
1845 | lck_rw_done(&group->lck); | |
1846 | ||
1847 | for (cursor = flow_divert_packet_find_tlv(packet, offset, FLOW_DIVERT_TLV_SIGNING_ID, &error, 0); | |
1848 | cursor >= 0; | |
1849 | cursor = flow_divert_packet_find_tlv(packet, cursor, FLOW_DIVERT_TLV_SIGNING_ID, &error, 1)) | |
1850 | { | |
1851 | size_t sid_size = 0; | |
1852 | flow_divert_packet_get_tlv(packet, cursor, FLOW_DIVERT_TLV_SIGNING_ID, 0, NULL, &sid_size); | |
1853 | if (sid_size > max_size) { | |
1854 | max_size = sid_size; | |
1855 | } | |
1856 | } | |
1857 | ||
1858 | MALLOC(signing_id, uint8_t *, max_size + 1, M_TEMP, M_WAITOK); | |
1859 | if (signing_id == NULL) { | |
1860 | FDLOG(LOG_ERR, &nil_pcb, "Failed to allocate a string to hold the signing ID (size %lu)", max_size); | |
1861 | return; | |
1862 | } | |
1863 | ||
1864 | for (cursor = flow_divert_packet_find_tlv(packet, offset, FLOW_DIVERT_TLV_SIGNING_ID, &error, 0); | |
1865 | cursor >= 0; | |
1866 | cursor = flow_divert_packet_find_tlv(packet, cursor, FLOW_DIVERT_TLV_SIGNING_ID, &error, 1)) | |
1867 | { | |
1868 | size_t signing_id_len = 0; | |
1869 | uint16_t node; | |
1870 | ||
1871 | flow_divert_packet_get_tlv(packet, | |
1872 | cursor, FLOW_DIVERT_TLV_SIGNING_ID, max_size, signing_id, &signing_id_len); | |
1873 | ||
1874 | signing_id[signing_id_len] = '\0'; | |
1875 | ||
1876 | lck_rw_lock_exclusive(&g_flow_divert_group_lck); | |
1877 | ||
1878 | node = flow_divert_trie_search(&g_signing_id_trie, signing_id); | |
1879 | if (node != NULL_TRIE_IDX) { | |
1880 | if (TRIE_NODE(&g_signing_id_trie, node).group_unit != DNS_SERVICE_GROUP_UNIT) { | |
1881 | FDLOG(LOG_INFO, &nil_pcb, "Setting %s to ctl unit %u", signing_id, group->ctl_unit); | |
1882 | TRIE_NODE(&g_signing_id_trie, node).group_unit = ctl_unit; | |
1883 | } | |
1884 | } else { | |
1885 | FDLOG(LOG_ERR, &nil_pcb, "Failed to find signing ID %s", signing_id); | |
1886 | } | |
1887 | ||
1888 | lck_rw_done(&g_flow_divert_group_lck); | |
1889 | } | |
1890 | ||
1891 | FREE(signing_id, M_TEMP); | |
1892 | } | |
1893 | ||
1894 | static int | |
1895 | flow_divert_input(mbuf_t packet, struct flow_divert_group *group) | |
1896 | { | |
1897 | struct flow_divert_packet_header hdr; | |
1898 | int error = 0; | |
1899 | struct flow_divert_pcb *fd_cb; | |
1900 | ||
1901 | if (mbuf_pkthdr_len(packet) < sizeof(hdr)) { | |
1902 | FDLOG(LOG_ERR, &nil_pcb, "got a bad packet, length (%lu) < sizeof hdr (%lu)", mbuf_pkthdr_len(packet), sizeof(hdr)); | |
1903 | error = EINVAL; | |
1904 | goto done; | |
1905 | } | |
1906 | ||
1907 | error = mbuf_copydata(packet, 0, sizeof(hdr), &hdr); | |
1908 | if (error) { | |
1909 | FDLOG(LOG_ERR, &nil_pcb, "mbuf_copydata failed for the header: %d", error); | |
1910 | error = ENOBUFS; | |
1911 | goto done; | |
1912 | } | |
1913 | ||
1914 | hdr.conn_id = ntohl(hdr.conn_id); | |
1915 | ||
1916 | if (hdr.conn_id == 0) { | |
1917 | switch (hdr.packet_type) { | |
1918 | case FLOW_DIVERT_PKT_GROUP_INIT: | |
1919 | flow_divert_handle_group_init(group, packet, sizeof(hdr)); | |
1920 | break; | |
1921 | case FLOW_DIVERT_PKT_APP_MAP_CREATE: | |
1922 | flow_divert_handle_app_map_create(packet, sizeof(hdr)); | |
1923 | break; | |
1924 | case FLOW_DIVERT_PKT_APP_MAP_UPDATE: | |
1925 | flow_divert_handle_app_map_update(group, packet, sizeof(hdr)); | |
1926 | break; | |
1927 | default: | |
1928 | FDLOG(LOG_WARNING, &nil_pcb, "got an unknown message type: %d", hdr.packet_type); | |
1929 | break; | |
1930 | } | |
1931 | goto done; | |
1932 | } | |
1933 | ||
1934 | fd_cb = flow_divert_pcb_lookup(hdr.conn_id, group); /* This retains the PCB */ | |
1935 | if (fd_cb == NULL) { | |
1936 | if (hdr.packet_type != FLOW_DIVERT_PKT_CLOSE && hdr.packet_type != FLOW_DIVERT_PKT_READ_NOTIFY) { | |
1937 | FDLOG(LOG_NOTICE, &nil_pcb, "got a %s message from group %d for an unknown pcb: %u", flow_divert_packet_type2str(hdr.packet_type), group->ctl_unit, hdr.conn_id); | |
1938 | } | |
1939 | goto done; | |
1940 | } | |
1941 | ||
1942 | switch (hdr.packet_type) { | |
1943 | case FLOW_DIVERT_PKT_CONNECT_RESULT: | |
1944 | flow_divert_handle_connect_result(fd_cb, packet, sizeof(hdr)); | |
1945 | break; | |
1946 | case FLOW_DIVERT_PKT_CLOSE: | |
1947 | flow_divert_handle_close(fd_cb, packet, sizeof(hdr)); | |
1948 | break; | |
1949 | case FLOW_DIVERT_PKT_DATA: | |
1950 | flow_divert_handle_data(fd_cb, packet, sizeof(hdr)); | |
1951 | break; | |
1952 | case FLOW_DIVERT_PKT_READ_NOTIFY: | |
1953 | flow_divert_handle_read_notification(fd_cb, packet, sizeof(hdr)); | |
1954 | break; | |
1955 | case FLOW_DIVERT_PKT_PROPERTIES_UPDATE: | |
1956 | flow_divert_handle_properties_update(fd_cb, packet, sizeof(hdr)); | |
1957 | break; | |
1958 | default: | |
1959 | FDLOG(LOG_WARNING, fd_cb, "got an unknown message type: %d", hdr.packet_type); | |
1960 | break; | |
1961 | } | |
1962 | ||
1963 | FDRELEASE(fd_cb); | |
1964 | ||
1965 | done: | |
1966 | mbuf_free(packet); | |
1967 | return error; | |
1968 | } | |
1969 | ||
1970 | static void | |
1971 | flow_divert_close_all(struct flow_divert_group *group) | |
1972 | { | |
1973 | struct flow_divert_pcb *fd_cb; | |
1974 | SLIST_HEAD(, flow_divert_pcb) tmp_list; | |
1975 | ||
1976 | SLIST_INIT(&tmp_list); | |
1977 | ||
1978 | lck_rw_lock_exclusive(&group->lck); | |
1979 | ||
1980 | MBUFQ_DRAIN(&group->send_queue); | |
1981 | ||
1982 | RB_FOREACH(fd_cb, fd_pcb_tree, &group->pcb_tree) { | |
1983 | FDRETAIN(fd_cb); | |
1984 | SLIST_INSERT_HEAD(&tmp_list, fd_cb, tmp_list_entry); | |
1985 | } | |
1986 | ||
1987 | lck_rw_done(&group->lck); | |
1988 | ||
1989 | while (!SLIST_EMPTY(&tmp_list)) { | |
1990 | fd_cb = SLIST_FIRST(&tmp_list); | |
1991 | FDLOCK(fd_cb); | |
1992 | SLIST_REMOVE_HEAD(&tmp_list, tmp_list_entry); | |
1993 | if (fd_cb->so != NULL) { | |
1994 | socket_lock(fd_cb->so, 0); | |
1995 | flow_divert_pcb_remove(fd_cb); | |
1996 | flow_divert_update_closed_state(fd_cb, SHUT_RDWR, TRUE); | |
1997 | fd_cb->so->so_error = ECONNABORTED; | |
1998 | socket_unlock(fd_cb->so, 0); | |
1999 | } | |
2000 | FDUNLOCK(fd_cb); | |
2001 | FDRELEASE(fd_cb); | |
2002 | } | |
2003 | } | |
2004 | ||
2005 | void | |
2006 | flow_divert_detach(struct socket *so) | |
2007 | { | |
2008 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
2009 | ||
2010 | VERIFY((so->so_flags & SOF_FLOW_DIVERT) && so->so_fd_pcb != NULL); | |
2011 | ||
2012 | so->so_flags &= ~SOF_FLOW_DIVERT; | |
