]>
Commit | Line | Data |
---|---|---|
b0d623f7 A |
1 | /* |
2 | * Copyright (c) 2008 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
0a7de745 | 5 | * |
b0d623f7 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
0a7de745 | 14 | * |
b0d623f7 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
0a7de745 | 17 | * |
b0d623f7 A |
18 | * The Original Code and all software distributed under the License are |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
0a7de745 | 25 | * |
b0d623f7 A |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
27 | */ | |
28 | #include <string.h> | |
29 | #include <mach-o/loader.h> | |
30 | #include <sys/types.h> | |
31 | ||
6d2010ae A |
32 | #if KERNEL |
33 | #ifdef MACH_ASSERT | |
0a7de745 | 34 | #undef MACH_ASSERT |
6d2010ae A |
35 | #endif |
36 | #define MACH_ASSERT 1 | |
37 | #include <kern/assert.h> | |
38 | #else | |
39 | #include <assert.h> | |
40 | #endif | |
41 | ||
b0d623f7 A |
42 | #define DEBUG_ASSERT_COMPONENT_NAME_STRING "kxld" |
43 | #include <AssertMacros.h> | |
44 | ||
b7266188 | 45 | #include "kxld_demangle.h" |
6d2010ae A |
46 | #include "kxld_dict.h" |
47 | #include "kxld_object.h" | |
b0d623f7 A |
48 | #include "kxld_reloc.h" |
49 | #include "kxld_sect.h" | |
b0d623f7 A |
50 | #include "kxld_sym.h" |
51 | #include "kxld_symtab.h" | |
52 | #include "kxld_util.h" | |
53 | #include "kxld_vtable.h" | |
54 | ||
55 | #define VTABLE_ENTRY_SIZE_32 4 | |
56 | #define VTABLE_HEADER_LEN_32 2 | |
57 | #define VTABLE_HEADER_SIZE_32 (VTABLE_HEADER_LEN_32 * VTABLE_ENTRY_SIZE_32) | |
58 | ||
59 | #define VTABLE_ENTRY_SIZE_64 8 | |
60 | #define VTABLE_HEADER_LEN_64 2 | |
61 | #define VTABLE_HEADER_SIZE_64 (VTABLE_HEADER_LEN_64 * VTABLE_ENTRY_SIZE_64) | |
62 | ||
6d2010ae A |
63 | static void get_vtable_base_sizes(boolean_t is_32_bit, u_int *vtable_entry_size, |
64 | u_int *vtable_header_size); | |
b0d623f7 | 65 | |
6d2010ae A |
66 | static kern_return_t init_by_relocs(KXLDVTable *vtable, const KXLDSym *vtable_sym, |
67 | const KXLDSect *sect, const KXLDRelocator *relocator); | |
b0d623f7 | 68 | |
0a7de745 A |
69 | static kern_return_t init_by_entries_and_relocs(KXLDVTable *vtable, |
70 | const KXLDSym *vtable_sym, const KXLDRelocator *relocator, | |
6d2010ae | 71 | const KXLDArray *relocs, const KXLDDict *defined_cxx_symbols); |
b0d623f7 | 72 | |
6d2010ae A |
73 | static kern_return_t init_by_entries(KXLDVTable *vtable, |
74 | const KXLDRelocator *relocator, const KXLDDict *defined_cxx_symbols); | |
b0d623f7 A |
75 | |
76 | /******************************************************************************* | |
77 | *******************************************************************************/ | |
0a7de745 A |
78 | kern_return_t |
79 | kxld_vtable_init(KXLDVTable *vtable, const KXLDSym *vtable_sym, | |
6d2010ae | 80 | const KXLDObject *object, const KXLDDict *defined_cxx_symbols) |
b0d623f7 | 81 | { |
0a7de745 A |
82 | kern_return_t rval = KERN_FAILURE; |
83 | const KXLDArray *extrelocs = NULL; | |
84 | const KXLDRelocator *relocator = NULL; | |
85 | const KXLDSect *vtable_sect = NULL; | |
86 | char *demangled_name = NULL; | |
87 | size_t demangled_length = 0; | |
88 | ||
89 | check(vtable); | |
90 | check(vtable_sym); | |
91 | check(object); | |
92 | ||
93 | relocator = kxld_object_get_relocator(object); | |
94 | ||
95 | vtable_sect = kxld_object_get_section_by_index(object, | |
96 | vtable_sym->sectnum); | |
97 | require_action(vtable_sect, finish, rval = KERN_FAILURE); | |
98 | ||
