]>
Commit | Line | Data |
---|---|---|
1c79356b | 1 | /* |
b0d623f7 | 2 | * Copyright (c) 2000-2009 Apple Inc. All rights reserved. |
1c79356b | 3 | * |
2d21ac55 | 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ |
1c79356b | 5 | * |
2d21ac55 A |
6 | * This file contains Original Code and/or Modifications of Original Code |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
8f6c56a5 | 14 | * |
2d21ac55 A |
15 | * Please obtain a copy of the License at |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
8f6c56a5 A |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
2d21ac55 A |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
8f6c56a5 | 25 | * |
2d21ac55 | 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ |
1c79356b A |
27 | */ |
28 | /* | |
29 | * @OSF_COPYRIGHT@ | |
30 | */ | |
31 | /* | |
32 | * Mach Operating System | |
33 | * Copyright (c) 1991,1990 Carnegie Mellon University | |
34 | * All Rights Reserved. | |
35 | * | |
36 | * Permission to use, copy, modify and distribute this software and its | |
37 | * documentation is hereby granted, provided that both the copyright | |
38 | * notice and this permission notice appear in all copies of the | |
39 | * software, derivative works or modified versions, and any portions | |
40 | * thereof, and that both notices appear in supporting documentation. | |
41 | * | |
42 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
43 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
44 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
45 | * | |
46 | * Carnegie Mellon requests users of this software to return to | |
47 | * | |
48 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
49 | * School of Computer Science | |
50 | * Carnegie Mellon University | |
51 | * Pittsburgh PA 15213-3890 | |
52 | * | |
53 | * any improvements or extensions that they make and grant Carnegie Mellon | |
54 | * the rights to redistribute these changes. | |
55 | */ | |
56 | ||
57 | /* | |
58 | */ | |
59 | ||
1c79356b | 60 | #include <kern/cpu_number.h> |
91447636 | 61 | #include <kern/kalloc.h> |
1c79356b | 62 | #include <kern/cpu_data.h> |
0c530ab8 | 63 | #include <mach/mach_types.h> |
1c79356b | 64 | #include <mach/machine.h> |
7e4a7d39 | 65 | #include <kern/etimer.h> |
0c530ab8 | 66 | #include <mach/vm_map.h> |
b0d623f7 | 67 | #include <mach/machine/vm_param.h> |
1c79356b | 68 | #include <vm/vm_kern.h> |
0c530ab8 | 69 | #include <vm/vm_map.h> |
1c79356b | 70 | |
1c79356b | 71 | #include <i386/lock.h> |
b0d623f7 | 72 | #include <i386/mp_desc.h> |
1c79356b | 73 | #include <i386/misc_protos.h> |
55e303ae | 74 | #include <i386/mp.h> |
91447636 | 75 | #include <i386/pmap.h> |
316670eb A |
76 | #if defined(__i386__) |
77 | #include <i386/pmap_internal.h> | |
78 | #endif /* i386 */ | |
b0d623f7 | 79 | #if CONFIG_MCA |
2d21ac55 | 80 | #include <i386/machine_check.h> |
b0d623f7 | 81 | #endif |
1c79356b A |
82 | |
83 | #include <kern/misc_protos.h> | |
84 | ||
b0d623f7 A |
85 | #ifdef __x86_64__ |
86 | #define K_INTR_GATE (ACC_P|ACC_PL_K|ACC_INTR_GATE) | |
87 | #define U_INTR_GATE (ACC_P|ACC_PL_U|ACC_INTR_GATE) | |
88 | ||
89 | // Declare macros that will declare the externs | |
90 | #define TRAP(n, name) extern void *name ; | |
91 | #define TRAP_ERR(n, name) extern void *name ; | |
92 | #define TRAP_SPC(n, name) extern void *name ; | |
93 | #define TRAP_IST(n, name) extern void *name ; | |
94 | #define INTERRUPT(n) extern void *_intr_ ## n ; | |
95 | #define USER_TRAP(n, name) extern void *name ; | |
96 | #define USER_TRAP_SPC(n, name) extern void *name ; | |
97 | ||
98 | // Include the table to declare the externs | |
99 | #include "../x86_64/idt_table.h" | |
100 | ||
101 | // Undef the macros, then redefine them so we can declare the table | |
102 | #undef TRAP | |
103 | #undef TRAP_ERR | |
104 | #undef TRAP_SPC | |
105 | #undef TRAP_IST | |
106 | #undef INTERRUPT | |
107 | #undef USER_TRAP | |
108 | #undef USER_TRAP_SPC | |
109 | ||
110 | #define TRAP(n, name) \ | |
6d2010ae | 111 | [n] = { \ |
b0d623f7 A |
112 | (uintptr_t)&name, \ |
113 | KERNEL64_CS, \ | |
114 | 0, \ | |
115 | K_INTR_GATE, \ | |
116 | 0 \ | |
117 | }, | |
118 | ||
119 | #define TRAP_ERR TRAP | |
120 | #define TRAP_SPC TRAP | |
121 | ||
122 | #define TRAP_IST(n, name) \ | |
6d2010ae | 123 | [n] = { \ |
b0d623f7 A |
124 | (uintptr_t)&name, \ |
125 | KERNEL64_CS, \ | |
126 | 1, \ | |
127 | K_INTR_GATE, \ | |
128 | 0 \ | |
129 | }, | |
130 | ||
131 | #define INTERRUPT(n) \ | |
6d2010ae | 132 | [n] = { \ |
b0d623f7 A |
133 | (uintptr_t)&_intr_ ## n,\ |
134 | KERNEL64_CS, \ | |
135 | 0, \ | |
136 | K_INTR_GATE, \ | |
137 | 0 \ | |
138 | }, | |
139 | ||
140 | #define USER_TRAP(n, name) \ | |
6d2010ae | 141 | [n] = { \ |
b0d623f7 A |
142 | (uintptr_t)&name, \ |
143 | KERNEL64_CS, \ | |
144 | 0, \ | |
145 | U_INTR_GATE, \ | |
146 | 0 \ | |
147 | }, | |
148 | ||
149 | #define USER_TRAP_SPC USER_TRAP | |
b0d623f7 A |
150 | |
151 | // Declare the table using the macros we just set up | |
316670eb A |
152 | struct fake_descriptor64 master_idt64[IDTSZ] |
153 | __attribute__ ((section("__HIB,__desc"))) | |
154 | __attribute__ ((aligned(PAGE_SIZE))) = { | |
b0d623f7 A |
155 | #include "../x86_64/idt_table.h" |
156 | }; | |