2013 | so->so_fd_pcb = NULL; | |
2014 | ||
2015 | FDLOG(LOG_INFO, fd_cb, "Detaching, ref count = %d", fd_cb->ref_count); | |
2016 | ||
2017 | if (fd_cb->group != NULL) { | |
2018 | /* Last-ditch effort to send any buffered data */ | |
2019 | flow_divert_send_buffered_data(fd_cb, TRUE); | |
2020 | ||
2021 | /* Remove from the group */ | |
2022 | flow_divert_pcb_remove(fd_cb); | |
2023 | } | |
2024 | ||
2025 | socket_unlock(so, 0); | |
2026 | FDLOCK(fd_cb); | |
2027 | fd_cb->so = NULL; | |
2028 | FDUNLOCK(fd_cb); | |
2029 | socket_lock(so, 0); | |
2030 | ||
2031 | FDRELEASE(fd_cb); /* Release the socket's reference */ | |
2032 | } | |
2033 | ||
2034 | static int | |
2035 | flow_divert_close(struct socket *so) | |
2036 | { | |
2037 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
2038 | ||
2039 | VERIFY((so->so_flags & SOF_FLOW_DIVERT) && so->so_fd_pcb != NULL); | |
2040 | ||
2041 | FDLOG0(LOG_INFO, fd_cb, "Closing"); | |
2042 | ||
2043 | soisdisconnecting(so); | |
2044 | sbflush(&so->so_rcv); | |
2045 | ||
2046 | flow_divert_send_buffered_data(fd_cb, TRUE); | |
2047 | flow_divert_update_closed_state(fd_cb, SHUT_RDWR, FALSE); | |
2048 | flow_divert_send_close_if_needed(fd_cb); | |
2049 | ||
2050 | /* Remove from the group */ | |
2051 | flow_divert_pcb_remove(fd_cb); | |
2052 | ||
2053 | return 0; | |
2054 | } | |
2055 | ||
2056 | static int | |
2057 | flow_divert_disconnectx(struct socket *so, associd_t aid, connid_t cid __unused) | |
2058 | { | |
2059 | if (aid != ASSOCID_ANY && aid != ASSOCID_ALL) { | |
2060 | return (EINVAL); | |
2061 | } | |
2062 | ||
2063 | return (flow_divert_close(so)); | |
2064 | } | |
2065 | ||
2066 | static int | |
2067 | flow_divert_shutdown(struct socket *so) | |
2068 | { | |
2069 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
2070 | ||
2071 | VERIFY((so->so_flags & SOF_FLOW_DIVERT) && so->so_fd_pcb != NULL); | |
2072 | ||
2073 | FDLOG0(LOG_INFO, fd_cb, "Can't send more"); | |
2074 | ||
2075 | socantsendmore(so); | |
2076 | ||
2077 | flow_divert_update_closed_state(fd_cb, SHUT_WR, FALSE); | |
2078 | flow_divert_send_close_if_needed(fd_cb); | |
2079 | ||
2080 | return 0; | |
2081 | } | |
2082 | ||
2083 | static int | |
2084 | flow_divert_rcvd(struct socket *so, int flags __unused) | |
2085 | { | |
2086 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
2087 | uint32_t latest_sb_size; | |
2088 | uint32_t read_count; | |
2089 | ||
2090 | VERIFY((so->so_flags & SOF_FLOW_DIVERT) && so->so_fd_pcb != NULL); | |
2091 | ||
2092 | latest_sb_size = fd_cb->so->so_rcv.sb_cc; | |
2093 | ||
2094 | if (fd_cb->sb_size < latest_sb_size) { | |
2095 | panic("flow divert rcvd event handler (%u): saved rcv buffer size (%u) is less than latest rcv buffer size (%u)", | |
2096 | fd_cb->hash, fd_cb->sb_size, latest_sb_size); | |
2097 | } | |
2098 | ||
2099 | read_count = fd_cb->sb_size - latest_sb_size; | |
2100 | ||
2101 | FDLOG(LOG_DEBUG, fd_cb, "app read %u bytes", read_count); | |
2102 | ||
2103 | if (read_count > 0 && flow_divert_send_read_notification(fd_cb, read_count) == 0) { | |
2104 | fd_cb->bytes_read_by_app += read_count; | |
2105 | fd_cb->sb_size = latest_sb_size; | |
2106 | } | |
2107 | ||
2108 | return 0; | |
2109 | } | |
2110 | ||
2111 | static errno_t | |
2112 | flow_divert_dup_addr(sa_family_t family, struct sockaddr *addr, | |
2113 | struct sockaddr **dup) | |
2114 | { | |
2115 | int error = 0; | |
2116 | struct sockaddr *result; | |
2117 | struct sockaddr_storage ss; | |
2118 | ||
2119 | if (addr != NULL) { | |
2120 | result = addr; | |
2121 | } else { | |
2122 | memset(&ss, 0, sizeof(ss)); | |
2123 | ss.ss_family = family; | |
2124 | if (ss.ss_family == AF_INET) { | |
2125 | ss.ss_len = sizeof(struct sockaddr_in); | |
2126 | } | |
2127 | #if INET6 | |
2128 | else if (ss.ss_family == AF_INET6) { | |
2129 | ss.ss_len = sizeof(struct sockaddr_in6); | |
2130 | } | |
2131 | #endif /* INET6 */ | |
2132 | else { | |
2133 | error = EINVAL; | |
2134 | } | |
2135 | result = (struct sockaddr *)&ss; | |
2136 | } | |
2137 | ||
2138 | if (!error) { | |
2139 | *dup = dup_sockaddr(result, 1); | |
2140 | if (*dup == NULL) { | |
2141 | error = ENOBUFS; | |
2142 | } | |
2143 | } | |
2144 | ||
2145 | return error; | |
2146 | } | |
2147 | ||
2148 | static errno_t | |
2149 | flow_divert_getpeername(struct socket *so, struct sockaddr **sa) | |
2150 | { | |
2151 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
2152 | ||
2153 | VERIFY((so->so_flags & SOF_FLOW_DIVERT) && so->so_fd_pcb != NULL); | |
2154 | ||
2155 | return flow_divert_dup_addr(so->so_proto->pr_domain->dom_family, | |
2156 | fd_cb->remote_address, | |
2157 | sa); | |
2158 | } | |
2159 | ||
2160 | static errno_t | |
2161 | flow_divert_getsockaddr(struct socket *so, struct sockaddr **sa) | |
2162 | { | |
2163 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
2164 | ||
2165 | VERIFY((so->so_flags & SOF_FLOW_DIVERT) && so->so_fd_pcb != NULL); | |
2166 | ||
2167 | return flow_divert_dup_addr(so->so_proto->pr_domain->dom_family, | |
2168 | fd_cb->local_address, | |
2169 | sa); | |
2170 | } | |
2171 | ||
2172 | static errno_t | |
2173 | flow_divert_ctloutput(struct socket *so, struct sockopt *sopt) | |
2174 | { | |
2175 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
2176 | ||
2177 | VERIFY((so->so_flags & SOF_FLOW_DIVERT) && so->so_fd_pcb != NULL); | |
2178 | ||
2179 | if (sopt->sopt_name == SO_TRAFFIC_CLASS) { | |
2180 | if (sopt->sopt_dir == SOPT_SET && fd_cb->flags & FLOW_DIVERT_CONNECT_STARTED) { | |
2181 | flow_divert_send_traffic_class_update(fd_cb, so->so_traffic_class); | |
2182 | } | |
2183 | } | |
2184 | ||
2185 | if (SOCK_DOM(so) == PF_INET) { | |
2186 | return g_tcp_protosw->pr_ctloutput(so, sopt); | |
2187 | } | |
2188 | #if INET6 | |
2189 | else if (SOCK_DOM(so) == PF_INET6) { | |
2190 | return g_tcp6_protosw->pr_ctloutput(so, sopt); | |
2191 | } | |
2192 | #endif | |
2193 | return 0; | |
2194 | } | |
2195 | ||
2196 | errno_t | |
2197 | flow_divert_connect_out(struct socket *so, struct sockaddr *to, proc_t p) | |
2198 | { | |
2199 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
2200 | int error = 0; | |
2201 | struct inpcb *inp = sotoinpcb(so); | |
2202 | struct sockaddr_in *sinp; | |
fe8ab488 A |
2203 | mbuf_t connect_packet = NULL; |
2204 | char *signing_id = NULL; | |
2205 | int free_signing_id = 0; | |
39236c6e A |
2206 | |
