]>
Commit | Line | Data |
---|---|---|
1c79356b A |
1 | /* |
2 | * Copyright (c) 2000 Apple Computer, Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_LICENSE_HEADER_START@ | |
5 | * | |
de355530 A |
6 | * The contents of this file constitute Original Code as defined in and |
7 | * are subject to the Apple Public Source License Version 1.1 (the | |
8 | * "License"). You may not use this file except in compliance with the | |
9 | * License. Please obtain a copy of the License at | |
10 | * http://www.apple.com/publicsource and read it before using this file. | |
1c79356b | 11 | * |
de355530 A |
12 | * This Original Code and all software distributed under the License are |
13 | * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
1c79356b A |
14 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
15 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
de355530 A |
16 | * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the |
17 | * License for the specific language governing rights and limitations | |
18 | * under the License. | |
1c79356b A |
19 | * |
20 | * @APPLE_LICENSE_HEADER_END@ | |
21 | */ | |
22 | /* | |
23 | * @OSF_COPYRIGHT@ | |
24 | */ | |
25 | /* | |
26 | * Mach Operating System | |
27 | * Copyright (c) 1991,1990 Carnegie Mellon University | |
28 | * All Rights Reserved. | |
29 | * | |
30 | * Permission to use, copy, modify and distribute this software and its | |
31 | * documentation is hereby granted, provided that both the copyright | |
32 | * notice and this permission notice appear in all copies of the | |
33 | * software, derivative works or modified versions, and any portions | |
34 | * thereof, and that both notices appear in supporting documentation. | |
35 | * | |
36 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
37 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
38 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
39 | * | |
40 | * Carnegie Mellon requests users of this software to return to | |
41 | * | |
42 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
43 | * School of Computer Science | |
44 | * Carnegie Mellon University | |
45 | * Pittsburgh PA 15213-3890 | |
46 | * | |
47 | * any improvements or extensions that they make and grant Carnegie Mellon | |
48 | * the rights to redistribute these changes. | |
49 | */ | |
50 | ||
51 | #include <cpus.h> | |
52 | #include <mach_rt.h> | |
53 | #include <mach_debug.h> | |
54 | #include <mach_ldebug.h> | |
55 | ||
56 | #include <sys/kdebug.h> | |
57 | ||
58 | #include <mach/kern_return.h> | |
59 | #include <mach/thread_status.h> | |
60 | #include <mach/vm_param.h> | |
1c79356b A |
61 | |
62 | #include <kern/counters.h> | |
63 | #include <kern/mach_param.h> | |
64 | #include <kern/task.h> | |
65 | #include <kern/thread.h> | |
66 | #include <kern/thread_act.h> | |
67 | #include <kern/thread_swap.h> | |
68 | #include <kern/sched_prim.h> | |
69 | #include <kern/misc_protos.h> | |
70 | #include <kern/assert.h> | |
71 | #include <kern/spl.h> | |
72 | #include <ipc/ipc_port.h> | |
73 | #include <vm/vm_kern.h> | |
74 | #include <vm/pmap.h> | |
75 | ||
76 | #include <i386/thread.h> | |
77 | #include <i386/eflags.h> | |
78 | #include <i386/proc_reg.h> | |
79 | #include <i386/seg.h> | |
80 | #include <i386/tss.h> | |
81 | #include <i386/user_ldt.h> | |
82 | #include <i386/fpu.h> | |
83 | #include <i386/iopb_entries.h> | |
84 | ||
85 | /* | |
86 | * Maps state flavor to number of words in the state: | |
87 | */ | |
88 | unsigned int state_count[] = { | |
89 | /* FLAVOR_LIST */ 0, | |
90 | i386_NEW_THREAD_STATE_COUNT, | |
91 | i386_FLOAT_STATE_COUNT, | |
92 | i386_ISA_PORT_MAP_STATE_COUNT, | |
93 | i386_V86_ASSIST_STATE_COUNT, | |
94 | i386_REGS_SEGS_STATE_COUNT, | |
95 | i386_THREAD_SYSCALL_STATE_COUNT, | |
96 | /* THREAD_STATE_NONE */ 0, | |
97 | i386_SAVED_STATE_COUNT, | |
98 | }; | |
99 | ||
100 | /* Forward */ | |
101 | ||
102 | void act_machine_throughcall(thread_act_t thr_act); | |
103 | extern thread_t Switch_context( | |
104 | thread_t old, | |
105 | void (*cont)(void), | |
106 | thread_t new); | |
107 | extern void Thread_continue(void); | |
108 | extern void Load_context( | |
109 | thread_t thread); | |
110 | ||
111 | /* | |
112 | * consider_machine_collect: | |
113 | * | |
114 | * Try to collect machine-dependent pages | |
115 | */ | |
116 | void | |
117 | consider_machine_collect() | |
118 | { | |
119 | } | |
120 | ||
121 | void | |
122 | consider_machine_adjust() | |
123 | { | |
124 | } | |
125 | ||
126 | ||
127 | /* | |
128 | * machine_kernel_stack_init: | |
129 | * | |
130 | * Initialize a kernel stack which has already been | |
131 | * attached to its thread_activation. | |
132 | */ | |
133 | ||
134 | void | |
135 | machine_kernel_stack_init( | |
136 | thread_t thread, | |
137 | void (*start_pos)(thread_t)) | |
138 | { | |
139 | thread_act_t thr_act = thread->top_act; | |
140 | vm_offset_t stack; | |
141 | ||
142 | assert(thr_act); | |
143 | stack = thread->kernel_stack; | |
144 | assert(stack); | |
145 | ||
146 | #if MACH_ASSERT | |
147 | if (watchacts & WA_PCB) { | |
148 | printf("machine_kernel_stack_init(thr=%x,stk=%x,start_pos=%x)\n", | |
149 | thread,stack,start_pos); | |
150 | printf("\tstack_iks=%x, stack_iel=%x\n", | |
151 | STACK_IKS(stack), STACK_IEL(stack)); | |
152 | } | |
153 | #endif /* MACH_ASSERT */ | |
154 | ||
155 | /* | |
156 | * We want to run at start_pos, giving it as an argument | |
157 | * the return value from Load_context/Switch_context. | |
158 | * Thread_continue takes care of the mismatch between | |
159 | * the argument-passing/return-value conventions. | |
160 | * This function will not return normally, | |
161 | * so we don`t have to worry about a return address. | |
162 | */ | |
163 | STACK_IKS(stack)->k_eip = (int) Thread_continue; | |
