]>
Commit | Line | Data |
---|---|---|
5ba3f43e A |
1 | /*- |
2 | *********************************************************************** | |
3 | * * | |
4 | * Copyright (c) David L. Mills 1993-2001 * | |
5 | * * | |
6 | * Permission to use, copy, modify, and distribute this software and * | |
7 | * its documentation for any purpose and without fee is hereby * | |
8 | * granted, provided that the above copyright notice appears in all * | |
9 | * copies and that both the copyright notice and this permission * | |
10 | * notice appear in supporting documentation, and that the name * | |
11 | * University of Delaware not be used in advertising or publicity * | |
12 | * pertaining to distribution of the software without specific, * | |
13 | * written prior permission. The University of Delaware makes no * | |
14 | * representations about the suitability this software for any * | |
15 | * purpose. It is provided "as is" without express or implied * | |
16 | * warranty. * | |
17 | * * | |
18 | **********************************************************************/ | |
19 | ||
20 | ||
21 | /* | |
22 | * Adapted from the original sources for FreeBSD and timecounters by: | |
23 | * Poul-Henning Kamp <phk@FreeBSD.org>. | |
24 | * | |
25 | * The 32bit version of the "LP" macros seems a bit past its "sell by" | |
26 | * date so I have retained only the 64bit version and included it directly | |
27 | * in this file. | |
28 | * | |
29 | * Only minor changes done to interface with the timecounters over in | |
30 | * sys/kern/kern_clock.c. Some of the comments below may be (even more) | |
31 | * confusing and/or plain wrong in that context. | |
32 | */ | |
33 | ||
34 | /* | |
35 | * Copyright (c) 2017 Apple Computer, Inc. All rights reserved. | |
36 | * | |
37 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
38 | * | |
39 | * This file contains Original Code and/or Modifications of Original Code | |
40 | * as defined in and that are subject to the Apple Public Source License | |
41 | * Version 2.0 (the 'License'). You may not use this file except in | |
42 | * compliance with the License. The rights granted to you under the License | |
43 | * may not be used to create, or enable the creation or redistribution of, | |
44 | * unlawful or unlicensed copies of an Apple operating system, or to | |
45 | * circumvent, violate, or enable the circumvention or violation of, any | |
46 | * terms of an Apple operating system software license agreement. | |
47 | * | |
48 | * Please obtain a copy of the License at | |
49 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
50 | * | |
51 | * The Original Code and all software distributed under the License are | |
52 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
53 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
54 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
55 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
56 | * Please see the License for the specific language governing rights and | |
57 | * limitations under the License. | |
58 | * | |
59 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
60 | */ | |
61 | ||
62 | #include <sys/cdefs.h> | |
63 | #include <sys/param.h> | |
64 | #include <sys/systm.h> | |
65 | #include <sys/eventhandler.h> | |
66 | #include <sys/kernel.h> | |
67 | #include <sys/priv.h> | |
68 | #include <sys/proc.h> | |
69 | #include <sys/lock.h> | |
70 | #include <sys/time.h> | |
71 | #include <sys/timex.h> | |
72 | #include <kern/clock.h> | |
73 | #include <sys/sysctl.h> | |
74 | #include <sys/sysproto.h> | |
75 | #include <sys/kauth.h> | |
76 | #include <kern/thread_call.h> | |
77 | #include <kern/timer_call.h> | |
78 | #include <machine/machine_routines.h> | |
79 | #if CONFIG_MACF | |
80 | #include <security/mac_framework.h> | |
81 | #endif | |
82 | #include <IOKit/IOBSD.h> | |
cc8bc92a | 83 | #include <os/log.h> |