2207 | VERIFY((so->so_flags & SOF_FLOW_DIVERT) && so->so_fd_pcb != NULL); | |
2208 | ||
2209 | if (fd_cb->group == NULL) { | |
2210 | error = ENETUNREACH; | |
2211 | goto done; | |
2212 | } | |
2213 | ||
2214 | if (inp == NULL) { | |
2215 | error = EINVAL; | |
2216 | goto done; | |
2217 | } else if (inp->inp_state == INPCB_STATE_DEAD) { | |
2218 | if (so->so_error) { | |
2219 | error = so->so_error; | |
2220 | so->so_error = 0; | |
2221 | } else { | |
2222 | error = EINVAL; | |
2223 | } | |
2224 | goto done; | |
2225 | } | |
2226 | ||
2227 | sinp = (struct sockaddr_in *)(void *)to; | |
2228 | if (sinp->sin_family == AF_INET && IN_MULTICAST(ntohl(sinp->sin_addr.s_addr))) { | |
2229 | error = EAFNOSUPPORT; | |
2230 | goto done; | |
2231 | } | |
2232 | ||
2233 | if ((fd_cb->flags & FLOW_DIVERT_CONNECT_STARTED) && !(fd_cb->flags & FLOW_DIVERT_TRANSFERRED)) { | |
2234 | error = EALREADY; | |
2235 | goto done; | |
2236 | } | |
2237 | ||
2238 | if (fd_cb->flags & FLOW_DIVERT_TRANSFERRED) { | |
2239 | FDLOG0(LOG_INFO, fd_cb, "fully transferred"); | |
2240 | fd_cb->flags &= ~FLOW_DIVERT_TRANSFERRED; | |
2241 | if (fd_cb->remote_address != NULL) { | |
2242 | soisconnected(fd_cb->so); | |
2243 | goto done; | |
2244 | } | |
2245 | } | |
2246 | ||
fe8ab488 A |
2247 | error = flow_divert_packet_init(fd_cb, FLOW_DIVERT_PKT_CONNECT, &connect_packet); |
2248 | if (error) { | |
2249 | goto done; | |
2250 | } | |
2251 | ||
2252 | error = EPERM; | |
2253 | ||
2254 | if (fd_cb->connect_token != NULL) { | |
2255 | size_t sid_size = 0; | |
2256 | int find_error = flow_divert_packet_get_tlv(fd_cb->connect_token, 0, FLOW_DIVERT_TLV_SIGNING_ID, 0, NULL, &sid_size); | |
2257 | if (find_error == 0 && sid_size > 0) { | |
2258 | MALLOC(signing_id, char *, sid_size + 1, M_TEMP, M_WAITOK | M_ZERO); | |
2259 | if (signing_id != NULL) { | |
2260 | flow_divert_packet_get_tlv(fd_cb->connect_token, 0, FLOW_DIVERT_TLV_SIGNING_ID, sid_size, signing_id, NULL); | |
2261 | FDLOG(LOG_INFO, fd_cb, "Got %s from token", signing_id); | |
2262 | free_signing_id = 1; | |
2263 | } | |
2264 | } | |
2265 | } | |
2266 | ||
2267 | socket_unlock(so, 0); | |
2268 | if (g_signing_id_trie.root != NULL_TRIE_IDX) { | |
2269 | proc_t src_proc = p; | |
2270 | int release_proc = 0; | |
2271 | ||
2272 | if (signing_id == NULL) { | |
2273 | release_proc = flow_divert_get_src_proc(so, &src_proc, FALSE); | |
2274 | if (src_proc != PROC_NULL) { | |
2275 | proc_lock(src_proc); | |
2276 | if (src_proc->p_csflags & CS_VALID) { | |
2277 | signing_id = (char *)cs_identity_get(src_proc); | |
2278 | } else { | |
2279 | FDLOG0(LOG_WARNING, fd_cb, "Signature is invalid"); | |
2280 | } | |
2281 | } else { | |
2282 | FDLOG0(LOG_WARNING, fd_cb, "Failed to determine the current proc"); | |
2283 | } | |
2284 | } else { | |
2285 | src_proc = PROC_NULL; | |
2286 | } | |
2287 | ||
2288 | if (signing_id != NULL) { | |
2289 | uint16_t result = NULL_TRIE_IDX; | |
2290 | lck_rw_lock_shared(&g_flow_divert_group_lck); | |
2291 | result = flow_divert_trie_search(&g_signing_id_trie, (const uint8_t *)signing_id); | |
2292 | lck_rw_done(&g_flow_divert_group_lck); | |
2293 | if (result != NULL_TRIE_IDX) { | |
2294 | error = 0; | |
2295 | FDLOG(LOG_INFO, fd_cb, "%s matched", signing_id); | |
2296 | ||
2297 | error = flow_divert_packet_append_tlv(connect_packet, FLOW_DIVERT_TLV_SIGNING_ID, strlen(signing_id), signing_id); | |
2298 | if (error == 0) { | |
2299 | if (src_proc != PROC_NULL) { | |
2300 | unsigned char cdhash[SHA1_RESULTLEN]; | |
2301 | error = proc_getcdhash(src_proc, cdhash); | |
2302 | if (error == 0) { | |
2303 | error = flow_divert_packet_append_tlv(connect_packet, FLOW_DIVERT_TLV_CDHASH, sizeof(cdhash), cdhash); | |
2304 | if (error) { | |
2305 | FDLOG(LOG_ERR, fd_cb, "failed to append the cdhash: %d", error); | |
2306 | } | |
2307 | } else { | |
2308 | FDLOG(LOG_ERR, fd_cb, "failed to get the cdhash: %d", error); | |
2309 | } | |
2310 | } | |
2311 | } else { | |
2312 | FDLOG(LOG_ERR, fd_cb, "failed to append the signing ID: %d", error); | |
2313 | } | |
2314 | } else { | |
2315 | FDLOG(LOG_WARNING, fd_cb, "%s did not match", signing_id); | |
2316 | } | |
2317 | } else { | |
2318 | FDLOG0(LOG_WARNING, fd_cb, "Failed to get the code signing identity"); | |
2319 | } | |
2320 | ||
2321 | if (src_proc != PROC_NULL) { | |
2322 | proc_unlock(src_proc); | |
2323 | if (release_proc) { | |
2324 | proc_rele(src_proc); | |
2325 | } | |
2326 | } | |
2327 | } else { | |
2328 | FDLOG0(LOG_WARNING, fd_cb, "The signing ID trie is empty"); | |
2329 | } | |
2330 | socket_lock(so, 0); | |
2331 | ||
2332 | if (free_signing_id) { | |
2333 | FREE(signing_id, M_TEMP); | |
2334 | } | |
2335 | ||
2336 | if (error) { | |
2337 | goto done; | |
2338 | } | |
2339 | ||
39236c6e A |
2340 | FDLOG0(LOG_INFO, fd_cb, "Connecting"); |
2341 | ||
fe8ab488 | 2342 | error = flow_divert_send_connect(fd_cb, to, connect_packet); |
39236c6e A |
2343 | if (error) { |
2344 | goto done; | |
2345 | } | |
2346 | ||
2347 | fd_cb->flags |= FLOW_DIVERT_CONNECT_STARTED; | |
2348 | ||
2349 | soisconnecting(so); | |
2350 | ||
2351 | done: | |
fe8ab488 A |
2352 | if (error && connect_packet != NULL) { |
2353 | mbuf_free(connect_packet); | |
2354 | } | |
39236c6e A |
2355 | return error; |
2356 | } | |
2357 | ||
2358 | static int | |
2359 | flow_divert_connectx_out_common(struct socket *so, int af, | |
2360 | struct sockaddr_list **src_sl, struct sockaddr_list **dst_sl, | |
2361 | struct proc *p, uint32_t ifscope __unused, associd_t aid __unused, | |
2362 | connid_t *pcid, uint32_t flags __unused, void *arg __unused, | |
2363 | uint32_t arglen __unused) | |
2364 | { | |
2365 | struct sockaddr_entry *src_se = NULL, *dst_se = NULL; | |
2366 | struct inpcb *inp = sotoinpcb(so); | |
2367 | int error; | |
2368 | ||
2369 | if (inp == NULL) { | |
2370 | return (EINVAL); | |
2371 | } | |
2372 | ||
2373 | VERIFY(dst_sl != NULL); | |
2374 | ||
2375 | /* select source (if specified) and destination addresses */ | |
2376 | error = in_selectaddrs(af, src_sl, &src_se, dst_sl, &dst_se); | |
2377 | if (error != 0) { | |
2378 | return (error); | |
2379 | } | |
2380 | ||
2381 | VERIFY(*dst_sl != NULL && dst_se != NULL); | |
2382 | VERIFY(src_se == NULL || *src_sl != NULL); | |
2383 | VERIFY(dst_se->se_addr->sa_family == af); | |
2384 | VERIFY(src_se == NULL || src_se->se_addr->sa_family == af); | |