157 | #endif | |
158 | ||
1c79356b A |
159 | /* |
160 | * The i386 needs an interrupt stack to keep the PCB stack from being | |
161 | * overrun by interrupts. All interrupt stacks MUST lie at lower addresses | |
162 | * than any thread`s kernel stack. | |
163 | */ | |
164 | ||
1c79356b A |
165 | /* |
166 | * First cpu`s interrupt stack. | |
167 | */ | |
316670eb | 168 | extern uint32_t low_intstack[]; /* bottom */ |
0c530ab8 | 169 | extern uint32_t low_eintstack[]; /* top */ |
1c79356b A |
170 | |
171 | /* | |
91447636 A |
172 | * Per-cpu data area pointers. |
173 | * The master cpu (cpu 0) has its data area statically allocated; | |
174 | * others are allocated dynamically and this array is updated at runtime. | |
1c79356b | 175 | */ |
593a1d5f | 176 | cpu_data_t cpu_data_master = { |
b0d623f7 | 177 | .cpu_this = &cpu_data_master, |
6d2010ae | 178 | .cpu_nanotime = &pal_rtc_nanotime_info, |
b0d623f7 A |
179 | .cpu_int_stack_top = (vm_offset_t) low_eintstack, |
180 | #ifdef __i386__ | |
181 | .cpu_is64bit = FALSE, | |
182 | #else | |
183 | .cpu_is64bit = TRUE | |
184 | #endif | |
185 | }; | |
6d2010ae | 186 | cpu_data_t *cpu_data_ptr[MAX_CPUS] = { [0] = &cpu_data_master }; |
91447636 | 187 | |
b0d623f7 | 188 | decl_simple_lock_data(,ncpus_lock); /* protects real_ncpus */ |
91447636 A |
189 | unsigned int real_ncpus = 1; |
190 | unsigned int max_ncpus = MAX_CPUS; | |
1c79356b | 191 | |
b0d623f7 | 192 | #ifdef __i386__ |
0c530ab8 A |
193 | extern void *hi_remap_text; |
194 | #define HI_TEXT(lo_text) \ | |
195 | (((uint32_t)&lo_text - (uint32_t)&hi_remap_text) + HIGH_MEM_BASE) | |
196 | ||
2d21ac55 | 197 | extern void hi_sysenter(void); |
b0d623f7 A |
198 | |
199 | typedef struct { | |
200 | uint16_t length; | |
201 | uint32_t offset[2]; | |
202 | } __attribute__((__packed__)) table_descriptor64_t; | |
203 | ||
204 | extern table_descriptor64_t gdtptr64; | |
205 | extern table_descriptor64_t idtptr64; | |
206 | #endif | |
2d21ac55 A |
207 | extern void hi64_sysenter(void); |
208 | extern void hi64_syscall(void); | |
0c530ab8 | 209 | |
b0d623f7 A |
210 | #if defined(__x86_64__) && !defined(UBER64) |
211 | #define UBER64(x) ((uintptr_t)x) | |
212 | #endif | |
213 | ||
1c79356b A |
214 | /* |
215 | * Multiprocessor i386/i486 systems use a separate copy of the | |
216 | * GDT, IDT, LDT, and kernel TSS per processor. The first three | |
217 | * are separate to avoid lock contention: the i386 uses locked | |
218 | * memory cycles to access the descriptor tables. The TSS is | |
219 | * separate since each processor needs its own kernel stack, | |
220 | * and since using a TSS marks it busy. | |
221 | */ | |
222 | ||
1c79356b A |
223 | /* |
224 | * Allocate and initialize the per-processor descriptor tables. | |
225 | */ | |
226 | ||
227 | struct fake_descriptor ldt_desc_pattern = { | |
228 | (unsigned int) 0, | |
0c530ab8 | 229 | LDTSZ_MIN * sizeof(struct fake_descriptor) - 1, |
1c79356b A |
230 | 0, |
231 | ACC_P|ACC_PL_K|ACC_LDT | |
232 | }; | |
0c530ab8 | 233 | |
1c79356b A |
234 | struct fake_descriptor tss_desc_pattern = { |
235 | (unsigned int) 0, | |
0c530ab8 | 236 | sizeof(struct i386_tss) - 1, |
1c79356b A |
237 | 0, |
238 | ACC_P|ACC_PL_K|ACC_TSS | |
239 | }; | |
240 | ||
241 | struct fake_descriptor cpudata_desc_pattern = { | |
242 | (unsigned int) 0, | |
243 | sizeof(cpu_data_t)-1, | |
244 | SZ_32, | |
245 | ACC_P|ACC_PL_K|ACC_DATA_W | |
246 | }; | |
247 | ||
316670eb | 248 | #if NCOPY_WINDOWS > 0 |
0c530ab8 A |
249 | struct fake_descriptor userwindow_desc_pattern = { |
250 | (unsigned int) 0, | |
251 | ((NBPDE * NCOPY_WINDOWS) / PAGE_SIZE) - 1, | |
252 | SZ_32 | SZ_G, | |
253 | ACC_P|ACC_PL_U|ACC_DATA_W | |
254 | }; | |
316670eb | 255 | #endif |
0c530ab8 A |
256 | |
257 | struct fake_descriptor physwindow_desc_pattern = { | |
258 | (unsigned int) 0, | |
259 | PAGE_SIZE - 1, | |
260 | SZ_32, | |
261 | ACC_P|ACC_PL_K|ACC_DATA_W | |
262 | }; | |
263 | ||
264 | /* | |
265 | * This is the expanded, 64-bit variant of the kernel LDT descriptor. | |
266 | * When switching to 64-bit mode this replaces KERNEL_LDT entry | |
267 | * and the following empty slot. This enables the LDT to be referenced | |
268 | * in the uber-space remapping window on the kernel. | |
269 | */ | |
270 | struct fake_descriptor64 kernel_ldt_desc64 = { | |
b0d623f7 | 271 | 0, |
0c530ab8 A |
272 | LDTSZ_MIN*sizeof(struct fake_descriptor)-1, |
273 | 0, | |
274 | ACC_P|ACC_PL_K|ACC_LDT, | |
275 | 0 | |
276 | }; | |
277 | ||
278 | /* | |
279 | * This is the expanded, 64-bit variant of the kernel TSS descriptor. | |
280 | * It is follows pattern of the KERNEL_LDT. | |
281 | */ | |
282 | struct fake_descriptor64 kernel_tss_desc64 = { | |
b0d623f7 | 283 | 0, |
0c530ab8 A |
284 | sizeof(struct x86_64_tss)-1, |
285 | 0, | |
286 | ACC_P|ACC_PL_K|ACC_TSS, | |
287 | 0 | |
288 | }; | |
289 | ||
b0d623f7 A |
290 | /* |
291 | * Convert a descriptor from fake to real format. | |
292 | * | |
293 | * Fake descriptor format: | |
294 | * bytes 0..3 base 31..0 | |
295 | * bytes 4..5 limit 15..0 | |
296 | * byte 6 access byte 2 | limit 19..16 | |
297 | * byte 7 access byte 1 | |
298 | * | |
299 | * Real descriptor format: | |
300 | * bytes 0..1 limit 15..0 | |