5ba3f43e A |
84 | |
85 | typedef int64_t l_fp; | |
86 | #define L_ADD(v, u) ((v) += (u)) | |
87 | #define L_SUB(v, u) ((v) -= (u)) | |
88 | #define L_ADDHI(v, a) ((v) += (int64_t)(a) << 32) | |
89 | #define L_NEG(v) ((v) = -(v)) | |
90 | #define L_RSHIFT(v, n) \ | |
91 | do { \ | |
92 | if ((v) < 0) \ | |
93 | (v) = -(-(v) >> (n)); \ | |
94 | else \ | |
95 | (v) = (v) >> (n); \ | |
96 | } while (0) | |
97 | #define L_MPY(v, a) ((v) *= (a)) | |
98 | #define L_CLR(v) ((v) = 0) | |
99 | #define L_ISNEG(v) ((v) < 0) | |
100 | #define L_LINT(v, a) \ | |
101 | do { \ | |
102 | if ((a) > 0) \ | |
103 | ((v) = (int64_t)(a) << 32); \ | |
104 | else \ | |
105 | ((v) = -((int64_t)(-(a)) << 32)); \ | |
106 | } while (0) | |
107 | #define L_GINT(v) ((v) < 0 ? -(-(v) >> 32) : (v) >> 32) | |
108 | ||
109 | /* | |
110 | * Generic NTP kernel interface | |
111 | * | |
112 | * These routines constitute the Network Time Protocol (NTP) interfaces | |
113 | * for user and daemon application programs. The ntp_gettime() routine | |
114 | * provides the time, maximum error (synch distance) and estimated error | |
115 | * (dispersion) to client user application programs. The ntp_adjtime() | |
116 | * routine is used by the NTP daemon to adjust the calendar clock to an | |
117 | * externally derived time. The time offset and related variables set by | |
118 | * this routine are used by other routines in this module to adjust the | |
119 | * phase and frequency of the clock discipline loop which controls the | |
120 | * system clock. | |
121 | * | |
122 | * When the kernel time is reckoned directly in nanoseconds (NTP_NANO | |
123 | * defined), the time at each tick interrupt is derived directly from | |
124 | * the kernel time variable. When the kernel time is reckoned in | |
125 | * microseconds, (NTP_NANO undefined), the time is derived from the | |
126 | * kernel time variable together with a variable representing the | |
127 | * leftover nanoseconds at the last tick interrupt. In either case, the | |
128 | * current nanosecond time is reckoned from these values plus an | |
129 | * interpolated value derived by the clock routines in another | |
130 | * architecture-specific module. The interpolation can use either a | |
131 | * dedicated counter or a processor cycle counter (PCC) implemented in | |
132 | * some architectures. | |
133 | * | |
134 | */ | |
135 | /* | |
136 | * Phase/frequency-lock loop (PLL/FLL) definitions | |
137 | * | |
138 | * The nanosecond clock discipline uses two variable types, time | |
139 | * variables and frequency variables. Both types are represented as 64- | |
140 | * bit fixed-point quantities with the decimal point between two 32-bit | |
141 | * halves. On a 32-bit machine, each half is represented as a single | |
142 | * word and mathematical operations are done using multiple-precision | |
143 | * arithmetic. On a 64-bit machine, ordinary computer arithmetic is | |
144 | * used. | |
145 | * | |
146 | * A time variable is a signed 64-bit fixed-point number in ns and | |
147 | * fraction. It represents the remaining time offset to be amortized | |
148 | * over succeeding tick interrupts. The maximum time offset is about | |
149 | * 0.5 s and the resolution is about 2.3e-10 ns. | |
150 | * | |
151 | * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 | |
152 | * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 | |
153 | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
154 | * |s s s| ns | | |
155 | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
156 | * | fraction | | |
157 | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
158 | * | |
159 | * A frequency variable is a signed 64-bit fixed-point number in ns/s | |
160 | * and fraction. It represents the ns and fraction to be added to the | |
161 | * kernel time variable at each second. The maximum frequency offset is | |