2385 | ||
2386 | error = flow_divert_connect_out(so, dst_se->se_addr, p); | |
2387 | ||
2388 | if (error == 0 && pcid != NULL) { | |
2389 | *pcid = 1; /* there is only 1 connection for a TCP */ | |
2390 | } | |
2391 | ||
2392 | return (error); | |
2393 | } | |
2394 | ||
2395 | static int | |
2396 | flow_divert_connectx_out(struct socket *so, struct sockaddr_list **src_sl, | |
2397 | struct sockaddr_list **dst_sl, struct proc *p, uint32_t ifscope, | |
2398 | associd_t aid, connid_t *pcid, uint32_t flags, void *arg, | |
2399 | uint32_t arglen) | |
2400 | { | |
2401 | return (flow_divert_connectx_out_common(so, AF_INET, src_sl, dst_sl, | |
2402 | p, ifscope, aid, pcid, flags, arg, arglen)); | |
2403 | } | |
2404 | ||
2405 | #if INET6 | |
2406 | static int | |
2407 | flow_divert_connectx6_out(struct socket *so, struct sockaddr_list **src_sl, | |
2408 | struct sockaddr_list **dst_sl, struct proc *p, uint32_t ifscope, | |
2409 | associd_t aid, connid_t *pcid, uint32_t flags, void *arg, | |
2410 | uint32_t arglen) | |
2411 | { | |
2412 | return (flow_divert_connectx_out_common(so, AF_INET6, src_sl, dst_sl, | |
2413 | p, ifscope, aid, pcid, flags, arg, arglen)); | |
2414 | } | |
2415 | #endif /* INET6 */ | |
2416 | ||
2417 | static int | |
2418 | flow_divert_getconninfo(struct socket *so, connid_t cid, uint32_t *flags, | |
2419 | uint32_t *ifindex, int32_t *soerror, user_addr_t src, socklen_t *src_len, | |
2420 | user_addr_t dst, socklen_t *dst_len, uint32_t *aux_type, | |
2421 | user_addr_t aux_data __unused, uint32_t *aux_len) | |
2422 | { | |
2423 | int error = 0; | |
2424 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
2425 | struct ifnet *ifp = NULL; | |
2426 | struct inpcb *inp = sotoinpcb(so); | |
2427 | ||
2428 | VERIFY((so->so_flags & SOF_FLOW_DIVERT)); | |
2429 | ||
2430 | if (so->so_fd_pcb == NULL || inp == NULL) { | |
2431 | error = EINVAL; | |
2432 | goto out; | |
2433 | } | |
2434 | ||
2435 | if (cid != CONNID_ANY && cid != CONNID_ALL && cid != 1) { | |
2436 | error = EINVAL; | |
2437 | goto out; | |
2438 | } | |
2439 | ||
2440 | ifp = inp->inp_last_outifp; | |
2441 | *ifindex = ((ifp != NULL) ? ifp->if_index : 0); | |
2442 | *soerror = so->so_error; | |
2443 | *flags = 0; | |
2444 | ||
2445 | if (so->so_state & SS_ISCONNECTED) { | |
2446 | *flags |= (CIF_CONNECTED | CIF_PREFERRED); | |
2447 | } | |
2448 | ||
2449 | if (fd_cb->local_address == NULL) { | |
2450 | struct sockaddr_in sin; | |
2451 | bzero(&sin, sizeof(sin)); | |
2452 | sin.sin_len = sizeof(sin); | |
2453 | sin.sin_family = AF_INET; | |
2454 | *src_len = sin.sin_len; | |
2455 | if (src != USER_ADDR_NULL) { | |
2456 | error = copyout(&sin, src, sin.sin_len); | |
2457 | if (error != 0) { | |
2458 | goto out; | |
2459 | } | |
2460 | } | |
2461 | } else { | |
2462 | *src_len = fd_cb->local_address->sa_len; | |
2463 | if (src != USER_ADDR_NULL) { | |
2464 | error = copyout(fd_cb->local_address, src, fd_cb->local_address->sa_len); | |
2465 | if (error != 0) { | |
2466 | goto out; | |
2467 | } | |
2468 | } | |
2469 | } | |
2470 | ||
2471 | if (fd_cb->remote_address == NULL) { | |
2472 | struct sockaddr_in sin; | |
2473 | bzero(&sin, sizeof(sin)); | |
2474 | sin.sin_len = sizeof(sin); | |
2475 | sin.sin_family = AF_INET; | |
2476 | *dst_len = sin.sin_len; | |
2477 | if (dst != USER_ADDR_NULL) { | |
2478 | error = copyout(&sin, dst, sin.sin_len); | |
2479 | if (error != 0) { | |
2480 | goto out; | |
2481 | } | |
2482 | } | |
2483 | } else { | |
2484 | *dst_len = fd_cb->remote_address->sa_len; | |
2485 | if (dst != USER_ADDR_NULL) { | |
2486 | error = copyout(fd_cb->remote_address, dst, fd_cb->remote_address->sa_len); | |
2487 | if (error != 0) { | |
2488 | goto out; | |
2489 | } | |
2490 | } | |
2491 | } | |
2492 | ||
2493 | *aux_type = 0; | |
2494 | *aux_len = 0; | |
2495 | ||
2496 | out: | |
2497 | return error; | |
2498 | } | |
2499 | ||
2500 | static int | |
2501 | flow_divert_control(struct socket *so, u_long cmd, caddr_t data, struct ifnet *ifp __unused, struct proc *p __unused) | |
2502 | { | |
2503 | int error = 0; | |
2504 | ||
2505 | switch (cmd) { | |
2506 | case SIOCGCONNINFO32: { | |
2507 | struct so_cinforeq32 cifr; | |
2508 | bcopy(data, &cifr, sizeof (cifr)); | |
2509 | error = flow_divert_getconninfo(so, cifr.scir_cid, &cifr.scir_flags, | |
2510 | &cifr.scir_ifindex, &cifr.scir_error, cifr.scir_src, | |
2511 | &cifr.scir_src_len, cifr.scir_dst, &cifr.scir_dst_len, | |
2512 | &cifr.scir_aux_type, cifr.scir_aux_data, | |
2513 | &cifr.scir_aux_len); | |
2514 | if (error == 0) { | |
2515 | bcopy(&cifr, data, sizeof (cifr)); | |
2516 | } | |
2517 | break; | |
2518 | } | |
2519 | ||
2520 | case SIOCGCONNINFO64: { | |
2521 | struct so_cinforeq64 cifr; | |
2522 | bcopy(data, &cifr, sizeof (cifr)); | |
2523 | error = flow_divert_getconninfo(so, cifr.scir_cid, &cifr.scir_flags, | |
2524 | &cifr.scir_ifindex, &cifr.scir_error, cifr.scir_src, | |
2525 | &cifr.scir_src_len, cifr.scir_dst, &cifr.scir_dst_len, | |
2526 | &cifr.scir_aux_type, cifr.scir_aux_data, | |
2527 | &cifr.scir_aux_len); | |
2528 | if (error == 0) { | |
2529 | bcopy(&cifr, data, sizeof (cifr)); | |
2530 | } | |
2531 | break; | |
2532 | } | |
2533 | ||
2534 | default: | |
2535 | error = EOPNOTSUPP; | |
2536 | } | |
2537 | ||
2538 | return error; | |
2539 | } | |
2540 | ||
2541 | static int | |
2542 | flow_divert_in_control(struct socket *so, u_long cmd, caddr_t data, struct ifnet *ifp, struct proc *p) | |
2543 | { | |
2544 | int error = flow_divert_control(so, cmd, data, ifp, p); | |
2545 | ||
2546 | if (error == EOPNOTSUPP) { | |
2547 | error = in_control(so, cmd, data, ifp, p); | |
2548 | } | |
2549 | ||
2550 | return error; | |
2551 | } | |
2552 | ||
2553 | static int | |
2554 | flow_divert_in6_control(struct socket *so, u_long cmd, caddr_t data, struct ifnet *ifp, struct proc *p) | |
2555 | { | |
2556 | int error = flow_divert_control(so, cmd, data, ifp, p); | |
2557 | ||
2558 | if (error == EOPNOTSUPP) { | |
2559 | error = in6_control(so, cmd, data, ifp, p); | |
2560 | } | |
2561 | ||
2562 | return error; | |
2563 | } | |
2564 | ||
2565 | static errno_t | |
2566 | flow_divert_data_out(struct socket *so, int flags, mbuf_t data, struct sockaddr *to, mbuf_t control, struct proc *p __unused) | |
2567 | { | |
2568 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
2569 | int error = 0; | |