164 | STACK_IKS(stack)->k_ebx = (int) start_pos; | |
165 | STACK_IKS(stack)->k_esp = (int) STACK_IEL(stack); | |
166 | ||
167 | /* | |
168 | * Point top of kernel stack to user`s registers. | |
169 | */ | |
170 | STACK_IEL(stack)->saved_state = &thr_act->mact.pcb->iss; | |
171 | } | |
172 | ||
173 | ||
174 | #if NCPUS > 1 | |
175 | #define curr_gdt(mycpu) (mp_gdt[mycpu]) | |
176 | #define curr_ktss(mycpu) (mp_ktss[mycpu]) | |
177 | #else | |
178 | #define curr_gdt(mycpu) (gdt) | |
179 | #define curr_ktss(mycpu) (&ktss) | |
180 | #endif | |
181 | ||
182 | #define gdt_desc_p(mycpu,sel) \ | |
183 | ((struct real_descriptor *)&curr_gdt(mycpu)[sel_idx(sel)]) | |
184 | ||
185 | void | |
186 | act_machine_switch_pcb( thread_act_t new_act ) | |
187 | { | |
188 | pcb_t pcb = new_act->mact.pcb; | |
189 | int mycpu; | |
190 | { | |
191 | register iopb_tss_t tss = pcb->ims.io_tss; | |
192 | vm_offset_t pcb_stack_top; | |
193 | ||
194 | assert(new_act->thread != NULL); | |
195 | assert(new_act->thread->kernel_stack != 0); | |
196 | STACK_IEL(new_act->thread->kernel_stack)->saved_state = | |
197 | &new_act->mact.pcb->iss; | |
198 | ||
199 | /* | |
200 | * Save a pointer to the top of the "kernel" stack - | |
201 | * actually the place in the PCB where a trap into | |
202 | * kernel mode will push the registers. | |
203 | * The location depends on V8086 mode. If we are | |
204 | * not in V8086 mode, then a trap into the kernel | |
205 | * won`t save the v86 segments, so we leave room. | |
206 | */ | |
207 | ||
208 | pcb_stack_top = (pcb->iss.efl & EFL_VM) | |
209 | ? (int) (&pcb->iss + 1) | |
210 | : (int) (&pcb->iss.v86_segs); | |
211 | ||
212 | mp_disable_preemption(); | |
213 | mycpu = cpu_number(); | |
214 | ||
215 | if (tss == 0) { | |
216 | /* | |
217 | * No per-thread IO permissions. | |
218 | * Use standard kernel TSS. | |
219 | */ | |
220 | if (!(gdt_desc_p(mycpu,KERNEL_TSS)->access & ACC_TSS_BUSY)) | |
221 | set_tr(KERNEL_TSS); | |
222 | curr_ktss(mycpu)->esp0 = pcb_stack_top; | |
223 | } | |
224 | else { | |
225 | /* | |
226 | * Set the IO permissions. Use this thread`s TSS. | |
227 | */ | |
228 | *gdt_desc_p(mycpu,USER_TSS) | |
229 | = *(struct real_descriptor *)tss->iopb_desc; | |
230 | tss->tss.esp0 = pcb_stack_top; | |
231 | set_tr(USER_TSS); | |
232 | gdt_desc_p(mycpu,KERNEL_TSS)->access &= ~ ACC_TSS_BUSY; | |
233 | } | |
234 | } | |
235 | ||
236 | { | |
237 | register user_ldt_t ldt = pcb->ims.ldt; | |
238 | /* | |
239 | * Set the thread`s LDT. | |
240 | */ | |
241 | if (ldt == 0) { | |
242 | /* | |
243 | * Use system LDT. | |
244 | */ | |
245 | set_ldt(KERNEL_LDT); | |
246 | } | |
247 | else { | |
248 | /* | |
249 | * Thread has its own LDT. | |
250 | */ | |
251 | *gdt_desc_p(mycpu,USER_LDT) = ldt->desc; | |
252 | set_ldt(USER_LDT); | |
253 | } | |
254 | } | |
255 | mp_enable_preemption(); | |
256 | /* | |
257 | * Load the floating-point context, if necessary. | |
258 | */ | |
259 | fpu_load_context(pcb); | |
260 | ||
261 | } | |
262 | ||
263 | /* | |
264 | * flush out any lazily evaluated HW state in the | |
265 | * owning thread's context, before termination. | |
266 | */ | |
267 | void | |
268 | thread_machine_flush( thread_act_t cur_act ) | |
269 | { | |
270 | fpflush(cur_act); | |
271 | } | |
272 | ||
273 | /* | |
274 | * Switch to the first thread on a CPU. | |
275 | */ | |
276 | void | |
277 | load_context( | |
278 | thread_t new) | |
279 | { | |
280 | act_machine_switch_pcb(new->top_act); | |
281 | Load_context(new); | |
282 | } | |
283 | ||
284 | /* | |
285 | * Number of times we needed to swap an activation back in before | |
286 | * switching to it. | |
287 | */ | |
288 | int switch_act_swapins = 0; | |
289 | ||
290 | /* | |
291 | * machine_switch_act | |
292 | * | |
293 | * Machine-dependent details of activation switching. Called with | |
294 | * RPC locks held and preemption disabled. | |
295 | */ | |
296 | void | |
297 | machine_switch_act( | |
298 | thread_t thread, | |
299 | thread_act_t old, | |
300 | thread_act_t new, | |
301 | int cpu) | |
302 | { | |
303 | /* | |
304 | * Switch the vm, ast and pcb context. | |
305 | * Save FP registers if in use and set TS (task switch) bit. | |
306 | */ | |
307 | fpu_save_context(thread); | |
308 | ||
309 | active_stacks[cpu] = thread->kernel_stack; | |
310 | ast_context(new, cpu); | |
311 | ||
312 | PMAP_SWITCH_CONTEXT(old, new, cpu); | |
313 | act_machine_switch_pcb(new); | |
314 | } | |
315 | ||
316 | /* | |
317 | * Switch to a new thread. | |
318 | * Save the old thread`s kernel state or continuation, | |
319 | * and return it. | |
320 | */ | |
321 | thread_t | |
322 | switch_context( | |
323 | thread_t old, | |
324 | void (*continuation)(void), | |
325 | thread_t new) | |
326 | { | |
327 | register thread_act_t old_act = old->top_act, | |
328 | new_act = new->top_act; | |
329 | ||
330 | #if MACH_RT | |
331 | assert(old_act->kernel_loaded || | |
332 | active_stacks[cpu_number()] == old_act->thread->kernel_stack); | |
333 | assert (get_preemption_level() == 1); | |
334 | #endif | |
335 | check_simple_locks(); | |
336 | ||
337 | /* | |
338 | * Save FP registers if in use. | |
339 | */ | |
340 | fpu_save_context(old); | |
341 | ||
342 | #if MACH_ASSERT | |
343 | if (watchacts & WA_SWITCH) | |
344 | printf("\tswitch_context(old=%x con=%x new=%x)\n", | |
345 | old, continuation, new); | |
346 | #endif /* MACH_ASSERT */ | |
347 | ||
348 | /* | |
349 | * Switch address maps if need be, even if not switching tasks. | |
350 | * (A server activation may be "borrowing" a client map.) | |
351 | */ | |
352 | { | |
353 | int mycpu = cpu_number(); | |
354 | ||
355 | PMAP_SWITCH_CONTEXT(old_act, new_act, mycpu) | |
356 | } | |
357 | ||
358 | /* | |
359 | * Load the rest of the user state for the new thread | |
360 | */ | |
361 | act_machine_switch_pcb(new_act); | |
9bccf70c A |