162 | * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s. | |
163 | * | |
164 | * 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 | |
165 | * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 | |
166 | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
167 | * |s s s s s s s s s s s s s| ns/s | | |
168 | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
169 | * | fraction | | |
170 | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
171 | */ | |
172 | ||
173 | #define SHIFT_PLL 4 | |
174 | #define SHIFT_FLL 2 | |
175 | ||
176 | static int time_state = TIME_OK; | |
177 | int time_status = STA_UNSYNC; | |
178 | static long time_tai; | |
179 | static long time_constant; | |
180 | static long time_precision = 1; | |
181 | static long time_maxerror = MAXPHASE / 1000; | |
182 | static unsigned long last_time_maxerror_update; | |
183 | long time_esterror = MAXPHASE / 1000; | |
184 | static long time_reftime; | |
185 | static l_fp time_offset; | |
186 | static l_fp time_freq; | |
187 | static int64_t time_adjtime; | |
188 | static int updated; | |
189 | ||
190 | static lck_spin_t * ntp_lock; | |
191 | static lck_grp_t * ntp_lock_grp; | |
192 | static lck_attr_t * ntp_lock_attr; | |
193 | static lck_grp_attr_t *ntp_lock_grp_attr; | |
194 | ||
195 | #define NTP_LOCK(enable) \ | |
196 | enable = ml_set_interrupts_enabled(FALSE); \ | |
197 | lck_spin_lock(ntp_lock); | |
198 | ||
199 | #define NTP_UNLOCK(enable) \ | |
200 | lck_spin_unlock(ntp_lock);\ | |
201 | ml_set_interrupts_enabled(enable); | |
202 | ||
203 | #define NTP_ASSERT_LOCKED() LCK_SPIN_ASSERT(ntp_lock, LCK_ASSERT_OWNED) | |
204 | ||
205 | static timer_call_data_t ntp_loop_update; | |
206 | static uint64_t ntp_loop_deadline; | |
207 | static uint32_t ntp_loop_active; | |
208 | static uint32_t ntp_loop_period; | |
209 | #define NTP_LOOP_PERIOD_INTERVAL (NSEC_PER_SEC) /*1 second interval*/ | |
210 | ||
211 | void ntp_init(void); | |
212 | static void hardupdate(long offset); | |
213 | static void ntp_gettime1(struct ntptimeval *ntvp); | |
214 | static bool ntp_is_time_error(int tsl); | |
215 | ||
216 | static void ntp_loop_update_call(void); | |
217 | static void refresh_ntp_loop(void); | |
218 | static void start_ntp_loop(void); | |
219 | ||
cc8bc92a A |
220 | #if DEVELOPMENT || DEBUG |
221 | uint32_t g_should_log_clock_adjustments = 0; | |
222 | SYSCTL_INT(_kern, OID_AUTO, log_clock_adjustments, CTLFLAG_RW | CTLFLAG_LOCKED, &g_should_log_clock_adjustments, 0, "enable kernel clock adjustment logging"); | |
223 | #endif | |
224 | ||
5ba3f43e A |
225 | static bool |
226 | ntp_is_time_error(int tsl) | |
227 | { | |
228 | ||
229 | if (tsl & (STA_UNSYNC | STA_CLOCKERR)) | |
230 | return (true); | |
231 | ||
232 | return (false); | |
233 | } | |
234 | ||
235 | static void | |
236 | ntp_gettime1(struct ntptimeval *ntvp) | |
237 | { | |
238 | struct timespec atv; | |
239 | ||
240 | NTP_ASSERT_LOCKED(); | |
241 | ||
242 | nanotime(&atv); | |
243 | ntvp->time.tv_sec = atv.tv_sec; | |
244 | ntvp->time.tv_nsec = atv.tv_nsec; | |
245 | if ((unsigned long)atv.tv_sec > last_time_maxerror_update) { | |
246 | time_maxerror += (MAXFREQ / 1000)*(atv.tv_sec-last_time_maxerror_update); | |
247 | last_time_maxerror_update = atv.tv_sec; | |
248 | } | |
249 | ntvp->maxerror = time_maxerror; | |
250 | ntvp->esterror = time_esterror; | |
251 | ntvp->tai = time_tai; | |
252 | ntvp->time_state = time_state; | |
253 | ||
254 | if (ntp_is_time_error(time_status)) | |
255 | ntvp->time_state = TIME_ERROR; | |
256 | } | |
257 | ||
258 | int | |
259 | ntp_gettime(struct proc *p, struct ntp_gettime_args *uap, __unused int32_t *retval) | |
260 | { | |
261 | struct ntptimeval ntv; | |
262 | int error; | |
263 | boolean_t enable; | |
264 | ||
265 | NTP_LOCK(enable); | |
266 | ntp_gettime1(&ntv); | |
267 | NTP_UNLOCK(enable); | |