2570 | struct inpcb *inp; | |
2571 | ||
2572 | VERIFY((so->so_flags & SOF_FLOW_DIVERT) && so->so_fd_pcb != NULL); | |
2573 | ||
2574 | inp = sotoinpcb(so); | |
2575 | if (inp == NULL || inp->inp_state == INPCB_STATE_DEAD) { | |
2576 | error = ECONNRESET; | |
2577 | goto done; | |
2578 | } | |
2579 | ||
2580 | if (control && mbuf_len(control) > 0) { | |
2581 | error = EINVAL; | |
2582 | goto done; | |
2583 | } | |
2584 | ||
2585 | if (flags & MSG_OOB) { | |
2586 | error = EINVAL; | |
2587 | goto done; /* We don't support OOB data */ | |
2588 | } | |
2589 | ||
fe8ab488 A |
2590 | error = flow_divert_check_no_cellular(fd_cb) || |
2591 | flow_divert_check_no_expensive(fd_cb); | |
39236c6e A |
2592 | if (error) { |
2593 | goto done; | |
2594 | } | |
2595 | ||
2596 | /* Implicit connect */ | |
2597 | if (!(fd_cb->flags & FLOW_DIVERT_CONNECT_STARTED)) { | |
2598 | FDLOG0(LOG_INFO, fd_cb, "implicit connect"); | |
2599 | error = flow_divert_connect_out(so, to, NULL); | |
2600 | if (error) { | |
2601 | goto done; | |
2602 | } | |
2603 | } | |
2604 | ||
2605 | FDLOG(LOG_DEBUG, fd_cb, "app wrote %lu bytes", mbuf_pkthdr_len(data)); | |
2606 | ||
2607 | fd_cb->bytes_written_by_app += mbuf_pkthdr_len(data); | |
2608 | error = flow_divert_send_app_data(fd_cb, data); | |
2609 | if (error) { | |
2610 | goto done; | |
2611 | } | |
2612 | ||
2613 | data = NULL; | |
2614 | ||
2615 | if (flags & PRUS_EOF) { | |
2616 | flow_divert_shutdown(so); | |
2617 | } | |
2618 | ||
2619 | done: | |
2620 | if (data) { | |
2621 | mbuf_free(data); | |
2622 | } | |
2623 | if (control) { | |
2624 | mbuf_free(control); | |
2625 | } | |
2626 | return error; | |
2627 | } | |
2628 | ||
39236c6e A |
2629 | static void |
2630 | flow_divert_set_protosw(struct socket *so) | |
2631 | { | |
2632 | so->so_flags |= SOF_FLOW_DIVERT; | |
2633 | if (SOCK_DOM(so) == PF_INET) { | |
2634 | so->so_proto = &g_flow_divert_in_protosw; | |
2635 | } | |
2636 | #if INET6 | |
2637 | else { | |
2638 | so->so_proto = (struct protosw *)&g_flow_divert_in6_protosw; | |
2639 | } | |
2640 | #endif /* INET6 */ | |
2641 | } | |
2642 | ||
2643 | static errno_t | |
2644 | flow_divert_attach(struct socket *so, uint32_t flow_id, uint32_t ctl_unit) | |
2645 | { | |
2646 | int error = 0; | |
2647 | struct flow_divert_pcb *fd_cb = NULL; | |
2648 | struct ifnet *ifp = NULL; | |
2649 | struct inpcb *inp = NULL; | |
2650 | struct socket *old_so; | |
2651 | mbuf_t recv_data = NULL; | |
2652 | ||
2653 | socket_unlock(so, 0); | |
2654 | ||
2655 | FDLOG(LOG_INFO, &nil_pcb, "Attaching socket to flow %u", flow_id); | |
2656 | ||
2657 | /* Find the flow divert control block */ | |
2658 | lck_rw_lock_shared(&g_flow_divert_group_lck); | |
2659 | if (g_flow_divert_groups != NULL && g_active_group_count > 0) { | |
2660 | struct flow_divert_group *group = g_flow_divert_groups[ctl_unit]; | |
2661 | if (group != NULL) { | |
2662 | fd_cb = flow_divert_pcb_lookup(flow_id, group); | |
2663 | } | |
2664 | } | |
2665 | lck_rw_done(&g_flow_divert_group_lck); | |
2666 | ||
2667 | if (fd_cb == NULL) { | |
2668 | error = ENOENT; | |
2669 | goto done; | |
2670 | } | |
2671 | ||
2672 | FDLOCK(fd_cb); | |
2673 | ||
2674 | /* Dis-associate the flow divert control block from its current socket */ | |
2675 | old_so = fd_cb->so; | |
2676 | ||
2677 | inp = sotoinpcb(old_so); | |
2678 | ||
2679 | VERIFY(inp != NULL); | |
2680 | ||
2681 | socket_lock(old_so, 0); | |
2682 | soisdisconnected(old_so); | |
2683 | old_so->so_flags &= ~SOF_FLOW_DIVERT; | |
2684 | old_so->so_fd_pcb = NULL; | |
2685 | old_so->so_proto = pffindproto(SOCK_DOM(old_so), IPPROTO_TCP, SOCK_STREAM); | |
2686 | fd_cb->so = NULL; | |
2687 | /* Save the output interface */ | |
2688 | ifp = inp->inp_last_outifp; | |
2689 | if (old_so->so_rcv.sb_cc > 0) { | |
2690 | error = mbuf_dup(old_so->so_rcv.sb_mb, MBUF_DONTWAIT, &recv_data); | |
2691 | sbflush(&old_so->so_rcv); | |
2692 | } | |
2693 | socket_unlock(old_so, 0); | |
2694 | ||
2695 | /* Associate the new socket with the flow divert control block */ | |
2696 | socket_lock(so, 0); | |
2697 | so->so_fd_pcb = fd_cb; | |
2698 | inp = sotoinpcb(so); | |
2699 | inp->inp_last_outifp = ifp; | |
2700 | if (recv_data != NULL) { | |
2701 | if (sbappendstream(&so->so_rcv, recv_data)) { | |
2702 | sorwakeup(so); | |
2703 | } | |
2704 | } | |
2705 | flow_divert_set_protosw(so); | |
2706 | socket_unlock(so, 0); | |
2707 | ||
2708 | fd_cb->so = so; | |
2709 | fd_cb->flags |= FLOW_DIVERT_TRANSFERRED; | |
2710 | ||
2711 | FDUNLOCK(fd_cb); | |
2712 | ||
2713 | done: | |
2714 | socket_lock(so, 0); | |
2715 | ||
2716 | if (fd_cb != NULL) { | |
2717 | FDRELEASE(fd_cb); /* Release the reference obtained via flow_divert_pcb_lookup */ | |
2718 | } | |
2719 | ||
2720 | return error; | |
2721 | } | |
2722 | ||
2723 | errno_t | |
2724 | flow_divert_pcb_init(struct socket *so, uint32_t ctl_unit) | |
2725 | { | |
2726 | errno_t error = 0; | |
2727 | struct flow_divert_pcb *fd_cb; | |
2728 | ||
2729 | if (so->so_flags & SOF_FLOW_DIVERT) { | |
2730 | return EALREADY; | |
2731 | } | |
2732 | ||
2733 | fd_cb = flow_divert_pcb_create(so); | |
2734 | if (fd_cb != NULL) { | |
2735 | error = flow_divert_pcb_insert(fd_cb, ctl_unit); | |
2736 | if (error) { | |
2737 | FDLOG(LOG_ERR, fd_cb, "pcb insert failed: %d", error); | |
2738 | FDRELEASE(fd_cb); | |
2739 | } else { | |
2740 | fd_cb->log_level = LOG_NOTICE; | |
2741 | fd_cb->control_group_unit = ctl_unit; | |
2742 | so->so_fd_pcb = fd_cb; | |
2743 | ||
2744 | flow_divert_set_protosw(so); | |
2745 | ||
2746 | FDLOG0(LOG_INFO, fd_cb, "Created"); | |
2747 | } | |
2748 | } else { | |
2749 | error = ENOMEM; | |
2750 | } | |
2751 | ||
2752 | return error; | |
2753 | } | |
2754 | ||
2755 | errno_t | |
2756 | flow_divert_token_set(struct socket *so, struct sockopt *sopt) | |
2757 | { | |
2758 | uint32_t ctl_unit = 0; | |
2759 | uint32_t key_unit = 0; | |
2760 | uint32_t flow_id = 0; | |
2761 | int error = 0; | |
2762 | mbuf_t token = NULL; | |
2763 | ||
2764 | if (so->so_flags & SOF_FLOW_DIVERT) { | |
2765 | error = EALREADY; | |
2766 | goto done; | |
2767 | } | |
2768 | ||
2769 | if (g_init_result) { | |
2770 | FDLOG(LOG_ERR, &nil_pcb, "flow_divert_init failed (%d), cannot use flow divert", g_init_result); | |
2771 | error = ENOPROTOOPT; | |
2772 | goto done; | |
2773 | } | |
2774 | ||
2775 | if (SOCK_TYPE(so) != SOCK_STREAM || | |