99 | vtable->name = vtable_sym->name; | |
100 | vtable->vtable = vtable_sect->data + | |
101 | kxld_sym_get_section_offset(vtable_sym, vtable_sect); | |
102 | ||
103 | if (kxld_object_is_linked(object)) { | |
104 | rval = init_by_entries(vtable, relocator, defined_cxx_symbols); | |
105 | require_noerr(rval, finish); | |
106 | ||
107 | vtable->is_patched = TRUE; | |
108 | } else { | |
109 | if (kxld_object_is_final_image(object)) { | |
110 | extrelocs = kxld_object_get_extrelocs(object); | |
111 | ||
112 | require_action(extrelocs, finish, | |
113 | rval = KERN_FAILURE; | |
114 | kxld_log(kKxldLogPatching, kKxldLogErr, | |
115 | kKxldLogMalformedVTable, | |
116 | kxld_demangle(vtable->name, | |
117 | &demangled_name, &demangled_length))); | |
118 | ||
119 | rval = init_by_entries_and_relocs(vtable, vtable_sym, | |
120 | relocator, extrelocs, defined_cxx_symbols); | |
121 | require_noerr(rval, finish); | |
122 | } else { | |
123 | require_action(kxld_sect_get_num_relocs(vtable_sect) > 0, finish, | |
124 | rval = KERN_FAILURE; | |
125 | kxld_log(kKxldLogPatching, kKxldLogErr, | |
126 | kKxldLogMalformedVTable, | |
127 | kxld_demangle(vtable->name, | |
128 | &demangled_name, &demangled_length))); | |
129 | ||
130 | rval = init_by_relocs(vtable, vtable_sym, vtable_sect, relocator); | |
131 | require_noerr(rval, finish); | |
132 | } | |
133 | ||
134 | vtable->is_patched = FALSE; | |
135 | } | |
136 | ||
137 | rval = KERN_SUCCESS; | |
b0d623f7 | 138 | finish: |
39037602 | 139 | |
0a7de745 A |
140 | if (demangled_name) { |
141 | kxld_free(demangled_name, demangled_length); | |
142 | } | |
b0d623f7 | 143 | |
0a7de745 | 144 | return rval; |
b0d623f7 A |
145 | } |
146 | ||
b0d623f7 A |
147 | /******************************************************************************* |
148 | *******************************************************************************/ | |
0a7de745 | 149 | static void |
6d2010ae A |
150 | get_vtable_base_sizes(boolean_t is_32_bit, u_int *vtable_entry_size, |
151 | u_int *vtable_header_size) | |
b0d623f7 | 152 | { |
0a7de745 A |
153 | check(vtable_entry_size); |
154 | check(vtable_header_size); | |
155 | ||
156 | if (is_32_bit) { | |
157 | *vtable_entry_size = VTABLE_ENTRY_SIZE_32; | |
158 | *vtable_header_size = VTABLE_HEADER_SIZE_32; | |
159 | } else { | |
160 | *vtable_entry_size = VTABLE_ENTRY_SIZE_64; | |
161 | *vtable_header_size = VTABLE_HEADER_SIZE_64; | |
162 | } | |
b0d623f7 A |
163 | } |
164 | ||
165 | /******************************************************************************* | |
166 | * Initializes a vtable object by matching up relocation entries to the vtable's | |
167 | * entries and finding the corresponding symbols. | |
168 | *******************************************************************************/ | |
169 | static kern_return_t | |
0a7de745 | 170 | init_by_relocs(KXLDVTable *vtable, const KXLDSym *vtable_sym, |
6d2010ae | 171 | const KXLDSect *sect, const KXLDRelocator *relocator) |
b0d623f7 | 172 | { |
0a7de745 A |
173 | kern_return_t rval = KERN_FAILURE; |
174 | KXLDReloc *reloc = NULL; | |
175 | KXLDVTableEntry *entry = NULL; | |
176 | KXLDSym *sym = NULL; | |
177 | kxld_addr_t vtable_base_offset = 0; | |
178 | kxld_addr_t entry_offset = 0; | |
179 | u_int i = 0; | |
180 | u_int nentries = 0; | |
181 | u_int vtable_entry_size = 0; | |
182 | u_int vtable_header_size = 0; | |
183 | u_int base_reloc_index = 0; | |
184 | u_int reloc_index = 0; | |
185 | ||
186 | check(vtable); | |