268 | ||
269 | if (IS_64BIT_PROCESS(p)) { | |
527f9951 | 270 | struct user64_ntptimeval user_ntv = {}; |
5ba3f43e A |
271 | user_ntv.time.tv_sec = ntv.time.tv_sec; |
272 | user_ntv.time.tv_nsec = ntv.time.tv_nsec; | |
273 | user_ntv.maxerror = ntv.maxerror; | |
274 | user_ntv.esterror = ntv.esterror; | |
275 | user_ntv.tai = ntv.tai; | |
276 | user_ntv.time_state = ntv.time_state; | |
277 | error = copyout(&user_ntv, uap->ntvp, sizeof(user_ntv)); | |
278 | } else { | |
527f9951 | 279 | struct user32_ntptimeval user_ntv = {}; |
5ba3f43e A |
280 | user_ntv.time.tv_sec = ntv.time.tv_sec; |
281 | user_ntv.time.tv_nsec = ntv.time.tv_nsec; | |
282 | user_ntv.maxerror = ntv.maxerror; | |
283 | user_ntv.esterror = ntv.esterror; | |
284 | user_ntv.tai = ntv.tai; | |
285 | user_ntv.time_state = ntv.time_state; | |
286 | error = copyout(&user_ntv, uap->ntvp, sizeof(user_ntv)); | |
287 | } | |
288 | ||
289 | if (error) | |
290 | return error; | |
291 | ||
292 | return ntv.time_state; | |
293 | } | |
294 | ||
295 | int | |
d9a64523 | 296 | ntp_adjtime(struct proc *p, struct ntp_adjtime_args *uap, int32_t *retval) |
5ba3f43e | 297 | { |
d9a64523 | 298 | struct timex ntv = {}; |
5ba3f43e | 299 | long freq; |
d9a64523 | 300 | unsigned int modes; |
5ba3f43e A |
301 | int error, ret = 0; |
302 | clock_sec_t sec; | |
303 | clock_usec_t microsecs; | |
304 | boolean_t enable; | |
305 | ||
306 | if (IS_64BIT_PROCESS(p)) { | |
307 | struct user64_timex user_ntv; | |
308 | error = copyin(uap->tp, &user_ntv, sizeof(user_ntv)); | |
309 | ntv.modes = user_ntv.modes; | |
310 | ntv.offset = user_ntv.offset; | |
311 | ntv.freq = user_ntv.freq; | |
312 | ntv.maxerror = user_ntv.maxerror; | |
313 | ntv.esterror = user_ntv.esterror; | |
314 | ntv.status = user_ntv.status; | |
315 | ntv.constant = user_ntv.constant; | |
316 | ntv.precision = user_ntv.precision; | |
317 | ntv.tolerance = user_ntv.tolerance; | |
318 | ||
319 | } else { | |
320 | struct user32_timex user_ntv; | |
321 | error = copyin(uap->tp, &user_ntv, sizeof(user_ntv)); | |
322 | ntv.modes = user_ntv.modes; | |
323 | ntv.offset = user_ntv.offset; | |
324 | ntv.freq = user_ntv.freq; | |
325 | ntv.maxerror = user_ntv.maxerror; | |
326 | ntv.esterror = user_ntv.esterror; | |
327 | ntv.status = user_ntv.status; | |
328 | ntv.constant = user_ntv.constant; | |
329 | ntv.precision = user_ntv.precision; | |
330 | ntv.tolerance = user_ntv.tolerance; | |
331 | } | |
332 | if (error) | |
333 | return (error); | |
334 | ||
cc8bc92a A |
335 | #if DEVELOPEMNT || DEBUG |
336 | if (g_should_log_clock_adjustments) { | |
d9a64523 | 337 | os_log(OS_LOG_DEFAULT, "%s: BEFORE modes %u offset %ld freq %ld status %d constant %ld time_adjtime %lld\n", |
cc8bc92a A |
338 | __func__, ntv.modes, ntv.offset, ntv.freq, ntv.status, ntv.constant, time_adjtime); |
339 | } | |
340 | #endif | |
5ba3f43e A |
341 | /* |
342 | * Update selected clock variables - only the superuser can | |
343 | * change anything. Note that there is no error checking here on | |
344 | * the assumption the superuser should know what it is doing. | |
345 | * Note that either the time constant or TAI offset are loaded | |
346 | * from the ntv.constant member, depending on the mode bits. If | |
347 | * the STA_PLL bit in the status word is cleared, the state and | |
348 | * status words are reset to the initial values at boot. | |
349 | */ | |
350 | modes = ntv.modes; | |
351 | if (modes) { | |
352 | /* Check that this task is entitled to set the time or it is root */ | |
353 | if (!IOTaskHasEntitlement(current_task(), SETTIME_ENTITLEMENT)) { | |
354 | #if CONFIG_MACF | |
355 | error = mac_system_check_settime(kauth_cred_get()); | |
356 | if (error) | |
357 | return (error); | |
358 | #endif | |
359 | if ((error = priv_check_cred(kauth_cred_get(), PRIV_ADJTIME, 0))) | |
360 | return (error); | |