2776 | SOCK_PROTO(so) != IPPROTO_TCP || | |
2777 | (SOCK_DOM(so) != PF_INET | |
2778 | #if INET6 | |
2779 | && SOCK_DOM(so) != PF_INET6 | |
2780 | #endif | |
2781 | )) | |
2782 | { | |
2783 | error = EINVAL; | |
2784 | goto done; | |
2785 | } else { | |
2786 | struct tcpcb *tp = sototcpcb(so); | |
2787 | if (tp == NULL || tp->t_state != TCPS_CLOSED) { | |
2788 | error = EINVAL; | |
2789 | goto done; | |
2790 | } | |
2791 | } | |
2792 | ||
2793 | error = soopt_getm(sopt, &token); | |
2794 | if (error) { | |
2795 | goto done; | |
2796 | } | |
2797 | ||
2798 | error = soopt_mcopyin(sopt, token); | |
2799 | if (error) { | |
2800 | goto done; | |
2801 | } | |
2802 | ||
2803 | error = flow_divert_packet_get_tlv(token, 0, FLOW_DIVERT_TLV_KEY_UNIT, sizeof(key_unit), (void *)&key_unit, NULL); | |
2804 | if (!error) { | |
2805 | key_unit = ntohl(key_unit); | |
2806 | } else if (error != ENOENT) { | |
2807 | FDLOG(LOG_ERR, &nil_pcb, "Failed to get the key unit from the token: %d", error); | |
2808 | goto done; | |
2809 | } else { | |
2810 | key_unit = 0; | |
2811 | } | |
2812 | ||
2813 | error = flow_divert_packet_get_tlv(token, 0, FLOW_DIVERT_TLV_CTL_UNIT, sizeof(ctl_unit), (void *)&ctl_unit, NULL); | |
2814 | if (error) { | |
2815 | FDLOG(LOG_ERR, &nil_pcb, "Failed to get the control socket unit from the token: %d", error); | |
2816 | goto done; | |
2817 | } | |
2818 | ||
2819 | /* A valid kernel control unit is required */ | |
2820 | ctl_unit = ntohl(ctl_unit); | |
2821 | if (ctl_unit == 0 || ctl_unit >= GROUP_COUNT_MAX) { | |
2822 | FDLOG(LOG_ERR, &nil_pcb, "Got an invalid control socket unit: %u", ctl_unit); | |
2823 | error = EINVAL; | |
2824 | goto done; | |
2825 | } | |
2826 | ||
2827 | socket_unlock(so, 0); | |
2828 | error = flow_divert_packet_verify_hmac(token, (key_unit != 0 ? key_unit : ctl_unit)); | |
2829 | socket_lock(so, 0); | |
2830 | ||
2831 | if (error) { | |
2832 | FDLOG(LOG_ERR, &nil_pcb, "HMAC verfication failed: %d", error); | |
2833 | goto done; | |
2834 | } | |
2835 | ||
2836 | error = flow_divert_packet_get_tlv(token, 0, FLOW_DIVERT_TLV_FLOW_ID, sizeof(flow_id), (void *)&flow_id, NULL); | |
2837 | if (error && error != ENOENT) { | |
2838 | FDLOG(LOG_ERR, &nil_pcb, "Failed to get the flow ID from the token: %d", error); | |
2839 | goto done; | |
2840 | } | |
2841 | ||
2842 | if (flow_id == 0) { | |
2843 | error = flow_divert_pcb_init(so, ctl_unit); | |
2844 | if (error == 0) { | |
2845 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
2846 | int log_level = LOG_NOTICE; | |
2847 | ||
2848 | error = flow_divert_packet_get_tlv(token, 0, FLOW_DIVERT_TLV_LOG_LEVEL, | |
2849 | sizeof(log_level), &log_level, NULL); | |
2850 | if (error == 0) { | |
2851 | fd_cb->log_level = log_level; | |
2852 | } | |
2853 | error = 0; | |
2854 | ||
2855 | fd_cb->connect_token = token; | |
2856 | token = NULL; | |
2857 | } | |
2858 | } else { | |
2859 | error = flow_divert_attach(so, flow_id, ctl_unit); | |
2860 | } | |
2861 | ||
2862 | done: | |
2863 | if (token != NULL) { | |
2864 | mbuf_freem(token); | |
2865 | } | |
2866 | ||
2867 | return error; | |
2868 | } | |
2869 | ||
2870 | errno_t | |
2871 | flow_divert_token_get(struct socket *so, struct sockopt *sopt) | |
2872 | { | |
2873 | uint32_t ctl_unit; | |
2874 | int error = 0; | |
2875 | uint8_t hmac[SHA_DIGEST_LENGTH]; | |
2876 | struct flow_divert_pcb *fd_cb = so->so_fd_pcb; | |
2877 | mbuf_t token = NULL; | |
2878 | struct flow_divert_group *control_group = NULL; | |
2879 | ||
2880 | if (!(so->so_flags & SOF_FLOW_DIVERT)) { | |
2881 | error = EINVAL; | |
2882 | goto done; | |
2883 | } | |
2884 | ||
2885 | VERIFY((so->so_flags & SOF_FLOW_DIVERT) && so->so_fd_pcb != NULL); | |
2886 | ||
2887 | if (fd_cb->group == NULL) { | |
2888 | error = EINVAL; | |
2889 | goto done; | |
2890 | } | |
2891 | ||
2892 | error = mbuf_gethdr(MBUF_DONTWAIT, MBUF_TYPE_HEADER, &token); | |
2893 | if (error) { | |
2894 | FDLOG(LOG_ERR, fd_cb, "failed to allocate the header mbuf: %d", error); | |
2895 | goto done; | |
2896 | } | |
2897 | ||
2898 | ctl_unit = htonl(fd_cb->group->ctl_unit); | |
2899 | ||
2900 | error = flow_divert_packet_append_tlv(token, FLOW_DIVERT_TLV_CTL_UNIT, sizeof(ctl_unit), &ctl_unit); | |
2901 | if (error) { | |
2902 | goto done; | |
2903 | } | |
2904 | ||
2905 | error = flow_divert_packet_append_tlv(token, FLOW_DIVERT_TLV_FLOW_ID, sizeof(fd_cb->hash), &fd_cb->hash); | |
2906 | if (error) { | |
2907 | goto done; | |
2908 | } | |
2909 | ||
2910 | socket_unlock(so, 0); | |
2911 | lck_rw_lock_shared(&g_flow_divert_group_lck); | |
2912 | ||
2913 | if (g_flow_divert_groups != NULL && g_active_group_count > 0 && | |
2914 | fd_cb->control_group_unit > 0 && fd_cb->control_group_unit < GROUP_COUNT_MAX) | |
2915 | { | |
2916 | control_group = g_flow_divert_groups[fd_cb->control_group_unit]; | |
2917 | } | |
2918 | ||
2919 | if (control_group != NULL) { | |
2920 | lck_rw_lock_shared(&control_group->lck); | |
2921 | ctl_unit = htonl(control_group->ctl_unit); | |
2922 | error = flow_divert_packet_append_tlv(token, FLOW_DIVERT_TLV_KEY_UNIT, sizeof(ctl_unit), &ctl_unit); | |
2923 | if (!error) { | |
2924 | error = flow_divert_packet_compute_hmac(token, control_group, hmac); | |
2925 | } | |
2926 | lck_rw_done(&control_group->lck); | |
2927 | } else { | |
2928 | error = ENOPROTOOPT; | |
2929 | } | |
2930 | ||
2931 | lck_rw_done(&g_flow_divert_group_lck); | |
2932 | socket_lock(so, 0); | |
2933 | ||
2934 | if (error) { | |
2935 | goto done; | |
2936 | } | |
2937 | ||
2938 | error = flow_divert_packet_append_tlv(token, FLOW_DIVERT_TLV_HMAC, sizeof(hmac), hmac); | |
2939 | if (error) { | |
2940 | goto done; | |
2941 | } | |
2942 | ||
2943 | error = soopt_mcopyout(sopt, token); | |
2944 | if (error) { | |
2945 | token = NULL; /* For some reason, soopt_mcopyout() frees the mbuf if it fails */ | |
2946 | goto done; | |
2947 | } | |
2948 | ||
2949 | done: | |
2950 | if (token != NULL) { | |
2951 | mbuf_freem(token); | |
2952 | } | |
2953 | ||
2954 | return error; | |
2955 | } | |
2956 | ||
2957 | static errno_t | |
2958 | flow_divert_kctl_connect(kern_ctl_ref kctlref __unused, struct sockaddr_ctl *sac, void **unitinfo) | |
2959 | { | |
2960 | struct flow_divert_group *new_group; | |
2961 | int error = 0; | |
2962 | ||
2963 | if (sac->sc_unit >= GROUP_COUNT_MAX) { | |
2964 | error = EINVAL; | |
2965 | goto done; | |