362 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED,MACH_SCHED) | DBG_FUNC_NONE, |
363 | (int)old, (int)new, old->sched_pri, new->sched_pri, 0); | |
1c79356b A |
364 | return(Switch_context(old, continuation, new)); |
365 | } | |
366 | ||
367 | void | |
368 | pcb_module_init(void) | |
369 | { | |
370 | fpu_module_init(); | |
371 | iopb_init(); | |
372 | } | |
373 | ||
374 | void | |
375 | pcb_init( register thread_act_t thr_act ) | |
376 | { | |
377 | register pcb_t pcb; | |
378 | ||
379 | assert(thr_act->mact.pcb == (pcb_t)0); | |
380 | pcb = thr_act->mact.pcb = &thr_act->mact.xxx_pcb; | |
381 | ||
382 | #if MACH_ASSERT | |
383 | if (watchacts & WA_PCB) | |
384 | printf("pcb_init(%x) pcb=%x\n", thr_act, pcb); | |
385 | #endif /* MACH_ASSERT */ | |
386 | ||
387 | /* | |
388 | * We can't let random values leak out to the user. | |
389 | * (however, act_create() zeroed the entire thr_act, mact, pcb) | |
390 | * bzero((char *) pcb, sizeof *pcb); | |
391 | */ | |
392 | simple_lock_init(&pcb->lock, ETAP_MISC_PCB); | |
393 | ||
394 | /* | |
395 | * Guarantee that the bootstrapped thread will be in user | |
396 | * mode. | |
397 | */ | |
398 | pcb->iss.cs = USER_CS; | |
399 | pcb->iss.ss = USER_DS; | |
400 | pcb->iss.ds = USER_DS; | |
401 | pcb->iss.es = USER_DS; | |
402 | pcb->iss.fs = USER_DS; | |
403 | pcb->iss.gs = USER_DS; | |
404 | pcb->iss.efl = EFL_USER_SET; | |
405 | } | |
406 | ||
407 | /* | |
408 | * Adjust saved register state for thread belonging to task | |
409 | * created with kernel_task_create(). | |
410 | */ | |
411 | void | |
412 | pcb_user_to_kernel( | |
413 | thread_act_t thr_act) | |
414 | { | |
415 | register pcb_t pcb = thr_act->mact.pcb; | |
416 | ||
417 | pcb->iss.cs = KERNEL_CS; | |
418 | pcb->iss.ss = KERNEL_DS; | |
419 | pcb->iss.ds = KERNEL_DS; | |
420 | pcb->iss.es = KERNEL_DS; | |
421 | pcb->iss.fs = KERNEL_DS; | |
422 | pcb->iss.gs = CPU_DATA; | |
423 | } | |
424 | ||
425 | void | |
426 | pcb_terminate( | |
427 | register thread_act_t thr_act) | |
428 | { | |
429 | register pcb_t pcb = thr_act->mact.pcb; | |
430 | ||
431 | assert(pcb); | |
432 | ||
433 | if (pcb->ims.io_tss != 0) | |
434 | iopb_destroy(pcb->ims.io_tss); | |
435 | if (pcb->ims.ifps != 0) | |
436 | fp_free(pcb->ims.ifps); | |
437 | if (pcb->ims.ldt != 0) | |
438 | user_ldt_free(pcb->ims.ldt); | |
439 | thr_act->mact.pcb = (pcb_t)0; | |
440 | } | |
441 | ||
442 | /* | |
443 | * pcb_collect: | |
444 | * | |
445 | * Attempt to free excess pcb memory. | |
446 | */ | |
447 | ||
448 | void | |
449 | pcb_collect( | |
450 | register thread_act_t thr_act) | |
451 | { | |
452 | /* accomplishes very little */ | |
453 | } | |
454 | ||
455 | /* | |
456 | * act_machine_sv_free | |
457 | * release saveareas associated with an act. if flag is true, release | |
458 | * user level savearea(s) too, else don't | |
459 | */ | |
460 | void | |
461 | act_machine_sv_free(thread_act_t act, int flag) | |
462 | { | |
463 | ||
464 | } | |
465 | ||
466 | /* | |
467 | * act_machine_set_state: | |
468 | * | |
469 | * Set the status of the specified thread. Called with "appropriate" | |
470 | * thread-related locks held (see act_lock_thread()), so | |
471 | * thr_act->thread is guaranteed not to change. | |
472 | */ | |
473 | ||
474 | kern_return_t | |
475 | act_machine_set_state( | |
476 | thread_act_t thr_act, | |
477 | thread_flavor_t flavor, | |
478 | thread_state_t tstate, | |
479 | mach_msg_type_number_t count) | |
480 | { | |
481 | int kernel_act = thr_act->kernel_loading || | |
482 | thr_act->kernel_loaded; | |
483 | ||
484 | #if MACH_ASSERT | |
485 | if (watchacts & WA_STATE) | |
486 | printf("act_%x act_m_set_state(thr_act=%x,flav=%x,st=%x,cnt=%x)\n", | |
487 | current_act(), thr_act, flavor, tstate, count); | |
488 | #endif /* MACH_ASSERT */ | |
489 | ||
490 | switch (flavor) { | |
491 | case THREAD_SYSCALL_STATE: | |
492 | { | |
493 | register struct thread_syscall_state *state; | |
494 | register struct i386_saved_state *saved_state = USER_REGS(thr_act); | |
495 | ||
496 | state = (struct thread_syscall_state *) tstate; | |
497 | saved_state->eax = state->eax; | |
498 | saved_state->edx = state->edx; | |
499 | if (kernel_act) | |
500 | saved_state->efl = state->efl; | |
501 | else | |
502 | saved_state->efl = (state->efl & ~EFL_USER_CLEAR) | EFL_USER_SET; | |
503 | saved_state->eip = state->eip; | |
504 | saved_state->uesp = state->esp; | |
505 | break; | |
506 | } | |
507 | ||
508 | case i386_SAVED_STATE: | |
509 | { | |
510 | register struct i386_saved_state *state; | |
511 | register struct i386_saved_state *saved_state; | |
512 | ||
513 | if (count < i386_SAVED_STATE_COUNT) { | |
514 | return(KERN_INVALID_ARGUMENT); | |
515 | } | |
516 | ||
517 | state = (struct i386_saved_state *) tstate; | |
518 | ||
519 | saved_state = USER_REGS(thr_act); | |
520 | ||
521 | /* | |
522 | * General registers | |
523 | */ | |
524 | saved_state->edi = state->edi; | |
525 | saved_state->esi = state->esi; | |
526 | saved_state->ebp = state->ebp; | |
527 | saved_state->uesp = state->uesp; | |
528 | saved_state->ebx = state->ebx; | |
529 | saved_state->edx = state->edx; | |
530 | saved_state->ecx = state->ecx; | |
531 | saved_state->eax = state->eax; | |
532 | saved_state->eip = state->eip; | |
533 | if (kernel_act) | |
534 | saved_state->efl = state->efl; | |
535 | else | |
536 | saved_state->efl = (state->efl & ~EFL_USER_CLEAR) | |
537 | | EFL_USER_SET; | |
538 | ||
539 | /* | |
540 | * Segment registers. Set differently in V8086 mode. | |
541 | */ | |
542 | if (state->efl & EFL_VM) { | |
543 | /* | |
544 | * Set V8086 mode segment registers. | |
545 | */ | |
546 | saved_state->cs = state->cs & 0xffff; | |
547 | saved_state->ss = state->ss & 0xffff; | |
548 | saved_state->v86_segs.v86_ds = state->ds & 0xffff; | |