187 | check(vtable_sym); | |
188 | check(sect); | |
189 | check(relocator); | |
190 | ||
191 | /* Find the first entry past the vtable padding */ | |
192 | ||
193 | (void) get_vtable_base_sizes(relocator->is_32_bit, | |
194 | &vtable_entry_size, &vtable_header_size); | |
195 | ||
196 | vtable_base_offset = kxld_sym_get_section_offset(vtable_sym, sect) + | |
197 | vtable_header_size; | |
198 | ||
199 | /* Find the relocation entry at the start of the vtable */ | |
200 | ||
201 | rval = kxld_reloc_get_reloc_index_by_offset(§->relocs, | |
202 | vtable_base_offset, &base_reloc_index); | |
203 | require_noerr(rval, finish); | |
204 | ||
205 | /* Count the number of consecutive relocation entries to find the number of | |
206 | * vtable entries. For some reason, the __TEXT,__const relocations are | |
207 | * sorted in descending order, so we have to walk backwards. Also, make | |
208 | * sure we don't run off the end of the section's relocs. | |
209 | */ | |
210 | ||
211 | reloc_index = base_reloc_index; | |
212 | entry_offset = vtable_base_offset; | |
213 | reloc = kxld_array_get_item(§->relocs, reloc_index); | |
214 | while (reloc->address == entry_offset) { | |
215 | ++nentries; | |
216 | if (!reloc_index) { | |
217 | break; | |
218 | } | |
219 | ||
220 | --reloc_index; | |
221 | ||
222 | reloc = kxld_array_get_item(§->relocs, reloc_index); | |
223 | entry_offset += vtable_entry_size; | |
224 | } | |
225 | ||
226 | /* Allocate the symbol index */ | |
227 | ||
228 | rval = kxld_array_init(&vtable->entries, sizeof(KXLDVTableEntry), nentries); | |
229 | require_noerr(rval, finish); | |
230 | ||
231 | /* Find the symbols for each vtable entry */ | |
232 | ||
233 | for (i = 0; i < vtable->entries.nitems; ++i) { | |
234 | reloc = kxld_array_get_item(§->relocs, base_reloc_index - i); | |
235 | entry = kxld_array_get_item(&vtable->entries, i); | |
236 | ||
237 | /* If we can't find a symbol, it means it is a locally-defined, | |
238 | * non-external symbol that has been stripped. We don't patch over | |
239 | * locally-defined symbols, so we leave the symbol as NULL and just | |
240 | * skip it. We won't be able to patch subclasses with this symbol, | |
241 | * but there isn't much we can do about that. | |
242 | */ | |
243 | sym = kxld_reloc_get_symbol(relocator, reloc, sect->data); | |
244 | ||
245 | entry->unpatched.sym = sym; | |
246 | entry->unpatched.reloc = reloc; | |
247 | } | |
248 | ||
249 | rval = KERN_SUCCESS; | |
b0d623f7 | 250 | finish: |
0a7de745 | 251 | return rval; |
b0d623f7 A |
252 | } |
253 | ||
b0d623f7 A |
254 | /******************************************************************************* |
255 | * Initializes a vtable object by reading the symbol values out of the vtable | |
256 | * entries and performing reverse symbol lookups on those values. | |
257 | *******************************************************************************/ | |
258 | static kern_return_t | |
6d2010ae A |
259 | init_by_entries(KXLDVTable *vtable, const KXLDRelocator *relocator, |
260 | const KXLDDict *defined_cxx_symbols) | |
b0d623f7 | 261 | { |
0a7de745 A |
262 | kern_return_t rval = KERN_FAILURE; |
263 | KXLDVTableEntry *tmpentry = NULL; | |
264 | KXLDSym *sym = NULL; | |
265 | kxld_addr_t entry_value = 0; | |
266 | u_long entry_offset; | |
267 | u_int vtable_entry_size = 0; | |
268 | u_int vtable_header_size = 0; | |
269 | u_int nentries = 0; | |
270 | u_int i = 0; | |
271 | ||
272 | check(vtable); | |
273 | check(relocator); | |
274 | ||