361 | ||
362 | } | |
363 | } | |
364 | ||
365 | NTP_LOCK(enable); | |
366 | ||
367 | if (modes & MOD_MAXERROR) { | |
368 | clock_gettimeofday(&sec, µsecs); | |
369 | time_maxerror = ntv.maxerror; | |
370 | last_time_maxerror_update = sec; | |
371 | } | |
372 | if (modes & MOD_ESTERROR) | |
373 | time_esterror = ntv.esterror; | |
374 | if (modes & MOD_STATUS) { | |
375 | if (time_status & STA_PLL && !(ntv.status & STA_PLL)) { | |
376 | time_state = TIME_OK; | |
377 | time_status = STA_UNSYNC; | |
378 | } | |
379 | time_status &= STA_RONLY; | |
380 | time_status |= ntv.status & ~STA_RONLY; | |
381 | /* | |
382 | * Nor PPS or leaps seconds are supported. | |
383 | * Filter out unsupported bits. | |
384 | */ | |
385 | time_status &= STA_SUPPORTED; | |
386 | } | |
387 | if (modes & MOD_TIMECONST) { | |
388 | if (ntv.constant < 0) | |
389 | time_constant = 0; | |
390 | else if (ntv.constant > MAXTC) | |
391 | time_constant = MAXTC; | |
392 | else | |
393 | time_constant = ntv.constant; | |
394 | } | |
395 | if (modes & MOD_TAI) { | |
396 | if (ntv.constant > 0) | |
397 | time_tai = ntv.constant; | |
398 | } | |
399 | if (modes & MOD_NANO) | |
400 | time_status |= STA_NANO; | |
401 | if (modes & MOD_MICRO) | |
402 | time_status &= ~STA_NANO; | |
403 | if (modes & MOD_CLKB) | |
404 | time_status |= STA_CLK; | |
405 | if (modes & MOD_CLKA) | |
406 | time_status &= ~STA_CLK; | |
407 | if (modes & MOD_FREQUENCY) { | |
408 | freq = (ntv.freq * 1000LL) >> 16; | |
409 | if (freq > MAXFREQ) | |
410 | L_LINT(time_freq, MAXFREQ); | |
411 | else if (freq < -MAXFREQ) | |
412 | L_LINT(time_freq, -MAXFREQ); | |
413 | else { | |
414 | /* | |
415 | * ntv.freq is [PPM * 2^16] = [us/s * 2^16] | |
416 | * time_freq is [ns/s * 2^32] | |
417 | */ | |
418 | time_freq = ntv.freq * 1000LL * 65536LL; | |
419 | } | |
420 | } | |
421 | if (modes & MOD_OFFSET) { | |
422 | if (time_status & STA_NANO) | |
423 | hardupdate(ntv.offset); | |
424 | else | |
425 | hardupdate(ntv.offset * 1000); | |
426 | } | |
427 | ||
428 | ret = ntp_is_time_error(time_status) ? TIME_ERROR : time_state; | |
429 | ||
cc8bc92a A |
430 | #if DEVELOPEMNT || DEBUG |
431 | if (g_should_log_clock_adjustments) { | |
d9a64523 A |
432 | os_log(OS_LOG_DEFAULT, "%s: AFTER modes %u offset %lld freq %lld status %d constant %ld time_adjtime %lld\n", |
433 | __func__, modes, time_offset, time_freq, time_status, time_constant, time_adjtime); | |
cc8bc92a A |
434 | } |
435 | #endif | |
436 | ||
5ba3f43e A |
437 | /* |
438 | * Retrieve all clock variables. Note that the TAI offset is | |
439 | * returned only by ntp_gettime(); | |
440 | */ | |
441 | if (IS_64BIT_PROCESS(p)) { | |
527f9951 | 442 | struct user64_timex user_ntv = {}; |
5ba3f43e | 443 | |
d9a64523 | 444 | user_ntv.modes = modes; |
5ba3f43e A |
445 | if (time_status & STA_NANO) |
446 | user_ntv.offset = L_GINT(time_offset); | |
447 | else | |
448 | user_ntv.offset = L_GINT(time_offset) / 1000; | |
449 | user_ntv.freq = L_GINT((time_freq / 1000LL) << 16); | |
450 | user_ntv.maxerror = time_maxerror; | |
451 | user_ntv.esterror = time_esterror; | |
452 | user_ntv.status = time_status; | |
453 | user_ntv.constant = time_constant; | |
454 | if (time_status & STA_NANO) | |
455 | user_ntv.precision = time_precision; | |
456 | else | |
457 | user_ntv.precision = time_precision / 1000; | |
458 | user_ntv.tolerance = MAXFREQ * SCALE_PPM; | |
459 | ||
460 | /* unlock before copyout */ | |
461 | NTP_UNLOCK(enable); | |
462 | ||
463 | error = copyout(&user_ntv, uap->tp, sizeof(user_ntv)); | |
464 | ||
465 | } | |
466 | else{ | |
527f9951 | 467 | struct user32_timex user_ntv = {}; |
5ba3f43e | 468 | |
d9a64523 | 469 | user_ntv.modes = modes; |
5ba3f43e A |
470 | if (time_status & STA_NANO) |
471 | user_ntv.offset = L_GINT(time_offset); | |
472 | else | |
473 | user_ntv.offset = L_GINT(time_offset) / 1000; | |