549 | saved_state->v86_segs.v86_es = state->es & 0xffff; | |
550 | saved_state->v86_segs.v86_fs = state->fs & 0xffff; | |
551 | saved_state->v86_segs.v86_gs = state->gs & 0xffff; | |
552 | ||
553 | /* | |
554 | * Zero protected mode segment registers. | |
555 | */ | |
556 | saved_state->ds = 0; | |
557 | saved_state->es = 0; | |
558 | saved_state->fs = 0; | |
559 | saved_state->gs = 0; | |
560 | ||
561 | if (thr_act->mact.pcb->ims.v86s.int_table) { | |
562 | /* | |
563 | * Hardware assist on. | |
564 | */ | |
565 | thr_act->mact.pcb->ims.v86s.flags = | |
566 | state->efl & (EFL_TF | EFL_IF); | |
567 | } | |
568 | } | |
569 | else if (!kernel_act) { | |
570 | /* | |
571 | * 386 mode. Set segment registers for flat | |
572 | * 32-bit address space. | |
573 | */ | |
574 | saved_state->cs = USER_CS; | |
575 | saved_state->ss = USER_DS; | |
576 | saved_state->ds = USER_DS; | |
577 | saved_state->es = USER_DS; | |
578 | saved_state->fs = USER_DS; | |
579 | saved_state->gs = USER_DS; | |
580 | } | |
581 | else { | |
582 | /* | |
583 | * User setting segment registers. | |
584 | * Code and stack selectors have already been | |
585 | * checked. Others will be reset by 'iret' | |
586 | * if they are not valid. | |
587 | */ | |
588 | saved_state->cs = state->cs; | |
589 | saved_state->ss = state->ss; | |
590 | saved_state->ds = state->ds; | |
591 | saved_state->es = state->es; | |
592 | saved_state->fs = state->fs; | |
593 | saved_state->gs = state->gs; | |
594 | } | |
595 | break; | |
596 | } | |
597 | ||
598 | case i386_NEW_THREAD_STATE: | |
599 | case i386_REGS_SEGS_STATE: | |
600 | { | |
601 | register struct i386_new_thread_state *state; | |
602 | register struct i386_saved_state *saved_state; | |
603 | ||
604 | if (count < i386_NEW_THREAD_STATE_COUNT) { | |
605 | return(KERN_INVALID_ARGUMENT); | |
606 | } | |
607 | ||
608 | if (flavor == i386_REGS_SEGS_STATE) { | |
609 | /* | |
610 | * Code and stack selectors must not be null, | |
611 | * and must have user protection levels. | |
612 | * Only the low 16 bits are valid. | |
613 | */ | |
614 | state->cs &= 0xffff; | |
615 | state->ss &= 0xffff; | |
616 | state->ds &= 0xffff; | |
617 | state->es &= 0xffff; | |
618 | state->fs &= 0xffff; | |
619 | state->gs &= 0xffff; | |
620 | ||
621 | if (!kernel_act && | |
622 | (state->cs == 0 || (state->cs & SEL_PL) != SEL_PL_U | |
623 | || state->ss == 0 || (state->ss & SEL_PL) != SEL_PL_U)) | |
624 | return KERN_INVALID_ARGUMENT; | |
625 | } | |
626 | ||
627 | state = (struct i386_new_thread_state *) tstate; | |
628 | ||
629 | saved_state = USER_REGS(thr_act); | |
630 | ||
631 | /* | |
632 | * General registers | |
633 | */ | |
634 | saved_state->edi = state->edi; | |
635 | saved_state->esi = state->esi; | |
636 | saved_state->ebp = state->ebp; | |
637 | saved_state->uesp = state->uesp; | |
638 | saved_state->ebx = state->ebx; | |
639 | saved_state->edx = state->edx; | |
640 | saved_state->ecx = state->ecx; | |
641 | saved_state->eax = state->eax; | |
642 | saved_state->eip = state->eip; | |
643 | if (kernel_act) | |
644 | saved_state->efl = state->efl; | |
645 | else | |
646 | saved_state->efl = (state->efl & ~EFL_USER_CLEAR) | |
647 | | EFL_USER_SET; | |
648 | ||
649 | /* | |
650 | * Segment registers. Set differently in V8086 mode. | |
651 | */ | |
652 | if (state->efl & EFL_VM) { | |
653 | /* | |
654 | * Set V8086 mode segment registers. | |
655 | */ | |
656 | saved_state->cs = state->cs & 0xffff; | |
657 | saved_state->ss = state->ss & 0xffff; | |
658 | saved_state->v86_segs.v86_ds = state->ds & 0xffff; | |
659 | saved_state->v86_segs.v86_es = state->es & 0xffff; | |
660 | saved_state->v86_segs.v86_fs = state->fs & 0xffff; | |
661 | saved_state->v86_segs.v86_gs = state->gs & 0xffff; | |
662 | ||
663 | /* | |
664 | * Zero protected mode segment registers. | |
665 | */ | |
666 | saved_state->ds = 0; | |
667 | saved_state->es = 0; | |
668 | saved_state->fs = 0; | |
669 | saved_state->gs = 0; | |
670 | ||
671 | if (thr_act->mact.pcb->ims.v86s.int_table) { | |
672 | /* | |
673 | * Hardware assist on. | |
674 | */ | |
675 | thr_act->mact.pcb->ims.v86s.flags = | |
676 | state->efl & (EFL_TF | EFL_IF); | |
677 | } | |
678 | } | |
679 | else if (flavor == i386_NEW_THREAD_STATE && !kernel_act) { | |
680 | /* | |
681 | * 386 mode. Set segment registers for flat | |
682 | * 32-bit address space. | |
683 | */ | |
684 | saved_state->cs = USER_CS; | |
685 | saved_state->ss = USER_DS; | |
686 | saved_state->ds = USER_DS; | |
687 | saved_state->es = USER_DS; | |
688 | saved_state->fs = USER_DS; | |
689 | saved_state->gs = USER_DS; | |
690 | } | |
691 | else { | |
692 | /* | |
693 | * User setting segment registers. | |
694 | * Code and stack selectors have already been | |
695 | * checked. Others will be reset by 'iret' | |
696 | * if they are not valid. | |
697 | */ | |
698 | saved_state->cs = state->cs; | |
699 | saved_state->ss = state->ss; | |
700 | saved_state->ds = state->ds; | |
701 | saved_state->es = state->es; | |
702 | saved_state->fs = state->fs; | |
703 | saved_state->gs = state->gs; | |
704 | } | |
705 | break; | |
706 | } | |
707 | ||
708 | case i386_FLOAT_STATE: { | |
709 | ||
710 | if (count < i386_FLOAT_STATE_COUNT) | |
711 | return(KERN_INVALID_ARGUMENT); | |
712 | ||
713 | return fpu_set_state(thr_act,(struct i386_float_state*)tstate); | |
714 | } | |
715 | ||
716 | /* | |
717 | * Temporary - replace by i386_io_map | |
718 | */ | |
719 | case i386_ISA_PORT_MAP_STATE: { | |
720 | register struct i386_isa_port_map_state *state; | |
721 | register iopb_tss_t tss; | |
722 | ||
723 | if (count < i386_ISA_PORT_MAP_STATE_COUNT) | |
724 | return(KERN_INVALID_ARGUMENT); | |
725 | ||
726 | break; | |
727 | } | |
728 | ||
729 | case i386_V86_ASSIST_STATE: | |
730 | { | |
731 | register struct i386_v86_assist_state *state; | |