275 | (void) get_vtable_base_sizes(relocator->is_32_bit, | |
276 | &vtable_entry_size, &vtable_header_size); | |
277 | ||
278 | /* Count the number of entries (the vtable is null-terminated) */ | |
279 | ||
280 | entry_offset = vtable_header_size; | |
281 | while (1) { | |
282 | entry_value = kxld_relocator_get_pointer_at_addr(relocator, | |
283 | vtable->vtable, entry_offset); | |
284 | if (!entry_value) { | |
285 | break; | |
286 | } | |
287 | ||
288 | entry_offset += vtable_entry_size; | |
289 | ++nentries; | |
290 | } | |
291 | ||
292 | /* Allocate the symbol index */ | |
293 | ||
294 | rval = kxld_array_init(&vtable->entries, sizeof(KXLDVTableEntry), nentries); | |
295 | require_noerr(rval, finish); | |
296 | ||
297 | /* Look up the symbols for each entry */ | |
298 | ||
299 | for (i = 0, entry_offset = vtable_header_size; | |
300 | i < vtable->entries.nitems; | |
301 | ++i, entry_offset += vtable_entry_size) { | |
302 | entry_value = kxld_relocator_get_pointer_at_addr(relocator, | |
303 | vtable->vtable, entry_offset); | |
304 | ||
305 | /* If we can't find the symbol, it means that the virtual function was | |
306 | * defined inline. There's not much I can do about this; it just means | |
307 | * I can't patch this function. | |
308 | */ | |
309 | tmpentry = kxld_array_get_item(&vtable->entries, i); | |
310 | sym = kxld_dict_find(defined_cxx_symbols, &entry_value); | |
311 | ||
312 | if (sym) { | |
313 | tmpentry->patched.name = sym->name; | |
314 | tmpentry->patched.addr = sym->link_addr; | |
315 | } else { | |
316 | tmpentry->patched.name = NULL; | |
317 | tmpentry->patched.addr = 0; | |
318 | } | |
319 | } | |
320 | ||
321 | rval = KERN_SUCCESS; | |
b0d623f7 | 322 | finish: |
0a7de745 | 323 | return rval; |
b0d623f7 A |
324 | } |
325 | ||
326 | /******************************************************************************* | |
327 | * Initializes vtables by performing a reverse lookup on symbol values when | |
328 | * they exist in the vtable entry, and by looking through a matching relocation | |
329 | * entry when the vtable entry is NULL. | |
330 | * | |
331 | * Final linked images require this hybrid vtable initialization approach | |
332 | * because they are already internally resolved. This means that the vtables | |
333 | * contain valid entries to local symbols, but still have relocation entries for | |
334 | * external symbols. | |
335 | *******************************************************************************/ | |
336 | static kern_return_t | |
0a7de745 | 337 | init_by_entries_and_relocs(KXLDVTable *vtable, const KXLDSym *vtable_sym, |
6d2010ae A |
338 | const KXLDRelocator *relocator, const KXLDArray *relocs, |
339 | const KXLDDict *defined_cxx_symbols) | |
b0d623f7 | 340 | { |
0a7de745 A |
341 | kern_return_t rval = KERN_FAILURE; |
342 | KXLDReloc *reloc = NULL; | |
343 | KXLDVTableEntry *tmpentry = NULL; | |
344 | KXLDSym *sym = NULL; | |
345 | u_int vtable_entry_size = 0; | |
346 | u_int vtable_header_size = 0; | |
347 | kxld_addr_t entry_value = 0; | |
348 | u_long entry_offset = 0; | |
349 | u_int nentries = 0; | |
350 | u_int i = 0; | |
351 | char *demangled_name1 = NULL; | |
352 | size_t demangled_length1 = 0; | |
353 | ||
354 | check(vtable); | |
355 | check(vtable_sym); | |
356 | check(relocator); | |
357 | check(relocs); | |
358 | ||
359 | /* Find the first entry and its offset past the vtable padding */ | |
360 | ||
361 | (void) get_vtable_base_sizes(relocator->is_32_bit, | |