301 | * bytes 2..3 base 15..0 | |
302 | * byte 4 base 23..16 | |
303 | * byte 5 access byte 1 | |
304 | * byte 6 access byte 2 | limit 19..16 | |
305 | * byte 7 base 31..24 | |
306 | * | |
307 | * Fake gate format: | |
308 | * bytes 0..3 offset | |
309 | * bytes 4..5 selector | |
310 | * byte 6 word count << 4 (to match fake descriptor) | |
311 | * byte 7 access byte 1 | |
312 | * | |
313 | * Real gate format: | |
314 | * bytes 0..1 offset 15..0 | |
315 | * bytes 2..3 selector | |
316 | * byte 4 word count | |
317 | * byte 5 access byte 1 | |
318 | * bytes 6..7 offset 31..16 | |
319 | */ | |
320 | void | |
321 | fix_desc(void *d, int num_desc) { | |
322 | //early_kprintf("fix_desc(%x, %x)\n", d, num_desc); | |
323 | uint8_t *desc = (uint8_t*) d; | |
324 | ||
325 | do { | |
326 | if ((desc[7] & 0x14) == 0x04) { /* gate */ | |
327 | uint32_t offset; | |
328 | uint16_t selector; | |
329 | uint8_t wordcount; | |
330 | uint8_t acc; | |
331 | ||
332 | offset = *((uint32_t*)(desc)); | |
333 | selector = *((uint32_t*)(desc+4)); | |
334 | wordcount = desc[6] >> 4; | |
335 | acc = desc[7]; | |
336 | ||
337 | *((uint16_t*)desc) = offset & 0xFFFF; | |
338 | *((uint16_t*)(desc+2)) = selector; | |
339 | desc[4] = wordcount; | |
340 | desc[5] = acc; | |
341 | *((uint16_t*)(desc+6)) = offset >> 16; | |
342 | ||
343 | } else { /* descriptor */ | |
344 | uint32_t base; | |
345 | uint16_t limit; | |
346 | uint8_t acc1, acc2; | |
347 | ||
348 | base = *((uint32_t*)(desc)); | |
349 | limit = *((uint16_t*)(desc+4)); | |
350 | acc2 = desc[6]; | |
351 | acc1 = desc[7]; | |
352 | ||
353 | *((uint16_t*)(desc)) = limit; | |
354 | *((uint16_t*)(desc+2)) = base & 0xFFFF; | |
355 | desc[4] = (base >> 16) & 0xFF; | |
356 | desc[5] = acc1; | |
357 | desc[6] = acc2; | |
358 | desc[7] = base >> 24; | |
359 | } | |
360 | desc += 8; | |
361 | } while (--num_desc); | |
362 | } | |
363 | ||
364 | void | |
365 | fix_desc64(void *descp, int count) | |
366 | { | |
367 | struct fake_descriptor64 *fakep; | |
368 | union { | |
369 | struct real_gate64 gate; | |
370 | struct real_descriptor64 desc; | |
371 | } real; | |
372 | int i; | |
373 | ||
374 | fakep = (struct fake_descriptor64 *) descp; | |
375 | ||
376 | for (i = 0; i < count; i++, fakep++) { | |
377 | /* | |
378 | * Construct the real decriptor locally. | |
379 | */ | |
380 | ||
381 | bzero((void *) &real, sizeof(real)); | |
382 | ||
383 | switch (fakep->access & ACC_TYPE) { | |
384 | case 0: | |
385 | break; | |
386 | case ACC_CALL_GATE: | |
387 | case ACC_INTR_GATE: | |
388 | case ACC_TRAP_GATE: | |
6d2010ae | 389 | real.gate.offset_low16 = (uint16_t)(fakep->offset64 & 0xFFFF); |
b0d623f7 A |
390 | real.gate.selector16 = fakep->lim_or_seg & 0xFFFF; |
391 | real.gate.IST = fakep->size_or_IST & 0x7; | |
392 | real.gate.access8 = fakep->access; | |
6d2010ae | 393 | real.gate.offset_high16 = (uint16_t)((fakep->offset64>>16) & 0xFFFF); |
b0d623f7 A |
394 | real.gate.offset_top32 = (uint32_t)(fakep->offset64>>32); |
395 | break; | |
396 | default: /* Otherwise */ | |
397 | real.desc.limit_low16 = fakep->lim_or_seg & 0xFFFF; | |
6d2010ae A |
398 | real.desc.base_low16 = (uint16_t)(fakep->offset64 & 0xFFFF); |
399 | real.desc.base_med8 = (uint8_t)((fakep->offset64 >> 16) & 0xFF); | |
b0d623f7 A |
400 | real.desc.access8 = fakep->access; |
401 | real.desc.limit_high4 = (fakep->lim_or_seg >> 16) & 0xFF; | |
402 | real.desc.granularity4 = fakep->size_or_IST; | |
6d2010ae | 403 | real.desc.base_high8 = (uint8_t)((fakep->offset64 >> 24) & 0xFF); |
b0d623f7 A |
404 | real.desc.base_top32 = (uint32_t)(fakep->offset64>>32); |
405 | } | |
406 | ||
407 | /* | |
408 | * Now copy back over the fake structure. | |
409 | */ | |
410 | bcopy((void *) &real, (void *) fakep, sizeof(real)); | |
411 | } | |
412 | } | |
413 | ||
414 | #ifdef __i386__ | |
91447636 | 415 | void |
b0d623f7 | 416 | cpu_desc_init(cpu_data_t *cdp) |
1c79356b | 417 | { |
0c530ab8 | 418 | cpu_desc_index_t *cdi = &cdp->cpu_desc_index; |
1c79356b | 419 | |
b0d623f7 A |
420 | if (cdp == &cpu_data_master) { |
421 | /* | |
422 | * Fix up the entries in the GDT to point to | |
423 | * this LDT and this TSS. | |
424 | */ | |
425 | struct fake_descriptor temp_fake_desc; | |
426 | temp_fake_desc = ldt_desc_pattern; | |
427 | temp_fake_desc.offset = (vm_offset_t) &master_ldt; | |
428 | fix_desc(&temp_fake_desc, 1); | |
429 | *(struct fake_descriptor *) &master_gdt[sel_idx(KERNEL_LDT)] = | |
430 | temp_fake_desc; | |
431 | *(struct fake_descriptor *) &master_gdt[sel_idx(USER_LDT)] = | |
432 | temp_fake_desc; | |
433 | ||
434 | temp_fake_desc = tss_desc_pattern; | |
435 | temp_fake_desc.offset = (vm_offset_t) &master_ktss; | |
436 | fix_desc(&temp_fake_desc, 1); | |
437 | *(struct fake_descriptor *) &master_gdt[sel_idx(KERNEL_TSS)] = | |
438 | temp_fake_desc; | |
439 | ||
b0d623f7 A |
440 | temp_fake_desc = cpudata_desc_pattern; |
441 | temp_fake_desc.offset = (vm_offset_t) &cpu_data_master; | |
442 | fix_desc(&temp_fake_desc, 1); | |
443 | *(struct fake_descriptor *) &master_gdt[sel_idx(CPU_DATA_GS)] = | |
444 | temp_fake_desc; | |
445 | ||
446 | fix_desc((void *)&master_idt, IDTSZ); | |
447 | ||
448 | cdi->cdi_idt.ptr = master_idt; | |
449 | cdi->cdi_gdt.ptr = (void *)master_gdt; | |