732 | vm_offset_t int_table; | |
733 | int int_count; | |
734 | ||
735 | if (count < i386_V86_ASSIST_STATE_COUNT) | |
736 | return KERN_INVALID_ARGUMENT; | |
737 | ||
738 | state = (struct i386_v86_assist_state *) tstate; | |
739 | int_table = state->int_table; | |
740 | int_count = state->int_count; | |
741 | ||
742 | if (int_table >= VM_MAX_ADDRESS || | |
743 | int_table + | |
744 | int_count * sizeof(struct v86_interrupt_table) | |
745 | > VM_MAX_ADDRESS) | |
746 | return KERN_INVALID_ARGUMENT; | |
747 | ||
748 | thr_act->mact.pcb->ims.v86s.int_table = int_table; | |
749 | thr_act->mact.pcb->ims.v86s.int_count = int_count; | |
750 | ||
751 | thr_act->mact.pcb->ims.v86s.flags = | |
752 | USER_REGS(thr_act)->efl & (EFL_TF | EFL_IF); | |
753 | break; | |
754 | } | |
755 | ||
756 | case i386_THREAD_STATE: { | |
757 | struct i386_saved_state *saved_state; | |
758 | i386_thread_state_t *state25; | |
759 | ||
760 | saved_state = USER_REGS(thr_act); | |
761 | state25 = (i386_thread_state_t *)tstate; | |
762 | ||
763 | saved_state->eax = state25->eax; | |
764 | saved_state->ebx = state25->ebx; | |
765 | saved_state->ecx = state25->ecx; | |
766 | saved_state->edx = state25->edx; | |
767 | saved_state->edi = state25->edi; | |
768 | saved_state->esi = state25->esi; | |
769 | saved_state->ebp = state25->ebp; | |
770 | saved_state->uesp = state25->esp; | |
771 | saved_state->efl = (state25->eflags & ~EFL_USER_CLEAR) | |
772 | | EFL_USER_SET; | |
773 | saved_state->eip = state25->eip; | |
774 | saved_state->cs = USER_CS; /* FIXME? */ | |
775 | saved_state->ss = USER_DS; | |
776 | saved_state->ds = USER_DS; | |
777 | saved_state->es = USER_DS; | |
778 | saved_state->fs = USER_DS; | |
779 | saved_state->gs = USER_DS; | |
780 | } | |
781 | break; | |
782 | ||
783 | default: | |
784 | return(KERN_INVALID_ARGUMENT); | |
785 | } | |
786 | ||
787 | return(KERN_SUCCESS); | |
788 | } | |
789 | ||
790 | /* | |
791 | * thread_getstatus: | |
792 | * | |
793 | * Get the status of the specified thread. | |
794 | */ | |
795 | ||
796 | ||
797 | kern_return_t | |
798 | act_machine_get_state( | |
799 | thread_act_t thr_act, | |
800 | thread_flavor_t flavor, | |
801 | thread_state_t tstate, | |
802 | mach_msg_type_number_t *count) | |
803 | { | |
804 | #if MACH_ASSERT | |
805 | if (watchacts & WA_STATE) | |
806 | printf("act_%x act_m_get_state(thr_act=%x,flav=%x,st=%x,cnt@%x=%x)\n", | |
807 | current_act(), thr_act, flavor, tstate, | |
808 | count, (count ? *count : 0)); | |
809 | #endif /* MACH_ASSERT */ | |
810 | ||
811 | switch (flavor) { | |
812 | ||
813 | case i386_SAVED_STATE: | |
814 | { | |
815 | register struct i386_saved_state *state; | |
816 | register struct i386_saved_state *saved_state; | |
817 | ||
818 | if (*count < i386_SAVED_STATE_COUNT) | |
819 | return(KERN_INVALID_ARGUMENT); | |
820 | ||
821 | state = (struct i386_saved_state *) tstate; | |
822 | saved_state = USER_REGS(thr_act); | |
823 | ||
824 | /* | |
825 | * First, copy everything: | |
826 | */ | |
827 | *state = *saved_state; | |
828 | ||
829 | if (saved_state->efl & EFL_VM) { | |
830 | /* | |
831 | * V8086 mode. | |
832 | */ | |
833 | state->ds = saved_state->v86_segs.v86_ds & 0xffff; | |
834 | state->es = saved_state->v86_segs.v86_es & 0xffff; | |
835 | state->fs = saved_state->v86_segs.v86_fs & 0xffff; | |
836 | state->gs = saved_state->v86_segs.v86_gs & 0xffff; | |
837 | ||
838 | if (thr_act->mact.pcb->ims.v86s.int_table) { | |
839 | /* | |
840 | * Hardware assist on | |
841 | */ | |
842 | if ((thr_act->mact.pcb->ims.v86s.flags & | |
843 | (EFL_IF|V86_IF_PENDING)) == 0) | |
844 | state->efl &= ~EFL_IF; | |
845 | } | |
846 | } | |
847 | else { | |
848 | /* | |
849 | * 386 mode. | |
850 | */ | |
851 | state->ds = saved_state->ds & 0xffff; | |
852 | state->es = saved_state->es & 0xffff; | |
853 | state->fs = saved_state->fs & 0xffff; | |
854 | state->gs = saved_state->gs & 0xffff; | |
855 | } | |
856 | *count = i386_SAVED_STATE_COUNT; | |
857 | break; | |
858 | } | |
859 | ||
860 | case i386_NEW_THREAD_STATE: | |
861 | case i386_REGS_SEGS_STATE: | |
862 | { | |
863 | register struct i386_new_thread_state *state; | |
864 | register struct i386_saved_state *saved_state; | |
865 | ||
866 | if (*count < i386_NEW_THREAD_STATE_COUNT) | |
867 | return(KERN_INVALID_ARGUMENT); | |
868 | ||
869 | state = (struct i386_new_thread_state *) tstate; | |
870 | saved_state = USER_REGS(thr_act); | |
871 | ||
872 | /* | |
873 | * General registers. | |
874 | */ | |
875 | state->edi = saved_state->edi; | |
876 | state->esi = saved_state->esi; | |
877 | state->ebp = saved_state->ebp; | |
878 | state->ebx = saved_state->ebx; | |
879 | state->edx = saved_state->edx; | |
880 | state->ecx = saved_state->ecx; | |
881 | state->eax = saved_state->eax; | |
882 | state->eip = saved_state->eip; | |
883 | state->efl = saved_state->efl; | |
884 | state->uesp = saved_state->uesp; | |
885 | ||
886 | state->cs = saved_state->cs; | |
887 | state->ss = saved_state->ss; | |
888 | if (saved_state->efl & EFL_VM) { | |
889 | /* | |
890 | * V8086 mode. | |
891 | */ | |
892 | state->ds = saved_state->v86_segs.v86_ds & 0xffff; | |
893 | state->es = saved_state->v86_segs.v86_es & 0xffff; | |
894 | state->fs = saved_state->v86_segs.v86_fs & 0xffff; | |
895 | state->gs = saved_state->v86_segs.v86_gs & 0xffff; | |
896 | ||
897 | if (thr_act->mact.pcb->ims.v86s.int_table) { | |
898 | /* | |
899 | * Hardware assist on | |
900 | */ | |
901 | if ((thr_act->mact.pcb->ims.v86s.flags & | |
902 | (EFL_IF|V86_IF_PENDING)) == 0) | |
903 | state->efl &= ~EFL_IF; | |
904 | } | |
905 | } | |
906 | else { | |
907 | /* | |
908 | * 386 mode. | |
909 | */ | |
910 | state->ds = saved_state->ds & 0xffff; | |
911 | state->es = saved_state->es & 0xffff; | |
912 | state->fs = saved_state->fs & 0xffff; | |
913 | state->gs = saved_state->gs & 0xffff; | |