474 | user_ntv.freq = L_GINT((time_freq / 1000LL) << 16); | |
475 | user_ntv.maxerror = time_maxerror; | |
476 | user_ntv.esterror = time_esterror; | |
477 | user_ntv.status = time_status; | |
478 | user_ntv.constant = time_constant; | |
479 | if (time_status & STA_NANO) | |
480 | user_ntv.precision = time_precision; | |
481 | else | |
482 | user_ntv.precision = time_precision / 1000; | |
483 | user_ntv.tolerance = MAXFREQ * SCALE_PPM; | |
484 | ||
485 | /* unlock before copyout */ | |
486 | NTP_UNLOCK(enable); | |
487 | ||
488 | error = copyout(&user_ntv, uap->tp, sizeof(user_ntv)); | |
489 | } | |
490 | ||
491 | if (modes) | |
492 | start_ntp_loop(); | |
493 | ||
494 | if (error == 0) | |
495 | *retval = ret; | |
496 | ||
497 | return (error); | |
498 | } | |
499 | ||
500 | int64_t | |
501 | ntp_get_freq(void){ | |
502 | return time_freq; | |
503 | } | |
504 | ||
505 | /* | |
506 | * Compute the adjustment to add to the next second. | |
507 | */ | |
508 | void | |
509 | ntp_update_second(int64_t *adjustment, clock_sec_t secs) | |
510 | { | |
511 | int tickrate; | |
512 | l_fp time_adj; | |
513 | l_fp ftemp, old_time_adjtime, old_offset; | |
514 | ||
515 | NTP_ASSERT_LOCKED(); | |
516 | ||
517 | if (secs > last_time_maxerror_update) { | |
518 | time_maxerror += (MAXFREQ / 1000)*(secs-last_time_maxerror_update); | |
519 | last_time_maxerror_update = secs; | |
520 | } | |
521 | ||
522 | old_offset = time_offset; | |
523 | old_time_adjtime = time_adjtime; | |
524 | ||
525 | ftemp = time_offset; | |
526 | L_RSHIFT(ftemp, SHIFT_PLL + time_constant); | |
527 | time_adj = ftemp; | |
528 | L_SUB(time_offset, ftemp); | |
529 | L_ADD(time_adj, time_freq); | |
530 | ||
531 | /* | |
532 | * Apply any correction from adjtime. If more than one second | |
533 | * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM) | |
534 | * until the last second is slewed the final < 500 usecs. | |
535 | */ | |
536 | if (time_adjtime != 0) { | |
537 | if (time_adjtime > 1000000) | |
538 | tickrate = 5000; | |
539 | else if (time_adjtime < -1000000) | |
540 | tickrate = -5000; | |
541 | else if (time_adjtime > 500) | |
542 | tickrate = 500; | |
543 | else if (time_adjtime < -500) | |
544 | tickrate = -500; | |
545 | else | |
546 | tickrate = time_adjtime; | |
547 | time_adjtime -= tickrate; | |
548 | L_LINT(ftemp, tickrate * 1000); | |
549 | L_ADD(time_adj, ftemp); | |
550 | } | |
551 | ||
552 | if (old_time_adjtime || ((time_offset || old_offset) && (time_offset != old_offset))) { | |
553 | updated = 1; | |
554 | } | |
555 | else{ | |
556 | updated = 0; | |
557 | } | |
558 | ||
cc8bc92a A |
559 | #if DEVELOPEMNT || DEBUG |
560 | if (g_should_log_clock_adjustments) { | |
561 | int64_t nano = (time_adj > 0)? time_adj >> 32 : -((-time_adj) >> 32); | |
562 | int64_t frac = (time_adj > 0)? ((uint32_t) time_adj) : -((uint32_t) (-time_adj)); | |
563 | ||
564 | os_log(OS_LOG_DEFAULT, "%s:AFTER offset %lld (%lld) freq %lld status %d " | |
565 | "constant %ld time_adjtime %lld nano %lld frac %lld adj %lld\n", | |
566 | __func__, time_offset, (time_offset > 0)? time_offset >> 32 : -((-time_offset) >> 32), | |
567 | time_freq, time_status, time_constant, time_adjtime, nano, frac, time_adj); | |
568 | } | |
569 | #endif | |
570 | ||
5ba3f43e A |
571 | *adjustment = time_adj; |
572 | } | |
573 | ||
574 | /* | |
575 | * hardupdate() - local clock update | |
576 | * | |
577 | * This routine is called by ntp_adjtime() when an offset is provided | |
578 | * to update the local clock phase and frequency. | |
579 | * The implementation is of an adaptive-parameter, hybrid | |
580 | * phase/frequency-lock loop (PLL/FLL). The routine computes new | |
581 | * time and frequency offset estimates for each call. | |
582 | * Presumably, calls to ntp_adjtime() occur only when the caller | |
583 | * believes the local clock is valid within some bound (+-128 ms with | |