362 | &vtable_entry_size, &vtable_header_size); | |
363 | ||
364 | /* In a final linked image, a vtable slot is valid if it is nonzero | |
365 | * (meaning the userspace linker has already resolved it) or if it has | |
366 | * a relocation entry. We'll know the end of the vtable when we find a | |
367 | * slot that meets neither of these conditions. | |
368 | */ | |
369 | entry_offset = vtable_header_size; | |
370 | while (1) { | |
371 | entry_value = kxld_relocator_get_pointer_at_addr(relocator, | |
372 | vtable->vtable, entry_offset); | |
373 | if (!entry_value) { | |
374 | reloc = kxld_reloc_get_reloc_by_offset(relocs, | |
375 | vtable_sym->base_addr + entry_offset); | |
376 | if (!reloc) { | |
377 | break; | |
378 | } | |
379 | } | |
380 | ||
381 | ++nentries; | |
382 | entry_offset += vtable_entry_size; | |
383 | } | |
384 | ||
385 | /* Allocate the symbol index */ | |
386 | ||
387 | rval = kxld_array_init(&vtable->entries, sizeof(KXLDVTableEntry), nentries); | |
388 | require_noerr(rval, finish); | |
389 | ||
390 | /* Find the symbols for each vtable entry */ | |
391 | ||
392 | for (i = 0, entry_offset = vtable_header_size; | |
393 | i < vtable->entries.nitems; | |
394 | ++i, entry_offset += vtable_entry_size) { | |
395 | entry_value = kxld_relocator_get_pointer_at_addr(relocator, | |
396 | vtable->vtable, entry_offset); | |
397 | ||
398 | /* If we can't find a symbol, it means it is a locally-defined, | |
399 | * non-external symbol that has been stripped. We don't patch over | |
400 | * locally-defined symbols, so we leave the symbol as NULL and just | |
401 | * skip it. We won't be able to patch subclasses with this symbol, | |
402 | * but there isn't much we can do about that. | |
403 | */ | |
404 | if (entry_value) { | |
405 | reloc = NULL; | |
406 | sym = kxld_dict_find(defined_cxx_symbols, &entry_value); | |
407 | } else { | |
408 | reloc = kxld_reloc_get_reloc_by_offset(relocs, | |
409 | vtable_sym->base_addr + entry_offset); | |
410 | ||
411 | require_action(reloc, finish, | |
412 | rval = KERN_FAILURE; | |
413 | kxld_log(kKxldLogPatching, kKxldLogErr, | |
414 | kKxldLogMalformedVTable, | |
415 | kxld_demangle(vtable->name, &demangled_name1, | |
416 | &demangled_length1))); | |
417 | ||
418 | sym = kxld_reloc_get_symbol(relocator, reloc, /* data */ NULL); | |
419 | } | |
420 | ||
421 | tmpentry = kxld_array_get_item(&vtable->entries, i); | |
422 | tmpentry->unpatched.reloc = reloc; | |
423 | tmpentry->unpatched.sym = sym; | |
424 | } | |
425 | ||
426 | rval = KERN_SUCCESS; | |
b0d623f7 | 427 | finish: |
0a7de745 | 428 | return rval; |
b0d623f7 A |
429 | } |
430 | ||
431 | /******************************************************************************* | |
432 | *******************************************************************************/ | |
433 | void | |
434 | kxld_vtable_clear(KXLDVTable *vtable) | |
435 | { | |
0a7de745 | 436 | check(vtable); |
b0d623f7 | 437 | |
0a7de745 A |
438 | vtable->vtable = NULL; |
439 | vtable->name = NULL; | |
440 | vtable->is_patched = FALSE; | |
441 | kxld_array_clear(&vtable->entries); | |
b0d623f7 A |
442 | } |
443 | ||
444 | /******************************************************************************* | |
445 | *******************************************************************************/ | |
446 | void | |
447 | kxld_vtable_deinit(KXLDVTable *vtable) | |
448 | { | |
0a7de745 | 449 | check(vtable); |
b0d623f7 | 450 | |
0a7de745 A |
451 | kxld_array_deinit(&vtable->entries); |