914 | } | |
915 | *count = i386_NEW_THREAD_STATE_COUNT; | |
916 | break; | |
917 | } | |
918 | ||
919 | case THREAD_SYSCALL_STATE: | |
920 | { | |
921 | register struct thread_syscall_state *state; | |
922 | register struct i386_saved_state *saved_state = USER_REGS(thr_act); | |
923 | ||
924 | state = (struct thread_syscall_state *) tstate; | |
925 | state->eax = saved_state->eax; | |
926 | state->edx = saved_state->edx; | |
927 | state->efl = saved_state->efl; | |
928 | state->eip = saved_state->eip; | |
929 | state->esp = saved_state->uesp; | |
930 | *count = i386_THREAD_SYSCALL_STATE_COUNT; | |
931 | break; | |
932 | } | |
933 | ||
934 | case THREAD_STATE_FLAVOR_LIST: | |
935 | if (*count < 5) | |
936 | return (KERN_INVALID_ARGUMENT); | |
937 | tstate[0] = i386_NEW_THREAD_STATE; | |
938 | tstate[1] = i386_FLOAT_STATE; | |
939 | tstate[2] = i386_ISA_PORT_MAP_STATE; | |
940 | tstate[3] = i386_V86_ASSIST_STATE; | |
941 | tstate[4] = THREAD_SYSCALL_STATE; | |
942 | *count = 5; | |
943 | break; | |
944 | ||
945 | case i386_FLOAT_STATE: { | |
946 | ||
947 | if (*count < i386_FLOAT_STATE_COUNT) | |
948 | return(KERN_INVALID_ARGUMENT); | |
949 | ||
950 | *count = i386_FLOAT_STATE_COUNT; | |
951 | return fpu_get_state(thr_act,(struct i386_float_state *)tstate); | |
952 | } | |
953 | ||
954 | /* | |
955 | * Temporary - replace by i386_io_map | |
956 | */ | |
957 | case i386_ISA_PORT_MAP_STATE: { | |
958 | register struct i386_isa_port_map_state *state; | |
959 | register iopb_tss_t tss; | |
960 | ||
961 | if (*count < i386_ISA_PORT_MAP_STATE_COUNT) | |
962 | return(KERN_INVALID_ARGUMENT); | |
963 | ||
964 | state = (struct i386_isa_port_map_state *) tstate; | |
965 | tss = thr_act->mact.pcb->ims.io_tss; | |
966 | ||
967 | if (tss == 0) { | |
968 | int i; | |
969 | ||
970 | /* | |
971 | * The thread has no ktss, so no IO permissions. | |
972 | */ | |
973 | ||
974 | for (i = 0; i < sizeof state->pm; i++) | |
975 | state->pm[i] = 0xff; | |
976 | } else { | |
977 | /* | |
978 | * The thread has its own ktss. | |
979 | */ | |
980 | ||
981 | bcopy((char *) tss->bitmap, | |
982 | (char *) state->pm, | |
983 | sizeof state->pm); | |
984 | } | |
985 | ||
986 | *count = i386_ISA_PORT_MAP_STATE_COUNT; | |
987 | break; | |
988 | } | |
989 | ||
990 | case i386_V86_ASSIST_STATE: | |
991 | { | |
992 | register struct i386_v86_assist_state *state; | |
993 | ||
994 | if (*count < i386_V86_ASSIST_STATE_COUNT) | |
995 | return KERN_INVALID_ARGUMENT; | |
996 | ||
997 | state = (struct i386_v86_assist_state *) tstate; | |
998 | state->int_table = thr_act->mact.pcb->ims.v86s.int_table; | |
999 | state->int_count = thr_act->mact.pcb->ims.v86s.int_count; | |
1000 | ||
1001 | *count = i386_V86_ASSIST_STATE_COUNT; | |
1002 | break; | |
1003 | } | |
1004 | ||
1005 | case i386_THREAD_STATE: { | |
1006 | struct i386_saved_state *saved_state; | |
1007 | i386_thread_state_t *state; | |
1008 | ||
1009 | saved_state = USER_REGS(thr_act); | |
1010 | state = (i386_thread_state_t *)tstate; | |
1011 | ||
1012 | state->eax = saved_state->eax; | |
1013 | state->ebx = saved_state->ebx; | |
1014 | state->ecx = saved_state->ecx; | |
1015 | state->edx = saved_state->edx; | |
1016 | state->edi = saved_state->edi; | |
1017 | state->esi = saved_state->esi; | |
1018 | state->ebp = saved_state->ebp; | |
1019 | state->esp = saved_state->uesp; | |
1020 | state->eflags = saved_state->efl; | |
1021 | state->eip = saved_state->eip; | |
1022 | state->cs = saved_state->cs; | |
1023 | state->ss = saved_state->ss; | |
1024 | state->ds = saved_state->ds; | |
1025 | state->es = saved_state->es; | |
1026 | state->fs = saved_state->fs; | |
1027 | state->gs = saved_state->gs; | |
1028 | break; | |
1029 | } | |
1030 | ||
1031 | default: | |
1032 | return(KERN_INVALID_ARGUMENT); | |
1033 | } | |
1034 | ||
1035 | return(KERN_SUCCESS); | |
1036 | } | |
1037 | ||
1038 | /* | |
1039 | * Alter the thread`s state so that a following thread_exception_return | |
1040 | * will make the thread return 'retval' from a syscall. | |
1041 | */ | |
1042 | void | |
1043 | thread_set_syscall_return( | |
1044 | thread_t thread, | |
1045 | kern_return_t retval) | |
1046 | { | |
1047 | thread->top_act->mact.pcb->iss.eax = retval; | |
1048 | } | |
1049 | ||
1050 | /* | |
1051 | * Initialize the machine-dependent state for a new thread. | |
1052 | */ | |
1053 | kern_return_t | |
1054 | thread_machine_create(thread_t thread, thread_act_t thr_act, void (*start_pos)(thread_t)) | |
1055 | { | |
0b4e3aa0 | 1056 | MachineThrAct_t mact = &thr_act->mact; |
1c79356b A |
1057 | |
1058 | #if MACH_ASSERT | |
1059 | if (watchacts & WA_PCB) | |
1060 | printf("thread_machine_create(thr=%x,thr_act=%x,st=%x)\n", | |
1061 | thread, thr_act, start_pos); | |
1062 | #endif /* MACH_ASSERT */ | |
1063 | ||
0b4e3aa0 A |
1064 | assert(thread != NULL); |
1065 | assert(thr_act != NULL); | |
1c79356b | 1066 | |
0b4e3aa0 A |
1067 | /* |
1068 | * Allocate a kernel stack per shuttle | |
1069 | */ | |
1070 | thread->kernel_stack = (int)stack_alloc(thread,start_pos); | |
9bccf70c | 1071 | thread->state &= ~TH_STACK_HANDOFF; |
0b4e3aa0 | 1072 | assert(thread->kernel_stack != 0); |
1c79356b A |
1073 | |
1074 | /* | |
0b4e3aa0 | 1075 | * Point top of kernel stack to user`s registers. |
1c79356b | 1076 | */ |
0b4e3aa0 A |
1077 | STACK_IEL(thread->kernel_stack)->saved_state = &mact->pcb->iss; |
1078 | ||
1c79356b A |
1079 | return(KERN_SUCCESS); |
1080 | } | |
1081 | ||
1082 | /* | |
1083 | * Machine-dependent cleanup prior to destroying a thread | |
1084 | */ | |
1085 | void | |
1086 | thread_machine_destroy( thread_t thread ) | |
1087 | { | |
1088 | spl_t s; | |
1089 | ||
1090 | if (thread->kernel_stack != 0) { | |
1091 | s = splsched(); | |
1092 | stack_free(thread); | |
1093 | splx(s); | |
1094 | } | |