584 | * NTP). | |
585 | * | |
586 | * For uncompensated quartz crystal oscillators and nominal update | |
587 | * intervals less than 256 s, operation should be in phase-lock mode, | |
588 | * where the loop is disciplined to phase. For update intervals greater | |
589 | * than 1024 s, operation should be in frequency-lock mode, where the | |
590 | * loop is disciplined to frequency. Between 256 s and 1024 s, the mode | |
591 | * is selected by the STA_MODE status bit. | |
592 | */ | |
593 | static void | |
594 | hardupdate(offset) | |
595 | long offset; | |
596 | { | |
597 | long mtemp = 0; | |
598 | long time_monitor; | |
599 | clock_sec_t time_uptime; | |
600 | l_fp ftemp; | |
601 | ||
602 | NTP_ASSERT_LOCKED(); | |
603 | ||
604 | if (!(time_status & STA_PLL)) | |
605 | return; | |
606 | ||
607 | if (offset > MAXPHASE) | |
608 | time_monitor = MAXPHASE; | |
609 | else if (offset < -MAXPHASE) | |
610 | time_monitor = -MAXPHASE; | |
611 | else | |
612 | time_monitor = offset; | |
613 | L_LINT(time_offset, time_monitor); | |
614 | ||
615 | clock_get_calendar_uptime(&time_uptime); | |
616 | ||
617 | if (time_status & STA_FREQHOLD || time_reftime == 0) { | |
618 | time_reftime = time_uptime; | |
619 | } | |
620 | ||
621 | mtemp = time_uptime - time_reftime; | |
622 | L_LINT(ftemp, time_monitor); | |
623 | L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1); | |
624 | L_MPY(ftemp, mtemp); | |
625 | L_ADD(time_freq, ftemp); | |
626 | time_status &= ~STA_MODE; | |
627 | if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > | |
628 | MAXSEC)) { | |
629 | L_LINT(ftemp, (time_monitor << 4) / mtemp); | |
630 | L_RSHIFT(ftemp, SHIFT_FLL + 4); | |
631 | L_ADD(time_freq, ftemp); | |
632 | time_status |= STA_MODE; | |
633 | } | |
634 | time_reftime = time_uptime; | |
635 | ||
636 | if (L_GINT(time_freq) > MAXFREQ) | |
637 | L_LINT(time_freq, MAXFREQ); | |
638 | else if (L_GINT(time_freq) < -MAXFREQ) | |
639 | L_LINT(time_freq, -MAXFREQ); | |
640 | } | |
641 | ||
642 | ||
643 | static int | |
644 | kern_adjtime(struct timeval *delta) | |
645 | { | |
646 | struct timeval atv; | |
647 | int64_t ltr, ltw; | |
648 | boolean_t enable; | |
649 | ||
650 | if (delta == NULL) | |
651 | return (EINVAL); | |
652 | ||
653 | ltw = (int64_t)delta->tv_sec * (int64_t)USEC_PER_SEC + delta->tv_usec; | |
654 | ||
655 | NTP_LOCK(enable); | |
656 | ltr = time_adjtime; | |
657 | time_adjtime = ltw; | |
cc8bc92a A |
658 | #if DEVELOPEMNT || DEBUG |
659 | if (g_should_log_clock_adjustments) { | |
660 | os_log(OS_LOG_DEFAULT, "%s:AFTER offset %lld freq %lld status %d constant %ld time_adjtime %lld\n", | |
661 | __func__, time_offset, time_freq, time_status, time_constant, time_adjtime); | |
662 | } | |
663 | #endif | |
5ba3f43e A |
664 | NTP_UNLOCK(enable); |
665 | ||
666 | atv.tv_sec = ltr / (int64_t)USEC_PER_SEC; | |
667 | atv.tv_usec = ltr % (int64_t)USEC_PER_SEC; | |
668 | if (atv.tv_usec < 0) { | |
669 | atv.tv_usec += (suseconds_t)USEC_PER_SEC; | |
670 | atv.tv_sec--; | |
671 | } | |
672 | ||
673 | *delta = atv; | |
674 | ||
675 | start_ntp_loop(); | |
676 | ||
677 | return (0); | |
678 | } | |
679 | ||
680 | int | |
681 | adjtime(struct proc *p, struct adjtime_args *uap, __unused int32_t *retval) | |
682 | { | |
683 | ||
684 | struct timeval atv; | |
685 | int error; | |
686 | ||
687 | /* Check that this task is entitled to set the time or it is root */ | |
688 | if (!IOTaskHasEntitlement(current_task(), SETTIME_ENTITLEMENT)) { | |
689 | ||
690 | #if CONFIG_MACF | |
691 | error = mac_system_check_settime(kauth_cred_get()); | |
692 | if (error) | |
693 | return (error); | |
694 | #endif | |
695 | if ((error = priv_check_cred(kauth_cred_get(), PRIV_ADJTIME, 0))) | |
696 | return (error); | |
697 | } | |
698 | ||
699 | if (IS_64BIT_PROCESS(p)) { | |