450 | ||
451 | ||
452 | /* | |
453 | * Master CPU uses the tables built at boot time. | |
454 | * Just set the index pointers to the high shared-mapping space. | |
455 | * Note that the sysenter stack uses empty space above the ktss | |
456 | * in the HIGH_FIXED_KTSS page. In this case we don't map the | |
457 | * the real master_sstk in low memory. | |
458 | */ | |
459 | cdi->cdi_ktss = (struct i386_tss *) | |
460 | pmap_index_to_virt(HIGH_FIXED_KTSS) ; | |
461 | cdi->cdi_sstk = (vm_offset_t) (cdi->cdi_ktss + 1) + | |
0c530ab8 A |
462 | (vm_offset_t) &master_sstk.top - |
463 | (vm_offset_t) &master_sstk; | |
91447636 | 464 | } else { |
b0d623f7 A |
465 | cpu_desc_table_t *cdt = (cpu_desc_table_t *) cdp->cpu_desc_tablep; |
466 | ||
467 | vm_offset_t cpu_hi_desc; | |
468 | ||
469 | cpu_hi_desc = pmap_cpu_high_shared_remap( | |
470 | cdp->cpu_number, | |
471 | HIGH_CPU_DESC, | |
472 | (vm_offset_t) cdt, 1); | |
473 | ||
474 | /* | |
475 | * Per-cpu GDT, IDT, LDT, KTSS descriptors are allocated in one | |
476 | * block (cpu_desc_table) and double-mapped into high shared space | |
477 | * in one page window. | |
478 | * Also, a transient stack for the fast sysenter path. The top of | |
479 | * which is set at context switch time to point to the PCB using | |
480 | * the high address. | |
481 | */ | |
482 | cdi->cdi_gdt.ptr = (struct fake_descriptor *) (cpu_hi_desc + | |
483 | offsetof(cpu_desc_table_t, gdt[0])); | |
484 | cdi->cdi_idt.ptr = (struct fake_descriptor *) (cpu_hi_desc + | |
485 | offsetof(cpu_desc_table_t, idt[0])); | |
486 | cdi->cdi_ktss = (struct i386_tss *) (cpu_hi_desc + | |
487 | offsetof(cpu_desc_table_t, ktss)); | |
488 | cdi->cdi_sstk = cpu_hi_desc + offsetof(cpu_desc_table_t, sstk.top); | |
91447636 | 489 | |
b0d623f7 A |
490 | /* |
491 | * LDT descriptors are mapped into a seperate area. | |
492 | */ | |
493 | cdi->cdi_ldt = (struct fake_descriptor *) | |
0c530ab8 | 494 | pmap_cpu_high_shared_remap( |
b0d623f7 A |
495 | cdp->cpu_number, |
496 | HIGH_CPU_LDT_BEGIN, | |
497 | (vm_offset_t) cdp->cpu_ldtp, | |
498 | HIGH_CPU_LDT_END - HIGH_CPU_LDT_BEGIN + 1); | |
55e303ae | 499 | |
b0d623f7 A |
500 | /* |
501 | * Copy the tables | |
502 | */ | |
503 | bcopy((char *)master_idt, (char *)cdt->idt, sizeof(master_idt)); | |
504 | bcopy((char *)master_gdt, (char *)cdt->gdt, sizeof(master_gdt)); | |
505 | bcopy((char *)master_ldt, (char *)cdp->cpu_ldtp, sizeof(master_ldt)); | |
506 | bzero((char *)&cdt->ktss, sizeof(struct i386_tss)); | |
1c79356b | 507 | |
b0d623f7 A |
508 | /* |
509 | * Fix up the entries in the GDT to point to | |
510 | * this LDT and this TSS. | |
511 | */ | |
512 | struct fake_descriptor temp_ldt = ldt_desc_pattern; | |
513 | temp_ldt.offset = (vm_offset_t)cdi->cdi_ldt; | |
514 | fix_desc(&temp_ldt, 1); | |
0c530ab8 | 515 | |
b0d623f7 A |
516 | cdt->gdt[sel_idx(KERNEL_LDT)] = temp_ldt; |
517 | cdt->gdt[sel_idx(USER_LDT)] = temp_ldt; | |
4452a7af | 518 | |
b0d623f7 A |
519 | cdt->gdt[sel_idx(KERNEL_TSS)] = tss_desc_pattern; |
520 | cdt->gdt[sel_idx(KERNEL_TSS)].offset = (vm_offset_t) cdi->cdi_ktss; | |
521 | fix_desc(&cdt->gdt[sel_idx(KERNEL_TSS)], 1); | |
1c79356b | 522 | |
b0d623f7 A |
523 | cdt->gdt[sel_idx(CPU_DATA_GS)] = cpudata_desc_pattern; |
524 | cdt->gdt[sel_idx(CPU_DATA_GS)].offset = (vm_offset_t) cdp; | |
525 | fix_desc(&cdt->gdt[sel_idx(CPU_DATA_GS)], 1); | |
1c79356b | 526 | |
b0d623f7 A |
527 | cdt->ktss.ss0 = KERNEL_DS; |
528 | cdt->ktss.io_bit_map_offset = 0x0FFF; /* no IO bitmap */ | |
0c530ab8 | 529 | |
b0d623f7 A |
530 | cpu_userwindow_init(cdp->cpu_number); |
531 | cpu_physwindow_init(cdp->cpu_number); | |
0c530ab8 | 532 | |
4452a7af | 533 | } |
0c530ab8 | 534 | } |
b0d623f7 | 535 | #endif /* __i386__ */ |
0c530ab8 A |
536 | |
537 | void | |
b0d623f7 | 538 | cpu_desc_init64(cpu_data_t *cdp) |
0c530ab8 | 539 | { |
0c530ab8 A |
540 | cpu_desc_index_t *cdi = &cdp->cpu_desc_index; |
541 | ||
b0d623f7 | 542 | if (cdp == &cpu_data_master) { |
2d21ac55 A |
543 | /* |
544 | * Master CPU uses the tables built at boot time. | |
545 | * Just set the index pointers to the low memory space. | |
2d21ac55 | 546 | */ |
b0d623f7 | 547 | cdi->cdi_ktss = (void *)&master_ktss64; |
2d21ac55 | 548 | cdi->cdi_sstk = (vm_offset_t) &master_sstk.top; |
316670eb A |
549 | #if __x86_64__ |
550 | cdi->cdi_gdt.ptr = (void *)MASTER_GDT_ALIAS; | |
551 | cdi->cdi_idt.ptr = (void *)MASTER_IDT_ALIAS; | |
552 | #else | |
b0d623f7 A |
553 | cdi->cdi_gdt.ptr = (void *)master_gdt; |
554 | cdi->cdi_idt.ptr = (void *)master_idt64; | |
316670eb | 555 | #endif |
b0d623f7 A |
556 | cdi->cdi_ldt = (struct fake_descriptor *) master_ldt; |
557 | ||
b0d623f7 A |
558 | /* Replace the expanded LDTs and TSS slots in the GDT */ |
559 | kernel_ldt_desc64.offset64 = UBER64(&master_ldt); | |
2d21ac55 A |
560 | *(struct fake_descriptor64 *) &master_gdt[sel_idx(KERNEL_LDT)] = |
561 | kernel_ldt_desc64; | |
b0d623f7 A |
562 | *(struct fake_descriptor64 *) &master_gdt[sel_idx(USER_LDT)] = |
563 | kernel_ldt_desc64; | |
564 | kernel_tss_desc64.offset64 = UBER64(&master_ktss64); | |
2d21ac55 A |
565 | *(struct fake_descriptor64 *) &master_gdt[sel_idx(KERNEL_TSS)] = |
566 | kernel_tss_desc64; | |
0c530ab8 | 567 | |