1095 | } | |
1096 | ||
1097 | /* | |
1098 | * This is used to set the current thr_act/thread | |
1099 | * when starting up a new processor | |
1100 | */ | |
1101 | void | |
1102 | thread_machine_set_current( thread_t thread ) | |
1103 | { | |
1104 | register int my_cpu; | |
1105 | ||
1106 | mp_disable_preemption(); | |
1107 | my_cpu = cpu_number(); | |
1108 | ||
1109 | cpu_data[my_cpu].active_thread = thread; | |
1110 | active_kloaded[my_cpu] = | |
1111 | thread->top_act->kernel_loaded ? thread->top_act : THR_ACT_NULL; | |
1112 | ||
1113 | mp_enable_preemption(); | |
1114 | } | |
1115 | ||
1116 | ||
1117 | /* | |
1118 | * Pool of kernel activations. | |
1119 | */ | |
1120 | ||
1121 | void act_machine_init() | |
1122 | { | |
1123 | int i; | |
1124 | thread_act_t thr_act; | |
1125 | ||
1126 | #if MACH_ASSERT | |
1127 | if (watchacts & WA_PCB) | |
1128 | printf("act_machine_init()\n"); | |
1129 | #endif /* MACH_ASSERT */ | |
1130 | ||
1131 | /* Good to verify this once */ | |
1132 | assert( THREAD_MACHINE_STATE_MAX <= THREAD_STATE_MAX ); | |
1c79356b A |
1133 | } |
1134 | ||
1135 | kern_return_t | |
1136 | act_machine_create(task_t task, thread_act_t thr_act) | |
1137 | { | |
1138 | MachineThrAct_t mact = &thr_act->mact; | |
1139 | pcb_t pcb; | |
1140 | ||
1141 | #if MACH_ASSERT | |
1142 | if (watchacts & WA_PCB) | |
1143 | printf("act_machine_create(task=%x,thr_act=%x) pcb=%x\n", | |
1144 | task,thr_act, &mact->xxx_pcb); | |
1145 | #endif /* MACH_ASSERT */ | |
1146 | ||
1147 | /* | |
1148 | * Clear & Init the pcb (sets up user-mode s regs) | |
1149 | */ | |
1150 | pcb_init(thr_act); | |
1151 | ||
1152 | return KERN_SUCCESS; | |
1153 | } | |
1154 | ||
1155 | void | |
1156 | act_virtual_machine_destroy(thread_act_t thr_act) | |
1157 | { | |
1158 | return; | |
1159 | } | |
1160 | ||
1161 | void | |
1162 | act_machine_destroy(thread_act_t thr_act) | |
1163 | { | |
1164 | ||
1165 | #if MACH_ASSERT | |
1166 | if (watchacts & WA_PCB) | |
1167 | printf("act_machine_destroy(0x%x)\n", thr_act); | |
1168 | #endif /* MACH_ASSERT */ | |
1169 | ||
1170 | pcb_terminate(thr_act); | |
1171 | } | |
1172 | ||
1173 | void | |
1174 | act_machine_return(int code) | |
1175 | { | |
1176 | thread_act_t thr_act = current_act(); | |
1177 | ||
1178 | #if MACH_ASSERT | |
1179 | /* | |
1180 | * We don't go through the locking dance here needed to | |
1181 | * acquire thr_act->thread safely. | |
1182 | */ | |
1183 | ||
1184 | if (watchacts & WA_EXIT) | |
1185 | printf("act_machine_return(0x%x) cur_act=%x(%d) thr=%x(%d)\n", | |
1186 | code, thr_act, thr_act->ref_count, | |
1187 | thr_act->thread, thr_act->thread->ref_count); | |
1188 | #endif /* MACH_ASSERT */ | |
1189 | ||
1190 | /* | |
1191 | * This code is called with nothing locked. | |
1192 | * It also returns with nothing locked, if it returns. | |
1193 | * | |
1194 | * This routine terminates the current thread activation. | |
1195 | * If this is the only activation associated with its | |
1196 | * thread shuttle, then the entire thread (shuttle plus | |
1197 | * activation) is terminated. | |
1198 | */ | |
1199 | assert( code == KERN_TERMINATED ); | |
1200 | assert( thr_act ); | |
1201 | ||
1c79356b A |
1202 | /* This is the only activation attached to the shuttle... */ |
1203 | /* terminate the entire thread (shuttle plus activation) */ | |
1204 | ||
1205 | assert(thr_act->thread->top_act == thr_act); | |
1206 | thread_terminate_self(); | |
1207 | ||
1208 | /*NOTREACHED*/ | |
1209 | ||
1210 | panic("act_machine_return: TALKING ZOMBIE! (1)"); | |
1211 | } | |
1212 | ||
1213 | ||
1214 | /* | |
1215 | * Perform machine-dependent per-thread initializations | |
1216 | */ | |
1217 | void | |
1218 | thread_machine_init(void) | |
1219 | { | |
1220 | pcb_module_init(); | |
1221 | } | |
1222 | ||
1223 | /* | |
1224 | * Some routines for debugging activation code | |
1225 | */ | |
1226 | static void dump_handlers(thread_act_t); | |
1227 | void dump_regs(thread_act_t); | |
1228 | ||
1229 | static void | |
1230 | dump_handlers(thread_act_t thr_act) | |
1231 | { | |
1232 | ReturnHandler *rhp = thr_act->handlers; | |
1233 | int counter = 0; | |
1234 | ||
1235 | printf("\t"); | |
1236 | while (rhp) { | |
1237 | if (rhp == &thr_act->special_handler){ | |
1238 | if (rhp->next) | |
1239 | printf("[NON-Zero next ptr(%x)]", rhp->next); | |
1240 | printf("special_handler()->"); | |
1241 | break; | |
1242 | } | |
1243 | printf("hdlr_%d(%x)->",counter,rhp->handler); | |
1244 | rhp = rhp->next; | |
1245 | if (++counter > 32) { | |
1246 | printf("Aborting: HUGE handler chain\n"); | |
1247 | break; | |
1248 | } | |
1249 | } | |
1250 | printf("HLDR_NULL\n"); | |
1251 | } | |
1252 | ||
1253 | void | |
1254 | dump_regs(thread_act_t thr_act) | |
1255 | { | |
1256 | if (thr_act->mact.pcb) { | |
1257 | register struct i386_saved_state *ssp = USER_REGS(thr_act); | |
1258 | /* Print out user register state */ | |
1259 | printf("\tRegs:\tedi=%x esi=%x ebp=%x ebx=%x edx=%x\n", | |
1260 | ssp->edi, ssp->esi, ssp->ebp, ssp->ebx, ssp->edx); | |
1261 | printf("\t\tecx=%x eax=%x eip=%x efl=%x uesp=%x\n", | |
1262 | ssp->ecx, ssp->eax, ssp->eip, ssp->efl, ssp->uesp); | |
1263 | printf("\t\tcs=%x ss=%x\n", ssp->cs, ssp->ss); | |
1264 | } | |
1265 | } | |
1266 | ||
1267 | int | |
1268 | dump_act(thread_act_t thr_act) | |
1269 | { | |
1270 | if (!thr_act) | |
1271 | return(0); | |
1272 | ||
1273 | printf("thr_act(0x%x)(%d): thread=%x(%d) task=%x(%d)\n", | |
1274 | thr_act, thr_act->ref_count, | |
1275 | thr_act->thread, thr_act->thread ? thr_act->thread->ref_count:0, | |
1276 | thr_act->task, thr_act->task ? thr_act->task->ref_count : 0); | |
1277 | ||
1c79356b A |
1278 | printf("\talerts=%x mask=%x susp=%d user_stop=%d active=%x ast=%x\n", |
1279 | thr_act->alerts, thr_act->alert_mask, | |