700 | struct user64_timeval user_atv; | |
701 | error = copyin(uap->delta, &user_atv, sizeof(user_atv)); | |
702 | atv.tv_sec = user_atv.tv_sec; | |
703 | atv.tv_usec = user_atv.tv_usec; | |
704 | } else { | |
705 | struct user32_timeval user_atv; | |
706 | error = copyin(uap->delta, &user_atv, sizeof(user_atv)); | |
707 | atv.tv_sec = user_atv.tv_sec; | |
708 | atv.tv_usec = user_atv.tv_usec; | |
709 | } | |
710 | if (error) | |
711 | return (error); | |
712 | ||
713 | kern_adjtime(&atv); | |
714 | ||
715 | if (uap->olddelta) { | |
716 | if (IS_64BIT_PROCESS(p)) { | |
527f9951 | 717 | struct user64_timeval user_atv = {}; |
5ba3f43e A |
718 | user_atv.tv_sec = atv.tv_sec; |
719 | user_atv.tv_usec = atv.tv_usec; | |
720 | error = copyout(&user_atv, uap->olddelta, sizeof(user_atv)); | |
721 | } else { | |
527f9951 | 722 | struct user32_timeval user_atv = {}; |
5ba3f43e A |
723 | user_atv.tv_sec = atv.tv_sec; |
724 | user_atv.tv_usec = atv.tv_usec; | |
725 | error = copyout(&user_atv, uap->olddelta, sizeof(user_atv)); | |
726 | } | |
727 | } | |
728 | ||
729 | return (error); | |
730 | ||
731 | } | |
732 | ||
733 | static void | |
734 | ntp_loop_update_call(void) | |
735 | { | |
736 | boolean_t enable; | |
737 | ||
738 | NTP_LOCK(enable); | |
739 | ||
740 | /* | |
741 | * Update the scale factor used by clock_calend. | |
742 | * NOTE: clock_update_calendar will call ntp_update_second to compute the next adjustment. | |
743 | */ | |
744 | clock_update_calendar(); | |
745 | ||
746 | refresh_ntp_loop(); | |
747 | ||
748 | NTP_UNLOCK(enable); | |
749 | } | |
750 | ||
751 | static void | |
752 | refresh_ntp_loop(void) | |
753 | { | |
754 | ||
755 | NTP_ASSERT_LOCKED(); | |
756 | if (--ntp_loop_active == 0) { | |
757 | /* | |
758 | * Activate the timer only if the next second adjustment might change. | |
759 | * ntp_update_second checks it and sets updated accordingly. | |
760 | */ | |
761 | if (updated) { | |
762 | clock_deadline_for_periodic_event(ntp_loop_period, mach_absolute_time(), &ntp_loop_deadline); | |
763 | ||
764 | if (!timer_call_enter(&ntp_loop_update, ntp_loop_deadline, TIMER_CALL_SYS_CRITICAL)) | |
765 | ntp_loop_active++; | |
766 | } | |
767 | } | |
768 | ||
769 | } | |
770 | ||
771 | /* | |
772 | * This function triggers a timer that each second will calculate the adjustment to | |
773 | * provide to clock_calendar to scale the time (used by gettimeofday-family syscalls). | |
774 | * The periodic timer will stop when the adjustment will reach a stable value. | |
775 | */ | |
776 | static void | |
777 | start_ntp_loop(void) | |
778 | { | |
779 | boolean_t enable; | |
780 | ||
781 | NTP_LOCK(enable); | |
782 | ||
783 | ntp_loop_deadline = mach_absolute_time() + ntp_loop_period; | |
784 | ||
785 | if (!timer_call_enter(&ntp_loop_update, ntp_loop_deadline, TIMER_CALL_SYS_CRITICAL)) { | |
786 | ntp_loop_active++; | |
787 | } | |
788 | ||
789 | NTP_UNLOCK(enable); | |
790 | } | |
791 | ||
792 | ||
793 | static void | |
794 | init_ntp_loop(void) | |
795 | { | |
796 | uint64_t abstime; | |
797 | ||
798 | ntp_loop_active = 0; | |
799 | nanoseconds_to_absolutetime(NTP_LOOP_PERIOD_INTERVAL, &abstime); | |
800 | ntp_loop_period = (uint32_t)abstime; | |
801 | timer_call_setup(&ntp_loop_update, (timer_call_func_t)ntp_loop_update_call, NULL); | |
802 | } | |
803 | ||
804 | void | |
805 | ntp_init(void) | |
806 | { | |
807 | ||
808 | L_CLR(time_offset); | |
809 | L_CLR(time_freq); | |
810 | ||
811 | ntp_lock_grp_attr = lck_grp_attr_alloc_init(); | |
812 | ntp_lock_grp = lck_grp_alloc_init("ntp_lock", ntp_lock_grp_attr); | |
813 | ntp_lock_attr = lck_attr_alloc_init(); | |
814 | ntp_lock = lck_spin_alloc_init(ntp_lock_grp, ntp_lock_attr); | |
815 | ||
816 | updated = 0; | |
817 | ||
818 | init_ntp_loop(); | |
819 | } | |
820 | ||
821 | SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, ntp_init, NULL); |