452 | bzero(vtable, sizeof(*vtable)); | |
b0d623f7 A |
453 | } |
454 | ||
6d2010ae A |
455 | /******************************************************************************* |
456 | *******************************************************************************/ | |
0a7de745 A |
457 | KXLDVTableEntry * |
458 | kxld_vtable_get_entry_for_offset(const KXLDVTable *vtable, u_long offset, | |
6d2010ae A |
459 | boolean_t is_32_bit) |
460 | { | |
0a7de745 A |
461 | KXLDVTableEntry *rval = NULL; |
462 | u_int vtable_entry_size = 0; | |
463 | u_int vtable_header_size = 0; | |
464 | u_int vtable_entry_idx = 0; | |
6d2010ae | 465 | |
0a7de745 A |
466 | (void) get_vtable_base_sizes(is_32_bit, |
467 | &vtable_entry_size, &vtable_header_size); | |
6d2010ae | 468 | |
0a7de745 A |
469 | if (offset % vtable_entry_size) { |
470 | goto finish; | |
471 | } | |
6d2010ae | 472 | |
0a7de745 A |
473 | vtable_entry_idx = (u_int) ((offset - vtable_header_size) / vtable_entry_size); |
474 | rval = kxld_array_get_item(&vtable->entries, vtable_entry_idx); | |
6d2010ae | 475 | finish: |
0a7de745 | 476 | return rval; |
6d2010ae A |
477 | } |
478 | ||
b0d623f7 A |
479 | /******************************************************************************* |
480 | * Patching vtables allows us to preserve binary compatibility across releases. | |
481 | *******************************************************************************/ | |
482 | kern_return_t | |
483 | kxld_vtable_patch(KXLDVTable *vtable, const KXLDVTable *super_vtable, | |
6d2010ae | 484 | KXLDObject *object) |
b0d623f7 | 485 | { |
0a7de745 A |
486 | kern_return_t rval = KERN_FAILURE; |
487 | const KXLDSymtab *symtab = NULL; | |
488 | const KXLDSym *sym = NULL; | |
489 | KXLDVTableEntry *child_entry = NULL; | |
490 | KXLDVTableEntry *parent_entry = NULL; | |
491 | u_int symindex = 0; | |
492 | u_int i = 0; | |
493 | char *demangled_name1 = NULL; | |
494 | char *demangled_name2 = NULL; | |
495 | char *demangled_name3 = NULL; | |
496 | size_t demangled_length1 = 0; | |
497 | size_t demangled_length2 = 0; | |
498 | size_t demangled_length3 = 0; | |
499 | boolean_t failure = FALSE; | |
500 | ||
501 | check(vtable); | |
502 | check(super_vtable); | |
503 | ||
504 | symtab = kxld_object_get_symtab(object); | |
505 | ||
506 | require_action(!vtable->is_patched, finish, rval = KERN_SUCCESS); | |
507 | require_action(super_vtable->is_patched, finish, rval = KERN_FAILURE); | |
508 | require_action(vtable->entries.nitems >= super_vtable->entries.nitems, finish, | |
509 | rval = KERN_FAILURE; | |
510 | kxld_log(kKxldLogPatching, kKxldLogErr, kKxldLogMalformedVTable, | |
511 | kxld_demangle(vtable->name, &demangled_name1, &demangled_length1))); | |
512 | ||
513 | for (i = 0; i < super_vtable->entries.nitems; ++i) { | |
514 | child_entry = kxld_array_get_item(&vtable->entries, i); | |
515 | parent_entry = kxld_array_get_item(&super_vtable->entries, i); | |
516 | ||
517 | /* The child entry can be NULL when a locally-defined, non-external | |
518 | * symbol is stripped. We wouldn't patch this entry anyway, so we | |
519 | * just skip it. | |
520 | */ | |
521 | ||
522 | if (!child_entry->unpatched.sym) { | |
523 | continue; | |
524 | } | |
525 | ||
526 | /* It's possible for the patched parent entry not to have a symbol | |
527 | * (e.g. when the definition is inlined). We can't patch this entry no | |
528 | * matter what, so we'll just skip it and die later if it's a problem | |
529 | * (which is not likely). | |
530 | */ | |
531 | ||