b0d623f7 | 568 | /* Fix up the expanded descriptors for 64-bit. */ |
2d21ac55 A |
569 | fix_desc64((void *) &master_idt64, IDTSZ); |
570 | fix_desc64((void *) &master_gdt[sel_idx(KERNEL_LDT)], 1); | |
b0d623f7 | 571 | fix_desc64((void *) &master_gdt[sel_idx(USER_LDT)], 1); |
2d21ac55 | 572 | fix_desc64((void *) &master_gdt[sel_idx(KERNEL_TSS)], 1); |
0c530ab8 | 573 | |
2d21ac55 A |
574 | /* |
575 | * Set the double-fault stack as IST1 in the 64-bit TSS | |
576 | */ | |
316670eb A |
577 | #if __x86_64__ |
578 | master_ktss64.ist1 = (uintptr_t) low_eintstack; | |
579 | #else | |
b0d623f7 | 580 | master_ktss64.ist1 = UBER64((uintptr_t) df_task_stack_end); |
316670eb | 581 | #endif |
0c530ab8 A |
582 | |
583 | } else { | |
b0d623f7 | 584 | cpu_desc_table64_t *cdt = (cpu_desc_table64_t *) cdp->cpu_desc_tablep; |
2d21ac55 A |
585 | /* |
586 | * Per-cpu GDT, IDT, KTSS descriptors are allocated in kernel | |
7e4a7d39 | 587 | * heap (cpu_desc_table). |
2d21ac55 A |
588 | * LDT descriptors are mapped into a separate area. |
589 | */ | |
316670eb A |
590 | #if __x86_64__ |
591 | cdi->cdi_idt.ptr = (void *)MASTER_IDT_ALIAS; | |
592 | #else | |
b0d623f7 | 593 | cdi->cdi_idt.ptr = (void *)cdt->idt; |
316670eb A |
594 | #endif |
595 | cdi->cdi_gdt.ptr = (struct fake_descriptor *)cdt->gdt; | |
b0d623f7 | 596 | cdi->cdi_ktss = (void *)&cdt->ktss; |
2d21ac55 A |
597 | cdi->cdi_sstk = (vm_offset_t)&cdt->sstk.top; |
598 | cdi->cdi_ldt = cdp->cpu_ldtp; | |
0c530ab8 | 599 | |
2d21ac55 A |
600 | /* |
601 | * Copy the tables | |
602 | */ | |
316670eb | 603 | #if !__x86_64__ |
b0d623f7 | 604 | bcopy((char *)master_idt64, (char *)cdt->idt, sizeof(master_idt64)); |
316670eb | 605 | #endif |
b0d623f7 A |
606 | bcopy((char *)master_gdt, (char *)cdt->gdt, sizeof(master_gdt)); |
607 | bcopy((char *)master_ldt, (char *)cdp->cpu_ldtp, sizeof(master_ldt)); | |
608 | bcopy((char *)&master_ktss64, (char *)&cdt->ktss, sizeof(struct x86_64_tss)); | |
0c530ab8 | 609 | |
2d21ac55 A |
610 | /* |
611 | * Fix up the entries in the GDT to point to | |
612 | * this LDT and this TSS. | |
613 | */ | |
b0d623f7 | 614 | kernel_ldt_desc64.offset64 = UBER64(cdi->cdi_ldt); |
2d21ac55 A |
615 | *(struct fake_descriptor64 *) &cdt->gdt[sel_idx(KERNEL_LDT)] = |
616 | kernel_ldt_desc64; | |
617 | fix_desc64(&cdt->gdt[sel_idx(KERNEL_LDT)], 1); | |
0c530ab8 | 618 | |
b0d623f7 | 619 | kernel_ldt_desc64.offset64 = UBER64(cdi->cdi_ldt); |
2d21ac55 A |
620 | *(struct fake_descriptor64 *) &cdt->gdt[sel_idx(USER_LDT)] = |
621 | kernel_ldt_desc64; | |
622 | fix_desc64(&cdt->gdt[sel_idx(USER_LDT)], 1); | |
0c530ab8 | 623 | |
b0d623f7 | 624 | kernel_tss_desc64.offset64 = UBER64(cdi->cdi_ktss); |
2d21ac55 A |
625 | *(struct fake_descriptor64 *) &cdt->gdt[sel_idx(KERNEL_TSS)] = |
626 | kernel_tss_desc64; | |
627 | fix_desc64(&cdt->gdt[sel_idx(KERNEL_TSS)], 1); | |
0c530ab8 | 628 | |
6d2010ae A |
629 | /* Set (zeroed) double-fault stack as IST1 */ |
630 | bzero((void *) cdt->dfstk, sizeof(cdt->dfstk)); | |
b0d623f7 A |
631 | cdt->ktss.ist1 = UBER64((unsigned long)cdt->dfstk + sizeof(cdt->dfstk)); |
632 | #ifdef __i386__ | |
2d21ac55 A |
633 | cdt->gdt[sel_idx(CPU_DATA_GS)] = cpudata_desc_pattern; |
634 | cdt->gdt[sel_idx(CPU_DATA_GS)].offset = (vm_offset_t) cdp; | |
635 | fix_desc(&cdt->gdt[sel_idx(CPU_DATA_GS)], 1); | |
0c530ab8 | 636 | |
b0d623f7 | 637 | /* Allocate copyio windows */ |
2d21ac55 A |
638 | cpu_userwindow_init(cdp->cpu_number); |
639 | cpu_physwindow_init(cdp->cpu_number); | |
b0d623f7 | 640 | #endif |
0c530ab8 A |
641 | } |
642 | ||
643 | /* Require that the top of the sysenter stack is 16-byte aligned */ | |
644 | if ((cdi->cdi_sstk % 16) != 0) | |
645 | panic("cpu_desc_init64() sysenter stack not 16-byte aligned"); | |
646 | } | |
647 | ||
b0d623f7 A |
648 | #ifdef __i386__ |
649 | void | |
650 | cpu_desc_load(cpu_data_t *cdp) | |
651 | { | |
652 | cpu_desc_index_t *cdi = &cdp->cpu_desc_index; | |
653 | ||
654 | cdi->cdi_idt.size = 0x1000 + cdp->cpu_number; | |
655 | cdi->cdi_gdt.size = sizeof(struct real_descriptor)*GDTSZ - 1; | |
656 | ||
316670eb A |
657 | lgdt((uintptr_t *) &cdi->cdi_gdt); |
658 | lidt((uintptr_t *) &cdi->cdi_idt); | |
b0d623f7 A |
659 | lldt(KERNEL_LDT); |
660 | ||
661 | set_tr(KERNEL_TSS); | |
662 | ||
663 | __asm__ volatile("mov %0, %%gs" : : "rm" ((unsigned short)(CPU_DATA_GS))); | |
664 | } | |
665 | #endif /* __i386__ */ | |
666 | ||
667 | void | |
668 | cpu_desc_load64(cpu_data_t *cdp) | |
669 | { | |
670 | cpu_desc_index_t *cdi = &cdp->cpu_desc_index; | |
671 | ||
672 | #ifdef __i386__ | |
673 | /* | |
674 | * Load up the new descriptors etc | |
675 | * ml_load_desc64() expects these global pseudo-descriptors: | |
676 | * gdtptr64 -> per-cpu gdt | |
677 | * idtptr64 -> per-cpu idt | |
678 | * These are 10-byte descriptors with 64-bit addresses into | |
679 | * uber-space. | |
680 | * | |
681 | * Refer to commpage/cpu_number.s for the IDT limit trick. | |
682 | */ | |
7e4a7d39 | 683 | gdtptr64.length = GDTSZ * sizeof(struct real_descriptor) - 1; |
b0d623f7 A |
684 | gdtptr64.offset[0] = (uint32_t) cdi->cdi_gdt.ptr; |
685 | gdtptr64.offset[1] = KERNEL_UBER_BASE_HI32; | |
686 | idtptr64.length = 0x1000 + cdp->cpu_number; | |