1280 | thr_act->suspend_count, thr_act->user_stop_count, | |
1281 | thr_act->active, thr_act->ast); | |
1282 | printf("\thi=%x lo=%x\n", thr_act->higher, thr_act->lower); | |
1283 | printf("\tpcb=%x\n", thr_act->mact.pcb); | |
1284 | ||
1285 | if (thr_act->thread && thr_act->thread->kernel_stack) { | |
1286 | vm_offset_t stack = thr_act->thread->kernel_stack; | |
1287 | ||
1288 | printf("\tk_stk %x eip %x ebx %x esp %x iss %x\n", | |
1289 | stack, STACK_IKS(stack)->k_eip, STACK_IKS(stack)->k_ebx, | |
1290 | STACK_IKS(stack)->k_esp, STACK_IEL(stack)->saved_state); | |
1291 | } | |
1292 | ||
1293 | dump_handlers(thr_act); | |
1294 | dump_regs(thr_act); | |
1295 | return((int)thr_act); | |
1296 | } | |
1297 | unsigned int | |
1298 | get_useraddr() | |
1299 | { | |
1300 | ||
1301 | thread_act_t thr_act = current_act(); | |
1302 | ||
1303 | if (thr_act->mact.pcb) | |
1304 | return(thr_act->mact.pcb->iss.eip); | |
1305 | else | |
1306 | return(0); | |
1307 | ||
1308 | } | |
1309 | ||
1310 | void | |
1311 | thread_swapin_mach_alloc(thread_t thread) | |
1312 | { | |
1313 | ||
1314 | /* 386 does not have saveareas */ | |
1315 | ||
1316 | } | |
1317 | /* | |
1318 | * detach and return a kernel stack from a thread | |
1319 | */ | |
1320 | ||
1321 | vm_offset_t | |
1322 | stack_detach(thread_t thread) | |
1323 | { | |
1324 | vm_offset_t stack; | |
1325 | ||
1326 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_SCHED,MACH_STACK_DETACH), | |
1327 | thread, thread->priority, | |
1328 | thread->sched_pri, 0, | |
1329 | 0); | |
1330 | ||
1331 | stack = thread->kernel_stack; | |
1332 | thread->kernel_stack = 0; | |
1333 | return(stack); | |
1334 | } | |
1335 | ||
1336 | /* | |
1337 | * attach a kernel stack to a thread and initialize it | |
1338 | */ | |
1339 | ||
1340 | void | |
1341 | stack_attach(struct thread_shuttle *thread, | |
1342 | vm_offset_t stack, | |
1343 | void (*start_pos)(thread_t)) | |
1344 | { | |
1345 | struct i386_kernel_state *statep; | |
1c79356b A |
1346 | |
1347 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_SCHED,MACH_STACK_ATTACH), | |
1348 | thread, thread->priority, | |
1349 | thread->sched_pri, continuation, | |
1350 | 0); | |
1351 | ||
1352 | assert(stack); | |
1353 | statep = STACK_IKS(stack); | |
1354 | thread->kernel_stack = stack; | |
1355 | ||
1356 | statep->k_eip = (unsigned long) Thread_continue; | |
1357 | statep->k_ebx = (unsigned long) start_pos; | |
1358 | statep->k_esp = (unsigned long) STACK_IEL(stack); | |
0b4e3aa0 A |
1359 | assert(thread->top_act); |
1360 | STACK_IEL(stack)->saved_state = &thread->top_act->mact.pcb->iss; | |
1c79356b A |
1361 | |
1362 | return; | |
1363 | } | |
1364 | ||
1365 | /* | |
1366 | * move a stack from old to new thread | |
1367 | */ | |
1368 | ||
1369 | void | |
1370 | stack_handoff(thread_t old, | |
1371 | thread_t new) | |
1372 | { | |
1373 | ||
1374 | vm_offset_t stack; | |
1375 | pmap_t new_pmap; | |
1376 | ||
1377 | KERNEL_DEBUG(MACHDBG_CODE(DBG_MACH_SCHED,MACH_STACK_HANDOFF), | |
1378 | thread, thread->priority, | |
1379 | thread->sched_pri, continuation, | |
1380 | 0); | |
1381 | ||
1382 | assert(new->top_act); | |
1383 | assert(old->top_act); | |
1384 | ||
1385 | stack = stack_detach(old); | |
1386 | stack_attach(new, stack, 0); | |
1387 | ||
1388 | new_pmap = new->top_act->task->map->pmap; | |
1389 | if (old->top_act->task->map->pmap != new_pmap) | |
1390 | PMAP_ACTIVATE_MAP(new->top_act->task->map, cpu_number()); | |
1391 | ||
9bccf70c A |
1392 | KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_SCHED,MACH_STACK_HANDOFF) | DBG_FUNC_NONE, |
1393 | (int)old, (int)new, old->sched_pri, new->sched_pri, 0); | |
1394 | ||
1c79356b A |
1395 | thread_machine_set_current(new); |
1396 | ||
1397 | active_stacks[cpu_number()] = new->kernel_stack; | |
1398 | ||
1399 | return; | |
1400 | } | |
0b4e3aa0 A |
1401 | |
1402 | struct i386_act_context { | |
1403 | struct i386_saved_state ss; | |
1404 | struct i386_float_state fs; | |
1405 | }; | |
1406 | ||
1407 | void * | |
1408 | act_thread_csave(void) | |
1409 | { | |
1410 | struct i386_act_context *ic; | |
1411 | kern_return_t kret; | |
1412 | int val; | |
1413 | ||
1414 | ic = (struct i386_act_context *)kalloc(sizeof(struct i386_act_context)); | |
1415 | ||
1416 | if (ic == (struct i386_act_context *)NULL) | |
1417 | return((void *)0); | |
1418 | ||
1419 | val = i386_SAVED_STATE_COUNT; | |
1420 | kret = act_machine_get_state(current_act(), i386_SAVED_STATE, &ic->ss, &val); | |
1421 | if (kret != KERN_SUCCESS) { | |
1422 | kfree((vm_offset_t)ic,sizeof(struct i386_act_context)); | |
1423 | return((void *)0); | |
1424 | } | |
1425 | val = i386_FLOAT_STATE_COUNT; | |
1426 | kret = act_machine_get_state(current_act(), i386_FLOAT_STATE, &ic->fs, &val); | |
1427 | if (kret != KERN_SUCCESS) { | |
1428 | kfree((vm_offset_t)ic,sizeof(struct i386_act_context)); | |
1429 | return((void *)0); | |
1430 | } | |
1431 | return(ic); | |
1432 | } | |
1433 | void | |
1434 | act_thread_catt(void *ctx) | |
1435 | { | |
1436 | struct i386_act_context *ic; | |
1437 | kern_return_t kret; | |
1438 | int val; | |
1439 | ||
1440 | ic = (struct i386_act_context *)ctx; | |
1441 | ||
1442 | if (ic == (struct i386_act_context *)NULL) | |
1443 | return; | |
1444 | ||
1445 | kret = act_machine_set_state(current_act(), i386_SAVED_STATE, &ic->ss, i386_SAVED_STATE_COUNT); | |
1446 | if (kret != KERN_SUCCESS) | |
1447 | goto out; | |
1448 | ||
1449 | kret = act_machine_set_state(current_act(), i386_FLOAT_STATE, &ic->fs, i386_FLOAT_STATE_COUNT); | |
1450 | if (kret != KERN_SUCCESS) | |
1451 | goto out; | |
1452 | out: | |
1453 | kfree((vm_offset_t)ic,sizeof(struct i386_act_context)); | |
1454 | } | |
1455 | ||
1456 | void act_thread_cfree(void *ctx) | |
1457 | { | |
1458 | kfree((vm_offset_t)ctx,sizeof(struct i386_act_context)); | |
1459 | } | |
1460 |