2966 | } | |
2967 | ||
2968 | *unitinfo = NULL; | |
2969 | ||
2970 | MALLOC_ZONE(new_group, struct flow_divert_group *, sizeof(*new_group), M_FLOW_DIVERT_GROUP, M_WAITOK); | |
2971 | if (new_group == NULL) { | |
2972 | error = ENOBUFS; | |
2973 | goto done; | |
2974 | } | |
2975 | ||
2976 | memset(new_group, 0, sizeof(*new_group)); | |
2977 | ||
2978 | lck_rw_init(&new_group->lck, flow_divert_mtx_grp, flow_divert_mtx_attr); | |
2979 | RB_INIT(&new_group->pcb_tree); | |
2980 | new_group->ctl_unit = sac->sc_unit; | |
2981 | MBUFQ_INIT(&new_group->send_queue); | |
2982 | ||
2983 | lck_rw_lock_exclusive(&g_flow_divert_group_lck); | |
2984 | ||
2985 | if (g_flow_divert_groups == NULL) { | |
2986 | MALLOC(g_flow_divert_groups, | |
2987 | struct flow_divert_group **, | |
2988 | GROUP_COUNT_MAX * sizeof(struct flow_divert_group *), | |
2989 | M_TEMP, | |
2990 | M_WAITOK | M_ZERO); | |
2991 | } | |
2992 | ||
2993 | if (g_flow_divert_groups == NULL) { | |
2994 | error = ENOBUFS; | |
2995 | } else if (g_flow_divert_groups[sac->sc_unit] != NULL) { | |
2996 | error = EALREADY; | |
2997 | } else { | |
2998 | g_flow_divert_groups[sac->sc_unit] = new_group; | |
2999 | g_active_group_count++; | |
3000 | } | |
3001 | ||
3002 | lck_rw_done(&g_flow_divert_group_lck); | |
3003 | ||
3004 | *unitinfo = new_group; | |
3005 | ||
3006 | done: | |
3007 | if (error != 0 && new_group != NULL) { | |
3008 | FREE_ZONE(new_group, sizeof(*new_group), M_FLOW_DIVERT_GROUP); | |
3009 | } | |
3010 | return error; | |
3011 | } | |
3012 | ||
3013 | static errno_t | |
3014 | flow_divert_kctl_disconnect(kern_ctl_ref kctlref __unused, uint32_t unit, void *unitinfo) | |
3015 | { | |
3016 | struct flow_divert_group *group = NULL; | |
3017 | errno_t error = 0; | |
3018 | uint16_t node = 0; | |
3019 | ||
3020 | if (unit >= GROUP_COUNT_MAX) { | |
3021 | return EINVAL; | |
3022 | } | |
3023 | ||
3024 | FDLOG(LOG_INFO, &nil_pcb, "disconnecting group %d", unit); | |
3025 | ||
3026 | lck_rw_lock_exclusive(&g_flow_divert_group_lck); | |
3027 | ||
3028 | if (g_flow_divert_groups == NULL || g_active_group_count == 0) { | |
3029 | panic("flow divert group %u is disconnecting, but no groups are active (groups = %p, active count = %u", unit, | |
3030 | g_flow_divert_groups, g_active_group_count); | |
3031 | } | |
3032 | ||
3033 | group = g_flow_divert_groups[unit]; | |
3034 | ||
3035 | if (group != (struct flow_divert_group *)unitinfo) { | |
3036 | panic("group with unit %d (%p) != unit info (%p)", unit, group, unitinfo); | |
3037 | } | |
3038 | ||
3039 | if (group != NULL) { | |
3040 | flow_divert_close_all(group); | |
3041 | if (group->token_key != NULL) { | |
3042 | memset(group->token_key, 0, group->token_key_size); | |
3043 | FREE(group->token_key, M_TEMP); | |
3044 | group->token_key = NULL; | |
3045 | group->token_key_size = 0; | |
3046 | } | |
3047 | FREE_ZONE(group, sizeof(*group), M_FLOW_DIVERT_GROUP); | |
3048 | g_flow_divert_groups[unit] = NULL; | |
3049 | g_active_group_count--; | |
3050 | } else { | |
3051 | error = EINVAL; | |
3052 | } | |
3053 | ||
3054 | if (g_active_group_count == 0) { | |
3055 | FREE(g_flow_divert_groups, M_TEMP); | |
3056 | g_flow_divert_groups = NULL; | |
3057 | } | |
3058 | ||
3059 | /* Remove all signing IDs that point to this unit */ | |
3060 | for (node = 0; node < g_signing_id_trie.nodes_count; node++) { | |
3061 | if (TRIE_NODE(&g_signing_id_trie, node).group_unit == unit) { | |
3062 | TRIE_NODE(&g_signing_id_trie, node).group_unit = 0; | |
3063 | } | |
3064 | } | |
3065 | ||
3066 | lck_rw_done(&g_flow_divert_group_lck); | |
3067 | ||
3068 | return error; | |
3069 | } | |
3070 | ||
3071 | static errno_t | |
3072 | flow_divert_kctl_send(kern_ctl_ref kctlref __unused, uint32_t unit __unused, void *unitinfo, mbuf_t m, int flags __unused) | |
3073 | { | |
3074 | return flow_divert_input(m, (struct flow_divert_group *)unitinfo); | |
3075 | } | |
3076 | ||
3077 | static void | |
3078 | flow_divert_kctl_rcvd(kern_ctl_ref kctlref __unused, uint32_t unit __unused, void *unitinfo, int flags __unused) | |
3079 | { | |
3080 | struct flow_divert_group *group = (struct flow_divert_group *)unitinfo; | |
3081 | ||
3082 | if (!OSTestAndClear(GROUP_BIT_CTL_ENQUEUE_BLOCKED, &group->atomic_bits)) { | |
3083 | struct flow_divert_pcb *fd_cb; | |
3084 | SLIST_HEAD(, flow_divert_pcb) tmp_list; | |
3085 | ||
3086 | lck_rw_lock_shared(&g_flow_divert_group_lck); | |
3087 | lck_rw_lock_exclusive(&group->lck); | |
3088 | ||
3089 | while (!MBUFQ_EMPTY(&group->send_queue)) { | |
3090 | mbuf_t next_packet; | |
3091 | FDLOG0(LOG_DEBUG, &nil_pcb, "trying ctl_enqueuembuf again"); | |
3092 | next_packet = MBUFQ_FIRST(&group->send_queue); | |
3093 | int error = ctl_enqueuembuf(g_flow_divert_kctl_ref, group->ctl_unit, next_packet, CTL_DATA_EOR); | |
3094 | if (error) { | |
3095 | FDLOG(LOG_DEBUG, &nil_pcb, "ctl_enqueuembuf returned an error: %d", error); | |
3096 | OSTestAndSet(GROUP_BIT_CTL_ENQUEUE_BLOCKED, &group->atomic_bits); | |
3097 | lck_rw_done(&group->lck); | |
3098 | lck_rw_done(&g_flow_divert_group_lck); | |
3099 | return; | |
3100 | } | |
3101 | MBUFQ_DEQUEUE(&group->send_queue, next_packet); | |
3102 | } | |
3103 | ||
3104 | SLIST_INIT(&tmp_list); | |
3105 | ||
3106 | RB_FOREACH(fd_cb, fd_pcb_tree, &group->pcb_tree) { | |
3107 | FDRETAIN(fd_cb); | |
3108 | SLIST_INSERT_HEAD(&tmp_list, fd_cb, tmp_list_entry); | |
3109 | } | |
3110 | ||
3111 | lck_rw_done(&group->lck); | |
3112 | ||
3113 | SLIST_FOREACH(fd_cb, &tmp_list, tmp_list_entry) { | |
3114 | FDLOCK(fd_cb); | |
3115 | if (fd_cb->so != NULL) { | |
3116 | socket_lock(fd_cb->so, 0); | |
3117 | if (fd_cb->group != NULL) { | |
3118 | flow_divert_send_buffered_data(fd_cb, FALSE); | |
3119 | } | |
3120 | socket_unlock(fd_cb->so, 0); | |
3121 | } | |
3122 | FDUNLOCK(fd_cb); | |
3123 | FDRELEASE(fd_cb); | |
3124 | } | |
3125 | ||
3126 | lck_rw_done(&g_flow_divert_group_lck); | |
3127 | } | |
3128 | } | |
3129 | ||
3130 | static int | |
3131 | flow_divert_kctl_init(void) | |
3132 | { | |
3133 | struct kern_ctl_reg ctl_reg; | |
3134 | int result; | |
3135 | ||
3136 | memset(&ctl_reg, 0, sizeof(ctl_reg)); | |
3137 | ||
fe8ab488 | 3138 | strlcpy(ctl_reg.ctl_name, FLOW_DIVERT_CONTROL_NAME, sizeof(ctl_reg.ctl_name)); |
39236c6e A |
3139 | ctl_reg.ctl_name[sizeof(ctl_reg.ctl_name)-1] = '\0'; |
3140 | ctl_reg.ctl_flags = CTL_FLAG_PRIVILEGED | CTL_FLAG_REG_EXTENDED; | |