687 | idtptr64.offset[0] = (uint32_t) cdi->cdi_idt.ptr; | |
688 | idtptr64.offset[1] = KERNEL_UBER_BASE_HI32; | |
689 | ||
690 | /* Make sure busy bit is cleared in the TSS */ | |
691 | gdt_desc_p(KERNEL_TSS)->access &= ~ACC_TSS_BUSY; | |
692 | ||
693 | ml_load_desc64(); | |
694 | #else | |
695 | /* Load the GDT, LDT, IDT and TSS */ | |
7e4a7d39 | 696 | cdi->cdi_gdt.size = sizeof(struct real_descriptor)*GDTSZ - 1; |
b0d623f7 | 697 | cdi->cdi_idt.size = 0x1000 + cdp->cpu_number; |
316670eb A |
698 | lgdt((uintptr_t *) &cdi->cdi_gdt); |
699 | lidt((uintptr_t *) &cdi->cdi_idt); | |
b0d623f7 A |
700 | lldt(KERNEL_LDT); |
701 | set_tr(KERNEL_TSS); | |
702 | ||
316670eb A |
703 | /* Stuff the kernel per-cpu data area address into the MSRs */ |
704 | wrmsr64(MSR_IA32_GS_BASE, (uintptr_t) cdp); | |
705 | wrmsr64(MSR_IA32_KERNEL_GS_BASE, (uintptr_t) cdp); | |
706 | ||
b0d623f7 A |
707 | #if GPROF // Hack to enable mcount to work on K64 |
708 | __asm__ volatile("mov %0, %%gs" : : "rm" ((unsigned short)(KERNEL_DS))); | |
709 | #endif | |
b0d623f7 A |
710 | #endif |
711 | } | |
712 | ||
713 | #ifdef __i386__ | |
714 | /* | |
715 | * Set MSRs for sysenter/sysexit for 32-bit. | |
716 | */ | |
717 | static void | |
718 | fast_syscall_init(__unused cpu_data_t *cdp) | |
719 | { | |
720 | wrmsr(MSR_IA32_SYSENTER_CS, SYSENTER_CS, 0); | |
721 | wrmsr(MSR_IA32_SYSENTER_EIP, HI_TEXT(hi_sysenter), 0); | |
722 | wrmsr(MSR_IA32_SYSENTER_ESP, current_sstk(), 0); | |
723 | } | |
724 | #endif | |
725 | ||
0c530ab8 | 726 | /* |
b0d623f7 | 727 | * Set MSRs for sysenter/sysexit and syscall/sysret for 64-bit. |
0c530ab8 | 728 | */ |
2d21ac55 | 729 | static void |
b0d623f7 | 730 | fast_syscall_init64(__unused cpu_data_t *cdp) |
0c530ab8 A |
731 | { |
732 | wrmsr64(MSR_IA32_SYSENTER_CS, SYSENTER_CS); | |
b0d623f7 | 733 | wrmsr64(MSR_IA32_SYSENTER_EIP, UBER64((uintptr_t) hi64_sysenter)); |
0c530ab8 | 734 | wrmsr64(MSR_IA32_SYSENTER_ESP, UBER64(current_sstk())); |
0c530ab8 A |
735 | /* Enable syscall/sysret */ |
736 | wrmsr64(MSR_IA32_EFER, rdmsr64(MSR_IA32_EFER) | MSR_IA32_EFER_SCE); | |
737 | ||
738 | /* | |
739 | * MSRs for 64-bit syscall/sysret | |
740 | * Note USER_CS because sysret uses this + 16 when returning to | |
741 | * 64-bit code. | |
742 | */ | |
b0d623f7 A |
743 | wrmsr64(MSR_IA32_LSTAR, UBER64((uintptr_t) hi64_syscall)); |
744 | wrmsr64(MSR_IA32_STAR, (((uint64_t)USER_CS) << 48) | | |
745 | (((uint64_t)KERNEL64_CS) << 32)); | |
0c530ab8 A |
746 | /* |
747 | * Emulate eflags cleared by sysenter but note that | |
748 | * we also clear the trace trap to avoid the complications | |
2d21ac55 A |
749 | * of single-stepping into a syscall. The nested task bit |
750 | * is also cleared to avoid a spurious "task switch" | |
751 | * should we choose to return via an IRET. | |
0c530ab8 A |
752 | */ |
753 | wrmsr64(MSR_IA32_FMASK, EFL_DF|EFL_IF|EFL_TF|EFL_NT); | |
754 | ||
b0d623f7 | 755 | #ifdef __i386__ |
0c530ab8 | 756 | /* |
2d21ac55 | 757 | * Set the Kernel GS base MSR to point to per-cpu data in uber-space. |
0c530ab8 A |
758 | * The uber-space handler (hi64_syscall) uses the swapgs instruction. |
759 | */ | |
b0d623f7 | 760 | wrmsr64(MSR_IA32_KERNEL_GS_BASE, UBER64(cdp)); |
4a3eedf9 A |
761 | |
762 | #if ONLY_SAFE_FOR_LINDA_SERIAL | |
0c530ab8 | 763 | kprintf("fast_syscall_init64() KERNEL_GS_BASE=0x%016llx\n", |
b0d623f7 A |
764 | rdmsr64(MSR_IA32_KERNEL_GS_BASE)); |
765 | #endif | |
4a3eedf9 | 766 | #endif |
1c79356b A |
767 | } |
768 | ||
6d2010ae | 769 | |
91447636 A |
770 | cpu_data_t * |
771 | cpu_data_alloc(boolean_t is_boot_cpu) | |
1c79356b | 772 | { |
91447636 A |
773 | int ret; |
774 | cpu_data_t *cdp; | |
775 | ||
776 | if (is_boot_cpu) { | |
777 | assert(real_ncpus == 1); | |
316670eb | 778 | cdp = cpu_datap(0); |
91447636 | 779 | if (cdp->cpu_processor == NULL) { |
b0d623f7 | 780 | simple_lock_init(&ncpus_lock, 0); |
91447636 | 781 | cdp->cpu_processor = cpu_processor_alloc(TRUE); |
b0d623f7 | 782 | #if NCOPY_WINDOWS > 0 |
91447636 | 783 | cdp->cpu_pmap = pmap_cpu_alloc(TRUE); |
b0d623f7 | 784 | #endif |
91447636 A |
785 | } |
786 | return cdp; | |
787 | } | |
1c79356b | 788 | |
1c79356b | 789 | /* |
91447636 | 790 | * Allocate per-cpu data: |
1c79356b | 791 | */ |
b0d623f7 | 792 | ret = kmem_alloc(kernel_map, (vm_offset_t *) &cdp, sizeof(cpu_data_t)); |
91447636 A |
793 | if (ret != KERN_SUCCESS) { |
794 | printf("cpu_data_alloc() failed, ret=%d\n", ret); | |
795 | goto abort; | |
796 | } | |
797 | bzero((void*) cdp, sizeof(cpu_data_t)); | |
798 | cdp->cpu_this = cdp; | |
1c79356b | 799 | |
0c530ab8 A |
800 | /* Propagate mode */ |
801 | cdp->cpu_is64bit = cpu_mode_is64bit(); | |
802 | ||
1c79356b | 803 | /* |
91447636 | 804 | * Allocate interrupt stack: |
1c79356b | 805 | */ |
91447636 A |
806 | ret = kmem_alloc(kernel_map, |
807 | (vm_offset_t *) &cdp->cpu_int_stack_top, | |
808 | INTSTACK_SIZE); | |
809 | if (ret != KERN_SUCCESS) { | |
810 | printf("cpu_data_alloc() int stack failed, ret=%d\n", ret); | |
811 | goto abort; | |
1c79356b | 812 | } |
91447636 A |
813 | bzero((void*) cdp->cpu_int_stack_top, INTSTACK_SIZE); |
814 | cdp->cpu_int_stack_top += INTSTACK_SIZE; | |
1c79356b A |
815 | |
816 | /* | |
91447636 | 817 | * Allocate descriptor table: |