532 | if (!parent_entry->patched.name) { | |
533 | continue; | |
534 | } | |
535 | ||
536 | /* 1) If the symbol is defined locally, do not patch */ | |
537 | ||
538 | if (kxld_sym_is_defined_locally(child_entry->unpatched.sym)) { | |
539 | continue; | |
540 | } | |
541 | ||
542 | /* 2) If the child is a pure virtual function, do not patch. | |
543 | * In general, we want to proceed with patching when the symbol is | |
544 | * externally defined because pad slots fall into this category. | |
545 | * The pure virtual function symbol is special case, as the pure | |
546 | * virtual property itself overrides the parent's implementation. | |
547 | */ | |
548 | ||
549 | if (kxld_sym_is_pure_virtual(child_entry->unpatched.sym)) { | |
550 | continue; | |
551 | } | |
552 | ||
553 | /* 3) If the symbols are the same, do not patch */ | |
554 | ||
555 | if (streq(child_entry->unpatched.sym->name, | |
556 | parent_entry->patched.name)) { | |
557 | continue; | |
558 | } | |
559 | ||
560 | /* 4) If the parent vtable entry is a pad slot, and the child does not | |
561 | * match it, then the child was built against a newer version of the | |
562 | * libraries, so it is binary-incompatible. | |
563 | */ | |
564 | ||
565 | require_action(!kxld_sym_name_is_padslot(parent_entry->patched.name), | |
566 | finish, rval = KERN_FAILURE; | |
567 | kxld_log(kKxldLogPatching, kKxldLogErr, | |
568 | kKxldLogParentOutOfDate, | |
569 | kxld_demangle(super_vtable->name, &demangled_name1, | |
570 | &demangled_length1), | |
571 | kxld_demangle(vtable->name, &demangled_name2, | |
572 | &demangled_length2))); | |
b0d623f7 A |
573 | |
574 | #if KXLD_USER_OR_STRICT_PATCHING | |
0a7de745 A |
575 | /* 5) If we are doing strict patching, we prevent kexts from declaring |
576 | * virtual functions and not implementing them. We can tell if a | |
577 | * virtual function is declared but not implemented because we resolve | |
578 | * symbols before patching; an unimplemented function will still be | |
579 | * undefined at this point. We then look at whether the symbol has | |
580 | * the same class prefix as the vtable. If it does, the symbol was | |
581 | * declared as part of the class and not inherited, which means we | |
582 | * should not patch it. | |
583 | */ | |
584 | ||
585 | if (kxld_object_target_supports_strict_patching(object) && | |
586 | !kxld_sym_is_defined(child_entry->unpatched.sym)) { | |
587 | char class_name[KXLD_MAX_NAME_LEN]; | |
588 | char function_prefix[KXLD_MAX_NAME_LEN]; | |
589 | u_long function_prefix_len = 0; | |
590 | ||
591 | rval = kxld_sym_get_class_name_from_vtable_name(vtable->name, | |
592 | class_name, sizeof(class_name)); | |
593 | require_noerr(rval, finish); | |
594 | ||
595 | function_prefix_len = | |
596 | kxld_sym_get_function_prefix_from_class_name(class_name, | |
597 | function_prefix, sizeof(function_prefix)); | |
598 | require(function_prefix_len, finish); | |
599 | ||
600 | if (!strncmp(child_entry->unpatched.sym->name, | |
601 | function_prefix, function_prefix_len)) { | |
602 | failure = TRUE; | |
603 | kxld_log(kKxldLogPatching, kKxldLogErr, | |
604 | "The %s is unpatchable because its class declares the " | |
605 | "method '%s' without providing an implementation.", | |
606 | kxld_demangle(vtable->name, | |
607 | &demangled_name1, &demangled_length1), | |
608 | kxld_demangle(child_entry->unpatched.sym->name, | |
609 | &demangled_name2, &demangled_length2)); | |
610 | continue; | |
611 | } | |
612 | } | |