3141 | ctl_reg.ctl_sendsize = FD_CTL_SENDBUFF_SIZE; | |
3142 | ctl_reg.ctl_recvsize = FD_CTL_RCVBUFF_SIZE; | |
3143 | ||
3144 | ctl_reg.ctl_connect = flow_divert_kctl_connect; | |
3145 | ctl_reg.ctl_disconnect = flow_divert_kctl_disconnect; | |
3146 | ctl_reg.ctl_send = flow_divert_kctl_send; | |
3147 | ctl_reg.ctl_rcvd = flow_divert_kctl_rcvd; | |
3148 | ||
3149 | result = ctl_register(&ctl_reg, &g_flow_divert_kctl_ref); | |
3150 | ||
3151 | if (result) { | |
3152 | FDLOG(LOG_ERR, &nil_pcb, "flow_divert_kctl_init - ctl_register failed: %d\n", result); | |
3153 | return result; | |
3154 | } | |
3155 | ||
3156 | return 0; | |
3157 | } | |
3158 | ||
3159 | void | |
3160 | flow_divert_init(void) | |
3161 | { | |
3162 | memset(&nil_pcb, 0, sizeof(nil_pcb)); | |
fe8ab488 | 3163 | nil_pcb.log_level = LOG_NOTICE; |
39236c6e A |
3164 | |
3165 | g_tcp_protosw = pffindproto(AF_INET, IPPROTO_TCP, SOCK_STREAM); | |
3166 | ||
3167 | VERIFY(g_tcp_protosw != NULL); | |
3168 | ||
3169 | memcpy(&g_flow_divert_in_protosw, g_tcp_protosw, sizeof(g_flow_divert_in_protosw)); | |
3170 | memcpy(&g_flow_divert_in_usrreqs, g_tcp_protosw->pr_usrreqs, sizeof(g_flow_divert_in_usrreqs)); | |
3171 | ||
3172 | g_flow_divert_in_usrreqs.pru_connect = flow_divert_connect_out; | |
3173 | g_flow_divert_in_usrreqs.pru_connectx = flow_divert_connectx_out; | |
3174 | g_flow_divert_in_usrreqs.pru_control = flow_divert_in_control; | |
3175 | g_flow_divert_in_usrreqs.pru_disconnect = flow_divert_close; | |
3176 | g_flow_divert_in_usrreqs.pru_disconnectx = flow_divert_disconnectx; | |
3177 | g_flow_divert_in_usrreqs.pru_peeraddr = flow_divert_getpeername; | |
3178 | g_flow_divert_in_usrreqs.pru_rcvd = flow_divert_rcvd; | |
3179 | g_flow_divert_in_usrreqs.pru_send = flow_divert_data_out; | |
3180 | g_flow_divert_in_usrreqs.pru_shutdown = flow_divert_shutdown; | |
3181 | g_flow_divert_in_usrreqs.pru_sockaddr = flow_divert_getsockaddr; | |
3182 | ||
3183 | g_flow_divert_in_protosw.pr_usrreqs = &g_flow_divert_in_usrreqs; | |
3184 | g_flow_divert_in_protosw.pr_ctloutput = flow_divert_ctloutput; | |
3185 | ||
3186 | /* | |
3187 | * Socket filters shouldn't attach/detach to/from this protosw | |
3188 | * since pr_protosw is to be used instead, which points to the | |
3189 | * real protocol; if they do, it is a bug and we should panic. | |
3190 | */ | |
3191 | g_flow_divert_in_protosw.pr_filter_head.tqh_first = | |
3192 | (struct socket_filter *)(uintptr_t)0xdeadbeefdeadbeef; | |
3193 | g_flow_divert_in_protosw.pr_filter_head.tqh_last = | |
3194 | (struct socket_filter **)(uintptr_t)0xdeadbeefdeadbeef; | |
3195 | ||
3196 | #if INET6 | |
3197 | g_tcp6_protosw = (struct ip6protosw *)pffindproto(AF_INET6, IPPROTO_TCP, SOCK_STREAM); | |
3198 | ||
3199 | VERIFY(g_tcp6_protosw != NULL); | |
3200 | ||
3201 | memcpy(&g_flow_divert_in6_protosw, g_tcp6_protosw, sizeof(g_flow_divert_in6_protosw)); | |
3202 | memcpy(&g_flow_divert_in6_usrreqs, g_tcp6_protosw->pr_usrreqs, sizeof(g_flow_divert_in6_usrreqs)); | |
3203 | ||
3204 | g_flow_divert_in6_usrreqs.pru_connect = flow_divert_connect_out; | |
3205 | g_flow_divert_in6_usrreqs.pru_connectx = flow_divert_connectx6_out; | |
3206 | g_flow_divert_in6_usrreqs.pru_control = flow_divert_in6_control; | |
3207 | g_flow_divert_in6_usrreqs.pru_disconnect = flow_divert_close; | |
3208 | g_flow_divert_in6_usrreqs.pru_disconnectx = flow_divert_disconnectx; | |
3209 | g_flow_divert_in6_usrreqs.pru_peeraddr = flow_divert_getpeername; | |
3210 | g_flow_divert_in6_usrreqs.pru_rcvd = flow_divert_rcvd; | |
3211 | g_flow_divert_in6_usrreqs.pru_send = flow_divert_data_out; | |
3212 | g_flow_divert_in6_usrreqs.pru_shutdown = flow_divert_shutdown; | |
3213 | g_flow_divert_in6_usrreqs.pru_sockaddr = flow_divert_getsockaddr; | |
3214 | ||
3215 | g_flow_divert_in6_protosw.pr_usrreqs = &g_flow_divert_in6_usrreqs; | |
3216 | g_flow_divert_in6_protosw.pr_ctloutput = flow_divert_ctloutput; | |
3217 | /* | |
3218 | * Socket filters shouldn't attach/detach to/from this protosw | |
3219 | * since pr_protosw is to be used instead, which points to the | |
3220 | * real protocol; if they do, it is a bug and we should panic. | |
3221 | */ | |
3222 | g_flow_divert_in6_protosw.pr_filter_head.tqh_first = | |
3223 | (struct socket_filter *)(uintptr_t)0xdeadbeefdeadbeef; | |
3224 | g_flow_divert_in6_protosw.pr_filter_head.tqh_last = | |
3225 | (struct socket_filter **)(uintptr_t)0xdeadbeefdeadbeef; | |
3226 | #endif /* INET6 */ | |
3227 | ||
3228 | flow_divert_grp_attr = lck_grp_attr_alloc_init(); | |
3229 | if (flow_divert_grp_attr == NULL) { | |
3230 | FDLOG0(LOG_ERR, &nil_pcb, "lck_grp_attr_alloc_init failed"); | |
3231 | g_init_result = ENOMEM; | |
3232 | goto done; | |
3233 | } | |
3234 | ||
3235 | flow_divert_mtx_grp = lck_grp_alloc_init(FLOW_DIVERT_CONTROL_NAME, flow_divert_grp_attr); | |
3236 | if (flow_divert_mtx_grp == NULL) { | |
3237 | FDLOG0(LOG_ERR, &nil_pcb, "lck_grp_alloc_init failed"); | |
3238 | g_init_result = ENOMEM; | |
3239 | goto done; | |
3240 | } | |
3241 | ||
3242 | flow_divert_mtx_attr = lck_attr_alloc_init(); | |
3243 | if (flow_divert_mtx_attr == NULL) { | |
3244 | FDLOG0(LOG_ERR, &nil_pcb, "lck_attr_alloc_init failed"); | |
3245 | g_init_result = ENOMEM; | |
3246 | goto done; | |
3247 | } | |
3248 | ||
3249 | g_init_result = flow_divert_kctl_init(); | |
3250 | if (g_init_result) { | |
3251 | goto done; | |
3252 | } | |
3253 | ||
3254 | lck_rw_init(&g_flow_divert_group_lck, flow_divert_mtx_grp, flow_divert_mtx_attr); | |
3255 | ||
3256 | memset(&g_signing_id_trie, 0, sizeof(g_signing_id_trie)); | |
3257 | g_signing_id_trie.root = NULL_TRIE_IDX; | |
3258 | ||
3259 | done: | |
3260 | if (g_init_result != 0) { | |
3261 | if (flow_divert_mtx_attr != NULL) { | |
3262 | lck_attr_free(flow_divert_mtx_attr); | |
3263 | flow_divert_mtx_attr = NULL; | |
3264 | } | |
3265 | if (flow_divert_mtx_grp != NULL) { | |
3266 | lck_grp_free(flow_divert_mtx_grp); | |
3267 | flow_divert_mtx_grp = NULL; | |
3268 | } | |
3269 | if (flow_divert_grp_attr != NULL) { | |
3270 | lck_grp_attr_free(flow_divert_grp_attr); | |
3271 | flow_divert_grp_attr = NULL; | |
3272 | } | |
3273 | ||
3274 | if (g_flow_divert_kctl_ref != NULL) { | |
3275 | ctl_deregister(g_flow_divert_kctl_ref); | |
3276 | g_flow_divert_kctl_ref = NULL; | |
3277 | } | |
3278 | } | |
3279 | } |