0c530ab8 | 818 | * Size depends on cpu mode. |
1c79356b | 819 | */ |
316670eb | 820 | |
91447636 A |
821 | ret = kmem_alloc(kernel_map, |
822 | (vm_offset_t *) &cdp->cpu_desc_tablep, | |
0c530ab8 A |
823 | cdp->cpu_is64bit ? sizeof(cpu_desc_table64_t) |
824 | : sizeof(cpu_desc_table_t)); | |
91447636 A |
825 | if (ret != KERN_SUCCESS) { |
826 | printf("cpu_data_alloc() desc_table failed, ret=%d\n", ret); | |
827 | goto abort; | |
828 | } | |
1c79356b | 829 | |
0c530ab8 A |
830 | /* |
831 | * Allocate LDT | |
832 | */ | |
833 | ret = kmem_alloc(kernel_map, | |
834 | (vm_offset_t *) &cdp->cpu_ldtp, | |
835 | sizeof(struct real_descriptor) * LDTSZ); | |
836 | if (ret != KERN_SUCCESS) { | |
837 | printf("cpu_data_alloc() ldt failed, ret=%d\n", ret); | |
838 | goto abort; | |
839 | } | |
840 | ||
b0d623f7 | 841 | #if CONFIG_MCA |
2d21ac55 A |
842 | /* Machine-check shadow register allocation. */ |
843 | mca_cpu_alloc(cdp); | |
b0d623f7 A |
844 | #endif |
845 | ||
846 | simple_lock(&ncpus_lock); | |
2d21ac55 | 847 | |
91447636 A |
848 | cpu_data_ptr[real_ncpus] = cdp; |
849 | cdp->cpu_number = real_ncpus; | |
850 | real_ncpus++; | |
b0d623f7 | 851 | simple_unlock(&ncpus_lock); |
0c530ab8 | 852 | |
6d2010ae | 853 | cdp->cpu_nanotime = &pal_rtc_nanotime_info; |
593a1d5f | 854 | |
2d21ac55 A |
855 | kprintf("cpu_data_alloc(%d) %p desc_table: %p " |
856 | "ldt: %p " | |
b0d623f7 | 857 | "int_stack: 0x%lx-0x%lx\n", |
0c530ab8 | 858 | cdp->cpu_number, cdp, cdp->cpu_desc_tablep, cdp->cpu_ldtp, |
b0d623f7 | 859 | (long)(cdp->cpu_int_stack_top - INTSTACK_SIZE), (long)(cdp->cpu_int_stack_top)); |
91447636 A |
860 | |
861 | return cdp; | |
862 | ||
863 | abort: | |
864 | if (cdp) { | |
865 | if (cdp->cpu_desc_tablep) | |
866 | kfree((void *) cdp->cpu_desc_tablep, | |
867 | sizeof(*cdp->cpu_desc_tablep)); | |
868 | if (cdp->cpu_int_stack_top) | |
869 | kfree((void *) (cdp->cpu_int_stack_top - INTSTACK_SIZE), | |
870 | INTSTACK_SIZE); | |
871 | kfree((void *) cdp, sizeof(*cdp)); | |
872 | } | |
873 | return NULL; | |
874 | } | |
1c79356b | 875 | |
6d2010ae A |
876 | boolean_t |
877 | valid_user_data_selector(uint16_t selector) | |
878 | { | |
879 | sel_t sel = selector_to_sel(selector); | |
880 | ||
881 | if (selector == 0) | |
882 | return (TRUE); | |
883 | ||
884 | if (sel.ti == SEL_LDT) | |
885 | return (TRUE); | |
886 | else if (sel.index < GDTSZ) { | |
887 | if ((gdt_desc_p(selector)->access & ACC_PL_U) == ACC_PL_U) | |
888 | return (TRUE); | |
889 | } | |
890 | ||
891 | return (FALSE); | |
892 | } | |
893 | ||
894 | boolean_t | |
895 | valid_user_code_selector(uint16_t selector) | |
896 | { | |
897 | sel_t sel = selector_to_sel(selector); | |
898 | ||
899 | if (selector == 0) | |
900 | return (FALSE); | |
901 | ||
902 | if (sel.ti == SEL_LDT) { | |
903 | if (sel.rpl == USER_PRIV) | |
904 | return (TRUE); | |
905 | } | |
906 | else if (sel.index < GDTSZ && sel.rpl == USER_PRIV) { | |
907 | if ((gdt_desc_p(selector)->access & ACC_PL_U) == ACC_PL_U) | |
908 | return (TRUE); | |
909 | } | |
910 | ||
911 | return (FALSE); | |
912 | } | |
913 | ||
914 | boolean_t | |
915 | valid_user_stack_selector(uint16_t selector) | |
916 | { | |
917 | sel_t sel = selector_to_sel(selector); | |
918 | ||
919 | if (selector == 0) | |
920 | return (FALSE); | |
921 | ||
922 | if (sel.ti == SEL_LDT) { | |
923 | if (sel.rpl == USER_PRIV) | |
924 | return (TRUE); | |
925 | } | |
926 | else if (sel.index < GDTSZ && sel.rpl == USER_PRIV) { | |
927 | if ((gdt_desc_p(selector)->access & ACC_PL_U) == ACC_PL_U) | |
928 | return (TRUE); | |
929 | } | |
930 | ||
931 | return (FALSE); | |
932 | } | |
933 | ||
91447636 A |
934 | boolean_t |
935 | valid_user_segment_selectors(uint16_t cs, | |
b0d623f7 A |
936 | uint16_t ss, |
937 | uint16_t ds, | |
938 | uint16_t es, | |
939 | uint16_t fs, | |
940 | uint16_t gs) | |
91447636 A |
941 | { |
942 | return valid_user_code_selector(cs) && | |
b0d623f7 A |
943 | valid_user_stack_selector(ss) && |
944 | valid_user_data_selector(ds) && | |
945 | valid_user_data_selector(es) && | |
946 | valid_user_data_selector(fs) && | |
947 | valid_user_data_selector(gs); | |
1c79356b A |
948 | } |
949 | ||
b0d623f7 A |
950 | #if NCOPY_WINDOWS > 0 |
951 | ||
0c530ab8 | 952 | static vm_offset_t user_window_base = 0; |
0c530ab8 A |
953 | |
954 | void | |
2d21ac55 | 955 | cpu_userwindow_init(int cpu) |
0c530ab8 A |
956 | { |
957 | cpu_data_t *cdp = cpu_data_ptr[cpu]; | |
b0d623f7 A |
958 | vm_offset_t user_window; |
959 | vm_offset_t vaddr; | |
0c530ab8 A |
960 | int num_cpus; |
961 | ||
962 | num_cpus = ml_get_max_cpus(); | |
963 | ||
964 | if (cpu >= num_cpus) | |
b0d623f7 | 965 | panic("cpu_userwindow_init: cpu > num_cpus"); |
0c530ab8 A |
966 | |
967 | if (user_window_base == 0) { | |
968 | ||
b0d623f7 A |
969 | if (vm_allocate(kernel_map, &vaddr, |
970 | (NBPDE * NCOPY_WINDOWS * num_cpus) + NBPDE, | |
971 | VM_FLAGS_ANYWHERE) != KERN_SUCCESS) | |
972 | panic("cpu_userwindow_init: " | |
973 | "couldn't allocate user map window"); | |
0c530ab8 A |
974 | |
975 | /* | |
976 | * window must start on a page table boundary | |
977 | * in the virtual address space | |
978 | */ | |
979 | user_window_base = (vaddr + (NBPDE - 1)) & ~(NBPDE - 1); | |