b0d623f7 | 613 | #endif /* KXLD_USER_OR_STRICT_PATCHING */ |
0a7de745 A |
614 | |
615 | /* 6) The child symbol is unresolved and different from its parent, so | |
616 | * we need to patch it up. We do this by modifying the relocation | |
617 | * entry of the vtable entry to point to the symbol of the parent | |
618 | * vtable entry. If that symbol does not exist (i.e. we got the data | |
619 | * from a link state object's vtable representation), then we create a | |
620 | * new symbol in the symbol table and point the relocation entry to | |
621 | * that. | |
622 | */ | |
623 | ||
624 | sym = kxld_symtab_get_locally_defined_symbol_by_name(symtab, | |
625 | parent_entry->patched.name); | |
626 | if (!sym) { | |
627 | rval = kxld_object_add_symbol(object, parent_entry->patched.name, | |
628 | parent_entry->patched.addr, &sym); | |
629 | require_noerr(rval, finish); | |
630 | } | |
631 | require_action(sym, finish, rval = KERN_FAILURE); | |
632 | ||
633 | rval = kxld_symtab_get_sym_index(symtab, sym, &symindex); | |
634 | require_noerr(rval, finish); | |
635 | ||
636 | rval = kxld_reloc_update_symindex(child_entry->unpatched.reloc, symindex); | |
637 | require_noerr(rval, finish); | |
638 | ||
639 | kxld_log(kKxldLogPatching, kKxldLogDetail, | |
640 | "In vtable '%s', patching '%s' with '%s'.", | |
641 | kxld_demangle(vtable->name, &demangled_name1, &demangled_length1), | |
642 | kxld_demangle(child_entry->unpatched.sym->name, | |
643 | &demangled_name2, &demangled_length2), | |
644 | kxld_demangle(sym->name, &demangled_name3, &demangled_length3)); | |
645 | ||
646 | rval = kxld_object_patch_symbol(object, child_entry->unpatched.sym); | |
647 | require_noerr(rval, finish); | |
648 | ||
649 | child_entry->unpatched.sym = sym; | |
650 | ||
651 | /* | |
652 | * The C++ ABI requires that functions be aligned on a 2-byte boundary: | |
653 | * http://www.codesourcery.com/public/cxx-abi/abi.html#member-pointers | |
654 | * If the LSB of any virtual function's link address is 1, then the | |
655 | * compiler has violated that part of the ABI, and we're going to panic | |
656 | * in _ptmf2ptf() (in OSMetaClass.h). Better to panic here with some | |
657 | * context. | |
658 | */ | |
659 | assert(kxld_sym_is_pure_virtual(sym) || !(sym->link_addr & 1)); | |
660 | } | |
661 | ||
662 | require_action(!failure, finish, rval = KERN_FAILURE); | |
663 | ||
664 | /* Change the vtable representation from the unpatched layout to the | |
665 | * patched layout. | |
666 | */ | |
667 | ||
668 | for (i = 0; i < vtable->entries.nitems; ++i) { | |
669 | char *name; | |
670 | kxld_addr_t addr; | |
671 | ||
672 | child_entry = kxld_array_get_item(&vtable->entries, i); | |
673 | if (child_entry->unpatched.sym) { | |
674 | name = child_entry->unpatched.sym->name; | |
675 | addr = child_entry->unpatched.sym->link_addr; | |
676 | } else { | |
677 | name = NULL; | |
678 | addr = 0; | |
679 | } | |
680 | ||
681 | child_entry->patched.name = name; | |
682 | child_entry->patched.addr = addr; | |
683 | } | |
684 | ||
685 | vtable->is_patched = TRUE; | |
686 | rval = KERN_SUCCESS; | |
b0d623f7 A |
687 | |
688 | finish: | |
0a7de745 A |
689 | if (demangled_name1) { |
690 | kxld_free(demangled_name1, demangled_length1); | |
691 | } | |
692 | if (demangled_name2) { | |
693 | kxld_free(demangled_name2, demangled_length2); | |
694 | } | |
695 | if (demangled_name3) { | |
696 | kxld_free(demangled_name3, demangled_length3); | |
697 | } | |
698 | ||
699 | return rval; | |
b0d623f7 | 700 | } |