980 | ||
981 | /* | |
982 | * get rid of any allocation leading up to our | |
983 | * starting boundary | |
984 | */ | |
985 | vm_deallocate(kernel_map, vaddr, user_window_base - vaddr); | |
986 | ||
987 | /* | |
988 | * get rid of tail that we don't need | |
989 | */ | |
990 | user_window = user_window_base + | |
991 | (NBPDE * NCOPY_WINDOWS * num_cpus); | |
992 | ||
993 | vm_deallocate(kernel_map, user_window, | |
994 | (vaddr + | |
995 | ((NBPDE * NCOPY_WINDOWS * num_cpus) + NBPDE)) - | |
996 | user_window); | |
0c530ab8 A |
997 | } |
998 | ||
b0d623f7 | 999 | user_window = user_window_base + (cpu * NCOPY_WINDOWS * NBPDE); |
0c530ab8 | 1000 | |
0c530ab8 | 1001 | cdp->cpu_copywindow_base = user_window; |
6d2010ae A |
1002 | /* |
1003 | * Abuse this pdp entry, the pdp now actually points to | |
1004 | * an array of copy windows addresses. | |
1005 | */ | |
0c530ab8 A |
1006 | cdp->cpu_copywindow_pdp = pmap_pde(kernel_pmap, user_window); |
1007 | ||
b0d623f7 A |
1008 | #ifdef __i386__ |
1009 | cpu_desc_index_t *cdi = &cdp->cpu_desc_index; | |
1010 | cdi->cdi_gdt.ptr[sel_idx(USER_WINDOW_SEL)] = userwindow_desc_pattern; | |
1011 | cdi->cdi_gdt.ptr[sel_idx(USER_WINDOW_SEL)].offset = user_window; | |
0c530ab8 | 1012 | |
b0d623f7 A |
1013 | fix_desc(&cdi->cdi_gdt.ptr[sel_idx(USER_WINDOW_SEL)], 1); |
1014 | #endif /* __i386__ */ | |
2d21ac55 | 1015 | } |
0c530ab8 | 1016 | |
2d21ac55 A |
1017 | void |
1018 | cpu_physwindow_init(int cpu) | |
1019 | { | |
1020 | cpu_data_t *cdp = cpu_data_ptr[cpu]; | |
c910b4d9 | 1021 | vm_offset_t phys_window = cdp->cpu_physwindow_base; |
2d21ac55 | 1022 | |
c910b4d9 A |
1023 | if (phys_window == 0) { |
1024 | if (vm_allocate(kernel_map, &phys_window, | |
1025 | PAGE_SIZE, VM_FLAGS_ANYWHERE) | |
2d21ac55 | 1026 | != KERN_SUCCESS) |
c910b4d9 A |
1027 | panic("cpu_physwindow_init: " |
1028 | "couldn't allocate phys map window"); | |
2d21ac55 | 1029 | |
c910b4d9 A |
1030 | /* |
1031 | * make sure the page that encompasses the | |
1032 | * pte pointer we're interested in actually | |
1033 | * exists in the page table | |
1034 | */ | |
316670eb | 1035 | pmap_expand(kernel_pmap, phys_window, PMAP_EXPAND_OPTIONS_NONE); |
0c530ab8 | 1036 | |
c910b4d9 A |
1037 | cdp->cpu_physwindow_base = phys_window; |
1038 | cdp->cpu_physwindow_ptep = vtopte(phys_window); | |
1039 | } | |
b0d623f7 A |
1040 | #ifdef __i386__ |
1041 | cpu_desc_index_t *cdi = &cdp->cpu_desc_index; | |
1042 | cdi->cdi_gdt.ptr[sel_idx(PHYS_WINDOW_SEL)] = physwindow_desc_pattern; | |
1043 | cdi->cdi_gdt.ptr[sel_idx(PHYS_WINDOW_SEL)].offset = phys_window; | |
0c530ab8 | 1044 | |
b0d623f7 A |
1045 | fix_desc(&cdi->cdi_gdt.ptr[sel_idx(PHYS_WINDOW_SEL)], 1); |
1046 | #endif /* __i386__ */ | |
0c530ab8 | 1047 | } |
b0d623f7 | 1048 | #endif /* NCOPY_WINDOWS > 0 */ |
0c530ab8 | 1049 | |
0c530ab8 A |
1050 | /* |
1051 | * Load the segment descriptor tables for the current processor. | |
1052 | */ | |
2d21ac55 A |
1053 | void |
1054 | cpu_mode_init(cpu_data_t *cdp) | |
1055 | { | |
b0d623f7 | 1056 | #ifdef __i386__ |
6d2010ae | 1057 | if (cdp->cpu_is64bit) { |
2d21ac55 A |
1058 | cpu_IA32e_enable(cdp); |
1059 | cpu_desc_load64(cdp); | |
b0d623f7 | 1060 | fast_syscall_init64(cdp); |
2d21ac55 | 1061 | } else { |
b0d623f7 | 1062 | fast_syscall_init(cdp); |
2d21ac55 | 1063 | } |
b0d623f7 A |
1064 | #else |
1065 | fast_syscall_init64(cdp); | |
1066 | #endif | |
2d21ac55 A |
1067 | } |
1068 | ||
316670eb A |
1069 | #if __x86_64__ |
1070 | /* | |
1071 | * Allocate a new interrupt stack for the boot processor from the | |
1072 | * heap rather than continue to use the statically allocated space. | |
1073 | * Also switch to a dynamically allocated cpu data area. | |
1074 | */ | |
1075 | void | |
1076 | cpu_data_realloc(void) | |
1077 | { | |
1078 | int ret; | |
1079 | vm_offset_t stack; | |
1080 | cpu_data_t *cdp; | |
1081 | boolean_t istate; | |
1082 | ||
1083 | ret = kmem_alloc(kernel_map, &stack, INTSTACK_SIZE); | |
1084 | if (ret != KERN_SUCCESS) { | |
1085 | panic("cpu_data_realloc() stack alloc, ret=%d\n", ret); | |
1086 | } | |
1087 | bzero((void*) stack, INTSTACK_SIZE); | |
1088 | stack += INTSTACK_SIZE; | |
1089 | ||
1090 | ret = kmem_alloc(kernel_map, (vm_offset_t *) &cdp, sizeof(cpu_data_t)); | |
1091 | if (ret != KERN_SUCCESS) { | |
1092 | panic("cpu_data_realloc() cpu data alloc, ret=%d\n", ret); | |
1093 | } | |
1094 | ||
1095 | /* Copy old contents into new area and make fix-ups */ | |
1096 | bcopy((void *) &cpu_data_master, (void*) cdp, sizeof(cpu_data_t)); | |
1097 | cdp->cpu_this = cdp; | |
1098 | cdp->cpu_int_stack_top = stack; | |
1099 | timer_call_initialize_queue(&cdp->rtclock_timer.queue); | |
1100 | ||
1101 | kprintf("Reallocated master cpu data: %p, interrupt stack top: %p\n", | |
1102 | (void *) cdp, (void *) stack); | |
1103 | ||
1104 | /* | |
1105 | * With interrupts disabled commmit the new areas. | |
1106 | */ | |
1107 | istate = ml_set_interrupts_enabled(FALSE); | |
1108 | cpu_data_ptr[0] = cdp; | |
1109 | wrmsr64(MSR_IA32_GS_BASE, (uintptr_t) cdp); | |
1110 | wrmsr64(MSR_IA32_KERNEL_GS_BASE, (uintptr_t) cdp); | |
1111 | (void) ml_set_interrupts_enabled(istate); | |
1112 | } | |
1113 | #endif /* __x86_64__ */ |